xref: /freebsd/libexec/rtld-elf/rtld.c (revision 6e50170633d4beb7eeb0bc7815b296ab5feef90b)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
85 static void digest_dynamic(Obj_Entry *, int);
86 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87 static Obj_Entry *dlcheck(void *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *);
97 static const char *gethints(void);
98 static void init_dag(Obj_Entry *);
99 static void init_rtld(caddr_t, Elf_Auxinfo **);
100 static void initlist_add_neededs(Needed_Entry *, Objlist *);
101 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
102 static void linkmap_add(Obj_Entry *);
103 static void linkmap_delete(Obj_Entry *);
104 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
105 static void unload_filtees(Obj_Entry *);
106 static int load_needed_objects(Obj_Entry *, int);
107 static int load_preload_objects(void);
108 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
109 static void map_stacks_exec(RtldLockState *);
110 static Obj_Entry *obj_from_addr(const void *);
111 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
112 static void objlist_call_init(Objlist *, RtldLockState *);
113 static void objlist_clear(Objlist *);
114 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
115 static void objlist_init(Objlist *);
116 static void objlist_push_head(Objlist *, Obj_Entry *);
117 static void objlist_push_tail(Objlist *, Obj_Entry *);
118 static void objlist_remove(Objlist *, Obj_Entry *);
119 static void *path_enumerate(const char *, path_enum_proc, void *);
120 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
121     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
122 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
123     int flags, RtldLockState *lockstate);
124 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
125     RtldLockState *);
126 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
127     int flags, RtldLockState *lockstate);
128 static int rtld_dirname(const char *, char *);
129 static int rtld_dirname_abs(const char *, char *);
130 static void *rtld_dlopen(const char *name, int fd, int mode);
131 static void rtld_exit(void);
132 static char *search_library_path(const char *, const char *);
133 static const void **get_program_var_addr(const char *, RtldLockState *);
134 static void set_program_var(const char *, const void *);
135 static int symlook_default(SymLook *, const Obj_Entry *refobj);
136 static int symlook_global(SymLook *, DoneList *);
137 static void symlook_init_from_req(SymLook *, const SymLook *);
138 static int symlook_list(SymLook *, const Objlist *, DoneList *);
139 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
140 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
141 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
142 static void trace_loaded_objects(Obj_Entry *);
143 static void unlink_object(Obj_Entry *);
144 static void unload_object(Obj_Entry *);
145 static void unref_dag(Obj_Entry *);
146 static void ref_dag(Obj_Entry *);
147 static int origin_subst_one(char **, const char *, const char *,
148   const char *, char *);
149 static char *origin_subst(const char *, const char *);
150 static void preinit_main(void);
151 static int  rtld_verify_versions(const Objlist *);
152 static int  rtld_verify_object_versions(Obj_Entry *);
153 static void object_add_name(Obj_Entry *, const char *);
154 static int  object_match_name(const Obj_Entry *, const char *);
155 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
156 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
157     struct dl_phdr_info *phdr_info);
158 static uint32_t gnu_hash(const char *);
159 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
160     const unsigned long);
161 
162 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
163 
164 /*
165  * Data declarations.
166  */
167 static char *error_message;	/* Message for dlerror(), or NULL */
168 struct r_debug r_debug;		/* for GDB; */
169 static bool libmap_disable;	/* Disable libmap */
170 static bool ld_loadfltr;	/* Immediate filters processing */
171 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172 static bool trust;		/* False for setuid and setgid programs */
173 static bool dangerous_ld_env;	/* True if environment variables have been
174 				   used to affect the libraries loaded */
175 static char *ld_bind_now;	/* Environment variable for immediate binding */
176 static char *ld_debug;		/* Environment variable for debugging */
177 static char *ld_library_path;	/* Environment variable for search path */
178 static char *ld_preload;	/* Environment variable for libraries to
179 				   load first */
180 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181 static char *ld_tracing;	/* Called from ldd to print libs */
182 static char *ld_utrace;		/* Use utrace() to log events. */
183 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184 static Obj_Entry **obj_tail;	/* Link field of last object in list */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of objects in obj_list */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int osreldate, pagesize;
208 
209 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
210 
211 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
212 static int max_stack_flags;
213 
214 /*
215  * Global declarations normally provided by crt1.  The dynamic linker is
216  * not built with crt1, so we have to provide them ourselves.
217  */
218 char *__progname;
219 char **environ;
220 
221 /*
222  * Used to pass argc, argv to init functions.
223  */
224 int main_argc;
225 char **main_argv;
226 
227 /*
228  * Globals to control TLS allocation.
229  */
230 size_t tls_last_offset;		/* Static TLS offset of last module */
231 size_t tls_last_size;		/* Static TLS size of last module */
232 size_t tls_static_space;	/* Static TLS space allocated */
233 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234 int tls_max_index = 1;		/* Largest module index allocated */
235 
236 /*
237  * Fill in a DoneList with an allocation large enough to hold all of
238  * the currently-loaded objects.  Keep this as a macro since it calls
239  * alloca and we want that to occur within the scope of the caller.
240  */
241 #define donelist_init(dlp)					\
242     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
243     assert((dlp)->objs != NULL),				\
244     (dlp)->num_alloc = obj_count,				\
245     (dlp)->num_used = 0)
246 
247 #define	UTRACE_DLOPEN_START		1
248 #define	UTRACE_DLOPEN_STOP		2
249 #define	UTRACE_DLCLOSE_START		3
250 #define	UTRACE_DLCLOSE_STOP		4
251 #define	UTRACE_LOAD_OBJECT		5
252 #define	UTRACE_UNLOAD_OBJECT		6
253 #define	UTRACE_ADD_RUNDEP		7
254 #define	UTRACE_PRELOAD_FINISHED		8
255 #define	UTRACE_INIT_CALL		9
256 #define	UTRACE_FINI_CALL		10
257 
258 struct utrace_rtld {
259 	char sig[4];			/* 'RTLD' */
260 	int event;
261 	void *handle;
262 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
263 	size_t mapsize;
264 	int refcnt;			/* Used for 'mode' */
265 	char name[MAXPATHLEN];
266 };
267 
268 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
269 	if (ld_utrace != NULL)					\
270 		ld_utrace_log(e, h, mb, ms, r, n);		\
271 } while (0)
272 
273 static void
274 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
275     int refcnt, const char *name)
276 {
277 	struct utrace_rtld ut;
278 
279 	ut.sig[0] = 'R';
280 	ut.sig[1] = 'T';
281 	ut.sig[2] = 'L';
282 	ut.sig[3] = 'D';
283 	ut.event = event;
284 	ut.handle = handle;
285 	ut.mapbase = mapbase;
286 	ut.mapsize = mapsize;
287 	ut.refcnt = refcnt;
288 	bzero(ut.name, sizeof(ut.name));
289 	if (name)
290 		strlcpy(ut.name, name, sizeof(ut.name));
291 	utrace(&ut, sizeof(ut));
292 }
293 
294 /*
295  * Main entry point for dynamic linking.  The first argument is the
296  * stack pointer.  The stack is expected to be laid out as described
297  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
298  * Specifically, the stack pointer points to a word containing
299  * ARGC.  Following that in the stack is a null-terminated sequence
300  * of pointers to argument strings.  Then comes a null-terminated
301  * sequence of pointers to environment strings.  Finally, there is a
302  * sequence of "auxiliary vector" entries.
303  *
304  * The second argument points to a place to store the dynamic linker's
305  * exit procedure pointer and the third to a place to store the main
306  * program's object.
307  *
308  * The return value is the main program's entry point.
309  */
310 func_ptr_type
311 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
312 {
313     Elf_Auxinfo *aux_info[AT_COUNT];
314     int i;
315     int argc;
316     char **argv;
317     char **env;
318     Elf_Auxinfo *aux;
319     Elf_Auxinfo *auxp;
320     const char *argv0;
321     Objlist_Entry *entry;
322     Obj_Entry *obj;
323     Obj_Entry **preload_tail;
324     Objlist initlist;
325     RtldLockState lockstate;
326     int mib[2];
327     size_t len;
328 
329     /*
330      * On entry, the dynamic linker itself has not been relocated yet.
331      * Be very careful not to reference any global data until after
332      * init_rtld has returned.  It is OK to reference file-scope statics
333      * and string constants, and to call static and global functions.
334      */
335 
336     /* Find the auxiliary vector on the stack. */
337     argc = *sp++;
338     argv = (char **) sp;
339     sp += argc + 1;	/* Skip over arguments and NULL terminator */
340     env = (char **) sp;
341     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
342 	;
343     aux = (Elf_Auxinfo *) sp;
344 
345     /* Digest the auxiliary vector. */
346     for (i = 0;  i < AT_COUNT;  i++)
347 	aux_info[i] = NULL;
348     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
349 	if (auxp->a_type < AT_COUNT)
350 	    aux_info[auxp->a_type] = auxp;
351     }
352 
353     /* Initialize and relocate ourselves. */
354     assert(aux_info[AT_BASE] != NULL);
355     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
356 
357     __progname = obj_rtld.path;
358     argv0 = argv[0] != NULL ? argv[0] : "(null)";
359     environ = env;
360     main_argc = argc;
361     main_argv = argv;
362 
363     if (aux_info[AT_CANARY] != NULL &&
364 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
365 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
366 	    if (i > sizeof(__stack_chk_guard))
367 		    i = sizeof(__stack_chk_guard);
368 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
369     } else {
370 	mib[0] = CTL_KERN;
371 	mib[1] = KERN_ARND;
372 
373 	len = sizeof(__stack_chk_guard);
374 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
375 	    len != sizeof(__stack_chk_guard)) {
376 		/* If sysctl was unsuccessful, use the "terminator canary". */
377 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
378 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
379 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
380 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
381 	}
382     }
383 
384     trust = !issetugid();
385 
386     ld_bind_now = getenv(LD_ "BIND_NOW");
387     /*
388      * If the process is tainted, then we un-set the dangerous environment
389      * variables.  The process will be marked as tainted until setuid(2)
390      * is called.  If any child process calls setuid(2) we do not want any
391      * future processes to honor the potentially un-safe variables.
392      */
393     if (!trust) {
394         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
395 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
396 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
397 	    unsetenv(LD_ "LOADFLTR")) {
398 		_rtld_error("environment corrupt; aborting");
399 		die();
400 	}
401     }
402     ld_debug = getenv(LD_ "DEBUG");
403     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
404     libmap_override = getenv(LD_ "LIBMAP");
405     ld_library_path = getenv(LD_ "LIBRARY_PATH");
406     ld_preload = getenv(LD_ "PRELOAD");
407     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
408     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
409     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
410 	(ld_library_path != NULL) || (ld_preload != NULL) ||
411 	(ld_elf_hints_path != NULL) || ld_loadfltr;
412     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
413     ld_utrace = getenv(LD_ "UTRACE");
414 
415     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
416 	ld_elf_hints_path = _PATH_ELF_HINTS;
417 
418     if (ld_debug != NULL && *ld_debug != '\0')
419 	debug = 1;
420     dbg("%s is initialized, base address = %p", __progname,
421 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
422     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
423     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
424 
425     dbg("initializing thread locks");
426     lockdflt_init();
427 
428     /*
429      * Load the main program, or process its program header if it is
430      * already loaded.
431      */
432     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
433 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
434 	dbg("loading main program");
435 	obj_main = map_object(fd, argv0, NULL);
436 	close(fd);
437 	if (obj_main == NULL)
438 	    die();
439 	max_stack_flags = obj->stack_flags;
440     } else {				/* Main program already loaded. */
441 	const Elf_Phdr *phdr;
442 	int phnum;
443 	caddr_t entry;
444 
445 	dbg("processing main program's program header");
446 	assert(aux_info[AT_PHDR] != NULL);
447 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
448 	assert(aux_info[AT_PHNUM] != NULL);
449 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
450 	assert(aux_info[AT_PHENT] != NULL);
451 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
452 	assert(aux_info[AT_ENTRY] != NULL);
453 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
454 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
455 	    die();
456     }
457 
458     if (aux_info[AT_EXECPATH] != 0) {
459 	    char *kexecpath;
460 	    char buf[MAXPATHLEN];
461 
462 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
463 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
464 	    if (kexecpath[0] == '/')
465 		    obj_main->path = kexecpath;
466 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
467 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
468 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
469 		    obj_main->path = xstrdup(argv0);
470 	    else
471 		    obj_main->path = xstrdup(buf);
472     } else {
473 	    dbg("No AT_EXECPATH");
474 	    obj_main->path = xstrdup(argv0);
475     }
476     dbg("obj_main path %s", obj_main->path);
477     obj_main->mainprog = true;
478 
479     if (aux_info[AT_STACKPROT] != NULL &&
480       aux_info[AT_STACKPROT]->a_un.a_val != 0)
481 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
482 
483     /*
484      * Get the actual dynamic linker pathname from the executable if
485      * possible.  (It should always be possible.)  That ensures that
486      * gdb will find the right dynamic linker even if a non-standard
487      * one is being used.
488      */
489     if (obj_main->interp != NULL &&
490       strcmp(obj_main->interp, obj_rtld.path) != 0) {
491 	free(obj_rtld.path);
492 	obj_rtld.path = xstrdup(obj_main->interp);
493         __progname = obj_rtld.path;
494     }
495 
496     digest_dynamic(obj_main, 0);
497     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
498 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
499 	obj_main->dynsymcount);
500 
501     linkmap_add(obj_main);
502     linkmap_add(&obj_rtld);
503 
504     /* Link the main program into the list of objects. */
505     *obj_tail = obj_main;
506     obj_tail = &obj_main->next;
507     obj_count++;
508     obj_loads++;
509 
510     /* Initialize a fake symbol for resolving undefined weak references. */
511     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
512     sym_zero.st_shndx = SHN_UNDEF;
513     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
514 
515     if (!libmap_disable)
516         libmap_disable = (bool)lm_init(libmap_override);
517 
518     dbg("loading LD_PRELOAD libraries");
519     if (load_preload_objects() == -1)
520 	die();
521     preload_tail = obj_tail;
522 
523     dbg("loading needed objects");
524     if (load_needed_objects(obj_main, 0) == -1)
525 	die();
526 
527     /* Make a list of all objects loaded at startup. */
528     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
529 	objlist_push_tail(&list_main, obj);
530     	obj->refcount++;
531     }
532 
533     dbg("checking for required versions");
534     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
535 	die();
536 
537     if (ld_tracing) {		/* We're done */
538 	trace_loaded_objects(obj_main);
539 	exit(0);
540     }
541 
542     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
543        dump_relocations(obj_main);
544        exit (0);
545     }
546 
547     /*
548      * Processing tls relocations requires having the tls offsets
549      * initialized.  Prepare offsets before starting initial
550      * relocation processing.
551      */
552     dbg("initializing initial thread local storage offsets");
553     STAILQ_FOREACH(entry, &list_main, link) {
554 	/*
555 	 * Allocate all the initial objects out of the static TLS
556 	 * block even if they didn't ask for it.
557 	 */
558 	allocate_tls_offset(entry->obj);
559     }
560 
561     if (relocate_objects(obj_main,
562       ld_bind_now != NULL && *ld_bind_now != '\0',
563       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
564 	die();
565 
566     dbg("doing copy relocations");
567     if (do_copy_relocations(obj_main) == -1)
568 	die();
569 
570     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
571        dump_relocations(obj_main);
572        exit (0);
573     }
574 
575     /*
576      * Setup TLS for main thread.  This must be done after the
577      * relocations are processed, since tls initialization section
578      * might be the subject for relocations.
579      */
580     dbg("initializing initial thread local storage");
581     allocate_initial_tls(obj_list);
582 
583     dbg("initializing key program variables");
584     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
585     set_program_var("environ", env);
586     set_program_var("__elf_aux_vector", aux);
587 
588     /* Make a list of init functions to call. */
589     objlist_init(&initlist);
590     initlist_add_objects(obj_list, preload_tail, &initlist);
591 
592     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
593 
594     map_stacks_exec(NULL);
595 
596     dbg("resolving ifuncs");
597     if (resolve_objects_ifunc(obj_main,
598       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
599       NULL) == -1)
600 	die();
601 
602     if (!obj_main->crt_no_init) {
603 	/*
604 	 * Make sure we don't call the main program's init and fini
605 	 * functions for binaries linked with old crt1 which calls
606 	 * _init itself.
