xref: /freebsd/libexec/rtld-elf/rtld.c (revision 6fe0a6c80a1aff14236924eb33e4013aa8c14f91)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143     const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145     const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153     int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155     RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163     int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *, bool);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181     const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int  rtld_verify_versions(const Objlist *);
186 static int  rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int  object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191     struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194     const unsigned long);
195 
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198 
199 int __sys_openat(int, const char *, int, ...);
200 
201 /*
202  * Data declarations.
203  */
204 struct r_debug r_debug __exported;	/* for GDB; */
205 static bool libmap_disable;	/* Disable libmap */
206 static bool ld_loadfltr;	/* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust;		/* False for setuid and setgid programs */
209 static bool dangerous_ld_env;	/* True if environment variables have been
210 				   used to affect the libraries loaded */
211 bool ld_bind_not;		/* Disable PLT update */
212 static const char *ld_bind_now;	/* Environment variable for immediate binding */
213 static const char *ld_debug;	/* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 				       weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload;	/* Environment variable for libraries to
219 				   load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 				   descriptors */
222 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
223 static const char *ld_tracing;	/* Called from ldd to print libs */
224 static const char *ld_utrace;	/* Use utrace() to log events. */
225 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
226 static Obj_Entry *obj_main;	/* The main program shared object */
227 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
228 static unsigned int obj_count;	/* Number of objects in obj_list */
229 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 int npagesizes;
268 static int osreldate;
269 size_t *pagesizes;
270 size_t page_size;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 enum {
348 	LD_BIND_NOW = 0,
349 	LD_PRELOAD,
350 	LD_LIBMAP,
351 	LD_LIBRARY_PATH,
352 	LD_LIBRARY_PATH_FDS,
353 	LD_LIBMAP_DISABLE,
354 	LD_BIND_NOT,
355 	LD_DEBUG,
356 	LD_ELF_HINTS_PATH,
357 	LD_LOADFLTR,
358 	LD_LIBRARY_PATH_RPATH,
359 	LD_PRELOAD_FDS,
360 	LD_DYNAMIC_WEAK,
361 	LD_TRACE_LOADED_OBJECTS,
362 	LD_UTRACE,
363 	LD_DUMP_REL_PRE,
364 	LD_DUMP_REL_POST,
365 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 	LD_TRACE_LOADED_OBJECTS_FMT1,
367 	LD_TRACE_LOADED_OBJECTS_FMT2,
368 	LD_TRACE_LOADED_OBJECTS_ALL,
369 	LD_SHOW_AUXV,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 };
404 
405 static const char *
406 ld_get_env_var(int idx)
407 {
408 	return (ld_env_vars[idx].val);
409 }
410 
411 static const char *
412 rtld_get_env_val(char **env, const char *name, size_t name_len)
413 {
414 	char **m, *n, *v;
415 
416 	for (m = env; *m != NULL; m++) {
417 		n = *m;
418 		v = strchr(n, '=');
419 		if (v == NULL) {
420 			/* corrupt environment? */
421 			continue;
422 		}
423 		if (v - n == (ptrdiff_t)name_len &&
424 		    strncmp(name, n, name_len) == 0)
425 			return (v + 1);
426 	}
427 	return (NULL);
428 }
429 
430 static void
431 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
432 {
433 	struct ld_env_var_desc *lvd;
434 	size_t prefix_len, nlen;
435 	char **m, *n, *v;
436 	int i;
437 
438 	prefix_len = strlen(env_prefix);
439 	for (m = env; *m != NULL; m++) {
440 		n = *m;
441 		if (strncmp(env_prefix, n, prefix_len) != 0) {
442 			/* Not a rtld environment variable. */
443 			continue;
444 		}
445 		n += prefix_len;
446 		v = strchr(n, '=');
447 		if (v == NULL) {
448 			/* corrupt environment? */
449 			continue;
450 		}
451 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
452 			lvd = &ld_env_vars[i];
453 			if (lvd->val != NULL) {
454 				/* Saw higher-priority variable name already. */
455 				continue;
456 			}
457 			nlen = strlen(lvd->n);
458 			if (v - n == (ptrdiff_t)nlen &&
459 			    strncmp(lvd->n, n, nlen) == 0) {
460 				lvd->val = v + 1;
461 				break;
462 			}
463 		}
464 	}
465 }
466 
467 static void
468 rtld_init_env_vars(char **env)
469 {
470 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
471 }
472 
473 static void
474 set_ld_elf_hints_path(void)
475 {
476 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
477 		ld_elf_hints_path = ld_elf_hints_default;
478 }
479 
480 uintptr_t
481 rtld_round_page(uintptr_t x)
482 {
483 	return (roundup2(x, page_size));
484 }
485 
486 uintptr_t
487 rtld_trunc_page(uintptr_t x)
488 {
489 	return (rounddown2(x, page_size));
490 }
491 
492 /*
493  * Main entry point for dynamic linking.  The first argument is the
494  * stack pointer.  The stack is expected to be laid out as described
495  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
496  * Specifically, the stack pointer points to a word containing
497  * ARGC.  Following that in the stack is a null-terminated sequence
498  * of pointers to argument strings.  Then comes a null-terminated
499  * sequence of pointers to environment strings.  Finally, there is a
500  * sequence of "auxiliary vector" entries.
501  *
502  * The second argument points to a place to store the dynamic linker's
503  * exit procedure pointer and the third to a place to store the main
504  * program's object.
505  *
506  * The return value is the main program's entry point.
507  */
508 func_ptr_type
509 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
510 {
511     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
512     Objlist_Entry *entry;
513     Obj_Entry *last_interposer, *obj, *preload_tail;
514     const Elf_Phdr *phdr;
515     Objlist initlist;
516     RtldLockState lockstate;
517     struct stat st;
518     Elf_Addr *argcp;
519     char **argv, **env, **envp, *kexecpath;
520     const char *argv0, *binpath, *library_path_rpath;
521     struct ld_env_var_desc *lvd;
522     caddr_t imgentry;
523     char buf[MAXPATHLEN];
524     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
525     size_t sz;
526 #ifdef __powerpc__
527     int old_auxv_format = 1;
528 #endif
529     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
530 
531     /*
532      * On entry, the dynamic linker itself has not been relocated yet.
533      * Be very careful not to reference any global data until after
534      * init_rtld has returned.  It is OK to reference file-scope statics
535      * and string constants, and to call static and global functions.
536      */
537 
538     /* Find the auxiliary vector on the stack. */
539     argcp = sp;
540     argc = *sp++;
541     argv = (char **) sp;
542     sp += argc + 1;	/* Skip over arguments and NULL terminator */
543     env = (char **) sp;
544     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
545 	;
546     aux = (Elf_Auxinfo *) sp;
547 
548     /* Digest the auxiliary vector. */
549     for (i = 0;  i < AT_COUNT;  i++)
550 	aux_info[i] = NULL;
551     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
552 	if (auxp->a_type < AT_COUNT)
553 	    aux_info[auxp->a_type] = auxp;
554 #ifdef __powerpc__
555 	if (auxp->a_type == 23) /* AT_STACKPROT */
556 	    old_auxv_format = 0;
557 #endif
558     }
559 
560 #ifdef __powerpc__
561     if (old_auxv_format) {
562 	/* Remap from old-style auxv numbers. */
563 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
564 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
565 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
566 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
567 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
568 	aux_info[13] = NULL;		/* AT_GID */
569 
570 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
571 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
572 	aux_info[16] = aux_info[14];	/* AT_CANARY */
573 	aux_info[14] = NULL;		/* AT_EGID */
574     }
575 #endif
576 
577     /* Initialize and relocate ourselves. */
578     assert(aux_info[AT_BASE] != NULL);
579     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
580 
581     dlerror_dflt_init();
582 
583     __progname = obj_rtld.path;
584     argv0 = argv[0] != NULL ? argv[0] : "(null)";
585     environ = env;
586     main_argc = argc;
587     main_argv = argv;
588 
589     if (aux_info[AT_BSDFLAGS] != NULL &&
590 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
591 	    ld_fast_sigblock = true;
592 
593     trust = !issetugid();
594     direct_exec = false;
595 
596     md_abi_variant_hook(aux_info);
597     rtld_init_env_vars(env);
598 
599     fd = -1;
600     if (aux_info[AT_EXECFD] != NULL) {
601 	fd = aux_info[AT_EXECFD]->a_un.a_val;
602     } else {
603 	assert(aux_info[AT_PHDR] != NULL);
604 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
605 	if (phdr == obj_rtld.phdr) {
606 	    if (!trust) {
607 		_rtld_error("Tainted process refusing to run binary %s",
608 		    argv0);
609 		rtld_die();
610 	    }
611 	    direct_exec = true;
612 
613 	    dbg("opening main program in direct exec mode");
614 	    if (argc >= 2) {
615 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
616 		  &argv0, &dir_ignore);
617 		explicit_fd = (fd != -1);
618 		binpath = NULL;
619 		if (!explicit_fd)
620 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
621 		if (fstat(fd, &st) == -1) {
622 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
623 		      explicit_fd ? "user-provided descriptor" : argv0,
624 		      rtld_strerror(errno));
625 		    rtld_die();
626 		}
627 
628 		/*
629 		 * Rough emulation of the permission checks done by
630 		 * execve(2), only Unix DACs are checked, ACLs are
631 		 * ignored.  Preserve the semantic of disabling owner
632 		 * to execute if owner x bit is cleared, even if
633 		 * others x bit is enabled.
634 		 * mmap(2) does not allow to mmap with PROT_EXEC if
635 		 * binary' file comes from noexec mount.  We cannot
636 		 * set a text reference on the binary.
637 		 */
638 		dir_enable = false;
639 		if (st.st_uid == geteuid()) {
640 		    if ((st.st_mode & S_IXUSR) != 0)
641 			dir_enable = true;
642 		} else if (st.st_gid == getegid()) {
643 		    if ((st.st_mode & S_IXGRP) != 0)
644 			dir_enable = true;
645 		} else if ((st.st_mode & S_IXOTH) != 0) {
646 		    dir_enable = true;
647 		}
648 		if (!dir_enable && !dir_ignore) {
649 		    _rtld_error("No execute permission for binary %s",
650 		        argv0);
651 		    rtld_die();
652 		}
653 
654 		/*
655 		 * For direct exec mode, argv[0] is the interpreter
656 		 * name, we must remove it and shift arguments left
657 		 * before invoking binary main.  Since stack layout
658 		 * places environment pointers and aux vectors right
659 		 * after the terminating NULL, we must shift
660 		 * environment and aux as well.
661 		 */
662 		main_argc = argc - rtld_argc;
663 		for (i = 0; i <= main_argc; i++)
664 		    argv[i] = argv[i + rtld_argc];
665 		*argcp -= rtld_argc;
666 		environ = env = envp = argv + main_argc + 1;
667 		dbg("move env from %p to %p", envp + rtld_argc, envp);
668 		do {
669 		    *envp = *(envp + rtld_argc);
670 		}  while (*envp++ != NULL);
671 		aux = auxp = (Elf_Auxinfo *)envp;
672 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
673 		dbg("move aux from %p to %p", auxpf, aux);
674 		/* XXXKIB insert place for AT_EXECPATH if not present */
675 		for (;; auxp++, auxpf++) {
676 		    *auxp = *auxpf;
677 		    if (auxp->a_type == AT_NULL)
678 			    break;
679 		}
680 		/* Since the auxiliary vector has moved, redigest it. */
681 		for (i = 0;  i < AT_COUNT;  i++)
682 		    aux_info[i] = NULL;
683 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
684 		    if (auxp->a_type < AT_COUNT)
685 			aux_info[auxp->a_type] = auxp;
686 		}
687 
688 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
689 		if (binpath == NULL) {
690 		    aux_info[AT_EXECPATH] = NULL;
691 		} else {
692 		    if (aux_info[AT_EXECPATH] == NULL) {
693 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
694 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
695 		    }
696 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
697 		      binpath);
698 		}
699 	    } else {
700 		_rtld_error("No binary");
701 		rtld_die();
702 	    }
703 	}
704     }
705 
706     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
707 
708     /*
709      * If the process is tainted, then we un-set the dangerous environment
710      * variables.  The process will be marked as tainted until setuid(2)
711      * is called.  If any child process calls setuid(2) we do not want any
712      * future processes to honor the potentially un-safe variables.
713      */
714     if (!trust) {
715 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
716 		    lvd = &ld_env_vars[i];
717 		    if (lvd->unsecure)
718 			    lvd->val = NULL;
719 	    }
720     }
721 
722     ld_debug = ld_get_env_var(LD_DEBUG);
723     if (ld_bind_now == NULL)
724 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
725     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
726     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
727     libmap_override = ld_get_env_var(LD_LIBMAP);
728     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
729     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
730     ld_preload = ld_get_env_var(LD_PRELOAD);
731     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
732     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
733     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
734     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
735     if (library_path_rpath != NULL) {
736 	    if (library_path_rpath[0] == 'y' ||
737 		library_path_rpath[0] == 'Y' ||
738 		library_path_rpath[0] == '1')
739 		    ld_library_path_rpath = true;
740 	    else
741 		    ld_library_path_rpath = false;
742     }
743     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
744 	ld_library_path != NULL || ld_preload != NULL ||
745 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
746     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
747     ld_utrace = ld_get_env_var(LD_UTRACE);
748 
749     set_ld_elf_hints_path();
750     if (ld_debug != NULL && *ld_debug != '\0')
751 	debug = 1;
752     dbg("%s is initialized, base address = %p", __progname,
753 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
754     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
755     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
756 
757     dbg("initializing thread locks");
758     lockdflt_init();
759 
760     /*
761      * Load the main program, or process its program header if it is
762      * already loaded.
763      */
764     if (fd != -1) {	/* Load the main program. */
765 	dbg("loading main program");
766 	obj_main = map_object(fd, argv0, NULL);
767 	close(fd);
768 	if (obj_main == NULL)
769 	    rtld_die();
770 	max_stack_flags = obj_main->stack_flags;
771     } else {				/* Main program already loaded. */
772 	dbg("processing main program's program header");
773 	assert(aux_info[AT_PHDR] != NULL);
774 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
775 	assert(aux_info[AT_PHNUM] != NULL);
776 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
777 	assert(aux_info[AT_PHENT] != NULL);
778 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
779 	assert(aux_info[AT_ENTRY] != NULL);
780 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
781 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
782 	    rtld_die();
783     }
784 
785     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
786 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
787 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
788 	    if (kexecpath[0] == '/')
789 		    obj_main->path = kexecpath;
790 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
791 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
792 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
793 		    obj_main->path = xstrdup(argv0);
794 	    else
795 		    obj_main->path = xstrdup(buf);
796     } else {
797 	    dbg("No AT_EXECPATH or direct exec");
798 	    obj_main->path = xstrdup(argv0);
799     }
800     dbg("obj_main path %s", obj_main->path);
801     obj_main->mainprog = true;
802 
803     if (aux_info[AT_STACKPROT] != NULL &&
804       aux_info[AT_STACKPROT]->a_un.a_val != 0)
805 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
806 
807 #ifndef COMPAT_32BIT
808     /*
809      * Get the actual dynamic linker pathname from the executable if
810      * possible.  (It should always be possible.)  That ensures that
811      * gdb will find the right dynamic linker even if a non-standard
812      * one is being used.
813      */
814     if (obj_main->interp != NULL &&
815       strcmp(obj_main->interp, obj_rtld.path) != 0) {
816 	free(obj_rtld.path);
817 	obj_rtld.path = xstrdup(obj_main->interp);
818         __progname = obj_rtld.path;
819     }
820 #endif
821 
822     if (!digest_dynamic(obj_main, 0))
823 	rtld_die();
824     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
825 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
826 	obj_main->dynsymcount);
827 
828     linkmap_add(obj_main);
829     linkmap_add(&obj_rtld);
830 
831     /* Link the main program into the list of objects. */
832     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
833     obj_count++;
834     obj_loads++;
835 
836     /* Initialize a fake symbol for resolving undefined weak references. */
837     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
838     sym_zero.st_shndx = SHN_UNDEF;
839     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
840 
841     if (!libmap_disable)
842         libmap_disable = (bool)lm_init(libmap_override);
843 
844     if (aux_info[AT_KPRELOAD] != NULL &&
845       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
846 	dbg("loading kernel vdso");
847 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
848 	    rtld_die();
849     }
850 
851     dbg("loading LD_PRELOAD_FDS libraries");
852     if (load_preload_objects(ld_preload_fds, true) == -1)
853 	rtld_die();
854 
855     dbg("loading LD_PRELOAD libraries");
856     if (load_preload_objects(ld_preload, false) == -1)
857 	rtld_die();
858     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
859 
860     dbg("loading needed objects");
861     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
862       0) == -1)
863 	rtld_die();
864 
865     /* Make a list of all objects loaded at startup. */
866     last_interposer = obj_main;
867     TAILQ_FOREACH(obj, &obj_list, next) {
868 	if (obj->marker)
869 	    continue;
870 	if (obj->z_interpose && obj != obj_main) {
871 	    objlist_put_after(&list_main, last_interposer, obj);
872 	    last_interposer = obj;
873 	} else {
874 	    objlist_push_tail(&list_main, obj);
875 	}
876     	obj->refcount++;
877     }
878 
879     dbg("checking for required versions");
880     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
881 	rtld_die();
882 
883     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
884        dump_auxv(aux_info);
885 
886     if (ld_tracing) {		/* We're done */
887 	trace_loaded_objects(obj_main, true);
888 	exit(0);
889     }
890 
891     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
892        dump_relocations(obj_main);
893        exit (0);
894     }
895 
896     /*
897      * Processing tls relocations requires having the tls offsets
898      * initialized.  Prepare offsets before starting initial
899      * relocation processing.
900      */
901     dbg("initializing initial thread local storage offsets");
902     STAILQ_FOREACH(entry, &list_main, link) {
903 	/*
904 	 * Allocate all the initial objects out of the static TLS
905 	 * block even if they didn't ask for it.
906 	 */
907 	allocate_tls_offset(entry->obj);
908     }
909 
910     if (relocate_objects(obj_main,
911       ld_bind_now != NULL && *ld_bind_now != '\0',
912       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
913 	rtld_die();
914 
915     dbg("doing copy relocations");
916     if (do_copy_relocations(obj_main) == -1)
917 	rtld_die();
918 
919     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
920        dump_relocations(obj_main);
921        exit (0);
922     }
923 
924     ifunc_init(aux);
925 
926     /*
927      * Setup TLS for main thread.  This must be done after the
928      * relocations are processed, since tls initialization section
929      * might be the subject for relocations.
930      */
931     dbg("initializing initial thread local storage");
932     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
933 
934     dbg("initializing key program variables");
935     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
936     set_program_var("environ", env);
937     set_program_var("__elf_aux_vector", aux);
938 
939     /* Make a list of init functions to call. */
940     objlist_init(&initlist);
941     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
942       preload_tail, &initlist);
943 
944     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
945 
946     map_stacks_exec(NULL);
947 
948     if (!obj_main->crt_no_init) {
949 	/*
950 	 * Make sure we don't call the main program's init and fini
951 	 * functions for binaries linked with old crt1 which calls
952 	 * _init itself.
953 	 */
954 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
955 	obj_main->preinit_array = obj_main->init_array =
956 	    obj_main->fini_array = (Elf_Addr)NULL;
957     }
958 
959     if (direct_exec) {
960 	/* Set osrel for direct-execed binary */
961 	mib[0] = CTL_KERN;
962 	mib[1] = KERN_PROC;
963 	mib[2] = KERN_PROC_OSREL;
964 	mib[3] = getpid();
965 	osrel = obj_main->osrel;
966 	sz = sizeof(old_osrel);
967 	dbg("setting osrel to %d", osrel);
968 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
969     }
970 
971     wlock_acquire(rtld_bind_lock, &lockstate);
972 
973     dbg("resolving ifuncs");
974     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
975       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
976 	rtld_die();
977 
978     rtld_exit_ptr = rtld_exit;
979     if (obj_main->crt_no_init)
980 	preinit_main();
981     objlist_call_init(&initlist, &lockstate);
982     _r_debug_postinit(&obj_main->linkmap);
983     objlist_clear(&initlist);
984     dbg("loading filtees");
985     TAILQ_FOREACH(obj, &obj_list, next) {
986 	if (obj->marker)
987 	    continue;
988 	if (ld_loadfltr || obj->z_loadfltr)
989 	    load_filtees(obj, 0, &lockstate);
990     }
991 
992     dbg("enforcing main obj relro");
993     if (obj_enforce_relro(obj_main) == -1)
994 	rtld_die();
995 
996     lock_release(rtld_bind_lock, &lockstate);
997 
998     dbg("transferring control to program entry point = %p", obj_main->entry);
999 
1000     /* Return the exit procedure and the program entry point. */
1001     *exit_proc = rtld_exit_ptr;
1002     *objp = obj_main;
1003     return ((func_ptr_type)obj_main->entry);
1004 }
1005 
1006 void *
1007 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1008 {
1009 	void *ptr;
1010 	Elf_Addr target;
1011 
1012 	ptr = (void *)make_function_pointer(def, obj);
1013 	target = call_ifunc_resolver(ptr);
1014 	return ((void *)target);
1015 }
1016 
1017 Elf_Addr
1018 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1019 {
1020     const Elf_Rel *rel;
1021     const Elf_Sym *def;
1022     const Obj_Entry *defobj;
1023     Elf_Addr *where;
1024     Elf_Addr target;
1025     RtldLockState lockstate;
1026 
1027     rlock_acquire(rtld_bind_lock, &lockstate);
1028     if (sigsetjmp(lockstate.env, 0) != 0)
1029 	    lock_upgrade(rtld_bind_lock, &lockstate);
1030     if (obj->pltrel)
1031 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1032     else
1033 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1034 
1035     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1036     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1037 	NULL, &lockstate);
1038     if (def == NULL)
1039 	rtld_die();
1040     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1041 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1042     else
1043 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1044 
1045     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1046       defobj->strtab + def->st_name,
1047       obj->path == NULL ? NULL : basename(obj->path),
1048       (void *)target,
1049       defobj->path == NULL ? NULL : basename(defobj->path));
1050 
1051     /*
1052      * Write the new contents for the jmpslot. Note that depending on
1053      * architecture, the value which we need to return back to the
1054      * lazy binding trampoline may or may not be the target
1055      * address. The value returned from reloc_jmpslot() is the value
1056      * that the trampoline needs.
