xref: /freebsd/libexec/rtld-elf/rtld.c (revision 71d104536b513298902be65342afe6f3792f29e4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
140 static int parse_integer(const char *);
141 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
142 static void print_usage(const char *argv0);
143 static void release_object(Obj_Entry *);
144 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
145     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
146 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
147     int flags, RtldLockState *lockstate);
148 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
149     RtldLockState *);
150 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
151 static int rtld_dirname(const char *, char *);
152 static int rtld_dirname_abs(const char *, char *);
153 static void *rtld_dlopen(const char *name, int fd, int mode);
154 static void rtld_exit(void);
155 static void rtld_nop_exit(void);
156 static char *search_library_path(const char *, const char *, const char *,
157     int *);
158 static char *search_library_pathfds(const char *, const char *, int *);
159 static const void **get_program_var_addr(const char *, RtldLockState *);
160 static void set_program_var(const char *, const void *);
161 static int symlook_default(SymLook *, const Obj_Entry *refobj);
162 static int symlook_global(SymLook *, DoneList *);
163 static void symlook_init_from_req(SymLook *, const SymLook *);
164 static int symlook_list(SymLook *, const Objlist *, DoneList *);
165 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
166 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
167 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
168 static void trace_loaded_objects(Obj_Entry *);
169 static void unlink_object(Obj_Entry *);
170 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
171 static void unref_dag(Obj_Entry *);
172 static void ref_dag(Obj_Entry *);
173 static char *origin_subst_one(Obj_Entry *, char *, const char *,
174     const char *, bool);
175 static char *origin_subst(Obj_Entry *, const char *);
176 static bool obj_resolve_origin(Obj_Entry *obj);
177 static void preinit_main(void);
178 static int  rtld_verify_versions(const Objlist *);
179 static int  rtld_verify_object_versions(Obj_Entry *);
180 static void object_add_name(Obj_Entry *, const char *);
181 static int  object_match_name(const Obj_Entry *, const char *);
182 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
183 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
184     struct dl_phdr_info *phdr_info);
185 static uint32_t gnu_hash(const char *);
186 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
187     const unsigned long);
188 
189 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
190 void _r_debug_postinit(struct link_map *) __noinline __exported;
191 
192 int __sys_openat(int, const char *, int, ...);
193 
194 /*
195  * Data declarations.
196  */
197 static char *error_message;	/* Message for dlerror(), or NULL */
198 struct r_debug r_debug __exported;	/* for GDB; */
199 static bool libmap_disable;	/* Disable libmap */
200 static bool ld_loadfltr;	/* Immediate filters processing */
201 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
202 static bool trust;		/* False for setuid and setgid programs */
203 static bool dangerous_ld_env;	/* True if environment variables have been
204 				   used to affect the libraries loaded */
205 bool ld_bind_not;		/* Disable PLT update */
206 static char *ld_bind_now;	/* Environment variable for immediate binding */
207 static char *ld_debug;		/* Environment variable for debugging */
208 static char *ld_library_path;	/* Environment variable for search path */
209 static char *ld_library_dirs;	/* Environment variable for library descriptors */
210 static char *ld_preload;	/* Environment variable for libraries to
211 				   load first */
212 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
213 static const char *ld_tracing;	/* Called from ldd to print libs */
214 static char *ld_utrace;		/* Use utrace() to log events. */
215 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
216 static Obj_Entry *obj_main;	/* The main program shared object */
217 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
218 static unsigned int obj_count;	/* Number of objects in obj_list */
219 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
220 
221 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
222   STAILQ_HEAD_INITIALIZER(list_global);
223 static Objlist list_main =	/* Objects loaded at program startup */
224   STAILQ_HEAD_INITIALIZER(list_main);
225 static Objlist list_fini =	/* Objects needing fini() calls */
226   STAILQ_HEAD_INITIALIZER(list_fini);
227 
228 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
229 
230 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
231 
232 extern Elf_Dyn _DYNAMIC;
233 #pragma weak _DYNAMIC
234 
235 int dlclose(void *) __exported;
236 char *dlerror(void) __exported;
237 void *dlopen(const char *, int) __exported;
238 void *fdlopen(int, int) __exported;
239 void *dlsym(void *, const char *) __exported;
240 dlfunc_t dlfunc(void *, const char *) __exported;
241 void *dlvsym(void *, const char *, const char *) __exported;
242 int dladdr(const void *, Dl_info *) __exported;
243 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
244     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
245 int dlinfo(void *, int , void *) __exported;
246 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
247 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
248 int _rtld_get_stack_prot(void) __exported;
249 int _rtld_is_dlopened(void *) __exported;
250 void _rtld_error(const char *, ...) __exported;
251 
252 /* Only here to fix -Wmissing-prototypes warnings */
253 int __getosreldate(void);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 bool ld_fast_sigblock = false;
290 
291 /*
292  * Globals for path names, and such
293  */
294 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
295 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
296 const char *ld_path_rtld = _PATH_RTLD;
297 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
298 const char *ld_env_prefix = LD_;
299 
300 static void (*rtld_exit_ptr)(void);
301 
302 /*
303  * Fill in a DoneList with an allocation large enough to hold all of
304  * the currently-loaded objects.  Keep this as a macro since it calls
305  * alloca and we want that to occur within the scope of the caller.
306  */
307 #define donelist_init(dlp)					\
308     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
309     assert((dlp)->objs != NULL),				\
310     (dlp)->num_alloc = obj_count,				\
311     (dlp)->num_used = 0)
312 
313 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
314 	if (ld_utrace != NULL)					\
315 		ld_utrace_log(e, h, mb, ms, r, n);		\
316 } while (0)
317 
318 static void
319 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
320     int refcnt, const char *name)
321 {
322 	struct utrace_rtld ut;
323 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
324 
325 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
326 	ut.event = event;
327 	ut.handle = handle;
328 	ut.mapbase = mapbase;
329 	ut.mapsize = mapsize;
330 	ut.refcnt = refcnt;
331 	bzero(ut.name, sizeof(ut.name));
332 	if (name)
333 		strlcpy(ut.name, name, sizeof(ut.name));
334 	utrace(&ut, sizeof(ut));
335 }
336 
337 #ifdef RTLD_VARIANT_ENV_NAMES
338 /*
339  * construct the env variable based on the type of binary that's
340  * running.
341  */
342 static inline const char *
343 _LD(const char *var)
344 {
345 	static char buffer[128];
346 
347 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
348 	strlcat(buffer, var, sizeof(buffer));
349 	return (buffer);
350 }
351 #else
352 #define _LD(x)	LD_ x
353 #endif
354 
355 /*
356  * Main entry point for dynamic linking.  The first argument is the
357  * stack pointer.  The stack is expected to be laid out as described
358  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
359  * Specifically, the stack pointer points to a word containing
360  * ARGC.  Following that in the stack is a null-terminated sequence
361  * of pointers to argument strings.  Then comes a null-terminated
362  * sequence of pointers to environment strings.  Finally, there is a
363  * sequence of "auxiliary vector" entries.
364  *
365  * The second argument points to a place to store the dynamic linker's
366  * exit procedure pointer and the third to a place to store the main
367  * program's object.
368  *
369  * The return value is the main program's entry point.
370  */
371 func_ptr_type
372 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
373 {
374     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
375     Objlist_Entry *entry;
376     Obj_Entry *last_interposer, *obj, *preload_tail;
377     const Elf_Phdr *phdr;
378     Objlist initlist;
379     RtldLockState lockstate;
380     struct stat st;
381     Elf_Addr *argcp;
382     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
383     const char *argv0, *binpath;
384     caddr_t imgentry;
385     char buf[MAXPATHLEN];
386     int argc, fd, i, phnum, rtld_argc;
387 #ifdef __powerpc__
388     int old_auxv_format = 1;
389 #endif
390     bool dir_enable, explicit_fd, search_in_path;
391 
392     /*
393      * On entry, the dynamic linker itself has not been relocated yet.
394      * Be very careful not to reference any global data until after
395      * init_rtld has returned.  It is OK to reference file-scope statics
396      * and string constants, and to call static and global functions.
397      */
398 
399     /* Find the auxiliary vector on the stack. */
400     argcp = sp;
401     argc = *sp++;
402     argv = (char **) sp;
403     sp += argc + 1;	/* Skip over arguments and NULL terminator */
404     env = (char **) sp;
405     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
406 	;
407     aux = (Elf_Auxinfo *) sp;
408 
409     /* Digest the auxiliary vector. */
410     for (i = 0;  i < AT_COUNT;  i++)
411 	aux_info[i] = NULL;
412     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
413 	if (auxp->a_type < AT_COUNT)
414 	    aux_info[auxp->a_type] = auxp;
415 #ifdef __powerpc__
416 	if (auxp->a_type == 23) /* AT_STACKPROT */
417 	    old_auxv_format = 0;
418 #endif
419     }
420 
421 #ifdef __powerpc__
422     if (old_auxv_format) {
423 	/* Remap from old-style auxv numbers. */
424 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
425 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
426 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
427 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
428 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
429 	aux_info[13] = NULL;		/* AT_GID */
430 
431 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
432 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
433 	aux_info[16] = aux_info[14];	/* AT_CANARY */
434 	aux_info[14] = NULL;		/* AT_EGID */
435     }
436 #endif
437 
438     /* Initialize and relocate ourselves. */
439     assert(aux_info[AT_BASE] != NULL);
440     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
441 
442     __progname = obj_rtld.path;
443     argv0 = argv[0] != NULL ? argv[0] : "(null)";
444     environ = env;
445     main_argc = argc;
446     main_argv = argv;
447 
448     if (aux_info[AT_BSDFLAGS] != NULL &&
449 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
450 	    ld_fast_sigblock = true;
451 
452     trust = !issetugid();
453 
454     md_abi_variant_hook(aux_info);
455 
456     fd = -1;
457     if (aux_info[AT_EXECFD] != NULL) {
458 	fd = aux_info[AT_EXECFD]->a_un.a_val;
459     } else {
460 	assert(aux_info[AT_PHDR] != NULL);
461 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
462 	if (phdr == obj_rtld.phdr) {
463 	    if (!trust) {
464 		_rtld_error("Tainted process refusing to run binary %s",
465 		    argv0);
466 		rtld_die();
467 	    }
468 	    dbg("opening main program in direct exec mode");
469 	    if (argc >= 2) {
470 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
471 		argv0 = argv[rtld_argc];
472 		explicit_fd = (fd != -1);
473 		binpath = NULL;
474 		if (!explicit_fd)
475 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
476 		if (fstat(fd, &st) == -1) {
477 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
478 		      explicit_fd ? "user-provided descriptor" : argv0,
479 		      rtld_strerror(errno));
480 		    rtld_die();
481 		}
482 
483 		/*
484 		 * Rough emulation of the permission checks done by
485 		 * execve(2), only Unix DACs are checked, ACLs are
486 		 * ignored.  Preserve the semantic of disabling owner
487 		 * to execute if owner x bit is cleared, even if
488 		 * others x bit is enabled.
489 		 * mmap(2) does not allow to mmap with PROT_EXEC if
490 		 * binary' file comes from noexec mount.  We cannot
491 		 * set a text reference on the binary.
492 		 */
493 		dir_enable = false;
494 		if (st.st_uid == geteuid()) {
495 		    if ((st.st_mode & S_IXUSR) != 0)
496 			dir_enable = true;
497 		} else if (st.st_gid == getegid()) {
498 		    if ((st.st_mode & S_IXGRP) != 0)
499 			dir_enable = true;
500 		} else if ((st.st_mode & S_IXOTH) != 0) {
501 		    dir_enable = true;
502 		}
503 		if (!dir_enable) {
504 		    _rtld_error("No execute permission for binary %s",
505 		        argv0);
506 		    rtld_die();
507 		}
508 
509 		/*
510 		 * For direct exec mode, argv[0] is the interpreter
511 		 * name, we must remove it and shift arguments left
512 		 * before invoking binary main.  Since stack layout
513 		 * places environment pointers and aux vectors right
514 		 * after the terminating NULL, we must shift
515 		 * environment and aux as well.
516 		 */
517 		main_argc = argc - rtld_argc;
518 		for (i = 0; i <= main_argc; i++)
519 		    argv[i] = argv[i + rtld_argc];
520 		*argcp -= rtld_argc;
521 		environ = env = envp = argv + main_argc + 1;
522 		dbg("move env from %p to %p", envp + rtld_argc, envp);
523 		do {
524 		    *envp = *(envp + rtld_argc);
525 		}  while (*envp++ != NULL);
526 		aux = auxp = (Elf_Auxinfo *)envp;
527 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
528 		dbg("move aux from %p to %p", auxpf, aux);
529 		/* XXXKIB insert place for AT_EXECPATH if not present */
530 		for (;; auxp++, auxpf++) {
531 		    *auxp = *auxpf;
532 		    if (auxp->a_type == AT_NULL)
533 			    break;
534 		}
535 		/* Since the auxiliary vector has moved, redigest it. */
536 		for (i = 0;  i < AT_COUNT;  i++)
537 		    aux_info[i] = NULL;
538 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
539 		    if (auxp->a_type < AT_COUNT)
540 			aux_info[auxp->a_type] = auxp;
541 		}
542 
543 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
544 		if (binpath == NULL) {
545 		    aux_info[AT_EXECPATH] = NULL;
546 		} else {
547 		    if (aux_info[AT_EXECPATH] == NULL) {
548 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
549 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
550 		    }
551 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
552 		      binpath);
553 		}
554 	    } else {
555 		_rtld_error("No binary");
556 		rtld_die();
557 	    }
558 	}
559     }
560 
561     ld_bind_now = getenv(_LD("BIND_NOW"));
562 
563     /*
564      * If the process is tainted, then we un-set the dangerous environment
565      * variables.  The process will be marked as tainted until setuid(2)
566      * is called.  If any child process calls setuid(2) we do not want any
567      * future processes to honor the potentially un-safe variables.
568      */
569     if (!trust) {
570 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
571 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
572 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
573 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
574 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
575 		_rtld_error("environment corrupt; aborting");
576 		rtld_die();
577 	}
578     }
579     ld_debug = getenv(_LD("DEBUG"));
580     if (ld_bind_now == NULL)
581 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
582     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
583     libmap_override = getenv(_LD("LIBMAP"));
584     ld_library_path = getenv(_LD("LIBRARY_PATH"));
585     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
586     ld_preload = getenv(_LD("PRELOAD"));
587     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
588     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
589     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
590     if (library_path_rpath != NULL) {
591 	    if (library_path_rpath[0] == 'y' ||
592 		library_path_rpath[0] == 'Y' ||
593 		library_path_rpath[0] == '1')
594 		    ld_library_path_rpath = true;
595 	    else
596 		    ld_library_path_rpath = false;
597     }
598     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
599 	(ld_library_path != NULL) || (ld_preload != NULL) ||
600 	(ld_elf_hints_path != NULL) || ld_loadfltr;
601     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
602     ld_utrace = getenv(_LD("UTRACE"));
603 
604     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
605 	ld_elf_hints_path = ld_elf_hints_default;
606 
607     if (ld_debug != NULL && *ld_debug != '\0')
608 	debug = 1;
609     dbg("%s is initialized, base address = %p", __progname,
610 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
611     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
612     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
613 
614     dbg("initializing thread locks");
615     lockdflt_init();
616 
617     /*
618      * Load the main program, or process its program header if it is
619      * already loaded.
620      */
621     if (fd != -1) {	/* Load the main program. */
622 	dbg("loading main program");
623 	obj_main = map_object(fd, argv0, NULL);
624 	close(fd);
625 	if (obj_main == NULL)
626 	    rtld_die();
627 	max_stack_flags = obj_main->stack_flags;
628     } else {				/* Main program already loaded. */
629 	dbg("processing main program's program header");
630 	assert(aux_info[AT_PHDR] != NULL);
631 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
632 	assert(aux_info[AT_PHNUM] != NULL);
633 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
634 	assert(aux_info[AT_PHENT] != NULL);
635 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
636 	assert(aux_info[AT_ENTRY] != NULL);
637 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
638 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
639 	    rtld_die();
640     }
641 
642     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
643 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
644 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
645 	    if (kexecpath[0] == '/')
646 		    obj_main->path = kexecpath;
647 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
648 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
649 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
650 		    obj_main->path = xstrdup(argv0);
651 	    else
652 		    obj_main->path = xstrdup(buf);
653     } else {
654 	    dbg("No AT_EXECPATH or direct exec");
655 	    obj_main->path = xstrdup(argv0);
656     }
657     dbg("obj_main path %s", obj_main->path);
658     obj_main->mainprog = true;
659 
660     if (aux_info[AT_STACKPROT] != NULL &&
661       aux_info[AT_STACKPROT]->a_un.a_val != 0)
662 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
663 
664 #ifndef COMPAT_32BIT
665     /*
666      * Get the actual dynamic linker pathname from the executable if
667      * possible.  (It should always be possible.)  That ensures that
668      * gdb will find the right dynamic linker even if a non-standard
669      * one is being used.
670      */
671     if (obj_main->interp != NULL &&
672       strcmp(obj_main->interp, obj_rtld.path) != 0) {
673 	free(obj_rtld.path);
674 	obj_rtld.path = xstrdup(obj_main->interp);
675         __progname = obj_rtld.path;
676     }
677 #endif
678 
679     if (!digest_dynamic(obj_main, 0))
680 	rtld_die();
681     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
682 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
683 	obj_main->dynsymcount);
684 
685     linkmap_add(obj_main);
686     linkmap_add(&obj_rtld);
687 
688     /* Link the main program into the list of objects. */
689     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
690     obj_count++;
691     obj_loads++;
692 
693     /* Initialize a fake symbol for resolving undefined weak references. */
694     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
695     sym_zero.st_shndx = SHN_UNDEF;
696     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
697 
698     if (!libmap_disable)
699         libmap_disable = (bool)lm_init(libmap_override);
700 
701     dbg("loading LD_PRELOAD libraries");
702     if (load_preload_objects() == -1)
703 	rtld_die();
704     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
705 
706     dbg("loading needed objects");
707     if (load_needed_objects(obj_main, 0) == -1)
708 	rtld_die();
709 
710     /* Make a list of all objects loaded at startup. */
711     last_interposer = obj_main;
712     TAILQ_FOREACH(obj, &obj_list, next) {
713 	if (obj->marker)
714 	    continue;
715 	if (obj->z_interpose && obj != obj_main) {
716 	    objlist_put_after(&list_main, last_interposer, obj);
717 	    last_interposer = obj;
718 	} else {
719 	    objlist_push_tail(&list_main, obj);
720 	}
721     	obj->refcount++;
722     }
723 
724     dbg("checking for required versions");
725     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
726 	rtld_die();
727 
728     if (ld_tracing) {		/* We're done */
729 	trace_loaded_objects(obj_main);
730 	exit(0);
731     }
732 
733     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
734        dump_relocations(obj_main);
735        exit (0);
736     }
737 
738     /*
739      * Processing tls relocations requires having the tls offsets
740      * initialized.  Prepare offsets before starting initial
741      * relocation processing.
742      */
743     dbg("initializing initial thread local storage offsets");
744     STAILQ_FOREACH(entry, &list_main, link) {
745 	/*
746 	 * Allocate all the initial objects out of the static TLS
747 	 * block even if they didn't ask for it.
748 	 */
749 	allocate_tls_offset(entry->obj);
750     }
751 
752     if (relocate_objects(obj_main,
753       ld_bind_now != NULL && *ld_bind_now != '\0',
754       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
755 	rtld_die();
756 
757     dbg("doing copy relocations");
758     if (do_copy_relocations(obj_main) == -1)
759 	rtld_die();
760 
761     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
762        dump_relocations(obj_main);
763        exit (0);
764     }
765 
766     ifunc_init(aux);
767 
768     /*
769      * Setup TLS for main thread.  This must be done after the
770      * relocations are processed, since tls initialization section
771      * might be the subject for relocations.
772      */
773     dbg("initializing initial thread local storage");
774     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
775 
776     dbg("initializing key program variables");
777     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
778     set_program_var("environ", env);
779     set_program_var("__elf_aux_vector", aux);
780 
781     /* Make a list of init functions to call. */
782     objlist_init(&initlist);
783     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
784       preload_tail, &initlist);
785 
786     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
787 
788     map_stacks_exec(NULL);
789 
790     if (!obj_main->crt_no_init) {
791 	/*
792 	 * Make sure we don't call the main program's init and fini
793 	 * functions for binaries linked with old crt1 which calls
794 	 * _init itself.
795 	 */
796 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
797 	obj_main->preinit_array = obj_main->init_array =
798 	    obj_main->fini_array = (Elf_Addr)NULL;
799     }
800 
801     /*
802      * Execute MD initializers required before we call the objects'
803      * init functions.