607 	 */
608 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
609 	obj_main->preinit_array = obj_main->init_array =
610 	    obj_main->fini_array = (Elf_Addr)NULL;
611     }
612 
613     wlock_acquire(rtld_bind_lock, &lockstate);
614     if (obj_main->crt_no_init)
615 	preinit_main();
616     objlist_call_init(&initlist, &lockstate);
617     objlist_clear(&initlist);
618     dbg("loading filtees");
619     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
620 	if (ld_loadfltr || obj->z_loadfltr)
621 	    load_filtees(obj, 0, &lockstate);
622     }
623     lock_release(rtld_bind_lock, &lockstate);
624 
625     dbg("transferring control to program entry point = %p", obj_main->entry);
626 
627     /* Return the exit procedure and the program entry point. */
628     *exit_proc = rtld_exit;
629     *objp = obj_main;
630     return (func_ptr_type) obj_main->entry;
631 }
632 
633 void *
634 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
635 {
636 	void *ptr;
637 	Elf_Addr target;
638 
639 	ptr = (void *)make_function_pointer(def, obj);
640 	target = ((Elf_Addr (*)(void))ptr)();
641 	return ((void *)target);
642 }
643 
644 Elf_Addr
645 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
646 {
647     const Elf_Rel *rel;
648     const Elf_Sym *def;
649     const Obj_Entry *defobj;
650     Elf_Addr *where;
651     Elf_Addr target;
652     RtldLockState lockstate;
653 
654     rlock_acquire(rtld_bind_lock, &lockstate);
655     if (sigsetjmp(lockstate.env, 0) != 0)
656 	    lock_upgrade(rtld_bind_lock, &lockstate);
657     if (obj->pltrel)
658 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
659     else
660 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
661 
662     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
663     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
664 	&lockstate);
665     if (def == NULL)
666 	die();
667     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
668 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
669     else
670 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
671 
672     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
673       defobj->strtab + def->st_name, basename(obj->path),
674       (void *)target, basename(defobj->path));
675 
676     /*
677      * Write the new contents for the jmpslot. Note that depending on
678      * architecture, the value which we need to return back to the
679      * lazy binding trampoline may or may not be the target
680      * address. The value returned from reloc_jmpslot() is the value
681      * that the trampoline needs.
682      */
683     target = reloc_jmpslot(where, target, defobj, obj, rel);
684     lock_release(rtld_bind_lock, &lockstate);
685     return target;
686 }
687 
688 /*
689  * Error reporting function.  Use it like printf.  If formats the message
690  * into a buffer, and sets things up so that the next call to dlerror()
691  * will return the message.
692  */
693 void
694 _rtld_error(const char *fmt, ...)
695 {
696     static char buf[512];
697     va_list ap;
698 
699     va_start(ap, fmt);
700     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
701     error_message = buf;
702     va_end(ap);
703 }
704 
705 /*
706  * Return a dynamically-allocated copy of the current error message, if any.
707  */
708 static char *
709 errmsg_save(void)
710 {
711     return error_message == NULL ? NULL : xstrdup(error_message);
712 }
713 
714 /*
715  * Restore the current error message from a copy which was previously saved
716  * by errmsg_save().  The copy is freed.
717  */
718 static void
719 errmsg_restore(char *saved_msg)
720 {
721     if (saved_msg == NULL)
722 	error_message = NULL;
723     else {
724 	_rtld_error("%s", saved_msg);
725 	free(saved_msg);
726     }
727 }
728 
729 static const char *
730 basename(const char *name)
731 {
732     const char *p = strrchr(name, '/');
733     return p != NULL ? p + 1 : name;
734 }
735 
736 static struct utsname uts;
737 
738 static int
739 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
740     char *may_free)
741 {
742     const char *p, *p1;
743     char *res1;
744     int subst_len;
745     int kw_len;
746 
747     res1 = *res = NULL;
748     p = real;
749     subst_len = kw_len = 0;
750     for (;;) {
751 	 p1 = strstr(p, kw);
752 	 if (p1 != NULL) {
753 	     if (subst_len == 0) {
754 		 subst_len = strlen(subst);
755 		 kw_len = strlen(kw);
756 	     }
757 	     if (*res == NULL) {
758 		 *res = xmalloc(PATH_MAX);
759 		 res1 = *res;
760 	     }
761 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
762 		 _rtld_error("Substitution of %s in %s cannot be performed",
763 		     kw, real);
764 		 if (may_free != NULL)
765 		     free(may_free);
766 		 free(res);
767 		 return (false);
768 	     }
769 	     memcpy(res1, p, p1 - p);
770 	     res1 += p1 - p;
771 	     memcpy(res1, subst, subst_len);
772 	     res1 += subst_len;
773 	     p = p1 + kw_len;
774 	 } else {
775 	    if (*res == NULL) {
776 		if (may_free != NULL)
777 		    *res = may_free;
778 		else
779 		    *res = xstrdup(real);
780 		return (true);
781 	    }
782 	    *res1 = '\0';
783 	    if (may_free != NULL)
784 		free(may_free);
785 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
786 		free(res);
787 		return (false);
788 	    }
789 	    return (true);
790 	 }
791     }
792 }
793 
794 static char *
795 origin_subst(const char *real, const char *origin_path)
796 {
797     char *res1, *res2, *res3, *res4;
798 
799     if (uts.sysname[0] == '\0') {
800 	if (uname(&uts) != 0) {
801 	    _rtld_error("utsname failed: %d", errno);
802 	    return (NULL);
803 	}
804     }
805     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
806 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
807 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
808 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
809 	    return (NULL);
810     return (res4);
811 }
812 
813 static void
814 die(void)
815 {
816     const char *msg = dlerror();
817 
818     if (msg == NULL)
819 	msg = "Fatal error";
820     rtld_fdputstr(STDERR_FILENO, msg);
821     rtld_fdputchar(STDERR_FILENO, '\n');
822     _exit(1);
823 }
824 
825 /*
826  * Process a shared object's DYNAMIC section, and save the important
827  * information in its Obj_Entry structure.
828  */
829 static void
830 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
831     const Elf_Dyn **dyn_soname)
832 {
833     const Elf_Dyn *dynp;
834     Needed_Entry **needed_tail = &obj->needed;
835     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
836     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
837     const Elf_Hashelt *hashtab;
838     const Elf32_Word *hashval;
839     Elf32_Word bkt, nmaskwords;
840     int bloom_size32;
841     bool nmw_power2;
842     int plttype = DT_REL;
843 
844     *dyn_rpath = NULL;
845     *dyn_soname = NULL;
846 
847     obj->bind_now = false;
848     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
849 	switch (dynp->d_tag) {
850 
851 	case DT_REL:
852 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
853 	    break;
854 
855 	case DT_RELSZ:
856 	    obj->relsize = dynp->d_un.d_val;
857 	    break;
858 
859 	case DT_RELENT:
860 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
861 	    break;
862 
863 	case DT_JMPREL:
864 	    obj->pltrel = (const Elf_Rel *)
865 	      (obj->relocbase + dynp->d_un.d_ptr);
866 	    break;
867 
868 	case DT_PLTRELSZ:
869 	    obj->pltrelsize = dynp->d_un.d_val;
870 	    break;
871 
872 	case DT_RELA:
873 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
874 	    break;
875 
876 	case DT_RELASZ:
877 	    obj->relasize = dynp->d_un.d_val;
878 	    break;
879 
880 	case DT_RELAENT:
881 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
882 	    break;
883 
884 	case DT_PLTREL:
885 	    plttype = dynp->d_un.d_val;
886 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
887 	    break;
888 
889 	case DT_SYMTAB:
890 	    obj->symtab = (const Elf_Sym *)
891 	      (obj->relocbase + dynp->d_un.d_ptr);
892 	    break;
893 
894 	case DT_SYMENT:
895 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
896 	    break;
897 
898 	case DT_STRTAB:
899 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
900 	    break;
901 
902 	case DT_STRSZ:
903 	    obj->strsize = dynp->d_un.d_val;
904 	    break;
905 
906 	case DT_VERNEED:
907 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
908 		dynp->d_un.d_val);
909 	    break;
910 
911 	case DT_VERNEEDNUM:
912 	    obj->verneednum = dynp->d_un.d_val;
913 	    break;
914 
915 	case DT_VERDEF:
916 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
917 		dynp->d_un.d_val);
918 	    break;
919 
920 	case DT_VERDEFNUM:
921 	    obj->verdefnum = dynp->d_un.d_val;
922 	    break;
923 
924 	case DT_VERSYM:
925 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
926 		dynp->d_un.d_val);
927 	    break;
928 
929 	case DT_HASH:
930 	    {
931 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
932 		    dynp->d_un.d_ptr);
933 		obj->nbuckets = hashtab[0];
934 		obj->nchains = hashtab[1];
935 		obj->buckets = hashtab + 2;
936 		obj->chains = obj->buckets + obj->nbuckets;
937 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
938 		  obj->buckets != NULL;
939 	    }
940 	    break;
941 
942 	case DT_GNU_HASH:
943 	    {
944 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
945 		    dynp->d_un.d_ptr);
946 		obj->nbuckets_gnu = hashtab[0];
947 		obj->symndx_gnu = hashtab[1];
948 		nmaskwords = hashtab[2];
949 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
950 		/* Number of bitmask words is required to be power of 2 */
951 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
952 		obj->maskwords_bm_gnu = nmaskwords - 1;
953 		obj->shift2_gnu = hashtab[3];
954 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
955 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
956 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
957 		  obj->symndx_gnu;
958 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
959 		  obj->buckets_gnu != NULL;
960 	    }
961 	    break;
962 
963 	case DT_NEEDED:
964 	    if (!obj->rtld) {
965 		Needed_Entry *nep = NEW(Needed_Entry);
966 		nep->name = dynp->d_un.d_val;
967 		nep->obj = NULL;
968 		nep->next = NULL;
969 
970 		*needed_tail = nep;
971 		needed_tail = &nep->next;
972 	    }
973 	    break;
974 
975 	case DT_FILTER:
976 	    if (!obj->rtld) {
977 		Needed_Entry *nep = NEW(Needed_Entry);
978 		nep->name = dynp->d_un.d_val;
979 		nep->obj = NULL;
980 		nep->next = NULL;
981 
982 		*needed_filtees_tail = nep;
983 		needed_filtees_tail = &nep->next;
984 	    }
985 	    break;
986 
987 	case DT_AUXILIARY:
988 	    if (!obj->rtld) {
989 		Needed_Entry *nep = NEW(Needed_Entry);
990 		nep->name = dynp->d_un.d_val;
991 		nep->obj = NULL;
992 		nep->next = NULL;
993 
994 		*needed_aux_filtees_tail = nep;
995 		needed_aux_filtees_tail = &nep->next;
996 	    }
997 	    break;
998 
999 	case DT_PLTGOT:
1000 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1001 	    break;
1002 
1003 	case DT_TEXTREL:
1004 	    obj->textrel = true;
1005 	    break;
1006 
1007 	case DT_SYMBOLIC:
1008 	    obj->symbolic = true;
1009 	    break;
1010 
1011 	case DT_RPATH:
1012 	case DT_RUNPATH:	/* XXX: process separately */
1013 	    /*
1014 	     * We have to wait until later to process this, because we
1015 	     * might not have gotten the address of the string table yet.
1016 	     */
1017 	    *dyn_rpath = dynp;
1018 	    break;
1019 
1020 	case DT_SONAME:
1021 	    *dyn_soname = dynp;
1022 	    break;
1023 
1024 	case DT_INIT:
1025 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1026 	    break;
1027 
1028 	case DT_PREINIT_ARRAY:
1029 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1030 	    break;
1031 
1032 	case DT_PREINIT_ARRAYSZ:
1033 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1034 	    break;
1035 
1036 	case DT_INIT_ARRAY:
1037 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1038 	    break;
1039 
1040 	case DT_INIT_ARRAYSZ:
1041 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1042 	    break;
1043 
1044 	case DT_FINI:
1045 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1046 	    break;
1047 
1048 	case DT_FINI_ARRAY:
1049 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1050 	    break;
1051 
1052 	case DT_FINI_ARRAYSZ:
1053 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1054 	    break;
1055 
1056 	/*
1057 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1058 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1059 	 */
1060 
1061 #ifndef __mips__
1062 	case DT_DEBUG:
1063 	    /* XXX - not implemented yet */
1064 	    if (!early)
1065 		dbg("Filling in DT_DEBUG entry");
1066 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1067 	    break;
1068 #endif
1069 
1070 	case DT_FLAGS:
1071 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1072 		    obj->z_origin = true;
1073 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1074 		    obj->symbolic = true;
1075 		if (dynp->d_un.d_val & DF_TEXTREL)
1076 		    obj->textrel = true;
1077 		if (dynp->d_un.d_val & DF_BIND_NOW)
1078 		    obj->bind_now = true;
1079 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1080 		    ;*/
1081 	    break;
1082 #ifdef __mips__
1083 	case DT_MIPS_LOCAL_GOTNO:
1084 		obj->local_gotno = dynp->d_un.d_val;
1085 	    break;
1086 
1087 	case DT_MIPS_SYMTABNO:
1088 		obj->symtabno = dynp->d_un.d_val;
1089 		break;
1090 
1091 	case DT_MIPS_GOTSYM:
1092 		obj->gotsym = dynp->d_un.d_val;
1093 		break;
1094 
1095 	case DT_MIPS_RLD_MAP:
1096 #ifdef notyet
1097 		if (!early)
1098 			dbg("Filling in DT_DEBUG entry");
1099 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1100 #endif
1101 		break;
1102 #endif
1103 
1104 	case DT_FLAGS_1:
1105 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1106 		    obj->z_noopen = true;
1107 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1108 		    obj->z_origin = true;
1109 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1110 		    XXX ;*/
1111 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1112 		    obj->bind_now = true;
1113 		if (dynp->d_un.d_val & DF_1_NODELETE)
1114 		    obj->z_nodelete = true;
1115 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1116 		    obj->z_loadfltr = true;
1117 	    break;
1118 
1119 	default:
1120 	    if (!early) {
1121 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1122 		    (long)dynp->d_tag);
1123 	    }
1124 	    break;
1125 	}
1126     }
1127 
1128     obj->traced = false;
1129 
1130     if (plttype == DT_RELA) {
1131 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1132 	obj->pltrel = NULL;
1133 	obj->pltrelasize = obj->pltrelsize;
1134 	obj->pltrelsize = 0;
1135     }
1136 
1137     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1138     if (obj->valid_hash_sysv)
1139 	obj->dynsymcount = obj->nchains;
1140     else if (obj->valid_hash_gnu) {
1141 	obj->dynsymcount = 0;
1142 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1143 	    if (obj->buckets_gnu[bkt] == 0)
1144 		continue;
1145 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1146 	    do
1147 		obj->dynsymcount++;
1148 	    while ((*hashval++ & 1u) == 0);
1149 	}
1150 	obj->dynsymcount += obj->symndx_gnu;
1151     }
1152 }
1153 
1154 static void
1155 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1156     const Elf_Dyn *dyn_soname)
1157 {
1158 
1159     if (obj->z_origin && obj->origin_path == NULL) {
1160 	obj->origin_path = xmalloc(PATH_MAX);
1161 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1162 	    die();
1163     }
1164 
1165     if (dyn_rpath != NULL) {
1166 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1167 	if (obj->z_origin)
1168 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1169     }
1170 
1171     if (dyn_soname != NULL)
1172 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1173 }
1174 
1175 static void
1176 digest_dynamic(Obj_Entry *obj, int early)
1177 {
1178 	const Elf_Dyn *dyn_rpath;
1179 	const Elf_Dyn *dyn_soname;
1180 
1181 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1182 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1183 }
1184 
1185 /*
1186  * Process a shared object's program header.  This is used only for the
1187  * main program, when the kernel has already loaded the main program
1188  * into memory before calling the dynamic linker.  It creates and
1189  * returns an Obj_Entry structure.