1057      */
1058     target = reloc_jmpslot(where, target, defobj, obj, rel);
1059     lock_release(rtld_bind_lock, &lockstate);
1060     return (target);
1061 }
1062 
1063 /*
1064  * Error reporting function.  Use it like printf.  If formats the message
1065  * into a buffer, and sets things up so that the next call to dlerror()
1066  * will return the message.
1067  */
1068 void
1069 _rtld_error(const char *fmt, ...)
1070 {
1071 	va_list ap;
1072 
1073 	va_start(ap, fmt);
1074 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1075 	    fmt, ap);
1076 	va_end(ap);
1077 	*lockinfo.dlerror_seen() = 0;
1078 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1079 }
1080 
1081 /*
1082  * Return a dynamically-allocated copy of the current error message, if any.
1083  */
1084 static struct dlerror_save *
1085 errmsg_save(void)
1086 {
1087 	struct dlerror_save *res;
1088 
1089 	res = xmalloc(sizeof(*res));
1090 	res->seen = *lockinfo.dlerror_seen();
1091 	if (res->seen == 0)
1092 		res->msg = xstrdup(lockinfo.dlerror_loc());
1093 	return (res);
1094 }
1095 
1096 /*
1097  * Restore the current error message from a copy which was previously saved
1098  * by errmsg_save().  The copy is freed.
1099  */
1100 static void
1101 errmsg_restore(struct dlerror_save *saved_msg)
1102 {
1103 	if (saved_msg == NULL || saved_msg->seen == 1) {
1104 		*lockinfo.dlerror_seen() = 1;
1105 	} else {
1106 		*lockinfo.dlerror_seen() = 0;
1107 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1108 		    lockinfo.dlerror_loc_sz);
1109 		free(saved_msg->msg);
1110 	}
1111 	free(saved_msg);
1112 }
1113 
1114 static const char *
1115 basename(const char *name)
1116 {
1117 	const char *p;
1118 
1119 	p = strrchr(name, '/');
1120 	return (p != NULL ? p + 1 : name);
1121 }
1122 
1123 static struct utsname uts;
1124 
1125 static char *
1126 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1127     const char *subst, bool may_free)
1128 {
1129 	char *p, *p1, *res, *resp;
1130 	int subst_len, kw_len, subst_count, old_len, new_len;
1131 
1132 	kw_len = strlen(kw);
1133 
1134 	/*
1135 	 * First, count the number of the keyword occurrences, to
1136 	 * preallocate the final string.
1137 	 */
1138 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1139 		p1 = strstr(p, kw);
1140 		if (p1 == NULL)
1141 			break;
1142 	}
1143 
1144 	/*
1145 	 * If the keyword is not found, just return.
1146 	 *
1147 	 * Return non-substituted string if resolution failed.  We
1148 	 * cannot do anything more reasonable, the failure mode of the
1149 	 * caller is unresolved library anyway.
1150 	 */
1151 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1152 		return (may_free ? real : xstrdup(real));
1153 	if (obj != NULL)
1154 		subst = obj->origin_path;
1155 
1156 	/*
1157 	 * There is indeed something to substitute.  Calculate the
1158 	 * length of the resulting string, and allocate it.
1159 	 */
1160 	subst_len = strlen(subst);
1161 	old_len = strlen(real);
1162 	new_len = old_len + (subst_len - kw_len) * subst_count;
1163 	res = xmalloc(new_len + 1);
1164 
1165 	/*
1166 	 * Now, execute the substitution loop.
1167 	 */
1168 	for (p = real, resp = res, *resp = '\0';;) {
1169 		p1 = strstr(p, kw);
1170 		if (p1 != NULL) {
1171 			/* Copy the prefix before keyword. */
1172 			memcpy(resp, p, p1 - p);
1173 			resp += p1 - p;
1174 			/* Keyword replacement. */
1175 			memcpy(resp, subst, subst_len);
1176 			resp += subst_len;
1177 			*resp = '\0';
1178 			p = p1 + kw_len;
1179 		} else
1180 			break;
1181 	}
1182 
1183 	/* Copy to the end of string and finish. */
1184 	strcat(resp, p);
1185 	if (may_free)
1186 		free(real);
1187 	return (res);
1188 }
1189 
1190 static const struct {
1191 	const char *kw;
1192 	bool pass_obj;
1193 	const char *subst;
1194 } tokens[] = {
1195 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1196 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1197 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1198 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1199 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1200 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1201 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1202 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1203 };
1204 
1205 static char *
1206 origin_subst(Obj_Entry *obj, const char *real)
1207 {
1208 	char *res;
1209 	int i;
1210 
1211 	if (obj == NULL || !trust)
1212 		return (xstrdup(real));
1213 	if (uts.sysname[0] == '\0') {
1214 		if (uname(&uts) != 0) {
1215 			_rtld_error("utsname failed: %d", errno);
1216 			return (NULL);
1217 		}
1218 	}
1219 
1220 	/* __DECONST is safe here since without may_free real is unchanged */
1221 	res = __DECONST(char *, real);
1222 	for (i = 0; i < (int)nitems(tokens); i++) {
1223 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1224 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1225 	}
1226 	return (res);
1227 }
1228 
1229 void
1230 rtld_die(void)
1231 {
1232     const char *msg = dlerror();
1233 
1234     if (msg == NULL)
1235 	msg = "Fatal error";
1236     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1237     rtld_fdputstr(STDERR_FILENO, msg);
1238     rtld_fdputchar(STDERR_FILENO, '\n');
1239     _exit(1);
1240 }
1241 
1242 /*
1243  * Process a shared object's DYNAMIC section, and save the important
1244  * information in its Obj_Entry structure.
1245  */
1246 static void
1247 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1248     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1249 {
1250     const Elf_Dyn *dynp;
1251     Needed_Entry **needed_tail = &obj->needed;
1252     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1253     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1254     const Elf_Hashelt *hashtab;
1255     const Elf32_Word *hashval;
1256     Elf32_Word bkt, nmaskwords;
1257     int bloom_size32;
1258     int plttype = DT_REL;
1259 
1260     *dyn_rpath = NULL;
1261     *dyn_soname = NULL;
1262     *dyn_runpath = NULL;
1263 
1264     obj->bind_now = false;
1265     dynp = obj->dynamic;
1266     if (dynp == NULL)
1267 	return;
1268     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1269 	switch (dynp->d_tag) {
1270 
1271 	case DT_REL:
1272 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1273 	    break;
1274 
1275 	case DT_RELSZ:
1276 	    obj->relsize = dynp->d_un.d_val;
1277 	    break;
1278 
1279 	case DT_RELENT:
1280 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1281 	    break;
1282 
1283 	case DT_JMPREL:
1284 	    obj->pltrel = (const Elf_Rel *)
1285 	      (obj->relocbase + dynp->d_un.d_ptr);
1286 	    break;
1287 
1288 	case DT_PLTRELSZ:
1289 	    obj->pltrelsize = dynp->d_un.d_val;
1290 	    break;
1291 
1292 	case DT_RELA:
1293 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1294 	    break;
1295 
1296 	case DT_RELASZ:
1297 	    obj->relasize = dynp->d_un.d_val;
1298 	    break;
1299 
1300 	case DT_RELAENT:
1301 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1302 	    break;
1303 
1304 	case DT_RELR:
1305 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1306 	    break;
1307 
1308 	case DT_RELRSZ:
1309 	    obj->relrsize = dynp->d_un.d_val;
1310 	    break;
1311 
1312 	case DT_RELRENT:
1313 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1314 	    break;
1315 
1316 	case DT_PLTREL:
1317 	    plttype = dynp->d_un.d_val;
1318 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1319 	    break;
1320 
1321 	case DT_SYMTAB:
1322 	    obj->symtab = (const Elf_Sym *)
1323 	      (obj->relocbase + dynp->d_un.d_ptr);
1324 	    break;
1325 
1326 	case DT_SYMENT:
1327 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1328 	    break;
1329 
1330 	case DT_STRTAB:
1331 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1332 	    break;
1333 
1334 	case DT_STRSZ:
1335 	    obj->strsize = dynp->d_un.d_val;
1336 	    break;
1337 
1338 	case DT_VERNEED:
1339 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1340 		dynp->d_un.d_val);
1341 	    break;
1342 
1343 	case DT_VERNEEDNUM:
1344 	    obj->verneednum = dynp->d_un.d_val;
1345 	    break;
1346 
1347 	case DT_VERDEF:
1348 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1349 		dynp->d_un.d_val);
1350 	    break;
1351 
1352 	case DT_VERDEFNUM:
1353 	    obj->verdefnum = dynp->d_un.d_val;
1354 	    break;
1355 
1356 	case DT_VERSYM:
1357 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1358 		dynp->d_un.d_val);
1359 	    break;
1360 
1361 	case DT_HASH:
1362 	    {
1363 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1364 		    dynp->d_un.d_ptr);
1365 		obj->nbuckets = hashtab[0];
1366 		obj->nchains = hashtab[1];
1367 		obj->buckets = hashtab + 2;
1368 		obj->chains = obj->buckets + obj->nbuckets;
1369 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1370 		  obj->buckets != NULL;
1371 	    }
1372 	    break;
1373 
1374 	case DT_GNU_HASH:
1375 	    {
1376 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1377 		    dynp->d_un.d_ptr);
1378 		obj->nbuckets_gnu = hashtab[0];
1379 		obj->symndx_gnu = hashtab[1];
1380 		nmaskwords = hashtab[2];
1381 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1382 		obj->maskwords_bm_gnu = nmaskwords - 1;
1383 		obj->shift2_gnu = hashtab[3];
1384 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1385 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1386 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1387 		  obj->symndx_gnu;
1388 		/* Number of bitmask words is required to be power of 2 */
1389 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1390 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1391 	    }
1392 	    break;
1393 
1394 	case DT_NEEDED:
1395 	    if (!obj->rtld) {
1396 		Needed_Entry *nep = NEW(Needed_Entry);
1397 		nep->name = dynp->d_un.d_val;
1398 		nep->obj = NULL;
1399 		nep->next = NULL;
1400 
1401 		*needed_tail = nep;
1402 		needed_tail = &nep->next;
1403 	    }
1404 	    break;
1405 
1406 	case DT_FILTER:
1407 	    if (!obj->rtld) {
1408 		Needed_Entry *nep = NEW(Needed_Entry);
1409 		nep->name = dynp->d_un.d_val;
1410 		nep->obj = NULL;
1411 		nep->next = NULL;
1412 
1413 		*needed_filtees_tail = nep;
1414 		needed_filtees_tail = &nep->next;
1415 
1416 		if (obj->linkmap.l_refname == NULL)
1417 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1418 	    }
1419 	    break;
1420 
1421 	case DT_AUXILIARY:
1422 	    if (!obj->rtld) {
1423 		Needed_Entry *nep = NEW(Needed_Entry);
1424 		nep->name = dynp->d_un.d_val;
1425 		nep->obj = NULL;
1426 		nep->next = NULL;
1427 
1428 		*needed_aux_filtees_tail = nep;
1429 		needed_aux_filtees_tail = &nep->next;
1430 	    }
1431 	    break;
1432 
1433 	case DT_PLTGOT:
1434 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1435 	    break;
1436 
1437 	case DT_TEXTREL:
1438 	    obj->textrel = true;
1439 	    break;
1440 
1441 	case DT_SYMBOLIC:
1442 	    obj->symbolic = true;
1443 	    break;
1444 
1445 	case DT_RPATH:
1446 	    /*
1447 	     * We have to wait until later to process this, because we
1448 	     * might not have gotten the address of the string table yet.
1449 	     */
1450 	    *dyn_rpath = dynp;
1451 	    break;
1452 
1453 	case DT_SONAME:
1454 	    *dyn_soname = dynp;
1455 	    break;
1456 
1457 	case DT_RUNPATH:
1458 	    *dyn_runpath = dynp;
1459 	    break;
1460 
1461 	case DT_INIT:
1462 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1463 	    break;
1464 
1465 	case DT_PREINIT_ARRAY:
1466 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1467 	    break;
1468 
1469 	case DT_PREINIT_ARRAYSZ:
1470 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1471 	    break;
1472 
1473 	case DT_INIT_ARRAY:
1474 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1475 	    break;
1476 
1477 	case DT_INIT_ARRAYSZ:
1478 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1479 	    break;
1480 
1481 	case DT_FINI:
1482 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1483 	    break;
1484 
1485 	case DT_FINI_ARRAY:
1486 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1487 	    break;
1488 
1489 	case DT_FINI_ARRAYSZ:
1490 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1491 	    break;
1492 
1493 	case DT_DEBUG:
1494 	    if (!early)
1495 		dbg("Filling in DT_DEBUG entry");
1496 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1497 	    break;
1498 
1499 	case DT_FLAGS:
1500 		if (dynp->d_un.d_val & DF_ORIGIN)
1501 		    obj->z_origin = true;
1502 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1503 		    obj->symbolic = true;
1504 		if (dynp->d_un.d_val & DF_TEXTREL)
1505 		    obj->textrel = true;
1506 		if (dynp->d_un.d_val & DF_BIND_NOW)
1507 		    obj->bind_now = true;
1508 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1509 		    obj->static_tls = true;
1510 	    break;
1511 
1512 #ifdef __powerpc__
1513 #ifdef __powerpc64__
1514 	case DT_PPC64_GLINK:
1515 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1516 		break;
1517 #else
1518 	case DT_PPC_GOT:
1519 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1520 		break;
1521 #endif
1522 #endif
1523 
1524 	case DT_FLAGS_1:
1525 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1526 		    obj->z_noopen = true;
1527 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1528 		    obj->z_origin = true;
1529 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1530 		    obj->z_global = true;
1531 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1532 		    obj->bind_now = true;
1533 		if (dynp->d_un.d_val & DF_1_NODELETE)
1534 		    obj->z_nodelete = true;
1535 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1536 		    obj->z_loadfltr = true;
1537 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1538 		    obj->z_interpose = true;
1539 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1540 		    obj->z_nodeflib = true;
1541 		if (dynp->d_un.d_val & DF_1_PIE)
1542 		    obj->z_pie = true;
1543 	    break;
1544 
1545 	default:
1546 	    if (!early) {
1547 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1548 		    (long)dynp->d_tag);
1549 	    }
1550 	    break;
1551 	}
1552     }
1553 
1554     obj->traced = false;
1555 
1556     if (plttype == DT_RELA) {
1557 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1558 	obj->pltrel = NULL;
1559 	obj->pltrelasize = obj->pltrelsize;
1560 	obj->pltrelsize = 0;
1561     }
1562 
1563     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1564     if (obj->valid_hash_sysv)
1565 	obj->dynsymcount = obj->nchains;
1566     else if (obj->valid_hash_gnu) {
1567 	obj->dynsymcount = 0;
1568 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1569 	    if (obj->buckets_gnu[bkt] == 0)
1570 		continue;
1571 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1572 	    do
1573 		obj->dynsymcount++;
1574 	    while ((*hashval++ & 1u) == 0);
1575 	}
1576 	obj->dynsymcount += obj->symndx_gnu;
1577     }
1578 
1579     if (obj->linkmap.l_refname != NULL)
1580 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1581 	  linkmap.l_refname;
1582 }
1583 
1584 static bool
1585 obj_resolve_origin(Obj_Entry *obj)
1586 {
1587 
1588 	if (obj->origin_path != NULL)
1589 		return (true);
1590 	obj->origin_path = xmalloc(PATH_MAX);
1591 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1592 }
1593 
1594 static bool
1595 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1596     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1597 {
1598 
1599 	if (obj->z_origin && !obj_resolve_origin(obj))
1600 		return (false);
1601 
1602 	if (dyn_runpath != NULL) {
1603 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1604 		obj->runpath = origin_subst(obj, obj->runpath);
1605 	} else if (dyn_rpath != NULL) {
1606 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1607 		obj->rpath = origin_subst(obj, obj->rpath);
1608 	}
1609 	if (dyn_soname != NULL)
1610 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1611 	return (true);
1612 }
1613 
1614 static bool
1615 digest_dynamic(Obj_Entry *obj, int early)
1616 {
1617 	const Elf_Dyn *dyn_rpath;
1618 	const Elf_Dyn *dyn_soname;
1619 	const Elf_Dyn *dyn_runpath;
1620 
1621 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1622 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1623 }
1624 
1625 /*
1626  * Process a shared object's program header.  This is used only for the
1627  * main program, when the kernel has already loaded the main program
1628  * into memory before calling the dynamic linker.  It creates and
1629  * returns an Obj_Entry structure.
1630  */
1631 static Obj_Entry *
1632 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1633 {
1634     Obj_Entry *obj;
1635     const Elf_Phdr *phlimit = phdr + phnum;
1636     const Elf_Phdr *ph;
1637     Elf_Addr note_start, note_end;
1638     int nsegs = 0;
1639 
1640     obj = obj_new();
1641     for (ph = phdr;  ph < phlimit;  ph++) {
1642 	if (ph->p_type != PT_PHDR)
1643 	    continue;
1644 
1645 	obj->phdr = phdr;
1646 	obj->phsize = ph->p_memsz;
1647 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1648 	break;
1649     }
1650 
1651     obj->stack_flags = PF_X | PF_R | PF_W;
1652 
1653     for (ph = phdr;  ph < phlimit;  ph++) {
1654 	switch (ph->p_type) {
1655 
1656 	case PT_INTERP:
1657 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1658 	    break;
1659 
1660 	case PT_LOAD:
1661 	    if (nsegs == 0) {	/* First load segment */
1662 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1663 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1664 	    } else {		/* Last load segment */
1665 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1666 		  obj->vaddrbase;
1667 	    }
1668 	    nsegs++;
1669 	    break;
1670 
1671 	case PT_DYNAMIC:
1672 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1673 	    break;
1674 
1675 	case PT_TLS:
1676 	    obj->tlsindex = 1;
1677 	    obj->tlssize = ph->p_memsz;
1678 	    obj->tlsalign = ph->p_align;
1679 	    obj->tlsinitsize = ph->p_filesz;
1680 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1681 	    obj->tlspoffset = ph->p_offset;
1682 	    break;
1683 
1684 	case PT_GNU_STACK:
1685 	    obj->stack_flags = ph->p_flags;
1686 	    break;
1687 
1688 	case PT_GNU_RELRO:
1689 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1690 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1691 	      rtld_trunc_page(ph->p_vaddr);
1692 	    break;
1693 
1694 	case PT_NOTE:
1695 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1696 	    note_end = note_start + ph->p_filesz;
1697 	    digest_notes(obj, note_start, note_end);
1698 	    break;
1699 	}
1700     }
1701     if (nsegs < 1) {
1702 	_rtld_error("%s: too few PT_LOAD segments", path);
1703 	return (NULL);
1704     }
1705 
1706     obj->entry = entry;
1707     return (obj);
1708 }
1709 
1710 void
1711 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1712 {
1713 	const Elf_Note *note;
1714 	const char *note_name;
1715 	uintptr_t p;
1716 
1717 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1718 	    note = (const Elf_Note *)((const char *)(note + 1) +
1719 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1720 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1721 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1722 		    note->n_descsz != sizeof(int32_t))
1723 			continue;
1724 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1725 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1726 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1727 			continue;
1728 		note_name = (const char *)(note + 1);
1729 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1730 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1731 			continue;
1732 		switch (note->n_type) {
1733 		case NT_FREEBSD_ABI_TAG:
1734 			/* FreeBSD osrel note */
1735 			p = (uintptr_t)(note + 1);
1736 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1737 			obj->osrel = *(const int32_t *)(p);
1738 			dbg("note osrel %d", obj->osrel);
1739 			break;
1740 		case NT_FREEBSD_FEATURE_CTL:
1741 			/* FreeBSD ABI feature control note */
1742 			p = (uintptr_t)(note + 1);
1743 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1744 			obj->fctl0 = *(const uint32_t *)(p);
1745 			dbg("note fctl0 %#x", obj->fctl0);
1746 			break;
1747 		case NT_FREEBSD_NOINIT_TAG:
1748 			/* FreeBSD 'crt does not call init' note */
1749 			obj->crt_no_init = true;
1750 			dbg("note crt_no_init");
1751 			break;
1752 		}
1753 	}
1754 }
1755 
1756 static Obj_Entry *
1757 dlcheck(void *handle)
1758 {
1759     Obj_Entry *obj;
1760 
1761     TAILQ_FOREACH(obj, &obj_list, next) {
1762 	if (obj == (Obj_Entry *) handle)
1763 	    break;
1764     }
1765 
1766     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1767 	_rtld_error("Invalid shared object handle %p", handle);
1768 	return (NULL);
1769     }
1770     return (obj);
1771 }
1772 
1773 /*
1774  * If the given object is already in the donelist, return true.  Otherwise
1775  * add the object to the list and return false.
1776  */
1777 static bool
1778 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1779 {
1780     unsigned int i;
1781 
1782     for (i = 0;  i < dlp->num_used;  i++)
1783 	if (dlp->objs[i] == obj)
1784 	    return (true);
1785     /*
1786      * Our donelist allocation should always be sufficient.  But if
1787      * our threads locking isn't working properly, more shared objects
1788      * could have been loaded since we allocated the list.  That should
1789      * never happen, but we'll handle it properly just in case it does.
1790      */
1791     if (dlp->num_used < dlp->num_alloc)
1792 	dlp->objs[dlp->num_used++] = obj;
1793     return (false);
1794 }
1795 
1796 /*
1797  * Hash function for symbol table lookup.  Don't even think about changing
1798  * this.  It is specified by the System V ABI.
1799  */
1800 unsigned long
1801 elf_hash(const char *name)
1802 {
1803     const unsigned char *p = (const unsigned char *) name;
1804     unsigned long h = 0;
1805     unsigned long g;
1806 
1807     while (*p != '\0') {
1808 	h = (h << 4) + *p++;
1809 	if ((g = h & 0xf0000000) != 0)
1810 	    h ^= g >> 24;
1811 	h &= ~g;
1812     }
1813     return (h);
1814 }
1815 
1816 /*
1817  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1818  * unsigned in case it's implemented with a wider type.
1819  */
1820 static uint32_t
1821 gnu_hash(const char *s)
1822 {
1823 	uint32_t h;
1824 	unsigned char c;
1825 
1826 	h = 5381;
1827 	for (c = *s; c != '\0'; c = *++s)
1828 		h = h * 33 + c;
1829 	return (h & 0xffffffff);
1830 }
1831 
1832 
1833 /*
1834  * Find the library with the given name, and return its full pathname.
1835  * The returned string is dynamically allocated.  Generates an error
1836  * message and returns NULL if the library cannot be found.