804      */
805     pre_init();
806 
807     wlock_acquire(rtld_bind_lock, &lockstate);
808 
809     dbg("resolving ifuncs");
810     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
811       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
812 	rtld_die();
813 
814     rtld_exit_ptr = rtld_exit;
815     if (obj_main->crt_no_init)
816 	preinit_main();
817     objlist_call_init(&initlist, &lockstate);
818     _r_debug_postinit(&obj_main->linkmap);
819     objlist_clear(&initlist);
820     dbg("loading filtees");
821     TAILQ_FOREACH(obj, &obj_list, next) {
822 	if (obj->marker)
823 	    continue;
824 	if (ld_loadfltr || obj->z_loadfltr)
825 	    load_filtees(obj, 0, &lockstate);
826     }
827 
828     dbg("enforcing main obj relro");
829     if (obj_enforce_relro(obj_main) == -1)
830 	rtld_die();
831 
832     lock_release(rtld_bind_lock, &lockstate);
833 
834     dbg("transferring control to program entry point = %p", obj_main->entry);
835 
836     /* Return the exit procedure and the program entry point. */
837     *exit_proc = rtld_exit_ptr;
838     *objp = obj_main;
839     return (func_ptr_type) obj_main->entry;
840 }
841 
842 void *
843 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
844 {
845 	void *ptr;
846 	Elf_Addr target;
847 
848 	ptr = (void *)make_function_pointer(def, obj);
849 	target = call_ifunc_resolver(ptr);
850 	return ((void *)target);
851 }
852 
853 /*
854  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
855  * Changes to this function should be applied there as well.
856  */
857 Elf_Addr
858 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
859 {
860     const Elf_Rel *rel;
861     const Elf_Sym *def;
862     const Obj_Entry *defobj;
863     Elf_Addr *where;
864     Elf_Addr target;
865     RtldLockState lockstate;
866 
867     rlock_acquire(rtld_bind_lock, &lockstate);
868     if (sigsetjmp(lockstate.env, 0) != 0)
869 	    lock_upgrade(rtld_bind_lock, &lockstate);
870     if (obj->pltrel)
871 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
872     else
873 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
874 
875     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
876     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
877 	NULL, &lockstate);
878     if (def == NULL)
879 	rtld_die();
880     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
881 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
882     else
883 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
884 
885     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
886       defobj->strtab + def->st_name, basename(obj->path),
887       (void *)target, basename(defobj->path));
888 
889     /*
890      * Write the new contents for the jmpslot. Note that depending on
891      * architecture, the value which we need to return back to the
892      * lazy binding trampoline may or may not be the target
893      * address. The value returned from reloc_jmpslot() is the value
894      * that the trampoline needs.
895      */
896     target = reloc_jmpslot(where, target, defobj, obj, rel);
897     lock_release(rtld_bind_lock, &lockstate);
898     return target;
899 }
900 
901 /*
902  * Error reporting function.  Use it like printf.  If formats the message
903  * into a buffer, and sets things up so that the next call to dlerror()
904  * will return the message.
905  */
906 void
907 _rtld_error(const char *fmt, ...)
908 {
909     static char buf[512];
910     va_list ap;
911 
912     va_start(ap, fmt);
913     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
914     error_message = buf;
915     va_end(ap);
916     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
917 }
918 
919 /*
920  * Return a dynamically-allocated copy of the current error message, if any.
921  */
922 static char *
923 errmsg_save(void)
924 {
925     return error_message == NULL ? NULL : xstrdup(error_message);
926 }
927 
928 /*
929  * Restore the current error message from a copy which was previously saved
930  * by errmsg_save().  The copy is freed.
931  */
932 static void
933 errmsg_restore(char *saved_msg)
934 {
935     if (saved_msg == NULL)
936 	error_message = NULL;
937     else {
938 	_rtld_error("%s", saved_msg);
939 	free(saved_msg);
940     }
941 }
942 
943 static const char *
944 basename(const char *name)
945 {
946     const char *p = strrchr(name, '/');
947     return p != NULL ? p + 1 : name;
948 }
949 
950 static struct utsname uts;
951 
952 static char *
953 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
954     const char *subst, bool may_free)
955 {
956 	char *p, *p1, *res, *resp;
957 	int subst_len, kw_len, subst_count, old_len, new_len;
958 
959 	kw_len = strlen(kw);
960 
961 	/*
962 	 * First, count the number of the keyword occurrences, to
963 	 * preallocate the final string.
964 	 */
965 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
966 		p1 = strstr(p, kw);
967 		if (p1 == NULL)
968 			break;
969 	}
970 
971 	/*
972 	 * If the keyword is not found, just return.
973 	 *
974 	 * Return non-substituted string if resolution failed.  We
975 	 * cannot do anything more reasonable, the failure mode of the
976 	 * caller is unresolved library anyway.
977 	 */
978 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
979 		return (may_free ? real : xstrdup(real));
980 	if (obj != NULL)
981 		subst = obj->origin_path;
982 
983 	/*
984 	 * There is indeed something to substitute.  Calculate the
985 	 * length of the resulting string, and allocate it.
986 	 */
987 	subst_len = strlen(subst);
988 	old_len = strlen(real);
989 	new_len = old_len + (subst_len - kw_len) * subst_count;
990 	res = xmalloc(new_len + 1);
991 
992 	/*
993 	 * Now, execute the substitution loop.
994 	 */
995 	for (p = real, resp = res, *resp = '\0';;) {
996 		p1 = strstr(p, kw);
997 		if (p1 != NULL) {
998 			/* Copy the prefix before keyword. */
999 			memcpy(resp, p, p1 - p);
1000 			resp += p1 - p;
1001 			/* Keyword replacement. */
1002 			memcpy(resp, subst, subst_len);
1003 			resp += subst_len;
1004 			*resp = '\0';
1005 			p = p1 + kw_len;
1006 		} else
1007 			break;
1008 	}
1009 
1010 	/* Copy to the end of string and finish. */
1011 	strcat(resp, p);
1012 	if (may_free)
1013 		free(real);
1014 	return (res);
1015 }
1016 
1017 static char *
1018 origin_subst(Obj_Entry *obj, const char *real)
1019 {
1020 	char *res1, *res2, *res3, *res4;
1021 
1022 	if (obj == NULL || !trust)
1023 		return (xstrdup(real));
1024 	if (uts.sysname[0] == '\0') {
1025 		if (uname(&uts) != 0) {
1026 			_rtld_error("utsname failed: %d", errno);
1027 			return (NULL);
1028 		}
1029 	}
1030 	/* __DECONST is safe here since without may_free real is unchanged */
1031 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1032 	    false);
1033 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1034 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1035 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1036 	return (res4);
1037 }
1038 
1039 void
1040 rtld_die(void)
1041 {
1042     const char *msg = dlerror();
1043 
1044     if (msg == NULL)
1045 	msg = "Fatal error";
1046     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1047     rtld_fdputstr(STDERR_FILENO, msg);
1048     rtld_fdputchar(STDERR_FILENO, '\n');
1049     _exit(1);
1050 }
1051 
1052 /*
1053  * Process a shared object's DYNAMIC section, and save the important
1054  * information in its Obj_Entry structure.
1055  */
1056 static void
1057 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1058     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1059 {
1060     const Elf_Dyn *dynp;
1061     Needed_Entry **needed_tail = &obj->needed;
1062     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1063     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1064     const Elf_Hashelt *hashtab;
1065     const Elf32_Word *hashval;
1066     Elf32_Word bkt, nmaskwords;
1067     int bloom_size32;
1068     int plttype = DT_REL;
1069 
1070     *dyn_rpath = NULL;
1071     *dyn_soname = NULL;
1072     *dyn_runpath = NULL;
1073 
1074     obj->bind_now = false;
1075     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1076 	switch (dynp->d_tag) {
1077 
1078 	case DT_REL:
1079 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1080 	    break;
1081 
1082 	case DT_RELSZ:
1083 	    obj->relsize = dynp->d_un.d_val;
1084 	    break;
1085 
1086 	case DT_RELENT:
1087 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1088 	    break;
1089 
1090 	case DT_JMPREL:
1091 	    obj->pltrel = (const Elf_Rel *)
1092 	      (obj->relocbase + dynp->d_un.d_ptr);
1093 	    break;
1094 
1095 	case DT_PLTRELSZ:
1096 	    obj->pltrelsize = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_RELA:
1100 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1101 	    break;
1102 
1103 	case DT_RELASZ:
1104 	    obj->relasize = dynp->d_un.d_val;
1105 	    break;
1106 
1107 	case DT_RELAENT:
1108 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1109 	    break;
1110 
1111 	case DT_PLTREL:
1112 	    plttype = dynp->d_un.d_val;
1113 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1114 	    break;
1115 
1116 	case DT_SYMTAB:
1117 	    obj->symtab = (const Elf_Sym *)
1118 	      (obj->relocbase + dynp->d_un.d_ptr);
1119 	    break;
1120 
1121 	case DT_SYMENT:
1122 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1123 	    break;
1124 
1125 	case DT_STRTAB:
1126 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1127 	    break;
1128 
1129 	case DT_STRSZ:
1130 	    obj->strsize = dynp->d_un.d_val;
1131 	    break;
1132 
1133 	case DT_VERNEED:
1134 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1135 		dynp->d_un.d_val);
1136 	    break;
1137 
1138 	case DT_VERNEEDNUM:
1139 	    obj->verneednum = dynp->d_un.d_val;
1140 	    break;
1141 
1142 	case DT_VERDEF:
1143 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1144 		dynp->d_un.d_val);
1145 	    break;
1146 
1147 	case DT_VERDEFNUM:
1148 	    obj->verdefnum = dynp->d_un.d_val;
1149 	    break;
1150 
1151 	case DT_VERSYM:
1152 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1153 		dynp->d_un.d_val);
1154 	    break;
1155 
1156 	case DT_HASH:
1157 	    {
1158 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1159 		    dynp->d_un.d_ptr);
1160 		obj->nbuckets = hashtab[0];
1161 		obj->nchains = hashtab[1];
1162 		obj->buckets = hashtab + 2;
1163 		obj->chains = obj->buckets + obj->nbuckets;
1164 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1165 		  obj->buckets != NULL;
1166 	    }
1167 	    break;
1168 
1169 	case DT_GNU_HASH:
1170 	    {
1171 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1172 		    dynp->d_un.d_ptr);
1173 		obj->nbuckets_gnu = hashtab[0];
1174 		obj->symndx_gnu = hashtab[1];
1175 		nmaskwords = hashtab[2];
1176 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1177 		obj->maskwords_bm_gnu = nmaskwords - 1;
1178 		obj->shift2_gnu = hashtab[3];
1179 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1180 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1181 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1182 		  obj->symndx_gnu;
1183 		/* Number of bitmask words is required to be power of 2 */
1184 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1185 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1186 	    }
1187 	    break;
1188 
1189 	case DT_NEEDED:
1190 	    if (!obj->rtld) {
1191 		Needed_Entry *nep = NEW(Needed_Entry);
1192 		nep->name = dynp->d_un.d_val;
1193 		nep->obj = NULL;
1194 		nep->next = NULL;
1195 
1196 		*needed_tail = nep;
1197 		needed_tail = &nep->next;
1198 	    }
1199 	    break;
1200 
1201 	case DT_FILTER:
1202 	    if (!obj->rtld) {
1203 		Needed_Entry *nep = NEW(Needed_Entry);
1204 		nep->name = dynp->d_un.d_val;
1205 		nep->obj = NULL;
1206 		nep->next = NULL;
1207 
1208 		*needed_filtees_tail = nep;
1209 		needed_filtees_tail = &nep->next;
1210 
1211 		if (obj->linkmap.l_refname == NULL)
1212 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1213 	    }
1214 	    break;
1215 
1216 	case DT_AUXILIARY:
1217 	    if (!obj->rtld) {
1218 		Needed_Entry *nep = NEW(Needed_Entry);
1219 		nep->name = dynp->d_un.d_val;
1220 		nep->obj = NULL;
1221 		nep->next = NULL;
1222 
1223 		*needed_aux_filtees_tail = nep;
1224 		needed_aux_filtees_tail = &nep->next;
1225 	    }
1226 	    break;
1227 
1228 	case DT_PLTGOT:
1229 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1230 	    break;
1231 
1232 	case DT_TEXTREL:
1233 	    obj->textrel = true;
1234 	    break;
1235 
1236 	case DT_SYMBOLIC:
1237 	    obj->symbolic = true;
1238 	    break;
1239 
1240 	case DT_RPATH:
1241 	    /*
1242 	     * We have to wait until later to process this, because we
1243 	     * might not have gotten the address of the string table yet.
1244 	     */
1245 	    *dyn_rpath = dynp;
1246 	    break;
1247 
1248 	case DT_SONAME:
1249 	    *dyn_soname = dynp;
1250 	    break;
1251 
1252 	case DT_RUNPATH:
1253 	    *dyn_runpath = dynp;
1254 	    break;
1255 
1256 	case DT_INIT:
1257 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1258 	    break;
1259 
1260 	case DT_PREINIT_ARRAY:
1261 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1262 	    break;
1263 
1264 	case DT_PREINIT_ARRAYSZ:
1265 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1266 	    break;
1267 
1268 	case DT_INIT_ARRAY:
1269 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1270 	    break;
1271 
1272 	case DT_INIT_ARRAYSZ:
1273 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1274 	    break;
1275 
1276 	case DT_FINI:
1277 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1278 	    break;
1279 
1280 	case DT_FINI_ARRAY:
1281 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1282 	    break;
1283 
1284 	case DT_FINI_ARRAYSZ:
1285 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1286 	    break;
1287 
1288 	/*
1289 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1290 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1291 	 */
1292 
1293 #ifndef __mips__
1294 	case DT_DEBUG:
1295 	    if (!early)
1296 		dbg("Filling in DT_DEBUG entry");
1297 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1298 	    break;
1299 #endif
1300 
1301 	case DT_FLAGS:
1302 		if (dynp->d_un.d_val & DF_ORIGIN)
1303 		    obj->z_origin = true;
1304 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1305 		    obj->symbolic = true;
1306 		if (dynp->d_un.d_val & DF_TEXTREL)
1307 		    obj->textrel = true;
1308 		if (dynp->d_un.d_val & DF_BIND_NOW)
1309 		    obj->bind_now = true;
1310 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1311 		    obj->static_tls = true;
1312 	    break;
1313 #ifdef __mips__
1314 	case DT_MIPS_LOCAL_GOTNO:
1315 		obj->local_gotno = dynp->d_un.d_val;
1316 		break;
1317 
1318 	case DT_MIPS_SYMTABNO:
1319 		obj->symtabno = dynp->d_un.d_val;
1320 		break;
1321 
1322 	case DT_MIPS_GOTSYM:
1323 		obj->gotsym = dynp->d_un.d_val;
1324 		break;
1325 
1326 	case DT_MIPS_RLD_MAP:
1327 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1328 		break;
1329 
1330 	case DT_MIPS_RLD_MAP_REL:
1331 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1332 		// section relative to the address of the tag itself.
1333 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1334 		    (Elf_Addr) &r_debug;
1335 		break;
1336 
1337 	case DT_MIPS_PLTGOT:
1338 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1339 		    dynp->d_un.d_ptr);
1340 		break;
1341 
1342 #endif
1343 
1344 #ifdef __powerpc__
1345 #ifdef __powerpc64__
1346 	case DT_PPC64_GLINK:
1347 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1348 		break;
1349 #else
1350 	case DT_PPC_GOT:
1351 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1352 		break;
1353 #endif
1354 #endif
1355 
1356 	case DT_FLAGS_1:
1357 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1358 		    obj->z_noopen = true;
1359 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1360 		    obj->z_origin = true;
1361 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1362 		    obj->z_global = true;
1363 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1364 		    obj->bind_now = true;
1365 		if (dynp->d_un.d_val & DF_1_NODELETE)
1366 		    obj->z_nodelete = true;
1367 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1368 		    obj->z_loadfltr = true;
1369 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1370 		    obj->z_interpose = true;
1371 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1372 		    obj->z_nodeflib = true;
1373 	    break;
1374 
1375 	default:
1376 	    if (!early) {
1377 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1378 		    (long)dynp->d_tag);
1379 	    }
1380 	    break;
1381 	}
1382     }
1383 
1384     obj->traced = false;
1385 
1386     if (plttype == DT_RELA) {
1387 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1388 	obj->pltrel = NULL;
1389 	obj->pltrelasize = obj->pltrelsize;
1390 	obj->pltrelsize = 0;
1391     }
1392 
1393     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1394     if (obj->valid_hash_sysv)
1395 	obj->dynsymcount = obj->nchains;
1396     else if (obj->valid_hash_gnu) {
1397 	obj->dynsymcount = 0;
1398 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1399 	    if (obj->buckets_gnu[bkt] == 0)
1400 		continue;
1401 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1402 	    do
1403 		obj->dynsymcount++;
1404 	    while ((*hashval++ & 1u) == 0);
1405 	}
1406 	obj->dynsymcount += obj->symndx_gnu;
1407     }
1408 
1409     if (obj->linkmap.l_refname != NULL)
1410 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1411 	  linkmap.l_refname;
1412 }
1413 
1414 static bool
1415 obj_resolve_origin(Obj_Entry *obj)
1416 {
1417 
1418 	if (obj->origin_path != NULL)
1419 		return (true);
1420 	obj->origin_path = xmalloc(PATH_MAX);
1421 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1422 }
1423 
1424 static bool
1425 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1426     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1427 {
1428 
1429 	if (obj->z_origin && !obj_resolve_origin(obj))
1430 		return (false);
1431 
1432 	if (dyn_runpath != NULL) {
1433 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1434 		obj->runpath = origin_subst(obj, obj->runpath);
1435 	} else if (dyn_rpath != NULL) {
1436 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1437 		obj->rpath = origin_subst(obj, obj->rpath);
1438 	}
1439 	if (dyn_soname != NULL)
1440 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1441 	return (true);
1442 }
1443 
1444 static bool
1445 digest_dynamic(Obj_Entry *obj, int early)
1446 {
1447 	const Elf_Dyn *dyn_rpath;
1448 	const Elf_Dyn *dyn_soname;
1449 	const Elf_Dyn *dyn_runpath;
1450 
1451 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1452 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1453 }
1454 
1455 /*
1456  * Process a shared object's program header.  This is used only for the
1457  * main program, when the kernel has already loaded the main program
1458  * into memory before calling the dynamic linker.  It creates and
1459  * returns an Obj_Entry structure.
1460  */
1461 static Obj_Entry *
1462 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1463 {
1464     Obj_Entry *obj;
1465     const Elf_Phdr *phlimit = phdr + phnum;
1466     const Elf_Phdr *ph;
1467     Elf_Addr note_start, note_end;
1468     int nsegs = 0;
1469 
1470     obj = obj_new();
1471     for (ph = phdr;  ph < phlimit;  ph++) {
1472 	if (ph->p_type != PT_PHDR)
1473 	    continue;
1474 
1475 	obj->phdr = phdr;
1476 	obj->phsize = ph->p_memsz;
1477 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1478 	break;
1479     }
1480 
1481     obj->stack_flags = PF_X | PF_R | PF_W;
1482 
1483     for (ph = phdr;  ph < phlimit;  ph++) {
1484 	switch (ph->p_type) {
1485 
1486 	case PT_INTERP:
1487 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1488 	    break;
1489 
1490 	case PT_LOAD:
1491 	    if (nsegs == 0) {	/* First load segment */
1492 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1493 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1494 	    } else {		/* Last load segment */
1495 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1496 		  obj->vaddrbase;
1497 	    }
1498 	    nsegs++;
1499 	    break;
1500 
1501 	case PT_DYNAMIC:
1502 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1503 	    break;
1504 
1505 	case PT_TLS:
1506 	    obj->tlsindex = 1;
1507 	    obj->tlssize = ph->p_memsz;
1508 	    obj->tlsalign = ph->p_align;
1509 	    obj->tlsinitsize = ph->p_filesz;
1510 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1511 	    obj->tlspoffset = ph->p_offset;
1512 	    break;
1513 
1514 	case PT_GNU_STACK:
1515 	    obj->stack_flags = ph->p_flags;
1516 	    break;
1517 
1518 	case PT_GNU_RELRO:
1519 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1520 	    obj->relro_size = round_page(ph->p_memsz);
1521 	    break;
1522 
1523 	case PT_NOTE:
1524 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1525 	    note_end = note_start + ph->p_filesz;
1526 	    digest_notes(obj, note_start, note_end);
1527 	    break;
1528 	}
1529     }
1530     if (nsegs < 1) {
1531 	_rtld_error("%s: too few PT_LOAD segments", path);
1532 	return NULL;
1533     }
1534 
1535     obj->entry = entry;
1536     return obj;
1537 }
1538 
1539 void
1540 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1541 {
1542 	const Elf_Note *note;
1543 	const char *note_name;
1544 	uintptr_t p;
1545 
1546 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1547 	    note = (const Elf_Note *)((const char *)(note + 1) +
1548 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1549 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1550 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1551 		    note->n_descsz != sizeof(int32_t))
1552 			continue;
1553 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1554 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1555 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1556 			continue;
1557 		note_name = (const char *)(note + 1);
1558 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1559 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1560 			continue;
1561 		switch (note->n_type) {
1562 		case NT_FREEBSD_ABI_TAG:
1563 			/* FreeBSD osrel note */
1564 			p = (uintptr_t)(note + 1);
1565 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1566 			obj->osrel = *(const int32_t *)(p);
1567 			dbg("note osrel %d", obj->osrel);
1568 			break;
1569 		case NT_FREEBSD_FEATURE_CTL:
1570 			/* FreeBSD ABI feature control note */
1571 			p = (uintptr_t)(note + 1);
1572 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1573 			obj->fctl0 = *(const uint32_t *)(p);
1574 			dbg("note fctl0 %#x", obj->fctl0);
1575 			break;
1576 		case NT_FREEBSD_NOINIT_TAG:
1577 			/* FreeBSD 'crt does not call init' note */
1578 			obj->crt_no_init = true;
1579 			dbg("note crt_no_init");
1580 			break;
1581 		}
1582 	}
1583 }
1584 
1585 static Obj_Entry *
1586 dlcheck(void *handle)
1587 {
1588     Obj_Entry *obj;
1589 
1590     TAILQ_FOREACH(obj, &obj_list, next) {
1591 	if (obj == (Obj_Entry *) handle)
1592 	    break;
1593     }
1594 
1595     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1596 	_rtld_error("Invalid shared object handle %p", handle);
1597 	return NULL;
1598     }
1599     return obj;
1600 }
1601 
1602 /*
1603  * If the given object is already in the donelist, return true.  Otherwise
1604  * add the object to the list and return false.