1190  */
1191 static Obj_Entry *
1192 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1193 {
1194     Obj_Entry *obj;
1195     const Elf_Phdr *phlimit = phdr + phnum;
1196     const Elf_Phdr *ph;
1197     Elf_Addr note_start, note_end;
1198     int nsegs = 0;
1199 
1200     obj = obj_new();
1201     for (ph = phdr;  ph < phlimit;  ph++) {
1202 	if (ph->p_type != PT_PHDR)
1203 	    continue;
1204 
1205 	obj->phdr = phdr;
1206 	obj->phsize = ph->p_memsz;
1207 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1208 	break;
1209     }
1210 
1211     obj->stack_flags = PF_X | PF_R | PF_W;
1212 
1213     for (ph = phdr;  ph < phlimit;  ph++) {
1214 	switch (ph->p_type) {
1215 
1216 	case PT_INTERP:
1217 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1218 	    break;
1219 
1220 	case PT_LOAD:
1221 	    if (nsegs == 0) {	/* First load segment */
1222 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1223 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1224 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1225 		  obj->vaddrbase;
1226 	    } else {		/* Last load segment */
1227 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1228 		  obj->vaddrbase;
1229 	    }
1230 	    nsegs++;
1231 	    break;
1232 
1233 	case PT_DYNAMIC:
1234 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1235 	    break;
1236 
1237 	case PT_TLS:
1238 	    obj->tlsindex = 1;
1239 	    obj->tlssize = ph->p_memsz;
1240 	    obj->tlsalign = ph->p_align;
1241 	    obj->tlsinitsize = ph->p_filesz;
1242 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1243 	    break;
1244 
1245 	case PT_GNU_STACK:
1246 	    obj->stack_flags = ph->p_flags;
1247 	    break;
1248 
1249 	case PT_GNU_RELRO:
1250 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1251 	    obj->relro_size = round_page(ph->p_memsz);
1252 	    break;
1253 
1254 	case PT_NOTE:
1255 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1256 	    note_end = note_start + ph->p_filesz;
1257 	    digest_notes(obj, note_start, note_end);
1258 	    break;
1259 	}
1260     }
1261     if (nsegs < 1) {
1262 	_rtld_error("%s: too few PT_LOAD segments", path);
1263 	return NULL;
1264     }
1265 
1266     obj->entry = entry;
1267     return obj;
1268 }
1269 
1270 void
1271 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1272 {
1273 	const Elf_Note *note;
1274 	const char *note_name;
1275 	uintptr_t p;
1276 
1277 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1278 	    note = (const Elf_Note *)((const char *)(note + 1) +
1279 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1280 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1281 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1282 		    note->n_descsz != sizeof(int32_t))
1283 			continue;
1284 		if (note->n_type != ABI_NOTETYPE &&
1285 		    note->n_type != CRT_NOINIT_NOTETYPE)
1286 			continue;
1287 		note_name = (const char *)(note + 1);
1288 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1289 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1290 			continue;
1291 		switch (note->n_type) {
1292 		case ABI_NOTETYPE:
1293 			/* FreeBSD osrel note */
1294 			p = (uintptr_t)(note + 1);
1295 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1296 			obj->osrel = *(const int32_t *)(p);
1297 			dbg("note osrel %d", obj->osrel);
1298 			break;
1299 		case CRT_NOINIT_NOTETYPE:
1300 			/* FreeBSD 'crt does not call init' note */
1301 			obj->crt_no_init = true;
1302 			dbg("note crt_no_init");
1303 			break;
1304 		}
1305 	}
1306 }
1307 
1308 static Obj_Entry *
1309 dlcheck(void *handle)
1310 {
1311     Obj_Entry *obj;
1312 
1313     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1314 	if (obj == (Obj_Entry *) handle)
1315 	    break;
1316 
1317     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1318 	_rtld_error("Invalid shared object handle %p", handle);
1319 	return NULL;
1320     }
1321     return obj;
1322 }
1323 
1324 /*
1325  * If the given object is already in the donelist, return true.  Otherwise
1326  * add the object to the list and return false.
1327  */
1328 static bool
1329 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1330 {
1331     unsigned int i;
1332 
1333     for (i = 0;  i < dlp->num_used;  i++)
1334 	if (dlp->objs[i] == obj)
1335 	    return true;
1336     /*
1337      * Our donelist allocation should always be sufficient.  But if
1338      * our threads locking isn't working properly, more shared objects
1339      * could have been loaded since we allocated the list.  That should
1340      * never happen, but we'll handle it properly just in case it does.
1341      */
1342     if (dlp->num_used < dlp->num_alloc)
1343 	dlp->objs[dlp->num_used++] = obj;
1344     return false;
1345 }
1346 
1347 /*
1348  * Hash function for symbol table lookup.  Don't even think about changing
1349  * this.  It is specified by the System V ABI.
1350  */
1351 unsigned long
1352 elf_hash(const char *name)
1353 {
1354     const unsigned char *p = (const unsigned char *) name;
1355     unsigned long h = 0;
1356     unsigned long g;
1357 
1358     while (*p != '\0') {
1359 	h = (h << 4) + *p++;
1360 	if ((g = h & 0xf0000000) != 0)
1361 	    h ^= g >> 24;
1362 	h &= ~g;
1363     }
1364     return h;
1365 }
1366 
1367 /*
1368  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1369  * unsigned in case it's implemented with a wider type.
1370  */
1371 static uint32_t
1372 gnu_hash(const char *s)
1373 {
1374 	uint32_t h;
1375 	unsigned char c;
1376 
1377 	h = 5381;
1378 	for (c = *s; c != '\0'; c = *++s)
1379 		h = h * 33 + c;
1380 	return (h & 0xffffffff);
1381 }
1382 
1383 /*
1384  * Find the library with the given name, and return its full pathname.
1385  * The returned string is dynamically allocated.  Generates an error
1386  * message and returns NULL if the library cannot be found.
1387  *
1388  * If the second argument is non-NULL, then it refers to an already-
1389  * loaded shared object, whose library search path will be searched.
1390  *
1391  * The search order is:
1392  *   LD_LIBRARY_PATH
1393  *   rpath in the referencing file
1394  *   ldconfig hints
1395  *   /lib:/usr/lib
1396  */
1397 static char *
1398 find_library(const char *xname, const Obj_Entry *refobj)
1399 {
1400     char *pathname;
1401     char *name;
1402 
1403     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1404 	if (xname[0] != '/' && !trust) {
1405 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1406 	      xname);
1407 	    return NULL;
1408 	}
1409 	if (refobj != NULL && refobj->z_origin)
1410 	    return origin_subst(xname, refobj->origin_path);
1411 	else
1412 	    return xstrdup(xname);
1413     }
1414 
1415     if (libmap_disable || (refobj == NULL) ||
1416 	(name = lm_find(refobj->path, xname)) == NULL)
1417 	name = (char *)xname;
1418 
1419     dbg(" Searching for \"%s\"", name);
1420 
1421     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1422       (refobj != NULL &&
1423       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1424       (pathname = search_library_path(name, gethints())) != NULL ||
1425       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1426 	return pathname;
1427 
1428     if(refobj != NULL && refobj->path != NULL) {
1429 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1430 	  name, basename(refobj->path));
1431     } else {
1432 	_rtld_error("Shared object \"%s\" not found", name);
1433     }
1434     return NULL;
1435 }
1436 
1437 /*
1438  * Given a symbol number in a referencing object, find the corresponding
1439  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1440  * no definition was found.  Returns a pointer to the Obj_Entry of the
1441  * defining object via the reference parameter DEFOBJ_OUT.
1442  */
1443 const Elf_Sym *
1444 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1445     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1446     RtldLockState *lockstate)
1447 {
1448     const Elf_Sym *ref;
1449     const Elf_Sym *def;
1450     const Obj_Entry *defobj;
1451     SymLook req;
1452     const char *name;
1453     int res;
1454 
1455     /*
1456      * If we have already found this symbol, get the information from
1457      * the cache.
1458      */
1459     if (symnum >= refobj->dynsymcount)
1460 	return NULL;	/* Bad object */
1461     if (cache != NULL && cache[symnum].sym != NULL) {
1462 	*defobj_out = cache[symnum].obj;
1463 	return cache[symnum].sym;
1464     }
1465 
1466     ref = refobj->symtab + symnum;
1467     name = refobj->strtab + ref->st_name;
1468     def = NULL;
1469     defobj = NULL;
1470 
1471     /*
1472      * We don't have to do a full scale lookup if the symbol is local.
1473      * We know it will bind to the instance in this load module; to
1474      * which we already have a pointer (ie ref). By not doing a lookup,
1475      * we not only improve performance, but it also avoids unresolvable
1476      * symbols when local symbols are not in the hash table. This has
1477      * been seen with the ia64 toolchain.
1478      */
1479     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1480 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1481 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1482 		symnum);
1483 	}
1484 	symlook_init(&req, name);
1485 	req.flags = flags;
1486 	req.ventry = fetch_ventry(refobj, symnum);
1487 	req.lockstate = lockstate;
1488 	res = symlook_default(&req, refobj);
1489 	if (res == 0) {
1490 	    def = req.sym_out;
1491 	    defobj = req.defobj_out;
1492 	}
1493     } else {
1494 	def = ref;
1495 	defobj = refobj;
1496     }
1497 
1498     /*
1499      * If we found no definition and the reference is weak, treat the
1500      * symbol as having the value zero.
1501      */
1502     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1503 	def = &sym_zero;
1504 	defobj = obj_main;
1505     }
1506 
1507     if (def != NULL) {
1508 	*defobj_out = defobj;
1509 	/* Record the information in the cache to avoid subsequent lookups. */
1510 	if (cache != NULL) {
1511 	    cache[symnum].sym = def;
1512 	    cache[symnum].obj = defobj;
1513 	}
1514     } else {
1515 	if (refobj != &obj_rtld)
1516 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1517     }
1518     return def;
1519 }
1520 
1521 /*
1522  * Return the search path from the ldconfig hints file, reading it if
1523  * necessary.  Returns NULL if there are problems with the hints file,
1524  * or if the search path there is empty.
1525  */
1526 static const char *
1527 gethints(void)
1528 {
1529     static char *hints;
1530 
1531     if (hints == NULL) {
1532 	int fd;
1533 	struct elfhints_hdr hdr;
1534 	char *p;
1535 
1536 	/* Keep from trying again in case the hints file is bad. */
1537 	hints = "";
1538 
1539 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1540 	    return NULL;
1541 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1542 	  hdr.magic != ELFHINTS_MAGIC ||
1543 	  hdr.version != 1) {
1544 	    close(fd);
1545 	    return NULL;
1546 	}
1547 	p = xmalloc(hdr.dirlistlen + 1);
1548 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1549 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1550 	    free(p);
1551 	    close(fd);
1552 	    return NULL;
1553 	}
1554 	hints = p;
1555 	close(fd);
1556     }
1557     return hints[0] != '\0' ? hints : NULL;
1558 }
1559 
1560 static void
1561 init_dag(Obj_Entry *root)
1562 {
1563     const Needed_Entry *needed;
1564     const Objlist_Entry *elm;
1565     DoneList donelist;
1566 
1567     if (root->dag_inited)
1568 	return;
1569     donelist_init(&donelist);
1570 
1571     /* Root object belongs to own DAG. */
1572     objlist_push_tail(&root->dldags, root);
1573     objlist_push_tail(&root->dagmembers, root);
1574     donelist_check(&donelist, root);
1575 
1576     /*
1577      * Add dependencies of root object to DAG in breadth order
1578      * by exploiting the fact that each new object get added
1579      * to the tail of the dagmembers list.
1580      */
1581     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1582 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1583 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1584 		continue;
1585 	    objlist_push_tail(&needed->obj->dldags, root);
1586 	    objlist_push_tail(&root->dagmembers, needed->obj);
1587 	}
1588     }
1589     root->dag_inited = true;
1590 }
1591 
1592 /*
1593  * Initialize the dynamic linker.  The argument is the address at which
1594  * the dynamic linker has been mapped into memory.  The primary task of
1595  * this function is to relocate the dynamic linker.
1596  */
1597 static void
1598 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1599 {
1600     Obj_Entry objtmp;	/* Temporary rtld object */
1601     const Elf_Dyn *dyn_rpath;
1602     const Elf_Dyn *dyn_soname;
1603 
1604     /*
1605      * Conjure up an Obj_Entry structure for the dynamic linker.
1606      *
1607      * The "path" member can't be initialized yet because string constants
1608      * cannot yet be accessed. Below we will set it correctly.
1609      */
1610     memset(&objtmp, 0, sizeof(objtmp));
1611     objtmp.path = NULL;
1612     objtmp.rtld = true;
1613     objtmp.mapbase = mapbase;
1614 #ifdef PIC
1615     objtmp.relocbase = mapbase;
1616 #endif
1617     if (RTLD_IS_DYNAMIC()) {
1618 	objtmp.dynamic = rtld_dynamic(&objtmp);
1619 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1620 	assert(objtmp.needed == NULL);
1621 #if !defined(__mips__)
1622 	/* MIPS has a bogus DT_TEXTREL. */
1623 	assert(!objtmp.textrel);
1624 #endif
1625 
1626 	/*
1627 	 * Temporarily put the dynamic linker entry into the object list, so
1628 	 * that symbols can be found.
1629 	 */
1630 
1631 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1632     }
1633 
1634     /* Initialize the object list. */
1635     obj_tail = &obj_list;
1636 
1637     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1638     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1639 
1640     if (aux_info[AT_PAGESZ] != NULL)
1641 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1642     if (aux_info[AT_OSRELDATE] != NULL)
1643 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1644 
1645     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1646 
1647     /* Replace the path with a dynamically allocated copy. */
1648     obj_rtld.path = xstrdup(PATH_RTLD);
1649 
1650     r_debug.r_brk = r_debug_state;
1651     r_debug.r_state = RT_CONSISTENT;
1652 }
1653 
1654 /*
1655  * Add the init functions from a needed object list (and its recursive
1656  * needed objects) to "list".  This is not used directly; it is a helper
1657  * function for initlist_add_objects().  The write lock must be held
1658  * when this function is called.
1659  */
1660 static void
1661 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1662 {
1663     /* Recursively process the successor needed objects. */
1664     if (needed->next != NULL)
1665 	initlist_add_neededs(needed->next, list);
1666 
1667     /* Process the current needed object. */
1668     if (needed->obj != NULL)
1669 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1670 }
1671 
1672 /*
1673  * Scan all of the DAGs rooted in the range of objects from "obj" to
1674  * "tail" and add their init functions to "list".  This recurses over
1675  * the DAGs and ensure the proper init ordering such that each object's
1676  * needed libraries are initialized before the object itself.  At the
1677  * same time, this function adds the objects to the global finalization
1678  * list "list_fini" in the opposite order.  The write lock must be
1679  * held when this function is called.
1680  */
1681 static void
1682 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1683 {
1684 
1685     if (obj->init_scanned || obj->init_done)
1686 	return;
1687     obj->init_scanned = true;
1688 
1689     /* Recursively process the successor objects. */
1690     if (&obj->next != tail)
1691 	initlist_add_objects(obj->next, tail, list);
1692 
1693     /* Recursively process the needed objects. */
1694     if (obj->needed != NULL)
1695 	initlist_add_neededs(obj->needed, list);
1696     if (obj->needed_filtees != NULL)
1697 	initlist_add_neededs(obj->needed_filtees, list);
1698     if (obj->needed_aux_filtees != NULL)
1699 	initlist_add_neededs(obj->needed_aux_filtees, list);
1700 
1701     /* Add the object to the init list. */
1702     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1703       obj->init_array != (Elf_Addr)NULL)
1704 	objlist_push_tail(list, obj);
1705 
1706     /* Add the object to the global fini list in the reverse order. */
1707     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1708       && !obj->on_fini_list) {
1709 	objlist_push_head(&list_fini, obj);
1710 	obj->on_fini_list = true;
1711     }
1712 }
1713 
1714 #ifndef FPTR_TARGET
1715 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1716 #endif
1717 
1718 static void
1719 free_needed_filtees(Needed_Entry *n)
1720 {
1721     Needed_Entry *needed, *needed1;
1722 
1723     for (needed = n; needed != NULL; needed = needed->next) {
1724 	if (needed->obj != NULL) {
1725 	    dlclose(needed->obj);
1726 	    needed->obj = NULL;
1727 	}
1728     }
1729     for (needed = n; needed != NULL; needed = needed1) {
1730 	needed1 = needed->next;
1731 	free(needed);
1732     }
1733 }
1734 
1735 static void
1736 unload_filtees(Obj_Entry *obj)
1737 {
1738 
1739     free_needed_filtees(obj->needed_filtees);
1740     obj->needed_filtees = NULL;
1741     free_needed_filtees(obj->needed_aux_filtees);
1742     obj->needed_aux_filtees = NULL;
1743     obj->filtees_loaded = false;
1744 }
1745 
1746 static void
1747 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1748     RtldLockState *lockstate)
1749 {
1750 
1751     for (; needed != NULL; needed = needed->next) {
1752 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1753 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1754 	  RTLD_LOCAL, lockstate);
1755     }
1756 }
1757 
1758 static void
1759 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1760 {
1761 
1762     lock_restart_for_upgrade(lockstate);
1763     if (!obj->filtees_loaded) {
1764 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1765 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1766 	obj->filtees_loaded = true;
1767     }
1768 }
1769 
1770 static int
1771 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1772 {
1773     Obj_Entry *obj1;
1774 
1775     for (; needed != NULL; needed = needed->next) {
1776 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1777 	  flags & ~RTLD_LO_NOLOAD);
1778 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1779 	    return (-1);
1780 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1781 	    dbg("obj %s nodelete", obj1->path);
1782 	    init_dag(obj1);
1783 	    ref_dag(obj1);
1784 	    obj1->ref_nodel = true;
1785 	}
1786     }
1787     return (0);
1788 }
1789 
1790 /*
1791  * Given a shared object, traverse its list of needed objects, and load
1792  * each of them.  Returns 0 on success.  Generates an error message and
1793  * returns -1 on failure.