1837  *
1838  * If the second argument is non-NULL, then it refers to an already-
1839  * loaded shared object, whose library search path will be searched.
1840  *
1841  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1842  * descriptor (which is close-on-exec) will be passed out via the third
1843  * argument.
1844  *
1845  * The search order is:
1846  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1847  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1848  *   LD_LIBRARY_PATH
1849  *   DT_RUNPATH in the referencing file
1850  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1851  *	 from list)
1852  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1853  *
1854  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1855  */
1856 static char *
1857 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1858 {
1859 	char *pathname, *refobj_path;
1860 	const char *name;
1861 	bool nodeflib, objgiven;
1862 
1863 	objgiven = refobj != NULL;
1864 
1865 	if (libmap_disable || !objgiven ||
1866 	    (name = lm_find(refobj->path, xname)) == NULL)
1867 		name = xname;
1868 
1869 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1870 		if (name[0] != '/' && !trust) {
1871 			_rtld_error("Absolute pathname required "
1872 			    "for shared object \"%s\"", name);
1873 			return (NULL);
1874 		}
1875 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1876 		    __DECONST(char *, name)));
1877 	}
1878 
1879 	dbg(" Searching for \"%s\"", name);
1880 	refobj_path = objgiven ? refobj->path : NULL;
1881 
1882 	/*
1883 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1884 	 * back to pre-conforming behaviour if user requested so with
1885 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1886 	 * nodeflib.
1887 	 */
1888 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1889 		pathname = search_library_path(name, ld_library_path,
1890 		    refobj_path, fdp);
1891 		if (pathname != NULL)
1892 			return (pathname);
1893 		if (refobj != NULL) {
1894 			pathname = search_library_path(name, refobj->rpath,
1895 			    refobj_path, fdp);
1896 			if (pathname != NULL)
1897 				return (pathname);
1898 		}
1899 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1900 		if (pathname != NULL)
1901 			return (pathname);
1902 		pathname = search_library_path(name, gethints(false),
1903 		    refobj_path, fdp);
1904 		if (pathname != NULL)
1905 			return (pathname);
1906 		pathname = search_library_path(name, ld_standard_library_path,
1907 		    refobj_path, fdp);
1908 		if (pathname != NULL)
1909 			return (pathname);
1910 	} else {
1911 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1912 		if (objgiven) {
1913 			pathname = search_library_path(name, refobj->rpath,
1914 			    refobj->path, fdp);
1915 			if (pathname != NULL)
1916 				return (pathname);
1917 		}
1918 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1919 			pathname = search_library_path(name, obj_main->rpath,
1920 			    refobj_path, fdp);
1921 			if (pathname != NULL)
1922 				return (pathname);
1923 		}
1924 		pathname = search_library_path(name, ld_library_path,
1925 		    refobj_path, fdp);
1926 		if (pathname != NULL)
1927 			return (pathname);
1928 		if (objgiven) {
1929 			pathname = search_library_path(name, refobj->runpath,
1930 			    refobj_path, fdp);
1931 			if (pathname != NULL)
1932 				return (pathname);
1933 		}
1934 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1935 		if (pathname != NULL)
1936 			return (pathname);
1937 		pathname = search_library_path(name, gethints(nodeflib),
1938 		    refobj_path, fdp);
1939 		if (pathname != NULL)
1940 			return (pathname);
1941 		if (objgiven && !nodeflib) {
1942 			pathname = search_library_path(name,
1943 			    ld_standard_library_path, refobj_path, fdp);
1944 			if (pathname != NULL)
1945 				return (pathname);
1946 		}
1947 	}
1948 
1949 	if (objgiven && refobj->path != NULL) {
1950 		_rtld_error("Shared object \"%s\" not found, "
1951 		    "required by \"%s\"", name, basename(refobj->path));
1952 	} else {
1953 		_rtld_error("Shared object \"%s\" not found", name);
1954 	}
1955 	return (NULL);
1956 }
1957 
1958 /*
1959  * Given a symbol number in a referencing object, find the corresponding
1960  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1961  * no definition was found.  Returns a pointer to the Obj_Entry of the
1962  * defining object via the reference parameter DEFOBJ_OUT.
1963  */
1964 const Elf_Sym *
1965 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1966     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1967     RtldLockState *lockstate)
1968 {
1969     const Elf_Sym *ref;
1970     const Elf_Sym *def;
1971     const Obj_Entry *defobj;
1972     const Ver_Entry *ve;
1973     SymLook req;
1974     const char *name;
1975     int res;
1976 
1977     /*
1978      * If we have already found this symbol, get the information from
1979      * the cache.
1980      */
1981     if (symnum >= refobj->dynsymcount)
1982 	return (NULL);	/* Bad object */
1983     if (cache != NULL && cache[symnum].sym != NULL) {
1984 	*defobj_out = cache[symnum].obj;
1985 	return (cache[symnum].sym);
1986     }
1987 
1988     ref = refobj->symtab + symnum;
1989     name = refobj->strtab + ref->st_name;
1990     def = NULL;
1991     defobj = NULL;
1992     ve = NULL;
1993 
1994     /*
1995      * We don't have to do a full scale lookup if the symbol is local.
1996      * We know it will bind to the instance in this load module; to
1997      * which we already have a pointer (ie ref). By not doing a lookup,
1998      * we not only improve performance, but it also avoids unresolvable
1999      * symbols when local symbols are not in the hash table. This has
2000      * been seen with the ia64 toolchain.
2001      */
2002     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2003 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2004 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2005 		symnum);
2006 	}
2007 	symlook_init(&req, name);
2008 	req.flags = flags;
2009 	ve = req.ventry = fetch_ventry(refobj, symnum);
2010 	req.lockstate = lockstate;
2011 	res = symlook_default(&req, refobj);
2012 	if (res == 0) {
2013 	    def = req.sym_out;
2014 	    defobj = req.defobj_out;
2015 	}
2016     } else {
2017 	def = ref;
2018 	defobj = refobj;
2019     }
2020 
2021     /*
2022      * If we found no definition and the reference is weak, treat the
2023      * symbol as having the value zero.
2024      */
2025     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2026 	def = &sym_zero;
2027 	defobj = obj_main;
2028     }
2029 
2030     if (def != NULL) {
2031 	*defobj_out = defobj;
2032 	/* Record the information in the cache to avoid subsequent lookups. */
2033 	if (cache != NULL) {
2034 	    cache[symnum].sym = def;
2035 	    cache[symnum].obj = defobj;
2036 	}
2037     } else {
2038 	if (refobj != &obj_rtld)
2039 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2040 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2041     }
2042     return (def);
2043 }
2044 
2045 /*
2046  * Return the search path from the ldconfig hints file, reading it if
2047  * necessary.  If nostdlib is true, then the default search paths are
2048  * not added to result.
2049  *
2050  * Returns NULL if there are problems with the hints file,
2051  * or if the search path there is empty.
2052  */
2053 static const char *
2054 gethints(bool nostdlib)
2055 {
2056 	static char *filtered_path;
2057 	static const char *hints;
2058 	static struct elfhints_hdr hdr;
2059 	struct fill_search_info_args sargs, hargs;
2060 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2061 	struct dl_serpath *SLPpath, *hintpath;
2062 	char *p;
2063 	struct stat hint_stat;
2064 	unsigned int SLPndx, hintndx, fndx, fcount;
2065 	int fd;
2066 	size_t flen;
2067 	uint32_t dl;
2068 	bool skip;
2069 
2070 	/* First call, read the hints file */
2071 	if (hints == NULL) {
2072 		/* Keep from trying again in case the hints file is bad. */
2073 		hints = "";
2074 
2075 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2076 			return (NULL);
2077 
2078 		/*
2079 		 * Check of hdr.dirlistlen value against type limit
2080 		 * intends to pacify static analyzers.  Further
2081 		 * paranoia leads to checks that dirlist is fully
2082 		 * contained in the file range.
2083 		 */
2084 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2085 		    hdr.magic != ELFHINTS_MAGIC ||
2086 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2087 		    fstat(fd, &hint_stat) == -1) {
2088 cleanup1:
2089 			close(fd);
2090 			hdr.dirlistlen = 0;
2091 			return (NULL);
2092 		}
2093 		dl = hdr.strtab;
2094 		if (dl + hdr.dirlist < dl)
2095 			goto cleanup1;
2096 		dl += hdr.dirlist;
2097 		if (dl + hdr.dirlistlen < dl)
2098 			goto cleanup1;
2099 		dl += hdr.dirlistlen;
2100 		if (dl > hint_stat.st_size)
2101 			goto cleanup1;
2102 		p = xmalloc(hdr.dirlistlen + 1);
2103 		if (pread(fd, p, hdr.dirlistlen + 1,
2104 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2105 		    p[hdr.dirlistlen] != '\0') {
2106 			free(p);
2107 			goto cleanup1;
2108 		}
2109 		hints = p;
2110 		close(fd);
2111 	}
2112 
2113 	/*
2114 	 * If caller agreed to receive list which includes the default
2115 	 * paths, we are done. Otherwise, if we still did not
2116 	 * calculated filtered result, do it now.
2117 	 */
2118 	if (!nostdlib)
2119 		return (hints[0] != '\0' ? hints : NULL);
2120 	if (filtered_path != NULL)
2121 		goto filt_ret;
2122 
2123 	/*
2124 	 * Obtain the list of all configured search paths, and the
2125 	 * list of the default paths.
2126 	 *
2127 	 * First estimate the size of the results.
2128 	 */
2129 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2130 	smeta.dls_cnt = 0;
2131 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2132 	hmeta.dls_cnt = 0;
2133 
2134 	sargs.request = RTLD_DI_SERINFOSIZE;
2135 	sargs.serinfo = &smeta;
2136 	hargs.request = RTLD_DI_SERINFOSIZE;
2137 	hargs.serinfo = &hmeta;
2138 
2139 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2140 	    &sargs);
2141 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2142 
2143 	SLPinfo = xmalloc(smeta.dls_size);
2144 	hintinfo = xmalloc(hmeta.dls_size);
2145 
2146 	/*
2147 	 * Next fetch both sets of paths.
2148 	 */
2149 	sargs.request = RTLD_DI_SERINFO;
2150 	sargs.serinfo = SLPinfo;
2151 	sargs.serpath = &SLPinfo->dls_serpath[0];
2152 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2153 
2154 	hargs.request = RTLD_DI_SERINFO;
2155 	hargs.serinfo = hintinfo;
2156 	hargs.serpath = &hintinfo->dls_serpath[0];
2157 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2158 
2159 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2160 	    &sargs);
2161 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2162 
2163 	/*
2164 	 * Now calculate the difference between two sets, by excluding
2165 	 * standard paths from the full set.
2166 	 */
2167 	fndx = 0;
2168 	fcount = 0;
2169 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2170 	hintpath = &hintinfo->dls_serpath[0];
2171 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2172 		skip = false;
2173 		SLPpath = &SLPinfo->dls_serpath[0];
2174 		/*
2175 		 * Check each standard path against current.
2176 		 */
2177 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2178 			/* matched, skip the path */
2179 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2180 				skip = true;
2181 				break;
2182 			}
2183 		}
2184 		if (skip)
2185 			continue;
2186 		/*
2187 		 * Not matched against any standard path, add the path
2188 		 * to result. Separate consequtive paths with ':'.
2189 		 */
2190 		if (fcount > 0) {
2191 			filtered_path[fndx] = ':';
2192 			fndx++;
2193 		}
2194 		fcount++;
2195 		flen = strlen(hintpath->dls_name);
2196 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2197 		fndx += flen;
2198 	}
2199 	filtered_path[fndx] = '\0';
2200 
2201 	free(SLPinfo);
2202 	free(hintinfo);
2203 
2204 filt_ret:
2205 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2206 }
2207 
2208 static void
2209 init_dag(Obj_Entry *root)
2210 {
2211     const Needed_Entry *needed;
2212     const Objlist_Entry *elm;
2213     DoneList donelist;
2214 
2215     if (root->dag_inited)
2216 	return;
2217     donelist_init(&donelist);
2218 
2219     /* Root object belongs to own DAG. */
2220     objlist_push_tail(&root->dldags, root);
2221     objlist_push_tail(&root->dagmembers, root);
2222     donelist_check(&donelist, root);
2223 
2224     /*
2225      * Add dependencies of root object to DAG in breadth order
2226      * by exploiting the fact that each new object get added
2227      * to the tail of the dagmembers list.
2228      */
2229     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2230 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2231 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2232 		continue;
2233 	    objlist_push_tail(&needed->obj->dldags, root);
2234 	    objlist_push_tail(&root->dagmembers, needed->obj);
2235 	}
2236     }
2237     root->dag_inited = true;
2238 }
2239 
2240 static void
2241 init_marker(Obj_Entry *marker)
2242 {
2243 
2244 	bzero(marker, sizeof(*marker));
2245 	marker->marker = true;
2246 }
2247 
2248 Obj_Entry *
2249 globallist_curr(const Obj_Entry *obj)
2250 {
2251 
2252 	for (;;) {
2253 		if (obj == NULL)
2254 			return (NULL);
2255 		if (!obj->marker)
2256 			return (__DECONST(Obj_Entry *, obj));
2257 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2258 	}
2259 }
2260 
2261 Obj_Entry *
2262 globallist_next(const Obj_Entry *obj)
2263 {
2264 
2265 	for (;;) {
2266 		obj = TAILQ_NEXT(obj, next);
2267 		if (obj == NULL)
2268 			return (NULL);
2269 		if (!obj->marker)
2270 			return (__DECONST(Obj_Entry *, obj));
2271 	}
2272 }
2273 
2274 /* Prevent the object from being unmapped while the bind lock is dropped. */
2275 static void
2276 hold_object(Obj_Entry *obj)
2277 {
2278 
2279 	obj->holdcount++;
2280 }
2281 
2282 static void
2283 unhold_object(Obj_Entry *obj)
2284 {
2285 
2286 	assert(obj->holdcount > 0);
2287 	if (--obj->holdcount == 0 && obj->unholdfree)
2288 		release_object(obj);
2289 }
2290 
2291 static void
2292 process_z(Obj_Entry *root)
2293 {
2294 	const Objlist_Entry *elm;
2295 	Obj_Entry *obj;
2296 
2297 	/*
2298 	 * Walk over object DAG and process every dependent object
2299 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2300 	 * to grow their own DAG.
2301 	 *
2302 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2303 	 * symlook_global() to work.
2304 	 *
2305 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2306 	 */
2307 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2308 		obj = elm->obj;
2309 		if (obj == NULL)
2310 			continue;
2311 		if (obj->z_nodelete && !obj->ref_nodel) {
2312 			dbg("obj %s -z nodelete", obj->path);
2313 			init_dag(obj);
2314 			ref_dag(obj);
2315 			obj->ref_nodel = true;
2316 		}
2317 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2318 			dbg("obj %s -z global", obj->path);
2319 			objlist_push_tail(&list_global, obj);
2320 			init_dag(obj);
2321 		}
2322 	}
2323 }
2324 
2325 static void
2326 parse_rtld_phdr(Obj_Entry *obj)
2327 {
2328 	const Elf_Phdr *ph;
2329 	Elf_Addr note_start, note_end;
2330 
2331 	obj->stack_flags = PF_X | PF_R | PF_W;
2332 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2333 	    obj->phsize; ph++) {
2334 		switch (ph->p_type) {
2335 		case PT_GNU_STACK:
2336 			obj->stack_flags = ph->p_flags;
2337 			break;
2338 		case PT_GNU_RELRO:
2339 			obj->relro_page = obj->relocbase +
2340 			    rtld_trunc_page(ph->p_vaddr);
2341 			obj->relro_size = rtld_round_page(ph->p_memsz);
2342 			break;
2343 		case PT_NOTE:
2344 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2345 			note_end = note_start + ph->p_filesz;
2346 			digest_notes(obj, note_start, note_end);
2347 			break;
2348 		}
2349 	}
2350 }
2351 
2352 /*
2353  * Initialize the dynamic linker.  The argument is the address at which
2354  * the dynamic linker has been mapped into memory.  The primary task of
2355  * this function is to relocate the dynamic linker.
2356  */
2357 static void
2358 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2359 {
2360     Obj_Entry objtmp;	/* Temporary rtld object */
2361     const Elf_Ehdr *ehdr;
2362     const Elf_Dyn *dyn_rpath;
2363     const Elf_Dyn *dyn_soname;
2364     const Elf_Dyn *dyn_runpath;
2365 
2366 #ifdef RTLD_INIT_PAGESIZES_EARLY
2367     /* The page size is required by the dynamic memory allocator. */
2368     init_pagesizes(aux_info);
2369 #endif
2370 
2371     /*
2372      * Conjure up an Obj_Entry structure for the dynamic linker.
2373      *
2374      * The "path" member can't be initialized yet because string constants
2375      * cannot yet be accessed. Below we will set it correctly.
2376      */
2377     memset(&objtmp, 0, sizeof(objtmp));
2378     objtmp.path = NULL;
2379     objtmp.rtld = true;
2380     objtmp.mapbase = mapbase;
2381 #ifdef PIC
2382     objtmp.relocbase = mapbase;
2383 #endif
2384 
2385     objtmp.dynamic = rtld_dynamic(&objtmp);
2386     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2387     assert(objtmp.needed == NULL);
2388     assert(!objtmp.textrel);
2389     /*
2390      * Temporarily put the dynamic linker entry into the object list, so
2391      * that symbols can be found.
2392      */
2393     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2394 
2395     ehdr = (Elf_Ehdr *)mapbase;
2396     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2397     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2398 
2399     /* Initialize the object list. */
2400     TAILQ_INIT(&obj_list);
2401 
2402     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2403     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2404 
2405 #ifndef RTLD_INIT_PAGESIZES_EARLY
2406     /* The page size is required by the dynamic memory allocator. */
2407     init_pagesizes(aux_info);
2408 #endif
2409 
2410     if (aux_info[AT_OSRELDATE] != NULL)
2411 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2412 
2413     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2414 
2415     /* Replace the path with a dynamically allocated copy. */
2416     obj_rtld.path = xstrdup(ld_path_rtld);
2417 
2418     parse_rtld_phdr(&obj_rtld);
2419     if (obj_enforce_relro(&obj_rtld) == -1)
2420 	rtld_die();
2421 
2422     r_debug.r_version = R_DEBUG_VERSION;
2423     r_debug.r_brk = r_debug_state;
2424     r_debug.r_state = RT_CONSISTENT;
2425     r_debug.r_ldbase = obj_rtld.relocbase;
2426 }
2427 
2428 /*
2429  * Retrieve the array of supported page sizes.  The kernel provides the page
2430  * sizes in increasing order.
2431  */
2432 static void
2433 init_pagesizes(Elf_Auxinfo **aux_info)
2434 {
2435 	static size_t psa[MAXPAGESIZES];
2436 	int mib[2];
2437 	size_t len, size;
2438 
2439 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2440 	    NULL) {
2441 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2442 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2443 	} else {
2444 		len = 2;
2445 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2446 			size = sizeof(psa);
2447 		else {
2448 			/* As a fallback, retrieve the base page size. */
2449 			size = sizeof(psa[0]);
2450 			if (aux_info[AT_PAGESZ] != NULL) {
2451 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2452 				goto psa_filled;
2453 			} else {
2454 				mib[0] = CTL_HW;
2455 				mib[1] = HW_PAGESIZE;
2456 				len = 2;
2457 			}
2458 		}
2459 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2460 			_rtld_error("sysctl for hw.pagesize(s) failed");
2461 			rtld_die();
2462 		}
2463 psa_filled:
2464 		pagesizes = psa;
2465 	}
2466 	npagesizes = size / sizeof(pagesizes[0]);
2467 	/* Discard any invalid entries at the end of the array. */
2468 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2469 		npagesizes--;
2470 
2471 	page_size = pagesizes[0];
2472 }
2473 
2474 /*
2475  * Add the init functions from a needed object list (and its recursive
2476  * needed objects) to "list".  This is not used directly; it is a helper
2477  * function for initlist_add_objects().  The write lock must be held
2478  * when this function is called.
2479  */
2480 static void
2481 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2482 {
2483     /* Recursively process the successor needed objects. */
2484     if (needed->next != NULL)
2485 	initlist_add_neededs(needed->next, list);
2486 
2487     /* Process the current needed object. */
2488     if (needed->obj != NULL)
2489 	initlist_add_objects(needed->obj, needed->obj, list);
2490 }
2491 
2492 /*
2493  * Scan all of the DAGs rooted in the range of objects from "obj" to
2494  * "tail" and add their init functions to "list".  This recurses over
2495  * the DAGs and ensure the proper init ordering such that each object's
2496  * needed libraries are initialized before the object itself.  At the
2497  * same time, this function adds the objects to the global finalization
2498  * list "list_fini" in the opposite order.  The write lock must be
2499  * held when this function is called.
2500  */
2501 static void
2502 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2503 {
2504     Obj_Entry *nobj;
2505 
2506     if (obj->init_scanned || obj->init_done)
2507 	return;
2508     obj->init_scanned = true;
2509 
2510     /* Recursively process the successor objects. */
2511     nobj = globallist_next(obj);
2512     if (nobj != NULL && obj != tail)
2513 	initlist_add_objects(nobj, tail, list);
2514 
2515     /* Recursively process the needed objects. */
2516     if (obj->needed != NULL)
2517 	initlist_add_neededs(obj->needed, list);
2518     if (obj->needed_filtees != NULL)
2519 	initlist_add_neededs(obj->needed_filtees, list);
2520     if (obj->needed_aux_filtees != NULL)
2521 	initlist_add_neededs(obj->needed_aux_filtees, list);
2522 
2523     /* Add the object to the init list. */
2524     objlist_push_tail(list, obj);
2525 
2526     /* Add the object to the global fini list in the reverse order. */
2527     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2528       && !obj->on_fini_list) {
2529 	objlist_push_head(&list_fini, obj);
2530 	obj->on_fini_list = true;
2531     }
2532 }
2533 
2534 static void
2535 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2536 {
2537     Needed_Entry *needed, *needed1;
2538 
2539     for (needed = n; needed != NULL; needed = needed->next) {
2540 	if (needed->obj != NULL) {
2541 	    dlclose_locked(needed->obj, lockstate);
2542 	    needed->obj = NULL;
2543 	}
2544     }
2545     for (needed = n; needed != NULL; needed = needed1) {
2546 	needed1 = needed->next;
2547 	free(needed);
2548     }
2549 }
2550 
2551 static void
2552 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2553 {
2554 
2555 	free_needed_filtees(obj->needed_filtees, lockstate);
2556 	obj->needed_filtees = NULL;
2557 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2558 	obj->needed_aux_filtees = NULL;
2559 	obj->filtees_loaded = false;
2560 }
2561 
2562 static void
2563 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2564     RtldLockState *lockstate)
2565 {
2566 
2567     for (; needed != NULL; needed = needed->next) {
2568 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2569 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2570 	  RTLD_LOCAL, lockstate);
2571     }
2572 }
2573 
2574 static void
2575 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2576 {
2577 
2578     lock_restart_for_upgrade(lockstate);
2579     if (!obj->filtees_loaded) {
2580 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2581 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2582 	obj->filtees_loaded = true;
2583     }
2584 }
2585 
2586 static int
2587 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2588 {
2589     Obj_Entry *obj1;
2590 
2591     for (; needed != NULL; needed = needed->next) {
2592 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2593 	  flags & ~RTLD_LO_NOLOAD);
2594 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2595 	    return (-1);
2596     }
2597     return (0);
2598 }
2599 
2600 /*
2601  * Given a shared object, traverse its list of needed objects, and load
2602  * each of them.  Returns 0 on success.  Generates an error message and
2603  * returns -1 on failure.
