1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 5 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>. 6 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>. 7 * Copyright 2012 John Marino <draco@marino.st>. 8 * Copyright 2014-2017 The FreeBSD Foundation 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Konstantin Belousov 12 * under sponsorship from the FreeBSD Foundation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Dynamic linker for ELF. 37 * 38 * John Polstra <jdp@polstra.com>. 39 */ 40 41 #include <sys/param.h> 42 #include <sys/mount.h> 43 #include <sys/mman.h> 44 #include <sys/stat.h> 45 #include <sys/sysctl.h> 46 #include <sys/uio.h> 47 #include <sys/utsname.h> 48 #include <sys/ktrace.h> 49 50 #include <dlfcn.h> 51 #include <err.h> 52 #include <errno.h> 53 #include <fcntl.h> 54 #include <stdarg.h> 55 #include <stdio.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #include <unistd.h> 59 60 #include "debug.h" 61 #include "rtld.h" 62 #include "libmap.h" 63 #include "rtld_paths.h" 64 #include "rtld_tls.h" 65 #include "rtld_printf.h" 66 #include "rtld_malloc.h" 67 #include "rtld_utrace.h" 68 #include "notes.h" 69 #include "rtld_libc.h" 70 71 /* Types. */ 72 typedef void (*func_ptr_type)(void); 73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); 74 75 76 /* Variables that cannot be static: */ 77 extern struct r_debug r_debug; /* For GDB */ 78 extern int _thread_autoinit_dummy_decl; 79 extern void (*__cleanup)(void); 80 81 struct dlerror_save { 82 int seen; 83 char *msg; 84 }; 85 86 /* 87 * Function declarations. 88 */ 89 static const char *basename(const char *); 90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, 91 const Elf_Dyn **, const Elf_Dyn **); 92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, 93 const Elf_Dyn *); 94 static bool digest_dynamic(Obj_Entry *, int); 95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 96 static void distribute_static_tls(Objlist *, RtldLockState *); 97 static Obj_Entry *dlcheck(void *); 98 static int dlclose_locked(void *, RtldLockState *); 99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, 100 int lo_flags, int mode, RtldLockState *lockstate); 101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); 102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); 103 static bool donelist_check(DoneList *, const Obj_Entry *); 104 static void dump_auxv(Elf_Auxinfo **aux_info); 105 static void errmsg_restore(struct dlerror_save *); 106 static struct dlerror_save *errmsg_save(void); 107 static void *fill_search_info(const char *, size_t, void *); 108 static char *find_library(const char *, const Obj_Entry *, int *); 109 static const char *gethints(bool); 110 static void hold_object(Obj_Entry *); 111 static void unhold_object(Obj_Entry *); 112 static void init_dag(Obj_Entry *); 113 static void init_marker(Obj_Entry *); 114 static void init_pagesizes(Elf_Auxinfo **aux_info); 115 static void init_rtld(caddr_t, Elf_Auxinfo **); 116 static void initlist_add_neededs(Needed_Entry *, Objlist *); 117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *); 118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *); 119 static void linkmap_add(Obj_Entry *); 120 static void linkmap_delete(Obj_Entry *); 121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *); 122 static void unload_filtees(Obj_Entry *, RtldLockState *); 123 static int load_needed_objects(Obj_Entry *, int); 124 static int load_preload_objects(const char *, bool); 125 static int load_kpreload(const void *addr); 126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); 127 static void map_stacks_exec(RtldLockState *); 128 static int obj_disable_relro(Obj_Entry *); 129 static int obj_enforce_relro(Obj_Entry *); 130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); 131 static void objlist_call_init(Objlist *, RtldLockState *); 132 static void objlist_clear(Objlist *); 133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 134 static void objlist_init(Objlist *); 135 static void objlist_push_head(Objlist *, Obj_Entry *); 136 static void objlist_push_tail(Objlist *, Obj_Entry *); 137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); 138 static void objlist_remove(Objlist *, Obj_Entry *); 139 static int open_binary_fd(const char *argv0, bool search_in_path, 140 const char **binpath_res); 141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp, 142 const char **argv0, bool *dir_ignore); 143 static int parse_integer(const char *); 144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *); 145 static void print_usage(const char *argv0); 146 static void release_object(Obj_Entry *); 147 static int relocate_object_dag(Obj_Entry *root, bool bind_now, 148 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); 149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 150 int flags, RtldLockState *lockstate); 151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, 152 RtldLockState *); 153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *); 154 static int rtld_dirname(const char *, char *); 155 static int rtld_dirname_abs(const char *, char *); 156 static void *rtld_dlopen(const char *name, int fd, int mode); 157 static void rtld_exit(void); 158 static void rtld_nop_exit(void); 159 static char *search_library_path(const char *, const char *, const char *, 160 int *); 161 static char *search_library_pathfds(const char *, const char *, int *); 162 static const void **get_program_var_addr(const char *, RtldLockState *); 163 static void set_program_var(const char *, const void *); 164 static int symlook_default(SymLook *, const Obj_Entry *refobj); 165 static int symlook_global(SymLook *, DoneList *); 166 static void symlook_init_from_req(SymLook *, const SymLook *); 167 static int symlook_list(SymLook *, const Objlist *, DoneList *); 168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); 169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); 170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); 171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline; 172 static void trace_loaded_objects(Obj_Entry *, bool); 173 static void unlink_object(Obj_Entry *); 174 static void unload_object(Obj_Entry *, RtldLockState *lockstate); 175 static void unref_dag(Obj_Entry *); 176 static void ref_dag(Obj_Entry *); 177 static char *origin_subst_one(Obj_Entry *, char *, const char *, 178 const char *, bool); 179 static char *origin_subst(Obj_Entry *, const char *); 180 static bool obj_resolve_origin(Obj_Entry *obj); 181 static void preinit_main(void); 182 static int rtld_verify_versions(const Objlist *); 183 static int rtld_verify_object_versions(Obj_Entry *); 184 static void object_add_name(Obj_Entry *, const char *); 185 static int object_match_name(const Obj_Entry *, const char *); 186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *); 187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, 188 struct dl_phdr_info *phdr_info); 189 static uint32_t gnu_hash(const char *); 190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, 191 const unsigned long); 192 193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; 194 void _r_debug_postinit(struct link_map *) __noinline __exported; 195 196 int __sys_openat(int, const char *, int, ...); 197 198 /* 199 * Data declarations. 200 */ 201 struct r_debug r_debug __exported; /* for GDB; */ 202 static bool libmap_disable; /* Disable libmap */ 203 static bool ld_loadfltr; /* Immediate filters processing */ 204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */ 205 static bool trust; /* False for setuid and setgid programs */ 206 static bool dangerous_ld_env; /* True if environment variables have been 207 used to affect the libraries loaded */ 208 bool ld_bind_not; /* Disable PLT update */ 209 static const char *ld_bind_now; /* Environment variable for immediate binding */ 210 static const char *ld_debug; /* Environment variable for debugging */ 211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides 212 weak definition */ 213 static const char *ld_library_path;/* Environment variable for search path */ 214 static const char *ld_library_dirs;/* Environment variable for library descriptors */ 215 static const char *ld_preload; /* Environment variable for libraries to 216 load first */ 217 static const char *ld_preload_fds;/* Environment variable for libraries represented by 218 descriptors */ 219 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */ 220 static const char *ld_tracing; /* Called from ldd to print libs */ 221 static const char *ld_utrace; /* Use utrace() to log events. */ 222 static struct obj_entry_q obj_list; /* Queue of all loaded objects */ 223 static Obj_Entry *obj_main; /* The main program shared object */ 224 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 225 static unsigned int obj_count; /* Number of objects in obj_list */ 226 static unsigned int obj_loads; /* Number of loads of objects (gen count) */ 227 size_t ld_static_tls_extra = /* Static TLS extra space (bytes) */ 228 RTLD_STATIC_TLS_EXTRA; 229 230 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 231 STAILQ_HEAD_INITIALIZER(list_global); 232 static Objlist list_main = /* Objects loaded at program startup */ 233 STAILQ_HEAD_INITIALIZER(list_main); 234 static Objlist list_fini = /* Objects needing fini() calls */ 235 STAILQ_HEAD_INITIALIZER(list_fini); 236 237 Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 238 239 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 240 241 extern Elf_Dyn _DYNAMIC; 242 #pragma weak _DYNAMIC 243 244 int dlclose(void *) __exported; 245 char *dlerror(void) __exported; 246 void *dlopen(const char *, int) __exported; 247 void *fdlopen(int, int) __exported; 248 void *dlsym(void *, const char *) __exported; 249 dlfunc_t dlfunc(void *, const char *) __exported; 250 void *dlvsym(void *, const char *, const char *) __exported; 251 int dladdr(const void *, Dl_info *) __exported; 252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), 253 void (*)(void *), void (*)(void *), void (*)(void *)) __exported; 254 int dlinfo(void *, int , void *) __exported; 255 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; 256 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; 257 int _rtld_get_stack_prot(void) __exported; 258 int _rtld_is_dlopened(void *) __exported; 259 void _rtld_error(const char *, ...) __exported; 260 261 /* Only here to fix -Wmissing-prototypes warnings */ 262 int __getosreldate(void); 263 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp); 264 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff); 265 266 int npagesizes; 267 static int osreldate; 268 size_t *pagesizes; 269 size_t page_size; 270 271 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 272 static int max_stack_flags; 273 274 /* 275 * Global declarations normally provided by crt1. The dynamic linker is 276 * not built with crt1, so we have to provide them ourselves. 277 */ 278 char *__progname; 279 char **environ; 280 281 /* 282 * Used to pass argc, argv to init functions. 283 */ 284 int main_argc; 285 char **main_argv; 286 287 /* 288 * Globals to control TLS allocation. 289 */ 290 size_t tls_last_offset; /* Static TLS offset of last module */ 291 size_t tls_last_size; /* Static TLS size of last module */ 292 size_t tls_static_space; /* Static TLS space allocated */ 293 static size_t tls_static_max_align; 294 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */ 295 int tls_max_index = 1; /* Largest module index allocated */ 296 297 static bool ld_library_path_rpath = false; 298 bool ld_fast_sigblock = false; 299 300 /* 301 * Globals for path names, and such 302 */ 303 const char *ld_elf_hints_default = _PATH_ELF_HINTS; 304 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF; 305 const char *ld_path_rtld = _PATH_RTLD; 306 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH; 307 const char *ld_env_prefix = LD_; 308 309 static void (*rtld_exit_ptr)(void); 310 311 /* 312 * Fill in a DoneList with an allocation large enough to hold all of 313 * the currently-loaded objects. Keep this as a macro since it calls 314 * alloca and we want that to occur within the scope of the caller. 315 */ 316 #define donelist_init(dlp) \ 317 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 318 assert((dlp)->objs != NULL), \ 319 (dlp)->num_alloc = obj_count, \ 320 (dlp)->num_used = 0) 321 322 #define LD_UTRACE(e, h, mb, ms, r, n) do { \ 323 if (ld_utrace != NULL) \ 324 ld_utrace_log(e, h, mb, ms, r, n); \ 325 } while (0) 326 327 static void 328 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, 329 int refcnt, const char *name) 330 { 331 struct utrace_rtld ut; 332 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG; 333 334 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig)); 335 ut.event = event; 336 ut.handle = handle; 337 ut.mapbase = mapbase; 338 ut.mapsize = mapsize; 339 ut.refcnt = refcnt; 340 bzero(ut.name, sizeof(ut.name)); 341 if (name) 342 strlcpy(ut.name, name, sizeof(ut.name)); 343 utrace(&ut, sizeof(ut)); 344 } 345 346 enum { 347 LD_BIND_NOW = 0, 348 LD_PRELOAD, 349 LD_LIBMAP, 350 LD_LIBRARY_PATH, 351 LD_LIBRARY_PATH_FDS, 352 LD_LIBMAP_DISABLE, 353 LD_BIND_NOT, 354 LD_DEBUG, 355 LD_ELF_HINTS_PATH, 356 LD_LOADFLTR, 357 LD_LIBRARY_PATH_RPATH, 358 LD_PRELOAD_FDS, 359 LD_DYNAMIC_WEAK, 360 LD_TRACE_LOADED_OBJECTS, 361 LD_UTRACE, 362 LD_DUMP_REL_PRE, 363 LD_DUMP_REL_POST, 364 LD_TRACE_LOADED_OBJECTS_PROGNAME, 365 LD_TRACE_LOADED_OBJECTS_FMT1, 366 LD_TRACE_LOADED_OBJECTS_FMT2, 367 LD_TRACE_LOADED_OBJECTS_ALL, 368 LD_SHOW_AUXV, 369 LD_STATIC_TLS_EXTRA, 370 }; 371 372 struct ld_env_var_desc { 373 const char * const n; 374 const char *val; 375 const bool unsecure; 376 }; 377 #define LD_ENV_DESC(var, unsec) \ 378 [LD_##var] = { .n = #var, .unsecure = unsec } 379 380 static struct ld_env_var_desc ld_env_vars[] = { 381 LD_ENV_DESC(BIND_NOW, false), 382 LD_ENV_DESC(PRELOAD, true), 383 LD_ENV_DESC(LIBMAP, true), 384 LD_ENV_DESC(LIBRARY_PATH, true), 385 LD_ENV_DESC(LIBRARY_PATH_FDS, true), 386 LD_ENV_DESC(LIBMAP_DISABLE, true), 387 LD_ENV_DESC(BIND_NOT, true), 388 LD_ENV_DESC(DEBUG, true), 389 LD_ENV_DESC(ELF_HINTS_PATH, true), 390 LD_ENV_DESC(LOADFLTR, true), 391 LD_ENV_DESC(LIBRARY_PATH_RPATH, true), 392 LD_ENV_DESC(PRELOAD_FDS, true), 393 LD_ENV_DESC(DYNAMIC_WEAK, true), 394 LD_ENV_DESC(TRACE_LOADED_OBJECTS, false), 395 LD_ENV_DESC(UTRACE, false), 396 LD_ENV_DESC(DUMP_REL_PRE, false), 397 LD_ENV_DESC(DUMP_REL_POST, false), 398 LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false), 399 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false), 400 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false), 401 LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false), 402 LD_ENV_DESC(SHOW_AUXV, false), 403 LD_ENV_DESC(STATIC_TLS_EXTRA, false), 404 }; 405 406 static const char * 407 ld_get_env_var(int idx) 408 { 409 return (ld_env_vars[idx].val); 410 } 411 412 static const char * 413 rtld_get_env_val(char **env, const char *name, size_t name_len) 414 { 415 char **m, *n, *v; 416 417 for (m = env; *m != NULL; m++) { 418 n = *m; 419 v = strchr(n, '='); 420 if (v == NULL) { 421 /* corrupt environment? */ 422 continue; 423 } 424 if (v - n == (ptrdiff_t)name_len && 425 strncmp(name, n, name_len) == 0) 426 return (v + 1); 427 } 428 return (NULL); 429 } 430 431 static void 432 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix) 433 { 434 struct ld_env_var_desc *lvd; 435 size_t prefix_len, nlen; 436 char **m, *n, *v; 437 int i; 438 439 prefix_len = strlen(env_prefix); 440 for (m = env; *m != NULL; m++) { 441 n = *m; 442 if (strncmp(env_prefix, n, prefix_len) != 0) { 443 /* Not a rtld environment variable. */ 444 continue; 445 } 446 n += prefix_len; 447 v = strchr(n, '='); 448 if (v == NULL) { 449 /* corrupt environment? */ 450 continue; 451 } 452 for (i = 0; i < (int)nitems(ld_env_vars); i++) { 453 lvd = &ld_env_vars[i]; 454 if (lvd->val != NULL) { 455 /* Saw higher-priority variable name already. */ 456 continue; 457 } 458 nlen = strlen(lvd->n); 459 if (v - n == (ptrdiff_t)nlen && 460 strncmp(lvd->n, n, nlen) == 0) { 461 lvd->val = v + 1; 462 break; 463 } 464 } 465 } 466 } 467 468 static void 469 rtld_init_env_vars(char **env) 470 { 471 rtld_init_env_vars_for_prefix(env, ld_env_prefix); 472 } 473 474 static void 475 set_ld_elf_hints_path(void) 476 { 477 if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0) 478 ld_elf_hints_path = ld_elf_hints_default; 479 } 480 481 uintptr_t 482 rtld_round_page(uintptr_t x) 483 { 484 return (roundup2(x, page_size)); 485 } 486 487 uintptr_t 488 rtld_trunc_page(uintptr_t x) 489 { 490 return (rounddown2(x, page_size)); 491 } 492 493 /* 494 * Main entry point for dynamic linking. The first argument is the 495 * stack pointer. The stack is expected to be laid out as described 496 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 497 * Specifically, the stack pointer points to a word containing 498 * ARGC. Following that in the stack is a null-terminated sequence 499 * of pointers to argument strings. Then comes a null-terminated 500 * sequence of pointers to environment strings. Finally, there is a 501 * sequence of "auxiliary vector" entries. 502 * 503 * The second argument points to a place to store the dynamic linker's 504 * exit procedure pointer and the third to a place to store the main 505 * program's object. 506 * 507 * The return value is the main program's entry point. 508 */ 509 func_ptr_type 510 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 511 { 512 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT]; 513 Objlist_Entry *entry; 514 Obj_Entry *last_interposer, *obj, *preload_tail; 515 const Elf_Phdr *phdr; 516 Objlist initlist; 517 RtldLockState lockstate; 518 struct stat st; 519 Elf_Addr *argcp; 520 char **argv, **env, **envp, *kexecpath; 521 const char *argv0, *binpath, *library_path_rpath, *static_tls_extra; 522 struct ld_env_var_desc *lvd; 523 caddr_t imgentry; 524 char buf[MAXPATHLEN]; 525 int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc; 526 size_t sz; 527 #ifdef __powerpc__ 528 int old_auxv_format = 1; 529 #endif 530 bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path; 531 532 /* 533 * On entry, the dynamic linker itself has not been relocated yet. 534 * Be very careful not to reference any global data until after 535 * init_rtld has returned. It is OK to reference file-scope statics 536 * and string constants, and to call static and global functions. 537 */ 538 539 /* Find the auxiliary vector on the stack. */ 540 argcp = sp; 541 argc = *sp++; 542 argv = (char **) sp; 543 sp += argc + 1; /* Skip over arguments and NULL terminator */ 544 env = (char **) sp; 545 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 546 ; 547 aux = (Elf_Auxinfo *) sp; 548 549 /* Digest the auxiliary vector. */ 550 for (i = 0; i < AT_COUNT; i++) 551 aux_info[i] = NULL; 552 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 553 if (auxp->a_type < AT_COUNT) 554 aux_info[auxp->a_type] = auxp; 555 #ifdef __powerpc__ 556 if (auxp->a_type == 23) /* AT_STACKPROT */ 557 old_auxv_format = 0; 558 #endif 559 } 560 561 #ifdef __powerpc__ 562 if (old_auxv_format) { 563 /* Remap from old-style auxv numbers. */ 564 aux_info[23] = aux_info[21]; /* AT_STACKPROT */ 565 aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */ 566 aux_info[19] = aux_info[17]; /* AT_NCPUS */ 567 aux_info[17] = aux_info[15]; /* AT_CANARYLEN */ 568 aux_info[15] = aux_info[13]; /* AT_EXECPATH */ 569 aux_info[13] = NULL; /* AT_GID */ 570 571 aux_info[20] = aux_info[18]; /* AT_PAGESIZES */ 572 aux_info[18] = aux_info[16]; /* AT_OSRELDATE */ 573 aux_info[16] = aux_info[14]; /* AT_CANARY */ 574 aux_info[14] = NULL; /* AT_EGID */ 575 } 576 #endif 577 578 /* Initialize and relocate ourselves. */ 579 assert(aux_info[AT_BASE] != NULL); 580 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); 581 582 dlerror_dflt_init(); 583 584 __progname = obj_rtld.path; 585 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 586 environ = env; 587 main_argc = argc; 588 main_argv = argv; 589 590 if (aux_info[AT_BSDFLAGS] != NULL && 591 (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0) 592 ld_fast_sigblock = true; 593 594 trust = !issetugid(); 595 direct_exec = false; 596 597 md_abi_variant_hook(aux_info); 598 rtld_init_env_vars(env); 599 600 fd = -1; 601 if (aux_info[AT_EXECFD] != NULL) { 602 fd = aux_info[AT_EXECFD]->a_un.a_val; 603 } else { 604 assert(aux_info[AT_PHDR] != NULL); 605 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr; 606 if (phdr == obj_rtld.phdr) { 607 if (!trust) { 608 _rtld_error("Tainted process refusing to run binary %s", 609 argv0); 610 rtld_die(); 611 } 612 direct_exec = true; 613 614 dbg("opening main program in direct exec mode"); 615 if (argc >= 2) { 616 rtld_argc = parse_args(argv, argc, &search_in_path, &fd, 617 &argv0, &dir_ignore); 618 explicit_fd = (fd != -1); 619 binpath = NULL; 620 if (!explicit_fd) 621 fd = open_binary_fd(argv0, search_in_path, &binpath); 622 if (fstat(fd, &st) == -1) { 623 _rtld_error("Failed to fstat FD %d (%s): %s", fd, 624 explicit_fd ? "user-provided descriptor" : argv0, 625 rtld_strerror(errno)); 626 rtld_die(); 627 } 628 629 /* 630 * Rough emulation of the permission checks done by 631 * execve(2), only Unix DACs are checked, ACLs are 632 * ignored. Preserve the semantic of disabling owner 633 * to execute if owner x bit is cleared, even if 634 * others x bit is enabled. 635 * mmap(2) does not allow to mmap with PROT_EXEC if 636 * binary' file comes from noexec mount. We cannot 637 * set a text reference on the binary. 638 */ 639 dir_enable = false; 640 if (st.st_uid == geteuid()) { 641 if ((st.st_mode & S_IXUSR) != 0) 642 dir_enable = true; 643 } else if (st.st_gid == getegid()) { 644 if ((st.st_mode & S_IXGRP) != 0) 645 dir_enable = true; 646 } else if ((st.st_mode & S_IXOTH) != 0) { 647 dir_enable = true; 648 } 649 if (!dir_enable && !dir_ignore) { 650 _rtld_error("No execute permission for binary %s", 651 argv0); 652 rtld_die(); 653 } 654 655 /* 656 * For direct exec mode, argv[0] is the interpreter 657 * name, we must remove it and shift arguments left 658 * before invoking binary main. Since stack layout 659 * places environment pointers and aux vectors right 660 * after the terminating NULL, we must shift 661 * environment and aux as well. 662 */ 663 main_argc = argc - rtld_argc; 664 for (i = 0; i <= main_argc; i++) 665 argv[i] = argv[i + rtld_argc]; 666 *argcp -= rtld_argc; 667 environ = env = envp = argv + main_argc + 1; 668 dbg("move env from %p to %p", envp + rtld_argc, envp); 669 do { 670 *envp = *(envp + rtld_argc); 671 } while (*envp++ != NULL); 672 aux = auxp = (Elf_Auxinfo *)envp; 673 auxpf = (Elf_Auxinfo *)(envp + rtld_argc); 674 dbg("move aux from %p to %p", auxpf, aux); 675 /* XXXKIB insert place for AT_EXECPATH if not present */ 676 for (;; auxp++, auxpf++) { 677 *auxp = *auxpf; 678 if (auxp->a_type == AT_NULL) 679 break; 680 } 681 /* Since the auxiliary vector has moved, redigest it. */ 682 for (i = 0; i < AT_COUNT; i++) 683 aux_info[i] = NULL; 684 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 685 if (auxp->a_type < AT_COUNT) 686 aux_info[auxp->a_type] = auxp; 687 } 688 689 /* Point AT_EXECPATH auxv and aux_info to the binary path. */ 690 if (binpath == NULL) { 691 aux_info[AT_EXECPATH] = NULL; 692 } else { 693 if (aux_info[AT_EXECPATH] == NULL) { 694 aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo)); 695 aux_info[AT_EXECPATH]->a_type = AT_EXECPATH; 696 } 697 aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *, 698 binpath); 699 } 700 } else { 701 _rtld_error("No binary"); 702 rtld_die(); 703 } 704 } 705 } 706 707 ld_bind_now = ld_get_env_var(LD_BIND_NOW); 708 709 /* 710 * If the process is tainted, then we un-set the dangerous environment 711 * variables. The process will be marked as tainted until setuid(2) 712 * is called. If any child process calls setuid(2) we do not want any 713 * future processes to honor the potentially un-safe variables. 