1794  */
1795 static int
1796 load_needed_objects(Obj_Entry *first, int flags)
1797 {
1798     Obj_Entry *obj;
1799 
1800     for (obj = first;  obj != NULL;  obj = obj->next) {
1801 	if (process_needed(obj, obj->needed, flags) == -1)
1802 	    return (-1);
1803     }
1804     return (0);
1805 }
1806 
1807 static int
1808 load_preload_objects(void)
1809 {
1810     char *p = ld_preload;
1811     static const char delim[] = " \t:;";
1812 
1813     if (p == NULL)
1814 	return 0;
1815 
1816     p += strspn(p, delim);
1817     while (*p != '\0') {
1818 	size_t len = strcspn(p, delim);
1819 	char savech;
1820 
1821 	savech = p[len];
1822 	p[len] = '\0';
1823 	if (load_object(p, -1, NULL, 0) == NULL)
1824 	    return -1;	/* XXX - cleanup */
1825 	p[len] = savech;
1826 	p += len;
1827 	p += strspn(p, delim);
1828     }
1829     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1830     return 0;
1831 }
1832 
1833 static const char *
1834 printable_path(const char *path)
1835 {
1836 
1837 	return (path == NULL ? "<unknown>" : path);
1838 }
1839 
1840 /*
1841  * Load a shared object into memory, if it is not already loaded.  The
1842  * object may be specified by name or by user-supplied file descriptor
1843  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1844  * duplicate is.
1845  *
1846  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1847  * on failure.
1848  */
1849 static Obj_Entry *
1850 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1851 {
1852     Obj_Entry *obj;
1853     int fd;
1854     struct stat sb;
1855     char *path;
1856 
1857     if (name != NULL) {
1858 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1859 	    if (object_match_name(obj, name))
1860 		return (obj);
1861 	}
1862 
1863 	path = find_library(name, refobj);
1864 	if (path == NULL)
1865 	    return (NULL);
1866     } else
1867 	path = NULL;
1868 
1869     /*
1870      * If we didn't find a match by pathname, or the name is not
1871      * supplied, open the file and check again by device and inode.
1872      * This avoids false mismatches caused by multiple links or ".."
1873      * in pathnames.
1874      *
1875      * To avoid a race, we open the file and use fstat() rather than
1876      * using stat().
1877      */
1878     fd = -1;
1879     if (fd_u == -1) {
1880 	if ((fd = open(path, O_RDONLY)) == -1) {
1881 	    _rtld_error("Cannot open \"%s\"", path);
1882 	    free(path);
1883 	    return (NULL);
1884 	}
1885     } else {
1886 	fd = dup(fd_u);
1887 	if (fd == -1) {
1888 	    _rtld_error("Cannot dup fd");
1889 	    free(path);
1890 	    return (NULL);
1891 	}
1892     }
1893     if (fstat(fd, &sb) == -1) {
1894 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1895 	close(fd);
1896 	free(path);
1897 	return NULL;
1898     }
1899     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1900 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1901 	    break;
1902     if (obj != NULL && name != NULL) {
1903 	object_add_name(obj, name);
1904 	free(path);
1905 	close(fd);
1906 	return obj;
1907     }
1908     if (flags & RTLD_LO_NOLOAD) {
1909 	free(path);
1910 	close(fd);
1911 	return (NULL);
1912     }
1913 
1914     /* First use of this object, so we must map it in */
1915     obj = do_load_object(fd, name, path, &sb, flags);
1916     if (obj == NULL)
1917 	free(path);
1918     close(fd);
1919 
1920     return obj;
1921 }
1922 
1923 static Obj_Entry *
1924 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1925   int flags)
1926 {
1927     Obj_Entry *obj;
1928     struct statfs fs;
1929 
1930     /*
1931      * but first, make sure that environment variables haven't been
1932      * used to circumvent the noexec flag on a filesystem.
1933      */
1934     if (dangerous_ld_env) {
1935 	if (fstatfs(fd, &fs) != 0) {
1936 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1937 	    return NULL;
1938 	}
1939 	if (fs.f_flags & MNT_NOEXEC) {
1940 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1941 	    return NULL;
1942 	}
1943     }
1944     dbg("loading \"%s\"", printable_path(path));
1945     obj = map_object(fd, printable_path(path), sbp);
1946     if (obj == NULL)
1947         return NULL;
1948 
1949     /*
1950      * If DT_SONAME is present in the object, digest_dynamic2 already
1951      * added it to the object names.
1952      */
1953     if (name != NULL)
1954 	object_add_name(obj, name);
1955     obj->path = path;
1956     digest_dynamic(obj, 0);
1957     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
1958 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
1959     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1960       RTLD_LO_DLOPEN) {
1961 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1962 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1963 	munmap(obj->mapbase, obj->mapsize);
1964 	obj_free(obj);
1965 	return (NULL);
1966     }
1967 
1968     *obj_tail = obj;
1969     obj_tail = &obj->next;
1970     obj_count++;
1971     obj_loads++;
1972     linkmap_add(obj);	/* for GDB & dlinfo() */
1973     max_stack_flags |= obj->stack_flags;
1974 
1975     dbg("  %p .. %p: %s", obj->mapbase,
1976          obj->mapbase + obj->mapsize - 1, obj->path);
1977     if (obj->textrel)
1978 	dbg("  WARNING: %s has impure text", obj->path);
1979     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1980 	obj->path);
1981 
1982     return obj;
1983 }
1984 
1985 static Obj_Entry *
1986 obj_from_addr(const void *addr)
1987 {
1988     Obj_Entry *obj;
1989 
1990     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1991 	if (addr < (void *) obj->mapbase)
1992 	    continue;
1993 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1994 	    return obj;
1995     }
1996     return NULL;
1997 }
1998 
1999 static void
2000 preinit_main(void)
2001 {
2002     Elf_Addr *preinit_addr;
2003     int index;
2004 
2005     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2006     if (preinit_addr == NULL)
2007 	return;
2008 
2009     for (index = 0; index < obj_main->preinit_array_num; index++) {
2010 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2011 	    dbg("calling preinit function for %s at %p", obj_main->path,
2012 	      (void *)preinit_addr[index]);
2013 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2014 	      0, 0, obj_main->path);
2015 	    call_init_pointer(obj_main, preinit_addr[index]);
2016 	}
2017     }
2018 }
2019 
2020 /*
2021  * Call the finalization functions for each of the objects in "list"
2022  * belonging to the DAG of "root" and referenced once. If NULL "root"
2023  * is specified, every finalization function will be called regardless
2024  * of the reference count and the list elements won't be freed. All of
2025  * the objects are expected to have non-NULL fini functions.
2026  */
2027 static void
2028 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2029 {
2030     Objlist_Entry *elm;
2031     char *saved_msg;
2032     Elf_Addr *fini_addr;
2033     int index;
2034 
2035     assert(root == NULL || root->refcount == 1);
2036 
2037     /*
2038      * Preserve the current error message since a fini function might
2039      * call into the dynamic linker and overwrite it.
2040      */
2041     saved_msg = errmsg_save();
2042     do {
2043 	STAILQ_FOREACH(elm, list, link) {
2044 	    if (root != NULL && (elm->obj->refcount != 1 ||
2045 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2046 		continue;
2047 	    /* Remove object from fini list to prevent recursive invocation. */
2048 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2049 	    /*
2050 	     * XXX: If a dlopen() call references an object while the
2051 	     * fini function is in progress, we might end up trying to
2052 	     * unload the referenced object in dlclose() or the object
2053 	     * won't be unloaded although its fini function has been
2054 	     * called.
2055 	     */
2056 	    lock_release(rtld_bind_lock, lockstate);
2057 
2058 	    /*
2059 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2060 	     * When this happens, DT_FINI_ARRAY is processed first.
2061 	     */
2062 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2063 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2064 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2065 		  index--) {
2066 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2067 			dbg("calling fini function for %s at %p",
2068 			    elm->obj->path, (void *)fini_addr[index]);
2069 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2070 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2071 			call_initfini_pointer(elm->obj, fini_addr[index]);
2072 		    }
2073 		}
2074 	    }
2075 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2076 		dbg("calling fini function for %s at %p", elm->obj->path,
2077 		    (void *)elm->obj->fini);
2078 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2079 		    0, 0, elm->obj->path);
2080 		call_initfini_pointer(elm->obj, elm->obj->fini);
2081 	    }
2082 	    wlock_acquire(rtld_bind_lock, lockstate);
2083 	    /* No need to free anything if process is going down. */
2084 	    if (root != NULL)
2085 	    	free(elm);
2086 	    /*
2087 	     * We must restart the list traversal after every fini call
2088 	     * because a dlclose() call from the fini function or from
2089 	     * another thread might have modified the reference counts.
2090 	     */
2091 	    break;
2092 	}
2093     } while (elm != NULL);
2094     errmsg_restore(saved_msg);
2095 }
2096 
2097 /*
2098  * Call the initialization functions for each of the objects in
2099  * "list".  All of the objects are expected to have non-NULL init
2100  * functions.
2101  */
2102 static void
2103 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2104 {
2105     Objlist_Entry *elm;
2106     Obj_Entry *obj;
2107     char *saved_msg;
2108     Elf_Addr *init_addr;
2109     int index;
2110 
2111     /*
2112      * Clean init_scanned flag so that objects can be rechecked and
2113      * possibly initialized earlier if any of vectors called below
2114      * cause the change by using dlopen.
2115      */
2116     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2117 	obj->init_scanned = false;
2118 
2119     /*
2120      * Preserve the current error message since an init function might
2121      * call into the dynamic linker and overwrite it.
2122      */
2123     saved_msg = errmsg_save();
2124     STAILQ_FOREACH(elm, list, link) {
2125 	if (elm->obj->init_done) /* Initialized early. */
2126 	    continue;
2127 	/*
2128 	 * Race: other thread might try to use this object before current
2129 	 * one completes the initilization. Not much can be done here
2130 	 * without better locking.
2131 	 */
2132 	elm->obj->init_done = true;
2133 	lock_release(rtld_bind_lock, lockstate);
2134 
2135         /*
2136          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2137          * When this happens, DT_INIT is processed first.
2138          */
2139 	if (elm->obj->init != (Elf_Addr)NULL) {
2140 	    dbg("calling init function for %s at %p", elm->obj->path,
2141 	        (void *)elm->obj->init);
2142 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2143 	        0, 0, elm->obj->path);
2144 	    call_initfini_pointer(elm->obj, elm->obj->init);
2145 	}
2146 	init_addr = (Elf_Addr *)elm->obj->init_array;
2147 	if (init_addr != NULL) {
2148 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2149 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2150 		    dbg("calling init function for %s at %p", elm->obj->path,
2151 			(void *)init_addr[index]);
2152 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2153 			(void *)init_addr[index], 0, 0, elm->obj->path);
2154 		    call_init_pointer(elm->obj, init_addr[index]);
2155 		}
2156 	    }
2157 	}
2158 	wlock_acquire(rtld_bind_lock, lockstate);
2159     }
2160     errmsg_restore(saved_msg);
2161 }
2162 
2163 static void
2164 objlist_clear(Objlist *list)
2165 {
2166     Objlist_Entry *elm;
2167 
2168     while (!STAILQ_EMPTY(list)) {
2169 	elm = STAILQ_FIRST(list);
2170 	STAILQ_REMOVE_HEAD(list, link);
2171 	free(elm);
2172     }
2173 }
2174 
2175 static Objlist_Entry *
2176 objlist_find(Objlist *list, const Obj_Entry *obj)
2177 {
2178     Objlist_Entry *elm;
2179 
2180     STAILQ_FOREACH(elm, list, link)
2181 	if (elm->obj == obj)
2182 	    return elm;
2183     return NULL;
2184 }
2185 
2186 static void
2187 objlist_init(Objlist *list)
2188 {
2189     STAILQ_INIT(list);
2190 }
2191 
2192 static void
2193 objlist_push_head(Objlist *list, Obj_Entry *obj)
2194 {
2195     Objlist_Entry *elm;
2196 
2197     elm = NEW(Objlist_Entry);
2198     elm->obj = obj;
2199     STAILQ_INSERT_HEAD(list, elm, link);
2200 }
2201 
2202 static void
2203 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2204 {
2205     Objlist_Entry *elm;
2206 
2207     elm = NEW(Objlist_Entry);
2208     elm->obj = obj;
2209     STAILQ_INSERT_TAIL(list, elm, link);
2210 }
2211 
2212 static void
2213 objlist_remove(Objlist *list, Obj_Entry *obj)
2214 {
2215     Objlist_Entry *elm;
2216 
2217     if ((elm = objlist_find(list, obj)) != NULL) {
2218 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2219 	free(elm);
2220     }
2221 }
2222 
2223 /*
2224  * Relocate dag rooted in the specified object.
2225  * Returns 0 on success, or -1 on failure.
2226  */
2227 
2228 static int
2229 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2230     int flags, RtldLockState *lockstate)
2231 {
2232 	Objlist_Entry *elm;
2233 	int error;
2234 
2235 	error = 0;
2236 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2237 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2238 		    lockstate);
2239 		if (error == -1)
2240 			break;
2241 	}
2242 	return (error);
2243 }
2244 
2245 /*
2246  * Relocate single object.
2247  * Returns 0 on success, or -1 on failure.
2248  */
2249 static int
2250 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2251     int flags, RtldLockState *lockstate)
2252 {
2253 
2254 	if (obj->relocated)
2255 		return (0);
2256 	obj->relocated = true;
2257 	if (obj != rtldobj)
2258 		dbg("relocating \"%s\"", obj->path);
2259 
2260 	if (obj->symtab == NULL || obj->strtab == NULL ||
2261 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2262 		_rtld_error("%s: Shared object has no run-time symbol table",
2263 			    obj->path);
2264 		return (-1);
2265 	}
2266 
2267 	if (obj->textrel) {
2268 		/* There are relocations to the write-protected text segment. */
2269 		if (mprotect(obj->mapbase, obj->textsize,
2270 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2271 			_rtld_error("%s: Cannot write-enable text segment: %s",
2272 			    obj->path, rtld_strerror(errno));
2273 			return (-1);
2274 		}
2275 	}
2276 
2277 	/* Process the non-PLT relocations. */
2278 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2279 		return (-1);
2280 
2281 	if (obj->textrel) {	/* Re-protected the text segment. */
2282 		if (mprotect(obj->mapbase, obj->textsize,
2283 		    PROT_READ|PROT_EXEC) == -1) {
2284 			_rtld_error("%s: Cannot write-protect text segment: %s",
2285 			    obj->path, rtld_strerror(errno));
2286 			return (-1);
2287 		}
2288 	}
2289 
2290 
2291 	/* Set the special PLT or GOT entries. */
2292 	init_pltgot(obj);
2293 
2294 	/* Process the PLT relocations. */
2295 	if (reloc_plt(obj) == -1)
2296 		return (-1);
2297 	/* Relocate the jump slots if we are doing immediate binding. */
2298 	if (obj->bind_now || bind_now)
2299 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2300 			return (-1);
2301 
2302 	if (obj->relro_size > 0) {
2303 		if (mprotect(obj->relro_page, obj->relro_size,
2304 		    PROT_READ) == -1) {
2305 			_rtld_error("%s: Cannot enforce relro protection: %s",
2306 			    obj->path, rtld_strerror(errno));
2307 			return (-1);
2308 		}
2309 	}
2310 
2311 	/*
2312 	 * Set up the magic number and version in the Obj_Entry.  These
2313 	 * were checked in the crt1.o from the original ElfKit, so we
2314 	 * set them for backward compatibility.
2315 	 */
2316 	obj->magic = RTLD_MAGIC;
2317 	obj->version = RTLD_VERSION;
2318 
2319 	return (0);
2320 }
2321 
2322 /*
2323  * Relocate newly-loaded shared objects.  The argument is a pointer to
2324  * the Obj_Entry for the first such object.  All objects from the first
2325  * to the end of the list of objects are relocated.  Returns 0 on success,
2326  * or -1 on failure.
2327  */
2328 static int
2329 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2330     int flags, RtldLockState *lockstate)
2331 {
2332 	Obj_Entry *obj;
2333 	int error;
2334 
2335 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2336 		error = relocate_object(obj, bind_now, rtldobj, flags,
2337 		    lockstate);
2338 		if (error == -1)
2339 			break;
2340 	}
2341 	return (error);
2342 }
2343 
2344 /*
2345  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2346  * referencing STT_GNU_IFUNC symbols is postponed till the other
2347  * relocations are done.  The indirect functions specified as
2348  * ifunc are allowed to call other symbols, so we need to have
2349  * objects relocated before asking for resolution from indirects.
2350  *
2351  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2352  * instead of the usual lazy handling of PLT slots.  It is
2353  * consistent with how GNU does it.