1605  */
1606 static bool
1607 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1608 {
1609     unsigned int i;
1610 
1611     for (i = 0;  i < dlp->num_used;  i++)
1612 	if (dlp->objs[i] == obj)
1613 	    return true;
1614     /*
1615      * Our donelist allocation should always be sufficient.  But if
1616      * our threads locking isn't working properly, more shared objects
1617      * could have been loaded since we allocated the list.  That should
1618      * never happen, but we'll handle it properly just in case it does.
1619      */
1620     if (dlp->num_used < dlp->num_alloc)
1621 	dlp->objs[dlp->num_used++] = obj;
1622     return false;
1623 }
1624 
1625 /*
1626  * Hash function for symbol table lookup.  Don't even think about changing
1627  * this.  It is specified by the System V ABI.
1628  */
1629 unsigned long
1630 elf_hash(const char *name)
1631 {
1632     const unsigned char *p = (const unsigned char *) name;
1633     unsigned long h = 0;
1634     unsigned long g;
1635 
1636     while (*p != '\0') {
1637 	h = (h << 4) + *p++;
1638 	if ((g = h & 0xf0000000) != 0)
1639 	    h ^= g >> 24;
1640 	h &= ~g;
1641     }
1642     return h;
1643 }
1644 
1645 /*
1646  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1647  * unsigned in case it's implemented with a wider type.
1648  */
1649 static uint32_t
1650 gnu_hash(const char *s)
1651 {
1652 	uint32_t h;
1653 	unsigned char c;
1654 
1655 	h = 5381;
1656 	for (c = *s; c != '\0'; c = *++s)
1657 		h = h * 33 + c;
1658 	return (h & 0xffffffff);
1659 }
1660 
1661 
1662 /*
1663  * Find the library with the given name, and return its full pathname.
1664  * The returned string is dynamically allocated.  Generates an error
1665  * message and returns NULL if the library cannot be found.
1666  *
1667  * If the second argument is non-NULL, then it refers to an already-
1668  * loaded shared object, whose library search path will be searched.
1669  *
1670  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1671  * descriptor (which is close-on-exec) will be passed out via the third
1672  * argument.
1673  *
1674  * The search order is:
1675  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1676  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1677  *   LD_LIBRARY_PATH
1678  *   DT_RUNPATH in the referencing file
1679  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1680  *	 from list)
1681  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1682  *
1683  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1684  */
1685 static char *
1686 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1687 {
1688 	char *pathname, *refobj_path;
1689 	const char *name;
1690 	bool nodeflib, objgiven;
1691 
1692 	objgiven = refobj != NULL;
1693 
1694 	if (libmap_disable || !objgiven ||
1695 	    (name = lm_find(refobj->path, xname)) == NULL)
1696 		name = xname;
1697 
1698 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1699 		if (name[0] != '/' && !trust) {
1700 			_rtld_error("Absolute pathname required "
1701 			    "for shared object \"%s\"", name);
1702 			return (NULL);
1703 		}
1704 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1705 		    __DECONST(char *, name)));
1706 	}
1707 
1708 	dbg(" Searching for \"%s\"", name);
1709 	refobj_path = objgiven ? refobj->path : NULL;
1710 
1711 	/*
1712 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1713 	 * back to pre-conforming behaviour if user requested so with
1714 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1715 	 * nodeflib.
1716 	 */
1717 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1718 		pathname = search_library_path(name, ld_library_path,
1719 		    refobj_path, fdp);
1720 		if (pathname != NULL)
1721 			return (pathname);
1722 		if (refobj != NULL) {
1723 			pathname = search_library_path(name, refobj->rpath,
1724 			    refobj_path, fdp);
1725 			if (pathname != NULL)
1726 				return (pathname);
1727 		}
1728 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1729 		if (pathname != NULL)
1730 			return (pathname);
1731 		pathname = search_library_path(name, gethints(false),
1732 		    refobj_path, fdp);
1733 		if (pathname != NULL)
1734 			return (pathname);
1735 		pathname = search_library_path(name, ld_standard_library_path,
1736 		    refobj_path, fdp);
1737 		if (pathname != NULL)
1738 			return (pathname);
1739 	} else {
1740 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1741 		if (objgiven) {
1742 			pathname = search_library_path(name, refobj->rpath,
1743 			    refobj->path, fdp);
1744 			if (pathname != NULL)
1745 				return (pathname);
1746 		}
1747 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1748 			pathname = search_library_path(name, obj_main->rpath,
1749 			    refobj_path, fdp);
1750 			if (pathname != NULL)
1751 				return (pathname);
1752 		}
1753 		pathname = search_library_path(name, ld_library_path,
1754 		    refobj_path, fdp);
1755 		if (pathname != NULL)
1756 			return (pathname);
1757 		if (objgiven) {
1758 			pathname = search_library_path(name, refobj->runpath,
1759 			    refobj_path, fdp);
1760 			if (pathname != NULL)
1761 				return (pathname);
1762 		}
1763 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1764 		if (pathname != NULL)
1765 			return (pathname);
1766 		pathname = search_library_path(name, gethints(nodeflib),
1767 		    refobj_path, fdp);
1768 		if (pathname != NULL)
1769 			return (pathname);
1770 		if (objgiven && !nodeflib) {
1771 			pathname = search_library_path(name,
1772 			    ld_standard_library_path, refobj_path, fdp);
1773 			if (pathname != NULL)
1774 				return (pathname);
1775 		}
1776 	}
1777 
1778 	if (objgiven && refobj->path != NULL) {
1779 		_rtld_error("Shared object \"%s\" not found, "
1780 		    "required by \"%s\"", name, basename(refobj->path));
1781 	} else {
1782 		_rtld_error("Shared object \"%s\" not found", name);
1783 	}
1784 	return (NULL);
1785 }
1786 
1787 /*
1788  * Given a symbol number in a referencing object, find the corresponding
1789  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1790  * no definition was found.  Returns a pointer to the Obj_Entry of the
1791  * defining object via the reference parameter DEFOBJ_OUT.
1792  */
1793 const Elf_Sym *
1794 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1795     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1796     RtldLockState *lockstate)
1797 {
1798     const Elf_Sym *ref;
1799     const Elf_Sym *def;
1800     const Obj_Entry *defobj;
1801     const Ver_Entry *ve;
1802     SymLook req;
1803     const char *name;
1804     int res;
1805 
1806     /*
1807      * If we have already found this symbol, get the information from
1808      * the cache.
1809      */
1810     if (symnum >= refobj->dynsymcount)
1811 	return NULL;	/* Bad object */
1812     if (cache != NULL && cache[symnum].sym != NULL) {
1813 	*defobj_out = cache[symnum].obj;
1814 	return cache[symnum].sym;
1815     }
1816 
1817     ref = refobj->symtab + symnum;
1818     name = refobj->strtab + ref->st_name;
1819     def = NULL;
1820     defobj = NULL;
1821     ve = NULL;
1822 
1823     /*
1824      * We don't have to do a full scale lookup if the symbol is local.
1825      * We know it will bind to the instance in this load module; to
1826      * which we already have a pointer (ie ref). By not doing a lookup,
1827      * we not only improve performance, but it also avoids unresolvable
1828      * symbols when local symbols are not in the hash table. This has
1829      * been seen with the ia64 toolchain.
1830      */
1831     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1832 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1833 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1834 		symnum);
1835 	}
1836 	symlook_init(&req, name);
1837 	req.flags = flags;
1838 	ve = req.ventry = fetch_ventry(refobj, symnum);
1839 	req.lockstate = lockstate;
1840 	res = symlook_default(&req, refobj);
1841 	if (res == 0) {
1842 	    def = req.sym_out;
1843 	    defobj = req.defobj_out;
1844 	}
1845     } else {
1846 	def = ref;
1847 	defobj = refobj;
1848     }
1849 
1850     /*
1851      * If we found no definition and the reference is weak, treat the
1852      * symbol as having the value zero.
1853      */
1854     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1855 	def = &sym_zero;
1856 	defobj = obj_main;
1857     }
1858 
1859     if (def != NULL) {
1860 	*defobj_out = defobj;
1861 	/* Record the information in the cache to avoid subsequent lookups. */
1862 	if (cache != NULL) {
1863 	    cache[symnum].sym = def;
1864 	    cache[symnum].obj = defobj;
1865 	}
1866     } else {
1867 	if (refobj != &obj_rtld)
1868 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1869 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1870     }
1871     return def;
1872 }
1873 
1874 /*
1875  * Return the search path from the ldconfig hints file, reading it if
1876  * necessary.  If nostdlib is true, then the default search paths are
1877  * not added to result.
1878  *
1879  * Returns NULL if there are problems with the hints file,
1880  * or if the search path there is empty.
1881  */
1882 static const char *
1883 gethints(bool nostdlib)
1884 {
1885 	static char *filtered_path;
1886 	static const char *hints;
1887 	static struct elfhints_hdr hdr;
1888 	struct fill_search_info_args sargs, hargs;
1889 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1890 	struct dl_serpath *SLPpath, *hintpath;
1891 	char *p;
1892 	struct stat hint_stat;
1893 	unsigned int SLPndx, hintndx, fndx, fcount;
1894 	int fd;
1895 	size_t flen;
1896 	uint32_t dl;
1897 	bool skip;
1898 
1899 	/* First call, read the hints file */
1900 	if (hints == NULL) {
1901 		/* Keep from trying again in case the hints file is bad. */
1902 		hints = "";
1903 
1904 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1905 			return (NULL);
1906 
1907 		/*
1908 		 * Check of hdr.dirlistlen value against type limit
1909 		 * intends to pacify static analyzers.  Further
1910 		 * paranoia leads to checks that dirlist is fully
1911 		 * contained in the file range.
1912 		 */
1913 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1914 		    hdr.magic != ELFHINTS_MAGIC ||
1915 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1916 		    fstat(fd, &hint_stat) == -1) {
1917 cleanup1:
1918 			close(fd);
1919 			hdr.dirlistlen = 0;
1920 			return (NULL);
1921 		}
1922 		dl = hdr.strtab;
1923 		if (dl + hdr.dirlist < dl)
1924 			goto cleanup1;
1925 		dl += hdr.dirlist;
1926 		if (dl + hdr.dirlistlen < dl)
1927 			goto cleanup1;
1928 		dl += hdr.dirlistlen;
1929 		if (dl > hint_stat.st_size)
1930 			goto cleanup1;
1931 		p = xmalloc(hdr.dirlistlen + 1);
1932 		if (pread(fd, p, hdr.dirlistlen + 1,
1933 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1934 		    p[hdr.dirlistlen] != '\0') {
1935 			free(p);
1936 			goto cleanup1;
1937 		}
1938 		hints = p;
1939 		close(fd);
1940 	}
1941 
1942 	/*
1943 	 * If caller agreed to receive list which includes the default
1944 	 * paths, we are done. Otherwise, if we still did not
1945 	 * calculated filtered result, do it now.
1946 	 */
1947 	if (!nostdlib)
1948 		return (hints[0] != '\0' ? hints : NULL);
1949 	if (filtered_path != NULL)
1950 		goto filt_ret;
1951 
1952 	/*
1953 	 * Obtain the list of all configured search paths, and the
1954 	 * list of the default paths.
1955 	 *
1956 	 * First estimate the size of the results.
1957 	 */
1958 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1959 	smeta.dls_cnt = 0;
1960 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1961 	hmeta.dls_cnt = 0;
1962 
1963 	sargs.request = RTLD_DI_SERINFOSIZE;
1964 	sargs.serinfo = &smeta;
1965 	hargs.request = RTLD_DI_SERINFOSIZE;
1966 	hargs.serinfo = &hmeta;
1967 
1968 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1969 	    &sargs);
1970 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1971 
1972 	SLPinfo = xmalloc(smeta.dls_size);
1973 	hintinfo = xmalloc(hmeta.dls_size);
1974 
1975 	/*
1976 	 * Next fetch both sets of paths.
1977 	 */
1978 	sargs.request = RTLD_DI_SERINFO;
1979 	sargs.serinfo = SLPinfo;
1980 	sargs.serpath = &SLPinfo->dls_serpath[0];
1981 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1982 
1983 	hargs.request = RTLD_DI_SERINFO;
1984 	hargs.serinfo = hintinfo;
1985 	hargs.serpath = &hintinfo->dls_serpath[0];
1986 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1987 
1988 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1989 	    &sargs);
1990 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1991 
1992 	/*
1993 	 * Now calculate the difference between two sets, by excluding
1994 	 * standard paths from the full set.
1995 	 */
1996 	fndx = 0;
1997 	fcount = 0;
1998 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1999 	hintpath = &hintinfo->dls_serpath[0];
2000 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2001 		skip = false;
2002 		SLPpath = &SLPinfo->dls_serpath[0];
2003 		/*
2004 		 * Check each standard path against current.
2005 		 */
2006 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2007 			/* matched, skip the path */
2008 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2009 				skip = true;
2010 				break;
2011 			}
2012 		}
2013 		if (skip)
2014 			continue;
2015 		/*
2016 		 * Not matched against any standard path, add the path
2017 		 * to result. Separate consequtive paths with ':'.
2018 		 */
2019 		if (fcount > 0) {
2020 			filtered_path[fndx] = ':';
2021 			fndx++;
2022 		}
2023 		fcount++;
2024 		flen = strlen(hintpath->dls_name);
2025 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2026 		fndx += flen;
2027 	}
2028 	filtered_path[fndx] = '\0';
2029 
2030 	free(SLPinfo);
2031 	free(hintinfo);
2032 
2033 filt_ret:
2034 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2035 }
2036 
2037 static void
2038 init_dag(Obj_Entry *root)
2039 {
2040     const Needed_Entry *needed;
2041     const Objlist_Entry *elm;
2042     DoneList donelist;
2043 
2044     if (root->dag_inited)
2045 	return;
2046     donelist_init(&donelist);
2047 
2048     /* Root object belongs to own DAG. */
2049     objlist_push_tail(&root->dldags, root);
2050     objlist_push_tail(&root->dagmembers, root);
2051     donelist_check(&donelist, root);
2052 
2053     /*
2054      * Add dependencies of root object to DAG in breadth order
2055      * by exploiting the fact that each new object get added
2056      * to the tail of the dagmembers list.
2057      */
2058     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2059 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2060 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2061 		continue;
2062 	    objlist_push_tail(&needed->obj->dldags, root);
2063 	    objlist_push_tail(&root->dagmembers, needed->obj);
2064 	}
2065     }
2066     root->dag_inited = true;
2067 }
2068 
2069 static void
2070 init_marker(Obj_Entry *marker)
2071 {
2072 
2073 	bzero(marker, sizeof(*marker));
2074 	marker->marker = true;
2075 }
2076 
2077 Obj_Entry *
2078 globallist_curr(const Obj_Entry *obj)
2079 {
2080 
2081 	for (;;) {
2082 		if (obj == NULL)
2083 			return (NULL);
2084 		if (!obj->marker)
2085 			return (__DECONST(Obj_Entry *, obj));
2086 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2087 	}
2088 }
2089 
2090 Obj_Entry *
2091 globallist_next(const Obj_Entry *obj)
2092 {
2093 
2094 	for (;;) {
2095 		obj = TAILQ_NEXT(obj, next);
2096 		if (obj == NULL)
2097 			return (NULL);
2098 		if (!obj->marker)
2099 			return (__DECONST(Obj_Entry *, obj));
2100 	}
2101 }
2102 
2103 /* Prevent the object from being unmapped while the bind lock is dropped. */
2104 static void
2105 hold_object(Obj_Entry *obj)
2106 {
2107 
2108 	obj->holdcount++;
2109 }
2110 
2111 static void
2112 unhold_object(Obj_Entry *obj)
2113 {
2114 
2115 	assert(obj->holdcount > 0);
2116 	if (--obj->holdcount == 0 && obj->unholdfree)
2117 		release_object(obj);
2118 }
2119 
2120 static void
2121 process_z(Obj_Entry *root)
2122 {
2123 	const Objlist_Entry *elm;
2124 	Obj_Entry *obj;
2125 
2126 	/*
2127 	 * Walk over object DAG and process every dependent object
2128 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2129 	 * to grow their own DAG.
2130 	 *
2131 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2132 	 * symlook_global() to work.
2133 	 *
2134 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2135 	 */
2136 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2137 		obj = elm->obj;
2138 		if (obj == NULL)
2139 			continue;
2140 		if (obj->z_nodelete && !obj->ref_nodel) {
2141 			dbg("obj %s -z nodelete", obj->path);
2142 			init_dag(obj);
2143 			ref_dag(obj);
2144 			obj->ref_nodel = true;
2145 		}
2146 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2147 			dbg("obj %s -z global", obj->path);
2148 			objlist_push_tail(&list_global, obj);
2149 			init_dag(obj);
2150 		}
2151 	}
2152 }
2153 /*
2154  * Initialize the dynamic linker.  The argument is the address at which
2155  * the dynamic linker has been mapped into memory.  The primary task of
2156  * this function is to relocate the dynamic linker.
2157  */
2158 static void
2159 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2160 {
2161     Obj_Entry objtmp;	/* Temporary rtld object */
2162     const Elf_Ehdr *ehdr;
2163     const Elf_Dyn *dyn_rpath;
2164     const Elf_Dyn *dyn_soname;
2165     const Elf_Dyn *dyn_runpath;
2166 
2167 #ifdef RTLD_INIT_PAGESIZES_EARLY
2168     /* The page size is required by the dynamic memory allocator. */
2169     init_pagesizes(aux_info);
2170 #endif
2171 
2172     /*
2173      * Conjure up an Obj_Entry structure for the dynamic linker.
2174      *
2175      * The "path" member can't be initialized yet because string constants
2176      * cannot yet be accessed. Below we will set it correctly.
2177      */
2178     memset(&objtmp, 0, sizeof(objtmp));
2179     objtmp.path = NULL;
2180     objtmp.rtld = true;
2181     objtmp.mapbase = mapbase;
2182 #ifdef PIC
2183     objtmp.relocbase = mapbase;
2184 #endif
2185 
2186     objtmp.dynamic = rtld_dynamic(&objtmp);
2187     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2188     assert(objtmp.needed == NULL);
2189 #if !defined(__mips__)
2190     /* MIPS has a bogus DT_TEXTREL. */
2191     assert(!objtmp.textrel);
2192 #endif
2193     /*
2194      * Temporarily put the dynamic linker entry into the object list, so
2195      * that symbols can be found.
2196      */
2197     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2198 
2199     ehdr = (Elf_Ehdr *)mapbase;
2200     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2201     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2202 
2203     /* Initialize the object list. */
2204     TAILQ_INIT(&obj_list);
2205 
2206     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2207     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2208 
2209 #ifndef RTLD_INIT_PAGESIZES_EARLY
2210     /* The page size is required by the dynamic memory allocator. */
2211     init_pagesizes(aux_info);
2212 #endif
2213 
2214     if (aux_info[AT_OSRELDATE] != NULL)
2215 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2216 
2217     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2218 
2219     /* Replace the path with a dynamically allocated copy. */
2220     obj_rtld.path = xstrdup(ld_path_rtld);
2221 
2222     r_debug.r_brk = r_debug_state;
2223     r_debug.r_state = RT_CONSISTENT;
2224 }
2225 
2226 /*
2227  * Retrieve the array of supported page sizes.  The kernel provides the page
2228  * sizes in increasing order.