714 */ 715 if (!trust) { 716 for (i = 0; i < (int)nitems(ld_env_vars); i++) { 717 lvd = &ld_env_vars[i]; 718 if (lvd->unsecure) 719 lvd->val = NULL; 720 } 721 } 722 723 ld_debug = ld_get_env_var(LD_DEBUG); 724 if (ld_bind_now == NULL) 725 ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL; 726 ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL; 727 libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL; 728 libmap_override = ld_get_env_var(LD_LIBMAP); 729 ld_library_path = ld_get_env_var(LD_LIBRARY_PATH); 730 ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS); 731 ld_preload = ld_get_env_var(LD_PRELOAD); 732 ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS); 733 ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH); 734 ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL; 735 library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH); 736 if (library_path_rpath != NULL) { 737 if (library_path_rpath[0] == 'y' || 738 library_path_rpath[0] == 'Y' || 739 library_path_rpath[0] == '1') 740 ld_library_path_rpath = true; 741 else 742 ld_library_path_rpath = false; 743 } 744 static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA); 745 if (static_tls_extra != NULL && static_tls_extra[0] != '\0') { 746 sz = parse_integer(static_tls_extra); 747 if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX) 748 ld_static_tls_extra = sz; 749 } 750 dangerous_ld_env = libmap_disable || libmap_override != NULL || 751 ld_library_path != NULL || ld_preload != NULL || 752 ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak || 753 static_tls_extra != NULL; 754 ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS); 755 ld_utrace = ld_get_env_var(LD_UTRACE); 756 757 set_ld_elf_hints_path(); 758 if (ld_debug != NULL && *ld_debug != '\0') 759 debug = 1; 760 dbg("%s is initialized, base address = %p", __progname, 761 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 762 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 763 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 764 765 dbg("initializing thread locks"); 766 lockdflt_init(); 767 768 /* 769 * Load the main program, or process its program header if it is 770 * already loaded. 771 */ 772 if (fd != -1) { /* Load the main program. */ 773 dbg("loading main program"); 774 obj_main = map_object(fd, argv0, NULL); 775 close(fd); 776 if (obj_main == NULL) 777 rtld_die(); 778 max_stack_flags = obj_main->stack_flags; 779 } else { /* Main program already loaded. */ 780 dbg("processing main program's program header"); 781 assert(aux_info[AT_PHDR] != NULL); 782 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 783 assert(aux_info[AT_PHNUM] != NULL); 784 phnum = aux_info[AT_PHNUM]->a_un.a_val; 785 assert(aux_info[AT_PHENT] != NULL); 786 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 787 assert(aux_info[AT_ENTRY] != NULL); 788 imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 789 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL) 790 rtld_die(); 791 } 792 793 if (aux_info[AT_EXECPATH] != NULL && fd == -1) { 794 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; 795 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); 796 if (kexecpath[0] == '/') 797 obj_main->path = kexecpath; 798 else if (getcwd(buf, sizeof(buf)) == NULL || 799 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || 800 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) 801 obj_main->path = xstrdup(argv0); 802 else 803 obj_main->path = xstrdup(buf); 804 } else { 805 dbg("No AT_EXECPATH or direct exec"); 806 obj_main->path = xstrdup(argv0); 807 } 808 dbg("obj_main path %s", obj_main->path); 809 obj_main->mainprog = true; 810 811 if (aux_info[AT_STACKPROT] != NULL && 812 aux_info[AT_STACKPROT]->a_un.a_val != 0) 813 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; 814 815 #ifndef COMPAT_libcompat 816 /* 817 * Get the actual dynamic linker pathname from the executable if 818 * possible. (It should always be possible.) That ensures that 819 * gdb will find the right dynamic linker even if a non-standard 820 * one is being used. 821 */ 822 if (obj_main->interp != NULL && 823 strcmp(obj_main->interp, obj_rtld.path) != 0) { 824 free(obj_rtld.path); 825 obj_rtld.path = xstrdup(obj_main->interp); 826 __progname = obj_rtld.path; 827 } 828 #endif 829 830 if (!digest_dynamic(obj_main, 0)) 831 rtld_die(); 832 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", 833 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, 834 obj_main->dynsymcount); 835 836 linkmap_add(obj_main); 837 linkmap_add(&obj_rtld); 838 839 /* Link the main program into the list of objects. */ 840 TAILQ_INSERT_HEAD(&obj_list, obj_main, next); 841 obj_count++; 842 obj_loads++; 843 844 /* Initialize a fake symbol for resolving undefined weak references. */ 845 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 846 sym_zero.st_shndx = SHN_UNDEF; 847 sym_zero.st_value = -(uintptr_t)obj_main->relocbase; 848 849 if (!libmap_disable) 850 libmap_disable = (bool)lm_init(libmap_override); 851 852 if (aux_info[AT_KPRELOAD] != NULL && 853 aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) { 854 dbg("loading kernel vdso"); 855 if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1) 856 rtld_die(); 857 } 858 859 dbg("loading LD_PRELOAD_FDS libraries"); 860 if (load_preload_objects(ld_preload_fds, true) == -1) 861 rtld_die(); 862 863 dbg("loading LD_PRELOAD libraries"); 864 if (load_preload_objects(ld_preload, false) == -1) 865 rtld_die(); 866 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); 867 868 dbg("loading needed objects"); 869 if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE : 870 0) == -1) 871 rtld_die(); 872 873 /* Make a list of all objects loaded at startup. */ 874 last_interposer = obj_main; 875 TAILQ_FOREACH(obj, &obj_list, next) { 876 if (obj->marker) 877 continue; 878 if (obj->z_interpose && obj != obj_main) { 879 objlist_put_after(&list_main, last_interposer, obj); 880 last_interposer = obj; 881 } else { 882 objlist_push_tail(&list_main, obj); 883 } 884 obj->refcount++; 885 } 886 887 dbg("checking for required versions"); 888 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) 889 rtld_die(); 890 891 if (ld_get_env_var(LD_SHOW_AUXV) != NULL) 892 dump_auxv(aux_info); 893 894 if (ld_tracing) { /* We're done */ 895 trace_loaded_objects(obj_main, true); 896 exit(0); 897 } 898 899 if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) { 900 dump_relocations(obj_main); 901 exit (0); 902 } 903 904 /* 905 * Processing tls relocations requires having the tls offsets 906 * initialized. Prepare offsets before starting initial 907 * relocation processing. 908 */ 909 dbg("initializing initial thread local storage offsets"); 910 STAILQ_FOREACH(entry, &list_main, link) { 911 /* 912 * Allocate all the initial objects out of the static TLS 913 * block even if they didn't ask for it. 914 */ 915 allocate_tls_offset(entry->obj); 916 } 917 918 if (relocate_objects(obj_main, 919 ld_bind_now != NULL && *ld_bind_now != '\0', 920 &obj_rtld, SYMLOOK_EARLY, NULL) == -1) 921 rtld_die(); 922 923 dbg("doing copy relocations"); 924 if (do_copy_relocations(obj_main) == -1) 925 rtld_die(); 926 927 if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) { 928 dump_relocations(obj_main); 929 exit (0); 930 } 931 932 ifunc_init(aux); 933 934 /* 935 * Setup TLS for main thread. This must be done after the 936 * relocations are processed, since tls initialization section 937 * might be the subject for relocations. 938 */ 939 dbg("initializing initial thread local storage"); 940 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list))); 941 942 dbg("initializing key program variables"); 943 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 944 set_program_var("environ", env); 945 set_program_var("__elf_aux_vector", aux); 946 947 /* Make a list of init functions to call. */ 948 objlist_init(&initlist); 949 initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)), 950 preload_tail, &initlist); 951 952 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 953 954 map_stacks_exec(NULL); 955 956 if (!obj_main->crt_no_init) { 957 /* 958 * Make sure we don't call the main program's init and fini 959 * functions for binaries linked with old crt1 which calls 960 * _init itself. 961 */ 962 obj_main->init = obj_main->fini = (Elf_Addr)NULL; 963 obj_main->preinit_array = obj_main->init_array = 964 obj_main->fini_array = (Elf_Addr)NULL; 965 } 966 967 if (direct_exec) { 968 /* Set osrel for direct-execed binary */ 969 mib[0] = CTL_KERN; 970 mib[1] = KERN_PROC; 971 mib[2] = KERN_PROC_OSREL; 972 mib[3] = getpid(); 973 osrel = obj_main->osrel; 974 sz = sizeof(old_osrel); 975 dbg("setting osrel to %d", osrel); 976 (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel)); 977 } 978 979 wlock_acquire(rtld_bind_lock, &lockstate); 980 981 dbg("resolving ifuncs"); 982 if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL && 983 *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1) 984 rtld_die(); 985 986 rtld_exit_ptr = rtld_exit; 987 if (obj_main->crt_no_init) 988 preinit_main(); 989 objlist_call_init(&initlist, &lockstate); 990 _r_debug_postinit(&obj_main->linkmap); 991 objlist_clear(&initlist); 992 dbg("loading filtees"); 993 TAILQ_FOREACH(obj, &obj_list, next) { 994 if (obj->marker) 995 continue; 996 if (ld_loadfltr || obj->z_loadfltr) 997 load_filtees(obj, 0, &lockstate); 998 } 999 1000 dbg("enforcing main obj relro"); 1001 if (obj_enforce_relro(obj_main) == -1) 1002 rtld_die(); 1003 1004 lock_release(rtld_bind_lock, &lockstate); 1005 1006 dbg("transferring control to program entry point = %p", obj_main->entry); 1007 1008 /* Return the exit procedure and the program entry point. */ 1009 *exit_proc = rtld_exit_ptr; 1010 *objp = obj_main; 1011 return ((func_ptr_type)obj_main->entry); 1012 } 1013 1014 void * 1015 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) 1016 { 1017 void *ptr; 1018 Elf_Addr target; 1019 1020 ptr = (void *)make_function_pointer(def, obj); 1021 target = call_ifunc_resolver(ptr); 1022 return ((void *)target); 1023 } 1024 1025 Elf_Addr 1026 _rtld_bind(Obj_Entry *obj, Elf_Size reloff) 1027 { 1028 const Elf_Rel *rel; 1029 const Elf_Sym *def; 1030 const Obj_Entry *defobj; 1031 Elf_Addr *where; 1032 Elf_Addr target; 1033 RtldLockState lockstate; 1034 1035 rlock_acquire(rtld_bind_lock, &lockstate); 1036 if (sigsetjmp(lockstate.env, 0) != 0) 1037 lock_upgrade(rtld_bind_lock, &lockstate); 1038 if (obj->pltrel) 1039 rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff); 1040 else 1041 rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff); 1042 1043 where = (Elf_Addr *)(obj->relocbase + rel->r_offset); 1044 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT, 1045 NULL, &lockstate); 1046 if (def == NULL) 1047 rtld_die(); 1048 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 1049 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); 1050 else 1051 target = (Elf_Addr)(defobj->relocbase + def->st_value); 1052 1053 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 1054 defobj->strtab + def->st_name, 1055 obj->path == NULL ? NULL : basename(obj->path), 1056 (void *)target, 1057 defobj->path == NULL ? NULL : basename(defobj->path)); 1058 1059 /* 1060 * Write the new contents for the jmpslot. Note that depending on 1061 * architecture, the value which we need to return back to the 1062 * lazy binding trampoline may or may not be the target 1063 * address. The value returned from reloc_jmpslot() is the value 1064 * that the trampoline needs. 1065 */ 1066 target = reloc_jmpslot(where, target, defobj, obj, rel); 1067 lock_release(rtld_bind_lock, &lockstate); 1068 return (target); 1069 } 1070 1071 /* 1072 * Error reporting function. Use it like printf. If formats the message 1073 * into a buffer, and sets things up so that the next call to dlerror() 1074 * will return the message. 1075 */ 1076 void 1077 _rtld_error(const char *fmt, ...) 1078 { 1079 va_list ap; 1080 1081 va_start(ap, fmt); 1082 rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, 1083 fmt, ap); 1084 va_end(ap); 1085 *lockinfo.dlerror_seen() = 0; 1086 dbg("rtld_error: %s", lockinfo.dlerror_loc()); 1087 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc()); 1088 } 1089 1090 /* 1091 * Return a dynamically-allocated copy of the current error message, if any. 1092 */ 1093 static struct dlerror_save * 1094 errmsg_save(void) 1095 { 1096 struct dlerror_save *res; 1097 1098 res = xmalloc(sizeof(*res)); 1099 res->seen = *lockinfo.dlerror_seen(); 1100 if (res->seen == 0) 1101 res->msg = xstrdup(lockinfo.dlerror_loc()); 1102 return (res); 1103 } 1104 1105 /* 1106 * Restore the current error message from a copy which was previously saved 1107 * by errmsg_save(). The copy is freed. 1108 */ 1109 static void 1110 errmsg_restore(struct dlerror_save *saved_msg) 1111 { 1112 if (saved_msg == NULL || saved_msg->seen == 1) { 1113 *lockinfo.dlerror_seen() = 1; 1114 } else { 1115 *lockinfo.dlerror_seen() = 0; 1116 strlcpy(lockinfo.dlerror_loc(), saved_msg->msg, 1117 lockinfo.dlerror_loc_sz); 1118 free(saved_msg->msg); 1119 } 1120 free(saved_msg); 1121 } 1122 1123 static const char * 1124 basename(const char *name) 1125 { 1126 const char *p; 1127 1128 p = strrchr(name, '/'); 1129 return (p != NULL ? p + 1 : name); 1130 } 1131 1132 static struct utsname uts; 1133 1134 static char * 1135 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, 1136 const char *subst, bool may_free) 1137 { 1138 char *p, *p1, *res, *resp; 1139 int subst_len, kw_len, subst_count, old_len, new_len; 1140 1141 kw_len = strlen(kw); 1142 1143 /* 1144 * First, count the number of the keyword occurrences, to 1145 * preallocate the final string. 1146 */ 1147 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { 1148 p1 = strstr(p, kw); 1149 if (p1 == NULL) 1150 break; 1151 } 1152 1153 /* 1154 * If the keyword is not found, just return. 1155 * 1156 * Return non-substituted string if resolution failed. We 1157 * cannot do anything more reasonable, the failure mode of the 1158 * caller is unresolved library anyway. 1159 */ 1160 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) 1161 return (may_free ? real : xstrdup(real)); 1162 if (obj != NULL) 1163 subst = obj->origin_path; 1164 1165 /* 1166 * There is indeed something to substitute. Calculate the 1167 * length of the resulting string, and allocate it. 1168 */ 1169 subst_len = strlen(subst); 1170 old_len = strlen(real); 1171 new_len = old_len + (subst_len - kw_len) * subst_count; 1172 res = xmalloc(new_len + 1); 1173 1174 /* 1175 * Now, execute the substitution loop. 1176 */ 1177 for (p = real, resp = res, *resp = '\0';;) { 1178 p1 = strstr(p, kw); 1179 if (p1 != NULL) { 1180 /* Copy the prefix before keyword. */ 1181 memcpy(resp, p, p1 - p); 1182 resp += p1 - p; 1183 /* Keyword replacement. */ 1184 memcpy(resp, subst, subst_len); 1185 resp += subst_len; 1186 *resp = '\0'; 1187 p = p1 + kw_len; 1188 } else 1189 break; 1190 } 1191 1192 /* Copy to the end of string and finish. */ 1193 strcat(resp, p); 1194 if (may_free) 1195 free(real); 1196 return (res); 1197 } 1198 1199 static const struct { 1200 const char *kw; 1201 bool pass_obj; 1202 const char *subst; 1203 } tokens[] = { 1204 { .kw = "$ORIGIN", .pass_obj = true, .subst = NULL }, 1205 { .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL }, 1206 { .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname }, 1207 { .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname }, 1208 { .kw = "$OSREL", .pass_obj = false, .subst = uts.release }, 1209 { .kw = "${OSREL}", .pass_obj = false, .subst = uts.release }, 1210 { .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine }, 1211 { .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine }, 1212 { .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB }, 1213 { .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB }, 1214 }; 1215 1216 static char * 1217 origin_subst(Obj_Entry *obj, const char *real) 1218 { 1219 char *res; 1220 int i; 1221 1222 if (obj == NULL || !trust) 1223 return (xstrdup(real)); 1224 if (uts.sysname[0] == '\0') { 1225 if (uname(&uts) != 0) { 1226 _rtld_error("utsname failed: %d", errno); 1227 return (NULL); 1228 } 1229 } 1230 1231 /* __DECONST is safe here since without may_free real is unchanged */ 1232 res = __DECONST(char *, real); 1233 for (i = 0; i < (int)nitems(tokens); i++) { 1234 res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, 1235 res, tokens[i].kw, tokens[i].subst, i != 0); 1236 } 1237 return (res); 1238 } 1239 1240 void 1241 rtld_die(void) 1242 { 1243 const char *msg = dlerror(); 1244 1245 if (msg == NULL) 1246 msg = "Fatal error"; 1247 rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": "); 1248 rtld_fdputstr(STDERR_FILENO, msg); 1249 rtld_fdputchar(STDERR_FILENO, '\n'); 1250 _exit(1); 1251 } 1252 1253 /* 1254 * Process a shared object's DYNAMIC section, and save the important 1255 * information in its Obj_Entry structure. 1256 */ 1257 static void 1258 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, 1259 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) 1260 { 1261 const Elf_Dyn *dynp; 1262 Needed_Entry **needed_tail = &obj->needed; 1263 Needed_Entry **needed_filtees_tail = &obj->needed_filtees; 1264 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; 1265 const Elf_Hashelt *hashtab; 1266 const Elf32_Word *hashval; 1267 Elf32_Word bkt, nmaskwords; 1268 int bloom_size32; 1269 int plttype = DT_REL; 1270 1271 *dyn_rpath = NULL; 1272 *dyn_soname = NULL; 1273 *dyn_runpath = NULL; 1274 1275 obj->bind_now = false; 1276 dynp = obj->dynamic; 1277 if (dynp == NULL) 1278 return; 1279 for (; dynp->d_tag != DT_NULL; dynp++) { 1280 switch (dynp->d_tag) { 1281 1282 case DT_REL: 1283 obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr); 1284 break; 1285 1286 case DT_RELSZ: 1287 obj->relsize = dynp->d_un.d_val; 1288 break; 1289 1290 case DT_RELENT: 1291 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 1292 break; 1293 1294 case DT_JMPREL: 1295 obj->pltrel = (const Elf_Rel *) 1296 (obj->relocbase + dynp->d_un.d_ptr); 1297 break; 1298 1299 case DT_PLTRELSZ: 1300 obj->pltrelsize = dynp->d_un.d_val; 1301 break; 1302 1303 case DT_RELA: 1304 obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr); 1305 break; 1306 1307 case DT_RELASZ: 1308 obj->relasize = dynp->d_un.d_val; 1309 break; 1310 1311 case DT_RELAENT: 1312 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 1313 break; 1314 1315 case DT_RELR: 1316 obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr); 1317 break; 1318 1319 case DT_RELRSZ: 1320 obj->relrsize = dynp->d_un.d_val; 1321 break; 1322 1323 case DT_RELRENT: 1324 assert(dynp->d_un.d_val == sizeof(Elf_Relr)); 1325 break; 1326 1327 case DT_PLTREL: 1328 plttype = dynp->d_un.d_val; 1329 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 1330 break; 1331 1332 case DT_SYMTAB: 1333 obj->symtab = (const Elf_Sym *) 1334 (obj->relocbase + dynp->d_un.d_ptr); 1335 break; 1336 1337 case DT_SYMENT: 1338 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 1339 break; 1340 1341 case DT_STRTAB: 1342 obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr); 1343 break; 1344 1345 case DT_STRSZ: 1346 obj->strsize = dynp->d_un.d_val; 1347 break; 1348 1349 case DT_VERNEED: 1350 obj->verneed = (const Elf_Verneed *)(obj->relocbase + 1351 dynp->d_un.d_val); 1352 break; 1353 1354 case DT_VERNEEDNUM: 1355 obj->verneednum = dynp->d_un.d_val; 1356 break; 1357 1358 case DT_VERDEF: 1359 obj->verdef = (const Elf_Verdef *)(obj->relocbase + 1360 dynp->d_un.d_val); 1361 break; 1362 1363 case DT_VERDEFNUM: 1364 obj->verdefnum = dynp->d_un.d_val; 1365 break; 1366 1367 case DT_VERSYM: 1368 obj->versyms = (const Elf_Versym *)(obj->relocbase + 1369 dynp->d_un.d_val); 1370 break; 1371 1372 case DT_HASH: 1373 { 1374 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1375 dynp->d_un.d_ptr); 1376 obj->nbuckets = hashtab[0]; 1377 obj->nchains = hashtab[1]; 1378 obj->buckets = hashtab + 2; 1379 obj->chains = obj->buckets + obj->nbuckets; 1380 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && 1381 obj->buckets != NULL; 1382 } 1383 break; 1384 1385 case DT_GNU_HASH: 1386 { 1387 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1388 dynp->d_un.d_ptr); 1389 obj->nbuckets_gnu = hashtab[0]; 1390 obj->symndx_gnu = hashtab[1]; 1391 nmaskwords = hashtab[2]; 1392 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; 1393 obj->maskwords_bm_gnu = nmaskwords - 1; 1394 obj->shift2_gnu = hashtab[3]; 1395 obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4); 1396 obj->buckets_gnu = hashtab + 4 + bloom_size32; 1397 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - 1398 obj->symndx_gnu; 1399 /* Number of bitmask words is required to be power of 2 */ 1400 obj->valid_hash_gnu = powerof2(nmaskwords) && 1401 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; 1402 } 1403 break; 1404 1405 case DT_NEEDED: 1406 if (!obj->rtld) { 1407 Needed_Entry *nep = NEW(Needed_Entry); 1408 nep->name = dynp->d_un.d_val; 1409 nep->obj = NULL; 1410 nep->next = NULL; 1411 1412 *needed_tail = nep; 1413 needed_tail = &nep->next; 1414 } 1415 break; 1416 1417 case DT_FILTER: 1418 if (!obj->rtld) { 1419 Needed_Entry *nep = NEW(Needed_Entry); 1420 nep->name = dynp->d_un.d_val; 1421 nep->obj = NULL; 1422 nep->next = NULL; 1423 1424 *needed_filtees_tail = nep; 1425 needed_filtees_tail = &nep->next; 1426 1427 if (obj->linkmap.l_refname == NULL) 1428 obj->linkmap.l_refname = (char *)dynp->d_un.d_val; 1429 } 1430 break; 1431 1432 case DT_AUXILIARY: 1433 if (!obj->rtld) { 1434 Needed_Entry *nep = NEW(Needed_Entry); 1435 nep->name = dynp->d_un.d_val; 1436 nep->obj = NULL; 1437 nep->next = NULL; 1438 1439 *needed_aux_filtees_tail = nep; 1440 needed_aux_filtees_tail = &nep->next; 1441 } 1442 break; 1443 1444 case DT_PLTGOT: 1445 obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr); 1446 break; 1447 1448 case DT_TEXTREL: 1449 obj->textrel = true; 1450 break; 1451 1452 case DT_SYMBOLIC: 1453 obj->symbolic = true; 1454 break; 1455 1456 case DT_RPATH: 1457 /* 1458 * We have to wait until later