2354  */
2355 static int
2356 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2357     RtldLockState *lockstate)
2358 {
2359 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2360 		return (-1);
2361 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2362 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2363 		return (-1);
2364 	return (0);
2365 }
2366 
2367 static int
2368 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2369     RtldLockState *lockstate)
2370 {
2371 	Obj_Entry *obj;
2372 
2373 	for (obj = first;  obj != NULL;  obj = obj->next) {
2374 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2375 			return (-1);
2376 	}
2377 	return (0);
2378 }
2379 
2380 static int
2381 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2382     RtldLockState *lockstate)
2383 {
2384 	Objlist_Entry *elm;
2385 
2386 	STAILQ_FOREACH(elm, list, link) {
2387 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2388 		    lockstate) == -1)
2389 			return (-1);
2390 	}
2391 	return (0);
2392 }
2393 
2394 /*
2395  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2396  * before the process exits.
2397  */
2398 static void
2399 rtld_exit(void)
2400 {
2401     RtldLockState lockstate;
2402 
2403     wlock_acquire(rtld_bind_lock, &lockstate);
2404     dbg("rtld_exit()");
2405     objlist_call_fini(&list_fini, NULL, &lockstate);
2406     /* No need to remove the items from the list, since we are exiting. */
2407     if (!libmap_disable)
2408         lm_fini();
2409     lock_release(rtld_bind_lock, &lockstate);
2410 }
2411 
2412 static void *
2413 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2414 {
2415 #ifdef COMPAT_32BIT
2416     const char *trans;
2417 #endif
2418     if (path == NULL)
2419 	return (NULL);
2420 
2421     path += strspn(path, ":;");
2422     while (*path != '\0') {
2423 	size_t len;
2424 	char  *res;
2425 
2426 	len = strcspn(path, ":;");
2427 #ifdef COMPAT_32BIT
2428 	trans = lm_findn(NULL, path, len);
2429 	if (trans)
2430 	    res = callback(trans, strlen(trans), arg);
2431 	else
2432 #endif
2433 	res = callback(path, len, arg);
2434 
2435 	if (res != NULL)
2436 	    return (res);
2437 
2438 	path += len;
2439 	path += strspn(path, ":;");
2440     }
2441 
2442     return (NULL);
2443 }
2444 
2445 struct try_library_args {
2446     const char	*name;
2447     size_t	 namelen;
2448     char	*buffer;
2449     size_t	 buflen;
2450 };
2451 
2452 static void *
2453 try_library_path(const char *dir, size_t dirlen, void *param)
2454 {
2455     struct try_library_args *arg;
2456 
2457     arg = param;
2458     if (*dir == '/' || trust) {
2459 	char *pathname;
2460 
2461 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2462 		return (NULL);
2463 
2464 	pathname = arg->buffer;
2465 	strncpy(pathname, dir, dirlen);
2466 	pathname[dirlen] = '/';
2467 	strcpy(pathname + dirlen + 1, arg->name);
2468 
2469 	dbg("  Trying \"%s\"", pathname);
2470 	if (access(pathname, F_OK) == 0) {		/* We found it */
2471 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2472 	    strcpy(pathname, arg->buffer);
2473 	    return (pathname);
2474 	}
2475     }
2476     return (NULL);
2477 }
2478 
2479 static char *
2480 search_library_path(const char *name, const char *path)
2481 {
2482     char *p;
2483     struct try_library_args arg;
2484 
2485     if (path == NULL)
2486 	return NULL;
2487 
2488     arg.name = name;
2489     arg.namelen = strlen(name);
2490     arg.buffer = xmalloc(PATH_MAX);
2491     arg.buflen = PATH_MAX;
2492 
2493     p = path_enumerate(path, try_library_path, &arg);
2494 
2495     free(arg.buffer);
2496 
2497     return (p);
2498 }
2499 
2500 int
2501 dlclose(void *handle)
2502 {
2503     Obj_Entry *root;
2504     RtldLockState lockstate;
2505 
2506     wlock_acquire(rtld_bind_lock, &lockstate);
2507     root = dlcheck(handle);
2508     if (root == NULL) {
2509 	lock_release(rtld_bind_lock, &lockstate);
2510 	return -1;
2511     }
2512     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2513 	root->path);
2514 
2515     /* Unreference the object and its dependencies. */
2516     root->dl_refcount--;
2517 
2518     if (root->refcount == 1) {
2519 	/*
2520 	 * The object will be no longer referenced, so we must unload it.
2521 	 * First, call the fini functions.
2522 	 */
2523 	objlist_call_fini(&list_fini, root, &lockstate);
2524 
2525 	unref_dag(root);
2526 
2527 	/* Finish cleaning up the newly-unreferenced objects. */
2528 	GDB_STATE(RT_DELETE,&root->linkmap);
2529 	unload_object(root);
2530 	GDB_STATE(RT_CONSISTENT,NULL);
2531     } else
2532 	unref_dag(root);
2533 
2534     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2535     lock_release(rtld_bind_lock, &lockstate);
2536     return 0;
2537 }
2538 
2539 char *
2540 dlerror(void)
2541 {
2542     char *msg = error_message;
2543     error_message = NULL;
2544     return msg;
2545 }
2546 
2547 /*
2548  * This function is deprecated and has no effect.
2549  */
2550 void
2551 dllockinit(void *context,
2552 	   void *(*lock_create)(void *context),
2553            void (*rlock_acquire)(void *lock),
2554            void (*wlock_acquire)(void *lock),
2555            void (*lock_release)(void *lock),
2556            void (*lock_destroy)(void *lock),
2557 	   void (*context_destroy)(void *context))
2558 {
2559     static void *cur_context;
2560     static void (*cur_context_destroy)(void *);
2561 
2562     /* Just destroy the context from the previous call, if necessary. */
2563     if (cur_context_destroy != NULL)
2564 	cur_context_destroy(cur_context);
2565     cur_context = context;
2566     cur_context_destroy = context_destroy;
2567 }
2568 
2569 void *
2570 dlopen(const char *name, int mode)
2571 {
2572 
2573 	return (rtld_dlopen(name, -1, mode));
2574 }
2575 
2576 void *
2577 fdlopen(int fd, int mode)
2578 {
2579 
2580 	return (rtld_dlopen(NULL, fd, mode));
2581 }
2582 
2583 static void *
2584 rtld_dlopen(const char *name, int fd, int mode)
2585 {
2586     RtldLockState lockstate;
2587     int lo_flags;
2588 
2589     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2590     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2591     if (ld_tracing != NULL) {
2592 	rlock_acquire(rtld_bind_lock, &lockstate);
2593 	if (sigsetjmp(lockstate.env, 0) != 0)
2594 	    lock_upgrade(rtld_bind_lock, &lockstate);
2595 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2596 	lock_release(rtld_bind_lock, &lockstate);
2597     }
2598     lo_flags = RTLD_LO_DLOPEN;
2599     if (mode & RTLD_NODELETE)
2600 	    lo_flags |= RTLD_LO_NODELETE;
2601     if (mode & RTLD_NOLOAD)
2602 	    lo_flags |= RTLD_LO_NOLOAD;
2603     if (ld_tracing != NULL)
2604 	    lo_flags |= RTLD_LO_TRACE;
2605 
2606     return (dlopen_object(name, fd, obj_main, lo_flags,
2607       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2608 }
2609 
2610 static void
2611 dlopen_cleanup(Obj_Entry *obj)
2612 {
2613 
2614 	obj->dl_refcount--;
2615 	unref_dag(obj);
2616 	if (obj->refcount == 0)
2617 		unload_object(obj);
2618 }
2619 
2620 static Obj_Entry *
2621 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2622     int mode, RtldLockState *lockstate)
2623 {
2624     Obj_Entry **old_obj_tail;
2625     Obj_Entry *obj;
2626     Objlist initlist;
2627     RtldLockState mlockstate;
2628     int result;
2629 
2630     objlist_init(&initlist);
2631 
2632     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2633 	wlock_acquire(rtld_bind_lock, &mlockstate);
2634 	lockstate = &mlockstate;
2635     }
2636     GDB_STATE(RT_ADD,NULL);
2637 
2638     old_obj_tail = obj_tail;
2639     obj = NULL;
2640     if (name == NULL && fd == -1) {
2641 	obj = obj_main;
2642 	obj->refcount++;
2643     } else {
2644 	obj = load_object(name, fd, refobj, lo_flags);
2645     }
2646 
2647     if (obj) {
2648 	obj->dl_refcount++;
2649 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2650 	    objlist_push_tail(&list_global, obj);
2651 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2652 	    assert(*old_obj_tail == obj);
2653 	    result = load_needed_objects(obj,
2654 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2655 	    init_dag(obj);
2656 	    ref_dag(obj);
2657 	    if (result != -1)
2658 		result = rtld_verify_versions(&obj->dagmembers);
2659 	    if (result != -1 && ld_tracing)
2660 		goto trace;
2661 	    if (result == -1 || relocate_object_dag(obj,
2662 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2663 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2664 	      lockstate) == -1) {
2665 		dlopen_cleanup(obj);
2666 		obj = NULL;
2667 	    } else if (lo_flags & RTLD_LO_EARLY) {
2668 		/*
2669 		 * Do not call the init functions for early loaded
2670 		 * filtees.  The image is still not initialized enough
2671 		 * for them to work.
2672 		 *
2673 		 * Our object is found by the global object list and
2674 		 * will be ordered among all init calls done right
2675 		 * before transferring control to main.
2676 		 */
2677 	    } else {
2678 		/* Make list of init functions to call. */
2679 		initlist_add_objects(obj, &obj->next, &initlist);
2680 	    }
2681 	} else {
2682 
2683 	    /*
2684 	     * Bump the reference counts for objects on this DAG.  If
2685 	     * this is the first dlopen() call for the object that was
2686 	     * already loaded as a dependency, initialize the dag
2687 	     * starting at it.
2688 	     */
2689 	    init_dag(obj);
2690 	    ref_dag(obj);
2691 
2692 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2693 		goto trace;
2694 	}
2695 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2696 	  obj->z_nodelete) && !obj->ref_nodel) {
2697 	    dbg("obj %s nodelete", obj->path);
2698 	    ref_dag(obj);
2699 	    obj->z_nodelete = obj->ref_nodel = true;
2700 	}
2701     }
2702 
2703     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2704 	name);
2705     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2706 
2707     if (!(lo_flags & RTLD_LO_EARLY)) {
2708 	map_stacks_exec(lockstate);
2709     }
2710 
2711     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2712       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2713       lockstate) == -1) {
2714 	objlist_clear(&initlist);
2715 	dlopen_cleanup(obj);
2716 	if (lockstate == &mlockstate)
2717 	    lock_release(rtld_bind_lock, lockstate);
2718 	return (NULL);
2719     }
2720 
2721     if (!(lo_flags & RTLD_LO_EARLY)) {
2722 	/* Call the init functions. */
2723 	objlist_call_init(&initlist, lockstate);
2724     }
2725     objlist_clear(&initlist);
2726     if (lockstate == &mlockstate)
2727 	lock_release(rtld_bind_lock, lockstate);
2728     return obj;
2729 trace:
2730     trace_loaded_objects(obj);
2731     if (lockstate == &mlockstate)
2732 	lock_release(rtld_bind_lock, lockstate);
2733     exit(0);
2734 }
2735 
2736 static void *
2737 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2738     int flags)
2739 {
2740     DoneList donelist;
2741     const Obj_Entry *obj, *defobj;
2742     const Elf_Sym *def;
2743     SymLook req;
2744     RtldLockState lockstate;
2745 #ifndef __ia64__
2746     tls_index ti;
2747 #endif
2748     int res;
2749 
2750     def = NULL;
2751     defobj = NULL;
2752     symlook_init(&req, name);
2753     req.ventry = ve;
2754     req.flags = flags | SYMLOOK_IN_PLT;
2755     req.lockstate = &lockstate;
2756 
2757     rlock_acquire(rtld_bind_lock, &lockstate);
2758     if (sigsetjmp(lockstate.env, 0) != 0)
2759 	    lock_upgrade(rtld_bind_lock, &lockstate);
2760     if (handle == NULL || handle == RTLD_NEXT ||
2761 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2762 
2763 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2764 	    _rtld_error("Cannot determine caller's shared object");
2765 	    lock_release(rtld_bind_lock, &lockstate);
2766 	    return NULL;
2767 	}
2768 	if (handle == NULL) {	/* Just the caller's shared object. */
2769 	    res = symlook_obj(&req, obj);
2770 	    if (res == 0) {
2771 		def = req.sym_out;
2772 		defobj = req.defobj_out;
2773 	    }
2774 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2775 		   handle == RTLD_SELF) { /* ... caller included */
2776 	    if (handle == RTLD_NEXT)
2777 		obj = obj->next;
2778 	    for (; obj != NULL; obj = obj->next) {
2779 		res = symlook_obj(&req, obj);
2780 		if (res == 0) {
2781 		    if (def == NULL ||
2782 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2783 			def = req.sym_out;
2784 			defobj = req.defobj_out;
2785 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2786 			    break;
2787 		    }
2788 		}
2789 	    }
2790 	    /*
2791 	     * Search the dynamic linker itself, and possibly resolve the
2792 	     * symbol from there.  This is how the application links to
2793 	     * dynamic linker services such as dlopen.
2794 	     */
2795 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2796 		res = symlook_obj(&req, &obj_rtld);
2797 		if (res == 0) {
2798 		    def = req.sym_out;
2799 		    defobj = req.defobj_out;
2800 		}
2801 	    }
2802 	} else {
2803 	    assert(handle == RTLD_DEFAULT);
2804 	    res = symlook_default(&req, obj);
2805 	    if (res == 0) {
2806 		defobj = req.defobj_out;
2807 		def = req.sym_out;
2808 	    }
2809 	}
2810     } else {
2811 	if ((obj = dlcheck(handle)) == NULL) {
2812 	    lock_release(rtld_bind_lock, &lockstate);
2813 	    return NULL;
2814 	}
2815 
2816 	donelist_init(&donelist);
2817 	if (obj->mainprog) {
2818             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2819 	    res = symlook_global(&req, &donelist);
2820 	    if (res == 0) {
2821 		def = req.sym_out;
2822 		defobj = req.defobj_out;
2823 	    }
2824 	    /*
2825 	     * Search the dynamic linker itself, and possibly resolve the
2826 	     * symbol from there.  This is how the application links to
2827 	     * dynamic linker services such as dlopen.
2828 	     */
2829 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2830 		res = symlook_obj(&req, &obj_rtld);
2831 		if (res == 0) {
2832 		    def = req.sym_out;
2833 		    defobj = req.defobj_out;
2834 		}
2835 	    }
2836 	}
2837 	else {
2838 	    /* Search the whole DAG rooted at the given object. */
2839 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2840 	    if (res == 0) {
2841 		def = req.sym_out;
2842 		defobj = req.defobj_out;
2843 	    }
2844 	}
2845     }
2846 
2847     if (def != NULL) {
2848 	lock_release(rtld_bind_lock, &lockstate);
2849 
2850 	/*
2851 	 * The value required by the caller is derived from the value
2852 	 * of the symbol. For the ia64 architecture, we need to
2853 	 * construct a function descriptor which the caller can use to
2854 	 * call the function with the right 'gp' value. For other
2855 	 * architectures and for non-functions, the value is simply
2856 	 * the relocated value of the symbol.
2857 	 */
2858 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2859 	    return (make_function_pointer(def, defobj));
2860 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2861 	    return (rtld_resolve_ifunc(defobj, def));
2862 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2863 #ifdef __ia64__
2864 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
2865 #else
2866 	    ti.ti_module = defobj->tlsindex;
2867 	    ti.ti_offset = def->st_value;
2868 	    return (__tls_get_addr(&ti));
2869 #endif
2870 	} else
2871 	    return (defobj->relocbase + def->st_value);
2872     }
2873 
2874     _rtld_error("Undefined symbol \"%s\"", name);
2875     lock_release(rtld_bind_lock, &lockstate);
2876     return NULL;
2877 }
2878 
2879 void *
2880 dlsym(void *handle, const char *name)
2881 {
2882 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2883 	    SYMLOOK_DLSYM);
2884 }
2885 
2886 dlfunc_t
2887 dlfunc(void *handle, const char *name)
2888 {
2889 	union {
2890 		void *d;
2891 		dlfunc_t f;
2892 	} rv;
2893 
2894 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2895 	    SYMLOOK_DLSYM);
2896 	return (rv.f);
2897 }
2898 
2899 void *
2900 dlvsym(void *handle, const char *name, const char *version)
2901 {
2902 	Ver_Entry ventry;
2903 
2904 	ventry.name = version;
2905 	ventry.file = NULL;
2906 	ventry.hash = elf_hash(version);
2907 	ventry.flags= 0;
2908 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2909 	    SYMLOOK_DLSYM);
2910 }
2911 
2912 int
2913 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2914 {
2915     const Obj_Entry *obj;
2916     RtldLockState lockstate;
2917 
2918     rlock_acquire(rtld_bind_lock, &lockstate);
2919     obj = obj_from_addr(addr);
2920     if (obj == NULL) {
2921         _rtld_error("No shared object contains address");
2922 	lock_release(rtld_bind_lock, &lockstate);
2923         return (0);
2924     }
2925     rtld_fill_dl_phdr_info(obj, phdr_info);
2926     lock_release(rtld_bind_lock, &lockstate);
2927     return (1);
2928 }
2929 
2930 int
2931 dladdr(const void *addr, Dl_info *info)
2932 {
2933     const Obj_Entry *obj;
2934     const Elf_Sym *def;
2935     void *symbol_addr;
2936     unsigned long symoffset;
2937     RtldLockState lockstate;
2938 
2939     rlock_acquire(rtld_bind_lock, &lockstate);
2940     obj = obj_from_addr(addr);
2941     if (obj == NULL) {
2942         _rtld_error("No shared object contains address");
2943 	lock_release(rtld_bind_lock, &lockstate);
2944         return 0;
2945     }
2946     info->dli_fname = obj->path;
2947     info->dli_fbase = obj->mapbase;
2948     info->dli_saddr = (void *)0;
2949     info->dli_sname = NULL;
2950 
2951     /*
2952      * Walk the symbol list looking for the symbol whose address is
2953      * closest to the address sent in.