2229  */
2230 static void
2231 init_pagesizes(Elf_Auxinfo **aux_info)
2232 {
2233 	static size_t psa[MAXPAGESIZES];
2234 	int mib[2];
2235 	size_t len, size;
2236 
2237 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2238 	    NULL) {
2239 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2240 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2241 	} else {
2242 		len = 2;
2243 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2244 			size = sizeof(psa);
2245 		else {
2246 			/* As a fallback, retrieve the base page size. */
2247 			size = sizeof(psa[0]);
2248 			if (aux_info[AT_PAGESZ] != NULL) {
2249 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2250 				goto psa_filled;
2251 			} else {
2252 				mib[0] = CTL_HW;
2253 				mib[1] = HW_PAGESIZE;
2254 				len = 2;
2255 			}
2256 		}
2257 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2258 			_rtld_error("sysctl for hw.pagesize(s) failed");
2259 			rtld_die();
2260 		}
2261 psa_filled:
2262 		pagesizes = psa;
2263 	}
2264 	npagesizes = size / sizeof(pagesizes[0]);
2265 	/* Discard any invalid entries at the end of the array. */
2266 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2267 		npagesizes--;
2268 }
2269 
2270 /*
2271  * Add the init functions from a needed object list (and its recursive
2272  * needed objects) to "list".  This is not used directly; it is a helper
2273  * function for initlist_add_objects().  The write lock must be held
2274  * when this function is called.
2275  */
2276 static void
2277 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2278 {
2279     /* Recursively process the successor needed objects. */
2280     if (needed->next != NULL)
2281 	initlist_add_neededs(needed->next, list);
2282 
2283     /* Process the current needed object. */
2284     if (needed->obj != NULL)
2285 	initlist_add_objects(needed->obj, needed->obj, list);
2286 }
2287 
2288 /*
2289  * Scan all of the DAGs rooted in the range of objects from "obj" to
2290  * "tail" and add their init functions to "list".  This recurses over
2291  * the DAGs and ensure the proper init ordering such that each object's
2292  * needed libraries are initialized before the object itself.  At the
2293  * same time, this function adds the objects to the global finalization
2294  * list "list_fini" in the opposite order.  The write lock must be
2295  * held when this function is called.
2296  */
2297 static void
2298 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2299 {
2300     Obj_Entry *nobj;
2301 
2302     if (obj->init_scanned || obj->init_done)
2303 	return;
2304     obj->init_scanned = true;
2305 
2306     /* Recursively process the successor objects. */
2307     nobj = globallist_next(obj);
2308     if (nobj != NULL && obj != tail)
2309 	initlist_add_objects(nobj, tail, list);
2310 
2311     /* Recursively process the needed objects. */
2312     if (obj->needed != NULL)
2313 	initlist_add_neededs(obj->needed, list);
2314     if (obj->needed_filtees != NULL)
2315 	initlist_add_neededs(obj->needed_filtees, list);
2316     if (obj->needed_aux_filtees != NULL)
2317 	initlist_add_neededs(obj->needed_aux_filtees, list);
2318 
2319     /* Add the object to the init list. */
2320     objlist_push_tail(list, obj);
2321 
2322     /* Add the object to the global fini list in the reverse order. */
2323     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2324       && !obj->on_fini_list) {
2325 	objlist_push_head(&list_fini, obj);
2326 	obj->on_fini_list = true;
2327     }
2328 }
2329 
2330 #ifndef FPTR_TARGET
2331 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2332 #endif
2333 
2334 static void
2335 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2336 {
2337     Needed_Entry *needed, *needed1;
2338 
2339     for (needed = n; needed != NULL; needed = needed->next) {
2340 	if (needed->obj != NULL) {
2341 	    dlclose_locked(needed->obj, lockstate);
2342 	    needed->obj = NULL;
2343 	}
2344     }
2345     for (needed = n; needed != NULL; needed = needed1) {
2346 	needed1 = needed->next;
2347 	free(needed);
2348     }
2349 }
2350 
2351 static void
2352 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2353 {
2354 
2355 	free_needed_filtees(obj->needed_filtees, lockstate);
2356 	obj->needed_filtees = NULL;
2357 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2358 	obj->needed_aux_filtees = NULL;
2359 	obj->filtees_loaded = false;
2360 }
2361 
2362 static void
2363 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2364     RtldLockState *lockstate)
2365 {
2366 
2367     for (; needed != NULL; needed = needed->next) {
2368 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2369 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2370 	  RTLD_LOCAL, lockstate);
2371     }
2372 }
2373 
2374 static void
2375 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2376 {
2377 
2378     lock_restart_for_upgrade(lockstate);
2379     if (!obj->filtees_loaded) {
2380 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2381 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2382 	obj->filtees_loaded = true;
2383     }
2384 }
2385 
2386 static int
2387 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2388 {
2389     Obj_Entry *obj1;
2390 
2391     for (; needed != NULL; needed = needed->next) {
2392 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2393 	  flags & ~RTLD_LO_NOLOAD);
2394 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2395 	    return (-1);
2396     }
2397     return (0);
2398 }
2399 
2400 /*
2401  * Given a shared object, traverse its list of needed objects, and load
2402  * each of them.  Returns 0 on success.  Generates an error message and
2403  * returns -1 on failure.
2404  */
2405 static int
2406 load_needed_objects(Obj_Entry *first, int flags)
2407 {
2408     Obj_Entry *obj;
2409 
2410     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2411 	if (obj->marker)
2412 	    continue;
2413 	if (process_needed(obj, obj->needed, flags) == -1)
2414 	    return (-1);
2415     }
2416     return (0);
2417 }
2418 
2419 static int
2420 load_preload_objects(void)
2421 {
2422     char *p = ld_preload;
2423     Obj_Entry *obj;
2424     static const char delim[] = " \t:;";
2425 
2426     if (p == NULL)
2427 	return 0;
2428 
2429     p += strspn(p, delim);
2430     while (*p != '\0') {
2431 	size_t len = strcspn(p, delim);
2432 	char savech;
2433 
2434 	savech = p[len];
2435 	p[len] = '\0';
2436 	obj = load_object(p, -1, NULL, 0);
2437 	if (obj == NULL)
2438 	    return -1;	/* XXX - cleanup */
2439 	obj->z_interpose = true;
2440 	p[len] = savech;
2441 	p += len;
2442 	p += strspn(p, delim);
2443     }
2444     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2445     return 0;
2446 }
2447 
2448 static const char *
2449 printable_path(const char *path)
2450 {
2451 
2452 	return (path == NULL ? "<unknown>" : path);
2453 }
2454 
2455 /*
2456  * Load a shared object into memory, if it is not already loaded.  The
2457  * object may be specified by name or by user-supplied file descriptor
2458  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2459  * duplicate is.
2460  *
2461  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2462  * on failure.
2463  */
2464 static Obj_Entry *
2465 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2466 {
2467     Obj_Entry *obj;
2468     int fd;
2469     struct stat sb;
2470     char *path;
2471 
2472     fd = -1;
2473     if (name != NULL) {
2474 	TAILQ_FOREACH(obj, &obj_list, next) {
2475 	    if (obj->marker || obj->doomed)
2476 		continue;
2477 	    if (object_match_name(obj, name))
2478 		return (obj);
2479 	}
2480 
2481 	path = find_library(name, refobj, &fd);
2482 	if (path == NULL)
2483 	    return (NULL);
2484     } else
2485 	path = NULL;
2486 
2487     if (fd >= 0) {
2488 	/*
2489 	 * search_library_pathfds() opens a fresh file descriptor for the
2490 	 * library, so there is no need to dup().
2491 	 */
2492     } else if (fd_u == -1) {
2493 	/*
2494 	 * If we didn't find a match by pathname, or the name is not
2495 	 * supplied, open the file and check again by device and inode.
2496 	 * This avoids false mismatches caused by multiple links or ".."
2497 	 * in pathnames.
2498 	 *
2499 	 * To avoid a race, we open the file and use fstat() rather than
2500 	 * using stat().
2501 	 */
2502 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2503 	    _rtld_error("Cannot open \"%s\"", path);
2504 	    free(path);
2505 	    return (NULL);
2506 	}
2507     } else {
2508 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2509 	if (fd == -1) {
2510 	    _rtld_error("Cannot dup fd");
2511 	    free(path);
2512 	    return (NULL);
2513 	}
2514     }
2515     if (fstat(fd, &sb) == -1) {
2516 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2517 	close(fd);
2518 	free(path);
2519 	return NULL;
2520     }
2521     TAILQ_FOREACH(obj, &obj_list, next) {
2522 	if (obj->marker || obj->doomed)
2523 	    continue;
2524 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2525 	    break;
2526     }
2527     if (obj != NULL && name != NULL) {
2528 	object_add_name(obj, name);
2529 	free(path);
2530 	close(fd);
2531 	return obj;
2532     }
2533     if (flags & RTLD_LO_NOLOAD) {
2534 	free(path);
2535 	close(fd);
2536 	return (NULL);
2537     }
2538 
2539     /* First use of this object, so we must map it in */
2540     obj = do_load_object(fd, name, path, &sb, flags);
2541     if (obj == NULL)
2542 	free(path);
2543     close(fd);
2544 
2545     return obj;
2546 }
2547 
2548 static Obj_Entry *
2549 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2550   int flags)
2551 {
2552     Obj_Entry *obj;
2553     struct statfs fs;
2554 
2555     /*
2556      * but first, make sure that environment variables haven't been
2557      * used to circumvent the noexec flag on a filesystem.
2558      */
2559     if (dangerous_ld_env) {
2560 	if (fstatfs(fd, &fs) != 0) {
2561 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2562 	    return NULL;
2563 	}
2564 	if (fs.f_flags & MNT_NOEXEC) {
2565 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2566 	    return NULL;
2567 	}
2568     }
2569     dbg("loading \"%s\"", printable_path(path));
2570     obj = map_object(fd, printable_path(path), sbp);
2571     if (obj == NULL)
2572         return NULL;
2573 
2574     /*
2575      * If DT_SONAME is present in the object, digest_dynamic2 already
2576      * added it to the object names.
2577      */
2578     if (name != NULL)
2579 	object_add_name(obj, name);
2580     obj->path = path;
2581     if (!digest_dynamic(obj, 0))
2582 	goto errp;
2583     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2584 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2585     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2586       RTLD_LO_DLOPEN) {
2587 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2588 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2589 	goto errp;
2590     }
2591 
2592     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2593     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2594     obj_count++;
2595     obj_loads++;
2596     linkmap_add(obj);	/* for GDB & dlinfo() */
2597     max_stack_flags |= obj->stack_flags;
2598 
2599     dbg("  %p .. %p: %s", obj->mapbase,
2600          obj->mapbase + obj->mapsize - 1, obj->path);
2601     if (obj->textrel)
2602 	dbg("  WARNING: %s has impure text", obj->path);
2603     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2604 	obj->path);
2605 
2606     return (obj);
2607 
2608 errp:
2609     munmap(obj->mapbase, obj->mapsize);
2610     obj_free(obj);
2611     return (NULL);
2612 }
2613 
2614 static Obj_Entry *
2615 obj_from_addr(const void *addr)
2616 {
2617     Obj_Entry *obj;
2618 
2619     TAILQ_FOREACH(obj, &obj_list, next) {
2620 	if (obj->marker)
2621 	    continue;
2622 	if (addr < (void *) obj->mapbase)
2623 	    continue;
2624 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2625 	    return obj;
2626     }
2627     return NULL;
2628 }
2629 
2630 static void
2631 preinit_main(void)
2632 {
2633     Elf_Addr *preinit_addr;
2634     int index;
2635 
2636     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2637     if (preinit_addr == NULL)
2638 	return;
2639 
2640     for (index = 0; index < obj_main->preinit_array_num; index++) {
2641 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2642 	    dbg("calling preinit function for %s at %p", obj_main->path,
2643 	      (void *)preinit_addr[index]);
2644 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2645 	      0, 0, obj_main->path);
2646 	    call_init_pointer(obj_main, preinit_addr[index]);
2647 	}
2648     }
2649 }
2650 
2651 /*
2652  * Call the finalization functions for each of the objects in "list"
2653  * belonging to the DAG of "root" and referenced once. If NULL "root"
2654  * is specified, every finalization function will be called regardless
2655  * of the reference count and the list elements won't be freed. All of
2656  * the objects are expected to have non-NULL fini functions.
2657  */
2658 static void
2659 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2660 {
2661     Objlist_Entry *elm;
2662     char *saved_msg;
2663     Elf_Addr *fini_addr;
2664     int index;
2665 
2666     assert(root == NULL || root->refcount == 1);
2667 
2668     if (root != NULL)
2669 	root->doomed = true;
2670 
2671     /*
2672      * Preserve the current error message since a fini function might
2673      * call into the dynamic linker and overwrite it.
2674      */
2675     saved_msg = errmsg_save();
2676     do {
2677 	STAILQ_FOREACH(elm, list, link) {
2678 	    if (root != NULL && (elm->obj->refcount != 1 ||
2679 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2680 		continue;
2681 	    /* Remove object from fini list to prevent recursive invocation. */
2682 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2683 	    /* Ensure that new references cannot be acquired. */
2684 	    elm->obj->doomed = true;
2685 
2686 	    hold_object(elm->obj);
2687 	    lock_release(rtld_bind_lock, lockstate);
2688 	    /*
2689 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2690 	     * When this happens, DT_FINI_ARRAY is processed first.
2691 	     */
2692 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2693 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2694 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2695 		  index--) {
2696 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2697 			dbg("calling fini function for %s at %p",
2698 			    elm->obj->path, (void *)fini_addr[index]);
2699 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2700 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2701 			call_initfini_pointer(elm->obj, fini_addr[index]);
2702 		    }
2703 		}
2704 	    }
2705 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2706 		dbg("calling fini function for %s at %p", elm->obj->path,
2707 		    (void *)elm->obj->fini);
2708 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2709 		    0, 0, elm->obj->path);
2710 		call_initfini_pointer(elm->obj, elm->obj->fini);
2711 	    }
2712 	    wlock_acquire(rtld_bind_lock, lockstate);
2713 	    unhold_object(elm->obj);
2714 	    /* No need to free anything if process is going down. */
2715 	    if (root != NULL)
2716 	    	free(elm);
2717 	    /*
2718 	     * We must restart the list traversal after every fini call
2719 	     * because a dlclose() call from the fini function or from
2720 	     * another thread might have modified the reference counts.
2721 	     */
2722 	    break;
2723 	}
2724     } while (elm != NULL);
2725     errmsg_restore(saved_msg);
2726 }
2727 
2728 /*
2729  * Call the initialization functions for each of the objects in
2730  * "list".  All of the objects are expected to have non-NULL init
2731  * functions.
2732  */
2733 static void
2734 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2735 {
2736     Objlist_Entry *elm;
2737     Obj_Entry *obj;
2738     char *saved_msg;
2739     Elf_Addr *init_addr;
2740     void (*reg)(void (*)(void));
2741     int index;
2742 
2743     /*
2744      * Clean init_scanned flag so that objects can be rechecked and
2745      * possibly initialized earlier if any of vectors called below
2746      * cause the change by using dlopen.
2747      */
2748     TAILQ_FOREACH(obj, &obj_list, next) {
2749 	if (obj->marker)
2750 	    continue;
2751 	obj->init_scanned = false;
2752     }
2753 
2754     /*
2755      * Preserve the current error message since an init function might
2756      * call into the dynamic linker and overwrite it.
2757      */
2758     saved_msg = errmsg_save();
2759     STAILQ_FOREACH(elm, list, link) {
2760 	if (elm->obj->init_done) /* Initialized early. */
2761 	    continue;
2762 	/*
2763 	 * Race: other thread might try to use this object before current
2764 	 * one completes the initialization. Not much can be done here
2765 	 * without better locking.
2766 	 */
2767 	elm->obj->init_done = true;
2768 	hold_object(elm->obj);
2769 	reg = NULL;
2770 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2771 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2772 		    "__libc_atexit", lockstate);
2773 	}
2774 	lock_release(rtld_bind_lock, lockstate);
2775 	if (reg != NULL) {
2776 		reg(rtld_exit);
2777 		rtld_exit_ptr = rtld_nop_exit;
2778 	}
2779 
2780         /*
2781          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2782          * When this happens, DT_INIT is processed first.
2783          */
2784 	if (elm->obj->init != (Elf_Addr)NULL) {
2785 	    dbg("calling init function for %s at %p", elm->obj->path,
2786 	        (void *)elm->obj->init);
2787 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2788 	        0, 0, elm->obj->path);
2789 	    call_initfini_pointer(elm->obj, elm->obj->init);
2790 	}
2791 	init_addr = (Elf_Addr *)elm->obj->init_array;
2792 	if (init_addr != NULL) {
2793 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2794 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2795 		    dbg("calling init function for %s at %p", elm->obj->path,
2796 			(void *)init_addr[index]);
2797 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2798 			(void *)init_addr[index], 0, 0, elm->obj->path);
2799 		    call_init_pointer(elm->obj, init_addr[index]);
2800 		}
2801 	    }
2802 	}
2803 	wlock_acquire(rtld_bind_lock, lockstate);
2804 	unhold_object(elm->obj);
2805     }
2806     errmsg_restore(saved_msg);
2807 }
2808 
2809 static void
2810 objlist_clear(Objlist *list)
2811 {
2812     Objlist_Entry *elm;
2813 
2814     while (!STAILQ_EMPTY(list)) {
2815 	elm = STAILQ_FIRST(list);
2816 	STAILQ_REMOVE_HEAD(list, link);
2817 	free(elm);
2818     }
2819 }
2820 
2821 static Objlist_Entry *
2822 objlist_find(Objlist *list, const Obj_Entry *obj)
2823 {
2824     Objlist_Entry *elm;
2825 
2826     STAILQ_FOREACH(elm, list, link)
2827 	if (elm->obj == obj)
2828 	    return elm;
2829     return NULL;
2830 }
2831 
2832 static void
2833 objlist_init(Objlist *list)
2834 {
2835     STAILQ_INIT(list);
2836 }
2837 
2838 static void
2839 objlist_push_head(Objlist *list, Obj_Entry *obj)
2840 {
2841     Objlist_Entry *elm;
2842 
2843     elm = NEW(Objlist_Entry);
2844     elm->obj = obj;
2845     STAILQ_INSERT_HEAD(list, elm, link);
2846 }
2847 
2848 static void
2849 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2850 {
2851     Objlist_Entry *elm;
2852 
2853     elm = NEW(Objlist_Entry);
2854     elm->obj = obj;
2855     STAILQ_INSERT_TAIL(list, elm, link);
2856 }
2857 
2858 static void
2859 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2860 {
2861 	Objlist_Entry *elm, *listelm;
2862 
2863 	STAILQ_FOREACH(listelm, list, link) {
2864 		if (listelm->obj == listobj)
2865 			break;
2866 	}
2867 	elm = NEW(Objlist_Entry);
2868 	elm->obj = obj;
2869 	if (listelm != NULL)
2870 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2871 	else
2872 		STAILQ_INSERT_TAIL(list, elm, link);
2873 }
2874 
2875 static void
2876 objlist_remove(Objlist *list, Obj_Entry *obj)
2877 {
2878     Objlist_Entry *elm;
2879 
2880     if ((elm = objlist_find(list, obj)) != NULL) {
2881 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2882 	free(elm);
2883     }
2884 }
2885 
2886 /*
2887  * Relocate dag rooted in the specified object.
2888  * Returns 0 on success, or -1 on failure.
2889  */
2890 
2891 static int
2892 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2893     int flags, RtldLockState *lockstate)
2894 {
2895 	Objlist_Entry *elm;
2896 	int error;
2897 
2898 	error = 0;
2899 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2900 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2901 		    lockstate);
2902 		if (error == -1)
2903 			break;
2904 	}
2905 	return (error);
2906 }
2907 
2908 /*
2909  * Prepare for, or clean after, relocating an object marked with
2910  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2911  * segments are remapped read-write.  After relocations are done, the
2912  * segment's permissions are returned back to the modes specified in
2913  * the phdrs.  If any relocation happened, or always for wired
2914  * program, COW is triggered.
2915  */
2916 static int
2917 reloc_textrel_prot(Obj_Entry *obj, bool before)
2918 {
2919 	const Elf_Phdr *ph;
2920 	void *base;
2921 	size_t l, sz;
2922 	int prot;
2923 
2924 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2925 	    l--, ph++) {
2926 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2927 			continue;
2928 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2929 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2930 		    trunc_page(ph->p_vaddr);
2931 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2932 		if (mprotect(base, sz, prot) == -1) {
2933 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2934 			    obj->path, before ? "en" : "dis",
2935 			    rtld_strerror(errno));
2936 			return (-1);
2937 		}
2938 	}
2939 	return (0);
2940 }
2941 
2942 /*
2943  * Relocate single object.
2944  * Returns 0 on success, or -1 on failure.