to process this, because we 1459 * might not have gotten the address of the string table yet. 1460 */ 1461 *dyn_rpath = dynp; 1462 break; 1463 1464 case DT_SONAME: 1465 *dyn_soname = dynp; 1466 break; 1467 1468 case DT_RUNPATH: 1469 *dyn_runpath = dynp; 1470 break; 1471 1472 case DT_INIT: 1473 obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1474 break; 1475 1476 case DT_PREINIT_ARRAY: 1477 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1478 break; 1479 1480 case DT_PREINIT_ARRAYSZ: 1481 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1482 break; 1483 1484 case DT_INIT_ARRAY: 1485 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1486 break; 1487 1488 case DT_INIT_ARRAYSZ: 1489 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1490 break; 1491 1492 case DT_FINI: 1493 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1494 break; 1495 1496 case DT_FINI_ARRAY: 1497 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1498 break; 1499 1500 case DT_FINI_ARRAYSZ: 1501 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1502 break; 1503 1504 case DT_DEBUG: 1505 if (!early) 1506 dbg("Filling in DT_DEBUG entry"); 1507 (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug; 1508 break; 1509 1510 case DT_FLAGS: 1511 if (dynp->d_un.d_val & DF_ORIGIN) 1512 obj->z_origin = true; 1513 if (dynp->d_un.d_val & DF_SYMBOLIC) 1514 obj->symbolic = true; 1515 if (dynp->d_un.d_val & DF_TEXTREL) 1516 obj->textrel = true; 1517 if (dynp->d_un.d_val & DF_BIND_NOW) 1518 obj->bind_now = true; 1519 if (dynp->d_un.d_val & DF_STATIC_TLS) 1520 obj->static_tls = true; 1521 break; 1522 1523 #ifdef __powerpc__ 1524 #ifdef __powerpc64__ 1525 case DT_PPC64_GLINK: 1526 obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1527 break; 1528 #else 1529 case DT_PPC_GOT: 1530 obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr); 1531 break; 1532 #endif 1533 #endif 1534 1535 case DT_FLAGS_1: 1536 if (dynp->d_un.d_val & DF_1_NOOPEN) 1537 obj->z_noopen = true; 1538 if (dynp->d_un.d_val & DF_1_ORIGIN) 1539 obj->z_origin = true; 1540 if (dynp->d_un.d_val & DF_1_GLOBAL) 1541 obj->z_global = true; 1542 if (dynp->d_un.d_val & DF_1_BIND_NOW) 1543 obj->bind_now = true; 1544 if (dynp->d_un.d_val & DF_1_NODELETE) 1545 obj->z_nodelete = true; 1546 if (dynp->d_un.d_val & DF_1_LOADFLTR) 1547 obj->z_loadfltr = true; 1548 if (dynp->d_un.d_val & DF_1_INTERPOSE) 1549 obj->z_interpose = true; 1550 if (dynp->d_un.d_val & DF_1_NODEFLIB) 1551 obj->z_nodeflib = true; 1552 if (dynp->d_un.d_val & DF_1_PIE) 1553 obj->z_pie = true; 1554 break; 1555 1556 default: 1557 if (!early) { 1558 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 1559 (long)dynp->d_tag); 1560 } 1561 break; 1562 } 1563 } 1564 1565 obj->traced = false; 1566 1567 if (plttype == DT_RELA) { 1568 obj->pltrela = (const Elf_Rela *) obj->pltrel; 1569 obj->pltrel = NULL; 1570 obj->pltrelasize = obj->pltrelsize; 1571 obj->pltrelsize = 0; 1572 } 1573 1574 /* Determine size of dynsym table (equal to nchains of sysv hash) */ 1575 if (obj->valid_hash_sysv) 1576 obj->dynsymcount = obj->nchains; 1577 else if (obj->valid_hash_gnu) { 1578 obj->dynsymcount = 0; 1579 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { 1580 if (obj->buckets_gnu[bkt] == 0) 1581 continue; 1582 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; 1583 do 1584 obj->dynsymcount++; 1585 while ((*hashval++ & 1u) == 0); 1586 } 1587 obj->dynsymcount += obj->symndx_gnu; 1588 } 1589 1590 if (obj->linkmap.l_refname != NULL) 1591 obj->linkmap.l_refname = obj->strtab + (unsigned long)obj-> 1592 linkmap.l_refname; 1593 } 1594 1595 static bool 1596 obj_resolve_origin(Obj_Entry *obj) 1597 { 1598 1599 if (obj->origin_path != NULL) 1600 return (true); 1601 obj->origin_path = xmalloc(PATH_MAX); 1602 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); 1603 } 1604 1605 static bool 1606 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, 1607 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) 1608 { 1609 1610 if (obj->z_origin && !obj_resolve_origin(obj)) 1611 return (false); 1612 1613 if (dyn_runpath != NULL) { 1614 obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val; 1615 obj->runpath = origin_subst(obj, obj->runpath); 1616 } else if (dyn_rpath != NULL) { 1617 obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val; 1618 obj->rpath = origin_subst(obj, obj->rpath); 1619 } 1620 if (dyn_soname != NULL) 1621 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); 1622 return (true); 1623 } 1624 1625 static bool 1626 digest_dynamic(Obj_Entry *obj, int early) 1627 { 1628 const Elf_Dyn *dyn_rpath; 1629 const Elf_Dyn *dyn_soname; 1630 const Elf_Dyn *dyn_runpath; 1631 1632 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); 1633 return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath)); 1634 } 1635 1636 /* 1637 * Process a shared object's program header. This is used only for the 1638 * main program, when the kernel has already loaded the main program 1639 * into memory before calling the dynamic linker. It creates and 1640 * returns an Obj_Entry structure. 1641 */ 1642 static Obj_Entry * 1643 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 1644 { 1645 Obj_Entry *obj; 1646 const Elf_Phdr *phlimit = phdr + phnum; 1647 const Elf_Phdr *ph; 1648 Elf_Addr note_start, note_end; 1649 int nsegs = 0; 1650 1651 obj = obj_new(); 1652 for (ph = phdr; ph < phlimit; ph++) { 1653 if (ph->p_type != PT_PHDR) 1654 continue; 1655 1656 obj->phdr = phdr; 1657 obj->phsize = ph->p_memsz; 1658 obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr; 1659 break; 1660 } 1661 1662 obj->stack_flags = PF_X | PF_R | PF_W; 1663 1664 for (ph = phdr; ph < phlimit; ph++) { 1665 switch (ph->p_type) { 1666 1667 case PT_INTERP: 1668 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); 1669 break; 1670 1671 case PT_LOAD: 1672 if (nsegs == 0) { /* First load segment */ 1673 obj->vaddrbase = rtld_trunc_page(ph->p_vaddr); 1674 obj->mapbase = obj->vaddrbase + obj->relocbase; 1675 } else { /* Last load segment */ 1676 obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) - 1677 obj->vaddrbase; 1678 } 1679 nsegs++; 1680 break; 1681 1682 case PT_DYNAMIC: 1683 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); 1684 break; 1685 1686 case PT_TLS: 1687 obj->tlsindex = 1; 1688 obj->tlssize = ph->p_memsz; 1689 obj->tlsalign = ph->p_align; 1690 obj->tlsinitsize = ph->p_filesz; 1691 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); 1692 obj->tlspoffset = ph->p_offset; 1693 break; 1694 1695 case PT_GNU_STACK: 1696 obj->stack_flags = ph->p_flags; 1697 break; 1698 1699 case PT_GNU_RELRO: 1700 obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr); 1701 obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) - 1702 rtld_trunc_page(ph->p_vaddr); 1703 break; 1704 1705 case PT_NOTE: 1706 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 1707 note_end = note_start + ph->p_filesz; 1708 digest_notes(obj, note_start, note_end); 1709 break; 1710 } 1711 } 1712 if (nsegs < 1) { 1713 _rtld_error("%s: too few PT_LOAD segments", path); 1714 return (NULL); 1715 } 1716 1717 obj->entry = entry; 1718 return (obj); 1719 } 1720 1721 void 1722 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) 1723 { 1724 const Elf_Note *note; 1725 const char *note_name; 1726 uintptr_t p; 1727 1728 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; 1729 note = (const Elf_Note *)((const char *)(note + 1) + 1730 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1731 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { 1732 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || 1733 note->n_descsz != sizeof(int32_t)) 1734 continue; 1735 if (note->n_type != NT_FREEBSD_ABI_TAG && 1736 note->n_type != NT_FREEBSD_FEATURE_CTL && 1737 note->n_type != NT_FREEBSD_NOINIT_TAG) 1738 continue; 1739 note_name = (const char *)(note + 1); 1740 if (strncmp(NOTE_FREEBSD_VENDOR, note_name, 1741 sizeof(NOTE_FREEBSD_VENDOR)) != 0) 1742 continue; 1743 switch (note->n_type) { 1744 case NT_FREEBSD_ABI_TAG: 1745 /* FreeBSD osrel note */ 1746 p = (uintptr_t)(note + 1); 1747 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1748 obj->osrel = *(const int32_t *)(p); 1749 dbg("note osrel %d", obj->osrel); 1750 break; 1751 case NT_FREEBSD_FEATURE_CTL: 1752 /* FreeBSD ABI feature control note */ 1753 p = (uintptr_t)(note + 1); 1754 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1755 obj->fctl0 = *(const uint32_t *)(p); 1756 dbg("note fctl0 %#x", obj->fctl0); 1757 break; 1758 case NT_FREEBSD_NOINIT_TAG: 1759 /* FreeBSD 'crt does not call init' note */ 1760 obj->crt_no_init = true; 1761 dbg("note crt_no_init"); 1762 break; 1763 } 1764 } 1765 } 1766 1767 static Obj_Entry * 1768 dlcheck(void *handle) 1769 { 1770 Obj_Entry *obj; 1771 1772 TAILQ_FOREACH(obj, &obj_list, next) { 1773 if (obj == (Obj_Entry *) handle) 1774 break; 1775 } 1776 1777 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 1778 _rtld_error("Invalid shared object handle %p", handle); 1779 return (NULL); 1780 } 1781 return (obj); 1782 } 1783 1784 /* 1785 * If the given object is already in the donelist, return true. Otherwise 1786 * add the object to the list and return false. 1787 */ 1788 static bool 1789 donelist_check(DoneList *dlp, const Obj_Entry *obj) 1790 { 1791 unsigned int i; 1792 1793 for (i = 0; i < dlp->num_used; i++) 1794 if (dlp->objs[i] == obj) 1795 return (true); 1796 /* 1797 * Our donelist allocation should always be sufficient. But if 1798 * our threads locking isn't working properly, more shared objects 1799 * could have been loaded since we allocated the list. That should 1800 * never happen, but we'll handle it properly just in case it does. 1801 */ 1802 if (dlp->num_used < dlp->num_alloc) 1803 dlp->objs[dlp->num_used++] = obj; 1804 return (false); 1805 } 1806 1807 /* 1808 * SysV hash function for symbol table lookup. It is a slightly optimized 1809 * version of the hash specified by the System V ABI. 1810 */ 1811 Elf32_Word 1812 elf_hash(const char *name) 1813 { 1814 const unsigned char *p = (const unsigned char *)name; 1815 Elf32_Word h = 0; 1816 1817 while (*p != '\0') { 1818 h = (h << 4) + *p++; 1819 h ^= (h >> 24) & 0xf0; 1820 } 1821 return (h & 0x0fffffff); 1822 } 1823 1824 /* 1825 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits 1826 * unsigned in case it's implemented with a wider type. 1827 */ 1828 static uint32_t 1829 gnu_hash(const char *s) 1830 { 1831 uint32_t h; 1832 unsigned char c; 1833 1834 h = 5381; 1835 for (c = *s; c != '\0'; c = *++s) 1836 h = h * 33 + c; 1837 return (h & 0xffffffff); 1838 } 1839 1840 1841 /* 1842 * Find the library with the given name, and return its full pathname. 1843 * The returned string is dynamically allocated. Generates an error 1844 * message and returns NULL if the library cannot be found. 1845 * 1846 * If the second argument is non-NULL, then it refers to an already- 1847 * loaded shared object, whose library search path will be searched. 1848 * 1849 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its 1850 * descriptor (which is close-on-exec) will be passed out via the third 1851 * argument. 1852 * 1853 * The search order is: 1854 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) 1855 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) 1856 * LD_LIBRARY_PATH 1857 * DT_RUNPATH in the referencing file 1858 * ldconfig hints (if -z nodefaultlib, filter out default library directories 1859 * from list) 1860 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib 1861 * 1862 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. 1863 */ 1864 static char * 1865 find_library(const char *xname, const Obj_Entry *refobj, int *fdp) 1866 { 1867 char *pathname, *refobj_path; 1868 const char *name; 1869 bool nodeflib, objgiven; 1870 1871 objgiven = refobj != NULL; 1872 1873 if (libmap_disable || !objgiven || 1874 (name = lm_find(refobj->path, xname)) == NULL) 1875 name = xname; 1876 1877 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 1878 if (name[0] != '/' && !trust) { 1879 _rtld_error("Absolute pathname required " 1880 "for shared object \"%s\"", name); 1881 return (NULL); 1882 } 1883 return (origin_subst(__DECONST(Obj_Entry *, refobj), 1884 __DECONST(char *, name))); 1885 } 1886 1887 dbg(" Searching for \"%s\"", name); 1888 refobj_path = objgiven ? refobj->path : NULL; 1889 1890 /* 1891 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall 1892 * back to pre-conforming behaviour if user requested so with 1893 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z 1894 * nodeflib. 1895 */ 1896 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { 1897 pathname = search_library_path(name, ld_library_path, 1898 refobj_path, fdp); 1899 if (pathname != NULL) 1900 return (pathname); 1901 if (refobj != NULL) { 1902 pathname = search_library_path(name, refobj->rpath, 1903 refobj_path, fdp); 1904 if (pathname != NULL) 1905 return (pathname); 1906 } 1907 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1908 if (pathname != NULL) 1909 return (pathname); 1910 pathname = search_library_path(name, gethints(false), 1911 refobj_path, fdp); 1912 if (pathname != NULL) 1913 return (pathname); 1914 pathname = search_library_path(name, ld_standard_library_path, 1915 refobj_path, fdp); 1916 if (pathname != NULL) 1917 return (pathname); 1918 } else { 1919 nodeflib = objgiven ? refobj->z_nodeflib : false; 1920 if (objgiven) { 1921 pathname = search_library_path(name, refobj->rpath, 1922 refobj->path, fdp); 1923 if (pathname != NULL) 1924 return (pathname); 1925 } 1926 if (objgiven && refobj->runpath == NULL && refobj != obj_main) { 1927 pathname = search_library_path(name, obj_main->rpath, 1928 refobj_path, fdp); 1929 if (pathname != NULL) 1930 return (pathname); 1931 } 1932 pathname = search_library_path(name, ld_library_path, 1933 refobj_path, fdp); 1934 if (pathname != NULL) 1935 return (pathname); 1936 if (objgiven) { 1937 pathname = search_library_path(name, refobj->runpath, 1938 refobj_path, fdp); 1939 if (pathname != NULL) 1940 return (pathname); 1941 } 1942 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1943 if (pathname != NULL) 1944 return (pathname); 1945 pathname = search_library_path(name, gethints(nodeflib), 1946 refobj_path, fdp); 1947 if (pathname != NULL) 1948 return (pathname); 1949 if (objgiven && !nodeflib) { 1950 pathname = search_library_path(name, 1951 ld_standard_library_path, refobj_path, fdp); 1952 if (pathname != NULL) 1953 return (pathname); 1954 } 1955 } 1956 1957 if (objgiven && refobj->path != NULL) { 1958 _rtld_error("Shared object \"%s\" not found, " 1959 "required by \"%s\"", name, basename(refobj->path)); 1960 } else { 1961 _rtld_error("Shared object \"%s\" not found", name); 1962 } 1963 return (NULL); 1964 } 1965 1966 /* 1967 * Given a symbol number in a referencing object, find the corresponding 1968 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1969 * no definition was found. Returns a pointer to the Obj_Entry of the 1970 * defining object via the reference parameter DEFOBJ_OUT. 1971 */ 1972 const Elf_Sym * 1973 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 1974 const Obj_Entry **defobj_out, int flags, SymCache *cache, 1975 RtldLockState *lockstate) 1976 { 1977 const Elf_Sym *ref; 1978 const Elf_Sym *def; 1979 const Obj_Entry *defobj; 1980 const Ver_Entry *ve; 1981 SymLook req; 1982 const char *name; 1983 int res; 1984 1985 /* 1986 * If we have already found this symbol, get the information from 1987 * the cache. 1988 */ 1989 if (symnum >= refobj->dynsymcount) 1990 return (NULL); /* Bad object */ 1991 if (cache != NULL && cache[symnum].sym != NULL) { 1992 *defobj_out = cache[symnum].obj; 1993 return (cache[symnum].sym); 1994 } 1995 1996 ref = refobj->symtab + symnum; 1997 name = refobj->strtab + ref->st_name; 1998 def = NULL; 1999 defobj = NULL; 2000 ve = NULL; 2001 2002 /* 2003 * We don't have to do a full scale lookup if the symbol is local. 2004 * We know it will bind to the instance in this load module; to 2005 * which we already have a pointer (ie ref). By not doing a lookup, 2006 * we not only improve performance, but it also avoids unresolvable 2007 * symbols when local symbols are not in the hash table. This has 2008 * been seen with the ia64 toolchain. 2009 */ 2010 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 2011 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 2012 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 2013 symnum); 2014 } 2015 symlook_init(&req, name); 2016 req.flags = flags; 2017 ve = req.ventry = fetch_ventry(refobj, symnum); 2018 req.lockstate = lockstate; 2019 res = symlook_default(&req, refobj); 2020 if (res == 0) { 2021 def = req.sym_out; 2022 defobj = req.defobj_out; 2023 } 2024 } else { 2025 def = ref; 2026 defobj = refobj; 2027 } 2028 2029 /* 2030 * If we found no definition and the reference is weak, treat the 2031 * symbol as having the value zero. 2032 */ 2033 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 2034 def = &sym_zero; 2035 defobj = obj_main; 2036 } 2037 2038 if (def != NULL) { 2039 *defobj_out = defobj; 2040 /* Record the information in the cache to avoid subsequent lookups. */ 2041 if (cache != NULL) { 2042 cache[symnum].sym = def; 2043 cache[symnum].obj = defobj; 2044 } 2045 } else { 2046 if (refobj != &obj_rtld) 2047 _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name, 2048 ve != NULL ? "@" : "", ve != NULL ? ve->name : ""); 2049 } 2050 return (def); 2051 } 2052 2053 /* 2054 * Return the search path from the ldconfig hints file, reading it if 2055 * necessary. If nostdlib is true, then the default search paths are 2056 * not added to result. 2057 * 2058 * Returns NULL if there are problems with the hints file, 2059 * or if the search path there is empty. 2060 */ 2061 static const char * 2062 gethints(bool nostdlib) 2063 { 2064 static char *filtered_path; 2065 static const char *hints; 2066 static struct elfhints_hdr hdr; 2067 struct fill_search_info_args sargs, hargs; 2068 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; 2069 struct dl_serpath *SLPpath, *hintpath; 2070 char *p; 2071 struct stat hint_stat; 2072 unsigned int SLPndx, hintndx, fndx, fcount; 2073 int fd; 2074 size_t flen; 2075 uint32_t dl; 2076 bool skip; 2077 2078 /* First call, read the hints file */ 2079 if (hints == NULL) { 2080 /* Keep from trying again in case the hints file is bad. */ 2081 hints = ""; 2082 2083 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) 2084 return (NULL); 2085 2086 /* 2087 * Check of hdr.dirlistlen value against type limit 2088 * intends to pacify static analyzers. Further 2089 * paranoia leads to checks that dirlist is fully 2090 * contained in the file range. 2091 */ 2092 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 2093 hdr.magic != ELFHINTS_MAGIC || 2094 hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 || 2095 fstat(fd, &hint_stat) == -1) { 2096 cleanup1: 2097 close(fd); 2098 hdr.dirlistlen = 0; 2099 return (NULL); 2100 } 2101 dl = hdr.strtab; 2102 if (dl + hdr.dirlist < dl) 2103 goto cleanup1; 2104 dl += hdr.dirlist; 2105 if (dl + hdr.dirlistlen < dl) 2106 goto cleanup1; 2107 dl += hdr.dirlistlen; 2108 if (dl > hint_stat.st_size) 2109 goto cleanup1; 2110 p = xmalloc(hdr.dirlistlen + 1); 2111 if (pread(fd, p, hdr.dirlistlen + 1, 2112 hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 || 2113 p[hdr.dirlistlen] != '\0') { 2114 free(p); 2115 goto cleanup1; 2116 } 2117 hints = p; 2118 close(fd); 2119 } 2120 2121 /* 2122 * If caller agreed to receive list which includes the default 2123 * paths, we are done. Otherwise, if we still did not 2124 * calculated filtered result, do it now. 2125 */ 2126 if (!nostdlib) 2127 return (hints[0] != '\0' ? hints : NULL); 2128 if (filtered_path != NULL) 2129 goto filt_ret; 2130 2131 /* 2132 * Obtain the list of all configured search paths, and the 2133 * list of the default paths. 2134 * 2135 * First estimate the size of the results. 2136 */ 2137 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 2138 smeta.dls_cnt = 0; 2139 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 2140 hmeta.dls_cnt = 0; 2141 2142 sargs.request = RTLD_DI_SERINFOSIZE; 2143 sargs.serinfo = &smeta; 2144 hargs.request = RTLD_DI_SERINFOSIZE; 2145 hargs.serinfo = &hmeta; 2146 2147 path_enumerate(ld_standard_library_path, fill_search_info, NULL, 2148 &sargs); 2149 path_enumerate(hints, fill_search_info, NULL, &hargs); 2150 2151 SLPinfo = xmalloc(smeta.dls_size); 2152 hintinfo = xmalloc(hmeta.dls_size); 2153 2154 /* 2155 * Next fetch both sets of paths. 2156 */ 2157 sargs.request = RTLD_DI_SERINFO; 2158 sargs.serinfo = SLPinfo; 2159 sargs.serpath = &SLPinfo->dls_serpath[0]; 2160 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; 2161 2162 hargs.request = RTLD_DI_SERINFO; 2163 hargs.serinfo = hintinfo; 2164 hargs.serpath = &hintinfo->dls_serpath[0]; 2165 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; 2166 2167 path_enumerate(ld_standard_library_path, fill_search_info, NULL, 2168 &sargs); 2169 path_enumerate(hints, fill_search_info, NULL, &hargs); 2170 2171 /* 2172 * Now calculate the difference between two sets, by excluding 2173 * standard paths from the full set. 2174 */ 2175 fndx = 0; 2176 fcount = 0; 2177 filtered_path = xmalloc(hdr.dirlistlen + 1); 2178 hintpath = &hintinfo->dls_serpath[0]; 2179 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { 2180 skip = false; 2181 SLPpath = &SLPinfo->dls_serpath[0]; 2182 /* 2183 * Check each standard path against current. 2184 */ 2185 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { 2186 /* matched, skip the path */ 2187 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { 2188 skip = true; 2189 break; 2190 } 2191 } 2192 if (skip) 2193 continue; 2194 /* 2195 * Not matched against any standard path, add the path 2196 * to result. Separate consequtive paths with ':'. 