2954      */
2955     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
2956         def = obj->symtab + symoffset;
2957 
2958         /*
2959          * For skip the symbol if st_shndx is either SHN_UNDEF or
2960          * SHN_COMMON.
2961          */
2962         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2963             continue;
2964 
2965         /*
2966          * If the symbol is greater than the specified address, or if it
2967          * is further away from addr than the current nearest symbol,
2968          * then reject it.
2969          */
2970         symbol_addr = obj->relocbase + def->st_value;
2971         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2972             continue;
2973 
2974         /* Update our idea of the nearest symbol. */
2975         info->dli_sname = obj->strtab + def->st_name;
2976         info->dli_saddr = symbol_addr;
2977 
2978         /* Exact match? */
2979         if (info->dli_saddr == addr)
2980             break;
2981     }
2982     lock_release(rtld_bind_lock, &lockstate);
2983     return 1;
2984 }
2985 
2986 int
2987 dlinfo(void *handle, int request, void *p)
2988 {
2989     const Obj_Entry *obj;
2990     RtldLockState lockstate;
2991     int error;
2992 
2993     rlock_acquire(rtld_bind_lock, &lockstate);
2994 
2995     if (handle == NULL || handle == RTLD_SELF) {
2996 	void *retaddr;
2997 
2998 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2999 	if ((obj = obj_from_addr(retaddr)) == NULL)
3000 	    _rtld_error("Cannot determine caller's shared object");
3001     } else
3002 	obj = dlcheck(handle);
3003 
3004     if (obj == NULL) {
3005 	lock_release(rtld_bind_lock, &lockstate);
3006 	return (-1);
3007     }
3008 
3009     error = 0;
3010     switch (request) {
3011     case RTLD_DI_LINKMAP:
3012 	*((struct link_map const **)p) = &obj->linkmap;
3013 	break;
3014     case RTLD_DI_ORIGIN:
3015 	error = rtld_dirname(obj->path, p);
3016 	break;
3017 
3018     case RTLD_DI_SERINFOSIZE:
3019     case RTLD_DI_SERINFO:
3020 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3021 	break;
3022 
3023     default:
3024 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3025 	error = -1;
3026     }
3027 
3028     lock_release(rtld_bind_lock, &lockstate);
3029 
3030     return (error);
3031 }
3032 
3033 static void
3034 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3035 {
3036 
3037 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3038 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3039 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3040 	phdr_info->dlpi_phdr = obj->phdr;
3041 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3042 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3043 	phdr_info->dlpi_tls_data = obj->tlsinit;
3044 	phdr_info->dlpi_adds = obj_loads;
3045 	phdr_info->dlpi_subs = obj_loads - obj_count;
3046 }
3047 
3048 int
3049 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3050 {
3051     struct dl_phdr_info phdr_info;
3052     const Obj_Entry *obj;
3053     RtldLockState bind_lockstate, phdr_lockstate;
3054     int error;
3055 
3056     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3057     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3058 
3059     error = 0;
3060 
3061     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3062 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3063 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3064 		break;
3065 
3066     }
3067     lock_release(rtld_bind_lock, &bind_lockstate);
3068     lock_release(rtld_phdr_lock, &phdr_lockstate);
3069 
3070     return (error);
3071 }
3072 
3073 struct fill_search_info_args {
3074     int		 request;
3075     unsigned int flags;
3076     Dl_serinfo  *serinfo;
3077     Dl_serpath  *serpath;
3078     char	*strspace;
3079 };
3080 
3081 static void *
3082 fill_search_info(const char *dir, size_t dirlen, void *param)
3083 {
3084     struct fill_search_info_args *arg;
3085 
3086     arg = param;
3087 
3088     if (arg->request == RTLD_DI_SERINFOSIZE) {
3089 	arg->serinfo->dls_cnt ++;
3090 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
3091     } else {
3092 	struct dl_serpath *s_entry;
3093 
3094 	s_entry = arg->serpath;
3095 	s_entry->dls_name  = arg->strspace;
3096 	s_entry->dls_flags = arg->flags;
3097 
3098 	strncpy(arg->strspace, dir, dirlen);
3099 	arg->strspace[dirlen] = '\0';
3100 
3101 	arg->strspace += dirlen + 1;
3102 	arg->serpath++;
3103     }
3104 
3105     return (NULL);
3106 }
3107 
3108 static int
3109 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3110 {
3111     struct dl_serinfo _info;
3112     struct fill_search_info_args args;
3113 
3114     args.request = RTLD_DI_SERINFOSIZE;
3115     args.serinfo = &_info;
3116 
3117     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3118     _info.dls_cnt  = 0;
3119 
3120     path_enumerate(ld_library_path, fill_search_info, &args);
3121     path_enumerate(obj->rpath, fill_search_info, &args);
3122     path_enumerate(gethints(), fill_search_info, &args);
3123     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3124 
3125 
3126     if (request == RTLD_DI_SERINFOSIZE) {
3127 	info->dls_size = _info.dls_size;
3128 	info->dls_cnt = _info.dls_cnt;
3129 	return (0);
3130     }
3131 
3132     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3133 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3134 	return (-1);
3135     }
3136 
3137     args.request  = RTLD_DI_SERINFO;
3138     args.serinfo  = info;
3139     args.serpath  = &info->dls_serpath[0];
3140     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3141 
3142     args.flags = LA_SER_LIBPATH;
3143     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3144 	return (-1);
3145 
3146     args.flags = LA_SER_RUNPATH;
3147     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3148 	return (-1);
3149 
3150     args.flags = LA_SER_CONFIG;
3151     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3152 	return (-1);
3153 
3154     args.flags = LA_SER_DEFAULT;
3155     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3156 	return (-1);
3157     return (0);
3158 }
3159 
3160 static int
3161 rtld_dirname(const char *path, char *bname)
3162 {
3163     const char *endp;
3164 
3165     /* Empty or NULL string gets treated as "." */
3166     if (path == NULL || *path == '\0') {
3167 	bname[0] = '.';
3168 	bname[1] = '\0';
3169 	return (0);
3170     }
3171 
3172     /* Strip trailing slashes */
3173     endp = path + strlen(path) - 1;
3174     while (endp > path && *endp == '/')
3175 	endp--;
3176 
3177     /* Find the start of the dir */
3178     while (endp > path && *endp != '/')
3179 	endp--;
3180 
3181     /* Either the dir is "/" or there are no slashes */
3182     if (endp == path) {
3183 	bname[0] = *endp == '/' ? '/' : '.';
3184 	bname[1] = '\0';
3185 	return (0);
3186     } else {
3187 	do {
3188 	    endp--;
3189 	} while (endp > path && *endp == '/');
3190     }
3191 
3192     if (endp - path + 2 > PATH_MAX)
3193     {
3194 	_rtld_error("Filename is too long: %s", path);
3195 	return(-1);
3196     }
3197 
3198     strncpy(bname, path, endp - path + 1);
3199     bname[endp - path + 1] = '\0';
3200     return (0);
3201 }
3202 
3203 static int
3204 rtld_dirname_abs(const char *path, char *base)
3205 {
3206 	char base_rel[PATH_MAX];
3207 
3208 	if (rtld_dirname(path, base) == -1)
3209 		return (-1);
3210 	if (base[0] == '/')
3211 		return (0);
3212 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3213 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3214 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3215 		return (-1);
3216 	strcpy(base, base_rel);
3217 	return (0);
3218 }
3219 
3220 static void
3221 linkmap_add(Obj_Entry *obj)
3222 {
3223     struct link_map *l = &obj->linkmap;
3224     struct link_map *prev;
3225 
3226     obj->linkmap.l_name = obj->path;
3227     obj->linkmap.l_addr = obj->mapbase;
3228     obj->linkmap.l_ld = obj->dynamic;
3229 #ifdef __mips__
3230     /* GDB needs load offset on MIPS to use the symbols */
3231     obj->linkmap.l_offs = obj->relocbase;
3232 #endif
3233 
3234     if (r_debug.r_map == NULL) {
3235 	r_debug.r_map = l;
3236 	return;
3237     }
3238 
3239     /*
3240      * Scan to the end of the list, but not past the entry for the
3241      * dynamic linker, which we want to keep at the very end.
3242      */
3243     for (prev = r_debug.r_map;
3244       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3245       prev = prev->l_next)
3246 	;
3247 
3248     /* Link in the new entry. */
3249     l->l_prev = prev;
3250     l->l_next = prev->l_next;
3251     if (l->l_next != NULL)
3252 	l->l_next->l_prev = l;
3253     prev->l_next = l;
3254 }
3255 
3256 static void
3257 linkmap_delete(Obj_Entry *obj)
3258 {
3259     struct link_map *l = &obj->linkmap;
3260 
3261     if (l->l_prev == NULL) {
3262 	if ((r_debug.r_map = l->l_next) != NULL)
3263 	    l->l_next->l_prev = NULL;
3264 	return;
3265     }
3266 
3267     if ((l->l_prev->l_next = l->l_next) != NULL)
3268 	l->l_next->l_prev = l->l_prev;
3269 }
3270 
3271 /*
3272  * Function for the debugger to set a breakpoint on to gain control.
3273  *
3274  * The two parameters allow the debugger to easily find and determine
3275  * what the runtime loader is doing and to whom it is doing it.
3276  *
3277  * When the loadhook trap is hit (r_debug_state, set at program
3278  * initialization), the arguments can be found on the stack:
3279  *
3280  *  +8   struct link_map *m
3281  *  +4   struct r_debug  *rd
3282  *  +0   RetAddr
3283  */
3284 void
3285 r_debug_state(struct r_debug* rd, struct link_map *m)
3286 {
3287     /*
3288      * The following is a hack to force the compiler to emit calls to
3289      * this function, even when optimizing.  If the function is empty,
3290      * the compiler is not obliged to emit any code for calls to it,
3291      * even when marked __noinline.  However, gdb depends on those
3292      * calls being made.
3293      */
3294     __asm __volatile("" : : : "memory");
3295 }
3296 
3297 /*
3298  * Get address of the pointer variable in the main program.
3299  * Prefer non-weak symbol over the weak one.
3300  */
3301 static const void **
3302 get_program_var_addr(const char *name, RtldLockState *lockstate)
3303 {
3304     SymLook req;
3305     DoneList donelist;
3306 
3307     symlook_init(&req, name);
3308     req.lockstate = lockstate;
3309     donelist_init(&donelist);
3310     if (symlook_global(&req, &donelist) != 0)
3311 	return (NULL);
3312     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3313 	return ((const void **)make_function_pointer(req.sym_out,
3314 	  req.defobj_out));
3315     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3316 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3317     else
3318 	return ((const void **)(req.defobj_out->relocbase +
3319 	  req.sym_out->st_value));
3320 }
3321 
3322 /*
3323  * Set a pointer variable in the main program to the given value.  This
3324  * is used to set key variables such as "environ" before any of the
3325  * init functions are called.
3326  */
3327 static void
3328 set_program_var(const char *name, const void *value)
3329 {
3330     const void **addr;
3331 
3332     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3333 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3334 	*addr = value;
3335     }
3336 }
3337 
3338 /*
3339  * Search the global objects, including dependencies and main object,
3340  * for the given symbol.
3341  */
3342 static int
3343 symlook_global(SymLook *req, DoneList *donelist)
3344 {
3345     SymLook req1;
3346     const Objlist_Entry *elm;
3347     int res;
3348 
3349     symlook_init_from_req(&req1, req);
3350 
3351     /* Search all objects loaded at program start up. */
3352     if (req->defobj_out == NULL ||
3353       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3354 	res = symlook_list(&req1, &list_main, donelist);
3355 	if (res == 0 && (req->defobj_out == NULL ||
3356 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3357 	    req->sym_out = req1.sym_out;
3358 	    req->defobj_out = req1.defobj_out;
3359 	    assert(req->defobj_out != NULL);
3360 	}
3361     }
3362 
3363     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3364     STAILQ_FOREACH(elm, &list_global, link) {
3365 	if (req->defobj_out != NULL &&
3366 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3367 	    break;
3368 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3369 	if (res == 0 && (req->defobj_out == NULL ||
3370 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3371 	    req->sym_out = req1.sym_out;
3372 	    req->defobj_out = req1.defobj_out;
3373 	    assert(req->defobj_out != NULL);
3374 	}
3375     }
3376 
3377     return (req->sym_out != NULL ? 0 : ESRCH);
3378 }
3379 
3380 /*
3381  * Given a symbol name in a referencing object, find the corresponding
3382  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3383  * no definition was found.  Returns a pointer to the Obj_Entry of the
3384  * defining object via the reference parameter DEFOBJ_OUT.
3385  */
3386 static int
3387 symlook_default(SymLook *req, const Obj_Entry *refobj)
3388 {
3389     DoneList donelist;
3390     const Objlist_Entry *elm;
3391     SymLook req1;
3392     int res;
3393 
3394     donelist_init(&donelist);
3395     symlook_init_from_req(&req1, req);
3396 
3397     /* Look first in the referencing object if linked symbolically. */
3398     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3399 	res = symlook_obj(&req1, refobj);
3400 	if (res == 0) {
3401 	    req->sym_out = req1.sym_out;
3402 	    req->defobj_out = req1.defobj_out;
3403 	    assert(req->defobj_out != NULL);
3404 	}
3405     }
3406 
3407     symlook_global(req, &donelist);
3408 
3409     /* Search all dlopened DAGs containing the referencing object. */
3410     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3411 	if (req->sym_out != NULL &&
3412 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3413 	    break;
3414 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3415 	if (res == 0 && (req->sym_out == NULL ||
3416 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3417 	    req->sym_out = req1.sym_out;
3418 	    req->defobj_out = req1.defobj_out;
3419 	    assert(req->defobj_out != NULL);
3420 	}
3421     }
3422 
3423     /*
3424      * Search the dynamic linker itself, and possibly resolve the
3425      * symbol from there.  This is how the application links to
3426      * dynamic linker services such as dlopen.
3427      */
3428     if (req->sym_out == NULL ||
3429       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3430 	res = symlook_obj(&req1, &obj_rtld);
3431 	if (res == 0) {
3432 	    req->sym_out = req1.sym_out;
3433 	    req->defobj_out = req1.defobj_out;
3434 	    assert(req->defobj_out != NULL);
3435 	}
3436     }
3437 
3438     return (req->sym_out != NULL ? 0 : ESRCH);
3439 }
3440 
3441 static int
3442 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3443 {
3444     const Elf_Sym *def;
3445     const Obj_Entry *defobj;
3446     const Objlist_Entry *elm;
3447     SymLook req1;
3448     int res;
3449 
3450     def = NULL;
3451     defobj = NULL;
3452     STAILQ_FOREACH(elm, objlist, link) {
3453 	if (donelist_check(dlp, elm->obj))
3454 	    continue;
3455 	symlook_init_from_req(&req1, req);
3456 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3457 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3458 		def = req1.sym_out;
3459 		defobj = req1.defobj_out;
3460 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3461 		    break;
3462 	    }
3463 	}
3464     }
3465     if (def != NULL) {
3466 	req->sym_out = def;
3467 	req->defobj_out = defobj;
3468 	return (0);
3469     }
3470     return (ESRCH);
3471 }
3472 
3473 /*
3474  * Search the chain of DAGS cointed to by the given Needed_Entry
3475  * for a symbol of the given name.  Each DAG is scanned completely
3476  * before advancing to the next one.  Returns a pointer to the symbol,
3477  * or NULL if no definition was found.