2604  */
2605 static int
2606 load_needed_objects(Obj_Entry *first, int flags)
2607 {
2608     Obj_Entry *obj;
2609 
2610     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2611 	if (obj->marker)
2612 	    continue;
2613 	if (process_needed(obj, obj->needed, flags) == -1)
2614 	    return (-1);
2615     }
2616     return (0);
2617 }
2618 
2619 static int
2620 load_preload_objects(const char *penv, bool isfd)
2621 {
2622 	Obj_Entry *obj;
2623 	const char *name;
2624 	size_t len;
2625 	char savech, *p, *psave;
2626 	int fd;
2627 	static const char delim[] = " \t:;";
2628 
2629 	if (penv == NULL)
2630 		return (0);
2631 
2632 	p = psave = xstrdup(penv);
2633 	p += strspn(p, delim);
2634 	while (*p != '\0') {
2635 		len = strcspn(p, delim);
2636 
2637 		savech = p[len];
2638 		p[len] = '\0';
2639 		if (isfd) {
2640 			name = NULL;
2641 			fd = parse_integer(p);
2642 			if (fd == -1) {
2643 				free(psave);
2644 				return (-1);
2645 			}
2646 		} else {
2647 			name = p;
2648 			fd = -1;
2649 		}
2650 
2651 		obj = load_object(name, fd, NULL, 0);
2652 		if (obj == NULL) {
2653 			free(psave);
2654 			return (-1);	/* XXX - cleanup */
2655 		}
2656 		obj->z_interpose = true;
2657 		p[len] = savech;
2658 		p += len;
2659 		p += strspn(p, delim);
2660 	}
2661 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2662 
2663 	free(psave);
2664 	return (0);
2665 }
2666 
2667 static const char *
2668 printable_path(const char *path)
2669 {
2670 
2671 	return (path == NULL ? "<unknown>" : path);
2672 }
2673 
2674 /*
2675  * Load a shared object into memory, if it is not already loaded.  The
2676  * object may be specified by name or by user-supplied file descriptor
2677  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2678  * duplicate is.
2679  *
2680  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2681  * on failure.
2682  */
2683 static Obj_Entry *
2684 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2685 {
2686     Obj_Entry *obj;
2687     int fd;
2688     struct stat sb;
2689     char *path;
2690 
2691     fd = -1;
2692     if (name != NULL) {
2693 	TAILQ_FOREACH(obj, &obj_list, next) {
2694 	    if (obj->marker || obj->doomed)
2695 		continue;
2696 	    if (object_match_name(obj, name))
2697 		return (obj);
2698 	}
2699 
2700 	path = find_library(name, refobj, &fd);
2701 	if (path == NULL)
2702 	    return (NULL);
2703     } else
2704 	path = NULL;
2705 
2706     if (fd >= 0) {
2707 	/*
2708 	 * search_library_pathfds() opens a fresh file descriptor for the
2709 	 * library, so there is no need to dup().
2710 	 */
2711     } else if (fd_u == -1) {
2712 	/*
2713 	 * If we didn't find a match by pathname, or the name is not
2714 	 * supplied, open the file and check again by device and inode.
2715 	 * This avoids false mismatches caused by multiple links or ".."
2716 	 * in pathnames.
2717 	 *
2718 	 * To avoid a race, we open the file and use fstat() rather than
2719 	 * using stat().
2720 	 */
2721 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2722 	    _rtld_error("Cannot open \"%s\"", path);
2723 	    free(path);
2724 	    return (NULL);
2725 	}
2726     } else {
2727 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2728 	if (fd == -1) {
2729 	    _rtld_error("Cannot dup fd");
2730 	    free(path);
2731 	    return (NULL);
2732 	}
2733     }
2734     if (fstat(fd, &sb) == -1) {
2735 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2736 	close(fd);
2737 	free(path);
2738 	return (NULL);
2739     }
2740     TAILQ_FOREACH(obj, &obj_list, next) {
2741 	if (obj->marker || obj->doomed)
2742 	    continue;
2743 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2744 	    break;
2745     }
2746     if (obj != NULL && name != NULL) {
2747 	object_add_name(obj, name);
2748 	free(path);
2749 	close(fd);
2750 	return (obj);
2751     }
2752     if (flags & RTLD_LO_NOLOAD) {
2753 	free(path);
2754 	close(fd);
2755 	return (NULL);
2756     }
2757 
2758     /* First use of this object, so we must map it in */
2759     obj = do_load_object(fd, name, path, &sb, flags);
2760     if (obj == NULL)
2761 	free(path);
2762     close(fd);
2763 
2764     return (obj);
2765 }
2766 
2767 static Obj_Entry *
2768 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2769   int flags)
2770 {
2771     Obj_Entry *obj;
2772     struct statfs fs;
2773 
2774     /*
2775      * First, make sure that environment variables haven't been
2776      * used to circumvent the noexec flag on a filesystem.
2777      * We ignore fstatfs(2) failures, since fd might reference
2778      * not a file, e.g. shmfd.
2779      */
2780     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2781 	(fs.f_flags & MNT_NOEXEC) != 0) {
2782 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2783 	    return (NULL);
2784     }
2785 
2786     dbg("loading \"%s\"", printable_path(path));
2787     obj = map_object(fd, printable_path(path), sbp);
2788     if (obj == NULL)
2789         return (NULL);
2790 
2791     /*
2792      * If DT_SONAME is present in the object, digest_dynamic2 already
2793      * added it to the object names.
2794      */
2795     if (name != NULL)
2796 	object_add_name(obj, name);
2797     obj->path = path;
2798     if (!digest_dynamic(obj, 0))
2799 	goto errp;
2800     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2801 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2802     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2803 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2804 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2805 	goto errp;
2806     }
2807     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2808       RTLD_LO_DLOPEN) {
2809 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2810 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2811 	goto errp;
2812     }
2813 
2814     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2815     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2816     obj_count++;
2817     obj_loads++;
2818     linkmap_add(obj);	/* for GDB & dlinfo() */
2819     max_stack_flags |= obj->stack_flags;
2820 
2821     dbg("  %p .. %p: %s", obj->mapbase,
2822          obj->mapbase + obj->mapsize - 1, obj->path);
2823     if (obj->textrel)
2824 	dbg("  WARNING: %s has impure text", obj->path);
2825     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2826 	obj->path);
2827 
2828     return (obj);
2829 
2830 errp:
2831     munmap(obj->mapbase, obj->mapsize);
2832     obj_free(obj);
2833     return (NULL);
2834 }
2835 
2836 static int
2837 load_kpreload(const void *addr)
2838 {
2839 	Obj_Entry *obj;
2840 	const Elf_Ehdr *ehdr;
2841 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2842 	static const char kname[] = "[vdso]";
2843 
2844 	ehdr = addr;
2845 	if (!check_elf_headers(ehdr, "kpreload"))
2846 		return (-1);
2847 	obj = obj_new();
2848 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2849 	obj->phdr = phdr;
2850 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2851 	phlimit = phdr + ehdr->e_phnum;
2852 	seg0 = segn = NULL;
2853 
2854 	for (; phdr < phlimit; phdr++) {
2855 		switch (phdr->p_type) {
2856 		case PT_DYNAMIC:
2857 			phdyn = phdr;
2858 			break;
2859 		case PT_GNU_STACK:
2860 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2861 			obj->stack_flags = phdr->p_flags;
2862 			break;
2863 		case PT_LOAD:
2864 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2865 				seg0 = phdr;
2866 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2867 			    phdr->p_vaddr + phdr->p_memsz)
2868 				segn = phdr;
2869 			break;
2870 		}
2871 	}
2872 
2873 	obj->mapbase = __DECONST(caddr_t, addr);
2874 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2875 	obj->vaddrbase = 0;
2876 	obj->relocbase = obj->mapbase;
2877 
2878 	object_add_name(obj, kname);
2879 	obj->path = xstrdup(kname);
2880 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2881 
2882 	if (!digest_dynamic(obj, 0)) {
2883 		obj_free(obj);
2884 		return (-1);
2885 	}
2886 
2887 	/*
2888 	 * We assume that kernel-preloaded object does not need
2889 	 * relocation.  It is currently written into read-only page,
2890 	 * handling relocations would mean we need to allocate at
2891 	 * least one additional page per AS.
2892 	 */
2893 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2894 	    obj->path, obj->mapbase, obj->phdr, seg0,
2895 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2896 
2897 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2898 	obj_count++;
2899 	obj_loads++;
2900 	linkmap_add(obj);	/* for GDB & dlinfo() */
2901 	max_stack_flags |= obj->stack_flags;
2902 
2903 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2904 	return (0);
2905 }
2906 
2907 Obj_Entry *
2908 obj_from_addr(const void *addr)
2909 {
2910     Obj_Entry *obj;
2911 
2912     TAILQ_FOREACH(obj, &obj_list, next) {
2913 	if (obj->marker)
2914 	    continue;
2915 	if (addr < (void *) obj->mapbase)
2916 	    continue;
2917 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2918 	    return obj;
2919     }
2920     return (NULL);
2921 }
2922 
2923 static void
2924 preinit_main(void)
2925 {
2926     Elf_Addr *preinit_addr;
2927     int index;
2928 
2929     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2930     if (preinit_addr == NULL)
2931 	return;
2932 
2933     for (index = 0; index < obj_main->preinit_array_num; index++) {
2934 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2935 	    dbg("calling preinit function for %s at %p", obj_main->path,
2936 	      (void *)preinit_addr[index]);
2937 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2938 	      0, 0, obj_main->path);
2939 	    call_init_pointer(obj_main, preinit_addr[index]);
2940 	}
2941     }
2942 }
2943 
2944 /*
2945  * Call the finalization functions for each of the objects in "list"
2946  * belonging to the DAG of "root" and referenced once. If NULL "root"
2947  * is specified, every finalization function will be called regardless
2948  * of the reference count and the list elements won't be freed. All of
2949  * the objects are expected to have non-NULL fini functions.
2950  */
2951 static void
2952 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2953 {
2954     Objlist_Entry *elm;
2955     struct dlerror_save *saved_msg;
2956     Elf_Addr *fini_addr;
2957     int index;
2958 
2959     assert(root == NULL || root->refcount == 1);
2960 
2961     if (root != NULL)
2962 	root->doomed = true;
2963 
2964     /*
2965      * Preserve the current error message since a fini function might
2966      * call into the dynamic linker and overwrite it.
2967      */
2968     saved_msg = errmsg_save();
2969     do {
2970 	STAILQ_FOREACH(elm, list, link) {
2971 	    if (root != NULL && (elm->obj->refcount != 1 ||
2972 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2973 		continue;
2974 	    /* Remove object from fini list to prevent recursive invocation. */
2975 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2976 	    /* Ensure that new references cannot be acquired. */
2977 	    elm->obj->doomed = true;
2978 
2979 	    hold_object(elm->obj);
2980 	    lock_release(rtld_bind_lock, lockstate);
2981 	    /*
2982 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2983 	     * When this happens, DT_FINI_ARRAY is processed first.
2984 	     */
2985 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2986 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2987 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2988 		  index--) {
2989 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2990 			dbg("calling fini function for %s at %p",
2991 			    elm->obj->path, (void *)fini_addr[index]);
2992 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2993 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2994 			call_initfini_pointer(elm->obj, fini_addr[index]);
2995 		    }
2996 		}
2997 	    }
2998 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2999 		dbg("calling fini function for %s at %p", elm->obj->path,
3000 		    (void *)elm->obj->fini);
3001 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3002 		    0, 0, elm->obj->path);
3003 		call_initfini_pointer(elm->obj, elm->obj->fini);
3004 	    }
3005 	    wlock_acquire(rtld_bind_lock, lockstate);
3006 	    unhold_object(elm->obj);
3007 	    /* No need to free anything if process is going down. */
3008 	    if (root != NULL)
3009 	    	free(elm);
3010 	    /*
3011 	     * We must restart the list traversal after every fini call
3012 	     * because a dlclose() call from the fini function or from
3013 	     * another thread might have modified the reference counts.
3014 	     */
3015 	    break;
3016 	}
3017     } while (elm != NULL);
3018     errmsg_restore(saved_msg);
3019 }
3020 
3021 /*
3022  * Call the initialization functions for each of the objects in
3023  * "list".  All of the objects are expected to have non-NULL init
3024  * functions.
3025  */
3026 static void
3027 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3028 {
3029     Objlist_Entry *elm;
3030     Obj_Entry *obj;
3031     struct dlerror_save *saved_msg;
3032     Elf_Addr *init_addr;
3033     void (*reg)(void (*)(void));
3034     int index;
3035 
3036     /*
3037      * Clean init_scanned flag so that objects can be rechecked and
3038      * possibly initialized earlier if any of vectors called below
3039      * cause the change by using dlopen.
3040      */
3041     TAILQ_FOREACH(obj, &obj_list, next) {
3042 	if (obj->marker)
3043 	    continue;
3044 	obj->init_scanned = false;
3045     }
3046 
3047     /*
3048      * Preserve the current error message since an init function might
3049      * call into the dynamic linker and overwrite it.
3050      */
3051     saved_msg = errmsg_save();
3052     STAILQ_FOREACH(elm, list, link) {
3053 	if (elm->obj->init_done) /* Initialized early. */
3054 	    continue;
3055 	/*
3056 	 * Race: other thread might try to use this object before current
3057 	 * one completes the initialization. Not much can be done here
3058 	 * without better locking.
3059 	 */
3060 	elm->obj->init_done = true;
3061 	hold_object(elm->obj);
3062 	reg = NULL;
3063 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3064 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3065 		    "__libc_atexit", lockstate);
3066 	}
3067 	lock_release(rtld_bind_lock, lockstate);
3068 	if (reg != NULL) {
3069 		reg(rtld_exit);
3070 		rtld_exit_ptr = rtld_nop_exit;
3071 	}
3072 
3073         /*
3074          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3075          * When this happens, DT_INIT is processed first.
3076          */
3077 	if (elm->obj->init != (Elf_Addr)NULL) {
3078 	    dbg("calling init function for %s at %p", elm->obj->path,
3079 	        (void *)elm->obj->init);
3080 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3081 	        0, 0, elm->obj->path);
3082 	    call_init_pointer(elm->obj, elm->obj->init);
3083 	}
3084 	init_addr = (Elf_Addr *)elm->obj->init_array;
3085 	if (init_addr != NULL) {
3086 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3087 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3088 		    dbg("calling init function for %s at %p", elm->obj->path,
3089 			(void *)init_addr[index]);
3090 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3091 			(void *)init_addr[index], 0, 0, elm->obj->path);
3092 		    call_init_pointer(elm->obj, init_addr[index]);
3093 		}
3094 	    }
3095 	}
3096 	wlock_acquire(rtld_bind_lock, lockstate);
3097 	unhold_object(elm->obj);
3098     }
3099     errmsg_restore(saved_msg);
3100 }
3101 
3102 static void
3103 objlist_clear(Objlist *list)
3104 {
3105     Objlist_Entry *elm;
3106 
3107     while (!STAILQ_EMPTY(list)) {
3108 	elm = STAILQ_FIRST(list);
3109 	STAILQ_REMOVE_HEAD(list, link);
3110 	free(elm);
3111     }
3112 }
3113 
3114 static Objlist_Entry *
3115 objlist_find(Objlist *list, const Obj_Entry *obj)
3116 {
3117     Objlist_Entry *elm;
3118 
3119     STAILQ_FOREACH(elm, list, link)
3120 	if (elm->obj == obj)
3121 	    return elm;
3122     return (NULL);
3123 }
3124 
3125 static void
3126 objlist_init(Objlist *list)
3127 {
3128     STAILQ_INIT(list);
3129 }
3130 
3131 static void
3132 objlist_push_head(Objlist *list, Obj_Entry *obj)
3133 {
3134     Objlist_Entry *elm;
3135 
3136     elm = NEW(Objlist_Entry);
3137     elm->obj = obj;
3138     STAILQ_INSERT_HEAD(list, elm, link);
3139 }
3140 
3141 static void
3142 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3143 {
3144     Objlist_Entry *elm;
3145 
3146     elm = NEW(Objlist_Entry);
3147     elm->obj = obj;
3148     STAILQ_INSERT_TAIL(list, elm, link);
3149 }
3150 
3151 static void
3152 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3153 {
3154 	Objlist_Entry *elm, *listelm;
3155 
3156 	STAILQ_FOREACH(listelm, list, link) {
3157 		if (listelm->obj == listobj)
3158 			break;
3159 	}
3160 	elm = NEW(Objlist_Entry);
3161 	elm->obj = obj;
3162 	if (listelm != NULL)
3163 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3164 	else
3165 		STAILQ_INSERT_TAIL(list, elm, link);
3166 }
3167 
3168 static void
3169 objlist_remove(Objlist *list, Obj_Entry *obj)
3170 {
3171     Objlist_Entry *elm;
3172 
3173     if ((elm = objlist_find(list, obj)) != NULL) {
3174 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3175 	free(elm);
3176     }
3177 }
3178 
3179 /*
3180  * Relocate dag rooted in the specified object.
3181  * Returns 0 on success, or -1 on failure.
3182  */
3183 
3184 static int
3185 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3186     int flags, RtldLockState *lockstate)
3187 {
3188 	Objlist_Entry *elm;
3189 	int error;
3190 
3191 	error = 0;
3192 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3193 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3194 		    lockstate);
3195 		if (error == -1)
3196 			break;
3197 	}
3198 	return (error);
3199 }
3200 
3201 /*
3202  * Prepare for, or clean after, relocating an object marked with
3203  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3204  * segments are remapped read-write.  After relocations are done, the
3205  * segment's permissions are returned back to the modes specified in
3206  * the phdrs.  If any relocation happened, or always for wired
3207  * program, COW is triggered.
3208  */
3209 static int
3210 reloc_textrel_prot(Obj_Entry *obj, bool before)
3211 {
3212 	const Elf_Phdr *ph;
3213 	void *base;
3214 	size_t l, sz;
3215 	int prot;
3216 
3217 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3218 	    l--, ph++) {
3219 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3220 			continue;
3221 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3222 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3223 		    rtld_trunc_page(ph->p_vaddr);
3224 		prot = before ? (PROT_READ | PROT_WRITE) :
3225 		    convert_prot(ph->p_flags);
3226 		if (mprotect(base, sz, prot) == -1) {
3227 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3228 			    obj->path, before ? "en" : "dis",
3229 			    rtld_strerror(errno));
3230 			return (-1);
3231 		}
3232 	}
3233 	return (0);
3234 }
3235 
3236 /* Process RELR relative relocations. */
3237 static void
3238 reloc_relr(Obj_Entry *obj)
3239 {
3240 	const Elf_Relr *relr, *relrlim;
3241 	Elf_Addr *where;
3242 
3243 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3244 	for (relr = obj->relr; relr < relrlim; relr++) {
3245 	    Elf_Relr entry = *relr;
3246 
3247 	    if ((entry & 1) == 0) {
3248 		where = (Elf_Addr *)(obj->relocbase + entry);
3249 		*where++ += (Elf_Addr)obj->relocbase;
3250 	    } else {
3251 		for (long i = 0; (entry >>= 1) != 0; i++)
3252 		    if ((entry & 1) != 0)
3253 			where[i] += (Elf_Addr)obj->relocbase;
3254 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3255 	    }
3256 	}
3257 }
3258 
3259 /*
3260  * Relocate single object.
3261  * Returns 0 on success, or -1 on failure.
3262  */
3263 static int
3264 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3265     int flags, RtldLockState *lockstate)
3266 {
3267 
3268 	if (obj->relocated)
3269 		return (0);
3270 	obj->relocated = true;
3271 	if (obj != rtldobj)
3272 		dbg("relocating \"%s\"", obj->path);
3273 
3274 	if (obj->symtab == NULL || obj->strtab == NULL ||
3275 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3276 		dbg("object %s has no run-time symbol table", obj->path);
3277 
3278 	/* There are relocations to the write-protected text segment. */
3279 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3280 		return (-1);
3281 
3282 	/* Process the non-PLT non-IFUNC relocations. */
3283 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3284 		return (-1);
3285 	reloc_relr(obj);
3286 
3287 	/* Re-protected the text segment. */
3288 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3289 		return (-1);
3290 
3291 	/* Set the special PLT or GOT entries. */
3292 	init_pltgot(obj);
3293 
3294 	/* Process the PLT relocations. */
3295 	if (reloc_plt(obj, flags, lockstate) == -1)
3296 		return (-1);
3297 	/* Relocate the jump slots if we are doing immediate binding. */
3298 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3299 	    lockstate) == -1)
3300 		return (-1);
3301 
3302 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3303 		return (-1);
3304 
3305 	/*
3306 	 * Set up the magic number and version in the Obj_Entry.  These
3307 	 * were checked in the crt1.o from the original ElfKit, so we
3308 	 * set them for backward compatibility.
3309 	 */
3310 	obj->magic = RTLD_MAGIC;
3311 	obj->version = RTLD_VERSION;
3312 
3313 	return (0);
3314 }
3315 
3316 /*
3317  * Relocate newly-loaded shared objects.  The argument is a pointer to
3318  * the Obj_Entry for the first such object.  All objects from the first
3319  * to the end of the list of objects are relocated.  Returns 0 on success,
3320  * or -1 on failure.