2197 */ 2198 if (fcount > 0) { 2199 filtered_path[fndx] = ':'; 2200 fndx++; 2201 } 2202 fcount++; 2203 flen = strlen(hintpath->dls_name); 2204 strncpy((filtered_path + fndx), hintpath->dls_name, flen); 2205 fndx += flen; 2206 } 2207 filtered_path[fndx] = '\0'; 2208 2209 free(SLPinfo); 2210 free(hintinfo); 2211 2212 filt_ret: 2213 return (filtered_path[0] != '\0' ? filtered_path : NULL); 2214 } 2215 2216 static void 2217 init_dag(Obj_Entry *root) 2218 { 2219 const Needed_Entry *needed; 2220 const Objlist_Entry *elm; 2221 DoneList donelist; 2222 2223 if (root->dag_inited) 2224 return; 2225 donelist_init(&donelist); 2226 2227 /* Root object belongs to own DAG. */ 2228 objlist_push_tail(&root->dldags, root); 2229 objlist_push_tail(&root->dagmembers, root); 2230 donelist_check(&donelist, root); 2231 2232 /* 2233 * Add dependencies of root object to DAG in breadth order 2234 * by exploiting the fact that each new object get added 2235 * to the tail of the dagmembers list. 2236 */ 2237 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2238 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { 2239 if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) 2240 continue; 2241 objlist_push_tail(&needed->obj->dldags, root); 2242 objlist_push_tail(&root->dagmembers, needed->obj); 2243 } 2244 } 2245 root->dag_inited = true; 2246 } 2247 2248 static void 2249 init_marker(Obj_Entry *marker) 2250 { 2251 2252 bzero(marker, sizeof(*marker)); 2253 marker->marker = true; 2254 } 2255 2256 Obj_Entry * 2257 globallist_curr(const Obj_Entry *obj) 2258 { 2259 2260 for (;;) { 2261 if (obj == NULL) 2262 return (NULL); 2263 if (!obj->marker) 2264 return (__DECONST(Obj_Entry *, obj)); 2265 obj = TAILQ_PREV(obj, obj_entry_q, next); 2266 } 2267 } 2268 2269 Obj_Entry * 2270 globallist_next(const Obj_Entry *obj) 2271 { 2272 2273 for (;;) { 2274 obj = TAILQ_NEXT(obj, next); 2275 if (obj == NULL) 2276 return (NULL); 2277 if (!obj->marker) 2278 return (__DECONST(Obj_Entry *, obj)); 2279 } 2280 } 2281 2282 /* Prevent the object from being unmapped while the bind lock is dropped. */ 2283 static void 2284 hold_object(Obj_Entry *obj) 2285 { 2286 2287 obj->holdcount++; 2288 } 2289 2290 static void 2291 unhold_object(Obj_Entry *obj) 2292 { 2293 2294 assert(obj->holdcount > 0); 2295 if (--obj->holdcount == 0 && obj->unholdfree) 2296 release_object(obj); 2297 } 2298 2299 static void 2300 process_z(Obj_Entry *root) 2301 { 2302 const Objlist_Entry *elm; 2303 Obj_Entry *obj; 2304 2305 /* 2306 * Walk over object DAG and process every dependent object 2307 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need 2308 * to grow their own DAG. 2309 * 2310 * For DF_1_GLOBAL, DAG is required for symbol lookups in 2311 * symlook_global() to work. 2312 * 2313 * For DF_1_NODELETE, the DAG should have its reference upped. 2314 */ 2315 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2316 obj = elm->obj; 2317 if (obj == NULL) 2318 continue; 2319 if (obj->z_nodelete && !obj->ref_nodel) { 2320 dbg("obj %s -z nodelete", obj->path); 2321 init_dag(obj); 2322 ref_dag(obj); 2323 obj->ref_nodel = true; 2324 } 2325 if (obj->z_global && objlist_find(&list_global, obj) == NULL) { 2326 dbg("obj %s -z global", obj->path); 2327 objlist_push_tail(&list_global, obj); 2328 init_dag(obj); 2329 } 2330 } 2331 } 2332 2333 static void 2334 parse_rtld_phdr(Obj_Entry *obj) 2335 { 2336 const Elf_Phdr *ph; 2337 Elf_Addr note_start, note_end; 2338 2339 obj->stack_flags = PF_X | PF_R | PF_W; 2340 for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr + 2341 obj->phsize; ph++) { 2342 switch (ph->p_type) { 2343 case PT_GNU_STACK: 2344 obj->stack_flags = ph->p_flags; 2345 break; 2346 case PT_GNU_RELRO: 2347 obj->relro_page = obj->relocbase + 2348 rtld_trunc_page(ph->p_vaddr); 2349 obj->relro_size = rtld_round_page(ph->p_memsz); 2350 break; 2351 case PT_NOTE: 2352 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 2353 note_end = note_start + ph->p_filesz; 2354 digest_notes(obj, note_start, note_end); 2355 break; 2356 } 2357 } 2358 } 2359 2360 /* 2361 * Initialize the dynamic linker. The argument is the address at which 2362 * the dynamic linker has been mapped into memory. The primary task of 2363 * this function is to relocate the dynamic linker. 2364 */ 2365 static void 2366 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) 2367 { 2368 Obj_Entry objtmp; /* Temporary rtld object */ 2369 const Elf_Ehdr *ehdr; 2370 const Elf_Dyn *dyn_rpath; 2371 const Elf_Dyn *dyn_soname; 2372 const Elf_Dyn *dyn_runpath; 2373 2374 #ifdef RTLD_INIT_PAGESIZES_EARLY 2375 /* The page size is required by the dynamic memory allocator. */ 2376 init_pagesizes(aux_info); 2377 #endif 2378 2379 /* 2380 * Conjure up an Obj_Entry structure for the dynamic linker. 2381 * 2382 * The "path" member can't be initialized yet because string constants 2383 * cannot yet be accessed. Below we will set it correctly. 2384 */ 2385 memset(&objtmp, 0, sizeof(objtmp)); 2386 objtmp.path = NULL; 2387 objtmp.rtld = true; 2388 objtmp.mapbase = mapbase; 2389 #ifdef PIC 2390 objtmp.relocbase = mapbase; 2391 #endif 2392 2393 objtmp.dynamic = rtld_dynamic(&objtmp); 2394 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); 2395 assert(objtmp.needed == NULL); 2396 assert(!objtmp.textrel); 2397 /* 2398 * Temporarily put the dynamic linker entry into the object list, so 2399 * that symbols can be found. 2400 */ 2401 relocate_objects(&objtmp, true, &objtmp, 0, NULL); 2402 2403 ehdr = (Elf_Ehdr *)mapbase; 2404 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); 2405 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]); 2406 2407 /* Initialize the object list. */ 2408 TAILQ_INIT(&obj_list); 2409 2410 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 2411 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 2412 2413 #ifndef RTLD_INIT_PAGESIZES_EARLY 2414 /* The page size is required by the dynamic memory allocator. */ 2415 init_pagesizes(aux_info); 2416 #endif 2417 2418 if (aux_info[AT_OSRELDATE] != NULL) 2419 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; 2420 2421 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); 2422 2423 /* Replace the path with a dynamically allocated copy. */ 2424 obj_rtld.path = xstrdup(ld_path_rtld); 2425 2426 parse_rtld_phdr(&obj_rtld); 2427 if (obj_enforce_relro(&obj_rtld) == -1) 2428 rtld_die(); 2429 2430 r_debug.r_version = R_DEBUG_VERSION; 2431 r_debug.r_brk = r_debug_state; 2432 r_debug.r_state = RT_CONSISTENT; 2433 r_debug.r_ldbase = obj_rtld.relocbase; 2434 } 2435 2436 /* 2437 * Retrieve the array of supported page sizes. The kernel provides the page 2438 * sizes in increasing order. 2439 */ 2440 static void 2441 init_pagesizes(Elf_Auxinfo **aux_info) 2442 { 2443 static size_t psa[MAXPAGESIZES]; 2444 int mib[2]; 2445 size_t len, size; 2446 2447 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != 2448 NULL) { 2449 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; 2450 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; 2451 } else { 2452 len = 2; 2453 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) 2454 size = sizeof(psa); 2455 else { 2456 /* As a fallback, retrieve the base page size. */ 2457 size = sizeof(psa[0]); 2458 if (aux_info[AT_PAGESZ] != NULL) { 2459 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; 2460 goto psa_filled; 2461 } else { 2462 mib[0] = CTL_HW; 2463 mib[1] = HW_PAGESIZE; 2464 len = 2; 2465 } 2466 } 2467 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { 2468 _rtld_error("sysctl for hw.pagesize(s) failed"); 2469 rtld_die(); 2470 } 2471 psa_filled: 2472 pagesizes = psa; 2473 } 2474 npagesizes = size / sizeof(pagesizes[0]); 2475 /* Discard any invalid entries at the end of the array. */ 2476 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) 2477 npagesizes--; 2478 2479 page_size = pagesizes[0]; 2480 } 2481 2482 /* 2483 * Add the init functions from a needed object list (and its recursive 2484 * needed objects) to "list". This is not used directly; it is a helper 2485 * function for initlist_add_objects(). The write lock must be held 2486 * when this function is called. 2487 */ 2488 static void 2489 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 2490 { 2491 /* Recursively process the successor needed objects. */ 2492 if (needed->next != NULL) 2493 initlist_add_neededs(needed->next, list); 2494 2495 /* Process the current needed object. */ 2496 if (needed->obj != NULL) 2497 initlist_add_objects(needed->obj, needed->obj, list); 2498 } 2499 2500 /* 2501 * Scan all of the DAGs rooted in the range of objects from "obj" to 2502 * "tail" and add their init functions to "list". This recurses over 2503 * the DAGs and ensure the proper init ordering such that each object's 2504 * needed libraries are initialized before the object itself. At the 2505 * same time, this function adds the objects to the global finalization 2506 * list "list_fini" in the opposite order. The write lock must be 2507 * held when this function is called. 2508 */ 2509 static void 2510 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list) 2511 { 2512 Obj_Entry *nobj; 2513 2514 if (obj->init_scanned || obj->init_done) 2515 return; 2516 obj->init_scanned = true; 2517 2518 /* Recursively process the successor objects. */ 2519 nobj = globallist_next(obj); 2520 if (nobj != NULL && obj != tail) 2521 initlist_add_objects(nobj, tail, list); 2522 2523 /* Recursively process the needed objects. */ 2524 if (obj->needed != NULL) 2525 initlist_add_neededs(obj->needed, list); 2526 if (obj->needed_filtees != NULL) 2527 initlist_add_neededs(obj->needed_filtees, list); 2528 if (obj->needed_aux_filtees != NULL) 2529 initlist_add_neededs(obj->needed_aux_filtees, list); 2530 2531 /* Add the object to the init list. */ 2532 objlist_push_tail(list, obj); 2533 2534 /* Add the object to the global fini list in the reverse order. */ 2535 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) 2536 && !obj->on_fini_list) { 2537 objlist_push_head(&list_fini, obj); 2538 obj->on_fini_list = true; 2539 } 2540 } 2541 2542 static void 2543 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate) 2544 { 2545 Needed_Entry *needed, *needed1; 2546 2547 for (needed = n; needed != NULL; needed = needed->next) { 2548 if (needed->obj != NULL) { 2549 dlclose_locked(needed->obj, lockstate); 2550 needed->obj = NULL; 2551 } 2552 } 2553 for (needed = n; needed != NULL; needed = needed1) { 2554 needed1 = needed->next; 2555 free(needed); 2556 } 2557 } 2558 2559 static void 2560 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate) 2561 { 2562 2563 free_needed_filtees(obj->needed_filtees, lockstate); 2564 obj->needed_filtees = NULL; 2565 free_needed_filtees(obj->needed_aux_filtees, lockstate); 2566 obj->needed_aux_filtees = NULL; 2567 obj->filtees_loaded = false; 2568 } 2569 2570 static void 2571 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, 2572 RtldLockState *lockstate) 2573 { 2574 2575 for (; needed != NULL; needed = needed->next) { 2576 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, 2577 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | 2578 RTLD_LOCAL, lockstate); 2579 } 2580 } 2581 2582 static void 2583 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) 2584 { 2585 if (obj->filtees_loaded || obj->filtees_loading) 2586 return; 2587 lock_restart_for_upgrade(lockstate); 2588 obj->filtees_loading = true; 2589 load_filtee1(obj, obj->needed_filtees, flags, lockstate); 2590 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); 2591 obj->filtees_loaded = true; 2592 obj->filtees_loading = false; 2593 } 2594 2595 static int 2596 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) 2597 { 2598 Obj_Entry *obj1; 2599 2600 for (; needed != NULL; needed = needed->next) { 2601 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, 2602 flags & ~RTLD_LO_NOLOAD); 2603 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) 2604 return (-1); 2605 } 2606 return (0); 2607 } 2608 2609 /* 2610 * Given a shared object, traverse its list of needed objects, and load 2611 * each of them. Returns 0 on success. Generates an error message and 2612 * returns -1 on failure. 2613 */ 2614 static int 2615 load_needed_objects(Obj_Entry *first, int flags) 2616 { 2617 Obj_Entry *obj; 2618 2619 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 2620 if (obj->marker) 2621 continue; 2622 if (process_needed(obj, obj->needed, flags) == -1) 2623 return (-1); 2624 } 2625 return (0); 2626 } 2627 2628 static int 2629 load_preload_objects(const char *penv, bool isfd) 2630 { 2631 Obj_Entry *obj; 2632 const char *name; 2633 size_t len; 2634 char savech, *p, *psave; 2635 int fd; 2636 static const char delim[] = " \t:;"; 2637 2638 if (penv == NULL) 2639 return (0); 2640 2641 p = psave = xstrdup(penv); 2642 p += strspn(p, delim); 2643 while (*p != '\0') { 2644 len = strcspn(p, delim); 2645 2646 savech = p[len]; 2647 p[len] = '\0'; 2648 if (isfd) { 2649 name = NULL; 2650 fd = parse_integer(p); 2651 if (fd == -1) { 2652 free(psave); 2653 return (-1); 2654 } 2655 } else { 2656 name = p; 2657 fd = -1; 2658 } 2659 2660 obj = load_object(name, fd, NULL, 0); 2661 if (obj == NULL) { 2662 free(psave); 2663 return (-1); /* XXX - cleanup */ 2664 } 2665 obj->z_interpose = true; 2666 p[len] = savech; 2667 p += len; 2668 p += strspn(p, delim); 2669 } 2670 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); 2671 2672 free(psave); 2673 return (0); 2674 } 2675 2676 static const char * 2677 printable_path(const char *path) 2678 { 2679 2680 return (path == NULL ? "<unknown>" : path); 2681 } 2682 2683 /* 2684 * Load a shared object into memory, if it is not already loaded. The 2685 * object may be specified by name or by user-supplied file descriptor 2686 * fd_u. In the later case, the fd_u descriptor is not closed, but its 2687 * duplicate is. 2688 * 2689 * Returns a pointer to the Obj_Entry for the object. Returns NULL 2690 * on failure. 2691 */ 2692 static Obj_Entry * 2693 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) 2694 { 2695 Obj_Entry *obj; 2696 int fd; 2697 struct stat sb; 2698 char *path; 2699 2700 fd = -1; 2701 if (name != NULL) { 2702 TAILQ_FOREACH(obj, &obj_list, next) { 2703 if (obj->marker || obj->doomed) 2704 continue; 2705 if (object_match_name(obj, name)) 2706 return (obj); 2707 } 2708 2709 path = find_library(name, refobj, &fd); 2710 if (path == NULL) 2711 return (NULL); 2712 } else 2713 path = NULL; 2714 2715 if (fd >= 0) { 2716 /* 2717 * search_library_pathfds() opens a fresh file descriptor for the 2718 * library, so there is no need to dup(). 2719 */ 2720 } else if (fd_u == -1) { 2721 /* 2722 * If we didn't find a match by pathname, or the name is not 2723 * supplied, open the file and check again by device and inode. 2724 * This avoids false mismatches caused by multiple links or ".." 2725 * in pathnames. 2726 * 2727 * To avoid a race, we open the file and use fstat() rather than 2728 * using stat(). 2729 */ 2730 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { 2731 _rtld_error("Cannot open \"%s\"", path); 2732 free(path); 2733 return (NULL); 2734 } 2735 } else { 2736 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); 2737 if (fd == -1) { 2738 _rtld_error("Cannot dup fd"); 2739 free(path); 2740 return (NULL); 2741 } 2742 } 2743 if (fstat(fd, &sb) == -1) { 2744 _rtld_error("Cannot fstat \"%s\"", printable_path(path)); 2745 close(fd); 2746 free(path); 2747 return (NULL); 2748 } 2749 TAILQ_FOREACH(obj, &obj_list, next) { 2750 if (obj->marker || obj->doomed) 2751 continue; 2752 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) 2753 break; 2754 } 2755 if (obj != NULL) { 2756 if (name != NULL) 2757 object_add_name(obj, name); 2758 free(path); 2759 close(fd); 2760 return (obj); 2761 } 2762 if (flags & RTLD_LO_NOLOAD) { 2763 free(path); 2764 close(fd); 2765 return (NULL); 2766 } 2767 2768 /* First use of this object, so we must map it in */ 2769 obj = do_load_object(fd, name, path, &sb, flags); 2770 if (obj == NULL) 2771 free(path); 2772 close(fd); 2773 2774 return (obj); 2775 } 2776 2777 static Obj_Entry * 2778 do_load_object(int fd, const char *name, char *path, struct stat *sbp, 2779 int flags) 2780 { 2781 Obj_Entry *obj; 2782 struct statfs fs; 2783 2784 /* 2785 * First, make sure that environment variables haven't been 2786 * used to circumvent the noexec flag on a filesystem. 2787 * We ignore fstatfs(2) failures, since fd might reference 2788 * not a file, e.g. shmfd. 2789 */ 2790 if (dangerous_ld_env && fstatfs(fd, &fs) == 0 && 2791 (fs.f_flags & MNT_NOEXEC) != 0) { 2792 _rtld_error("Cannot execute objects on %s", fs.f_mntonname); 2793 return (NULL); 2794 } 2795 2796 dbg("loading \"%s\"", printable_path(path)); 2797 obj = map_object(fd, printable_path(path), sbp); 2798 if (obj == NULL) 2799 return (NULL); 2800 2801 /* 2802 * If DT_SONAME is present in the object, digest_dynamic2 already 2803 * added it to the object names. 2804 */ 2805 if (name != NULL) 2806 object_add_name(obj, name); 2807 obj->path = path; 2808 if (!digest_dynamic(obj, 0)) 2809 goto errp; 2810 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, 2811 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); 2812 if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) { 2813 dbg("refusing to load PIE executable \"%s\"", obj->path); 2814 _rtld_error("Cannot load PIE binary %s as DSO", obj->path); 2815 goto errp; 2816 } 2817 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == 2818 RTLD_LO_DLOPEN) { 2819 dbg("refusing to load non-loadable \"%s\"", obj->path); 2820 _rtld_error("Cannot dlopen non-loadable %s", obj->path); 2821 goto errp; 2822 } 2823 2824 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; 2825 TAILQ_INSERT_TAIL(&obj_list, obj, next); 2826 obj_count++; 2827 obj_loads++; 2828 linkmap_add(obj); /* for GDB & dlinfo() */ 2829 max_stack_flags |= obj->stack_flags; 2830 2831 dbg(" %p .. %p: %s", obj->mapbase, 2832 obj->mapbase + obj->mapsize - 1, obj->path); 2833 if (obj->textrel) 2834 dbg(" WARNING: %s has impure text", obj->path); 2835 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 2836 obj->path); 2837 2838 return (obj); 2839 2840 errp: 2841 munmap(obj->mapbase, obj->mapsize); 2842 obj_free(obj); 2843 return (NULL); 2844 } 2845 2846 static int 2847 load_kpreload(const void *addr) 2848 { 2849 Obj_Entry *obj; 2850 const Elf_Ehdr *ehdr; 2851 const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn; 2852 static const char kname[] = "[vdso]"; 2853 2854 ehdr = addr; 2855 if (!check_elf_headers(ehdr, "kpreload")) 2856 return (-1); 2857 obj = obj_new(); 2858 phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff); 2859 obj->phdr = phdr; 2860 obj->phsize = ehdr->e_phnum * sizeof(*phdr); 2861 phlimit = phdr + ehdr->e_phnum; 2862 seg0 = segn = NULL; 2863 2864 for (; phdr < phlimit; phdr++) { 2865 switch (phdr->p_type) { 2866 case PT_DYNAMIC: 2867 phdyn = phdr; 2868 break; 2869 case PT_GNU_STACK: 2870 /* Absense of PT_GNU_STACK implies stack_flags == 0. */ 2871 obj->stack_flags = phdr->p_flags; 2872 break; 2873 case PT_LOAD: 2874 if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr) 2875 seg0 = phdr; 2876 if (segn == NULL || segn->p_vaddr + segn->p_memsz < 2877 phdr->p_vaddr + phdr->p_memsz) 2878 segn = phdr; 2879 break; 2880 } 2881 } 2882 2883 obj->mapbase = __DECONST(caddr_t, addr); 2884 obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr; 2885 obj->vaddrbase = 0; 2886 obj->relocbase = obj->mapbase; 2887 2888 object_add_name(obj, kname); 2889 obj->path = xstrdup(kname); 2890 obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr); 2891 2892 if (!digest_dynamic(obj, 0)) { 2893 obj_free(obj); 2894 return (-1); 2895 } 2896 2897 /* 2898 * We assume that kernel-preloaded object does not need 2899 * relocation. It is currently written into read-only page, 2900 * handling relocations would mean we need to allocate at 2901 * least one additional page per AS. 2902 */ 2903 dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p", 2904 obj->path, obj->mapbase, obj->phdr, seg0, 2905 obj->relocbase + seg0->p_vaddr, obj->dynamic); 2906 2907 TAILQ_INSERT_TAIL(&obj_list, obj, next); 2908 obj_count++; 2909 obj_loads++; 2910 linkmap_add(obj); /* for GDB & dlinfo() */ 2911 max_stack_flags |= obj->stack_flags; 2912 2913 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path); 2914 return (0); 2915 } 2916 2917 Obj_Entry * 2918 obj_from_addr(const void *addr) 2919 { 2920 Obj_Entry *obj; 2921 2922 TAILQ_FOREACH(obj, &obj_list, next) { 2923 if (obj->marker) 2924 continue; 2925 if (addr < (void *) obj->mapbase) 2926 continue; 2927 if (addr < (void *)(obj->mapbase + obj->mapsize)) 2928 return obj; 2929 } 2930 return (NULL); 2931 } 2932 2933 static void 2934 preinit_main(void) 2935 { 2936 Elf_Addr *preinit_addr; 2937 int index; 2938 2939 preinit_addr = (Elf_Addr *)obj_main->preinit_array; 2940 if (preinit_addr == NULL) 2941 return; 2942 2943 for (index = 0; index < obj_main->preinit_array_num; index++) { 2944 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { 2945 dbg("calling preinit function for %s at %p", obj_main->path, 2946 (void *)preinit_addr[index]); 2947 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 2948 0, 0, obj_main->path); 2949 call_init_pointer(obj_main, preinit_addr[index]); 2950 } 2951 } 2952 } 2953 2954 /* 2955 * Call the finalization functions for each of the objects in "list" 2956 * belonging to the DAG of "root" and referenced once. If NULL "root" 2957 * is specified, every finalization function will be called regardless 2958 * of the reference count and the list elements won't be freed. All of 2959 * the objects are expected to have non-NULL fini functions. 2960 */ 2961 static void 2962 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) 2963 { 2964 Objlist_Entry *elm; 2965 struct dlerror_save *saved_msg; 2966 Elf_Addr *fini_addr; 2967 int index; 2968 2969 assert(root == NULL || root->refcount == 1); 2970 2971 if (root != NULL) 2972 root->doomed = true; 2973 2974 /* 2975 * Preserve the current error message since a fini function might 2976 * call into the dynamic linker and overwrite it. 2977 */ 2978 saved_msg = errmsg_save(); 2979 do { 2980 STAILQ_FOREACH(elm, list, link) { 2981 if (root != NULL && (elm->obj->refcount != 1 || 2982 objlist_find(&root->dagmembers, elm->obj) == NULL)) 2983 continue; 2984 /* Remove object from fini list to prevent recursive invocation. */ 2985 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2986 /* Ensure that new references cannot be acquired. */ 2987 elm->obj->doomed = true; 2988 2989 hold_object(elm->obj); 2990 lock_release(rtld_bind_lock, lockstate); 2991 /* 2992 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. 2993 * When this happens, DT_FINI_ARRAY is processed first. 2994 */ 2995 fini_addr = (Elf_Addr *)elm->obj->fini_array; 2996 if (fini_addr != NULL && elm->obj->fini_array_num > 0) { 2997 for (index = elm->obj->fini_array_num - 1; index >= 0; 2998 index--) { 2999 if (fini_addr[index] != 0 && fini_addr[index] != 1) { 3000 dbg("calling fini function for %s at %p", 3001 elm->obj->path, (void *)fini_addr[index]); 3002 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, 3003 (void *)fini_addr[index], 0, 0, elm->obj->path); 3004 call_initfini_pointer(elm->obj, fini_addr[index]); 3005 } 3006 } 3007 } 3008 if (elm->obj->fini != (Elf_Addr)NULL) { 3009 dbg("calling fini function for %s at %p", elm->obj->path, 3010 (void *)elm->obj->fini); 3011 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 3012 0, 0, elm->obj->path); 3013 call_initfini_pointer(elm->obj, elm->obj->fini); 3014 } 3015 wlock_acquire(rtld_bind_lock, lockstate); 3016 unhold_object(elm->obj); 3017 /* No need to free anything if process is going down. */ 3018 if (root != NULL) 3019 free(elm); 3020 /* 3021 * We must restart the list traversal after every fini call 3022 * because a dlclose() call from the fini function or from 3023 * another thread might have modified the reference counts. 3024 */ 3025 break; 3026 } 3027 } while (elm != NULL); 3028 errmsg_restore(saved_msg); 3029 } 3030 3031 /* 3032 * Call the initialization functions for each of the objects in 3033 * "list". All of the objects are expected to have non-NULL init 3034 * functions. 