2945  */
2946 static int
2947 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2948     int flags, RtldLockState *lockstate)
2949 {
2950 
2951 	if (obj->relocated)
2952 		return (0);
2953 	obj->relocated = true;
2954 	if (obj != rtldobj)
2955 		dbg("relocating \"%s\"", obj->path);
2956 
2957 	if (obj->symtab == NULL || obj->strtab == NULL ||
2958 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2959 		_rtld_error("%s: Shared object has no run-time symbol table",
2960 			    obj->path);
2961 		return (-1);
2962 	}
2963 
2964 	/* There are relocations to the write-protected text segment. */
2965 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2966 		return (-1);
2967 
2968 	/* Process the non-PLT non-IFUNC relocations. */
2969 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2970 		return (-1);
2971 
2972 	/* Re-protected the text segment. */
2973 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2974 		return (-1);
2975 
2976 	/* Set the special PLT or GOT entries. */
2977 	init_pltgot(obj);
2978 
2979 	/* Process the PLT relocations. */
2980 	if (reloc_plt(obj, flags, lockstate) == -1)
2981 		return (-1);
2982 	/* Relocate the jump slots if we are doing immediate binding. */
2983 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2984 	    lockstate) == -1)
2985 		return (-1);
2986 
2987 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2988 		return (-1);
2989 
2990 	/*
2991 	 * Set up the magic number and version in the Obj_Entry.  These
2992 	 * were checked in the crt1.o from the original ElfKit, so we
2993 	 * set them for backward compatibility.
2994 	 */
2995 	obj->magic = RTLD_MAGIC;
2996 	obj->version = RTLD_VERSION;
2997 
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Relocate newly-loaded shared objects.  The argument is a pointer to
3003  * the Obj_Entry for the first such object.  All objects from the first
3004  * to the end of the list of objects are relocated.  Returns 0 on success,
3005  * or -1 on failure.
3006  */
3007 static int
3008 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3009     int flags, RtldLockState *lockstate)
3010 {
3011 	Obj_Entry *obj;
3012 	int error;
3013 
3014 	for (error = 0, obj = first;  obj != NULL;
3015 	    obj = TAILQ_NEXT(obj, next)) {
3016 		if (obj->marker)
3017 			continue;
3018 		error = relocate_object(obj, bind_now, rtldobj, flags,
3019 		    lockstate);
3020 		if (error == -1)
3021 			break;
3022 	}
3023 	return (error);
3024 }
3025 
3026 /*
3027  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3028  * referencing STT_GNU_IFUNC symbols is postponed till the other
3029  * relocations are done.  The indirect functions specified as
3030  * ifunc are allowed to call other symbols, so we need to have
3031  * objects relocated before asking for resolution from indirects.
3032  *
3033  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3034  * instead of the usual lazy handling of PLT slots.  It is
3035  * consistent with how GNU does it.
3036  */
3037 static int
3038 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3039     RtldLockState *lockstate)
3040 {
3041 
3042 	if (obj->ifuncs_resolved)
3043 		return (0);
3044 	obj->ifuncs_resolved = true;
3045 	if (!obj->irelative && !obj->irelative_nonplt &&
3046 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3047 		return (0);
3048 	if (obj_disable_relro(obj) == -1 ||
3049 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3050 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3051 	    lockstate) == -1) ||
3052 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3053 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3054 	    obj_enforce_relro(obj) == -1)
3055 		return (-1);
3056 	return (0);
3057 }
3058 
3059 static int
3060 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3061     RtldLockState *lockstate)
3062 {
3063 	Objlist_Entry *elm;
3064 	Obj_Entry *obj;
3065 
3066 	STAILQ_FOREACH(elm, list, link) {
3067 		obj = elm->obj;
3068 		if (obj->marker)
3069 			continue;
3070 		if (resolve_object_ifunc(obj, bind_now, flags,
3071 		    lockstate) == -1)
3072 			return (-1);
3073 	}
3074 	return (0);
3075 }
3076 
3077 /*
3078  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3079  * before the process exits.
3080  */
3081 static void
3082 rtld_exit(void)
3083 {
3084     RtldLockState lockstate;
3085 
3086     wlock_acquire(rtld_bind_lock, &lockstate);
3087     dbg("rtld_exit()");
3088     objlist_call_fini(&list_fini, NULL, &lockstate);
3089     /* No need to remove the items from the list, since we are exiting. */
3090     if (!libmap_disable)
3091         lm_fini();
3092     lock_release(rtld_bind_lock, &lockstate);
3093 }
3094 
3095 static void
3096 rtld_nop_exit(void)
3097 {
3098 }
3099 
3100 /*
3101  * Iterate over a search path, translate each element, and invoke the
3102  * callback on the result.
3103  */
3104 static void *
3105 path_enumerate(const char *path, path_enum_proc callback,
3106     const char *refobj_path, void *arg)
3107 {
3108     const char *trans;
3109     if (path == NULL)
3110 	return (NULL);
3111 
3112     path += strspn(path, ":;");
3113     while (*path != '\0') {
3114 	size_t len;
3115 	char  *res;
3116 
3117 	len = strcspn(path, ":;");
3118 	trans = lm_findn(refobj_path, path, len);
3119 	if (trans)
3120 	    res = callback(trans, strlen(trans), arg);
3121 	else
3122 	    res = callback(path, len, arg);
3123 
3124 	if (res != NULL)
3125 	    return (res);
3126 
3127 	path += len;
3128 	path += strspn(path, ":;");
3129     }
3130 
3131     return (NULL);
3132 }
3133 
3134 struct try_library_args {
3135     const char	*name;
3136     size_t	 namelen;
3137     char	*buffer;
3138     size_t	 buflen;
3139     int		 fd;
3140 };
3141 
3142 static void *
3143 try_library_path(const char *dir, size_t dirlen, void *param)
3144 {
3145     struct try_library_args *arg;
3146     int fd;
3147 
3148     arg = param;
3149     if (*dir == '/' || trust) {
3150 	char *pathname;
3151 
3152 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3153 		return (NULL);
3154 
3155 	pathname = arg->buffer;
3156 	strncpy(pathname, dir, dirlen);
3157 	pathname[dirlen] = '/';
3158 	strcpy(pathname + dirlen + 1, arg->name);
3159 
3160 	dbg("  Trying \"%s\"", pathname);
3161 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3162 	if (fd >= 0) {
3163 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3164 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3165 	    strcpy(pathname, arg->buffer);
3166 	    arg->fd = fd;
3167 	    return (pathname);
3168 	} else {
3169 	    dbg("  Failed to open \"%s\": %s",
3170 		pathname, rtld_strerror(errno));
3171 	}
3172     }
3173     return (NULL);
3174 }
3175 
3176 static char *
3177 search_library_path(const char *name, const char *path,
3178     const char *refobj_path, int *fdp)
3179 {
3180     char *p;
3181     struct try_library_args arg;
3182 
3183     if (path == NULL)
3184 	return NULL;
3185 
3186     arg.name = name;
3187     arg.namelen = strlen(name);
3188     arg.buffer = xmalloc(PATH_MAX);
3189     arg.buflen = PATH_MAX;
3190     arg.fd = -1;
3191 
3192     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3193     *fdp = arg.fd;
3194 
3195     free(arg.buffer);
3196 
3197     return (p);
3198 }
3199 
3200 
3201 /*
3202  * Finds the library with the given name using the directory descriptors
3203  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3204  *
3205  * Returns a freshly-opened close-on-exec file descriptor for the library,
3206  * or -1 if the library cannot be found.
3207  */
3208 static char *
3209 search_library_pathfds(const char *name, const char *path, int *fdp)
3210 {
3211 	char *envcopy, *fdstr, *found, *last_token;
3212 	size_t len;
3213 	int dirfd, fd;
3214 
3215 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3216 
3217 	/* Don't load from user-specified libdirs into setuid binaries. */
3218 	if (!trust)
3219 		return (NULL);
3220 
3221 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3222 	if (path == NULL)
3223 		return (NULL);
3224 
3225 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3226 	if (name[0] == '/') {
3227 		dbg("Absolute path (%s) passed to %s", name, __func__);
3228 		return (NULL);
3229 	}
3230 
3231 	/*
3232 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3233 	 * copy of the path, as strtok_r rewrites separator tokens
3234 	 * with '\0'.
3235 	 */
3236 	found = NULL;
3237 	envcopy = xstrdup(path);
3238 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3239 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3240 		dirfd = parse_integer(fdstr);
3241 		if (dirfd < 0) {
3242 			_rtld_error("failed to parse directory FD: '%s'",
3243 				fdstr);
3244 			break;
3245 		}
3246 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3247 		if (fd >= 0) {
3248 			*fdp = fd;
3249 			len = strlen(fdstr) + strlen(name) + 3;
3250 			found = xmalloc(len);
3251 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3252 				_rtld_error("error generating '%d/%s'",
3253 				    dirfd, name);
3254 				rtld_die();
3255 			}
3256 			dbg("open('%s') => %d", found, fd);
3257 			break;
3258 		}
3259 	}
3260 	free(envcopy);
3261 
3262 	return (found);
3263 }
3264 
3265 
3266 int
3267 dlclose(void *handle)
3268 {
3269 	RtldLockState lockstate;
3270 	int error;
3271 
3272 	wlock_acquire(rtld_bind_lock, &lockstate);
3273 	error = dlclose_locked(handle, &lockstate);
3274 	lock_release(rtld_bind_lock, &lockstate);
3275 	return (error);
3276 }
3277 
3278 static int
3279 dlclose_locked(void *handle, RtldLockState *lockstate)
3280 {
3281     Obj_Entry *root;
3282 
3283     root = dlcheck(handle);
3284     if (root == NULL)
3285 	return -1;
3286     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3287 	root->path);
3288 
3289     /* Unreference the object and its dependencies. */
3290     root->dl_refcount--;
3291 
3292     if (root->refcount == 1) {
3293 	/*
3294 	 * The object will be no longer referenced, so we must unload it.
3295 	 * First, call the fini functions.
3296 	 */
3297 	objlist_call_fini(&list_fini, root, lockstate);
3298 
3299 	unref_dag(root);
3300 
3301 	/* Finish cleaning up the newly-unreferenced objects. */
3302 	GDB_STATE(RT_DELETE,&root->linkmap);
3303 	unload_object(root, lockstate);
3304 	GDB_STATE(RT_CONSISTENT,NULL);
3305     } else
3306 	unref_dag(root);
3307 
3308     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3309     return 0;
3310 }
3311 
3312 char *
3313 dlerror(void)
3314 {
3315     char *msg = error_message;
3316     error_message = NULL;
3317     return msg;
3318 }
3319 
3320 /*
3321  * This function is deprecated and has no effect.
3322  */
3323 void
3324 dllockinit(void *context,
3325     void *(*_lock_create)(void *context) __unused,
3326     void (*_rlock_acquire)(void *lock) __unused,
3327     void (*_wlock_acquire)(void *lock)  __unused,
3328     void (*_lock_release)(void *lock) __unused,
3329     void (*_lock_destroy)(void *lock) __unused,
3330     void (*context_destroy)(void *context))
3331 {
3332     static void *cur_context;
3333     static void (*cur_context_destroy)(void *);
3334 
3335     /* Just destroy the context from the previous call, if necessary. */
3336     if (cur_context_destroy != NULL)
3337 	cur_context_destroy(cur_context);
3338     cur_context = context;
3339     cur_context_destroy = context_destroy;
3340 }
3341 
3342 void *
3343 dlopen(const char *name, int mode)
3344 {
3345 
3346 	return (rtld_dlopen(name, -1, mode));
3347 }
3348 
3349 void *
3350 fdlopen(int fd, int mode)
3351 {
3352 
3353 	return (rtld_dlopen(NULL, fd, mode));
3354 }
3355 
3356 static void *
3357 rtld_dlopen(const char *name, int fd, int mode)
3358 {
3359     RtldLockState lockstate;
3360     int lo_flags;
3361 
3362     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3363     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3364     if (ld_tracing != NULL) {
3365 	rlock_acquire(rtld_bind_lock, &lockstate);
3366 	if (sigsetjmp(lockstate.env, 0) != 0)
3367 	    lock_upgrade(rtld_bind_lock, &lockstate);
3368 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3369 	lock_release(rtld_bind_lock, &lockstate);
3370     }
3371     lo_flags = RTLD_LO_DLOPEN;
3372     if (mode & RTLD_NODELETE)
3373 	    lo_flags |= RTLD_LO_NODELETE;
3374     if (mode & RTLD_NOLOAD)
3375 	    lo_flags |= RTLD_LO_NOLOAD;
3376     if (mode & RTLD_DEEPBIND)
3377 	    lo_flags |= RTLD_LO_DEEPBIND;
3378     if (ld_tracing != NULL)
3379 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3380 
3381     return (dlopen_object(name, fd, obj_main, lo_flags,
3382       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3383 }
3384 
3385 static void
3386 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3387 {
3388 
3389 	obj->dl_refcount--;
3390 	unref_dag(obj);
3391 	if (obj->refcount == 0)
3392 		unload_object(obj, lockstate);
3393 }
3394 
3395 static Obj_Entry *
3396 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3397     int mode, RtldLockState *lockstate)
3398 {
3399     Obj_Entry *old_obj_tail;
3400     Obj_Entry *obj;
3401     Objlist initlist;
3402     RtldLockState mlockstate;
3403     int result;
3404 
3405     objlist_init(&initlist);
3406 
3407     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3408 	wlock_acquire(rtld_bind_lock, &mlockstate);
3409 	lockstate = &mlockstate;
3410     }
3411     GDB_STATE(RT_ADD,NULL);
3412 
3413     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3414     obj = NULL;
3415     if (name == NULL && fd == -1) {
3416 	obj = obj_main;
3417 	obj->refcount++;
3418     } else {
3419 	obj = load_object(name, fd, refobj, lo_flags);
3420     }
3421 
3422     if (obj) {
3423 	obj->dl_refcount++;
3424 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3425 	    objlist_push_tail(&list_global, obj);
3426 	if (globallist_next(old_obj_tail) != NULL) {
3427 	    /* We loaded something new. */
3428 	    assert(globallist_next(old_obj_tail) == obj);
3429 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3430 		obj->symbolic = true;
3431 	    result = 0;
3432 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3433 	      obj->static_tls && !allocate_tls_offset(obj)) {
3434 		_rtld_error("%s: No space available "
3435 		  "for static Thread Local Storage", obj->path);
3436 		result = -1;
3437 	    }
3438 	    if (result != -1)
3439 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3440 		    RTLD_LO_EARLY | RTLD_LO_IGNSTLS));
3441 	    init_dag(obj);
3442 	    ref_dag(obj);
3443 	    if (result != -1)
3444 		result = rtld_verify_versions(&obj->dagmembers);
3445 	    if (result != -1 && ld_tracing)
3446 		goto trace;
3447 	    if (result == -1 || relocate_object_dag(obj,
3448 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3449 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3450 	      lockstate) == -1) {
3451 		dlopen_cleanup(obj, lockstate);
3452 		obj = NULL;
3453 	    } else if (lo_flags & RTLD_LO_EARLY) {
3454 		/*
3455 		 * Do not call the init functions for early loaded
3456 		 * filtees.  The image is still not initialized enough
3457 		 * for them to work.
3458 		 *
3459 		 * Our object is found by the global object list and
3460 		 * will be ordered among all init calls done right
3461 		 * before transferring control to main.
3462 		 */
3463 	    } else {
3464 		/* Make list of init functions to call. */
3465 		initlist_add_objects(obj, obj, &initlist);
3466 	    }
3467 	    /*
3468 	     * Process all no_delete or global objects here, given
3469 	     * them own DAGs to prevent their dependencies from being
3470 	     * unloaded.  This has to be done after we have loaded all
3471 	     * of the dependencies, so that we do not miss any.
3472 	     */
3473 	    if (obj != NULL)
3474 		process_z(obj);
3475 	} else {
3476 	    /*
3477 	     * Bump the reference counts for objects on this DAG.  If
3478 	     * this is the first dlopen() call for the object that was
3479 	     * already loaded as a dependency, initialize the dag
3480 	     * starting at it.
3481 	     */
3482 	    init_dag(obj);
3483 	    ref_dag(obj);
3484 
3485 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3486 		goto trace;
3487 	}
3488 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3489 	  obj->z_nodelete) && !obj->ref_nodel) {
3490 	    dbg("obj %s nodelete", obj->path);
3491 	    ref_dag(obj);
3492 	    obj->z_nodelete = obj->ref_nodel = true;
3493 	}
3494     }
3495 
3496     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3497 	name);
3498     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3499 
3500     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3501 	map_stacks_exec(lockstate);
3502 	if (obj != NULL)
3503 	    distribute_static_tls(&initlist, lockstate);
3504     }
3505 
3506     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3507       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3508       lockstate) == -1) {
3509 	objlist_clear(&initlist);
3510 	dlopen_cleanup(obj, lockstate);
3511 	if (lockstate == &mlockstate)
3512 	    lock_release(rtld_bind_lock, lockstate);
3513 	return (NULL);
3514     }
3515 
3516     if (!(lo_flags & RTLD_LO_EARLY)) {
3517 	/* Call the init functions. */
3518 	objlist_call_init(&initlist, lockstate);
3519     }
3520     objlist_clear(&initlist);
3521     if (lockstate == &mlockstate)
3522 	lock_release(rtld_bind_lock, lockstate);
3523     return obj;
3524 trace:
3525     trace_loaded_objects(obj);
3526     if (lockstate == &mlockstate)
3527 	lock_release(rtld_bind_lock, lockstate);
3528     exit(0);
3529 }
3530 
3531 static void *
3532 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3533     int flags)
3534 {
3535     DoneList donelist;
3536     const Obj_Entry *obj, *defobj;
3537     const Elf_Sym *def;
3538     SymLook req;
3539     RtldLockState lockstate;
3540     tls_index ti;
3541     void *sym;
3542     int res;
3543 
3544     def = NULL;
3545     defobj = NULL;
3546     symlook_init(&req, name);
3547     req.ventry = ve;
3548     req.flags = flags | SYMLOOK_IN_PLT;
3549     req.lockstate = &lockstate;
3550 
3551     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3552     rlock_acquire(rtld_bind_lock, &lockstate);
3553     if (sigsetjmp(lockstate.env, 0) != 0)
3554 	    lock_upgrade(rtld_bind_lock, &lockstate);
3555     if (handle == NULL || handle == RTLD_NEXT ||
3556 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3557 
3558 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3559 	    _rtld_error("Cannot determine caller's shared object");
3560 	    lock_release(rtld_bind_lock, &lockstate);
3561 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3562 	    return NULL;
3563 	}
3564 	if (handle == NULL) {	/* Just the caller's shared object. */
3565 	    res = symlook_obj(&req, obj);
3566 	    if (res == 0) {
3567 		def = req.sym_out;
3568 		defobj = req.defobj_out;
3569 	    }
3570 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3571 		   handle == RTLD_SELF) { /* ... caller included */
3572 	    if (handle == RTLD_NEXT)
3573 		obj = globallist_next(obj);
3574 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3575 		if (obj->marker)
3576 		    continue;
3577 		res = symlook_obj(&req, obj);
3578 		if (res == 0) {
3579 		    if (def == NULL ||
3580 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3581 			def = req.sym_out;
3582 			defobj = req.defobj_out;
3583 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3584 			    break;
3585 		    }
3586 		}
3587 	    }
3588 	    /*
3589 	     * Search the dynamic linker itself, and possibly resolve the
3590 	     * symbol from there.  This is how the application links to
3591 	     * dynamic linker services such as dlopen.
3592 	     */
3593 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3594 		res = symlook_obj(&req, &obj_rtld);
3595 		if (res == 0) {
3596 		    def = req.sym_out;
3597 		    defobj = req.defobj_out;
3598 		}
3599 	    }
3600 	} else {
3601 	    assert(handle == RTLD_DEFAULT);
3602 	    res = symlook_default(&req, obj);
3603 	    if (res == 0) {
3604 		defobj = req.defobj_out;
3605 		def = req.sym_out;
3606 	    }
3607 	}
3608     } else {
3609 	if ((obj = dlcheck(handle)) == NULL) {
3610 	    lock_release(rtld_bind_lock, &lockstate);
3611 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3612 	    return NULL;
3613 	}
3614 
3615 	donelist_init(&donelist);
3616 	if (obj->mainprog) {
3617             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3618 	    res = symlook_global(&req, &donelist);
3619 	    if (res == 0) {
3620 		def = req.sym_out;
3621 		defobj = req.defobj_out;
3622 	    }
3623 	    /*
3624 	     * Search the dynamic linker itself, and possibly resolve the
3625 	     * symbol from there.  This is how the application links to
3626 	     * dynamic linker services such as dlopen.
3627 	     */
3628 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3629 		res = symlook_obj(&req, &obj_rtld);
3630 		if (res == 0) {
3631 		    def = req.sym_out;
3632 		    defobj = req.defobj_out;
3633 		}
3634 	    }
3635 	}
3636 	else {
3637 	    /* Search the whole DAG rooted at the given object. */
3638 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3639 	    if (res == 0) {
3640 		def = req.sym_out;
3641 		defobj = req.defobj_out;
3642 	    }
3643 	}
3644     }
3645 
3646     if (def != NULL) {
3647 	lock_release(rtld_bind_lock, &lockstate);
3648 
3649 	/*
3650 	 * The value required by the caller is derived from the value
3651 	 * of the symbol. this is simply the relocated value of the
3652 	 * symbol.