3321  */
3322 static int
3323 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3324     int flags, RtldLockState *lockstate)
3325 {
3326 	Obj_Entry *obj;
3327 	int error;
3328 
3329 	for (error = 0, obj = first;  obj != NULL;
3330 	    obj = TAILQ_NEXT(obj, next)) {
3331 		if (obj->marker)
3332 			continue;
3333 		error = relocate_object(obj, bind_now, rtldobj, flags,
3334 		    lockstate);
3335 		if (error == -1)
3336 			break;
3337 	}
3338 	return (error);
3339 }
3340 
3341 /*
3342  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3343  * referencing STT_GNU_IFUNC symbols is postponed till the other
3344  * relocations are done.  The indirect functions specified as
3345  * ifunc are allowed to call other symbols, so we need to have
3346  * objects relocated before asking for resolution from indirects.
3347  *
3348  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3349  * instead of the usual lazy handling of PLT slots.  It is
3350  * consistent with how GNU does it.
3351  */
3352 static int
3353 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3354     RtldLockState *lockstate)
3355 {
3356 
3357 	if (obj->ifuncs_resolved)
3358 		return (0);
3359 	obj->ifuncs_resolved = true;
3360 	if (!obj->irelative && !obj->irelative_nonplt &&
3361 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3362 	    !obj->non_plt_gnu_ifunc)
3363 		return (0);
3364 	if (obj_disable_relro(obj) == -1 ||
3365 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3366 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3367 	    lockstate) == -1) ||
3368 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3369 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3370 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3371 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3372 	    obj_enforce_relro(obj) == -1)
3373 		return (-1);
3374 	return (0);
3375 }
3376 
3377 static int
3378 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3379     RtldLockState *lockstate)
3380 {
3381 	Objlist_Entry *elm;
3382 	Obj_Entry *obj;
3383 
3384 	STAILQ_FOREACH(elm, list, link) {
3385 		obj = elm->obj;
3386 		if (obj->marker)
3387 			continue;
3388 		if (resolve_object_ifunc(obj, bind_now, flags,
3389 		    lockstate) == -1)
3390 			return (-1);
3391 	}
3392 	return (0);
3393 }
3394 
3395 /*
3396  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3397  * before the process exits.
3398  */
3399 static void
3400 rtld_exit(void)
3401 {
3402     RtldLockState lockstate;
3403 
3404     wlock_acquire(rtld_bind_lock, &lockstate);
3405     dbg("rtld_exit()");
3406     objlist_call_fini(&list_fini, NULL, &lockstate);
3407     /* No need to remove the items from the list, since we are exiting. */
3408     if (!libmap_disable)
3409         lm_fini();
3410     lock_release(rtld_bind_lock, &lockstate);
3411 }
3412 
3413 static void
3414 rtld_nop_exit(void)
3415 {
3416 }
3417 
3418 /*
3419  * Iterate over a search path, translate each element, and invoke the
3420  * callback on the result.
3421  */
3422 static void *
3423 path_enumerate(const char *path, path_enum_proc callback,
3424     const char *refobj_path, void *arg)
3425 {
3426     const char *trans;
3427     if (path == NULL)
3428 	return (NULL);
3429 
3430     path += strspn(path, ":;");
3431     while (*path != '\0') {
3432 	size_t len;
3433 	char  *res;
3434 
3435 	len = strcspn(path, ":;");
3436 	trans = lm_findn(refobj_path, path, len);
3437 	if (trans)
3438 	    res = callback(trans, strlen(trans), arg);
3439 	else
3440 	    res = callback(path, len, arg);
3441 
3442 	if (res != NULL)
3443 	    return (res);
3444 
3445 	path += len;
3446 	path += strspn(path, ":;");
3447     }
3448 
3449     return (NULL);
3450 }
3451 
3452 struct try_library_args {
3453     const char	*name;
3454     size_t	 namelen;
3455     char	*buffer;
3456     size_t	 buflen;
3457     int		 fd;
3458 };
3459 
3460 static void *
3461 try_library_path(const char *dir, size_t dirlen, void *param)
3462 {
3463     struct try_library_args *arg;
3464     int fd;
3465 
3466     arg = param;
3467     if (*dir == '/' || trust) {
3468 	char *pathname;
3469 
3470 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3471 		return (NULL);
3472 
3473 	pathname = arg->buffer;
3474 	strncpy(pathname, dir, dirlen);
3475 	pathname[dirlen] = '/';
3476 	strcpy(pathname + dirlen + 1, arg->name);
3477 
3478 	dbg("  Trying \"%s\"", pathname);
3479 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3480 	if (fd >= 0) {
3481 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3482 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3483 	    strcpy(pathname, arg->buffer);
3484 	    arg->fd = fd;
3485 	    return (pathname);
3486 	} else {
3487 	    dbg("  Failed to open \"%s\": %s",
3488 		pathname, rtld_strerror(errno));
3489 	}
3490     }
3491     return (NULL);
3492 }
3493 
3494 static char *
3495 search_library_path(const char *name, const char *path,
3496     const char *refobj_path, int *fdp)
3497 {
3498     char *p;
3499     struct try_library_args arg;
3500 
3501     if (path == NULL)
3502 	return (NULL);
3503 
3504     arg.name = name;
3505     arg.namelen = strlen(name);
3506     arg.buffer = xmalloc(PATH_MAX);
3507     arg.buflen = PATH_MAX;
3508     arg.fd = -1;
3509 
3510     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3511     *fdp = arg.fd;
3512 
3513     free(arg.buffer);
3514 
3515     return (p);
3516 }
3517 
3518 
3519 /*
3520  * Finds the library with the given name using the directory descriptors
3521  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3522  *
3523  * Returns a freshly-opened close-on-exec file descriptor for the library,
3524  * or -1 if the library cannot be found.
3525  */
3526 static char *
3527 search_library_pathfds(const char *name, const char *path, int *fdp)
3528 {
3529 	char *envcopy, *fdstr, *found, *last_token;
3530 	size_t len;
3531 	int dirfd, fd;
3532 
3533 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3534 
3535 	/* Don't load from user-specified libdirs into setuid binaries. */
3536 	if (!trust)
3537 		return (NULL);
3538 
3539 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3540 	if (path == NULL)
3541 		return (NULL);
3542 
3543 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3544 	if (name[0] == '/') {
3545 		dbg("Absolute path (%s) passed to %s", name, __func__);
3546 		return (NULL);
3547 	}
3548 
3549 	/*
3550 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3551 	 * copy of the path, as strtok_r rewrites separator tokens
3552 	 * with '\0'.
3553 	 */
3554 	found = NULL;
3555 	envcopy = xstrdup(path);
3556 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3557 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3558 		dirfd = parse_integer(fdstr);
3559 		if (dirfd < 0) {
3560 			_rtld_error("failed to parse directory FD: '%s'",
3561 				fdstr);
3562 			break;
3563 		}
3564 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3565 		if (fd >= 0) {
3566 			*fdp = fd;
3567 			len = strlen(fdstr) + strlen(name) + 3;
3568 			found = xmalloc(len);
3569 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3570 				_rtld_error("error generating '%d/%s'",
3571 				    dirfd, name);
3572 				rtld_die();
3573 			}
3574 			dbg("open('%s') => %d", found, fd);
3575 			break;
3576 		}
3577 	}
3578 	free(envcopy);
3579 
3580 	return (found);
3581 }
3582 
3583 
3584 int
3585 dlclose(void *handle)
3586 {
3587 	RtldLockState lockstate;
3588 	int error;
3589 
3590 	wlock_acquire(rtld_bind_lock, &lockstate);
3591 	error = dlclose_locked(handle, &lockstate);
3592 	lock_release(rtld_bind_lock, &lockstate);
3593 	return (error);
3594 }
3595 
3596 static int
3597 dlclose_locked(void *handle, RtldLockState *lockstate)
3598 {
3599     Obj_Entry *root;
3600 
3601     root = dlcheck(handle);
3602     if (root == NULL)
3603 	return (-1);
3604     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3605 	root->path);
3606 
3607     /* Unreference the object and its dependencies. */
3608     root->dl_refcount--;
3609 
3610     if (root->refcount == 1) {
3611 	/*
3612 	 * The object will be no longer referenced, so we must unload it.
3613 	 * First, call the fini functions.
3614 	 */
3615 	objlist_call_fini(&list_fini, root, lockstate);
3616 
3617 	unref_dag(root);
3618 
3619 	/* Finish cleaning up the newly-unreferenced objects. */
3620 	GDB_STATE(RT_DELETE,&root->linkmap);
3621 	unload_object(root, lockstate);
3622 	GDB_STATE(RT_CONSISTENT,NULL);
3623     } else
3624 	unref_dag(root);
3625 
3626     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3627     return (0);
3628 }
3629 
3630 char *
3631 dlerror(void)
3632 {
3633 	if (*(lockinfo.dlerror_seen()) != 0)
3634 		return (NULL);
3635 	*lockinfo.dlerror_seen() = 1;
3636 	return (lockinfo.dlerror_loc());
3637 }
3638 
3639 /*
3640  * This function is deprecated and has no effect.
3641  */
3642 void
3643 dllockinit(void *context,
3644     void *(*_lock_create)(void *context) __unused,
3645     void (*_rlock_acquire)(void *lock) __unused,
3646     void (*_wlock_acquire)(void *lock)  __unused,
3647     void (*_lock_release)(void *lock) __unused,
3648     void (*_lock_destroy)(void *lock) __unused,
3649     void (*context_destroy)(void *context))
3650 {
3651     static void *cur_context;
3652     static void (*cur_context_destroy)(void *);
3653 
3654     /* Just destroy the context from the previous call, if necessary. */
3655     if (cur_context_destroy != NULL)
3656 	cur_context_destroy(cur_context);
3657     cur_context = context;
3658     cur_context_destroy = context_destroy;
3659 }
3660 
3661 void *
3662 dlopen(const char *name, int mode)
3663 {
3664 
3665 	return (rtld_dlopen(name, -1, mode));
3666 }
3667 
3668 void *
3669 fdlopen(int fd, int mode)
3670 {
3671 
3672 	return (rtld_dlopen(NULL, fd, mode));
3673 }
3674 
3675 static void *
3676 rtld_dlopen(const char *name, int fd, int mode)
3677 {
3678     RtldLockState lockstate;
3679     int lo_flags;
3680 
3681     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3682     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3683     if (ld_tracing != NULL) {
3684 	rlock_acquire(rtld_bind_lock, &lockstate);
3685 	if (sigsetjmp(lockstate.env, 0) != 0)
3686 	    lock_upgrade(rtld_bind_lock, &lockstate);
3687 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3688 	lock_release(rtld_bind_lock, &lockstate);
3689     }
3690     lo_flags = RTLD_LO_DLOPEN;
3691     if (mode & RTLD_NODELETE)
3692 	    lo_flags |= RTLD_LO_NODELETE;
3693     if (mode & RTLD_NOLOAD)
3694 	    lo_flags |= RTLD_LO_NOLOAD;
3695     if (mode & RTLD_DEEPBIND)
3696 	    lo_flags |= RTLD_LO_DEEPBIND;
3697     if (ld_tracing != NULL)
3698 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3699 
3700     return (dlopen_object(name, fd, obj_main, lo_flags,
3701       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3702 }
3703 
3704 static void
3705 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3706 {
3707 
3708 	obj->dl_refcount--;
3709 	unref_dag(obj);
3710 	if (obj->refcount == 0)
3711 		unload_object(obj, lockstate);
3712 }
3713 
3714 static Obj_Entry *
3715 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3716     int mode, RtldLockState *lockstate)
3717 {
3718     Obj_Entry *old_obj_tail;
3719     Obj_Entry *obj;
3720     Objlist initlist;
3721     RtldLockState mlockstate;
3722     int result;
3723 
3724     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3725       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3726       refobj->path, lo_flags, mode);
3727     objlist_init(&initlist);
3728 
3729     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3730 	wlock_acquire(rtld_bind_lock, &mlockstate);
3731 	lockstate = &mlockstate;
3732     }
3733     GDB_STATE(RT_ADD,NULL);
3734 
3735     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3736     obj = NULL;
3737     if (name == NULL && fd == -1) {
3738 	obj = obj_main;
3739 	obj->refcount++;
3740     } else {
3741 	obj = load_object(name, fd, refobj, lo_flags);
3742     }
3743 
3744     if (obj) {
3745 	obj->dl_refcount++;
3746 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3747 	    objlist_push_tail(&list_global, obj);
3748 	if (globallist_next(old_obj_tail) != NULL) {
3749 	    /* We loaded something new. */
3750 	    assert(globallist_next(old_obj_tail) == obj);
3751 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3752 		obj->symbolic = true;
3753 	    result = 0;
3754 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3755 	      obj->static_tls && !allocate_tls_offset(obj)) {
3756 		_rtld_error("%s: No space available "
3757 		  "for static Thread Local Storage", obj->path);
3758 		result = -1;
3759 	    }
3760 	    if (result != -1)
3761 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3762 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3763 	    init_dag(obj);
3764 	    ref_dag(obj);
3765 	    if (result != -1)
3766 		result = rtld_verify_versions(&obj->dagmembers);
3767 	    if (result != -1 && ld_tracing)
3768 		goto trace;
3769 	    if (result == -1 || relocate_object_dag(obj,
3770 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3771 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3772 	      lockstate) == -1) {
3773 		dlopen_cleanup(obj, lockstate);
3774 		obj = NULL;
3775 	    } else if (lo_flags & RTLD_LO_EARLY) {
3776 		/*
3777 		 * Do not call the init functions for early loaded
3778 		 * filtees.  The image is still not initialized enough
3779 		 * for them to work.
3780 		 *
3781 		 * Our object is found by the global object list and
3782 		 * will be ordered among all init calls done right
3783 		 * before transferring control to main.
3784 		 */
3785 	    } else {
3786 		/* Make list of init functions to call. */
3787 		initlist_add_objects(obj, obj, &initlist);
3788 	    }
3789 	    /*
3790 	     * Process all no_delete or global objects here, given
3791 	     * them own DAGs to prevent their dependencies from being
3792 	     * unloaded.  This has to be done after we have loaded all
3793 	     * of the dependencies, so that we do not miss any.
3794 	     */
3795 	    if (obj != NULL)
3796 		process_z(obj);
3797 	} else {
3798 	    /*
3799 	     * Bump the reference counts for objects on this DAG.  If
3800 	     * this is the first dlopen() call for the object that was
3801 	     * already loaded as a dependency, initialize the dag
3802 	     * starting at it.
3803 	     */
3804 	    init_dag(obj);
3805 	    ref_dag(obj);
3806 
3807 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3808 		goto trace;
3809 	}
3810 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3811 	  obj->z_nodelete) && !obj->ref_nodel) {
3812 	    dbg("obj %s nodelete", obj->path);
3813 	    ref_dag(obj);
3814 	    obj->z_nodelete = obj->ref_nodel = true;
3815 	}
3816     }
3817 
3818     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3819 	name);
3820     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3821 
3822     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3823 	map_stacks_exec(lockstate);
3824 	if (obj != NULL)
3825 	    distribute_static_tls(&initlist, lockstate);
3826     }
3827 
3828     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3829       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3830       lockstate) == -1) {
3831 	objlist_clear(&initlist);
3832 	dlopen_cleanup(obj, lockstate);
3833 	if (lockstate == &mlockstate)
3834 	    lock_release(rtld_bind_lock, lockstate);
3835 	return (NULL);
3836     }
3837 
3838     if (!(lo_flags & RTLD_LO_EARLY)) {
3839 	/* Call the init functions. */
3840 	objlist_call_init(&initlist, lockstate);
3841     }
3842     objlist_clear(&initlist);
3843     if (lockstate == &mlockstate)
3844 	lock_release(rtld_bind_lock, lockstate);
3845     return (obj);
3846 trace:
3847     trace_loaded_objects(obj, false);
3848     if (lockstate == &mlockstate)
3849 	lock_release(rtld_bind_lock, lockstate);
3850     exit(0);
3851 }
3852 
3853 static void *
3854 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3855     int flags)
3856 {
3857     DoneList donelist;
3858     const Obj_Entry *obj, *defobj;
3859     const Elf_Sym *def;
3860     SymLook req;
3861     RtldLockState lockstate;
3862     tls_index ti;
3863     void *sym;
3864     int res;
3865 
3866     def = NULL;
3867     defobj = NULL;
3868     symlook_init(&req, name);
3869     req.ventry = ve;
3870     req.flags = flags | SYMLOOK_IN_PLT;
3871     req.lockstate = &lockstate;
3872 
3873     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3874     rlock_acquire(rtld_bind_lock, &lockstate);
3875     if (sigsetjmp(lockstate.env, 0) != 0)
3876 	    lock_upgrade(rtld_bind_lock, &lockstate);
3877     if (handle == NULL || handle == RTLD_NEXT ||
3878 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3879 
3880 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3881 	    _rtld_error("Cannot determine caller's shared object");
3882 	    lock_release(rtld_bind_lock, &lockstate);
3883 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3884 	    return (NULL);
3885 	}
3886 	if (handle == NULL) {	/* Just the caller's shared object. */
3887 	    res = symlook_obj(&req, obj);
3888 	    if (res == 0) {
3889 		def = req.sym_out;
3890 		defobj = req.defobj_out;
3891 	    }
3892 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3893 		   handle == RTLD_SELF) { /* ... caller included */
3894 	    if (handle == RTLD_NEXT)
3895 		obj = globallist_next(obj);
3896 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3897 		if (obj->marker)
3898 		    continue;
3899 		res = symlook_obj(&req, obj);
3900 		if (res == 0) {
3901 		    if (def == NULL || (ld_dynamic_weak &&
3902                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3903 			def = req.sym_out;
3904 			defobj = req.defobj_out;
3905 			if (!ld_dynamic_weak ||
3906 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3907 			    break;
3908 		    }
3909 		}
3910 	    }
3911 	    /*
3912 	     * Search the dynamic linker itself, and possibly resolve the
3913 	     * symbol from there.  This is how the application links to
3914 	     * dynamic linker services such as dlopen.
3915 	     * Note that we ignore ld_dynamic_weak == false case,
3916 	     * always overriding weak symbols by rtld definitions.
3917 	     */
3918 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3919 		res = symlook_obj(&req, &obj_rtld);
3920 		if (res == 0) {
3921 		    def = req.sym_out;
3922 		    defobj = req.defobj_out;
3923 		}
3924 	    }
3925 	} else {
3926 	    assert(handle == RTLD_DEFAULT);
3927 	    res = symlook_default(&req, obj);
3928 	    if (res == 0) {
3929 		defobj = req.defobj_out;
3930 		def = req.sym_out;
3931 	    }
3932 	}
3933     } else {
3934 	if ((obj = dlcheck(handle)) == NULL) {
3935 	    lock_release(rtld_bind_lock, &lockstate);
3936 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3937 	    return (NULL);
3938 	}
3939 
3940 	donelist_init(&donelist);
3941 	if (obj->mainprog) {
3942             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3943 	    res = symlook_global(&req, &donelist);
3944 	    if (res == 0) {
3945 		def = req.sym_out;
3946 		defobj = req.defobj_out;
3947 	    }
3948 	    /*
3949 	     * Search the dynamic linker itself, and possibly resolve the
3950 	     * symbol from there.  This is how the application links to
3951 	     * dynamic linker services such as dlopen.
3952 	     */
3953 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3954 		res = symlook_obj(&req, &obj_rtld);
3955 		if (res == 0) {
3956 		    def = req.sym_out;
3957 		    defobj = req.defobj_out;
3958 		}
3959 	    }
3960 	}
3961 	else {
3962 	    /* Search the whole DAG rooted at the given object. */
3963 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3964 	    if (res == 0) {
3965 		def = req.sym_out;
3966 		defobj = req.defobj_out;
3967 	    }
3968 	}
3969     }
3970 
3971     if (def != NULL) {
3972 	lock_release(rtld_bind_lock, &lockstate);
3973 
3974 	/*
3975 	 * The value required by the caller is derived from the value
3976 	 * of the symbol. this is simply the relocated value of the
3977 	 * symbol.
3978 	 */
3979 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3980 	    sym = make_function_pointer(def, defobj);
3981 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3982 	    sym = rtld_resolve_ifunc(defobj, def);
3983 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3984 	    ti.ti_module = defobj->tlsindex;
3985 	    ti.ti_offset = def->st_value;
3986 	    sym = __tls_get_addr(&ti);
3987 	} else
3988 	    sym = defobj->relocbase + def->st_value;
3989 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3990 	return (sym);
3991     }
3992 
3993     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3994       ve != NULL ? ve->name : "");
3995     lock_release(rtld_bind_lock, &lockstate);
3996     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3997     return (NULL);
3998 }
3999 
4000 void *
4001 dlsym(void *handle, const char *name)
4002 {
4003 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4004 	    SYMLOOK_DLSYM));
4005 }
4006 
4007 dlfunc_t
4008 dlfunc(void *handle, const char *name)
4009 {
4010 	union {
4011 		void *d;
4012 		dlfunc_t f;
4013 	} rv;
4014 
4015 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4016 	    SYMLOOK_DLSYM);
4017 	return (rv.f);
4018 }
4019 
4020 void *
4021 dlvsym(void *handle, const char *name, const char *version)
4022 {
4023 	Ver_Entry ventry;
4024 
4025 	ventry.name = version;
4026 	ventry.file = NULL;
4027 	ventry.hash = elf_hash(version);
4028 	ventry.flags= 0;
4029 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4030 	    SYMLOOK_DLSYM));
4031 }
4032 
4033 int
4034 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4035 {
4036     const Obj_Entry *obj;
4037     RtldLockState lockstate;
4038 
4039     rlock_acquire(rtld_bind_lock, &lockstate);
4040     obj = obj_from_addr(addr);
4041     if (obj == NULL) {
4042         _rtld_error("No shared object contains address");
4043 	lock_release(rtld_bind_lock, &lockstate);
4044         return (0);
4045     }
4046     rtld_fill_dl_phdr_info(obj, phdr_info);
4047     lock_release(rtld_bind_lock, &lockstate);
4048     return (1);
4049 }
4050 
4051 int
4052 dladdr(const void *addr, Dl_info *info)
4053 {
4054     const Obj_Entry *obj;
4055     const Elf_Sym *def;
4056     void *symbol_addr;
4057     unsigned long symoffset;
4058     RtldLockState lockstate;
4059 
4060     rlock_acquire(rtld_bind_lock, &lockstate);
4061     obj = obj_from_addr(addr);
4062     if (obj == NULL) {
4063         _rtld_error("No shared object contains address");
4064 	lock_release(rtld_bind_lock, &lockstate);
4065         return (0);
4066     }
4067     info->dli_fname = obj->path;
4068     info->dli_fbase = obj->mapbase;
4069     info->dli_saddr = (void *)0;
4070     info->dli_sname = NULL;
4071 
4072     /*
4073      * Walk the symbol list looking for the symbol whose address is
4074      * closest to the address sent in.