3035 */ 3036 static void 3037 objlist_call_init(Objlist *list, RtldLockState *lockstate) 3038 { 3039 Objlist_Entry *elm; 3040 Obj_Entry *obj; 3041 struct dlerror_save *saved_msg; 3042 Elf_Addr *init_addr; 3043 void (*reg)(void (*)(void)); 3044 int index; 3045 3046 /* 3047 * Clean init_scanned flag so that objects can be rechecked and 3048 * possibly initialized earlier if any of vectors called below 3049 * cause the change by using dlopen. 3050 */ 3051 TAILQ_FOREACH(obj, &obj_list, next) { 3052 if (obj->marker) 3053 continue; 3054 obj->init_scanned = false; 3055 } 3056 3057 /* 3058 * Preserve the current error message since an init function might 3059 * call into the dynamic linker and overwrite it. 3060 */ 3061 saved_msg = errmsg_save(); 3062 STAILQ_FOREACH(elm, list, link) { 3063 if (elm->obj->init_done) /* Initialized early. */ 3064 continue; 3065 /* 3066 * Race: other thread might try to use this object before current 3067 * one completes the initialization. Not much can be done here 3068 * without better locking. 3069 */ 3070 elm->obj->init_done = true; 3071 hold_object(elm->obj); 3072 reg = NULL; 3073 if (elm->obj == obj_main && obj_main->crt_no_init) { 3074 reg = (void (*)(void (*)(void)))get_program_var_addr( 3075 "__libc_atexit", lockstate); 3076 } 3077 lock_release(rtld_bind_lock, lockstate); 3078 if (reg != NULL) { 3079 reg(rtld_exit); 3080 rtld_exit_ptr = rtld_nop_exit; 3081 } 3082 3083 /* 3084 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. 3085 * When this happens, DT_INIT is processed first. 3086 */ 3087 if (elm->obj->init != (Elf_Addr)NULL) { 3088 dbg("calling init function for %s at %p", elm->obj->path, 3089 (void *)elm->obj->init); 3090 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 3091 0, 0, elm->obj->path); 3092 call_init_pointer(elm->obj, elm->obj->init); 3093 } 3094 init_addr = (Elf_Addr *)elm->obj->init_array; 3095 if (init_addr != NULL) { 3096 for (index = 0; index < elm->obj->init_array_num; index++) { 3097 if (init_addr[index] != 0 && init_addr[index] != 1) { 3098 dbg("calling init function for %s at %p", elm->obj->path, 3099 (void *)init_addr[index]); 3100 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, 3101 (void *)init_addr[index], 0, 0, elm->obj->path); 3102 call_init_pointer(elm->obj, init_addr[index]); 3103 } 3104 } 3105 } 3106 wlock_acquire(rtld_bind_lock, lockstate); 3107 unhold_object(elm->obj); 3108 } 3109 errmsg_restore(saved_msg); 3110 } 3111 3112 static void 3113 objlist_clear(Objlist *list) 3114 { 3115 Objlist_Entry *elm; 3116 3117 while (!STAILQ_EMPTY(list)) { 3118 elm = STAILQ_FIRST(list); 3119 STAILQ_REMOVE_HEAD(list, link); 3120 free(elm); 3121 } 3122 } 3123 3124 static Objlist_Entry * 3125 objlist_find(Objlist *list, const Obj_Entry *obj) 3126 { 3127 Objlist_Entry *elm; 3128 3129 STAILQ_FOREACH(elm, list, link) 3130 if (elm->obj == obj) 3131 return elm; 3132 return (NULL); 3133 } 3134 3135 static void 3136 objlist_init(Objlist *list) 3137 { 3138 STAILQ_INIT(list); 3139 } 3140 3141 static void 3142 objlist_push_head(Objlist *list, Obj_Entry *obj) 3143 { 3144 Objlist_Entry *elm; 3145 3146 elm = NEW(Objlist_Entry); 3147 elm->obj = obj; 3148 STAILQ_INSERT_HEAD(list, elm, link); 3149 } 3150 3151 static void 3152 objlist_push_tail(Objlist *list, Obj_Entry *obj) 3153 { 3154 Objlist_Entry *elm; 3155 3156 elm = NEW(Objlist_Entry); 3157 elm->obj = obj; 3158 STAILQ_INSERT_TAIL(list, elm, link); 3159 } 3160 3161 static void 3162 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) 3163 { 3164 Objlist_Entry *elm, *listelm; 3165 3166 STAILQ_FOREACH(listelm, list, link) { 3167 if (listelm->obj == listobj) 3168 break; 3169 } 3170 elm = NEW(Objlist_Entry); 3171 elm->obj = obj; 3172 if (listelm != NULL) 3173 STAILQ_INSERT_AFTER(list, listelm, elm, link); 3174 else 3175 STAILQ_INSERT_TAIL(list, elm, link); 3176 } 3177 3178 static void 3179 objlist_remove(Objlist *list, Obj_Entry *obj) 3180 { 3181 Objlist_Entry *elm; 3182 3183 if ((elm = objlist_find(list, obj)) != NULL) { 3184 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 3185 free(elm); 3186 } 3187 } 3188 3189 /* 3190 * Relocate dag rooted in the specified object. 3191 * Returns 0 on success, or -1 on failure. 3192 */ 3193 3194 static int 3195 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, 3196 int flags, RtldLockState *lockstate) 3197 { 3198 Objlist_Entry *elm; 3199 int error; 3200 3201 error = 0; 3202 STAILQ_FOREACH(elm, &root->dagmembers, link) { 3203 error = relocate_object(elm->obj, bind_now, rtldobj, flags, 3204 lockstate); 3205 if (error == -1) 3206 break; 3207 } 3208 return (error); 3209 } 3210 3211 /* 3212 * Prepare for, or clean after, relocating an object marked with 3213 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only 3214 * segments are remapped read-write. After relocations are done, the 3215 * segment's permissions are returned back to the modes specified in 3216 * the phdrs. If any relocation happened, or always for wired 3217 * program, COW is triggered. 3218 */ 3219 static int 3220 reloc_textrel_prot(Obj_Entry *obj, bool before) 3221 { 3222 const Elf_Phdr *ph; 3223 void *base; 3224 size_t l, sz; 3225 int prot; 3226 3227 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; 3228 l--, ph++) { 3229 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0) 3230 continue; 3231 base = obj->relocbase + rtld_trunc_page(ph->p_vaddr); 3232 sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) - 3233 rtld_trunc_page(ph->p_vaddr); 3234 prot = before ? (PROT_READ | PROT_WRITE) : 3235 convert_prot(ph->p_flags); 3236 if (mprotect(base, sz, prot) == -1) { 3237 _rtld_error("%s: Cannot write-%sable text segment: %s", 3238 obj->path, before ? "en" : "dis", 3239 rtld_strerror(errno)); 3240 return (-1); 3241 } 3242 } 3243 return (0); 3244 } 3245 3246 /* Process RELR relative relocations. */ 3247 static void 3248 reloc_relr(Obj_Entry *obj) 3249 { 3250 const Elf_Relr *relr, *relrlim; 3251 Elf_Addr *where; 3252 3253 relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize); 3254 for (relr = obj->relr; relr < relrlim; relr++) { 3255 Elf_Relr entry = *relr; 3256 3257 if ((entry & 1) == 0) { 3258 where = (Elf_Addr *)(obj->relocbase + entry); 3259 *where++ += (Elf_Addr)obj->relocbase; 3260 } else { 3261 for (long i = 0; (entry >>= 1) != 0; i++) 3262 if ((entry & 1) != 0) 3263 where[i] += (Elf_Addr)obj->relocbase; 3264 where += CHAR_BIT * sizeof(Elf_Relr) - 1; 3265 } 3266 } 3267 } 3268 3269 /* 3270 * Relocate single object. 3271 * Returns 0 on success, or -1 on failure. 3272 */ 3273 static int 3274 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 3275 int flags, RtldLockState *lockstate) 3276 { 3277 3278 if (obj->relocated) 3279 return (0); 3280 obj->relocated = true; 3281 if (obj != rtldobj) 3282 dbg("relocating \"%s\"", obj->path); 3283 3284 if (obj->symtab == NULL || obj->strtab == NULL || 3285 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) 3286 dbg("object %s has no run-time symbol table", obj->path); 3287 3288 /* There are relocations to the write-protected text segment. */ 3289 if (obj->textrel && reloc_textrel_prot(obj, true) != 0) 3290 return (-1); 3291 3292 /* Process the non-PLT non-IFUNC relocations. */ 3293 if (reloc_non_plt(obj, rtldobj, flags, lockstate)) 3294 return (-1); 3295 reloc_relr(obj); 3296 3297 /* Re-protected the text segment. */ 3298 if (obj->textrel && reloc_textrel_prot(obj, false) != 0) 3299 return (-1); 3300 3301 /* Set the special PLT or GOT entries. */ 3302 init_pltgot(obj); 3303 3304 /* Process the PLT relocations. */ 3305 if (reloc_plt(obj, flags, lockstate) == -1) 3306 return (-1); 3307 /* Relocate the jump slots if we are doing immediate binding. */ 3308 if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags, 3309 lockstate) == -1) 3310 return (-1); 3311 3312 if (!obj->mainprog && obj_enforce_relro(obj) == -1) 3313 return (-1); 3314 3315 /* 3316 * Set up the magic number and version in the Obj_Entry. These 3317 * were checked in the crt1.o from the original ElfKit, so we 3318 * set them for backward compatibility. 3319 */ 3320 obj->magic = RTLD_MAGIC; 3321 obj->version = RTLD_VERSION; 3322 3323 return (0); 3324 } 3325 3326 /* 3327 * Relocate newly-loaded shared objects. The argument is a pointer to 3328 * the Obj_Entry for the first such object. All objects from the first 3329 * to the end of the list of objects are relocated. Returns 0 on success, 3330 * or -1 on failure. 3331 */ 3332 static int 3333 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, 3334 int flags, RtldLockState *lockstate) 3335 { 3336 Obj_Entry *obj; 3337 int error; 3338 3339 for (error = 0, obj = first; obj != NULL; 3340 obj = TAILQ_NEXT(obj, next)) { 3341 if (obj->marker) 3342 continue; 3343 error = relocate_object(obj, bind_now, rtldobj, flags, 3344 lockstate); 3345 if (error == -1) 3346 break; 3347 } 3348 return (error); 3349 } 3350 3351 /* 3352 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots 3353 * referencing STT_GNU_IFUNC symbols is postponed till the other 3354 * relocations are done. The indirect functions specified as 3355 * ifunc are allowed to call other symbols, so we need to have 3356 * objects relocated before asking for resolution from indirects. 3357 * 3358 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, 3359 * instead of the usual lazy handling of PLT slots. It is 3360 * consistent with how GNU does it. 3361 */ 3362 static int 3363 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, 3364 RtldLockState *lockstate) 3365 { 3366 3367 if (obj->ifuncs_resolved) 3368 return (0); 3369 obj->ifuncs_resolved = true; 3370 if (!obj->irelative && !obj->irelative_nonplt && 3371 !((obj->bind_now || bind_now) && obj->gnu_ifunc) && 3372 !obj->non_plt_gnu_ifunc) 3373 return (0); 3374 if (obj_disable_relro(obj) == -1 || 3375 (obj->irelative && reloc_iresolve(obj, lockstate) == -1) || 3376 (obj->irelative_nonplt && reloc_iresolve_nonplt(obj, 3377 lockstate) == -1) || 3378 ((obj->bind_now || bind_now) && obj->gnu_ifunc && 3379 reloc_gnu_ifunc(obj, flags, lockstate) == -1) || 3380 (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld, 3381 flags | SYMLOOK_IFUNC, lockstate) == -1) || 3382 obj_enforce_relro(obj) == -1) 3383 return (-1); 3384 return (0); 3385 } 3386 3387 static int 3388 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, 3389 RtldLockState *lockstate) 3390 { 3391 Objlist_Entry *elm; 3392 Obj_Entry *obj; 3393 3394 STAILQ_FOREACH(elm, list, link) { 3395 obj = elm->obj; 3396 if (obj->marker) 3397 continue; 3398 if (resolve_object_ifunc(obj, bind_now, flags, 3399 lockstate) == -1) 3400 return (-1); 3401 } 3402 return (0); 3403 } 3404 3405 /* 3406 * Cleanup procedure. It will be called (by the atexit mechanism) just 3407 * before the process exits. 3408 */ 3409 static void 3410 rtld_exit(void) 3411 { 3412 RtldLockState lockstate; 3413 3414 wlock_acquire(rtld_bind_lock, &lockstate); 3415 dbg("rtld_exit()"); 3416 objlist_call_fini(&list_fini, NULL, &lockstate); 3417 /* No need to remove the items from the list, since we are exiting. */ 3418 if (!libmap_disable) 3419 lm_fini(); 3420 lock_release(rtld_bind_lock, &lockstate); 3421 } 3422 3423 static void 3424 rtld_nop_exit(void) 3425 { 3426 } 3427 3428 /* 3429 * Iterate over a search path, translate each element, and invoke the 3430 * callback on the result. 3431 */ 3432 static void * 3433 path_enumerate(const char *path, path_enum_proc callback, 3434 const char *refobj_path, void *arg) 3435 { 3436 const char *trans; 3437 if (path == NULL) 3438 return (NULL); 3439 3440 path += strspn(path, ":;"); 3441 while (*path != '\0') { 3442 size_t len; 3443 char *res; 3444 3445 len = strcspn(path, ":;"); 3446 trans = lm_findn(refobj_path, path, len); 3447 if (trans) 3448 res = callback(trans, strlen(trans), arg); 3449 else 3450 res = callback(path, len, arg); 3451 3452 if (res != NULL) 3453 return (res); 3454 3455 path += len; 3456 path += strspn(path, ":;"); 3457 } 3458 3459 return (NULL); 3460 } 3461 3462 struct try_library_args { 3463 const char *name; 3464 size_t namelen; 3465 char *buffer; 3466 size_t buflen; 3467 int fd; 3468 }; 3469 3470 static void * 3471 try_library_path(const char *dir, size_t dirlen, void *param) 3472 { 3473 struct try_library_args *arg; 3474 int fd; 3475 3476 arg = param; 3477 if (*dir == '/' || trust) { 3478 char *pathname; 3479 3480 if (dirlen + 1 + arg->namelen + 1 > arg->buflen) 3481 return (NULL); 3482 3483 pathname = arg->buffer; 3484 strncpy(pathname, dir, dirlen); 3485 pathname[dirlen] = '/'; 3486 strcpy(pathname + dirlen + 1, arg->name); 3487 3488 dbg(" Trying \"%s\"", pathname); 3489 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY); 3490 if (fd >= 0) { 3491 dbg(" Opened \"%s\", fd %d", pathname, fd); 3492 pathname = xmalloc(dirlen + 1 + arg->namelen + 1); 3493 strcpy(pathname, arg->buffer); 3494 arg->fd = fd; 3495 return (pathname); 3496 } else { 3497 dbg(" Failed to open \"%s\": %s", 3498 pathname, rtld_strerror(errno)); 3499 } 3500 } 3501 return (NULL); 3502 } 3503 3504 static char * 3505 search_library_path(const char *name, const char *path, 3506 const char *refobj_path, int *fdp) 3507 { 3508 char *p; 3509 struct try_library_args arg; 3510 3511 if (path == NULL) 3512 return (NULL); 3513 3514 arg.name = name; 3515 arg.namelen = strlen(name); 3516 arg.buffer = xmalloc(PATH_MAX); 3517 arg.buflen = PATH_MAX; 3518 arg.fd = -1; 3519 3520 p = path_enumerate(path, try_library_path, refobj_path, &arg); 3521 *fdp = arg.fd; 3522 3523 free(arg.buffer); 3524 3525 return (p); 3526 } 3527 3528 3529 /* 3530 * Finds the library with the given name using the directory descriptors 3531 * listed in the LD_LIBRARY_PATH_FDS environment variable. 3532 * 3533 * Returns a freshly-opened close-on-exec file descriptor for the library, 3534 * or -1 if the library cannot be found. 3535 */ 3536 static char * 3537 search_library_pathfds(const char *name, const char *path, int *fdp) 3538 { 3539 char *envcopy, *fdstr, *found, *last_token; 3540 size_t len; 3541 int dirfd, fd; 3542 3543 dbg("%s('%s', '%s', fdp)", __func__, name, path); 3544 3545 /* Don't load from user-specified libdirs into setuid binaries. */ 3546 if (!trust) 3547 return (NULL); 3548 3549 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ 3550 if (path == NULL) 3551 return (NULL); 3552 3553 /* LD_LIBRARY_PATH_FDS only works with relative paths. */ 3554 if (name[0] == '/') { 3555 dbg("Absolute path (%s) passed to %s", name, __func__); 3556 return (NULL); 3557 } 3558 3559 /* 3560 * Use strtok_r() to walk the FD:FD:FD list. This requires a local 3561 * copy of the path, as strtok_r rewrites separator tokens 3562 * with '\0'. 3563 */ 3564 found = NULL; 3565 envcopy = xstrdup(path); 3566 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; 3567 fdstr = strtok_r(NULL, ":", &last_token)) { 3568 dirfd = parse_integer(fdstr); 3569 if (dirfd < 0) { 3570 _rtld_error("failed to parse directory FD: '%s'", 3571 fdstr); 3572 break; 3573 } 3574 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); 3575 if (fd >= 0) { 3576 *fdp = fd; 3577 len = strlen(fdstr) + strlen(name) + 3; 3578 found = xmalloc(len); 3579 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { 3580 _rtld_error("error generating '%d/%s'", 3581 dirfd, name); 3582 rtld_die(); 3583 } 3584 dbg("open('%s') => %d", found, fd); 3585 break; 3586 } 3587 } 3588 free(envcopy); 3589 3590 return (found); 3591 } 3592 3593 3594 int 3595 dlclose(void *handle) 3596 { 3597 RtldLockState lockstate; 3598 int error; 3599 3600 wlock_acquire(rtld_bind_lock, &lockstate); 3601 error = dlclose_locked(handle, &lockstate); 3602 lock_release(rtld_bind_lock, &lockstate); 3603 return (error); 3604 } 3605 3606 static int 3607 dlclose_locked(void *handle, RtldLockState *lockstate) 3608 { 3609 Obj_Entry *root; 3610 3611 root = dlcheck(handle); 3612 if (root == NULL) 3613 return (-1); 3614 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, 3615 root->path); 3616 3617 /* Unreference the object and its dependencies. */ 3618 root->dl_refcount--; 3619 3620 if (root->refcount == 1) { 3621 /* 3622 * The object will be no longer referenced, so we must unload it. 3623 * First, call the fini functions. 3624 */ 3625 objlist_call_fini(&list_fini, root, lockstate); 3626 3627 unref_dag(root); 3628 3629 /* Finish cleaning up the newly-unreferenced objects. */ 3630 GDB_STATE(RT_DELETE,&root->linkmap); 3631 unload_object(root, lockstate); 3632 GDB_STATE(RT_CONSISTENT,NULL); 3633 } else 3634 unref_dag(root); 3635 3636 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); 3637 return (0); 3638 } 3639 3640 char * 3641 dlerror(void) 3642 { 3643 if (*(lockinfo.dlerror_seen()) != 0) 3644 return (NULL); 3645 *lockinfo.dlerror_seen() = 1; 3646 return (lockinfo.dlerror_loc()); 3647 } 3648 3649 /* 3650 * This function is deprecated and has no effect. 3651 */ 3652 void 3653 dllockinit(void *context, 3654 void *(*_lock_create)(void *context) __unused, 3655 void (*_rlock_acquire)(void *lock) __unused, 3656 void (*_wlock_acquire)(void *lock) __unused, 3657 void (*_lock_release)(void *lock) __unused, 3658 void (*_lock_destroy)(void *lock) __unused, 3659 void (*context_destroy)(void *context)) 3660 { 3661 static void *cur_context; 3662 static void (*cur_context_destroy)(void *); 3663 3664 /* Just destroy the context from the previous call, if necessary. */ 3665 if (cur_context_destroy != NULL) 3666 cur_context_destroy(cur_context); 3667 cur_context = context; 3668 cur_context_destroy = context_destroy; 3669 } 3670 3671 void * 3672 dlopen(const char *name, int mode) 3673 { 3674 3675 return (rtld_dlopen(name, -1, mode)); 3676 } 3677 3678 void * 3679 fdlopen(int fd, int mode) 3680 { 3681 3682 return (rtld_dlopen(NULL, fd, mode)); 3683 } 3684 3685 static void * 3686 rtld_dlopen(const char *name, int fd, int mode) 3687 { 3688 RtldLockState lockstate; 3689 int lo_flags; 3690 3691 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); 3692 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 3693 if (ld_tracing != NULL) { 3694 rlock_acquire(rtld_bind_lock, &lockstate); 3695 if (sigsetjmp(lockstate.env, 0) != 0) 3696 lock_upgrade(rtld_bind_lock, &lockstate); 3697 environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate)); 3698 lock_release(rtld_bind_lock, &lockstate); 3699 } 3700 lo_flags = RTLD_LO_DLOPEN; 3701 if (mode & RTLD_NODELETE) 3702 lo_flags |= RTLD_LO_NODELETE; 3703 if (mode & RTLD_NOLOAD) 3704 lo_flags |= RTLD_LO_NOLOAD; 3705 if (mode & RTLD_DEEPBIND) 3706 lo_flags |= RTLD_LO_DEEPBIND; 3707 if (ld_tracing != NULL) 3708 lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS; 3709 3710 return (dlopen_object(name, fd, obj_main, lo_flags, 3711 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); 3712 } 3713 3714 static void 3715 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate) 3716 { 3717 3718 obj->dl_refcount--; 3719 unref_dag(obj); 3720 if (obj->refcount == 0) 3721 unload_object(obj, lockstate); 3722 } 3723 3724 static Obj_Entry * 3725 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, 3726 int mode, RtldLockState *lockstate) 3727 { 3728 Obj_Entry *obj; 3729 Objlist initlist; 3730 RtldLockState mlockstate; 3731 int result; 3732 3733 dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x", 3734 name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" : 3735 refobj->path, lo_flags, mode); 3736 objlist_init(&initlist); 3737 3738 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { 3739 wlock_acquire(rtld_bind_lock, &mlockstate); 3740 lockstate = &mlockstate; 3741 } 3742 GDB_STATE(RT_ADD,NULL); 3743 3744 obj = NULL; 3745 if (name == NULL && fd == -1) { 3746 obj = obj_main; 3747 obj->refcount++; 3748 } else { 3749 obj = load_object(name, fd, refobj, lo_flags); 3750 } 3751 3752 if (obj) { 3753 obj->dl_refcount++; 3754 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 3755 objlist_push_tail(&list_global, obj); 3756 3757 if (!obj->init_done) { 3758 /* We loaded something new and have to init something. */ 3759 if ((lo_flags & RTLD_LO_DEEPBIND) != 0) 3760 obj->deepbind = true; 3761 result = 0; 3762 if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 && 3763 obj->static_tls && !allocate_tls_offset(obj)) { 3764 _rtld_error("%s: No space available " 3765 "for static Thread Local Storage", obj->path); 3766 result = -1; 3767 } 3768 if (result != -1) 3769 result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN | 3770 RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE)); 3771 init_dag(obj); 3772 ref_dag(obj); 3773 if (result != -1) 3774 result = rtld_verify_versions(&obj->dagmembers); 3775 if (result != -1 && ld_tracing) 3776 goto trace; 3777 if (result == -1 || relocate_object_dag(obj, 3778 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, 3779 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3780 lockstate) == -1) { 3781 dlopen_cleanup(obj, lockstate); 3782 obj = NULL; 3783 } else if (lo_flags & RTLD_LO_EARLY) { 3784 /* 3785 * Do not call the init functions for early loaded 3786 * filtees. The image is still not initialized enough 3787 * for them to work. 3788 * 3789 * Our object is found by the global object list and 3790 * will be ordered among all init calls done right 3791 * before transferring control to main. 3792 */ 3793 } else { 3794 /* Make list of init functions to call. */ 3795 initlist_add_objects(obj, obj, &initlist); 3796 } 3797 /* 3798 * Process all no_delete or global objects here, given 3799 * them own DAGs to prevent their dependencies from being 3800 * unloaded. This has to be done after we have loaded all 3801 * of the dependencies, so that we do not miss any. 3802 */ 3803 if (obj != NULL) 3804 process_z(obj); 3805 } else { 3806 /* 3807 * Bump the reference counts for objects on this DAG. If 3808 * this is the first dlopen() call for the object that was 3809 * already loaded as a dependency, initialize the dag 3810 * starting at it. 3811 */ 3812 init_dag(obj); 3813 ref_dag(obj); 3814 3815 if ((lo_flags & RTLD_LO_TRACE) != 0) 3816 goto trace; 3817 } 3818 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || 3819 obj->z_nodelete) && !obj->ref_nodel) { 3820 dbg("obj %s nodelete", obj->path); 3821 ref_dag(obj); 3822 obj->z_nodelete = obj->ref_nodel = true; 3823 } 3824 } 3825 3826 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, 3827 name); 3828 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 3829 3830 if ((lo_flags & RTLD_LO_EARLY) == 0) { 3831 map_stacks_exec(lockstate); 3832 if (obj != NULL) 3833 distribute_static_tls(&initlist, lockstate); 3834 } 3835 3836 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, 3837 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3838 lockstate) == -1) { 3839 objlist_clear(&initlist); 3840 dlopen_cleanup(obj, lockstate); 3841 if (lockstate == &mlockstate) 3842 lock_release(rtld_bind_lock, lockstate); 3843 return (NULL); 3844 } 3845 3846 if (!