3653 	 */
3654 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3655 	    sym = make_function_pointer(def, defobj);
3656 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3657 	    sym = rtld_resolve_ifunc(defobj, def);
3658 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3659 	    ti.ti_module = defobj->tlsindex;
3660 	    ti.ti_offset = def->st_value;
3661 	    sym = __tls_get_addr(&ti);
3662 	} else
3663 	    sym = defobj->relocbase + def->st_value;
3664 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3665 	return (sym);
3666     }
3667 
3668     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3669       ve != NULL ? ve->name : "");
3670     lock_release(rtld_bind_lock, &lockstate);
3671     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3672     return NULL;
3673 }
3674 
3675 void *
3676 dlsym(void *handle, const char *name)
3677 {
3678 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3679 	    SYMLOOK_DLSYM);
3680 }
3681 
3682 dlfunc_t
3683 dlfunc(void *handle, const char *name)
3684 {
3685 	union {
3686 		void *d;
3687 		dlfunc_t f;
3688 	} rv;
3689 
3690 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3691 	    SYMLOOK_DLSYM);
3692 	return (rv.f);
3693 }
3694 
3695 void *
3696 dlvsym(void *handle, const char *name, const char *version)
3697 {
3698 	Ver_Entry ventry;
3699 
3700 	ventry.name = version;
3701 	ventry.file = NULL;
3702 	ventry.hash = elf_hash(version);
3703 	ventry.flags= 0;
3704 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3705 	    SYMLOOK_DLSYM);
3706 }
3707 
3708 int
3709 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3710 {
3711     const Obj_Entry *obj;
3712     RtldLockState lockstate;
3713 
3714     rlock_acquire(rtld_bind_lock, &lockstate);
3715     obj = obj_from_addr(addr);
3716     if (obj == NULL) {
3717         _rtld_error("No shared object contains address");
3718 	lock_release(rtld_bind_lock, &lockstate);
3719         return (0);
3720     }
3721     rtld_fill_dl_phdr_info(obj, phdr_info);
3722     lock_release(rtld_bind_lock, &lockstate);
3723     return (1);
3724 }
3725 
3726 int
3727 dladdr(const void *addr, Dl_info *info)
3728 {
3729     const Obj_Entry *obj;
3730     const Elf_Sym *def;
3731     void *symbol_addr;
3732     unsigned long symoffset;
3733     RtldLockState lockstate;
3734 
3735     rlock_acquire(rtld_bind_lock, &lockstate);
3736     obj = obj_from_addr(addr);
3737     if (obj == NULL) {
3738         _rtld_error("No shared object contains address");
3739 	lock_release(rtld_bind_lock, &lockstate);
3740         return 0;
3741     }
3742     info->dli_fname = obj->path;
3743     info->dli_fbase = obj->mapbase;
3744     info->dli_saddr = (void *)0;
3745     info->dli_sname = NULL;
3746 
3747     /*
3748      * Walk the symbol list looking for the symbol whose address is
3749      * closest to the address sent in.
3750      */
3751     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3752         def = obj->symtab + symoffset;
3753 
3754         /*
3755          * For skip the symbol if st_shndx is either SHN_UNDEF or
3756          * SHN_COMMON.
3757          */
3758         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3759             continue;
3760 
3761         /*
3762          * If the symbol is greater than the specified address, or if it
3763          * is further away from addr than the current nearest symbol,
3764          * then reject it.
3765          */
3766         symbol_addr = obj->relocbase + def->st_value;
3767         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3768             continue;
3769 
3770         /* Update our idea of the nearest symbol. */
3771         info->dli_sname = obj->strtab + def->st_name;
3772         info->dli_saddr = symbol_addr;
3773 
3774         /* Exact match? */
3775         if (info->dli_saddr == addr)
3776             break;
3777     }
3778     lock_release(rtld_bind_lock, &lockstate);
3779     return 1;
3780 }
3781 
3782 int
3783 dlinfo(void *handle, int request, void *p)
3784 {
3785     const Obj_Entry *obj;
3786     RtldLockState lockstate;
3787     int error;
3788 
3789     rlock_acquire(rtld_bind_lock, &lockstate);
3790 
3791     if (handle == NULL || handle == RTLD_SELF) {
3792 	void *retaddr;
3793 
3794 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3795 	if ((obj = obj_from_addr(retaddr)) == NULL)
3796 	    _rtld_error("Cannot determine caller's shared object");
3797     } else
3798 	obj = dlcheck(handle);
3799 
3800     if (obj == NULL) {
3801 	lock_release(rtld_bind_lock, &lockstate);
3802 	return (-1);
3803     }
3804 
3805     error = 0;
3806     switch (request) {
3807     case RTLD_DI_LINKMAP:
3808 	*((struct link_map const **)p) = &obj->linkmap;
3809 	break;
3810     case RTLD_DI_ORIGIN:
3811 	error = rtld_dirname(obj->path, p);
3812 	break;
3813 
3814     case RTLD_DI_SERINFOSIZE:
3815     case RTLD_DI_SERINFO:
3816 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3817 	break;
3818 
3819     default:
3820 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3821 	error = -1;
3822     }
3823 
3824     lock_release(rtld_bind_lock, &lockstate);
3825 
3826     return (error);
3827 }
3828 
3829 static void
3830 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3831 {
3832 
3833 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3834 	phdr_info->dlpi_name = obj->path;
3835 	phdr_info->dlpi_phdr = obj->phdr;
3836 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3837 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3838 	phdr_info->dlpi_tls_data = obj->tlsinit;
3839 	phdr_info->dlpi_adds = obj_loads;
3840 	phdr_info->dlpi_subs = obj_loads - obj_count;
3841 }
3842 
3843 int
3844 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3845 {
3846 	struct dl_phdr_info phdr_info;
3847 	Obj_Entry *obj, marker;
3848 	RtldLockState bind_lockstate, phdr_lockstate;
3849 	int error;
3850 
3851 	init_marker(&marker);
3852 	error = 0;
3853 
3854 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3855 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3856 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3857 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3858 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3859 		hold_object(obj);
3860 		lock_release(rtld_bind_lock, &bind_lockstate);
3861 
3862 		error = callback(&phdr_info, sizeof phdr_info, param);
3863 
3864 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3865 		unhold_object(obj);
3866 		obj = globallist_next(&marker);
3867 		TAILQ_REMOVE(&obj_list, &marker, next);
3868 		if (error != 0) {
3869 			lock_release(rtld_bind_lock, &bind_lockstate);
3870 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3871 			return (error);
3872 		}
3873 	}
3874 
3875 	if (error == 0) {
3876 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3877 		lock_release(rtld_bind_lock, &bind_lockstate);
3878 		error = callback(&phdr_info, sizeof(phdr_info), param);
3879 	}
3880 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3881 	return (error);
3882 }
3883 
3884 static void *
3885 fill_search_info(const char *dir, size_t dirlen, void *param)
3886 {
3887     struct fill_search_info_args *arg;
3888 
3889     arg = param;
3890 
3891     if (arg->request == RTLD_DI_SERINFOSIZE) {
3892 	arg->serinfo->dls_cnt ++;
3893 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3894     } else {
3895 	struct dl_serpath *s_entry;
3896 
3897 	s_entry = arg->serpath;
3898 	s_entry->dls_name  = arg->strspace;
3899 	s_entry->dls_flags = arg->flags;
3900 
3901 	strncpy(arg->strspace, dir, dirlen);
3902 	arg->strspace[dirlen] = '\0';
3903 
3904 	arg->strspace += dirlen + 1;
3905 	arg->serpath++;
3906     }
3907 
3908     return (NULL);
3909 }
3910 
3911 static int
3912 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3913 {
3914     struct dl_serinfo _info;
3915     struct fill_search_info_args args;
3916 
3917     args.request = RTLD_DI_SERINFOSIZE;
3918     args.serinfo = &_info;
3919 
3920     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3921     _info.dls_cnt  = 0;
3922 
3923     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3924     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3925     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3926     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3927     if (!obj->z_nodeflib)
3928       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3929 
3930 
3931     if (request == RTLD_DI_SERINFOSIZE) {
3932 	info->dls_size = _info.dls_size;
3933 	info->dls_cnt = _info.dls_cnt;
3934 	return (0);
3935     }
3936 
3937     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3938 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3939 	return (-1);
3940     }
3941 
3942     args.request  = RTLD_DI_SERINFO;
3943     args.serinfo  = info;
3944     args.serpath  = &info->dls_serpath[0];
3945     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3946 
3947     args.flags = LA_SER_RUNPATH;
3948     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3949 	return (-1);
3950 
3951     args.flags = LA_SER_LIBPATH;
3952     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3953 	return (-1);
3954 
3955     args.flags = LA_SER_RUNPATH;
3956     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3957 	return (-1);
3958 
3959     args.flags = LA_SER_CONFIG;
3960     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3961       != NULL)
3962 	return (-1);
3963 
3964     args.flags = LA_SER_DEFAULT;
3965     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3966       fill_search_info, NULL, &args) != NULL)
3967 	return (-1);
3968     return (0);
3969 }
3970 
3971 static int
3972 rtld_dirname(const char *path, char *bname)
3973 {
3974     const char *endp;
3975 
3976     /* Empty or NULL string gets treated as "." */
3977     if (path == NULL || *path == '\0') {
3978 	bname[0] = '.';
3979 	bname[1] = '\0';
3980 	return (0);
3981     }
3982 
3983     /* Strip trailing slashes */
3984     endp = path + strlen(path) - 1;
3985     while (endp > path && *endp == '/')
3986 	endp--;
3987 
3988     /* Find the start of the dir */
3989     while (endp > path && *endp != '/')
3990 	endp--;
3991 
3992     /* Either the dir is "/" or there are no slashes */
3993     if (endp == path) {
3994 	bname[0] = *endp == '/' ? '/' : '.';
3995 	bname[1] = '\0';
3996 	return (0);
3997     } else {
3998 	do {
3999 	    endp--;
4000 	} while (endp > path && *endp == '/');
4001     }
4002 
4003     if (endp - path + 2 > PATH_MAX)
4004     {
4005 	_rtld_error("Filename is too long: %s", path);
4006 	return(-1);
4007     }
4008 
4009     strncpy(bname, path, endp - path + 1);
4010     bname[endp - path + 1] = '\0';
4011     return (0);
4012 }
4013 
4014 static int
4015 rtld_dirname_abs(const char *path, char *base)
4016 {
4017 	char *last;
4018 
4019 	if (realpath(path, base) == NULL) {
4020 		_rtld_error("realpath \"%s\" failed (%s)", path,
4021 		    rtld_strerror(errno));
4022 		return (-1);
4023 	}
4024 	dbg("%s -> %s", path, base);
4025 	last = strrchr(base, '/');
4026 	if (last == NULL) {
4027 		_rtld_error("non-abs result from realpath \"%s\"", path);
4028 		return (-1);
4029 	}
4030 	if (last != base)
4031 		*last = '\0';
4032 	return (0);
4033 }
4034 
4035 static void
4036 linkmap_add(Obj_Entry *obj)
4037 {
4038 	struct link_map *l, *prev;
4039 
4040 	l = &obj->linkmap;
4041 	l->l_name = obj->path;
4042 	l->l_base = obj->mapbase;
4043 	l->l_ld = obj->dynamic;
4044 	l->l_addr = obj->relocbase;
4045 
4046 	if (r_debug.r_map == NULL) {
4047 		r_debug.r_map = l;
4048 		return;
4049 	}
4050 
4051 	/*
4052 	 * Scan to the end of the list, but not past the entry for the
4053 	 * dynamic linker, which we want to keep at the very end.
4054 	 */
4055 	for (prev = r_debug.r_map;
4056 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4057 	     prev = prev->l_next)
4058 		;
4059 
4060 	/* Link in the new entry. */
4061 	l->l_prev = prev;
4062 	l->l_next = prev->l_next;
4063 	if (l->l_next != NULL)
4064 		l->l_next->l_prev = l;
4065 	prev->l_next = l;
4066 }
4067 
4068 static void
4069 linkmap_delete(Obj_Entry *obj)
4070 {
4071 	struct link_map *l;
4072 
4073 	l = &obj->linkmap;
4074 	if (l->l_prev == NULL) {
4075 		if ((r_debug.r_map = l->l_next) != NULL)
4076 			l->l_next->l_prev = NULL;
4077 		return;
4078 	}
4079 
4080 	if ((l->l_prev->l_next = l->l_next) != NULL)
4081 		l->l_next->l_prev = l->l_prev;
4082 }
4083 
4084 /*
4085  * Function for the debugger to set a breakpoint on to gain control.
4086  *
4087  * The two parameters allow the debugger to easily find and determine
4088  * what the runtime loader is doing and to whom it is doing it.
4089  *
4090  * When the loadhook trap is hit (r_debug_state, set at program
4091  * initialization), the arguments can be found on the stack:
4092  *
4093  *  +8   struct link_map *m
4094  *  +4   struct r_debug  *rd
4095  *  +0   RetAddr
4096  */
4097 void
4098 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4099 {
4100     /*
4101      * The following is a hack to force the compiler to emit calls to
4102      * this function, even when optimizing.  If the function is empty,
4103      * the compiler is not obliged to emit any code for calls to it,
4104      * even when marked __noinline.  However, gdb depends on those
4105      * calls being made.
4106      */
4107     __compiler_membar();
4108 }
4109 
4110 /*
4111  * A function called after init routines have completed. This can be used to
4112  * break before a program's entry routine is called, and can be used when
4113  * main is not available in the symbol table.
4114  */
4115 void
4116 _r_debug_postinit(struct link_map *m __unused)
4117 {
4118 
4119 	/* See r_debug_state(). */
4120 	__compiler_membar();
4121 }
4122 
4123 static void
4124 release_object(Obj_Entry *obj)
4125 {
4126 
4127 	if (obj->holdcount > 0) {
4128 		obj->unholdfree = true;
4129 		return;
4130 	}
4131 	munmap(obj->mapbase, obj->mapsize);
4132 	linkmap_delete(obj);
4133 	obj_free(obj);
4134 }
4135 
4136 /*
4137  * Get address of the pointer variable in the main program.
4138  * Prefer non-weak symbol over the weak one.
4139  */
4140 static const void **
4141 get_program_var_addr(const char *name, RtldLockState *lockstate)
4142 {
4143     SymLook req;
4144     DoneList donelist;
4145 
4146     symlook_init(&req, name);
4147     req.lockstate = lockstate;
4148     donelist_init(&donelist);
4149     if (symlook_global(&req, &donelist) != 0)
4150 	return (NULL);
4151     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4152 	return ((const void **)make_function_pointer(req.sym_out,
4153 	  req.defobj_out));
4154     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4155 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4156     else
4157 	return ((const void **)(req.defobj_out->relocbase +
4158 	  req.sym_out->st_value));
4159 }
4160 
4161 /*
4162  * Set a pointer variable in the main program to the given value.  This
4163  * is used to set key variables such as "environ" before any of the
4164  * init functions are called.
4165  */
4166 static void
4167 set_program_var(const char *name, const void *value)
4168 {
4169     const void **addr;
4170 
4171     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4172 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4173 	*addr = value;
4174     }
4175 }
4176 
4177 /*
4178  * Search the global objects, including dependencies and main object,
4179  * for the given symbol.
4180  */
4181 static int
4182 symlook_global(SymLook *req, DoneList *donelist)
4183 {
4184     SymLook req1;
4185     const Objlist_Entry *elm;
4186     int res;
4187 
4188     symlook_init_from_req(&req1, req);
4189 
4190     /* Search all objects loaded at program start up. */
4191     if (req->defobj_out == NULL ||
4192       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4193 	res = symlook_list(&req1, &list_main, donelist);
4194 	if (res == 0 && (req->defobj_out == NULL ||
4195 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4196 	    req->sym_out = req1.sym_out;
4197 	    req->defobj_out = req1.defobj_out;
4198 	    assert(req->defobj_out != NULL);
4199 	}
4200     }
4201 
4202     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4203     STAILQ_FOREACH(elm, &list_global, link) {
4204 	if (req->defobj_out != NULL &&
4205 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4206 	    break;
4207 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4208 	if (res == 0 && (req->defobj_out == NULL ||
4209 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4210 	    req->sym_out = req1.sym_out;
4211 	    req->defobj_out = req1.defobj_out;
4212 	    assert(req->defobj_out != NULL);
4213 	}
4214     }
4215 
4216     return (req->sym_out != NULL ? 0 : ESRCH);
4217 }
4218 
4219 /*
4220  * Given a symbol name in a referencing object, find the corresponding
4221  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4222  * no definition was found.  Returns a pointer to the Obj_Entry of the
4223  * defining object via the reference parameter DEFOBJ_OUT.
4224  */
4225 static int
4226 symlook_default(SymLook *req, const Obj_Entry *refobj)
4227 {
4228     DoneList donelist;
4229     const Objlist_Entry *elm;
4230     SymLook req1;
4231     int res;
4232 
4233     donelist_init(&donelist);
4234     symlook_init_from_req(&req1, req);
4235 
4236     /*
4237      * Look first in the referencing object if linked symbolically,
4238      * and similarly handle protected symbols.
4239      */
4240     res = symlook_obj(&req1, refobj);
4241     if (res == 0 && (refobj->symbolic ||
4242       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4243 	req->sym_out = req1.sym_out;
4244 	req->defobj_out = req1.defobj_out;
4245 	assert(req->defobj_out != NULL);
4246     }
4247     if (refobj->symbolic || req->defobj_out != NULL)
4248 	donelist_check(&donelist, refobj);
4249 
4250     symlook_global(req, &donelist);
4251 
4252     /* Search all dlopened DAGs containing the referencing object. */
4253     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4254 	if (req->sym_out != NULL &&
4255 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4256 	    break;
4257 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4258 	if (res == 0 && (req->sym_out == NULL ||
4259 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4260 	    req->sym_out = req1.sym_out;
4261 	    req->defobj_out = req1.defobj_out;
4262 	    assert(req->defobj_out != NULL);
4263 	}
4264     }
4265 
4266     /*
4267      * Search the dynamic linker itself, and possibly resolve the
4268      * symbol from there.  This is how the application links to
4269      * dynamic linker services such as dlopen.
4270      */
4271     if (req->sym_out == NULL ||
4272       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4273 	res = symlook_obj(&req1, &obj_rtld);
4274 	if (res == 0) {
4275 	    req->sym_out = req1.sym_out;
4276 	    req->defobj_out = req1.defobj_out;
4277 	    assert(req->defobj_out != NULL);
4278 	}
4279     }
4280 
4281     return (req->sym_out != NULL ? 0 : ESRCH);
4282 }
4283 
4284 static int
4285 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4286 {
4287     const Elf_Sym *def;
4288     const Obj_Entry *defobj;
4289     const Objlist_Entry *elm;
4290     SymLook req1;
4291     int res;
4292 
4293     def = NULL;
4294     defobj = NULL;
4295     STAILQ_FOREACH(elm, objlist, link) {
4296 	if (donelist_check(dlp, elm->obj))
4297 	    continue;
4298 	symlook_init_from_req(&req1, req);
4299 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4300 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4301 		def = req1.sym_out;
4302 		defobj = req1.defobj_out;
4303 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4304 		    break;
4305 	    }
4306 	}
4307     }
4308     if (def != NULL) {
4309 	req->sym_out = def;
4310 	req->defobj_out = defobj;
4311 	return (0);
4312     }
4313     return (ESRCH);
4314 }
4315 
4316 /*
4317  * Search the chain of DAGS cointed to by the given Needed_Entry
4318  * for a symbol of the given name.  Each DAG is scanned completely
4319  * before advancing to the next one.  Returns a pointer to the symbol,
4320  * or NULL if no definition was found.
4321  */
4322 static int
4323 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4324 {
4325     const Elf_Sym *def;
4326     const Needed_Entry *n;
4327     const Obj_Entry *defobj;
4328     SymLook req1;
4329     int res;
4330 
4331     def = NULL;
4332     defobj = NULL;
4333     symlook_init_from_req(&req1, req);
4334     for (n = needed; n != NULL; n = n->next) {
4335 	if (n->obj == NULL ||
4336 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4337 	    continue;
4338 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4339 	    def = req1.sym_out;
4340 	    defobj = req1.defobj_out;
4341 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4342 		break;
4343 	}
4344     }
4345     if (def != NULL) {
4346 	req->sym_out = def;
4347 	req->defobj_out = defobj;
4348 	return (0);
4349     }
4350     return (ESRCH);
4351 }
4352 
4353 /*
4354  * Search the symbol table of a single shared object for a symbol of
4355  * the given name and version, if requested.  Returns a pointer to the
4356  * symbol, or NULL if no definition was found.  If the object is
4357  * filter, return filtered symbol from filtee.
4358  *
4359  * The symbol's hash value is passed in for efficiency reasons; that
4360  * eliminates many recomputations of the hash value.