4075      */
4076     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4077         def = obj->symtab + symoffset;
4078 
4079         /*
4080          * For skip the symbol if st_shndx is either SHN_UNDEF or
4081          * SHN_COMMON.
4082          */
4083         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4084             continue;
4085 
4086         /*
4087          * If the symbol is greater than the specified address, or if it
4088          * is further away from addr than the current nearest symbol,
4089          * then reject it.
4090          */
4091         symbol_addr = obj->relocbase + def->st_value;
4092         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4093             continue;
4094 
4095         /* Update our idea of the nearest symbol. */
4096         info->dli_sname = obj->strtab + def->st_name;
4097         info->dli_saddr = symbol_addr;
4098 
4099         /* Exact match? */
4100         if (info->dli_saddr == addr)
4101             break;
4102     }
4103     lock_release(rtld_bind_lock, &lockstate);
4104     return (1);
4105 }
4106 
4107 int
4108 dlinfo(void *handle, int request, void *p)
4109 {
4110     const Obj_Entry *obj;
4111     RtldLockState lockstate;
4112     int error;
4113 
4114     rlock_acquire(rtld_bind_lock, &lockstate);
4115 
4116     if (handle == NULL || handle == RTLD_SELF) {
4117 	void *retaddr;
4118 
4119 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4120 	if ((obj = obj_from_addr(retaddr)) == NULL)
4121 	    _rtld_error("Cannot determine caller's shared object");
4122     } else
4123 	obj = dlcheck(handle);
4124 
4125     if (obj == NULL) {
4126 	lock_release(rtld_bind_lock, &lockstate);
4127 	return (-1);
4128     }
4129 
4130     error = 0;
4131     switch (request) {
4132     case RTLD_DI_LINKMAP:
4133 	*((struct link_map const **)p) = &obj->linkmap;
4134 	break;
4135     case RTLD_DI_ORIGIN:
4136 	error = rtld_dirname(obj->path, p);
4137 	break;
4138 
4139     case RTLD_DI_SERINFOSIZE:
4140     case RTLD_DI_SERINFO:
4141 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4142 	break;
4143 
4144     default:
4145 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4146 	error = -1;
4147     }
4148 
4149     lock_release(rtld_bind_lock, &lockstate);
4150 
4151     return (error);
4152 }
4153 
4154 static void
4155 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4156 {
4157 	uintptr_t **dtvp;
4158 
4159 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4160 	phdr_info->dlpi_name = obj->path;
4161 	phdr_info->dlpi_phdr = obj->phdr;
4162 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4163 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4164 	dtvp = &_tcb_get()->tcb_dtv;
4165 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4166 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4167 	phdr_info->dlpi_adds = obj_loads;
4168 	phdr_info->dlpi_subs = obj_loads - obj_count;
4169 }
4170 
4171 int
4172 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4173 {
4174 	struct dl_phdr_info phdr_info;
4175 	Obj_Entry *obj, marker;
4176 	RtldLockState bind_lockstate, phdr_lockstate;
4177 	int error;
4178 
4179 	init_marker(&marker);
4180 	error = 0;
4181 
4182 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4183 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4184 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4185 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4186 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4187 		hold_object(obj);
4188 		lock_release(rtld_bind_lock, &bind_lockstate);
4189 
4190 		error = callback(&phdr_info, sizeof phdr_info, param);
4191 
4192 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4193 		unhold_object(obj);
4194 		obj = globallist_next(&marker);
4195 		TAILQ_REMOVE(&obj_list, &marker, next);
4196 		if (error != 0) {
4197 			lock_release(rtld_bind_lock, &bind_lockstate);
4198 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4199 			return (error);
4200 		}
4201 	}
4202 
4203 	if (error == 0) {
4204 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4205 		lock_release(rtld_bind_lock, &bind_lockstate);
4206 		error = callback(&phdr_info, sizeof(phdr_info), param);
4207 	}
4208 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4209 	return (error);
4210 }
4211 
4212 static void *
4213 fill_search_info(const char *dir, size_t dirlen, void *param)
4214 {
4215     struct fill_search_info_args *arg;
4216 
4217     arg = param;
4218 
4219     if (arg->request == RTLD_DI_SERINFOSIZE) {
4220 	arg->serinfo->dls_cnt ++;
4221 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4222     } else {
4223 	struct dl_serpath *s_entry;
4224 
4225 	s_entry = arg->serpath;
4226 	s_entry->dls_name  = arg->strspace;
4227 	s_entry->dls_flags = arg->flags;
4228 
4229 	strncpy(arg->strspace, dir, dirlen);
4230 	arg->strspace[dirlen] = '\0';
4231 
4232 	arg->strspace += dirlen + 1;
4233 	arg->serpath++;
4234     }
4235 
4236     return (NULL);
4237 }
4238 
4239 static int
4240 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4241 {
4242     struct dl_serinfo _info;
4243     struct fill_search_info_args args;
4244 
4245     args.request = RTLD_DI_SERINFOSIZE;
4246     args.serinfo = &_info;
4247 
4248     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4249     _info.dls_cnt  = 0;
4250 
4251     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4252     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4253     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4254     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4255     if (!obj->z_nodeflib)
4256       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4257 
4258 
4259     if (request == RTLD_DI_SERINFOSIZE) {
4260 	info->dls_size = _info.dls_size;
4261 	info->dls_cnt = _info.dls_cnt;
4262 	return (0);
4263     }
4264 
4265     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4266 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4267 	return (-1);
4268     }
4269 
4270     args.request  = RTLD_DI_SERINFO;
4271     args.serinfo  = info;
4272     args.serpath  = &info->dls_serpath[0];
4273     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4274 
4275     args.flags = LA_SER_RUNPATH;
4276     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4277 	return (-1);
4278 
4279     args.flags = LA_SER_LIBPATH;
4280     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4281 	return (-1);
4282 
4283     args.flags = LA_SER_RUNPATH;
4284     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4285 	return (-1);
4286 
4287     args.flags = LA_SER_CONFIG;
4288     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4289       != NULL)
4290 	return (-1);
4291 
4292     args.flags = LA_SER_DEFAULT;
4293     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4294       fill_search_info, NULL, &args) != NULL)
4295 	return (-1);
4296     return (0);
4297 }
4298 
4299 static int
4300 rtld_dirname(const char *path, char *bname)
4301 {
4302     const char *endp;
4303 
4304     /* Empty or NULL string gets treated as "." */
4305     if (path == NULL || *path == '\0') {
4306 	bname[0] = '.';
4307 	bname[1] = '\0';
4308 	return (0);
4309     }
4310 
4311     /* Strip trailing slashes */
4312     endp = path + strlen(path) - 1;
4313     while (endp > path && *endp == '/')
4314 	endp--;
4315 
4316     /* Find the start of the dir */
4317     while (endp > path && *endp != '/')
4318 	endp--;
4319 
4320     /* Either the dir is "/" or there are no slashes */
4321     if (endp == path) {
4322 	bname[0] = *endp == '/' ? '/' : '.';
4323 	bname[1] = '\0';
4324 	return (0);
4325     } else {
4326 	do {
4327 	    endp--;
4328 	} while (endp > path && *endp == '/');
4329     }
4330 
4331     if (endp - path + 2 > PATH_MAX)
4332     {
4333 	_rtld_error("Filename is too long: %s", path);
4334 	return(-1);
4335     }
4336 
4337     strncpy(bname, path, endp - path + 1);
4338     bname[endp - path + 1] = '\0';
4339     return (0);
4340 }
4341 
4342 static int
4343 rtld_dirname_abs(const char *path, char *base)
4344 {
4345 	char *last;
4346 
4347 	if (realpath(path, base) == NULL) {
4348 		_rtld_error("realpath \"%s\" failed (%s)", path,
4349 		    rtld_strerror(errno));
4350 		return (-1);
4351 	}
4352 	dbg("%s -> %s", path, base);
4353 	last = strrchr(base, '/');
4354 	if (last == NULL) {
4355 		_rtld_error("non-abs result from realpath \"%s\"", path);
4356 		return (-1);
4357 	}
4358 	if (last != base)
4359 		*last = '\0';
4360 	return (0);
4361 }
4362 
4363 static void
4364 linkmap_add(Obj_Entry *obj)
4365 {
4366 	struct link_map *l, *prev;
4367 
4368 	l = &obj->linkmap;
4369 	l->l_name = obj->path;
4370 	l->l_base = obj->mapbase;
4371 	l->l_ld = obj->dynamic;
4372 	l->l_addr = obj->relocbase;
4373 
4374 	if (r_debug.r_map == NULL) {
4375 		r_debug.r_map = l;
4376 		return;
4377 	}
4378 
4379 	/*
4380 	 * Scan to the end of the list, but not past the entry for the
4381 	 * dynamic linker, which we want to keep at the very end.
4382 	 */
4383 	for (prev = r_debug.r_map;
4384 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4385 	     prev = prev->l_next)
4386 		;
4387 
4388 	/* Link in the new entry. */
4389 	l->l_prev = prev;
4390 	l->l_next = prev->l_next;
4391 	if (l->l_next != NULL)
4392 		l->l_next->l_prev = l;
4393 	prev->l_next = l;
4394 }
4395 
4396 static void
4397 linkmap_delete(Obj_Entry *obj)
4398 {
4399 	struct link_map *l;
4400 
4401 	l = &obj->linkmap;
4402 	if (l->l_prev == NULL) {
4403 		if ((r_debug.r_map = l->l_next) != NULL)
4404 			l->l_next->l_prev = NULL;
4405 		return;
4406 	}
4407 
4408 	if ((l->l_prev->l_next = l->l_next) != NULL)
4409 		l->l_next->l_prev = l->l_prev;
4410 }
4411 
4412 /*
4413  * Function for the debugger to set a breakpoint on to gain control.
4414  *
4415  * The two parameters allow the debugger to easily find and determine
4416  * what the runtime loader is doing and to whom it is doing it.
4417  *
4418  * When the loadhook trap is hit (r_debug_state, set at program
4419  * initialization), the arguments can be found on the stack:
4420  *
4421  *  +8   struct link_map *m
4422  *  +4   struct r_debug  *rd
4423  *  +0   RetAddr
4424  */
4425 void
4426 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4427 {
4428     /*
4429      * The following is a hack to force the compiler to emit calls to
4430      * this function, even when optimizing.  If the function is empty,
4431      * the compiler is not obliged to emit any code for calls to it,
4432      * even when marked __noinline.  However, gdb depends on those
4433      * calls being made.
4434      */
4435     __compiler_membar();
4436 }
4437 
4438 /*
4439  * A function called after init routines have completed. This can be used to
4440  * break before a program's entry routine is called, and can be used when
4441  * main is not available in the symbol table.
4442  */
4443 void
4444 _r_debug_postinit(struct link_map *m __unused)
4445 {
4446 
4447 	/* See r_debug_state(). */
4448 	__compiler_membar();
4449 }
4450 
4451 static void
4452 release_object(Obj_Entry *obj)
4453 {
4454 
4455 	if (obj->holdcount > 0) {
4456 		obj->unholdfree = true;
4457 		return;
4458 	}
4459 	munmap(obj->mapbase, obj->mapsize);
4460 	linkmap_delete(obj);
4461 	obj_free(obj);
4462 }
4463 
4464 /*
4465  * Get address of the pointer variable in the main program.
4466  * Prefer non-weak symbol over the weak one.
4467  */
4468 static const void **
4469 get_program_var_addr(const char *name, RtldLockState *lockstate)
4470 {
4471     SymLook req;
4472     DoneList donelist;
4473 
4474     symlook_init(&req, name);
4475     req.lockstate = lockstate;
4476     donelist_init(&donelist);
4477     if (symlook_global(&req, &donelist) != 0)
4478 	return (NULL);
4479     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4480 	return ((const void **)make_function_pointer(req.sym_out,
4481 	  req.defobj_out));
4482     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4483 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4484     else
4485 	return ((const void **)(req.defobj_out->relocbase +
4486 	  req.sym_out->st_value));
4487 }
4488 
4489 /*
4490  * Set a pointer variable in the main program to the given value.  This
4491  * is used to set key variables such as "environ" before any of the
4492  * init functions are called.
4493  */
4494 static void
4495 set_program_var(const char *name, const void *value)
4496 {
4497     const void **addr;
4498 
4499     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4500 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4501 	*addr = value;
4502     }
4503 }
4504 
4505 /*
4506  * Search the global objects, including dependencies and main object,
4507  * for the given symbol.
4508  */
4509 static int
4510 symlook_global(SymLook *req, DoneList *donelist)
4511 {
4512     SymLook req1;
4513     const Objlist_Entry *elm;
4514     int res;
4515 
4516     symlook_init_from_req(&req1, req);
4517 
4518     /* Search all objects loaded at program start up. */
4519     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4520       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4521 	res = symlook_list(&req1, &list_main, donelist);
4522 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4523 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4524 	    req->sym_out = req1.sym_out;
4525 	    req->defobj_out = req1.defobj_out;
4526 	    assert(req->defobj_out != NULL);
4527 	}
4528     }
4529 
4530     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4531     STAILQ_FOREACH(elm, &list_global, link) {
4532 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4533           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4534 	    break;
4535 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4536 	if (res == 0 && (req->defobj_out == NULL ||
4537 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4538 	    req->sym_out = req1.sym_out;
4539 	    req->defobj_out = req1.defobj_out;
4540 	    assert(req->defobj_out != NULL);
4541 	}
4542     }
4543 
4544     return (req->sym_out != NULL ? 0 : ESRCH);
4545 }
4546 
4547 /*
4548  * Given a symbol name in a referencing object, find the corresponding
4549  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4550  * no definition was found.  Returns a pointer to the Obj_Entry of the
4551  * defining object via the reference parameter DEFOBJ_OUT.
4552  */
4553 static int
4554 symlook_default(SymLook *req, const Obj_Entry *refobj)
4555 {
4556     DoneList donelist;
4557     const Objlist_Entry *elm;
4558     SymLook req1;
4559     int res;
4560 
4561     donelist_init(&donelist);
4562     symlook_init_from_req(&req1, req);
4563 
4564     /*
4565      * Look first in the referencing object if linked symbolically,
4566      * and similarly handle protected symbols.
4567      */
4568     res = symlook_obj(&req1, refobj);
4569     if (res == 0 && (refobj->symbolic ||
4570       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4571 	req->sym_out = req1.sym_out;
4572 	req->defobj_out = req1.defobj_out;
4573 	assert(req->defobj_out != NULL);
4574     }
4575     if (refobj->symbolic || req->defobj_out != NULL)
4576 	donelist_check(&donelist, refobj);
4577 
4578     symlook_global(req, &donelist);
4579 
4580     /* Search all dlopened DAGs containing the referencing object. */
4581     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4582 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4583           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4584 	    break;
4585 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4586 	if (res == 0 && (req->sym_out == NULL ||
4587 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4588 	    req->sym_out = req1.sym_out;
4589 	    req->defobj_out = req1.defobj_out;
4590 	    assert(req->defobj_out != NULL);
4591 	}
4592     }
4593 
4594     /*
4595      * Search the dynamic linker itself, and possibly resolve the
4596      * symbol from there.  This is how the application links to
4597      * dynamic linker services such as dlopen.
4598      */
4599     if (req->sym_out == NULL ||
4600       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4601 	res = symlook_obj(&req1, &obj_rtld);
4602 	if (res == 0) {
4603 	    req->sym_out = req1.sym_out;
4604 	    req->defobj_out = req1.defobj_out;
4605 	    assert(req->defobj_out != NULL);
4606 	}
4607     }
4608 
4609     return (req->sym_out != NULL ? 0 : ESRCH);
4610 }
4611 
4612 static int
4613 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4614 {
4615     const Elf_Sym *def;
4616     const Obj_Entry *defobj;
4617     const Objlist_Entry *elm;
4618     SymLook req1;
4619     int res;
4620 
4621     def = NULL;
4622     defobj = NULL;
4623     STAILQ_FOREACH(elm, objlist, link) {
4624 	if (donelist_check(dlp, elm->obj))
4625 	    continue;
4626 	symlook_init_from_req(&req1, req);
4627 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4628 	    if (def == NULL || (ld_dynamic_weak &&
4629               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4630 		def = req1.sym_out;
4631 		defobj = req1.defobj_out;
4632 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4633 		    break;
4634 	    }
4635 	}
4636     }
4637     if (def != NULL) {
4638 	req->sym_out = def;
4639 	req->defobj_out = defobj;
4640 	return (0);
4641     }
4642     return (ESRCH);
4643 }
4644 
4645 /*
4646  * Search the chain of DAGS cointed to by the given Needed_Entry
4647  * for a symbol of the given name.  Each DAG is scanned completely
4648  * before advancing to the next one.  Returns a pointer to the symbol,
4649  * or NULL if no definition was found.
4650  */
4651 static int
4652 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4653 {
4654     const Elf_Sym *def;
4655     const Needed_Entry *n;
4656     const Obj_Entry *defobj;
4657     SymLook req1;
4658     int res;
4659 
4660     def = NULL;
4661     defobj = NULL;
4662     symlook_init_from_req(&req1, req);
4663     for (n = needed; n != NULL; n = n->next) {
4664 	if (n->obj == NULL ||
4665 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4666 	    continue;
4667 	if (def == NULL || (ld_dynamic_weak &&
4668           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4669 	    def = req1.sym_out;
4670 	    defobj = req1.defobj_out;
4671 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4672 		break;
4673 	}
4674     }
4675     if (def != NULL) {
4676 	req->sym_out = def;
4677 	req->defobj_out = defobj;
4678 	return (0);
4679     }
4680     return (ESRCH);
4681 }
4682 
4683 /*
4684  * Search the symbol table of a single shared object for a symbol of
4685  * the given name and version, if requested.  Returns a pointer to the
4686  * symbol, or NULL if no definition was found.  If the object is
4687  * filter, return filtered symbol from filtee.
4688  *
4689  * The symbol's hash value is passed in for efficiency reasons; that
4690  * eliminates many recomputations of the hash value.
4691  */
4692 int
4693 symlook_obj(SymLook *req, const Obj_Entry *obj)
4694 {
4695     DoneList donelist;
4696     SymLook req1;
4697     int flags, res, mres;
4698 
4699     /*
4700      * If there is at least one valid hash at this point, we prefer to
4701      * use the faster GNU version if available.
4702      */
4703     if (obj->valid_hash_gnu)
4704 	mres = symlook_obj1_gnu(req, obj);
4705     else if (obj->valid_hash_sysv)
4706 	mres = symlook_obj1_sysv(req, obj);
4707     else
4708 	return (EINVAL);
4709 
4710     if (mres == 0) {
4711 	if (obj->needed_filtees != NULL) {
4712 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4713 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4714 	    donelist_init(&donelist);
4715 	    symlook_init_from_req(&req1, req);
4716 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4717 	    if (res == 0) {
4718 		req->sym_out = req1.sym_out;
4719 		req->defobj_out = req1.defobj_out;
4720 	    }
4721 	    return (res);
4722 	}
4723 	if (obj->needed_aux_filtees != NULL) {
4724 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4725 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4726 	    donelist_init(&donelist);
4727 	    symlook_init_from_req(&req1, req);
4728 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4729 	    if (res == 0) {
4730 		req->sym_out = req1.sym_out;
4731 		req->defobj_out = req1.defobj_out;
4732 		return (res);
4733 	    }
4734 	}
4735     }
4736     return (mres);
4737 }
4738 
4739 /* Symbol match routine common to both hash functions */
4740 static bool
4741 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4742     const unsigned long symnum)
4743 {
4744 	Elf_Versym verndx;
4745 	const Elf_Sym *symp;
4746 	const char *strp;
4747 
4748 	symp = obj->symtab + symnum;
4749 	strp = obj->strtab + symp->st_name;
4750 
4751 	switch (ELF_ST_TYPE(symp->st_info)) {
4752 	case STT_FUNC:
4753 	case STT_NOTYPE:
4754 	case STT_OBJECT:
4755 	case STT_COMMON:
4756 	case STT_GNU_IFUNC:
4757 		if (symp->st_value == 0)
4758 			return (false);
4759 		/* fallthrough */
4760 	case STT_TLS:
4761 		if (symp->st_shndx != SHN_UNDEF)
4762 			break;
4763 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4764 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4765 			break;
4766 		/* fallthrough */
4767 	default:
4768 		return (false);
4769 	}
4770 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4771 		return (false);
4772 
4773 	if (req->ventry == NULL) {
4774 		if (obj->versyms != NULL) {
4775 			verndx = VER_NDX(obj->versyms[symnum]);
4776 			if (verndx > obj->vernum) {
4777 				_rtld_error(
4778 				    "%s: symbol %s references wrong version %d",
4779 				    obj->path, obj->strtab + symnum, verndx);
4780 				return (false);
4781 			}
4782 			/*
4783 			 * If we are not called from dlsym (i.e. this
4784 			 * is a normal relocation from unversioned
4785 			 * binary), accept the symbol immediately if
4786 			 * it happens to have first version after this
4787 			 * shared object became versioned.  Otherwise,
4788 			 * if symbol is versioned and not hidden,
4789 			 * remember it. If it is the only symbol with
4790 			 * this name exported by the shared object, it
4791 			 * will be returned as a match by the calling
4792 			 * function. If symbol is global (verndx < 2)
4793 			 * accept it unconditionally.
4794 			 */
4795 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4796 			    verndx == VER_NDX_GIVEN) {
4797 				result->sym_out = symp;
4798 				return (true);
4799 			}
4800 			else if (verndx >= VER_NDX_GIVEN) {
4801 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4802 				    == 0) {
4803 					if (result->vsymp == NULL)
4804 						result->vsymp = symp;
4805 					result->vcount++;
4806 				}
4807 				return (false);
4808 			}
4809 		}
4810 		result->sym_out = symp;
4811 		return (true);
4812 	}
4813 	if (obj->versyms == NULL) {
4814 		if (object_match_name(obj, req->ventry->name)) {
4815 			_rtld_error("%s: object %s should provide version %s "
4816 			    "for symbol %s", obj_rtld.path, obj->path,
4817 			    req->ventry->name, obj->strtab + symnum);
4818 			return (false);
4819 		}
4820 	} else {
4821 		verndx = VER_NDX(obj->versyms[symnum]);
4822 		if (verndx > obj->vernum) {
4823 			_rtld_error("%s: symbol %s references wrong version %d",
4824 			    obj->path, obj->strtab + symnum, verndx);
4825 			return (false);
4826 		}
4827 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4828 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4829 			/*
4830 			 * Version does not match. Look if this is a
4831 			 * global symbol and if it is not hidden. If
4832 			 * global symbol (verndx < 2) is available,
4833 			 * use it. Do not return symbol if we are
4834 			 * called by dlvsym, because dlvsym looks for
4835 			 * a specific version and default one is not
4836 			 * what dlvsym wants.