(lo_flags & RTLD_LO_EARLY)) { 3847 /* Call the init functions. */ 3848 objlist_call_init(&initlist, lockstate); 3849 } 3850 objlist_clear(&initlist); 3851 if (lockstate == &mlockstate) 3852 lock_release(rtld_bind_lock, lockstate); 3853 return (obj); 3854 trace: 3855 trace_loaded_objects(obj, false); 3856 if (lockstate == &mlockstate) 3857 lock_release(rtld_bind_lock, lockstate); 3858 exit(0); 3859 } 3860 3861 static void * 3862 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, 3863 int flags) 3864 { 3865 DoneList donelist; 3866 const Obj_Entry *obj, *defobj; 3867 const Elf_Sym *def; 3868 SymLook req; 3869 RtldLockState lockstate; 3870 tls_index ti; 3871 void *sym; 3872 int res; 3873 3874 def = NULL; 3875 defobj = NULL; 3876 symlook_init(&req, name); 3877 req.ventry = ve; 3878 req.flags = flags | SYMLOOK_IN_PLT; 3879 req.lockstate = &lockstate; 3880 3881 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); 3882 rlock_acquire(rtld_bind_lock, &lockstate); 3883 if (sigsetjmp(lockstate.env, 0) != 0) 3884 lock_upgrade(rtld_bind_lock, &lockstate); 3885 if (handle == NULL || handle == RTLD_NEXT || 3886 handle == RTLD_DEFAULT || handle == RTLD_SELF) { 3887 3888 if ((obj = obj_from_addr(retaddr)) == NULL) { 3889 _rtld_error("Cannot determine caller's shared object"); 3890 lock_release(rtld_bind_lock, &lockstate); 3891 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3892 return (NULL); 3893 } 3894 if (handle == NULL) { /* Just the caller's shared object. */ 3895 res = symlook_obj(&req, obj); 3896 if (res == 0) { 3897 def = req.sym_out; 3898 defobj = req.defobj_out; 3899 } 3900 } else if (handle == RTLD_NEXT || /* Objects after caller's */ 3901 handle == RTLD_SELF) { /* ... caller included */ 3902 if (handle == RTLD_NEXT) 3903 obj = globallist_next(obj); 3904 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 3905 if (obj->marker) 3906 continue; 3907 res = symlook_obj(&req, obj); 3908 if (res == 0) { 3909 if (def == NULL || (ld_dynamic_weak && 3910 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) { 3911 def = req.sym_out; 3912 defobj = req.defobj_out; 3913 if (!ld_dynamic_weak || 3914 ELF_ST_BIND(def->st_info) != STB_WEAK) 3915 break; 3916 } 3917 } 3918 } 3919 /* 3920 * Search the dynamic linker itself, and possibly resolve the 3921 * symbol from there. This is how the application links to 3922 * dynamic linker services such as dlopen. 3923 * Note that we ignore ld_dynamic_weak == false case, 3924 * always overriding weak symbols by rtld definitions. 3925 */ 3926 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3927 res = symlook_obj(&req, &obj_rtld); 3928 if (res == 0) { 3929 def = req.sym_out; 3930 defobj = req.defobj_out; 3931 } 3932 } 3933 } else { 3934 assert(handle == RTLD_DEFAULT); 3935 res = symlook_default(&req, obj); 3936 if (res == 0) { 3937 defobj = req.defobj_out; 3938 def = req.sym_out; 3939 } 3940 } 3941 } else { 3942 if ((obj = dlcheck(handle)) == NULL) { 3943 lock_release(rtld_bind_lock, &lockstate); 3944 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3945 return (NULL); 3946 } 3947 3948 donelist_init(&donelist); 3949 if (obj->mainprog) { 3950 /* Handle obtained by dlopen(NULL, ...) implies global scope. */ 3951 res = symlook_global(&req, &donelist); 3952 if (res == 0) { 3953 def = req.sym_out; 3954 defobj = req.defobj_out; 3955 } 3956 /* 3957 * Search the dynamic linker itself, and possibly resolve the 3958 * symbol from there. This is how the application links to 3959 * dynamic linker services such as dlopen. 3960 */ 3961 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3962 res = symlook_obj(&req, &obj_rtld); 3963 if (res == 0) { 3964 def = req.sym_out; 3965 defobj = req.defobj_out; 3966 } 3967 } 3968 } 3969 else { 3970 /* Search the whole DAG rooted at the given object. */ 3971 res = symlook_list(&req, &obj->dagmembers, &donelist); 3972 if (res == 0) { 3973 def = req.sym_out; 3974 defobj = req.defobj_out; 3975 } 3976 } 3977 } 3978 3979 if (def != NULL) { 3980 lock_release(rtld_bind_lock, &lockstate); 3981 3982 /* 3983 * The value required by the caller is derived from the value 3984 * of the symbol. this is simply the relocated value of the 3985 * symbol. 3986 */ 3987 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 3988 sym = make_function_pointer(def, defobj); 3989 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 3990 sym = rtld_resolve_ifunc(defobj, def); 3991 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { 3992 ti.ti_module = defobj->tlsindex; 3993 ti.ti_offset = def->st_value; 3994 sym = __tls_get_addr(&ti); 3995 } else 3996 sym = defobj->relocbase + def->st_value; 3997 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); 3998 return (sym); 3999 } 4000 4001 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "", 4002 ve != NULL ? ve->name : ""); 4003 lock_release(rtld_bind_lock, &lockstate); 4004 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 4005 return (NULL); 4006 } 4007 4008 void * 4009 dlsym(void *handle, const char *name) 4010 { 4011 return (do_dlsym(handle, name, __builtin_return_address(0), NULL, 4012 SYMLOOK_DLSYM)); 4013 } 4014 4015 dlfunc_t 4016 dlfunc(void *handle, const char *name) 4017 { 4018 union { 4019 void *d; 4020 dlfunc_t f; 4021 } rv; 4022 4023 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, 4024 SYMLOOK_DLSYM); 4025 return (rv.f); 4026 } 4027 4028 void * 4029 dlvsym(void *handle, const char *name, const char *version) 4030 { 4031 Ver_Entry ventry; 4032 4033 ventry.name = version; 4034 ventry.file = NULL; 4035 ventry.hash = elf_hash(version); 4036 ventry.flags= 0; 4037 return (do_dlsym(handle, name, __builtin_return_address(0), &ventry, 4038 SYMLOOK_DLSYM)); 4039 } 4040 4041 int 4042 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) 4043 { 4044 const Obj_Entry *obj; 4045 RtldLockState lockstate; 4046 4047 rlock_acquire(rtld_bind_lock, &lockstate); 4048 obj = obj_from_addr(addr); 4049 if (obj == NULL) { 4050 _rtld_error("No shared object contains address"); 4051 lock_release(rtld_bind_lock, &lockstate); 4052 return (0); 4053 } 4054 rtld_fill_dl_phdr_info(obj, phdr_info); 4055 lock_release(rtld_bind_lock, &lockstate); 4056 return (1); 4057 } 4058 4059 int 4060 dladdr(const void *addr, Dl_info *info) 4061 { 4062 const Obj_Entry *obj; 4063 const Elf_Sym *def; 4064 void *symbol_addr; 4065 unsigned long symoffset; 4066 RtldLockState lockstate; 4067 4068 rlock_acquire(rtld_bind_lock, &lockstate); 4069 obj = obj_from_addr(addr); 4070 if (obj == NULL) { 4071 _rtld_error("No shared object contains address"); 4072 lock_release(rtld_bind_lock, &lockstate); 4073 return (0); 4074 } 4075 info->dli_fname = obj->path; 4076 info->dli_fbase = obj->mapbase; 4077 info->dli_saddr = (void *)0; 4078 info->dli_sname = NULL; 4079 4080 /* 4081 * Walk the symbol list looking for the symbol whose address is 4082 * closest to the address sent in. 4083 */ 4084 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { 4085 def = obj->symtab + symoffset; 4086 4087 /* 4088 * For skip the symbol if st_shndx is either SHN_UNDEF or 4089 * SHN_COMMON. 4090 */ 4091 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 4092 continue; 4093 4094 /* 4095 * If the symbol is greater than the specified address, or if it 4096 * is further away from addr than the current nearest symbol, 4097 * then reject it. 4098 */ 4099 symbol_addr = obj->relocbase + def->st_value; 4100 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 4101 continue; 4102 4103 /* Update our idea of the nearest symbol. */ 4104 info->dli_sname = obj->strtab + def->st_name; 4105 info->dli_saddr = symbol_addr; 4106 4107 /* Exact match? */ 4108 if (info->dli_saddr == addr) 4109 break; 4110 } 4111 lock_release(rtld_bind_lock, &lockstate); 4112 return (1); 4113 } 4114 4115 int 4116 dlinfo(void *handle, int request, void *p) 4117 { 4118 const Obj_Entry *obj; 4119 RtldLockState lockstate; 4120 int error; 4121 4122 rlock_acquire(rtld_bind_lock, &lockstate); 4123 4124 if (handle == NULL || handle == RTLD_SELF) { 4125 void *retaddr; 4126 4127 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 4128 if ((obj = obj_from_addr(retaddr)) == NULL) 4129 _rtld_error("Cannot determine caller's shared object"); 4130 } else 4131 obj = dlcheck(handle); 4132 4133 if (obj == NULL) { 4134 lock_release(rtld_bind_lock, &lockstate); 4135 return (-1); 4136 } 4137 4138 error = 0; 4139 switch (request) { 4140 case RTLD_DI_LINKMAP: 4141 *((struct link_map const **)p) = &obj->linkmap; 4142 break; 4143 case RTLD_DI_ORIGIN: 4144 error = rtld_dirname(obj->path, p); 4145 break; 4146 4147 case RTLD_DI_SERINFOSIZE: 4148 case RTLD_DI_SERINFO: 4149 error = do_search_info(obj, request, (struct dl_serinfo *)p); 4150 break; 4151 4152 default: 4153 _rtld_error("Invalid request %d passed to dlinfo()", request); 4154 error = -1; 4155 } 4156 4157 lock_release(rtld_bind_lock, &lockstate); 4158 4159 return (error); 4160 } 4161 4162 static void 4163 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) 4164 { 4165 uintptr_t **dtvp; 4166 4167 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; 4168 phdr_info->dlpi_name = obj->path; 4169 phdr_info->dlpi_phdr = obj->phdr; 4170 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); 4171 phdr_info->dlpi_tls_modid = obj->tlsindex; 4172 dtvp = &_tcb_get()->tcb_dtv; 4173 phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp, 4174 obj->tlsindex, 0, true) + TLS_DTV_OFFSET; 4175 phdr_info->dlpi_adds = obj_loads; 4176 phdr_info->dlpi_subs = obj_loads - obj_count; 4177 } 4178 4179 int 4180 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) 4181 { 4182 struct dl_phdr_info phdr_info; 4183 Obj_Entry *obj, marker; 4184 RtldLockState bind_lockstate, phdr_lockstate; 4185 int error; 4186 4187 init_marker(&marker); 4188 error = 0; 4189 4190 wlock_acquire(rtld_phdr_lock, &phdr_lockstate); 4191 wlock_acquire(rtld_bind_lock, &bind_lockstate); 4192 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) { 4193 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next); 4194 rtld_fill_dl_phdr_info(obj, &phdr_info); 4195 hold_object(obj); 4196 lock_release(rtld_bind_lock, &bind_lockstate); 4197 4198 error = callback(&phdr_info, sizeof phdr_info, param); 4199 4200 wlock_acquire(rtld_bind_lock, &bind_lockstate); 4201 unhold_object(obj); 4202 obj = globallist_next(&marker); 4203 TAILQ_REMOVE(&obj_list, &marker, next); 4204 if (error != 0) { 4205 lock_release(rtld_bind_lock, &bind_lockstate); 4206 lock_release(rtld_phdr_lock, &phdr_lockstate); 4207 return (error); 4208 } 4209 } 4210 4211 if (error == 0) { 4212 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); 4213 lock_release(rtld_bind_lock, &bind_lockstate); 4214 error = callback(&phdr_info, sizeof(phdr_info), param); 4215 } 4216 lock_release(rtld_phdr_lock, &phdr_lockstate); 4217 return (error); 4218 } 4219 4220 static void * 4221 fill_search_info(const char *dir, size_t dirlen, void *param) 4222 { 4223 struct fill_search_info_args *arg; 4224 4225 arg = param; 4226 4227 if (arg->request == RTLD_DI_SERINFOSIZE) { 4228 arg->serinfo->dls_cnt ++; 4229 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; 4230 } else { 4231 struct dl_serpath *s_entry; 4232 4233 s_entry = arg->serpath; 4234 s_entry->dls_name = arg->strspace; 4235 s_entry->dls_flags = arg->flags; 4236 4237 strncpy(arg->strspace, dir, dirlen); 4238 arg->strspace[dirlen] = '\0'; 4239 4240 arg->strspace += dirlen + 1; 4241 arg->serpath++; 4242 } 4243 4244 return (NULL); 4245 } 4246 4247 static int 4248 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) 4249 { 4250 struct dl_serinfo _info; 4251 struct fill_search_info_args args; 4252 4253 args.request = RTLD_DI_SERINFOSIZE; 4254 args.serinfo = &_info; 4255 4256 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 4257 _info.dls_cnt = 0; 4258 4259 path_enumerate(obj->rpath, fill_search_info, NULL, &args); 4260 path_enumerate(ld_library_path, fill_search_info, NULL, &args); 4261 path_enumerate(obj->runpath, fill_search_info, NULL, &args); 4262 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args); 4263 if (!obj->z_nodeflib) 4264 path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args); 4265 4266 4267 if (request == RTLD_DI_SERINFOSIZE) { 4268 info->dls_size = _info.dls_size; 4269 info->dls_cnt = _info.dls_cnt; 4270 return (0); 4271 } 4272 4273 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { 4274 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); 4275 return (-1); 4276 } 4277 4278 args.request = RTLD_DI_SERINFO; 4279 args.serinfo = info; 4280 args.serpath = &info->dls_serpath[0]; 4281 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; 4282 4283 args.flags = LA_SER_RUNPATH; 4284 if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL) 4285 return (-1); 4286 4287 args.flags = LA_SER_LIBPATH; 4288 if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL) 4289 return (-1); 4290 4291 args.flags = LA_SER_RUNPATH; 4292 if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL) 4293 return (-1); 4294 4295 args.flags = LA_SER_CONFIG; 4296 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args) 4297 != NULL) 4298 return (-1); 4299 4300 args.flags = LA_SER_DEFAULT; 4301 if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path, 4302 fill_search_info, NULL, &args) != NULL) 4303 return (-1); 4304 return (0); 4305 } 4306 4307 static int 4308 rtld_dirname(const char *path, char *bname) 4309 { 4310 const char *endp; 4311 4312 /* Empty or NULL string gets treated as "." */ 4313 if (path == NULL || *path == '\0') { 4314 bname[0] = '.'; 4315 bname[1] = '\0'; 4316 return (0); 4317 } 4318 4319 /* Strip trailing slashes */ 4320 endp = path + strlen(path) - 1; 4321 while (endp > path && *endp == '/') 4322 endp--; 4323 4324 /* Find the start of the dir */ 4325 while (endp > path && *endp != '/') 4326 endp--; 4327 4328 /* Either the dir is "/" or there are no slashes */ 4329 if (endp == path) { 4330 bname[0] = *endp == '/' ? '/' : '.'; 4331 bname[1] = '\0'; 4332 return (0); 4333 } else { 4334 do { 4335 endp--; 4336 } while (endp > path && *endp == '/'); 4337 } 4338 4339 if (endp - path + 2 > PATH_MAX) 4340 { 4341 _rtld_error("Filename is too long: %s", path); 4342 return(-1); 4343 } 4344 4345 strncpy(bname, path, endp - path + 1); 4346 bname[endp - path + 1] = '\0'; 4347 return (0); 4348 } 4349 4350 static int 4351 rtld_dirname_abs(const char *path, char *base) 4352 { 4353 char *last; 4354 4355 if (realpath(path, base) == NULL) { 4356 _rtld_error("realpath \"%s\" failed (%s)", path, 4357 rtld_strerror(errno)); 4358 return (-1); 4359 } 4360 dbg("%s -> %s", path, base); 4361 last = strrchr(base, '/'); 4362 if (last == NULL) { 4363 _rtld_error("non-abs result from realpath \"%s\"", path); 4364 return (-1); 4365 } 4366 if (last != base) 4367 *last = '\0'; 4368 return (0); 4369 } 4370 4371 static void 4372 linkmap_add(Obj_Entry *obj) 4373 { 4374 struct link_map *l, *prev; 4375 4376 l = &obj->linkmap; 4377 l->l_name = obj->path; 4378 l->l_base = obj->mapbase; 4379 l->l_ld = obj->dynamic; 4380 l->l_addr = obj->relocbase; 4381 4382 if (r_debug.r_map == NULL) { 4383 r_debug.r_map = l; 4384 return; 4385 } 4386 4387 /* 4388 * Scan to the end of the list, but not past the entry for the 4389 * dynamic linker, which we want to keep at the very end. 4390 */ 4391 for (prev = r_debug.r_map; 4392 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 4393 prev = prev->l_next) 4394 ; 4395 4396 /* Link in the new entry. */ 4397 l->l_prev = prev; 4398 l->l_next = prev->l_next; 4399 if (l->l_next != NULL) 4400 l->l_next->l_prev = l; 4401 prev->l_next = l; 4402 } 4403 4404 static void 4405 linkmap_delete(Obj_Entry *obj) 4406 { 4407 struct link_map *l; 4408 4409 l = &obj->linkmap; 4410 if (l->l_prev == NULL) { 4411 if ((r_debug.r_map = l->l_next) != NULL) 4412 l->l_next->l_prev = NULL; 4413 return; 4414 } 4415 4416 if ((l->l_prev->l_next = l->l_next) != NULL) 4417 l->l_next->l_prev = l->l_prev; 4418 } 4419 4420 /* 4421 * Function for the debugger to set a breakpoint on to gain control. 4422 * 4423 * The two parameters allow the debugger to easily find and determine 4424 * what the runtime loader is doing and to whom it is doing it. 4425 * 4426 * When the loadhook trap is hit (r_debug_state, set at program 4427 * initialization), the arguments can be found on the stack: 4428 * 4429 * +8 struct link_map *m 4430 * +4 struct r_debug *rd 4431 * +0 RetAddr 4432 */ 4433 void 4434 r_debug_state(struct r_debug* rd __unused, struct link_map *m __unused) 4435 { 4436 /* 4437 * The following is a hack to force the compiler to emit calls to 4438 * this function, even when optimizing. If the function is empty, 4439 * the compiler is not obliged to emit any code for calls to it, 4440 * even when marked __noinline. However, gdb depends on those 4441 * calls being made. 4442 */ 4443 __compiler_membar(); 4444 } 4445 4446 /* 4447 * A function called after init routines have completed. This can be used to 4448 * break before a program's entry routine is called, and can be used when 4449 * main is not available in the symbol table. 4450 */ 4451 void 4452 _r_debug_postinit(struct link_map *m __unused) 4453 { 4454 4455 /* See r_debug_state(). */ 4456 __compiler_membar(); 4457 } 4458 4459 static void 4460 release_object(Obj_Entry *obj) 4461 { 4462 4463 if (obj->holdcount > 0) { 4464 obj->unholdfree = true; 4465 return; 4466 } 4467 munmap(obj->mapbase, obj->mapsize); 4468 linkmap_delete(obj); 4469 obj_free(obj); 4470 } 4471 4472 /* 4473 * Get address of the pointer variable in the main program. 4474 * Prefer non-weak symbol over the weak one. 4475 */ 4476 static const void ** 4477 get_program_var_addr(const char *name, RtldLockState *lockstate) 4478 { 4479 SymLook req; 4480 DoneList donelist; 4481 4482 symlook_init(&req, name); 4483 req.lockstate = lockstate; 4484 donelist_init(&donelist); 4485 if (symlook_global(&req, &donelist) != 0) 4486 return (NULL); 4487 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) 4488 return ((const void **)make_function_pointer(req.sym_out, 4489 req.defobj_out)); 4490 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) 4491 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); 4492 else 4493 return ((const void **)(req.defobj_out->relocbase + 4494 req.sym_out->st_value)); 4495 } 4496 4497 /* 4498 * Set a pointer variable in the main program to the given value. This 4499 * is used to set key variables such as "environ" before any of the 4500 * init functions are called. 4501 */ 4502 static void 4503 set_program_var(const char *name, const void *value) 4504 { 4505 const void **addr; 4506 4507 if ((addr = get_program_var_addr(name, NULL)) != NULL) { 4508 dbg("\"%s\": *%p <-- %p", name, addr, value); 4509 *addr = value; 4510 } 4511 } 4512 4513 /* 4514 * Search the global objects, including dependencies and main object, 4515 * for the given symbol. 4516 */ 4517 static int 4518 symlook_global(SymLook *req, DoneList *donelist) 4519 { 4520 SymLook req1; 4521 const Objlist_Entry *elm; 4522 int res; 4523 4524 symlook_init_from_req(&req1, req); 4525 4526 /* Search all objects loaded at program start up. */ 4527 if (req->defobj_out == NULL || (ld_dynamic_weak && 4528 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) { 4529 res = symlook_list(&req1, &list_main, donelist); 4530 if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL || 4531 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4532 req->sym_out = req1.sym_out; 4533 req->defobj_out = req1.defobj_out; 4534 assert(req->defobj_out != NULL); 4535 } 4536 } 4537 4538 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 4539 STAILQ_FOREACH(elm, &list_global, link) { 4540 if (req->defobj_out != NULL && (!ld_dynamic_weak || 4541 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)) 4542 break; 4543 res = symlook_list(&req1, &elm->obj->dagmembers, donelist); 4544 if (res == 0 && (req->defobj_out == NULL || 4545 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4546 req->sym_out = req1.sym_out; 4547 req->defobj_out = req1.defobj_out; 4548 assert(req->defobj_out != NULL); 4549 } 4550 } 4551 4552 return (req->sym_out != NULL ? 0 : ESRCH); 4553 } 4554 4555 /* 4556 * Given a symbol name in a referencing object, find the corresponding 4557 * definition of the symbol. Returns a pointer to the symbol, or NULL if 4558 * no definition was found. Returns a pointer to the Obj_Entry of the 4559 * defining object via the reference parameter DEFOBJ_OUT. 4560 */ 4561 static int 4562 symlook_default(SymLook *req, const Obj_Entry *refobj) 4563 { 4564 DoneList donelist; 4565 const Objlist_Entry *elm; 4566 SymLook req1; 4567 int res; 4568 4569 donelist_init(&donelist); 4570 symlook_init_from_req(&req1, req); 4571 4572 /* 4573 * Look first in the referencing object if linked symbolically, 4574 * and similarly handle protected symbols. 4575 */ 4576 res = symlook_obj(&req1, refobj); 4577 if (res == 0 && (refobj->symbolic || 4578 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) { 4579 req->sym_out = req1.sym_out; 4580 req->defobj_out = req1.defobj_out; 4581 assert(req->defobj_out != NULL); 4582 } 4583 if (refobj->symbolic || req->defobj_out != NULL) 4584 donelist_check(&donelist, refobj); 4585 4586 if (!refobj->deepbind) 4587 symlook_global(req, &donelist); 4588 4589 /* Search all dlopened DAGs containing the referencing object. */ 4590 STAILQ_FOREACH(elm, &refobj->dldags, link) { 4591 if (req->sym_out != NULL && (!ld_dynamic_weak || 4592 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)) 4593 break; 4594 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); 4595 if (res == 0 && (req->sym_out == NULL || 4596 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4597 req->sym_out = req1.sym_out; 4598 req->defobj_out = req1.defobj_out; 4599 assert(req->defobj_out != NULL); 4600 } 4601 } 4602 4603 if (refobj->deepbind) 4604 symlook_global(req, &donelist); 4605 4606 /* 4607 * Search the dynamic linker itself, and possibly resolve the 4608 * symbol from there. This is how the application links to 4609 * dynamic linker services such as dlopen. 4610 */ 4611 if (req->sym_out == NULL || 4612 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 4613 res = symlook_obj(&req1, &obj_rtld); 4614 if (res == 0) { 4615 req->sym_out = req1.sym_out; 4616 req->defobj_out = req1.defobj_out; 4617 assert(req->defobj_out != NULL); 4618 } 4619 } 4620 4621 return (req->sym_out != NULL ? 0 : ESRCH); 4622 } 4623 4624 static int 4625 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) 4626 { 4627 const Elf_Sym *def; 4628 const Obj_Entry *defobj; 4629 const Objlist_Entry *elm; 4630 SymLook req1; 4631 int res; 4632 4633 def = NULL; 4634 defobj = NULL; 4635 STAILQ_FOREACH(elm, objlist, link) { 4636 if (donelist_check(dlp, elm->obj)) 4637 continue; 4638 symlook_init_from_req(&req1, req); 4639 if ((res = symlook_obj(&req1, elm->obj)) == 0) { 4640 if (def == NULL || (ld_dynamic_weak && 4641 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4642 def = req1.sym_out; 4643 defobj = req1.defobj_out; 4644 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK) 4645 break; 4646 } 4647 } 4648 } 4649 if (def != NULL) { 4650 req->sym_out = def; 4651 req->defobj_out = defobj; 4652 return (0); 4653 } 4654 return (ESRCH); 4655 } 4656 4657 /* 4658 * Search the chain of DAGS cointed to by the given Needed_Entry 4659 * for a symbol of the given name. Each DAG is scanned completely 4660 * before advancing to the next one. Returns a pointer to the symbol, 4661 * or NULL if no definition was found. 