4361  */
4362 int
4363 symlook_obj(SymLook *req, const Obj_Entry *obj)
4364 {
4365     DoneList donelist;
4366     SymLook req1;
4367     int flags, res, mres;
4368 
4369     /*
4370      * If there is at least one valid hash at this point, we prefer to
4371      * use the faster GNU version if available.
4372      */
4373     if (obj->valid_hash_gnu)
4374 	mres = symlook_obj1_gnu(req, obj);
4375     else if (obj->valid_hash_sysv)
4376 	mres = symlook_obj1_sysv(req, obj);
4377     else
4378 	return (EINVAL);
4379 
4380     if (mres == 0) {
4381 	if (obj->needed_filtees != NULL) {
4382 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4383 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4384 	    donelist_init(&donelist);
4385 	    symlook_init_from_req(&req1, req);
4386 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4387 	    if (res == 0) {
4388 		req->sym_out = req1.sym_out;
4389 		req->defobj_out = req1.defobj_out;
4390 	    }
4391 	    return (res);
4392 	}
4393 	if (obj->needed_aux_filtees != NULL) {
4394 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4395 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4396 	    donelist_init(&donelist);
4397 	    symlook_init_from_req(&req1, req);
4398 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4399 	    if (res == 0) {
4400 		req->sym_out = req1.sym_out;
4401 		req->defobj_out = req1.defobj_out;
4402 		return (res);
4403 	    }
4404 	}
4405     }
4406     return (mres);
4407 }
4408 
4409 /* Symbol match routine common to both hash functions */
4410 static bool
4411 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4412     const unsigned long symnum)
4413 {
4414 	Elf_Versym verndx;
4415 	const Elf_Sym *symp;
4416 	const char *strp;
4417 
4418 	symp = obj->symtab + symnum;
4419 	strp = obj->strtab + symp->st_name;
4420 
4421 	switch (ELF_ST_TYPE(symp->st_info)) {
4422 	case STT_FUNC:
4423 	case STT_NOTYPE:
4424 	case STT_OBJECT:
4425 	case STT_COMMON:
4426 	case STT_GNU_IFUNC:
4427 		if (symp->st_value == 0)
4428 			return (false);
4429 		/* fallthrough */
4430 	case STT_TLS:
4431 		if (symp->st_shndx != SHN_UNDEF)
4432 			break;
4433 #ifndef __mips__
4434 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4435 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4436 			break;
4437 #endif
4438 		/* fallthrough */
4439 	default:
4440 		return (false);
4441 	}
4442 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4443 		return (false);
4444 
4445 	if (req->ventry == NULL) {
4446 		if (obj->versyms != NULL) {
4447 			verndx = VER_NDX(obj->versyms[symnum]);
4448 			if (verndx > obj->vernum) {
4449 				_rtld_error(
4450 				    "%s: symbol %s references wrong version %d",
4451 				    obj->path, obj->strtab + symnum, verndx);
4452 				return (false);
4453 			}
4454 			/*
4455 			 * If we are not called from dlsym (i.e. this
4456 			 * is a normal relocation from unversioned
4457 			 * binary), accept the symbol immediately if
4458 			 * it happens to have first version after this
4459 			 * shared object became versioned.  Otherwise,
4460 			 * if symbol is versioned and not hidden,
4461 			 * remember it. If it is the only symbol with
4462 			 * this name exported by the shared object, it
4463 			 * will be returned as a match by the calling
4464 			 * function. If symbol is global (verndx < 2)
4465 			 * accept it unconditionally.
4466 			 */
4467 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4468 			    verndx == VER_NDX_GIVEN) {
4469 				result->sym_out = symp;
4470 				return (true);
4471 			}
4472 			else if (verndx >= VER_NDX_GIVEN) {
4473 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4474 				    == 0) {
4475 					if (result->vsymp == NULL)
4476 						result->vsymp = symp;
4477 					result->vcount++;
4478 				}
4479 				return (false);
4480 			}
4481 		}
4482 		result->sym_out = symp;
4483 		return (true);
4484 	}
4485 	if (obj->versyms == NULL) {
4486 		if (object_match_name(obj, req->ventry->name)) {
4487 			_rtld_error("%s: object %s should provide version %s "
4488 			    "for symbol %s", obj_rtld.path, obj->path,
4489 			    req->ventry->name, obj->strtab + symnum);
4490 			return (false);
4491 		}
4492 	} else {
4493 		verndx = VER_NDX(obj->versyms[symnum]);
4494 		if (verndx > obj->vernum) {
4495 			_rtld_error("%s: symbol %s references wrong version %d",
4496 			    obj->path, obj->strtab + symnum, verndx);
4497 			return (false);
4498 		}
4499 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4500 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4501 			/*
4502 			 * Version does not match. Look if this is a
4503 			 * global symbol and if it is not hidden. If
4504 			 * global symbol (verndx < 2) is available,
4505 			 * use it. Do not return symbol if we are
4506 			 * called by dlvsym, because dlvsym looks for
4507 			 * a specific version and default one is not
4508 			 * what dlvsym wants.
4509 			 */
4510 			if ((req->flags & SYMLOOK_DLSYM) ||
4511 			    (verndx >= VER_NDX_GIVEN) ||
4512 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4513 				return (false);
4514 		}
4515 	}
4516 	result->sym_out = symp;
4517 	return (true);
4518 }
4519 
4520 /*
4521  * Search for symbol using SysV hash function.
4522  * obj->buckets is known not to be NULL at this point; the test for this was
4523  * performed with the obj->valid_hash_sysv assignment.
4524  */
4525 static int
4526 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4527 {
4528 	unsigned long symnum;
4529 	Sym_Match_Result matchres;
4530 
4531 	matchres.sym_out = NULL;
4532 	matchres.vsymp = NULL;
4533 	matchres.vcount = 0;
4534 
4535 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4536 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4537 		if (symnum >= obj->nchains)
4538 			return (ESRCH);	/* Bad object */
4539 
4540 		if (matched_symbol(req, obj, &matchres, symnum)) {
4541 			req->sym_out = matchres.sym_out;
4542 			req->defobj_out = obj;
4543 			return (0);
4544 		}
4545 	}
4546 	if (matchres.vcount == 1) {
4547 		req->sym_out = matchres.vsymp;
4548 		req->defobj_out = obj;
4549 		return (0);
4550 	}
4551 	return (ESRCH);
4552 }
4553 
4554 /* Search for symbol using GNU hash function */
4555 static int
4556 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4557 {
4558 	Elf_Addr bloom_word;
4559 	const Elf32_Word *hashval;
4560 	Elf32_Word bucket;
4561 	Sym_Match_Result matchres;
4562 	unsigned int h1, h2;
4563 	unsigned long symnum;
4564 
4565 	matchres.sym_out = NULL;
4566 	matchres.vsymp = NULL;
4567 	matchres.vcount = 0;
4568 
4569 	/* Pick right bitmask word from Bloom filter array */
4570 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4571 	    obj->maskwords_bm_gnu];
4572 
4573 	/* Calculate modulus word size of gnu hash and its derivative */
4574 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4575 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4576 
4577 	/* Filter out the "definitely not in set" queries */
4578 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4579 		return (ESRCH);
4580 
4581 	/* Locate hash chain and corresponding value element*/
4582 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4583 	if (bucket == 0)
4584 		return (ESRCH);
4585 	hashval = &obj->chain_zero_gnu[bucket];
4586 	do {
4587 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4588 			symnum = hashval - obj->chain_zero_gnu;
4589 			if (matched_symbol(req, obj, &matchres, symnum)) {
4590 				req->sym_out = matchres.sym_out;
4591 				req->defobj_out = obj;
4592 				return (0);
4593 			}
4594 		}
4595 	} while ((*hashval++ & 1) == 0);
4596 	if (matchres.vcount == 1) {
4597 		req->sym_out = matchres.vsymp;
4598 		req->defobj_out = obj;
4599 		return (0);
4600 	}
4601 	return (ESRCH);
4602 }
4603 
4604 static void
4605 trace_loaded_objects(Obj_Entry *obj)
4606 {
4607     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4608     int c;
4609 
4610     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4611 	main_local = "";
4612 
4613     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4614 	fmt1 = "\t%o => %p (%x)\n";
4615 
4616     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4617 	fmt2 = "\t%o (%x)\n";
4618 
4619     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4620 
4621     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4622 	Needed_Entry *needed;
4623 	const char *name, *path;
4624 	bool is_lib;
4625 
4626 	if (obj->marker)
4627 	    continue;
4628 	if (list_containers && obj->needed != NULL)
4629 	    rtld_printf("%s:\n", obj->path);
4630 	for (needed = obj->needed; needed; needed = needed->next) {
4631 	    if (needed->obj != NULL) {
4632 		if (needed->obj->traced && !list_containers)
4633 		    continue;
4634 		needed->obj->traced = true;
4635 		path = needed->obj->path;
4636 	    } else
4637 		path = "not found";
4638 
4639 	    name = obj->strtab + needed->name;
4640 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4641 
4642 	    fmt = is_lib ? fmt1 : fmt2;
4643 	    while ((c = *fmt++) != '\0') {
4644 		switch (c) {
4645 		default:
4646 		    rtld_putchar(c);
4647 		    continue;
4648 		case '\\':
4649 		    switch (c = *fmt) {
4650 		    case '\0':
4651 			continue;
4652 		    case 'n':
4653 			rtld_putchar('\n');
4654 			break;
4655 		    case 't':
4656 			rtld_putchar('\t');
4657 			break;
4658 		    }
4659 		    break;
4660 		case '%':
4661 		    switch (c = *fmt) {
4662 		    case '\0':
4663 			continue;
4664 		    case '%':
4665 		    default:
4666 			rtld_putchar(c);
4667 			break;
4668 		    case 'A':
4669 			rtld_putstr(main_local);
4670 			break;
4671 		    case 'a':
4672 			rtld_putstr(obj_main->path);
4673 			break;
4674 		    case 'o':
4675 			rtld_putstr(name);
4676 			break;
4677 #if 0
4678 		    case 'm':
4679 			rtld_printf("%d", sodp->sod_major);
4680 			break;
4681 		    case 'n':
4682 			rtld_printf("%d", sodp->sod_minor);
4683 			break;
4684 #endif
4685 		    case 'p':
4686 			rtld_putstr(path);
4687 			break;
4688 		    case 'x':
4689 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4690 			  0);
4691 			break;
4692 		    }
4693 		    break;
4694 		}
4695 		++fmt;
4696 	    }
4697 	}
4698     }
4699 }
4700 
4701 /*
4702  * Unload a dlopened object and its dependencies from memory and from
4703  * our data structures.  It is assumed that the DAG rooted in the
4704  * object has already been unreferenced, and that the object has a
4705  * reference count of 0.
4706  */
4707 static void
4708 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4709 {
4710 	Obj_Entry marker, *obj, *next;
4711 
4712 	assert(root->refcount == 0);
4713 
4714 	/*
4715 	 * Pass over the DAG removing unreferenced objects from
4716 	 * appropriate lists.
4717 	 */
4718 	unlink_object(root);
4719 
4720 	/* Unmap all objects that are no longer referenced. */
4721 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4722 		next = TAILQ_NEXT(obj, next);
4723 		if (obj->marker || obj->refcount != 0)
4724 			continue;
4725 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4726 		    obj->mapsize, 0, obj->path);
4727 		dbg("unloading \"%s\"", obj->path);
4728 		/*
4729 		 * Unlink the object now to prevent new references from
4730 		 * being acquired while the bind lock is dropped in
4731 		 * recursive dlclose() invocations.
4732 		 */
4733 		TAILQ_REMOVE(&obj_list, obj, next);
4734 		obj_count--;
4735 
4736 		if (obj->filtees_loaded) {
4737 			if (next != NULL) {
4738 				init_marker(&marker);
4739 				TAILQ_INSERT_BEFORE(next, &marker, next);
4740 				unload_filtees(obj, lockstate);
4741 				next = TAILQ_NEXT(&marker, next);
4742 				TAILQ_REMOVE(&obj_list, &marker, next);
4743 			} else
4744 				unload_filtees(obj, lockstate);
4745 		}
4746 		release_object(obj);
4747 	}
4748 }
4749 
4750 static void
4751 unlink_object(Obj_Entry *root)
4752 {
4753     Objlist_Entry *elm;
4754 
4755     if (root->refcount == 0) {
4756 	/* Remove the object from the RTLD_GLOBAL list. */
4757 	objlist_remove(&list_global, root);
4758 
4759     	/* Remove the object from all objects' DAG lists. */
4760     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4761 	    objlist_remove(&elm->obj->dldags, root);
4762 	    if (elm->obj != root)
4763 		unlink_object(elm->obj);
4764 	}
4765     }
4766 }
4767 
4768 static void
4769 ref_dag(Obj_Entry *root)
4770 {
4771     Objlist_Entry *elm;
4772 
4773     assert(root->dag_inited);
4774     STAILQ_FOREACH(elm, &root->dagmembers, link)
4775 	elm->obj->refcount++;
4776 }
4777 
4778 static void
4779 unref_dag(Obj_Entry *root)
4780 {
4781     Objlist_Entry *elm;
4782 
4783     assert(root->dag_inited);
4784     STAILQ_FOREACH(elm, &root->dagmembers, link)
4785 	elm->obj->refcount--;
4786 }
4787 
4788 /*
4789  * Common code for MD __tls_get_addr().
4790  */
4791 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4792 static void *
4793 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4794 {
4795     Elf_Addr *newdtv, *dtv;
4796     RtldLockState lockstate;
4797     int to_copy;
4798 
4799     dtv = *dtvp;
4800     /* Check dtv generation in case new modules have arrived */
4801     if (dtv[0] != tls_dtv_generation) {
4802 	wlock_acquire(rtld_bind_lock, &lockstate);
4803 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4804 	to_copy = dtv[1];
4805 	if (to_copy > tls_max_index)
4806 	    to_copy = tls_max_index;
4807 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4808 	newdtv[0] = tls_dtv_generation;
4809 	newdtv[1] = tls_max_index;
4810 	free(dtv);
4811 	lock_release(rtld_bind_lock, &lockstate);
4812 	dtv = *dtvp = newdtv;
4813     }
4814 
4815     /* Dynamically allocate module TLS if necessary */
4816     if (dtv[index + 1] == 0) {
4817 	/* Signal safe, wlock will block out signals. */
4818 	wlock_acquire(rtld_bind_lock, &lockstate);
4819 	if (!dtv[index + 1])
4820 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4821 	lock_release(rtld_bind_lock, &lockstate);
4822     }
4823     return ((void *)(dtv[index + 1] + offset));
4824 }
4825 
4826 void *
4827 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4828 {
4829 	Elf_Addr *dtv;
4830 
4831 	dtv = *dtvp;
4832 	/* Check dtv generation in case new modules have arrived */
4833 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4834 	    dtv[index + 1] != 0))
4835 		return ((void *)(dtv[index + 1] + offset));
4836 	return (tls_get_addr_slow(dtvp, index, offset));
4837 }
4838 
4839 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4840     defined(__powerpc__) || defined(__riscv)
4841 
4842 /*
4843  * Return pointer to allocated TLS block
4844  */
4845 static void *
4846 get_tls_block_ptr(void *tcb, size_t tcbsize)
4847 {
4848     size_t extra_size, post_size, pre_size, tls_block_size;
4849     size_t tls_init_align;
4850 
4851     tls_init_align = MAX(obj_main->tlsalign, 1);
4852 
4853     /* Compute fragments sizes. */
4854     extra_size = tcbsize - TLS_TCB_SIZE;
4855     post_size = calculate_tls_post_size(tls_init_align);
4856     tls_block_size = tcbsize + post_size;
4857     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4858 
4859     return ((char *)tcb - pre_size - extra_size);
4860 }
4861 
4862 /*
4863  * Allocate Static TLS using the Variant I method.
4864  *
4865  * For details on the layout, see lib/libc/gen/tls.c.
4866  *
4867  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4868  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4869  *     offsets, whereas libc's tls_static_space is just the executable's static
4870  *     TLS segment.
4871  */
4872 void *
4873 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4874 {
4875     Obj_Entry *obj;
4876     char *tls_block;
4877     Elf_Addr *dtv, **tcb;
4878     Elf_Addr addr;
4879     Elf_Addr i;
4880     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4881     size_t tls_init_align, tls_init_offset;
4882 
4883     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4884 	return (oldtcb);
4885 
4886     assert(tcbsize >= TLS_TCB_SIZE);
4887     maxalign = MAX(tcbalign, tls_static_max_align);
4888     tls_init_align = MAX(obj_main->tlsalign, 1);
4889 
4890     /* Compute fragmets sizes. */
4891     extra_size = tcbsize - TLS_TCB_SIZE;
4892     post_size = calculate_tls_post_size(tls_init_align);
4893     tls_block_size = tcbsize + post_size;
4894     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4895     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4896 
4897     /* Allocate whole TLS block */
4898     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4899     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4900 
4901     if (oldtcb != NULL) {
4902 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4903 	    tls_static_space);
4904 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4905 
4906 	/* Adjust the DTV. */
4907 	dtv = tcb[0];
4908 	for (i = 0; i < dtv[1]; i++) {
4909 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4910 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4911 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4912 	    }
4913 	}
4914     } else {
4915 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4916 	tcb[0] = dtv;
4917 	dtv[0] = tls_dtv_generation;
4918 	dtv[1] = tls_max_index;
4919 
4920 	for (obj = globallist_curr(objs); obj != NULL;
4921 	  obj = globallist_next(obj)) {
4922 	    if (obj->tlsoffset == 0)
4923 		continue;
4924 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4925 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4926 	    if (tls_init_offset > 0)
4927 		memset((void *)addr, 0, tls_init_offset);
4928 	    if (obj->tlsinitsize > 0) {
4929 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4930 		    obj->tlsinitsize);
4931 	    }
4932 	    if (obj->tlssize > obj->tlsinitsize) {
4933 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4934 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4935 	    }
4936 	    dtv[obj->tlsindex + 1] = addr;
4937 	}
4938     }
4939 
4940     return (tcb);
4941 }
4942 
4943 void
4944 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4945 {
4946     Elf_Addr *dtv;
4947     Elf_Addr tlsstart, tlsend;
4948     size_t post_size;
4949     size_t dtvsize, i, tls_init_align;
4950 
4951     assert(tcbsize >= TLS_TCB_SIZE);
4952     tls_init_align = MAX(obj_main->tlsalign, 1);
4953 
4954     /* Compute fragments sizes. */
4955     post_size = calculate_tls_post_size(tls_init_align);
4956 
4957     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4958     tlsend = (Elf_Addr)tcb + tls_static_space;
4959 
4960     dtv = *(Elf_Addr **)tcb;
4961     dtvsize = dtv[1];
4962     for (i = 0; i < dtvsize; i++) {
4963 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4964 	    free((void*)dtv[i+2]);
4965 	}
4966     }
4967     free(dtv);
4968     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4969 }
4970 
4971 #endif
4972 
4973 #if defined(__i386__) || defined(__amd64__)
4974 
4975 /*
4976  * Allocate Static TLS using the Variant II method.
4977  */
4978 void *
4979 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4980 {
4981     Obj_Entry *obj;
4982     size_t size, ralign;
4983     char *tls;
4984     Elf_Addr *dtv, *olddtv;
4985     Elf_Addr segbase, oldsegbase, addr;
4986     size_t i;
4987 
4988     ralign = tcbalign;
4989     if (tls_static_max_align > ralign)
4990 	    ralign = tls_static_max_align;
4991     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
4992 
4993     assert(tcbsize >= 2*sizeof(Elf_Addr));
4994     tls = malloc_aligned(size, ralign, 0 /* XXX */);
4995     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4996 
4997     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
4998     ((Elf_Addr*)segbase)[0] = segbase;
4999     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5000 
5001     dtv[0] = tls_dtv_generation;
5002     dtv[1] = tls_max_index;
5003 
5004     if (oldtls) {
5005 	/*
5006 	 * Copy the static TLS block over whole.
5007 	 */
5008 	oldsegbase = (Elf_Addr) oldtls;
5009 	memcpy((void *)(segbase - tls_static_space),
5010 	       (const void *)(oldsegbase - tls_static_space),
5011 	       tls_static_space);
5012 
5013 	/*
5014 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5015 	 * move them over.
5016 	 */
5017 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5018 	for (i = 0; i < olddtv[1]; i++) {
5019 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5020 		dtv[i+2] = olddtv[i+2];
5021 		olddtv[i+2] = 0;
5022 	    }
5023 	}
5024 
5025 	/*
5026 	 * We assume that this block was the one we created with
5027 	 * allocate_initial_tls().
5028 	 */
5029 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5030     } else {
5031 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5032 		if (obj->marker || obj->tlsoffset == 0)
5033 			continue;
5034 		addr = segbase - obj->tlsoffset;
5035 		memset((void*)(addr + obj->tlsinitsize),
5036 		       0, obj->tlssize - obj->tlsinitsize);
5037 		if (obj->tlsinit) {
5038 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5039 		    obj->static_tls_copied = true;
5040 		}
5041 		dtv[obj->tlsindex + 1] = addr;
5042 	}
5043     }
5044 
5045     return (void*) segbase;
5046 }
5047 
5048 void
5049 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5050 {
5051     Elf_Addr* dtv;
5052     size_t size, ralign;
5053     int dtvsize, i;
5054     Elf_Addr tlsstart, tlsend;
5055 
5056     /*
5057      * Figure out the size of the initial TLS block so that we can
5058      * find stuff which ___tls_get_addr() allocated dynamically.