3478  */
3479 static int
3480 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3481 {
3482     const Elf_Sym *def;
3483     const Needed_Entry *n;
3484     const Obj_Entry *defobj;
3485     SymLook req1;
3486     int res;
3487 
3488     def = NULL;
3489     defobj = NULL;
3490     symlook_init_from_req(&req1, req);
3491     for (n = needed; n != NULL; n = n->next) {
3492 	if (n->obj == NULL ||
3493 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3494 	    continue;
3495 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3496 	    def = req1.sym_out;
3497 	    defobj = req1.defobj_out;
3498 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3499 		break;
3500 	}
3501     }
3502     if (def != NULL) {
3503 	req->sym_out = def;
3504 	req->defobj_out = defobj;
3505 	return (0);
3506     }
3507     return (ESRCH);
3508 }
3509 
3510 /*
3511  * Search the symbol table of a single shared object for a symbol of
3512  * the given name and version, if requested.  Returns a pointer to the
3513  * symbol, or NULL if no definition was found.  If the object is
3514  * filter, return filtered symbol from filtee.
3515  *
3516  * The symbol's hash value is passed in for efficiency reasons; that
3517  * eliminates many recomputations of the hash value.
3518  */
3519 int
3520 symlook_obj(SymLook *req, const Obj_Entry *obj)
3521 {
3522     DoneList donelist;
3523     SymLook req1;
3524     int flags, res, mres;
3525 
3526     /*
3527      * If there is at least one valid hash at this point, we prefer to
3528      * use the faster GNU version if available.
3529      */
3530     if (obj->valid_hash_gnu)
3531 	mres = symlook_obj1_gnu(req, obj);
3532     else if (obj->valid_hash_sysv)
3533 	mres = symlook_obj1_sysv(req, obj);
3534     else
3535 	return (EINVAL);
3536 
3537     if (mres == 0) {
3538 	if (obj->needed_filtees != NULL) {
3539 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3540 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3541 	    donelist_init(&donelist);
3542 	    symlook_init_from_req(&req1, req);
3543 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3544 	    if (res == 0) {
3545 		req->sym_out = req1.sym_out;
3546 		req->defobj_out = req1.defobj_out;
3547 	    }
3548 	    return (res);
3549 	}
3550 	if (obj->needed_aux_filtees != NULL) {
3551 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3552 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3553 	    donelist_init(&donelist);
3554 	    symlook_init_from_req(&req1, req);
3555 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3556 	    if (res == 0) {
3557 		req->sym_out = req1.sym_out;
3558 		req->defobj_out = req1.defobj_out;
3559 		return (res);
3560 	    }
3561 	}
3562     }
3563     return (mres);
3564 }
3565 
3566 /* Symbol match routine common to both hash functions */
3567 static bool
3568 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3569     const unsigned long symnum)
3570 {
3571 	Elf_Versym verndx;
3572 	const Elf_Sym *symp;
3573 	const char *strp;
3574 
3575 	symp = obj->symtab + symnum;
3576 	strp = obj->strtab + symp->st_name;
3577 
3578 	switch (ELF_ST_TYPE(symp->st_info)) {
3579 	case STT_FUNC:
3580 	case STT_NOTYPE:
3581 	case STT_OBJECT:
3582 	case STT_COMMON:
3583 	case STT_GNU_IFUNC:
3584 		if (symp->st_value == 0)
3585 			return (false);
3586 		/* fallthrough */
3587 	case STT_TLS:
3588 		if (symp->st_shndx != SHN_UNDEF)
3589 			break;
3590 #ifndef __mips__
3591 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3592 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3593 			break;
3594 		/* fallthrough */
3595 #endif
3596 	default:
3597 		return (false);
3598 	}
3599 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3600 		return (false);
3601 
3602 	if (req->ventry == NULL) {
3603 		if (obj->versyms != NULL) {
3604 			verndx = VER_NDX(obj->versyms[symnum]);
3605 			if (verndx > obj->vernum) {
3606 				_rtld_error(
3607 				    "%s: symbol %s references wrong version %d",
3608 				    obj->path, obj->strtab + symnum, verndx);
3609 				return (false);
3610 			}
3611 			/*
3612 			 * If we are not called from dlsym (i.e. this
3613 			 * is a normal relocation from unversioned
3614 			 * binary), accept the symbol immediately if
3615 			 * it happens to have first version after this
3616 			 * shared object became versioned.  Otherwise,
3617 			 * if symbol is versioned and not hidden,
3618 			 * remember it. If it is the only symbol with
3619 			 * this name exported by the shared object, it
3620 			 * will be returned as a match by the calling
3621 			 * function. If symbol is global (verndx < 2)
3622 			 * accept it unconditionally.
3623 			 */
3624 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3625 			    verndx == VER_NDX_GIVEN) {
3626 				result->sym_out = symp;
3627 				return (true);
3628 			}
3629 			else if (verndx >= VER_NDX_GIVEN) {
3630 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3631 				    == 0) {
3632 					if (result->vsymp == NULL)
3633 						result->vsymp = symp;
3634 					result->vcount++;
3635 				}
3636 				return (false);
3637 			}
3638 		}
3639 		result->sym_out = symp;
3640 		return (true);
3641 	}
3642 	if (obj->versyms == NULL) {
3643 		if (object_match_name(obj, req->ventry->name)) {
3644 			_rtld_error("%s: object %s should provide version %s "
3645 			    "for symbol %s", obj_rtld.path, obj->path,
3646 			    req->ventry->name, obj->strtab + symnum);
3647 			return (false);
3648 		}
3649 	} else {
3650 		verndx = VER_NDX(obj->versyms[symnum]);
3651 		if (verndx > obj->vernum) {
3652 			_rtld_error("%s: symbol %s references wrong version %d",
3653 			    obj->path, obj->strtab + symnum, verndx);
3654 			return (false);
3655 		}
3656 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3657 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3658 			/*
3659 			 * Version does not match. Look if this is a
3660 			 * global symbol and if it is not hidden. If
3661 			 * global symbol (verndx < 2) is available,
3662 			 * use it. Do not return symbol if we are
3663 			 * called by dlvsym, because dlvsym looks for
3664 			 * a specific version and default one is not
3665 			 * what dlvsym wants.
3666 			 */
3667 			if ((req->flags & SYMLOOK_DLSYM) ||
3668 			    (verndx >= VER_NDX_GIVEN) ||
3669 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3670 				return (false);
3671 		}
3672 	}
3673 	result->sym_out = symp;
3674 	return (true);
3675 }
3676 
3677 /*
3678  * Search for symbol using SysV hash function.
3679  * obj->buckets is known not to be NULL at this point; the test for this was
3680  * performed with the obj->valid_hash_sysv assignment.
3681  */
3682 static int
3683 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3684 {
3685 	unsigned long symnum;
3686 	Sym_Match_Result matchres;
3687 
3688 	matchres.sym_out = NULL;
3689 	matchres.vsymp = NULL;
3690 	matchres.vcount = 0;
3691 
3692 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3693 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3694 		if (symnum >= obj->nchains)
3695 			return (ESRCH);	/* Bad object */
3696 
3697 		if (matched_symbol(req, obj, &matchres, symnum)) {
3698 			req->sym_out = matchres.sym_out;
3699 			req->defobj_out = obj;
3700 			return (0);
3701 		}
3702 	}
3703 	if (matchres.vcount == 1) {
3704 		req->sym_out = matchres.vsymp;
3705 		req->defobj_out = obj;
3706 		return (0);
3707 	}
3708 	return (ESRCH);
3709 }
3710 
3711 /* Search for symbol using GNU hash function */
3712 static int
3713 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3714 {
3715 	Elf_Addr bloom_word;
3716 	const Elf32_Word *hashval;
3717 	Elf32_Word bucket;
3718 	Sym_Match_Result matchres;
3719 	unsigned int h1, h2;
3720 	unsigned long symnum;
3721 
3722 	matchres.sym_out = NULL;
3723 	matchres.vsymp = NULL;
3724 	matchres.vcount = 0;
3725 
3726 	/* Pick right bitmask word from Bloom filter array */
3727 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3728 	    obj->maskwords_bm_gnu];
3729 
3730 	/* Calculate modulus word size of gnu hash and its derivative */
3731 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3732 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3733 
3734 	/* Filter out the "definitely not in set" queries */
3735 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3736 		return (ESRCH);
3737 
3738 	/* Locate hash chain and corresponding value element*/
3739 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3740 	if (bucket == 0)
3741 		return (ESRCH);
3742 	hashval = &obj->chain_zero_gnu[bucket];
3743 	do {
3744 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3745 			symnum = hashval - obj->chain_zero_gnu;
3746 			if (matched_symbol(req, obj, &matchres, symnum)) {
3747 				req->sym_out = matchres.sym_out;
3748 				req->defobj_out = obj;
3749 				return (0);
3750 			}
3751 		}
3752 	} while ((*hashval++ & 1) == 0);
3753 	if (matchres.vcount == 1) {
3754 		req->sym_out = matchres.vsymp;
3755 		req->defobj_out = obj;
3756 		return (0);
3757 	}
3758 	return (ESRCH);
3759 }
3760 
3761 static void
3762 trace_loaded_objects(Obj_Entry *obj)
3763 {
3764     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3765     int		c;
3766 
3767     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3768 	main_local = "";
3769 
3770     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3771 	fmt1 = "\t%o => %p (%x)\n";
3772 
3773     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3774 	fmt2 = "\t%o (%x)\n";
3775 
3776     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3777 
3778     for (; obj; obj = obj->next) {
3779 	Needed_Entry		*needed;
3780 	char			*name, *path;
3781 	bool			is_lib;
3782 
3783 	if (list_containers && obj->needed != NULL)
3784 	    rtld_printf("%s:\n", obj->path);
3785 	for (needed = obj->needed; needed; needed = needed->next) {
3786 	    if (needed->obj != NULL) {
3787 		if (needed->obj->traced && !list_containers)
3788 		    continue;
3789 		needed->obj->traced = true;
3790 		path = needed->obj->path;
3791 	    } else
3792 		path = "not found";
3793 
3794 	    name = (char *)obj->strtab + needed->name;
3795 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3796 
3797 	    fmt = is_lib ? fmt1 : fmt2;
3798 	    while ((c = *fmt++) != '\0') {
3799 		switch (c) {
3800 		default:
3801 		    rtld_putchar(c);
3802 		    continue;
3803 		case '\\':
3804 		    switch (c = *fmt) {
3805 		    case '\0':
3806 			continue;
3807 		    case 'n':
3808 			rtld_putchar('\n');
3809 			break;
3810 		    case 't':
3811 			rtld_putchar('\t');
3812 			break;
3813 		    }
3814 		    break;
3815 		case '%':
3816 		    switch (c = *fmt) {
3817 		    case '\0':
3818 			continue;
3819 		    case '%':
3820 		    default:
3821 			rtld_putchar(c);
3822 			break;
3823 		    case 'A':
3824 			rtld_putstr(main_local);
3825 			break;
3826 		    case 'a':
3827 			rtld_putstr(obj_main->path);
3828 			break;
3829 		    case 'o':
3830 			rtld_putstr(name);
3831 			break;
3832 #if 0
3833 		    case 'm':
3834 			rtld_printf("%d", sodp->sod_major);
3835 			break;
3836 		    case 'n':
3837 			rtld_printf("%d", sodp->sod_minor);
3838 			break;
3839 #endif
3840 		    case 'p':
3841 			rtld_putstr(path);
3842 			break;
3843 		    case 'x':
3844 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3845 			  0);
3846 			break;
3847 		    }
3848 		    break;
3849 		}
3850 		++fmt;
3851 	    }
3852 	}
3853     }
3854 }
3855 
3856 /*
3857  * Unload a dlopened object and its dependencies from memory and from
3858  * our data structures.  It is assumed that the DAG rooted in the
3859  * object has already been unreferenced, and that the object has a
3860  * reference count of 0.
3861  */
3862 static void
3863 unload_object(Obj_Entry *root)
3864 {
3865     Obj_Entry *obj;
3866     Obj_Entry **linkp;
3867 
3868     assert(root->refcount == 0);
3869 
3870     /*
3871      * Pass over the DAG removing unreferenced objects from
3872      * appropriate lists.
3873      */
3874     unlink_object(root);
3875 
3876     /* Unmap all objects that are no longer referenced. */
3877     linkp = &obj_list->next;
3878     while ((obj = *linkp) != NULL) {
3879 	if (obj->refcount == 0) {
3880 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3881 		obj->path);
3882 	    dbg("unloading \"%s\"", obj->path);
3883 	    unload_filtees(root);
3884 	    munmap(obj->mapbase, obj->mapsize);
3885 	    linkmap_delete(obj);
3886 	    *linkp = obj->next;
3887 	    obj_count--;
3888 	    obj_free(obj);
3889 	} else
3890 	    linkp = &obj->next;
3891     }
3892     obj_tail = linkp;
3893 }
3894 
3895 static void
3896 unlink_object(Obj_Entry *root)
3897 {
3898     Objlist_Entry *elm;
3899 
3900     if (root->refcount == 0) {
3901 	/* Remove the object from the RTLD_GLOBAL list. */
3902 	objlist_remove(&list_global, root);
3903 
3904     	/* Remove the object from all objects' DAG lists. */
3905     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3906 	    objlist_remove(&elm->obj->dldags, root);
3907 	    if (elm->obj != root)
3908 		unlink_object(elm->obj);
3909 	}
3910     }
3911 }
3912 
3913 static void
3914 ref_dag(Obj_Entry *root)
3915 {
3916     Objlist_Entry *elm;
3917 
3918     assert(root->dag_inited);
3919     STAILQ_FOREACH(elm, &root->dagmembers, link)
3920 	elm->obj->refcount++;
3921 }
3922 
3923 static void
3924 unref_dag(Obj_Entry *root)
3925 {
3926     Objlist_Entry *elm;
3927 
3928     assert(root->dag_inited);
3929     STAILQ_FOREACH(elm, &root->dagmembers, link)
3930 	elm->obj->refcount--;
3931 }
3932 
3933 /*
3934  * Common code for MD __tls_get_addr().
3935  */
3936 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3937 static void *
3938 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3939 {
3940     Elf_Addr *newdtv, *dtv;
3941     RtldLockState lockstate;
3942     int to_copy;
3943 
3944     dtv = *dtvp;
3945     /* Check dtv generation in case new modules have arrived */
3946     if (dtv[0] != tls_dtv_generation) {
3947 	wlock_acquire(rtld_bind_lock, &lockstate);
3948 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3949 	to_copy = dtv[1];
3950 	if (to_copy > tls_max_index)
3951 	    to_copy = tls_max_index;
3952 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3953 	newdtv[0] = tls_dtv_generation;
3954 	newdtv[1] = tls_max_index;
3955 	free(dtv);
3956 	lock_release(rtld_bind_lock, &lockstate);
3957 	dtv = *dtvp = newdtv;
3958     }
3959 
3960     /* Dynamically allocate module TLS if necessary */
3961     if (dtv[index + 1] == 0) {
3962 	/* Signal safe, wlock will block out signals. */
3963 	wlock_acquire(rtld_bind_lock, &lockstate);
3964 	if (!dtv[index + 1])
3965 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3966 	lock_release(rtld_bind_lock, &lockstate);
3967     }
3968     return ((void *)(dtv[index + 1] + offset));
3969 }
3970 
3971 void *
3972 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3973 {
3974 	Elf_Addr *dtv;
3975 
3976 	dtv = *dtvp;
3977 	/* Check dtv generation in case new modules have arrived */
3978 	if (__predict_true(dtv[0] == tls_dtv_generation &&
3979 	    dtv[index + 1] != 0))
3980 		return ((void *)(dtv[index + 1] + offset));
3981 	return (tls_get_addr_slow(dtvp, index, offset));
3982 }
3983 
3984 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3985 
3986 /*
3987  * Allocate Static TLS using the Variant I method.
3988  */
3989 void *
3990 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3991 {
3992     Obj_Entry *obj;
3993     char *tcb;
3994     Elf_Addr **tls;
3995     Elf_Addr *dtv;
3996     Elf_Addr addr;
3997     int i;
3998 
3999     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4000 	return (oldtcb);
4001 
4002     assert(tcbsize >= TLS_TCB_SIZE);
4003     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4004     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4005 
4006     if (oldtcb != NULL) {
4007 	memcpy(tls, oldtcb, tls_static_space);
4008 	free(oldtcb);
4009 
4010 	/* Adjust the DTV. */
4011 	dtv = tls[0];
4012 	for (i = 0; i < dtv[1]; i++) {
4013 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4014 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4015 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4016 	    }
4017 	}
4018     } else {
4019 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4020 	tls[0] = dtv;
4021 	dtv[0] = tls_dtv_generation;
4022 	dtv[1] = tls_max_index;
4023 
4024 	for (obj = objs; obj; obj = obj->next) {
4025 	    if (obj->tlsoffset > 0) {
4026 		addr = (Elf_Addr)tls + obj->tlsoffset;
4027 		if (obj->tlsinitsize > 0)
4028 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4029 		if (obj->tlssize > obj->tlsinitsize)
4030 		    memset((void*) (addr + obj->tlsinitsize), 0,
4031 			   obj->tlssize - obj->tlsinitsize);
4032 		dtv[obj->tlsindex + 1] = addr;
4033 	    }
4034 	}
4035     }
4036 
4037     return (tcb);
4038 }
4039 
4040 void
4041 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4042 {
4043     Elf_Addr *dtv;
4044     Elf_Addr tlsstart, tlsend;
4045     int dtvsize, i;
4046 
4047     assert(tcbsize >= TLS_TCB_SIZE);
4048 
4049     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4050     tlsend = tlsstart + tls_static_space;
4051 
4052     dtv = *(Elf_Addr **)tlsstart;
4053     dtvsize = dtv[1];
4054     for (i = 0; i < dtvsize; i++) {
4055 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4056 	    free((void*)dtv[i+2]);
4057 	}
4058     }
4059     free(dtv);
4060     free(tcb);
4061 }
4062 
4063 #endif
4064 
4065 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4066 
4067 /*
4068  * Allocate Static TLS using the Variant II method.