4662 */ 4663 static int 4664 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) 4665 { 4666 const Elf_Sym *def; 4667 const Needed_Entry *n; 4668 const Obj_Entry *defobj; 4669 SymLook req1; 4670 int res; 4671 4672 def = NULL; 4673 defobj = NULL; 4674 symlook_init_from_req(&req1, req); 4675 for (n = needed; n != NULL; n = n->next) { 4676 if (n->obj == NULL || 4677 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) 4678 continue; 4679 if (def == NULL || (ld_dynamic_weak && 4680 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4681 def = req1.sym_out; 4682 defobj = req1.defobj_out; 4683 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK) 4684 break; 4685 } 4686 } 4687 if (def != NULL) { 4688 req->sym_out = def; 4689 req->defobj_out = defobj; 4690 return (0); 4691 } 4692 return (ESRCH); 4693 } 4694 4695 static int 4696 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj, 4697 Needed_Entry *needed) 4698 { 4699 DoneList donelist; 4700 int flags; 4701 4702 flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0; 4703 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 4704 donelist_init(&donelist); 4705 symlook_init_from_req(req1, req); 4706 return (symlook_needed(req1, needed, &donelist)); 4707 } 4708 4709 /* 4710 * Search the symbol table of a single shared object for a symbol of 4711 * the given name and version, if requested. Returns a pointer to the 4712 * symbol, or NULL if no definition was found. If the object is 4713 * filter, return filtered symbol from filtee. 4714 * 4715 * The symbol's hash value is passed in for efficiency reasons; that 4716 * eliminates many recomputations of the hash value. 4717 */ 4718 int 4719 symlook_obj(SymLook *req, const Obj_Entry *obj) 4720 { 4721 SymLook req1; 4722 int res, mres; 4723 4724 /* 4725 * If there is at least one valid hash at this point, we prefer to 4726 * use the faster GNU version if available. 4727 */ 4728 if (obj->valid_hash_gnu) 4729 mres = symlook_obj1_gnu(req, obj); 4730 else if (obj->valid_hash_sysv) 4731 mres = symlook_obj1_sysv(req, obj); 4732 else 4733 return (EINVAL); 4734 4735 if (mres == 0) { 4736 if (obj->needed_filtees != NULL) { 4737 res = symlook_obj_load_filtees(req, &req1, obj, 4738 obj->needed_filtees); 4739 if (res == 0) { 4740 req->sym_out = req1.sym_out; 4741 req->defobj_out = req1.defobj_out; 4742 } 4743 return (res); 4744 } 4745 if (obj->needed_aux_filtees != NULL) { 4746 res = symlook_obj_load_filtees(req, &req1, obj, 4747 obj->needed_aux_filtees); 4748 if (res == 0) { 4749 req->sym_out = req1.sym_out; 4750 req->defobj_out = req1.defobj_out; 4751 return (res); 4752 } 4753 } 4754 } 4755 return (mres); 4756 } 4757 4758 /* Symbol match routine common to both hash functions */ 4759 static bool 4760 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, 4761 const unsigned long symnum) 4762 { 4763 Elf_Versym verndx; 4764 const Elf_Sym *symp; 4765 const char *strp; 4766 4767 symp = obj->symtab + symnum; 4768 strp = obj->strtab + symp->st_name; 4769 4770 switch (ELF_ST_TYPE(symp->st_info)) { 4771 case STT_FUNC: 4772 case STT_NOTYPE: 4773 case STT_OBJECT: 4774 case STT_COMMON: 4775 case STT_GNU_IFUNC: 4776 if (symp->st_value == 0) 4777 return (false); 4778 /* fallthrough */ 4779 case STT_TLS: 4780 if (symp->st_shndx != SHN_UNDEF) 4781 break; 4782 else if (((req->flags & SYMLOOK_IN_PLT) == 0) && 4783 (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) 4784 break; 4785 /* fallthrough */ 4786 default: 4787 return (false); 4788 } 4789 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) 4790 return (false); 4791 4792 if (req->ventry == NULL) { 4793 if (obj->versyms != NULL) { 4794 verndx = VER_NDX(obj->versyms[symnum]); 4795 if (verndx > obj->vernum) { 4796 _rtld_error( 4797 "%s: symbol %s references wrong version %d", 4798 obj->path, obj->strtab + symnum, verndx); 4799 return (false); 4800 } 4801 /* 4802 * If we are not called from dlsym (i.e. this 4803 * is a normal relocation from unversioned 4804 * binary), accept the symbol immediately if 4805 * it happens to have first version after this 4806 * shared object became versioned. Otherwise, 4807 * if symbol is versioned and not hidden, 4808 * remember it. If it is the only symbol with 4809 * this name exported by the shared object, it 4810 * will be returned as a match by the calling 4811 * function. If symbol is global (verndx < 2) 4812 * accept it unconditionally. 4813 */ 4814 if ((req->flags & SYMLOOK_DLSYM) == 0 && 4815 verndx == VER_NDX_GIVEN) { 4816 result->sym_out = symp; 4817 return (true); 4818 } 4819 else if (verndx >= VER_NDX_GIVEN) { 4820 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) 4821 == 0) { 4822 if (result->vsymp == NULL) 4823 result->vsymp = symp; 4824 result->vcount++; 4825 } 4826 return (false); 4827 } 4828 } 4829 result->sym_out = symp; 4830 return (true); 4831 } 4832 if (obj->versyms == NULL) { 4833 if (object_match_name(obj, req->ventry->name)) { 4834 _rtld_error("%s: object %s should provide version %s " 4835 "for symbol %s", obj_rtld.path, obj->path, 4836 req->ventry->name, obj->strtab + symnum); 4837 return (false); 4838 } 4839 } else { 4840 verndx = VER_NDX(obj->versyms[symnum]); 4841 if (verndx > obj->vernum) { 4842 _rtld_error("%s: symbol %s references wrong version %d", 4843 obj->path, obj->strtab + symnum, verndx); 4844 return (false); 4845 } 4846 if (obj->vertab[verndx].hash != req->ventry->hash || 4847 strcmp(obj->vertab[verndx].name, req->ventry->name)) { 4848 /* 4849 * Version does not match. Look if this is a 4850 * global symbol and if it is not hidden. If 4851 * global symbol (verndx < 2) is available, 4852 * use it. Do not return symbol if we are 4853 * called by dlvsym, because dlvsym looks for 4854 * a specific version and default one is not 4855 * what dlvsym wants. 4856 */ 4857 if ((req->flags & SYMLOOK_DLSYM) || 4858 (verndx >= VER_NDX_GIVEN) || 4859 (obj->versyms[symnum] & VER_NDX_HIDDEN)) 4860 return (false); 4861 } 4862 } 4863 result->sym_out = symp; 4864 return (true); 4865 } 4866 4867 /* 4868 * Search for symbol using SysV hash function. 4869 * obj->buckets is known not to be NULL at this point; the test for this was 4870 * performed with the obj->valid_hash_sysv assignment. 4871 */ 4872 static int 4873 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) 4874 { 4875 unsigned long symnum; 4876 Sym_Match_Result matchres; 4877 4878 matchres.sym_out = NULL; 4879 matchres.vsymp = NULL; 4880 matchres.vcount = 0; 4881 4882 for (symnum = obj->buckets[req->hash % obj->nbuckets]; 4883 symnum != STN_UNDEF; symnum = obj->chains[symnum]) { 4884 if (symnum >= obj->nchains) 4885 return (ESRCH); /* Bad object */ 4886 4887 if (matched_symbol(req, obj, &matchres, symnum)) { 4888 req->sym_out = matchres.sym_out; 4889 req->defobj_out = obj; 4890 return (0); 4891 } 4892 } 4893 if (matchres.vcount == 1) { 4894 req->sym_out = matchres.vsymp; 4895 req->defobj_out = obj; 4896 return (0); 4897 } 4898 return (ESRCH); 4899 } 4900 4901 /* Search for symbol using GNU hash function */ 4902 static int 4903 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) 4904 { 4905 Elf_Addr bloom_word; 4906 const Elf32_Word *hashval; 4907 Elf32_Word bucket; 4908 Sym_Match_Result matchres; 4909 unsigned int h1, h2; 4910 unsigned long symnum; 4911 4912 matchres.sym_out = NULL; 4913 matchres.vsymp = NULL; 4914 matchres.vcount = 0; 4915 4916 /* Pick right bitmask word from Bloom filter array */ 4917 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & 4918 obj->maskwords_bm_gnu]; 4919 4920 /* Calculate modulus word size of gnu hash and its derivative */ 4921 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); 4922 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); 4923 4924 /* Filter out the "definitely not in set" queries */ 4925 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) 4926 return (ESRCH); 4927 4928 /* Locate hash chain and corresponding value element*/ 4929 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; 4930 if (bucket == 0) 4931 return (ESRCH); 4932 hashval = &obj->chain_zero_gnu[bucket]; 4933 do { 4934 if (((*hashval ^ req->hash_gnu) >> 1) == 0) { 4935 symnum = hashval - obj->chain_zero_gnu; 4936 if (matched_symbol(req, obj, &matchres, symnum)) { 4937 req->sym_out = matchres.sym_out; 4938 req->defobj_out = obj; 4939 return (0); 4940 } 4941 } 4942 } while ((*hashval++ & 1) == 0); 4943 if (matchres.vcount == 1) { 4944 req->sym_out = matchres.vsymp; 4945 req->defobj_out = obj; 4946 return (0); 4947 } 4948 return (ESRCH); 4949 } 4950 4951 static void 4952 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2) 4953 { 4954 *main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME); 4955 if (*main_local == NULL) 4956 *main_local = ""; 4957 4958 *fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1); 4959 if (*fmt1 == NULL) 4960 *fmt1 = "\t%o => %p (%x)\n"; 4961 4962 *fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2); 4963 if (*fmt2 == NULL) 4964 *fmt2 = "\t%o (%x)\n"; 4965 } 4966 4967 static void 4968 trace_print_obj(Obj_Entry *obj, const char *name, const char *path, 4969 const char *main_local, const char *fmt1, const char *fmt2) 4970 { 4971 const char *fmt; 4972 int c; 4973 4974 if (fmt1 == NULL) 4975 fmt = fmt2; 4976 else 4977 /* XXX bogus */ 4978 fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2; 4979 4980 while ((c = *fmt++) != '\0') { 4981 switch (c) { 4982 default: 4983 rtld_putchar(c); 4984 continue; 4985 case '\\': 4986 switch (c = *fmt) { 4987 case '\0': 4988 continue; 4989 case 'n': 4990 rtld_putchar('\n'); 4991 break; 4992 case 't': 4993 rtld_putchar('\t'); 4994 break; 4995 } 4996 break; 4997 case '%': 4998 switch (c = *fmt) { 4999 case '\0': 5000 continue; 5001 case '%': 5002 default: 5003 rtld_putchar(c); 5004 break; 5005 case 'A': 5006 rtld_putstr(main_local); 5007 break; 5008 case 'a': 5009 rtld_putstr(obj_main->path); 5010 break; 5011 case 'o': 5012 rtld_putstr(name); 5013 break; 5014 case 'p': 5015 rtld_putstr(path); 5016 break; 5017 case 'x': 5018 rtld_printf("%p", obj != NULL ? 5019 obj->mapbase : NULL); 5020 break; 5021 } 5022 break; 5023 } 5024 ++fmt; 5025 } 5026 } 5027 5028 static void 5029 trace_loaded_objects(Obj_Entry *obj, bool show_preload) 5030 { 5031 const char *fmt1, *fmt2, *main_local; 5032 const char *name, *path; 5033 bool first_spurious, list_containers; 5034 5035 trace_calc_fmts(&main_local, &fmt1, &fmt2); 5036 list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL; 5037 5038 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 5039 Needed_Entry *needed; 5040 5041 if (obj->marker) 5042 continue; 5043 if (list_containers && obj->needed != NULL) 5044 rtld_printf("%s:\n", obj->path); 5045 for (needed = obj->needed; needed; needed = needed->next) { 5046 if (needed->obj != NULL) { 5047 if (needed->obj->traced && !list_containers) 5048 continue; 5049 needed->obj->traced = true; 5050 path = needed->obj->path; 5051 } else 5052 path = "not found"; 5053 5054 name = obj->strtab + needed->name; 5055 trace_print_obj(needed->obj, name, path, main_local, 5056 fmt1, fmt2); 5057 } 5058 } 5059 5060 if (show_preload) { 5061 if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL) 5062 fmt2 = "\t%p (%x)\n"; 5063 first_spurious = true; 5064 5065 TAILQ_FOREACH(obj, &obj_list, next) { 5066 if (obj->marker || obj == obj_main || obj->traced) 5067 continue; 5068 5069 if (list_containers && first_spurious) { 5070 rtld_printf("[preloaded]\n"); 5071 first_spurious = false; 5072 } 5073 5074 Name_Entry *fname = STAILQ_FIRST(&obj->names); 5075 name = fname == NULL ? "<unknown>" : fname->name; 5076 trace_print_obj(obj, name, obj->path, main_local, 5077 NULL, fmt2); 5078 } 5079 } 5080 } 5081 5082 /* 5083 * Unload a dlopened object and its dependencies from memory and from 5084 * our data structures. It is assumed that the DAG rooted in the 5085 * object has already been unreferenced, and that the object has a 5086 * reference count of 0. 5087 */ 5088 static void 5089 unload_object(Obj_Entry *root, RtldLockState *lockstate) 5090 { 5091 Obj_Entry marker, *obj, *next; 5092 5093 assert(root->refcount == 0); 5094 5095 /* 5096 * Pass over the DAG removing unreferenced objects from 5097 * appropriate lists. 5098 */ 5099 unlink_object(root); 5100 5101 /* Unmap all objects that are no longer referenced. */ 5102 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) { 5103 next = TAILQ_NEXT(obj, next); 5104 if (obj->marker || obj->refcount != 0) 5105 continue; 5106 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, 5107 obj->mapsize, 0, obj->path); 5108 dbg("unloading \"%s\"", obj->path); 5109 /* 5110 * Unlink the object now to prevent new references from 5111 * being acquired while the bind lock is dropped in 5112 * recursive dlclose() invocations. 5113 */ 5114 TAILQ_REMOVE(&obj_list, obj, next); 5115 obj_count--; 5116 5117 if (obj->filtees_loaded) { 5118 if (next != NULL) { 5119 init_marker(&marker); 5120 TAILQ_INSERT_BEFORE(next, &marker, next); 5121 unload_filtees(obj, lockstate); 5122 next = TAILQ_NEXT(&marker, next); 5123 TAILQ_REMOVE(&obj_list, &marker, next); 5124 } else 5125 unload_filtees(obj, lockstate); 5126 } 5127 release_object(obj); 5128 } 5129 } 5130 5131 static void 5132 unlink_object(Obj_Entry *root) 5133 { 5134 Objlist_Entry *elm; 5135 5136 if (root->refcount == 0) { 5137 /* Remove the object from the RTLD_GLOBAL list. */ 5138 objlist_remove(&list_global, root); 5139 5140 /* Remove the object from all objects' DAG lists. */ 5141 STAILQ_FOREACH(elm, &root->dagmembers, link) { 5142 objlist_remove(&elm->obj->dldags, root); 5143 if (elm->obj != root) 5144 unlink_object(elm->obj); 5145 } 5146 } 5147 } 5148 5149 static void 5150 ref_dag(Obj_Entry *root) 5151 { 5152 Objlist_Entry *elm; 5153 5154 assert(root->dag_inited); 5155 STAILQ_FOREACH(elm, &root->dagmembers, link) 5156 elm->obj->refcount++; 5157 } 5158 5159 static void 5160 unref_dag(Obj_Entry *root) 5161 { 5162 Objlist_Entry *elm; 5163 5164 assert(root->dag_inited); 5165 STAILQ_FOREACH(elm, &root->dagmembers, link) 5166 elm->obj->refcount--; 5167 } 5168 5169 /* 5170 * Common code for MD __tls_get_addr(). 5171 */ 5172 static void * 5173 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked) 5174 { 5175 Elf_Addr *newdtv, *dtv; 5176 RtldLockState lockstate; 5177 int to_copy; 5178 5179 dtv = *dtvp; 5180 /* Check dtv generation in case new modules have arrived */ 5181 if (dtv[0] != tls_dtv_generation) { 5182 if (!locked) 5183 wlock_acquire(rtld_bind_lock, &lockstate); 5184 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 5185 to_copy = dtv[1]; 5186 if (to_copy > tls_max_index) 5187 to_copy = tls_max_index; 5188 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); 5189 newdtv[0] = tls_dtv_generation; 5190 newdtv[1] = tls_max_index; 5191 free(dtv); 5192 if (!locked) 5193 lock_release(rtld_bind_lock, &lockstate); 5194 dtv = *dtvp = newdtv; 5195 } 5196 5197 /* Dynamically allocate module TLS if necessary */ 5198 if (dtv[index + 1] == 0) { 5199 /* Signal safe, wlock will block out signals. */ 5200 if (!locked) 5201 wlock_acquire(rtld_bind_lock, &lockstate); 5202 if (!dtv[index + 1]) 5203 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); 5204 if (!locked) 5205 lock_release(rtld_bind_lock, &lockstate); 5206 } 5207 return ((void *)(dtv[index + 1] + offset)); 5208 } 5209 5210 void * 5211 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset) 5212 { 5213 uintptr_t *dtv; 5214 5215 dtv = *dtvp; 5216 /* Check dtv generation in case new modules have arrived */ 5217 if (__predict_true(dtv[0] == tls_dtv_generation && 5218 dtv[index + 1] != 0)) 5219 return ((void *)(dtv[index + 1] + offset)); 5220 return (tls_get_addr_slow(dtvp, index, offset, false)); 5221 } 5222 5223 #ifdef TLS_VARIANT_I 5224 5225 /* 5226 * Return pointer to allocated TLS block 5227 */ 5228 static void * 5229 get_tls_block_ptr(void *tcb, size_t tcbsize) 5230 { 5231 size_t extra_size, post_size, pre_size, tls_block_size; 5232 size_t tls_init_align; 5233 5234 tls_init_align = MAX(obj_main->tlsalign, 1); 5235 5236 /* Compute fragments sizes. */ 5237 extra_size = tcbsize - TLS_TCB_SIZE; 5238 post_size = calculate_tls_post_size(tls_init_align); 5239 tls_block_size = tcbsize + post_size; 5240 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size; 5241 5242 return ((char *)tcb - pre_size - extra_size); 5243 } 5244 5245 /* 5246 * Allocate Static TLS using the Variant I method. 5247 * 5248 * For details on the layout, see lib/libc/gen/tls.c. 5249 * 5250 * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as 5251 * it is based on tls_last_offset, and TLS offsets here are really TCB 5252 * offsets, whereas libc's tls_static_space is just the executable's static 5253 * TLS segment. 5254 */ 5255 void * 5256 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) 5257 { 5258 Obj_Entry *obj; 5259 char *tls_block; 5260 Elf_Addr *dtv, **tcb; 5261 Elf_Addr addr; 5262 Elf_Addr i; 5263 size_t extra_size, maxalign, post_size, pre_size, tls_block_size; 5264 size_t tls_init_align, tls_init_offset; 5265 5266 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) 5267 return (oldtcb); 5268 5269 assert(tcbsize >= TLS_TCB_SIZE); 5270 maxalign = MAX(tcbalign, tls_static_max_align); 5271 tls_init_align = MAX(obj_main->tlsalign, 1); 5272 5273 /* Compute fragmets sizes. */ 5274 extra_size = tcbsize - TLS_TCB_SIZE; 5275 post_size = calculate_tls_post_size(tls_init_align); 5276 tls_block_size = tcbsize + post_size; 5277 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size; 5278 tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size; 5279 5280 /* Allocate whole TLS block */ 5281 tls_block = xmalloc_aligned(tls_block_size, maxalign, 0); 5282 tcb = (Elf_Addr **)(tls_block + pre_size + extra_size); 5283 5284 if (oldtcb != NULL) { 5285 memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize), 5286 tls_static_space); 5287 free(get_tls_block_ptr(oldtcb, tcbsize)); 5288 5289 /* Adjust the DTV. */ 5290 dtv = tcb[0]; 5291 for (i = 0; i < dtv[1]; i++) { 5292 if (dtv[i+2] >= (Elf_Addr)oldtcb && 5293 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { 5294 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb; 5295 } 5296 } 5297 } else { 5298 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 5299 tcb[0] = dtv; 5300 dtv[0] = tls_dtv_generation; 5301 dtv[1] = tls_max_index; 5302 5303 for (obj = globallist_curr(objs); obj != NULL; 5304 obj = globallist_next(obj)) { 5305 if (obj->tlsoffset == 0) 5306 continue; 5307 tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1); 5308 addr = (Elf_Addr)tcb + obj->tlsoffset; 5309 if (tls_init_offset > 0) 5310 memset((void *)addr, 0, tls_init_offset); 5311 if (obj->tlsinitsize > 0) { 5312 memcpy((void *)(addr + tls_init_offset), obj->tlsinit, 5313 obj->tlsinitsize); 5314 } 5315 if (obj->tlssize > obj->tlsinitsize) { 5316 memset((void *)(addr + tls_init_offset + obj->tlsinitsize), 5317 0, obj->tlssize - obj->tlsinitsize - tls_init_offset); 5318 } 5319 dtv[obj->tlsindex + 1] = addr; 5320 } 5321 } 5322 5323 return (tcb); 5324 } 5325 5326 void 5327 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused) 5328 { 5329 Elf_Addr *dtv; 5330 Elf_Addr tlsstart, tlsend; 5331 size_t post_size; 5332 size_t dtvsize, i, tls_init_align __unused; 5333 5334 assert(tcbsize >= TLS_TCB_SIZE); 5335 tls_init_align = MAX(obj_main->tlsalign, 1); 5336 5337 /* Compute fragments sizes. */ 5338 post_size = calculate_tls_post_size(tls_init_align); 5339 5340 tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size; 5341 tlsend = (Elf_Addr)tcb + tls_static_space; 5342 5343 dtv = *(Elf_Addr **)tcb; 5344 dtvsize = dtv[1]; 5345 for (i = 0; i < dtvsize; i++) { 5346 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { 5347 free((void*)dtv[i+2]); 5348 } 5349 } 5350 free(dtv); 5351 free(get_tls_block_ptr(tcb, tcbsize)); 5352 } 5353 5354 #endif /* TLS_VARIANT_I */ 5355 5356 #ifdef TLS_VARIANT_II 5357 5358 /* 5359 * Allocate Static TLS using the Variant II method. 5360 */ 5361 void * 5362 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) 5363 { 5364 Obj_Entry *obj; 5365 size_t size, ralign; 5366 char *tls; 5367 Elf_Addr *dtv, *olddtv; 5368 Elf_Addr segbase, oldsegbase, addr; 5369 size_t i; 5370 5371 ralign = tcbalign; 5372 if (tls_static_max_align > ralign) 5373 ralign = tls_static_max_align; 5374 size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign); 5375 5376 assert(tcbsize >= 2*sizeof(Elf_Addr)); 5377 tls = xmalloc_aligned(size, ralign, 0 /* XXX */); 5378 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 5379 5380 segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign)); 5381 ((Elf_Addr *)segbase)[0] = segbase; 5382 ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv; 5383 5384 dtv[0] = tls_dtv_generation; 5385 dtv[1] = tls_max_index; 5386 5387 if (oldtls) { 5388 /* 5389 * Copy the static TLS block over whole. 5390 */ 5391 oldsegbase = (Elf_Addr) oldtls; 5392 memcpy((void *)(segbase - tls_static_space), 5393 (const void *)(oldsegbase - tls_static_space), 5394 tls_static_space); 5395 5396 /* 5397 * If any dynamic TLS blocks have been created tls_get_addr(), 5398 * move them over. 5399 */ 5400 olddtv = ((Elf_Addr **)oldsegbase)[1]; 5401 for (i = 0; i < olddtv[1]; i++) { 5402 if (olddtv[i + 2] < oldsegbase - size || 5403 olddtv[i + 2] > oldsegbase) { 5404 dtv[i + 2] = olddtv[i + 2]; 5405 olddtv[i + 2] = 0; 5406 } 5407 } 5408 5409 /* 5410 * We assume that this block was the one we created with 5411 * allocate_initial_tls(). 5412 */ 5413 free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr)); 5414 } else { 5415 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 5416 if (obj->marker || obj->tlsoffset == 0) 5417 continue; 5418 addr = segbase - obj->tlsoffset; 5419 memset((void *)(addr + obj->tlsinitsize), 5420 0, obj->tlssize - obj->tlsinitsize); 5421 if (obj->tlsinit) { 5422 memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize); 5423 obj->static_tls_copied = true; 5424 } 5425 dtv[obj->tlsindex + 1] = addr; 5426 } 5427 } 5428 5429 return ((void *)segbase); 5430 } 5431 5432 void 5433 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign) 5434 { 5435 Elf_Addr* dtv; 5436 size_t size, ralign; 5437 int dtvsize, i; 5438 Elf_Addr tlsstart, tlsend; 5439 5440 /* 5441 * Figure out the size of the initial TLS block so that we can 5442 * find stuff which ___tls_get_addr() allocated dynamically. 5443 */ 5444 ralign = tcbalign; 5445 if (tls_static_max_align > ralign) 5446 ralign = tls_static_max_align; 5447 size = roundup(tls_static_space, ralign); 5448 5449 dtv = ((Elf_Addr **)tls)[1]; 5450 dtvsize = dtv[1]; 5451 tlsend = (Elf_Addr)tls; 5452 tlsstart = tlsend - size; 5453 for (i = 0; i < dtvsize; i++) { 5454 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || 5455 dtv[i + 2] > tlsend)) { 5456 free((void *)dtv[i + 2]); 5457 } 5458 } 5459 5460 free((void *)tlsstart); 5461 free((void *)dtv); 5462 } 5463 5464 #endif /* TLS_VARIANT_II */ 5465 5466 /* 5467 * Allocate TLS block for module with given index. 