5059      */
5060     ralign = tcbalign;
5061     if (tls_static_max_align > ralign)
5062 	    ralign = tls_static_max_align;
5063     size = roundup(tls_static_space, ralign);
5064 
5065     dtv = ((Elf_Addr**)tls)[1];
5066     dtvsize = dtv[1];
5067     tlsend = (Elf_Addr) tls;
5068     tlsstart = tlsend - size;
5069     for (i = 0; i < dtvsize; i++) {
5070 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5071 		free_aligned((void *)dtv[i + 2]);
5072 	}
5073     }
5074 
5075     free_aligned((void *)tlsstart);
5076     free((void*) dtv);
5077 }
5078 
5079 #endif
5080 
5081 /*
5082  * Allocate TLS block for module with given index.
5083  */
5084 void *
5085 allocate_module_tls(int index)
5086 {
5087 	Obj_Entry *obj;
5088 	char *p;
5089 
5090 	TAILQ_FOREACH(obj, &obj_list, next) {
5091 		if (obj->marker)
5092 			continue;
5093 		if (obj->tlsindex == index)
5094 			break;
5095 	}
5096 	if (obj == NULL) {
5097 		_rtld_error("Can't find module with TLS index %d", index);
5098 		rtld_die();
5099 	}
5100 
5101 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5102 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5103 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5104 	return (p);
5105 }
5106 
5107 bool
5108 allocate_tls_offset(Obj_Entry *obj)
5109 {
5110     size_t off;
5111 
5112     if (obj->tls_done)
5113 	return true;
5114 
5115     if (obj->tlssize == 0) {
5116 	obj->tls_done = true;
5117 	return true;
5118     }
5119 
5120     if (tls_last_offset == 0)
5121 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5122 	  obj->tlspoffset);
5123     else
5124 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5125 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5126 
5127     /*
5128      * If we have already fixed the size of the static TLS block, we
5129      * must stay within that size. When allocating the static TLS, we
5130      * leave a small amount of space spare to be used for dynamically
5131      * loading modules which use static TLS.
5132      */
5133     if (tls_static_space != 0) {
5134 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5135 	    return false;
5136     } else if (obj->tlsalign > tls_static_max_align) {
5137 	    tls_static_max_align = obj->tlsalign;
5138     }
5139 
5140     tls_last_offset = obj->tlsoffset = off;
5141     tls_last_size = obj->tlssize;
5142     obj->tls_done = true;
5143 
5144     return true;
5145 }
5146 
5147 void
5148 free_tls_offset(Obj_Entry *obj)
5149 {
5150 
5151     /*
5152      * If we were the last thing to allocate out of the static TLS
5153      * block, we give our space back to the 'allocator'. This is a
5154      * simplistic workaround to allow libGL.so.1 to be loaded and
5155      * unloaded multiple times.
5156      */
5157     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5158 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5159 	tls_last_offset -= obj->tlssize;
5160 	tls_last_size = 0;
5161     }
5162 }
5163 
5164 void *
5165 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5166 {
5167     void *ret;
5168     RtldLockState lockstate;
5169 
5170     wlock_acquire(rtld_bind_lock, &lockstate);
5171     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5172       tcbsize, tcbalign);
5173     lock_release(rtld_bind_lock, &lockstate);
5174     return (ret);
5175 }
5176 
5177 void
5178 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5179 {
5180     RtldLockState lockstate;
5181 
5182     wlock_acquire(rtld_bind_lock, &lockstate);
5183     free_tls(tcb, tcbsize, tcbalign);
5184     lock_release(rtld_bind_lock, &lockstate);
5185 }
5186 
5187 static void
5188 object_add_name(Obj_Entry *obj, const char *name)
5189 {
5190     Name_Entry *entry;
5191     size_t len;
5192 
5193     len = strlen(name);
5194     entry = malloc(sizeof(Name_Entry) + len);
5195 
5196     if (entry != NULL) {
5197 	strcpy(entry->name, name);
5198 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5199     }
5200 }
5201 
5202 static int
5203 object_match_name(const Obj_Entry *obj, const char *name)
5204 {
5205     Name_Entry *entry;
5206 
5207     STAILQ_FOREACH(entry, &obj->names, link) {
5208 	if (strcmp(name, entry->name) == 0)
5209 	    return (1);
5210     }
5211     return (0);
5212 }
5213 
5214 static Obj_Entry *
5215 locate_dependency(const Obj_Entry *obj, const char *name)
5216 {
5217     const Objlist_Entry *entry;
5218     const Needed_Entry *needed;
5219 
5220     STAILQ_FOREACH(entry, &list_main, link) {
5221 	if (object_match_name(entry->obj, name))
5222 	    return entry->obj;
5223     }
5224 
5225     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5226 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5227 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5228 	    /*
5229 	     * If there is DT_NEEDED for the name we are looking for,
5230 	     * we are all set.  Note that object might not be found if
5231 	     * dependency was not loaded yet, so the function can
5232 	     * return NULL here.  This is expected and handled
5233 	     * properly by the caller.
5234 	     */
5235 	    return (needed->obj);
5236 	}
5237     }
5238     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5239 	obj->path, name);
5240     rtld_die();
5241 }
5242 
5243 static int
5244 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5245     const Elf_Vernaux *vna)
5246 {
5247     const Elf_Verdef *vd;
5248     const char *vername;
5249 
5250     vername = refobj->strtab + vna->vna_name;
5251     vd = depobj->verdef;
5252     if (vd == NULL) {
5253 	_rtld_error("%s: version %s required by %s not defined",
5254 	    depobj->path, vername, refobj->path);
5255 	return (-1);
5256     }
5257     for (;;) {
5258 	if (vd->vd_version != VER_DEF_CURRENT) {
5259 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5260 		depobj->path, vd->vd_version);
5261 	    return (-1);
5262 	}
5263 	if (vna->vna_hash == vd->vd_hash) {
5264 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5265 		((const char *)vd + vd->vd_aux);
5266 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5267 		return (0);
5268 	}
5269 	if (vd->vd_next == 0)
5270 	    break;
5271 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5272     }
5273     if (vna->vna_flags & VER_FLG_WEAK)
5274 	return (0);
5275     _rtld_error("%s: version %s required by %s not found",
5276 	depobj->path, vername, refobj->path);
5277     return (-1);
5278 }
5279 
5280 static int
5281 rtld_verify_object_versions(Obj_Entry *obj)
5282 {
5283     const Elf_Verneed *vn;
5284     const Elf_Verdef  *vd;
5285     const Elf_Verdaux *vda;
5286     const Elf_Vernaux *vna;
5287     const Obj_Entry *depobj;
5288     int maxvernum, vernum;
5289 
5290     if (obj->ver_checked)
5291 	return (0);
5292     obj->ver_checked = true;
5293 
5294     maxvernum = 0;
5295     /*
5296      * Walk over defined and required version records and figure out
5297      * max index used by any of them. Do very basic sanity checking
5298      * while there.
5299      */
5300     vn = obj->verneed;
5301     while (vn != NULL) {
5302 	if (vn->vn_version != VER_NEED_CURRENT) {
5303 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5304 		obj->path, vn->vn_version);
5305 	    return (-1);
5306 	}
5307 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5308 	for (;;) {
5309 	    vernum = VER_NEED_IDX(vna->vna_other);
5310 	    if (vernum > maxvernum)
5311 		maxvernum = vernum;
5312 	    if (vna->vna_next == 0)
5313 		 break;
5314 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5315 	}
5316 	if (vn->vn_next == 0)
5317 	    break;
5318 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5319     }
5320 
5321     vd = obj->verdef;
5322     while (vd != NULL) {
5323 	if (vd->vd_version != VER_DEF_CURRENT) {
5324 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5325 		obj->path, vd->vd_version);
5326 	    return (-1);
5327 	}
5328 	vernum = VER_DEF_IDX(vd->vd_ndx);
5329 	if (vernum > maxvernum)
5330 		maxvernum = vernum;
5331 	if (vd->vd_next == 0)
5332 	    break;
5333 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5334     }
5335 
5336     if (maxvernum == 0)
5337 	return (0);
5338 
5339     /*
5340      * Store version information in array indexable by version index.
5341      * Verify that object version requirements are satisfied along the
5342      * way.
5343      */
5344     obj->vernum = maxvernum + 1;
5345     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5346 
5347     vd = obj->verdef;
5348     while (vd != NULL) {
5349 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5350 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5351 	    assert(vernum <= maxvernum);
5352 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5353 	    obj->vertab[vernum].hash = vd->vd_hash;
5354 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5355 	    obj->vertab[vernum].file = NULL;
5356 	    obj->vertab[vernum].flags = 0;
5357 	}
5358 	if (vd->vd_next == 0)
5359 	    break;
5360 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5361     }
5362 
5363     vn = obj->verneed;
5364     while (vn != NULL) {
5365 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5366 	if (depobj == NULL)
5367 	    return (-1);
5368 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5369 	for (;;) {
5370 	    if (check_object_provided_version(obj, depobj, vna))
5371 		return (-1);
5372 	    vernum = VER_NEED_IDX(vna->vna_other);
5373 	    assert(vernum <= maxvernum);
5374 	    obj->vertab[vernum].hash = vna->vna_hash;
5375 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5376 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5377 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5378 		VER_INFO_HIDDEN : 0;
5379 	    if (vna->vna_next == 0)
5380 		 break;
5381 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5382 	}
5383 	if (vn->vn_next == 0)
5384 	    break;
5385 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5386     }
5387     return 0;
5388 }
5389 
5390 static int
5391 rtld_verify_versions(const Objlist *objlist)
5392 {
5393     Objlist_Entry *entry;
5394     int rc;
5395 
5396     rc = 0;
5397     STAILQ_FOREACH(entry, objlist, link) {
5398 	/*
5399 	 * Skip dummy objects or objects that have their version requirements
5400 	 * already checked.
5401 	 */
5402 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5403 	    continue;
5404 	if (rtld_verify_object_versions(entry->obj) == -1) {
5405 	    rc = -1;
5406 	    if (ld_tracing == NULL)
5407 		break;
5408 	}
5409     }
5410     if (rc == 0 || ld_tracing != NULL)
5411     	rc = rtld_verify_object_versions(&obj_rtld);
5412     return rc;
5413 }
5414 
5415 const Ver_Entry *
5416 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5417 {
5418     Elf_Versym vernum;
5419 
5420     if (obj->vertab) {
5421 	vernum = VER_NDX(obj->versyms[symnum]);
5422 	if (vernum >= obj->vernum) {
5423 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5424 		obj->path, obj->strtab + symnum, vernum);
5425 	} else if (obj->vertab[vernum].hash != 0) {
5426 	    return &obj->vertab[vernum];
5427 	}
5428     }
5429     return NULL;
5430 }
5431 
5432 int
5433 _rtld_get_stack_prot(void)
5434 {
5435 
5436 	return (stack_prot);
5437 }
5438 
5439 int
5440 _rtld_is_dlopened(void *arg)
5441 {
5442 	Obj_Entry *obj;
5443 	RtldLockState lockstate;
5444 	int res;
5445 
5446 	rlock_acquire(rtld_bind_lock, &lockstate);
5447 	obj = dlcheck(arg);
5448 	if (obj == NULL)
5449 		obj = obj_from_addr(arg);
5450 	if (obj == NULL) {
5451 		_rtld_error("No shared object contains address");
5452 		lock_release(rtld_bind_lock, &lockstate);
5453 		return (-1);
5454 	}
5455 	res = obj->dlopened ? 1 : 0;
5456 	lock_release(rtld_bind_lock, &lockstate);
5457 	return (res);
5458 }
5459 
5460 static int
5461 obj_remap_relro(Obj_Entry *obj, int prot)
5462 {
5463 
5464 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5465 	    prot) == -1) {
5466 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5467 		    obj->path, prot, rtld_strerror(errno));
5468 		return (-1);
5469 	}
5470 	return (0);
5471 }
5472 
5473 static int
5474 obj_disable_relro(Obj_Entry *obj)
5475 {
5476 
5477 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5478 }
5479 
5480 static int
5481 obj_enforce_relro(Obj_Entry *obj)
5482 {
5483 
5484 	return (obj_remap_relro(obj, PROT_READ));
5485 }
5486 
5487 static void
5488 map_stacks_exec(RtldLockState *lockstate)
5489 {
5490 	void (*thr_map_stacks_exec)(void);
5491 
5492 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5493 		return;
5494 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5495 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5496 	if (thr_map_stacks_exec != NULL) {
5497 		stack_prot |= PROT_EXEC;
5498 		thr_map_stacks_exec();
5499 	}
5500 }
5501 
5502 static void
5503 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5504 {
5505 	Objlist_Entry *elm;
5506 	Obj_Entry *obj;
5507 	void (*distrib)(size_t, void *, size_t, size_t);
5508 
5509 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5510 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5511 	if (distrib == NULL)
5512 		return;
5513 	STAILQ_FOREACH(elm, list, link) {
5514 		obj = elm->obj;
5515 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5516 			continue;
5517 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5518 		    obj->tlssize);
5519 		obj->static_tls_copied = true;
5520 	}
5521 }
5522 
5523 void
5524 symlook_init(SymLook *dst, const char *name)
5525 {
5526 
5527 	bzero(dst, sizeof(*dst));
5528 	dst->name = name;
5529 	dst->hash = elf_hash(name);
5530 	dst->hash_gnu = gnu_hash(name);
5531 }
5532 
5533 static void
5534 symlook_init_from_req(SymLook *dst, const SymLook *src)
5535 {
5536 
5537 	dst->name = src->name;
5538 	dst->hash = src->hash;
5539 	dst->hash_gnu = src->hash_gnu;
5540 	dst->ventry = src->ventry;
5541 	dst->flags = src->flags;
5542 	dst->defobj_out = NULL;
5543 	dst->sym_out = NULL;
5544 	dst->lockstate = src->lockstate;
5545 }
5546 
5547 static int
5548 open_binary_fd(const char *argv0, bool search_in_path,
5549     const char **binpath_res)
5550 {
5551 	char *binpath, *pathenv, *pe, *res1;
5552 	const char *res;
5553 	int fd;
5554 
5555 	binpath = NULL;
5556 	res = NULL;
5557 	if (search_in_path && strchr(argv0, '/') == NULL) {
5558 		binpath = xmalloc(PATH_MAX);
5559 		pathenv = getenv("PATH");
5560 		if (pathenv == NULL) {
5561 			_rtld_error("-p and no PATH environment variable");
5562 			rtld_die();
5563 		}
5564 		pathenv = strdup(pathenv);
5565 		if (pathenv == NULL) {
5566 			_rtld_error("Cannot allocate memory");
5567 			rtld_die();
5568 		}
5569 		fd = -1;
5570 		errno = ENOENT;
5571 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5572 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5573 				continue;
5574 			if (binpath[0] != '\0' &&
5575 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5576 				continue;
5577 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5578 				continue;
5579 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5580 			if (fd != -1 || errno != ENOENT) {
5581 				res = binpath;
5582 				break;
5583 			}
5584 		}
5585 		free(pathenv);
5586 	} else {
5587 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5588 		res = argv0;
5589 	}
5590 
5591 	if (fd == -1) {
5592 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5593 		rtld_die();
5594 	}
5595 	if (res != NULL && res[0] != '/') {
5596 		res1 = xmalloc(PATH_MAX);
5597 		if (realpath(res, res1) != NULL) {
5598 			if (res != argv0)
5599 				free(__DECONST(char *, res));
5600 			res = res1;
5601 		} else {
5602 			free(res1);
5603 		}
5604 	}
5605 	*binpath_res = res;
5606 	return (fd);
5607 }
5608 
5609 /*
5610  * Parse a set of command-line arguments.
5611  */
5612 static int
5613 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5614 {
5615 	const char *arg;
5616 	int fd, i, j, arglen;
5617 	char opt;
5618 
5619 	dbg("Parsing command-line arguments");
5620 	*use_pathp = false;
5621 	*fdp = -1;
5622 
5623 	for (i = 1; i < argc; i++ ) {
5624 		arg = argv[i];
5625 		dbg("argv[%d]: '%s'", i, arg);
5626 
5627 		/*
5628 		 * rtld arguments end with an explicit "--" or with the first
5629 		 * non-prefixed argument.
5630 		 */
5631 		if (strcmp(arg, "--") == 0) {
5632 			i++;
5633 			break;
5634 		}
5635 		if (arg[0] != '-')
5636 			break;
5637 
5638 		/*
5639 		 * All other arguments are single-character options that can
5640 		 * be combined, so we need to search through `arg` for them.
5641 		 */
5642 		arglen = strlen(arg);
5643 		for (j = 1; j < arglen; j++) {
5644 			opt = arg[j];
5645 			if (opt == 'h') {
5646 				print_usage(argv[0]);
5647 				_exit(0);
5648 			} else if (opt == 'f') {
5649 				/*
5650 				 * -f XX can be used to specify a
5651 				 * descriptor for the binary named at
5652 				 * the command line (i.e., the later
5653 				 * argument will specify the process
5654 				 * name but the descriptor is what
5655 				 * will actually be executed).
5656 				 *
5657 				 * -f must be the last option in, e.g., -abcf.
5658 				 */
5659 				if (j != arglen - 1) {
5660 					_rtld_error("Invalid options: %s", arg);
5661 					rtld_die();
5662 				}
5663 				i++;
5664 				fd = parse_integer(argv[i]);
5665 				if (fd == -1) {
5666 					_rtld_error(
5667 					    "Invalid file descriptor: '%s'",
5668 					    argv[i]);
5669 					rtld_die();
5670 				}
5671 				*fdp = fd;
5672 				break;
5673 			} else if (opt == 'p') {
5674 				*use_pathp = true;
5675 			} else {
5676 				_rtld_error("Invalid argument: '%s'", arg);
5677 				print_usage(argv[0]);
5678 				rtld_die();
5679 			}
5680 		}
5681 	}
5682 
5683 	return (i);
5684 }
5685 
5686 /*
5687  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5688  */
5689 static int
5690 parse_integer(const char *str)
5691 {
5692 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5693 	const char *orig;
5694 	int n;
5695 	char c;
5696 
5697 	orig = str;
5698 	n = 0;
5699 	for (c = *str; c != '\0'; c = *++str) {
5700 		if (c < '0' || c > '9')
5701 			return (-1);
5702 
5703 		n *= RADIX;
5704 		n += c - '0';
5705 	}
5706 
5707 	/* Make sure we actually parsed something. */
5708 	if (str == orig)
5709 		return (-1);
5710 	return (n);
5711 }
5712 
5713 static void
5714 print_usage(const char *argv0)
5715 {
5716 
5717 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5718 		"\n"
5719 		"Options:\n"
5720 		"  -h        Display this help message\n"
5721 		"  -p        Search in PATH for named binary\n"
5722 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5723 		"  --        End of RTLD options\n"
5724 		"  <binary>  Name of process to execute\n"
5725 		"  <args>    Arguments to the executed process\n", argv0);
5726 }
5727 
5728 /*
5729  * Overrides for libc_pic-provided functions.
5730  */
5731 
5732 int
5733 __getosreldate(void)
5734 {
5735 	size_t len;
5736 	int oid[2];
5737 	int error, osrel;
5738 
5739 	if (osreldate != 0)
5740 		return (osreldate);
5741 
5742 	oid[0] = CTL_KERN;
5743 	oid[1] = KERN_OSRELDATE;
5744 	osrel = 0;
5745 	len = sizeof(osrel);
5746 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5747 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5748 		osreldate = osrel;
5749 	return (osreldate);
5750 }
5751 const char *
5752 rtld_strerror(int errnum)
5753 {
5754 
5755 	if (errnum < 0 || errnum >= sys_nerr)
5756 		return ("Unknown error");
5757 	return (sys_errlist[errnum]);
5758 }
5759 
5760 /* malloc */
5761 void *
5762 malloc(size_t nbytes)
5763 {
5764 
5765 	return (__crt_malloc(nbytes));
5766 }
5767 
5768 void *
5769 calloc(size_t num, size_t size)
5770 {
5771 
5772 	return (__crt_calloc(num, size));
5773 }
5774 
5775 void
5776 free(void *cp)
5777 {
5778 
5779 	__crt_free(cp);
5780 }
5781 
5782 void *
5783 realloc(void *cp, size_t nbytes)
5784 {
5785 
5786 	return (__crt_realloc(cp, nbytes));
5787 }
5788 
5789 extern int _rtld_version__FreeBSD_version __exported;
5790 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5791 
5792 extern char _rtld_version_laddr_offset __exported;
5793 char _rtld_version_laddr_offset;
5794