4837 			 */
4838 			if ((req->flags & SYMLOOK_DLSYM) ||
4839 			    (verndx >= VER_NDX_GIVEN) ||
4840 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4841 				return (false);
4842 		}
4843 	}
4844 	result->sym_out = symp;
4845 	return (true);
4846 }
4847 
4848 /*
4849  * Search for symbol using SysV hash function.
4850  * obj->buckets is known not to be NULL at this point; the test for this was
4851  * performed with the obj->valid_hash_sysv assignment.
4852  */
4853 static int
4854 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4855 {
4856 	unsigned long symnum;
4857 	Sym_Match_Result matchres;
4858 
4859 	matchres.sym_out = NULL;
4860 	matchres.vsymp = NULL;
4861 	matchres.vcount = 0;
4862 
4863 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4864 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4865 		if (symnum >= obj->nchains)
4866 			return (ESRCH);	/* Bad object */
4867 
4868 		if (matched_symbol(req, obj, &matchres, symnum)) {
4869 			req->sym_out = matchres.sym_out;
4870 			req->defobj_out = obj;
4871 			return (0);
4872 		}
4873 	}
4874 	if (matchres.vcount == 1) {
4875 		req->sym_out = matchres.vsymp;
4876 		req->defobj_out = obj;
4877 		return (0);
4878 	}
4879 	return (ESRCH);
4880 }
4881 
4882 /* Search for symbol using GNU hash function */
4883 static int
4884 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4885 {
4886 	Elf_Addr bloom_word;
4887 	const Elf32_Word *hashval;
4888 	Elf32_Word bucket;
4889 	Sym_Match_Result matchres;
4890 	unsigned int h1, h2;
4891 	unsigned long symnum;
4892 
4893 	matchres.sym_out = NULL;
4894 	matchres.vsymp = NULL;
4895 	matchres.vcount = 0;
4896 
4897 	/* Pick right bitmask word from Bloom filter array */
4898 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4899 	    obj->maskwords_bm_gnu];
4900 
4901 	/* Calculate modulus word size of gnu hash and its derivative */
4902 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4903 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4904 
4905 	/* Filter out the "definitely not in set" queries */
4906 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4907 		return (ESRCH);
4908 
4909 	/* Locate hash chain and corresponding value element*/
4910 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4911 	if (bucket == 0)
4912 		return (ESRCH);
4913 	hashval = &obj->chain_zero_gnu[bucket];
4914 	do {
4915 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4916 			symnum = hashval - obj->chain_zero_gnu;
4917 			if (matched_symbol(req, obj, &matchres, symnum)) {
4918 				req->sym_out = matchres.sym_out;
4919 				req->defobj_out = obj;
4920 				return (0);
4921 			}
4922 		}
4923 	} while ((*hashval++ & 1) == 0);
4924 	if (matchres.vcount == 1) {
4925 		req->sym_out = matchres.vsymp;
4926 		req->defobj_out = obj;
4927 		return (0);
4928 	}
4929 	return (ESRCH);
4930 }
4931 
4932 static void
4933 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4934 {
4935 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4936 	if (*main_local == NULL)
4937 		*main_local = "";
4938 
4939 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4940 	if (*fmt1 == NULL)
4941 		*fmt1 = "\t%o => %p (%x)\n";
4942 
4943 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4944 	if (*fmt2 == NULL)
4945 		*fmt2 = "\t%o (%x)\n";
4946 }
4947 
4948 static void
4949 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4950     const char *main_local, const char *fmt1, const char *fmt2)
4951 {
4952 	const char *fmt;
4953 	int c;
4954 
4955 	if (fmt1 == NULL)
4956 		fmt = fmt2;
4957 	else
4958 		/* XXX bogus */
4959 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
4960 
4961 	while ((c = *fmt++) != '\0') {
4962 		switch (c) {
4963 		default:
4964 			rtld_putchar(c);
4965 			continue;
4966 		case '\\':
4967 			switch (c = *fmt) {
4968 			case '\0':
4969 				continue;
4970 			case 'n':
4971 				rtld_putchar('\n');
4972 				break;
4973 			case 't':
4974 				rtld_putchar('\t');
4975 				break;
4976 			}
4977 			break;
4978 		case '%':
4979 			switch (c = *fmt) {
4980 			case '\0':
4981 				continue;
4982 			case '%':
4983 			default:
4984 				rtld_putchar(c);
4985 				break;
4986 			case 'A':
4987 				rtld_putstr(main_local);
4988 				break;
4989 			case 'a':
4990 				rtld_putstr(obj_main->path);
4991 				break;
4992 			case 'o':
4993 				rtld_putstr(name);
4994 				break;
4995 			case 'p':
4996 				rtld_putstr(path);
4997 				break;
4998 			case 'x':
4999 				rtld_printf("%p", obj != NULL ?
5000 				    obj->mapbase : NULL);
5001 				break;
5002 			}
5003 			break;
5004 		}
5005 		++fmt;
5006 	}
5007 }
5008 
5009 static void
5010 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5011 {
5012 	const char *fmt1, *fmt2, *main_local;
5013 	const char *name, *path;
5014 	bool first_spurious, list_containers;
5015 
5016 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5017 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5018 
5019 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5020 		Needed_Entry *needed;
5021 
5022 		if (obj->marker)
5023 			continue;
5024 		if (list_containers && obj->needed != NULL)
5025 			rtld_printf("%s:\n", obj->path);
5026 		for (needed = obj->needed; needed; needed = needed->next) {
5027 			if (needed->obj != NULL) {
5028 				if (needed->obj->traced && !list_containers)
5029 					continue;
5030 				needed->obj->traced = true;
5031 				path = needed->obj->path;
5032 			} else
5033 				path = "not found";
5034 
5035 			name = obj->strtab + needed->name;
5036 			trace_print_obj(needed->obj, name, path, main_local,
5037 			    fmt1, fmt2);
5038 		}
5039 	}
5040 
5041 	if (show_preload) {
5042 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5043 			fmt2 = "\t%p (%x)\n";
5044 		first_spurious = true;
5045 
5046 		TAILQ_FOREACH(obj, &obj_list, next) {
5047 			if (obj->marker || obj == obj_main || obj->traced)
5048 				continue;
5049 
5050 			if (list_containers && first_spurious) {
5051 				rtld_printf("[preloaded]\n");
5052 				first_spurious = false;
5053 			}
5054 
5055 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5056 			name = fname == NULL ? "<unknown>" : fname->name;
5057 			trace_print_obj(obj, name, obj->path, main_local,
5058 			    NULL, fmt2);
5059 		}
5060 	}
5061 }
5062 
5063 /*
5064  * Unload a dlopened object and its dependencies from memory and from
5065  * our data structures.  It is assumed that the DAG rooted in the
5066  * object has already been unreferenced, and that the object has a
5067  * reference count of 0.
5068  */
5069 static void
5070 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5071 {
5072 	Obj_Entry marker, *obj, *next;
5073 
5074 	assert(root->refcount == 0);
5075 
5076 	/*
5077 	 * Pass over the DAG removing unreferenced objects from
5078 	 * appropriate lists.
5079 	 */
5080 	unlink_object(root);
5081 
5082 	/* Unmap all objects that are no longer referenced. */
5083 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5084 		next = TAILQ_NEXT(obj, next);
5085 		if (obj->marker || obj->refcount != 0)
5086 			continue;
5087 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5088 		    obj->mapsize, 0, obj->path);
5089 		dbg("unloading \"%s\"", obj->path);
5090 		/*
5091 		 * Unlink the object now to prevent new references from
5092 		 * being acquired while the bind lock is dropped in
5093 		 * recursive dlclose() invocations.
5094 		 */
5095 		TAILQ_REMOVE(&obj_list, obj, next);
5096 		obj_count--;
5097 
5098 		if (obj->filtees_loaded) {
5099 			if (next != NULL) {
5100 				init_marker(&marker);
5101 				TAILQ_INSERT_BEFORE(next, &marker, next);
5102 				unload_filtees(obj, lockstate);
5103 				next = TAILQ_NEXT(&marker, next);
5104 				TAILQ_REMOVE(&obj_list, &marker, next);
5105 			} else
5106 				unload_filtees(obj, lockstate);
5107 		}
5108 		release_object(obj);
5109 	}
5110 }
5111 
5112 static void
5113 unlink_object(Obj_Entry *root)
5114 {
5115     Objlist_Entry *elm;
5116 
5117     if (root->refcount == 0) {
5118 	/* Remove the object from the RTLD_GLOBAL list. */
5119 	objlist_remove(&list_global, root);
5120 
5121     	/* Remove the object from all objects' DAG lists. */
5122     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5123 	    objlist_remove(&elm->obj->dldags, root);
5124 	    if (elm->obj != root)
5125 		unlink_object(elm->obj);
5126 	}
5127     }
5128 }
5129 
5130 static void
5131 ref_dag(Obj_Entry *root)
5132 {
5133     Objlist_Entry *elm;
5134 
5135     assert(root->dag_inited);
5136     STAILQ_FOREACH(elm, &root->dagmembers, link)
5137 	elm->obj->refcount++;
5138 }
5139 
5140 static void
5141 unref_dag(Obj_Entry *root)
5142 {
5143     Objlist_Entry *elm;
5144 
5145     assert(root->dag_inited);
5146     STAILQ_FOREACH(elm, &root->dagmembers, link)
5147 	elm->obj->refcount--;
5148 }
5149 
5150 /*
5151  * Common code for MD __tls_get_addr().
5152  */
5153 static void *
5154 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5155 {
5156 	Elf_Addr *newdtv, *dtv;
5157 	RtldLockState lockstate;
5158 	int to_copy;
5159 
5160 	dtv = *dtvp;
5161 	/* Check dtv generation in case new modules have arrived */
5162 	if (dtv[0] != tls_dtv_generation) {
5163 		if (!locked)
5164 			wlock_acquire(rtld_bind_lock, &lockstate);
5165 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5166 		to_copy = dtv[1];
5167 		if (to_copy > tls_max_index)
5168 			to_copy = tls_max_index;
5169 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5170 		newdtv[0] = tls_dtv_generation;
5171 		newdtv[1] = tls_max_index;
5172 		free(dtv);
5173 		if (!locked)
5174 			lock_release(rtld_bind_lock, &lockstate);
5175 		dtv = *dtvp = newdtv;
5176 	}
5177 
5178 	/* Dynamically allocate module TLS if necessary */
5179 	if (dtv[index + 1] == 0) {
5180 		/* Signal safe, wlock will block out signals. */
5181 		if (!locked)
5182 			wlock_acquire(rtld_bind_lock, &lockstate);
5183 		if (!dtv[index + 1])
5184 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5185 		if (!locked)
5186 			lock_release(rtld_bind_lock, &lockstate);
5187 	}
5188 	return ((void *)(dtv[index + 1] + offset));
5189 }
5190 
5191 void *
5192 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5193 {
5194 	uintptr_t *dtv;
5195 
5196 	dtv = *dtvp;
5197 	/* Check dtv generation in case new modules have arrived */
5198 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5199 	    dtv[index + 1] != 0))
5200 		return ((void *)(dtv[index + 1] + offset));
5201 	return (tls_get_addr_slow(dtvp, index, offset, false));
5202 }
5203 
5204 #ifdef TLS_VARIANT_I
5205 
5206 /*
5207  * Return pointer to allocated TLS block
5208  */
5209 static void *
5210 get_tls_block_ptr(void *tcb, size_t tcbsize)
5211 {
5212     size_t extra_size, post_size, pre_size, tls_block_size;
5213     size_t tls_init_align;
5214 
5215     tls_init_align = MAX(obj_main->tlsalign, 1);
5216 
5217     /* Compute fragments sizes. */
5218     extra_size = tcbsize - TLS_TCB_SIZE;
5219     post_size = calculate_tls_post_size(tls_init_align);
5220     tls_block_size = tcbsize + post_size;
5221     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5222 
5223     return ((char *)tcb - pre_size - extra_size);
5224 }
5225 
5226 /*
5227  * Allocate Static TLS using the Variant I method.
5228  *
5229  * For details on the layout, see lib/libc/gen/tls.c.
5230  *
5231  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5232  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5233  *     offsets, whereas libc's tls_static_space is just the executable's static
5234  *     TLS segment.
5235  */
5236 void *
5237 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5238 {
5239     Obj_Entry *obj;
5240     char *tls_block;
5241     Elf_Addr *dtv, **tcb;
5242     Elf_Addr addr;
5243     Elf_Addr i;
5244     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5245     size_t tls_init_align, tls_init_offset;
5246 
5247     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5248 	return (oldtcb);
5249 
5250     assert(tcbsize >= TLS_TCB_SIZE);
5251     maxalign = MAX(tcbalign, tls_static_max_align);
5252     tls_init_align = MAX(obj_main->tlsalign, 1);
5253 
5254     /* Compute fragmets sizes. */
5255     extra_size = tcbsize - TLS_TCB_SIZE;
5256     post_size = calculate_tls_post_size(tls_init_align);
5257     tls_block_size = tcbsize + post_size;
5258     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5259     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5260 
5261     /* Allocate whole TLS block */
5262     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5263     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5264 
5265     if (oldtcb != NULL) {
5266 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5267 	    tls_static_space);
5268 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5269 
5270 	/* Adjust the DTV. */
5271 	dtv = tcb[0];
5272 	for (i = 0; i < dtv[1]; i++) {
5273 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5274 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5275 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5276 	    }
5277 	}
5278     } else {
5279 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5280 	tcb[0] = dtv;
5281 	dtv[0] = tls_dtv_generation;
5282 	dtv[1] = tls_max_index;
5283 
5284 	for (obj = globallist_curr(objs); obj != NULL;
5285 	  obj = globallist_next(obj)) {
5286 	    if (obj->tlsoffset == 0)
5287 		continue;
5288 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5289 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5290 	    if (tls_init_offset > 0)
5291 		memset((void *)addr, 0, tls_init_offset);
5292 	    if (obj->tlsinitsize > 0) {
5293 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5294 		    obj->tlsinitsize);
5295 	    }
5296 	    if (obj->tlssize > obj->tlsinitsize) {
5297 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5298 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5299 	    }
5300 	    dtv[obj->tlsindex + 1] = addr;
5301 	}
5302     }
5303 
5304     return (tcb);
5305 }
5306 
5307 void
5308 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5309 {
5310     Elf_Addr *dtv;
5311     Elf_Addr tlsstart, tlsend;
5312     size_t post_size;
5313     size_t dtvsize, i, tls_init_align;
5314 
5315     assert(tcbsize >= TLS_TCB_SIZE);
5316     tls_init_align = MAX(obj_main->tlsalign, 1);
5317 
5318     /* Compute fragments sizes. */
5319     post_size = calculate_tls_post_size(tls_init_align);
5320 
5321     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5322     tlsend = (Elf_Addr)tcb + tls_static_space;
5323 
5324     dtv = *(Elf_Addr **)tcb;
5325     dtvsize = dtv[1];
5326     for (i = 0; i < dtvsize; i++) {
5327 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5328 	    free((void*)dtv[i+2]);
5329 	}
5330     }
5331     free(dtv);
5332     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5333 }
5334 
5335 #endif	/* TLS_VARIANT_I */
5336 
5337 #ifdef TLS_VARIANT_II
5338 
5339 /*
5340  * Allocate Static TLS using the Variant II method.
5341  */
5342 void *
5343 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5344 {
5345     Obj_Entry *obj;
5346     size_t size, ralign;
5347     char *tls;
5348     Elf_Addr *dtv, *olddtv;
5349     Elf_Addr segbase, oldsegbase, addr;
5350     size_t i;
5351 
5352     ralign = tcbalign;
5353     if (tls_static_max_align > ralign)
5354 	    ralign = tls_static_max_align;
5355     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5356 
5357     assert(tcbsize >= 2*sizeof(Elf_Addr));
5358     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5359     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5360 
5361     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5362     ((Elf_Addr *)segbase)[0] = segbase;
5363     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5364 
5365     dtv[0] = tls_dtv_generation;
5366     dtv[1] = tls_max_index;
5367 
5368     if (oldtls) {
5369 	/*
5370 	 * Copy the static TLS block over whole.
5371 	 */
5372 	oldsegbase = (Elf_Addr) oldtls;
5373 	memcpy((void *)(segbase - tls_static_space),
5374 	   (const void *)(oldsegbase - tls_static_space),
5375 	   tls_static_space);
5376 
5377 	/*
5378 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5379 	 * move them over.
5380 	 */
5381 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5382 	for (i = 0; i < olddtv[1]; i++) {
5383 	    if (olddtv[i + 2] < oldsegbase - size ||
5384 		olddtv[i + 2] > oldsegbase) {
5385 		    dtv[i + 2] = olddtv[i + 2];
5386 		    olddtv[i + 2] = 0;
5387 	    }
5388 	}
5389 
5390 	/*
5391 	 * We assume that this block was the one we created with
5392 	 * allocate_initial_tls().
5393 	 */
5394 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5395     } else {
5396 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5397 		if (obj->marker || obj->tlsoffset == 0)
5398 			continue;
5399 		addr = segbase - obj->tlsoffset;
5400 		memset((void *)(addr + obj->tlsinitsize),
5401 		    0, obj->tlssize - obj->tlsinitsize);
5402 		if (obj->tlsinit) {
5403 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5404 			obj->static_tls_copied = true;
5405 		}
5406 		dtv[obj->tlsindex + 1] = addr;
5407 	}
5408     }
5409 
5410     return ((void *)segbase);
5411 }
5412 
5413 void
5414 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5415 {
5416     Elf_Addr* dtv;
5417     size_t size, ralign;
5418     int dtvsize, i;
5419     Elf_Addr tlsstart, tlsend;
5420 
5421     /*
5422      * Figure out the size of the initial TLS block so that we can
5423      * find stuff which ___tls_get_addr() allocated dynamically.
5424      */
5425     ralign = tcbalign;
5426     if (tls_static_max_align > ralign)
5427 	    ralign = tls_static_max_align;
5428     size = roundup(tls_static_space, ralign);
5429 
5430     dtv = ((Elf_Addr **)tls)[1];
5431     dtvsize = dtv[1];
5432     tlsend = (Elf_Addr)tls;
5433     tlsstart = tlsend - size;
5434     for (i = 0; i < dtvsize; i++) {
5435 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5436 	        dtv[i + 2] > tlsend)) {
5437 		    free_aligned((void *)dtv[i + 2]);
5438 	}
5439     }
5440 
5441     free_aligned((void *)tlsstart);
5442     free((void *)dtv);
5443 }
5444 
5445 #endif	/* TLS_VARIANT_II */
5446 
5447 /*
5448  * Allocate TLS block for module with given index.
5449  */
5450 void *
5451 allocate_module_tls(int index)
5452 {
5453 	Obj_Entry *obj;
5454 	char *p;
5455 
5456 	TAILQ_FOREACH(obj, &obj_list, next) {
5457 		if (obj->marker)
5458 			continue;
5459 		if (obj->tlsindex == index)
5460 			break;
5461 	}
5462 	if (obj == NULL) {
5463 		_rtld_error("Can't find module with TLS index %d", index);
5464 		rtld_die();
5465 	}
5466 
5467 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5468 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5469 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5470 	return (p);
5471 }
5472 
5473 bool
5474 allocate_tls_offset(Obj_Entry *obj)
5475 {
5476     size_t off;
5477 
5478     if (obj->tls_done)
5479 	return (true);
5480 
5481     if (obj->tlssize == 0) {
5482 	obj->tls_done = true;
5483 	return (true);
5484     }
5485 
5486     if (tls_last_offset == 0)
5487 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5488 	  obj->tlspoffset);
5489     else
5490 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5491 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5492 
5493     obj->tlsoffset = off;
5494 #ifdef TLS_VARIANT_I
5495     off += obj->tlssize;
5496 #endif
5497 
5498     /*
5499      * If we have already fixed the size of the static TLS block, we
5500      * must stay within that size. When allocating the static TLS, we
5501      * leave a small amount of space spare to be used for dynamically
5502      * loading modules which use static TLS.
5503      */
5504     if (tls_static_space != 0) {
5505 	if (off > tls_static_space)
5506 	    return (false);
5507     } else if (obj->tlsalign > tls_static_max_align) {
5508 	    tls_static_max_align = obj->tlsalign;
5509     }
5510 
5511     tls_last_offset = off;
5512     tls_last_size = obj->tlssize;
5513     obj->tls_done = true;
5514 
5515     return (true);
5516 }
5517 
5518 void
5519 free_tls_offset(Obj_Entry *obj)
5520 {
5521 
5522     /*
5523      * If we were the last thing to allocate out of the static TLS
5524      * block, we give our space back to the 'allocator'. This is a
5525      * simplistic workaround to allow libGL.so.1 to be loaded and
5526      * unloaded multiple times.
5527      */
5528     size_t off = obj->tlsoffset;
5529 #ifdef TLS_VARIANT_I
5530     off += obj->tlssize;
5531 #endif
5532     if (off == tls_last_offset) {
5533 	tls_last_offset -= obj->tlssize;
5534 	tls_last_size = 0;
5535     }
5536 }
5537 
5538 void *
5539 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5540 {
5541     void *ret;
5542     RtldLockState lockstate;
5543 
5544     wlock_acquire(rtld_bind_lock, &lockstate);
5545     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5546       tcbsize, tcbalign);
5547     lock_release(rtld_bind_lock, &lockstate);
5548     return (ret);
5549 }
5550 
5551 void
5552 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5553 {
5554     RtldLockState lockstate;
5555 
5556     wlock_acquire(rtld_bind_lock, &lockstate);
5557     free_tls(tcb, tcbsize, tcbalign);
5558     lock_release(rtld_bind_lock, &lockstate);
5559 }
5560 
5561 static void
5562 object_add_name(Obj_Entry *obj, const char *name)
5563 {
5564     Name_Entry *entry;
5565     size_t len;
5566 
5567     len = strlen(name);
5568     entry = malloc(sizeof(Name_Entry) + len);
5569 
5570     if (entry != NULL) {
5571 	strcpy(entry->name, name);
5572 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5573     }
5574 }
5575 
5576 static int
5577 object_match_name(const Obj_Entry *obj, const char *name)
5578 {
5579     Name_Entry *entry;
5580 
5581     STAILQ_FOREACH(entry, &obj->names, link) {
5582 	if (strcmp(name, entry->name) == 0)
5583 	    return (1);
5584     }
5585     return (0);
5586 }
5587 
5588 static Obj_Entry *
5589 locate_dependency(const Obj_Entry *obj, const char *name)
5590 {
5591     const Objlist_Entry *entry;
5592     const Needed_Entry *needed;
5593 
5594     STAILQ_FOREACH(entry, &list_main, link) {
5595 	if (object_match_name(entry->obj, name))
5596 	    return (entry->obj);
5597     }
5598 
5599     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5600 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5601 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5602 	    /*
5603 	     * If there is DT_NEEDED for the name we are looking for,
5604 	     * we are all set.  Note that object might not be found if
5605 	     * dependency was not loaded yet, so the function can
5606 	     * return NULL here.  This is expected and handled
5607 	     * properly by the caller.