5468 */ 5469 void * 5470 allocate_module_tls(int index) 5471 { 5472 Obj_Entry *obj; 5473 char *p; 5474 5475 TAILQ_FOREACH(obj, &obj_list, next) { 5476 if (obj->marker) 5477 continue; 5478 if (obj->tlsindex == index) 5479 break; 5480 } 5481 if (obj == NULL) { 5482 _rtld_error("Can't find module with TLS index %d", index); 5483 rtld_die(); 5484 } 5485 5486 if (obj->tls_static) { 5487 #ifdef TLS_VARIANT_I 5488 p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE; 5489 #else 5490 p = (char *)_tcb_get() - obj->tlsoffset; 5491 #endif 5492 return (p); 5493 } 5494 5495 obj->tls_dynamic = true; 5496 5497 p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset); 5498 memcpy(p, obj->tlsinit, obj->tlsinitsize); 5499 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); 5500 return (p); 5501 } 5502 5503 bool 5504 allocate_tls_offset(Obj_Entry *obj) 5505 { 5506 size_t off; 5507 5508 if (obj->tls_dynamic) 5509 return (false); 5510 5511 if (obj->tls_static) 5512 return (true); 5513 5514 if (obj->tlssize == 0) { 5515 obj->tls_static = true; 5516 return (true); 5517 } 5518 5519 if (tls_last_offset == 0) 5520 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign, 5521 obj->tlspoffset); 5522 else 5523 off = calculate_tls_offset(tls_last_offset, tls_last_size, 5524 obj->tlssize, obj->tlsalign, obj->tlspoffset); 5525 5526 obj->tlsoffset = off; 5527 #ifdef TLS_VARIANT_I 5528 off += obj->tlssize; 5529 #endif 5530 5531 /* 5532 * If we have already fixed the size of the static TLS block, we 5533 * must stay within that size. When allocating the static TLS, we 5534 * leave a small amount of space spare to be used for dynamically 5535 * loading modules which use static TLS. 5536 */ 5537 if (tls_static_space != 0) { 5538 if (off > tls_static_space) 5539 return (false); 5540 } else if (obj->tlsalign > tls_static_max_align) { 5541 tls_static_max_align = obj->tlsalign; 5542 } 5543 5544 tls_last_offset = off; 5545 tls_last_size = obj->tlssize; 5546 obj->tls_static = true; 5547 5548 return (true); 5549 } 5550 5551 void 5552 free_tls_offset(Obj_Entry *obj) 5553 { 5554 5555 /* 5556 * If we were the last thing to allocate out of the static TLS 5557 * block, we give our space back to the 'allocator'. This is a 5558 * simplistic workaround to allow libGL.so.1 to be loaded and 5559 * unloaded multiple times. 5560 */ 5561 size_t off = obj->tlsoffset; 5562 #ifdef TLS_VARIANT_I 5563 off += obj->tlssize; 5564 #endif 5565 if (off == tls_last_offset) { 5566 tls_last_offset -= obj->tlssize; 5567 tls_last_size = 0; 5568 } 5569 } 5570 5571 void * 5572 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) 5573 { 5574 void *ret; 5575 RtldLockState lockstate; 5576 5577 wlock_acquire(rtld_bind_lock, &lockstate); 5578 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls, 5579 tcbsize, tcbalign); 5580 lock_release(rtld_bind_lock, &lockstate); 5581 return (ret); 5582 } 5583 5584 void 5585 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 5586 { 5587 RtldLockState lockstate; 5588 5589 wlock_acquire(rtld_bind_lock, &lockstate); 5590 free_tls(tcb, tcbsize, tcbalign); 5591 lock_release(rtld_bind_lock, &lockstate); 5592 } 5593 5594 static void 5595 object_add_name(Obj_Entry *obj, const char *name) 5596 { 5597 Name_Entry *entry; 5598 size_t len; 5599 5600 len = strlen(name); 5601 entry = malloc(sizeof(Name_Entry) + len); 5602 5603 if (entry != NULL) { 5604 strcpy(entry->name, name); 5605 STAILQ_INSERT_TAIL(&obj->names, entry, link); 5606 } 5607 } 5608 5609 static int 5610 object_match_name(const Obj_Entry *obj, const char *name) 5611 { 5612 Name_Entry *entry; 5613 5614 STAILQ_FOREACH(entry, &obj->names, link) { 5615 if (strcmp(name, entry->name) == 0) 5616 return (1); 5617 } 5618 return (0); 5619 } 5620 5621 static Obj_Entry * 5622 locate_dependency(const Obj_Entry *obj, const char *name) 5623 { 5624 const Objlist_Entry *entry; 5625 const Needed_Entry *needed; 5626 5627 STAILQ_FOREACH(entry, &list_main, link) { 5628 if (object_match_name(entry->obj, name)) 5629 return (entry->obj); 5630 } 5631 5632 for (needed = obj->needed; needed != NULL; needed = needed->next) { 5633 if (strcmp(obj->strtab + needed->name, name) == 0 || 5634 (needed->obj != NULL && object_match_name(needed->obj, name))) { 5635 /* 5636 * If there is DT_NEEDED for the name we are looking for, 5637 * we are all set. Note that object might not be found if 5638 * dependency was not loaded yet, so the function can 5639 * return NULL here. This is expected and handled 5640 * properly by the caller. 5641 */ 5642 return (needed->obj); 5643 } 5644 } 5645 _rtld_error("%s: Unexpected inconsistency: dependency %s not found", 5646 obj->path, name); 5647 rtld_die(); 5648 } 5649 5650 static int 5651 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, 5652 const Elf_Vernaux *vna) 5653 { 5654 const Elf_Verdef *vd; 5655 const char *vername; 5656 5657 vername = refobj->strtab + vna->vna_name; 5658 vd = depobj->verdef; 5659 if (vd == NULL) { 5660 _rtld_error("%s: version %s required by %s not defined", 5661 depobj->path, vername, refobj->path); 5662 return (-1); 5663 } 5664 for (;;) { 5665 if (vd->vd_version != VER_DEF_CURRENT) { 5666 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5667 depobj->path, vd->vd_version); 5668 return (-1); 5669 } 5670 if (vna->vna_hash == vd->vd_hash) { 5671 const Elf_Verdaux *aux = (const Elf_Verdaux *) 5672 ((const char *)vd + vd->vd_aux); 5673 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) 5674 return (0); 5675 } 5676 if (vd->vd_next == 0) 5677 break; 5678 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5679 } 5680 if (vna->vna_flags & VER_FLG_WEAK) 5681 return (0); 5682 _rtld_error("%s: version %s required by %s not found", 5683 depobj->path, vername, refobj->path); 5684 return (-1); 5685 } 5686 5687 static int 5688 rtld_verify_object_versions(Obj_Entry *obj) 5689 { 5690 const Elf_Verneed *vn; 5691 const Elf_Verdef *vd; 5692 const Elf_Verdaux *vda; 5693 const Elf_Vernaux *vna; 5694 const Obj_Entry *depobj; 5695 int maxvernum, vernum; 5696 5697 if (obj->ver_checked) 5698 return (0); 5699 obj->ver_checked = true; 5700 5701 maxvernum = 0; 5702 /* 5703 * Walk over defined and required version records and figure out 5704 * max index used by any of them. Do very basic sanity checking 5705 * while there. 5706 */ 5707 vn = obj->verneed; 5708 while (vn != NULL) { 5709 if (vn->vn_version != VER_NEED_CURRENT) { 5710 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", 5711 obj->path, vn->vn_version); 5712 return (-1); 5713 } 5714 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux); 5715 for (;;) { 5716 vernum = VER_NEED_IDX(vna->vna_other); 5717 if (vernum > maxvernum) 5718 maxvernum = vernum; 5719 if (vna->vna_next == 0) 5720 break; 5721 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next); 5722 } 5723 if (vn->vn_next == 0) 5724 break; 5725 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next); 5726 } 5727 5728 vd = obj->verdef; 5729 while (vd != NULL) { 5730 if (vd->vd_version != VER_DEF_CURRENT) { 5731 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5732 obj->path, vd->vd_version); 5733 return (-1); 5734 } 5735 vernum = VER_DEF_IDX(vd->vd_ndx); 5736 if (vernum > maxvernum) 5737 maxvernum = vernum; 5738 if (vd->vd_next == 0) 5739 break; 5740 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5741 } 5742 5743 if (maxvernum == 0) 5744 return (0); 5745 5746 /* 5747 * Store version information in array indexable by version index. 5748 * Verify that object version requirements are satisfied along the 5749 * way. 5750 */ 5751 obj->vernum = maxvernum + 1; 5752 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); 5753 5754 vd = obj->verdef; 5755 while (vd != NULL) { 5756 if ((vd->vd_flags & VER_FLG_BASE) == 0) { 5757 vernum = VER_DEF_IDX(vd->vd_ndx); 5758 assert(vernum <= maxvernum); 5759 vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux); 5760 obj->vertab[vernum].hash = vd->vd_hash; 5761 obj->vertab[vernum].name = obj->strtab + vda->vda_name; 5762 obj->vertab[vernum].file = NULL; 5763 obj->vertab[vernum].flags = 0; 5764 } 5765 if (vd->vd_next == 0) 5766 break; 5767 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5768 } 5769 5770 vn = obj->verneed; 5771 while (vn != NULL) { 5772 depobj = locate_dependency(obj, obj->strtab + vn->vn_file); 5773 if (depobj == NULL) 5774 return (-1); 5775 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux); 5776 for (;;) { 5777 if (check_object_provided_version(obj, depobj, vna)) 5778 return (-1); 5779 vernum = VER_NEED_IDX(vna->vna_other); 5780 assert(vernum <= maxvernum); 5781 obj->vertab[vernum].hash = vna->vna_hash; 5782 obj->vertab[vernum].name = obj->strtab + vna->vna_name; 5783 obj->vertab[vernum].file = obj->strtab + vn->vn_file; 5784 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? 5785 VER_INFO_HIDDEN : 0; 5786 if (vna->vna_next == 0) 5787 break; 5788 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next); 5789 } 5790 if (vn->vn_next == 0) 5791 break; 5792 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next); 5793 } 5794 return (0); 5795 } 5796 5797 static int 5798 rtld_verify_versions(const Objlist *objlist) 5799 { 5800 Objlist_Entry *entry; 5801 int rc; 5802 5803 rc = 0; 5804 STAILQ_FOREACH(entry, objlist, link) { 5805 /* 5806 * Skip dummy objects or objects that have their version requirements 5807 * already checked. 5808 */ 5809 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) 5810 continue; 5811 if (rtld_verify_object_versions(entry->obj) == -1) { 5812 rc = -1; 5813 if (ld_tracing == NULL) 5814 break; 5815 } 5816 } 5817 if (rc == 0 || ld_tracing != NULL) 5818 rc = rtld_verify_object_versions(&obj_rtld); 5819 return (rc); 5820 } 5821 5822 const Ver_Entry * 5823 fetch_ventry(const Obj_Entry *obj, unsigned long symnum) 5824 { 5825 Elf_Versym vernum; 5826 5827 if (obj->vertab) { 5828 vernum = VER_NDX(obj->versyms[symnum]); 5829 if (vernum >= obj->vernum) { 5830 _rtld_error("%s: symbol %s has wrong verneed value %d", 5831 obj->path, obj->strtab + symnum, vernum); 5832 } else if (obj->vertab[vernum].hash != 0) { 5833 return (&obj->vertab[vernum]); 5834 } 5835 } 5836 return (NULL); 5837 } 5838 5839 int 5840 _rtld_get_stack_prot(void) 5841 { 5842 5843 return (stack_prot); 5844 } 5845 5846 int 5847 _rtld_is_dlopened(void *arg) 5848 { 5849 Obj_Entry *obj; 5850 RtldLockState lockstate; 5851 int res; 5852 5853 rlock_acquire(rtld_bind_lock, &lockstate); 5854 obj = dlcheck(arg); 5855 if (obj == NULL) 5856 obj = obj_from_addr(arg); 5857 if (obj == NULL) { 5858 _rtld_error("No shared object contains address"); 5859 lock_release(rtld_bind_lock, &lockstate); 5860 return (-1); 5861 } 5862 res = obj->dlopened ? 1 : 0; 5863 lock_release(rtld_bind_lock, &lockstate); 5864 return (res); 5865 } 5866 5867 static int 5868 obj_remap_relro(Obj_Entry *obj, int prot) 5869 { 5870 5871 if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size, 5872 prot) == -1) { 5873 _rtld_error("%s: Cannot set relro protection to %#x: %s", 5874 obj->path, prot, rtld_strerror(errno)); 5875 return (-1); 5876 } 5877 return (0); 5878 } 5879 5880 static int 5881 obj_disable_relro(Obj_Entry *obj) 5882 { 5883 5884 return (obj_remap_relro(obj, PROT_READ | PROT_WRITE)); 5885 } 5886 5887 static int 5888 obj_enforce_relro(Obj_Entry *obj) 5889 { 5890 5891 return (obj_remap_relro(obj, PROT_READ)); 5892 } 5893 5894 static void 5895 map_stacks_exec(RtldLockState *lockstate) 5896 { 5897 void (*thr_map_stacks_exec)(void); 5898 5899 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) 5900 return; 5901 thr_map_stacks_exec = (void (*)(void))(uintptr_t) 5902 get_program_var_addr("__pthread_map_stacks_exec", lockstate); 5903 if (thr_map_stacks_exec != NULL) { 5904 stack_prot |= PROT_EXEC; 5905 thr_map_stacks_exec(); 5906 } 5907 } 5908 5909 static void 5910 distribute_static_tls(Objlist *list, RtldLockState *lockstate) 5911 { 5912 Objlist_Entry *elm; 5913 Obj_Entry *obj; 5914 void (*distrib)(size_t, void *, size_t, size_t); 5915 5916 distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t) 5917 get_program_var_addr("__pthread_distribute_static_tls", lockstate); 5918 if (distrib == NULL) 5919 return; 5920 STAILQ_FOREACH(elm, list, link) { 5921 obj = elm->obj; 5922 if (obj->marker || !obj->tls_static || obj->static_tls_copied) 5923 continue; 5924 lock_release(rtld_bind_lock, lockstate); 5925 distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize, 5926 obj->tlssize); 5927 wlock_acquire(rtld_bind_lock, lockstate); 5928 obj->static_tls_copied = true; 5929 } 5930 } 5931 5932 void 5933 symlook_init(SymLook *dst, const char *name) 5934 { 5935 5936 bzero(dst, sizeof(*dst)); 5937 dst->name = name; 5938 dst->hash = elf_hash(name); 5939 dst->hash_gnu = gnu_hash(name); 5940 } 5941 5942 static void 5943 symlook_init_from_req(SymLook *dst, const SymLook *src) 5944 { 5945 5946 dst->name = src->name; 5947 dst->hash = src->hash; 5948 dst->hash_gnu = src->hash_gnu; 5949 dst->ventry = src->ventry; 5950 dst->flags = src->flags; 5951 dst->defobj_out = NULL; 5952 dst->sym_out = NULL; 5953 dst->lockstate = src->lockstate; 5954 } 5955 5956 static int 5957 open_binary_fd(const char *argv0, bool search_in_path, 5958 const char **binpath_res) 5959 { 5960 char *binpath, *pathenv, *pe, *res1; 5961 const char *res; 5962 int fd; 5963 5964 binpath = NULL; 5965 res = NULL; 5966 if (search_in_path && strchr(argv0, '/') == NULL) { 5967 binpath = xmalloc(PATH_MAX); 5968 pathenv = getenv("PATH"); 5969 if (pathenv == NULL) { 5970 _rtld_error("-p and no PATH environment variable"); 5971 rtld_die(); 5972 } 5973 pathenv = strdup(pathenv); 5974 if (pathenv == NULL) { 5975 _rtld_error("Cannot allocate memory"); 5976 rtld_die(); 5977 } 5978 fd = -1; 5979 errno = ENOENT; 5980 while ((pe = strsep(&pathenv, ":")) != NULL) { 5981 if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX) 5982 continue; 5983 if (binpath[0] != '\0' && 5984 strlcat(binpath, "/", PATH_MAX) >= PATH_MAX) 5985 continue; 5986 if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX) 5987 continue; 5988 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY); 5989 if (fd != -1 || errno != ENOENT) { 5990 res = binpath; 5991 break; 5992 } 5993 } 5994 free(pathenv); 5995 } else { 5996 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY); 5997 res = argv0; 5998 } 5999 6000 if (fd == -1) { 6001 _rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno)); 6002 rtld_die(); 6003 } 6004 if (res != NULL && res[0] != '/') { 6005 res1 = xmalloc(PATH_MAX); 6006 if (realpath(res, res1) != NULL) { 6007 if (res != argv0) 6008 free(__DECONST(char *, res)); 6009 res = res1; 6010 } else { 6011 free(res1); 6012 } 6013 } 6014 *binpath_res = res; 6015 return (fd); 6016 } 6017 6018 /* 6019 * Parse a set of command-line arguments. 6020 */ 6021 static int 6022 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp, 6023 const char **argv0, bool *dir_ignore) 6024 { 6025 const char *arg; 6026 char machine[64]; 6027 size_t sz; 6028 int arglen, fd, i, j, mib[2]; 6029 char opt; 6030 bool seen_b, seen_f; 6031 6032 dbg("Parsing command-line arguments"); 6033 *use_pathp = false; 6034 *fdp = -1; 6035 *dir_ignore = false; 6036 seen_b = seen_f = false; 6037 6038 for (i = 1; i < argc; i++ ) { 6039 arg = argv[i]; 6040 dbg("argv[%d]: '%s'", i, arg); 6041 6042 /* 6043 * rtld arguments end with an explicit "--" or with the first 6044 * non-prefixed argument. 6045 */ 6046 if (strcmp(arg, "--") == 0) { 6047 i++; 6048 break; 6049 } 6050 if (arg[0] != '-') 6051 break; 6052 6053 /* 6054 * All other arguments are single-character options that can 6055 * be combined, so we need to search through `arg` for them. 6056 */ 6057 arglen = strlen(arg); 6058 for (j = 1; j < arglen; j++) { 6059 opt = arg[j]; 6060 if (opt == 'h') { 6061 print_usage(argv[0]); 6062 _exit(0); 6063 } else if (opt == 'b') { 6064 if (seen_f) { 6065 _rtld_error("Both -b and -f specified"); 6066 rtld_die(); 6067 } 6068 if (j != arglen - 1) { 6069 _rtld_error("Invalid options: %s", arg); 6070 rtld_die(); 6071 } 6072 i++; 6073 *argv0 = argv[i]; 6074 seen_b = true; 6075 break; 6076 } else if (opt == 'd') { 6077 *dir_ignore = true; 6078 } else if (opt == 'f') { 6079 if (seen_b) { 6080 _rtld_error("Both -b and -f specified"); 6081 rtld_die(); 6082 } 6083 6084 /* 6085 * -f XX can be used to specify a 6086 * descriptor for the binary named at 6087 * the command line (i.e., the later 6088 * argument will specify the process 6089 * name but the descriptor is what 6090 * will actually be executed). 6091 * 6092 * -f must be the last option in the 6093 * group, e.g., -abcf <fd>. 6094 */ 6095 if (j != arglen - 1) { 6096 _rtld_error("Invalid options: %s", arg); 6097 rtld_die(); 6098 } 6099 i++; 6100 fd = parse_integer(argv[i]); 6101 if (fd == -1) { 6102 _rtld_error( 6103 "Invalid file descriptor: '%s'", 6104 argv[i]); 6105 rtld_die(); 6106 } 6107 *fdp = fd; 6108 seen_f = true; 6109 break; 6110 } else if (opt == 'p') { 6111 *use_pathp = true; 6112 } else if (opt == 'u') { 6113 trust = false; 6114 } else if (opt == 'v') { 6115 machine[0] = '\0'; 6116 mib[0] = CTL_HW; 6117 mib[1] = HW_MACHINE; 6118 sz = sizeof(machine); 6119 sysctl(mib, nitems(mib), machine, &sz, NULL, 0); 6120 ld_elf_hints_path = ld_get_env_var( 6121 LD_ELF_HINTS_PATH); 6122 set_ld_elf_hints_path(); 6123 rtld_printf( 6124 "FreeBSD ld-elf.so.1 %s\n" 6125 "FreeBSD_version %d\n" 6126 "Default lib path %s\n" 6127 "Hints lib path %s\n" 6128 "Env prefix %s\n" 6129 "Default hint file %s\n" 6130 "Hint file %s\n" 6131 "libmap file %s\n" 6132 "Optional static TLS size %zd bytes\n", 6133 machine, 6134 __FreeBSD_version, ld_standard_library_path, 6135 gethints(false), 6136 ld_env_prefix, ld_elf_hints_default, 6137 ld_elf_hints_path, 6138 ld_path_libmap_conf, 6139 ld_static_tls_extra); 6140 _exit(0); 6141 } else { 6142 _rtld_error("Invalid argument: '%s'", arg); 6143 print_usage(argv[0]); 6144 rtld_die(); 6145 } 6146 } 6147 } 6148 6149 if (!seen_b) 6150 *argv0 = argv[i]; 6151 return (i); 6152 } 6153 6154 /* 6155 * Parse a file descriptor number without pulling in more of libc (e.g. atoi). 6156 */ 6157 static int 6158 parse_integer(const char *str) 6159 { 6160 static const int RADIX = 10; /* XXXJA: possibly support hex? */ 6161 const char *orig; 6162 int n; 6163 char c; 6164 6165 orig = str; 6166 n = 0; 6167 for (c = *str; c != '\0'; c = *++str) { 6168 if (c < '0' || c > '9') 6169 return (-1); 6170 6171 n *= RADIX; 6172 n += c - '0'; 6173 } 6174 6175 /* Make sure we actually parsed something. */ 6176 if (str == orig) 6177 return (-1); 6178 return (n); 6179 } 6180 6181 static void 6182 print_usage(const char *argv0) 6183 { 6184 6185 rtld_printf( 6186 "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n" 6187 "\n" 6188 "Options:\n" 6189 " -h Display this help message\n" 6190 " -b <exe> Execute <exe> instead of <binary>, arg0 is <binary>\n" 6191 " -d Ignore lack of exec permissions for the binary\n" 6192 " -f <FD> Execute <FD> instead of searching for <binary>\n" 6193 " -p Search in PATH for named binary\n" 6194 " -u Ignore LD_ environment variables\n" 6195 " -v Display identification information\n" 6196 " -- End of RTLD options\n" 6197 " <binary> Name of process to execute\n" 6198 " <args> Arguments to the executed process\n", argv0); 6199 } 6200 6201 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt } 6202 static const struct auxfmt { 6203 const char *name; 6204 const char *fmt; 6205 } auxfmts[] = { 6206 AUXFMT(AT_NULL, NULL), 6207 AUXFMT(AT_IGNORE, NULL), 6208 AUXFMT(AT_EXECFD, "%ld"), 6209 AUXFMT(AT_PHDR, "%p"), 6210 AUXFMT(AT_PHENT, "%lu"), 6211 AUXFMT(AT_PHNUM, "%lu"), 6212 AUXFMT(AT_PAGESZ, "%lu"), 6213 AUXFMT(AT_BASE, "%#lx"), 6214 AUXFMT(AT_FLAGS, "%#lx"), 6215 AUXFMT(AT_ENTRY, "%p"), 6216 AUXFMT(AT_NOTELF, NULL), 6217 AUXFMT(AT_UID, "%ld"), 6218 AUXFMT(AT_EUID, "%ld"), 6219 AUXFMT(AT_GID, "%ld"), 6220 AUXFMT(AT_EGID, "%ld"), 6221 AUXFMT(AT_EXECPATH, "%s"), 6222 AUXFMT(AT_CANARY, "%p"), 6223 AUXFMT(AT_CANARYLEN, "%lu"), 6224 AUXFMT(AT_OSRELDATE, "%lu"), 6225 AUXFMT(AT_NCPUS, "%lu"), 6226 AUXFMT(AT_PAGESIZES, "%p"), 6227 AUXFMT(AT_PAGESIZESLEN, "%lu"), 6228 AUXFMT(AT_TIMEKEEP, "%p"), 6229 AUXFMT(AT_STACKPROT, "%#lx"), 6230 AUXFMT(AT_EHDRFLAGS, "%#lx"), 6231 AUXFMT(AT_HWCAP, "%#lx"), 6232 AUXFMT(AT_HWCAP2, "%#lx"), 6233 AUXFMT(AT_BSDFLAGS, "%#lx"), 6234 AUXFMT(AT_ARGC, "%lu"), 6235 AUXFMT(AT_ARGV, "%p"), 6236 AUXFMT(AT_ENVC, "%p"), 6237 AUXFMT(AT_ENVV, "%p"), 6238 AUXFMT(AT_PS_STRINGS, "%p"), 6239 AUXFMT(AT_FXRNG, "%p"), 6240 AUXFMT(AT_KPRELOAD, "%p"), 6241 AUXFMT(AT_USRSTACKBASE, "%#lx"), 6242 AUXFMT(AT_USRSTACKLIM, "%#lx"), 6243 }; 6244 6245 static bool 6246 is_ptr_fmt(const char *fmt) 6247 { 6248 char last; 6249 6250 last = fmt[strlen(fmt) - 1]; 6251 return (last == 'p' || last == 's'); 6252 } 6253 6254 static void 6255 dump_auxv(Elf_Auxinfo **aux_info) 6256 { 6257 Elf_Auxinfo *auxp; 6258 const struct auxfmt *fmt; 6259 int i; 6260 6261 for (i = 0; i < AT_COUNT; i++) { 6262 auxp = aux_info[i]; 6263 if (auxp == NULL) 6264 continue; 6265 fmt = &auxfmts[i]; 6266 if (fmt->fmt == NULL) 6267 continue; 6268 rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name); 6269 if (is_ptr_fmt(fmt->fmt)) { 6270 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt, 6271 auxp->a_un.a_ptr); 6272 } else { 6273 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt, 6274 auxp->a_un.a_val); 6275 } 6276 rtld_fdprintf(STDOUT_FILENO, "\n"); 6277 } 6278 } 6279 6280 /* 6281 * Overrides for libc_pic-provided functions. 6282 */ 6283 6284 int 6285 __getosreldate(void) 6286 { 6287 size_t len; 6288 int oid[2]; 6289 int error, osrel; 6290 6291 if (osreldate != 0) 6292 return (osreldate); 6293 6294 oid[0] = CTL_KERN; 6295 oid[1] = KERN_OSRELDATE; 6296 osrel = 0; 6297 len = sizeof(osrel); 6298 error = sysctl(oid, 2, &osrel, &len, NULL, 0); 6299 if (error == 0 && osrel > 0 && len == sizeof(osrel)) 6300 osreldate = osrel; 6301 return (osreldate); 6302 } 6303 const char * 6304 rtld_strerror(int errnum) 6305 { 6306 6307 if (errnum < 0 || errnum >= sys_nerr) 6308 return ("Unknown error"); 6309 return (sys_errlist[errnum]); 6310 } 6311 6312 char * 6313 getenv(const char *name) 6314 { 6315 return (__DECONST(char *, rtld_get_env_val(environ, name, 6316 strlen(name)))); 6317 } 6318 6319 /* malloc */ 6320 void * 6321 malloc(size_t nbytes) 6322 { 6323 6324 return (__crt_malloc(nbytes)); 6325 } 6326 6327 void * 6328 calloc(size_t num, size_t size) 6329 { 6330 6331 return (__crt_calloc(num, size)); 6332 } 6333 6334 void 6335 free(void *cp) 6336 { 6337 6338 __crt_free(cp); 6339 } 6340 6341 void * 6342 realloc(void *cp, size_t nbytes) 6343 { 6344 6345 return (__crt_realloc(cp, nbytes)); 6346 } 6347 6348 extern int _rtld_version__FreeBSD_version __exported; 6349 int _rtld_version__FreeBSD_version = __FreeBSD_version; 6350 6351 extern char _rtld_version_laddr_offset __exported; 6352 char _rtld_version_laddr_offset; 6353 6354 extern char _rtld_version_dlpi_tls_data __exported; 6355 char _rtld_version_dlpi_tls_data; 6356