4069  */
4070 void *
4071 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4072 {
4073     Obj_Entry *obj;
4074     size_t size;
4075     char *tls;
4076     Elf_Addr *dtv, *olddtv;
4077     Elf_Addr segbase, oldsegbase, addr;
4078     int i;
4079 
4080     size = round(tls_static_space, tcbalign);
4081 
4082     assert(tcbsize >= 2*sizeof(Elf_Addr));
4083     tls = xcalloc(1, size + tcbsize);
4084     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4085 
4086     segbase = (Elf_Addr)(tls + size);
4087     ((Elf_Addr*)segbase)[0] = segbase;
4088     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4089 
4090     dtv[0] = tls_dtv_generation;
4091     dtv[1] = tls_max_index;
4092 
4093     if (oldtls) {
4094 	/*
4095 	 * Copy the static TLS block over whole.
4096 	 */
4097 	oldsegbase = (Elf_Addr) oldtls;
4098 	memcpy((void *)(segbase - tls_static_space),
4099 	       (const void *)(oldsegbase - tls_static_space),
4100 	       tls_static_space);
4101 
4102 	/*
4103 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4104 	 * move them over.
4105 	 */
4106 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4107 	for (i = 0; i < olddtv[1]; i++) {
4108 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4109 		dtv[i+2] = olddtv[i+2];
4110 		olddtv[i+2] = 0;
4111 	    }
4112 	}
4113 
4114 	/*
4115 	 * We assume that this block was the one we created with
4116 	 * allocate_initial_tls().
4117 	 */
4118 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4119     } else {
4120 	for (obj = objs; obj; obj = obj->next) {
4121 	    if (obj->tlsoffset) {
4122 		addr = segbase - obj->tlsoffset;
4123 		memset((void*) (addr + obj->tlsinitsize),
4124 		       0, obj->tlssize - obj->tlsinitsize);
4125 		if (obj->tlsinit)
4126 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4127 		dtv[obj->tlsindex + 1] = addr;
4128 	    }
4129 	}
4130     }
4131 
4132     return (void*) segbase;
4133 }
4134 
4135 void
4136 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4137 {
4138     size_t size;
4139     Elf_Addr* dtv;
4140     int dtvsize, i;
4141     Elf_Addr tlsstart, tlsend;
4142 
4143     /*
4144      * Figure out the size of the initial TLS block so that we can
4145      * find stuff which ___tls_get_addr() allocated dynamically.
4146      */
4147     size = round(tls_static_space, tcbalign);
4148 
4149     dtv = ((Elf_Addr**)tls)[1];
4150     dtvsize = dtv[1];
4151     tlsend = (Elf_Addr) tls;
4152     tlsstart = tlsend - size;
4153     for (i = 0; i < dtvsize; i++) {
4154 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
4155 	    free((void*) dtv[i+2]);
4156 	}
4157     }
4158 
4159     free((void*) tlsstart);
4160     free((void*) dtv);
4161 }
4162 
4163 #endif
4164 
4165 /*
4166  * Allocate TLS block for module with given index.
4167  */
4168 void *
4169 allocate_module_tls(int index)
4170 {
4171     Obj_Entry* obj;
4172     char* p;
4173 
4174     for (obj = obj_list; obj; obj = obj->next) {
4175 	if (obj->tlsindex == index)
4176 	    break;
4177     }
4178     if (!obj) {
4179 	_rtld_error("Can't find module with TLS index %d", index);
4180 	die();
4181     }
4182 
4183     p = malloc(obj->tlssize);
4184     if (p == NULL) {
4185 	_rtld_error("Cannot allocate TLS block for index %d", index);
4186 	die();
4187     }
4188     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4189     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4190 
4191     return p;
4192 }
4193 
4194 bool
4195 allocate_tls_offset(Obj_Entry *obj)
4196 {
4197     size_t off;
4198 
4199     if (obj->tls_done)
4200 	return true;
4201 
4202     if (obj->tlssize == 0) {
4203 	obj->tls_done = true;
4204 	return true;
4205     }
4206 
4207     if (obj->tlsindex == 1)
4208 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4209     else
4210 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4211 				   obj->tlssize, obj->tlsalign);
4212 
4213     /*
4214      * If we have already fixed the size of the static TLS block, we
4215      * must stay within that size. When allocating the static TLS, we
4216      * leave a small amount of space spare to be used for dynamically
4217      * loading modules which use static TLS.
4218      */
4219     if (tls_static_space) {
4220 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4221 	    return false;
4222     }
4223 
4224     tls_last_offset = obj->tlsoffset = off;
4225     tls_last_size = obj->tlssize;
4226     obj->tls_done = true;
4227 
4228     return true;
4229 }
4230 
4231 void
4232 free_tls_offset(Obj_Entry *obj)
4233 {
4234 
4235     /*
4236      * If we were the last thing to allocate out of the static TLS
4237      * block, we give our space back to the 'allocator'. This is a
4238      * simplistic workaround to allow libGL.so.1 to be loaded and
4239      * unloaded multiple times.
4240      */
4241     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4242 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4243 	tls_last_offset -= obj->tlssize;
4244 	tls_last_size = 0;
4245     }
4246 }
4247 
4248 void *
4249 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4250 {
4251     void *ret;
4252     RtldLockState lockstate;
4253 
4254     wlock_acquire(rtld_bind_lock, &lockstate);
4255     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4256     lock_release(rtld_bind_lock, &lockstate);
4257     return (ret);
4258 }
4259 
4260 void
4261 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4262 {
4263     RtldLockState lockstate;
4264 
4265     wlock_acquire(rtld_bind_lock, &lockstate);
4266     free_tls(tcb, tcbsize, tcbalign);
4267     lock_release(rtld_bind_lock, &lockstate);
4268 }
4269 
4270 static void
4271 object_add_name(Obj_Entry *obj, const char *name)
4272 {
4273     Name_Entry *entry;
4274     size_t len;
4275 
4276     len = strlen(name);
4277     entry = malloc(sizeof(Name_Entry) + len);
4278 
4279     if (entry != NULL) {
4280 	strcpy(entry->name, name);
4281 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4282     }
4283 }
4284 
4285 static int
4286 object_match_name(const Obj_Entry *obj, const char *name)
4287 {
4288     Name_Entry *entry;
4289 
4290     STAILQ_FOREACH(entry, &obj->names, link) {
4291 	if (strcmp(name, entry->name) == 0)
4292 	    return (1);
4293     }
4294     return (0);
4295 }
4296 
4297 static Obj_Entry *
4298 locate_dependency(const Obj_Entry *obj, const char *name)
4299 {
4300     const Objlist_Entry *entry;
4301     const Needed_Entry *needed;
4302 
4303     STAILQ_FOREACH(entry, &list_main, link) {
4304 	if (object_match_name(entry->obj, name))
4305 	    return entry->obj;
4306     }
4307 
4308     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4309 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4310 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4311 	    /*
4312 	     * If there is DT_NEEDED for the name we are looking for,
4313 	     * we are all set.  Note that object might not be found if
4314 	     * dependency was not loaded yet, so the function can
4315 	     * return NULL here.  This is expected and handled
4316 	     * properly by the caller.
4317 	     */
4318 	    return (needed->obj);
4319 	}
4320     }
4321     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4322 	obj->path, name);
4323     die();
4324 }
4325 
4326 static int
4327 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4328     const Elf_Vernaux *vna)
4329 {
4330     const Elf_Verdef *vd;
4331     const char *vername;
4332 
4333     vername = refobj->strtab + vna->vna_name;
4334     vd = depobj->verdef;
4335     if (vd == NULL) {
4336 	_rtld_error("%s: version %s required by %s not defined",
4337 	    depobj->path, vername, refobj->path);
4338 	return (-1);
4339     }
4340     for (;;) {
4341 	if (vd->vd_version != VER_DEF_CURRENT) {
4342 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4343 		depobj->path, vd->vd_version);
4344 	    return (-1);
4345 	}
4346 	if (vna->vna_hash == vd->vd_hash) {
4347 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4348 		((char *)vd + vd->vd_aux);
4349 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4350 		return (0);
4351 	}
4352 	if (vd->vd_next == 0)
4353 	    break;
4354 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4355     }
4356     if (vna->vna_flags & VER_FLG_WEAK)
4357 	return (0);
4358     _rtld_error("%s: version %s required by %s not found",
4359 	depobj->path, vername, refobj->path);
4360     return (-1);
4361 }
4362 
4363 static int
4364 rtld_verify_object_versions(Obj_Entry *obj)
4365 {
4366     const Elf_Verneed *vn;
4367     const Elf_Verdef  *vd;
4368     const Elf_Verdaux *vda;
4369     const Elf_Vernaux *vna;
4370     const Obj_Entry *depobj;
4371     int maxvernum, vernum;
4372 
4373     if (obj->ver_checked)
4374 	return (0);
4375     obj->ver_checked = true;
4376 
4377     maxvernum = 0;
4378     /*
4379      * Walk over defined and required version records and figure out
4380      * max index used by any of them. Do very basic sanity checking
4381      * while there.
4382      */
4383     vn = obj->verneed;
4384     while (vn != NULL) {
4385 	if (vn->vn_version != VER_NEED_CURRENT) {
4386 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4387 		obj->path, vn->vn_version);
4388 	    return (-1);
4389 	}
4390 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4391 	for (;;) {
4392 	    vernum = VER_NEED_IDX(vna->vna_other);
4393 	    if (vernum > maxvernum)
4394 		maxvernum = vernum;
4395 	    if (vna->vna_next == 0)
4396 		 break;
4397 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4398 	}
4399 	if (vn->vn_next == 0)
4400 	    break;
4401 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4402     }
4403 
4404     vd = obj->verdef;
4405     while (vd != NULL) {
4406 	if (vd->vd_version != VER_DEF_CURRENT) {
4407 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4408 		obj->path, vd->vd_version);
4409 	    return (-1);
4410 	}
4411 	vernum = VER_DEF_IDX(vd->vd_ndx);
4412 	if (vernum > maxvernum)
4413 		maxvernum = vernum;
4414 	if (vd->vd_next == 0)
4415 	    break;
4416 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4417     }
4418 
4419     if (maxvernum == 0)
4420 	return (0);
4421 
4422     /*
4423      * Store version information in array indexable by version index.
4424      * Verify that object version requirements are satisfied along the
4425      * way.
4426      */
4427     obj->vernum = maxvernum + 1;
4428     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4429 
4430     vd = obj->verdef;
4431     while (vd != NULL) {
4432 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4433 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4434 	    assert(vernum <= maxvernum);
4435 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4436 	    obj->vertab[vernum].hash = vd->vd_hash;
4437 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4438 	    obj->vertab[vernum].file = NULL;
4439 	    obj->vertab[vernum].flags = 0;
4440 	}
4441 	if (vd->vd_next == 0)
4442 	    break;
4443 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4444     }
4445 
4446     vn = obj->verneed;
4447     while (vn != NULL) {
4448 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4449 	if (depobj == NULL)
4450 	    return (-1);
4451 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4452 	for (;;) {
4453 	    if (check_object_provided_version(obj, depobj, vna))
4454 		return (-1);
4455 	    vernum = VER_NEED_IDX(vna->vna_other);
4456 	    assert(vernum <= maxvernum);
4457 	    obj->vertab[vernum].hash = vna->vna_hash;
4458 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4459 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4460 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4461 		VER_INFO_HIDDEN : 0;
4462 	    if (vna->vna_next == 0)
4463 		 break;
4464 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4465 	}
4466 	if (vn->vn_next == 0)
4467 	    break;
4468 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4469     }
4470     return 0;
4471 }
4472 
4473 static int
4474 rtld_verify_versions(const Objlist *objlist)
4475 {
4476     Objlist_Entry *entry;
4477     int rc;
4478 
4479     rc = 0;
4480     STAILQ_FOREACH(entry, objlist, link) {
4481 	/*
4482 	 * Skip dummy objects or objects that have their version requirements
4483 	 * already checked.
4484 	 */
4485 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4486 	    continue;
4487 	if (rtld_verify_object_versions(entry->obj) == -1) {
4488 	    rc = -1;
4489 	    if (ld_tracing == NULL)
4490 		break;
4491 	}
4492     }
4493     if (rc == 0 || ld_tracing != NULL)
4494     	rc = rtld_verify_object_versions(&obj_rtld);
4495     return rc;
4496 }
4497 
4498 const Ver_Entry *
4499 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4500 {
4501     Elf_Versym vernum;
4502 
4503     if (obj->vertab) {
4504 	vernum = VER_NDX(obj->versyms[symnum]);
4505 	if (vernum >= obj->vernum) {
4506 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4507 		obj->path, obj->strtab + symnum, vernum);
4508 	} else if (obj->vertab[vernum].hash != 0) {
4509 	    return &obj->vertab[vernum];
4510 	}
4511     }
4512     return NULL;
4513 }
4514 
4515 int
4516 _rtld_get_stack_prot(void)
4517 {
4518 
4519 	return (stack_prot);
4520 }
4521 
4522 static void
4523 map_stacks_exec(RtldLockState *lockstate)
4524 {
4525 	void (*thr_map_stacks_exec)(void);
4526 
4527 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4528 		return;
4529 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4530 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4531 	if (thr_map_stacks_exec != NULL) {
4532 		stack_prot |= PROT_EXEC;
4533 		thr_map_stacks_exec();
4534 	}
4535 }
4536 
4537 void
4538 symlook_init(SymLook *dst, const char *name)
4539 {
4540 
4541 	bzero(dst, sizeof(*dst));
4542 	dst->name = name;
4543 	dst->hash = elf_hash(name);
4544 	dst->hash_gnu = gnu_hash(name);
4545 }
4546 
4547 static void
4548 symlook_init_from_req(SymLook *dst, const SymLook *src)
4549 {
4550 
4551 	dst->name = src->name;
4552 	dst->hash = src->hash;
4553 	dst->hash_gnu = src->hash_gnu;
4554 	dst->ventry = src->ventry;
4555 	dst->flags = src->flags;
4556 	dst->defobj_out = NULL;
4557 	dst->sym_out = NULL;
4558 	dst->lockstate = src->lockstate;
4559 }
4560 
4561 /*
4562  * Overrides for libc_pic-provided functions.
4563  */
4564 
4565 int
4566 __getosreldate(void)
4567 {
4568 	size_t len;
4569 	int oid[2];
4570 	int error, osrel;
4571 
4572 	if (osreldate != 0)
4573 		return (osreldate);
4574 
4575 	oid[0] = CTL_KERN;
4576 	oid[1] = KERN_OSRELDATE;
4577 	osrel = 0;
4578 	len = sizeof(osrel);
4579 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4580 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4581 		osreldate = osrel;
4582 	return (osreldate);
4583 }
4584 
4585 void
4586 exit(int status)
4587 {
4588 
4589 	_exit(status);
4590 }
4591 
4592 void (*__cleanup)(void);
4593 int __isthreaded = 0;
4594 int _thread_autoinit_dummy_decl = 1;
4595 
4596 /*
4597  * No unresolved symbols for rtld.
4598  */
4599 void
4600 __pthread_cxa_finalize(struct dl_phdr_info *a)
4601 {
4602 }
4603 
4604 void
4605 __stack_chk_fail(void)
4606 {
4607 
4608 	_rtld_error("stack overflow detected; terminated");
4609 	die();
4610 }
4611 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4612 
4613 void
4614 __chk_fail(void)
4615 {
4616 
4617 	_rtld_error("buffer overflow detected; terminated");
4618 	die();
4619 }
4620 
4621 const char *
4622 rtld_strerror(int errnum)
4623 {
4624 
4625 	if (errnum < 0 || errnum >= sys_nerr)
4626 		return ("Unknown error");
4627 	return (sys_errlist[errnum]);
4628 }
4629