5608 	     */
5609 	    return (needed->obj);
5610 	}
5611     }
5612     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5613 	obj->path, name);
5614     rtld_die();
5615 }
5616 
5617 static int
5618 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5619     const Elf_Vernaux *vna)
5620 {
5621     const Elf_Verdef *vd;
5622     const char *vername;
5623 
5624     vername = refobj->strtab + vna->vna_name;
5625     vd = depobj->verdef;
5626     if (vd == NULL) {
5627 	_rtld_error("%s: version %s required by %s not defined",
5628 	    depobj->path, vername, refobj->path);
5629 	return (-1);
5630     }
5631     for (;;) {
5632 	if (vd->vd_version != VER_DEF_CURRENT) {
5633 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5634 		depobj->path, vd->vd_version);
5635 	    return (-1);
5636 	}
5637 	if (vna->vna_hash == vd->vd_hash) {
5638 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5639 		((const char *)vd + vd->vd_aux);
5640 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5641 		return (0);
5642 	}
5643 	if (vd->vd_next == 0)
5644 	    break;
5645 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5646     }
5647     if (vna->vna_flags & VER_FLG_WEAK)
5648 	return (0);
5649     _rtld_error("%s: version %s required by %s not found",
5650 	depobj->path, vername, refobj->path);
5651     return (-1);
5652 }
5653 
5654 static int
5655 rtld_verify_object_versions(Obj_Entry *obj)
5656 {
5657     const Elf_Verneed *vn;
5658     const Elf_Verdef  *vd;
5659     const Elf_Verdaux *vda;
5660     const Elf_Vernaux *vna;
5661     const Obj_Entry *depobj;
5662     int maxvernum, vernum;
5663 
5664     if (obj->ver_checked)
5665 	return (0);
5666     obj->ver_checked = true;
5667 
5668     maxvernum = 0;
5669     /*
5670      * Walk over defined and required version records and figure out
5671      * max index used by any of them. Do very basic sanity checking
5672      * while there.
5673      */
5674     vn = obj->verneed;
5675     while (vn != NULL) {
5676 	if (vn->vn_version != VER_NEED_CURRENT) {
5677 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5678 		obj->path, vn->vn_version);
5679 	    return (-1);
5680 	}
5681 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5682 	for (;;) {
5683 	    vernum = VER_NEED_IDX(vna->vna_other);
5684 	    if (vernum > maxvernum)
5685 		maxvernum = vernum;
5686 	    if (vna->vna_next == 0)
5687 		 break;
5688 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5689 	}
5690 	if (vn->vn_next == 0)
5691 	    break;
5692 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5693     }
5694 
5695     vd = obj->verdef;
5696     while (vd != NULL) {
5697 	if (vd->vd_version != VER_DEF_CURRENT) {
5698 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5699 		obj->path, vd->vd_version);
5700 	    return (-1);
5701 	}
5702 	vernum = VER_DEF_IDX(vd->vd_ndx);
5703 	if (vernum > maxvernum)
5704 		maxvernum = vernum;
5705 	if (vd->vd_next == 0)
5706 	    break;
5707 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5708     }
5709 
5710     if (maxvernum == 0)
5711 	return (0);
5712 
5713     /*
5714      * Store version information in array indexable by version index.
5715      * Verify that object version requirements are satisfied along the
5716      * way.
5717      */
5718     obj->vernum = maxvernum + 1;
5719     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5720 
5721     vd = obj->verdef;
5722     while (vd != NULL) {
5723 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5724 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5725 	    assert(vernum <= maxvernum);
5726 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5727 	    obj->vertab[vernum].hash = vd->vd_hash;
5728 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5729 	    obj->vertab[vernum].file = NULL;
5730 	    obj->vertab[vernum].flags = 0;
5731 	}
5732 	if (vd->vd_next == 0)
5733 	    break;
5734 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5735     }
5736 
5737     vn = obj->verneed;
5738     while (vn != NULL) {
5739 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5740 	if (depobj == NULL)
5741 	    return (-1);
5742 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5743 	for (;;) {
5744 	    if (check_object_provided_version(obj, depobj, vna))
5745 		return (-1);
5746 	    vernum = VER_NEED_IDX(vna->vna_other);
5747 	    assert(vernum <= maxvernum);
5748 	    obj->vertab[vernum].hash = vna->vna_hash;
5749 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5750 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5751 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5752 		VER_INFO_HIDDEN : 0;
5753 	    if (vna->vna_next == 0)
5754 		 break;
5755 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5756 	}
5757 	if (vn->vn_next == 0)
5758 	    break;
5759 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5760     }
5761     return (0);
5762 }
5763 
5764 static int
5765 rtld_verify_versions(const Objlist *objlist)
5766 {
5767     Objlist_Entry *entry;
5768     int rc;
5769 
5770     rc = 0;
5771     STAILQ_FOREACH(entry, objlist, link) {
5772 	/*
5773 	 * Skip dummy objects or objects that have their version requirements
5774 	 * already checked.
5775 	 */
5776 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5777 	    continue;
5778 	if (rtld_verify_object_versions(entry->obj) == -1) {
5779 	    rc = -1;
5780 	    if (ld_tracing == NULL)
5781 		break;
5782 	}
5783     }
5784     if (rc == 0 || ld_tracing != NULL)
5785     	rc = rtld_verify_object_versions(&obj_rtld);
5786     return (rc);
5787 }
5788 
5789 const Ver_Entry *
5790 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5791 {
5792     Elf_Versym vernum;
5793 
5794     if (obj->vertab) {
5795 	vernum = VER_NDX(obj->versyms[symnum]);
5796 	if (vernum >= obj->vernum) {
5797 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5798 		obj->path, obj->strtab + symnum, vernum);
5799 	} else if (obj->vertab[vernum].hash != 0) {
5800 	    return (&obj->vertab[vernum]);
5801 	}
5802     }
5803     return (NULL);
5804 }
5805 
5806 int
5807 _rtld_get_stack_prot(void)
5808 {
5809 
5810 	return (stack_prot);
5811 }
5812 
5813 int
5814 _rtld_is_dlopened(void *arg)
5815 {
5816 	Obj_Entry *obj;
5817 	RtldLockState lockstate;
5818 	int res;
5819 
5820 	rlock_acquire(rtld_bind_lock, &lockstate);
5821 	obj = dlcheck(arg);
5822 	if (obj == NULL)
5823 		obj = obj_from_addr(arg);
5824 	if (obj == NULL) {
5825 		_rtld_error("No shared object contains address");
5826 		lock_release(rtld_bind_lock, &lockstate);
5827 		return (-1);
5828 	}
5829 	res = obj->dlopened ? 1 : 0;
5830 	lock_release(rtld_bind_lock, &lockstate);
5831 	return (res);
5832 }
5833 
5834 static int
5835 obj_remap_relro(Obj_Entry *obj, int prot)
5836 {
5837 
5838 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5839 	    prot) == -1) {
5840 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5841 		    obj->path, prot, rtld_strerror(errno));
5842 		return (-1);
5843 	}
5844 	return (0);
5845 }
5846 
5847 static int
5848 obj_disable_relro(Obj_Entry *obj)
5849 {
5850 
5851 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5852 }
5853 
5854 static int
5855 obj_enforce_relro(Obj_Entry *obj)
5856 {
5857 
5858 	return (obj_remap_relro(obj, PROT_READ));
5859 }
5860 
5861 static void
5862 map_stacks_exec(RtldLockState *lockstate)
5863 {
5864 	void (*thr_map_stacks_exec)(void);
5865 
5866 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5867 		return;
5868 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5869 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5870 	if (thr_map_stacks_exec != NULL) {
5871 		stack_prot |= PROT_EXEC;
5872 		thr_map_stacks_exec();
5873 	}
5874 }
5875 
5876 static void
5877 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5878 {
5879 	Objlist_Entry *elm;
5880 	Obj_Entry *obj;
5881 	void (*distrib)(size_t, void *, size_t, size_t);
5882 
5883 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5884 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5885 	if (distrib == NULL)
5886 		return;
5887 	STAILQ_FOREACH(elm, list, link) {
5888 		obj = elm->obj;
5889 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5890 			continue;
5891 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5892 		    obj->tlssize);
5893 		obj->static_tls_copied = true;
5894 	}
5895 }
5896 
5897 void
5898 symlook_init(SymLook *dst, const char *name)
5899 {
5900 
5901 	bzero(dst, sizeof(*dst));
5902 	dst->name = name;
5903 	dst->hash = elf_hash(name);
5904 	dst->hash_gnu = gnu_hash(name);
5905 }
5906 
5907 static void
5908 symlook_init_from_req(SymLook *dst, const SymLook *src)
5909 {
5910 
5911 	dst->name = src->name;
5912 	dst->hash = src->hash;
5913 	dst->hash_gnu = src->hash_gnu;
5914 	dst->ventry = src->ventry;
5915 	dst->flags = src->flags;
5916 	dst->defobj_out = NULL;
5917 	dst->sym_out = NULL;
5918 	dst->lockstate = src->lockstate;
5919 }
5920 
5921 static int
5922 open_binary_fd(const char *argv0, bool search_in_path,
5923     const char **binpath_res)
5924 {
5925 	char *binpath, *pathenv, *pe, *res1;
5926 	const char *res;
5927 	int fd;
5928 
5929 	binpath = NULL;
5930 	res = NULL;
5931 	if (search_in_path && strchr(argv0, '/') == NULL) {
5932 		binpath = xmalloc(PATH_MAX);
5933 		pathenv = getenv("PATH");
5934 		if (pathenv == NULL) {
5935 			_rtld_error("-p and no PATH environment variable");
5936 			rtld_die();
5937 		}
5938 		pathenv = strdup(pathenv);
5939 		if (pathenv == NULL) {
5940 			_rtld_error("Cannot allocate memory");
5941 			rtld_die();
5942 		}
5943 		fd = -1;
5944 		errno = ENOENT;
5945 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5946 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5947 				continue;
5948 			if (binpath[0] != '\0' &&
5949 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5950 				continue;
5951 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5952 				continue;
5953 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5954 			if (fd != -1 || errno != ENOENT) {
5955 				res = binpath;
5956 				break;
5957 			}
5958 		}
5959 		free(pathenv);
5960 	} else {
5961 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5962 		res = argv0;
5963 	}
5964 
5965 	if (fd == -1) {
5966 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5967 		rtld_die();
5968 	}
5969 	if (res != NULL && res[0] != '/') {
5970 		res1 = xmalloc(PATH_MAX);
5971 		if (realpath(res, res1) != NULL) {
5972 			if (res != argv0)
5973 				free(__DECONST(char *, res));
5974 			res = res1;
5975 		} else {
5976 			free(res1);
5977 		}
5978 	}
5979 	*binpath_res = res;
5980 	return (fd);
5981 }
5982 
5983 /*
5984  * Parse a set of command-line arguments.
5985  */
5986 static int
5987 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5988     const char **argv0, bool *dir_ignore)
5989 {
5990 	const char *arg;
5991 	char machine[64];
5992 	size_t sz;
5993 	int arglen, fd, i, j, mib[2];
5994 	char opt;
5995 	bool seen_b, seen_f;
5996 
5997 	dbg("Parsing command-line arguments");
5998 	*use_pathp = false;
5999 	*fdp = -1;
6000 	*dir_ignore = false;
6001 	seen_b = seen_f = false;
6002 
6003 	for (i = 1; i < argc; i++ ) {
6004 		arg = argv[i];
6005 		dbg("argv[%d]: '%s'", i, arg);
6006 
6007 		/*
6008 		 * rtld arguments end with an explicit "--" or with the first
6009 		 * non-prefixed argument.
6010 		 */
6011 		if (strcmp(arg, "--") == 0) {
6012 			i++;
6013 			break;
6014 		}
6015 		if (arg[0] != '-')
6016 			break;
6017 
6018 		/*
6019 		 * All other arguments are single-character options that can
6020 		 * be combined, so we need to search through `arg` for them.
6021 		 */
6022 		arglen = strlen(arg);
6023 		for (j = 1; j < arglen; j++) {
6024 			opt = arg[j];
6025 			if (opt == 'h') {
6026 				print_usage(argv[0]);
6027 				_exit(0);
6028 			} else if (opt == 'b') {
6029 				if (seen_f) {
6030 					_rtld_error("Both -b and -f specified");
6031 					rtld_die();
6032 				}
6033 				i++;
6034 				*argv0 = argv[i];
6035 				seen_b = true;
6036 				break;
6037 			} else if (opt == 'd') {
6038 				*dir_ignore = true;
6039 				break;
6040 			} else if (opt == 'f') {
6041 				if (seen_b) {
6042 					_rtld_error("Both -b and -f specified");
6043 					rtld_die();
6044 				}
6045 
6046 				/*
6047 				 * -f XX can be used to specify a
6048 				 * descriptor for the binary named at
6049 				 * the command line (i.e., the later
6050 				 * argument will specify the process
6051 				 * name but the descriptor is what
6052 				 * will actually be executed).
6053 				 *
6054 				 * -f must be the last option in, e.g., -abcf.
6055 				 */
6056 				if (j != arglen - 1) {
6057 					_rtld_error("Invalid options: %s", arg);
6058 					rtld_die();
6059 				}
6060 				i++;
6061 				fd = parse_integer(argv[i]);
6062 				if (fd == -1) {
6063 					_rtld_error(
6064 					    "Invalid file descriptor: '%s'",
6065 					    argv[i]);
6066 					rtld_die();
6067 				}
6068 				*fdp = fd;
6069 				seen_f = true;
6070 				break;
6071 			} else if (opt == 'p') {
6072 				*use_pathp = true;
6073 			} else if (opt == 'u') {
6074 				trust = false;
6075 			} else if (opt == 'v') {
6076 				machine[0] = '\0';
6077 				mib[0] = CTL_HW;
6078 				mib[1] = HW_MACHINE;
6079 				sz = sizeof(machine);
6080 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6081 				ld_elf_hints_path = ld_get_env_var(
6082 				    LD_ELF_HINTS_PATH);
6083 				set_ld_elf_hints_path();
6084 				rtld_printf(
6085 				    "FreeBSD ld-elf.so.1 %s\n"
6086 				    "FreeBSD_version %d\n"
6087 				    "Default lib path %s\n"
6088 				    "Hints lib path %s\n"
6089 				    "Env prefix %s\n"
6090 				    "Default hint file %s\n"
6091 				    "Hint file %s\n"
6092 				    "libmap file %s\n",
6093 				    machine,
6094 				    __FreeBSD_version, ld_standard_library_path,
6095 				    gethints(false),
6096 				    ld_env_prefix, ld_elf_hints_default,
6097 				    ld_elf_hints_path,
6098 				    ld_path_libmap_conf);
6099 				_exit(0);
6100 			} else {
6101 				_rtld_error("Invalid argument: '%s'", arg);
6102 				print_usage(argv[0]);
6103 				rtld_die();
6104 			}
6105 		}
6106 	}
6107 
6108 	if (!seen_b)
6109 		*argv0 = argv[i];
6110 	return (i);
6111 }
6112 
6113 /*
6114  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6115  */
6116 static int
6117 parse_integer(const char *str)
6118 {
6119 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6120 	const char *orig;
6121 	int n;
6122 	char c;
6123 
6124 	orig = str;
6125 	n = 0;
6126 	for (c = *str; c != '\0'; c = *++str) {
6127 		if (c < '0' || c > '9')
6128 			return (-1);
6129 
6130 		n *= RADIX;
6131 		n += c - '0';
6132 	}
6133 
6134 	/* Make sure we actually parsed something. */
6135 	if (str == orig)
6136 		return (-1);
6137 	return (n);
6138 }
6139 
6140 static void
6141 print_usage(const char *argv0)
6142 {
6143 
6144 	rtld_printf(
6145 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6146 	    "\n"
6147 	    "Options:\n"
6148 	    "  -h        Display this help message\n"
6149 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6150 	    "  -d        Ignore lack of exec permissions for the binary\n"
6151 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6152 	    "  -p        Search in PATH for named binary\n"
6153 	    "  -u        Ignore LD_ environment variables\n"
6154 	    "  -v        Display identification information\n"
6155 	    "  --        End of RTLD options\n"
6156 	    "  <binary>  Name of process to execute\n"
6157 	    "  <args>    Arguments to the executed process\n", argv0);
6158 }
6159 
6160 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6161 static const struct auxfmt {
6162 	const char *name;
6163 	const char *fmt;
6164 } auxfmts[] = {
6165 	AUXFMT(AT_NULL, NULL),
6166 	AUXFMT(AT_IGNORE, NULL),
6167 	AUXFMT(AT_EXECFD, "%ld"),
6168 	AUXFMT(AT_PHDR, "%p"),
6169 	AUXFMT(AT_PHENT, "%lu"),
6170 	AUXFMT(AT_PHNUM, "%lu"),
6171 	AUXFMT(AT_PAGESZ, "%lu"),
6172 	AUXFMT(AT_BASE, "%#lx"),
6173 	AUXFMT(AT_FLAGS, "%#lx"),
6174 	AUXFMT(AT_ENTRY, "%p"),
6175 	AUXFMT(AT_NOTELF, NULL),
6176 	AUXFMT(AT_UID, "%ld"),
6177 	AUXFMT(AT_EUID, "%ld"),
6178 	AUXFMT(AT_GID, "%ld"),
6179 	AUXFMT(AT_EGID, "%ld"),
6180 	AUXFMT(AT_EXECPATH, "%s"),
6181 	AUXFMT(AT_CANARY, "%p"),
6182 	AUXFMT(AT_CANARYLEN, "%lu"),
6183 	AUXFMT(AT_OSRELDATE, "%lu"),
6184 	AUXFMT(AT_NCPUS, "%lu"),
6185 	AUXFMT(AT_PAGESIZES, "%p"),
6186 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6187 	AUXFMT(AT_TIMEKEEP, "%p"),
6188 	AUXFMT(AT_STACKPROT, "%#lx"),
6189 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6190 	AUXFMT(AT_HWCAP, "%#lx"),
6191 	AUXFMT(AT_HWCAP2, "%#lx"),
6192 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6193 	AUXFMT(AT_ARGC, "%lu"),
6194 	AUXFMT(AT_ARGV, "%p"),
6195 	AUXFMT(AT_ENVC, "%p"),
6196 	AUXFMT(AT_ENVV, "%p"),
6197 	AUXFMT(AT_PS_STRINGS, "%p"),
6198 	AUXFMT(AT_FXRNG, "%p"),
6199 	AUXFMT(AT_KPRELOAD, "%p"),
6200 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6201 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6202 };
6203 
6204 static bool
6205 is_ptr_fmt(const char *fmt)
6206 {
6207 	char last;
6208 
6209 	last = fmt[strlen(fmt) - 1];
6210 	return (last == 'p' || last == 's');
6211 }
6212 
6213 static void
6214 dump_auxv(Elf_Auxinfo **aux_info)
6215 {
6216 	Elf_Auxinfo *auxp;
6217 	const struct auxfmt *fmt;
6218 	int i;
6219 
6220 	for (i = 0; i < AT_COUNT; i++) {
6221 		auxp = aux_info[i];
6222 		if (auxp == NULL)
6223 			continue;
6224 		fmt = &auxfmts[i];
6225 		if (fmt->fmt == NULL)
6226 			continue;
6227 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6228 		if (is_ptr_fmt(fmt->fmt)) {
6229 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6230 			    auxp->a_un.a_ptr);
6231 		} else {
6232 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6233 			    auxp->a_un.a_val);
6234 		}
6235 		rtld_fdprintf(STDOUT_FILENO, "\n");
6236 	}
6237 }
6238 
6239 /*
6240  * Overrides for libc_pic-provided functions.
6241  */
6242 
6243 int
6244 __getosreldate(void)
6245 {
6246 	size_t len;
6247 	int oid[2];
6248 	int error, osrel;
6249 
6250 	if (osreldate != 0)
6251 		return (osreldate);
6252 
6253 	oid[0] = CTL_KERN;
6254 	oid[1] = KERN_OSRELDATE;
6255 	osrel = 0;
6256 	len = sizeof(osrel);
6257 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6258 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6259 		osreldate = osrel;
6260 	return (osreldate);
6261 }
6262 const char *
6263 rtld_strerror(int errnum)
6264 {
6265 
6266 	if (errnum < 0 || errnum >= sys_nerr)
6267 		return ("Unknown error");
6268 	return (sys_errlist[errnum]);
6269 }
6270 
6271 char *
6272 getenv(const char *name)
6273 {
6274 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6275 	    strlen(name))));
6276 }
6277 
6278 /* malloc */
6279 void *
6280 malloc(size_t nbytes)
6281 {
6282 
6283 	return (__crt_malloc(nbytes));
6284 }
6285 
6286 void *
6287 calloc(size_t num, size_t size)
6288 {
6289 
6290 	return (__crt_calloc(num, size));
6291 }
6292 
6293 void
6294 free(void *cp)
6295 {
6296 
6297 	__crt_free(cp);
6298 }
6299 
6300 void *
6301 realloc(void *cp, size_t nbytes)
6302 {
6303 
6304 	return (__crt_realloc(cp, nbytes));
6305 }
6306 
6307 extern int _rtld_version__FreeBSD_version __exported;
6308 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6309 
6310 extern char _rtld_version_laddr_offset __exported;
6311 char _rtld_version_laddr_offset;
6312 
6313 extern char _rtld_version_dlpi_tls_data __exported;
6314 char _rtld_version_dlpi_tls_data;
6315