xref: /freebsd/libexec/rtld-elf/rtld.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 
43 #include <dlfcn.h>
44 #include <err.h>
45 #include <errno.h>
46 #include <fcntl.h>
47 #include <stdarg.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <unistd.h>
52 
53 #include "debug.h"
54 #include "rtld.h"
55 #include "libmap.h"
56 #include "rtld_tls.h"
57 
58 #ifndef COMPAT_32BIT
59 #define PATH_RTLD	"/libexec/ld-elf.so.1"
60 #else
61 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
62 #endif
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * This structure provides a reentrant way to keep a list of objects and
70  * check which ones have already been processed in some way.
71  */
72 typedef struct Struct_DoneList {
73     const Obj_Entry **objs;		/* Array of object pointers */
74     unsigned int num_alloc;		/* Allocated size of the array */
75     unsigned int num_used;		/* Number of array slots used */
76 } DoneList;
77 
78 /*
79  * Function declarations.
80  */
81 static const char *basename(const char *);
82 static void die(void);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
87 static bool donelist_check(DoneList *, const Obj_Entry *);
88 static void errmsg_restore(char *);
89 static char *errmsg_save(void);
90 static void *fill_search_info(const char *, size_t, void *);
91 static char *find_library(const char *, const Obj_Entry *);
92 static const char *gethints(void);
93 static void init_dag(Obj_Entry *);
94 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
95 static void init_rtld(caddr_t);
96 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
97 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
98   Objlist *list);
99 static bool is_exported(const Elf_Sym *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static int load_needed_objects(Obj_Entry *);
103 static int load_preload_objects(void);
104 static Obj_Entry *load_object(char *);
105 static Obj_Entry *obj_from_addr(const void *);
106 static void objlist_call_fini(Objlist *);
107 static void objlist_call_init(Objlist *);
108 static void objlist_clear(Objlist *);
109 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
110 static void objlist_init(Objlist *);
111 static void objlist_push_head(Objlist *, Obj_Entry *);
112 static void objlist_push_tail(Objlist *, Obj_Entry *);
113 static void objlist_remove(Objlist *, Obj_Entry *);
114 static void objlist_remove_unref(Objlist *);
115 static void *path_enumerate(const char *, path_enum_proc, void *);
116 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
117 static int rtld_dirname(const char *, char *);
118 static void rtld_exit(void);
119 static char *search_library_path(const char *, const char *);
120 static const void **get_program_var_addr(const char *name);
121 static void set_program_var(const char *, const void *);
122 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
123   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
124 static const Elf_Sym *symlook_list(const char *, unsigned long,
125   Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
126 static void trace_loaded_objects(Obj_Entry *obj);
127 static void unlink_object(Obj_Entry *);
128 static void unload_object(Obj_Entry *);
129 static void unref_dag(Obj_Entry *);
130 static void ref_dag(Obj_Entry *);
131 
132 void r_debug_state(struct r_debug*, struct link_map*);
133 
134 /*
135  * Data declarations.
136  */
137 static char *error_message;	/* Message for dlerror(), or NULL */
138 struct r_debug r_debug;		/* for GDB; */
139 static bool libmap_disable;	/* Disable libmap */
140 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
141 static bool trust;		/* False for setuid and setgid programs */
142 static char *ld_bind_now;	/* Environment variable for immediate binding */
143 static char *ld_debug;		/* Environment variable for debugging */
144 static char *ld_library_path;	/* Environment variable for search path */
145 static char *ld_preload;	/* Environment variable for libraries to
146 				   load first */
147 static char *ld_tracing;	/* Called from ldd to print libs */
148 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
149 static Obj_Entry **obj_tail;	/* Link field of last object in list */
150 static Obj_Entry *obj_main;	/* The main program shared object */
151 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
152 static unsigned int obj_count;	/* Number of objects in obj_list */
153 
154 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
155   STAILQ_HEAD_INITIALIZER(list_global);
156 static Objlist list_main =	/* Objects loaded at program startup */
157   STAILQ_HEAD_INITIALIZER(list_main);
158 static Objlist list_fini =	/* Objects needing fini() calls */
159   STAILQ_HEAD_INITIALIZER(list_fini);
160 
161 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
162 
163 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
164 
165 extern Elf_Dyn _DYNAMIC;
166 #pragma weak _DYNAMIC
167 #ifndef RTLD_IS_DYNAMIC
168 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
169 #endif
170 
171 /*
172  * These are the functions the dynamic linker exports to application
173  * programs.  They are the only symbols the dynamic linker is willing
174  * to export from itself.
175  */
176 static func_ptr_type exports[] = {
177     (func_ptr_type) &_rtld_error,
178     (func_ptr_type) &dlclose,
179     (func_ptr_type) &dlerror,
180     (func_ptr_type) &dlopen,
181     (func_ptr_type) &dlsym,
182     (func_ptr_type) &dladdr,
183     (func_ptr_type) &dllockinit,
184     (func_ptr_type) &dlinfo,
185     (func_ptr_type) &_rtld_thread_init,
186 #ifdef __i386__
187     (func_ptr_type) &___tls_get_addr,
188 #endif
189     (func_ptr_type) &__tls_get_addr,
190     (func_ptr_type) &_rtld_allocate_tls,
191     (func_ptr_type) &_rtld_free_tls,
192     NULL
193 };
194 
195 /*
196  * Global declarations normally provided by crt1.  The dynamic linker is
197  * not built with crt1, so we have to provide them ourselves.
198  */
199 char *__progname;
200 char **environ;
201 
202 /*
203  * Globals to control TLS allocation.
204  */
205 size_t tls_last_offset;		/* Static TLS offset of last module */
206 size_t tls_last_size;		/* Static TLS size of last module */
207 size_t tls_static_space;	/* Static TLS space allocated */
208 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
209 int tls_max_index = 1;		/* Largest module index allocated */
210 
211 /*
212  * Fill in a DoneList with an allocation large enough to hold all of
213  * the currently-loaded objects.  Keep this as a macro since it calls
214  * alloca and we want that to occur within the scope of the caller.
215  */
216 #define donelist_init(dlp)					\
217     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
218     assert((dlp)->objs != NULL),				\
219     (dlp)->num_alloc = obj_count,				\
220     (dlp)->num_used = 0)
221 
222 /*
223  * Main entry point for dynamic linking.  The first argument is the
224  * stack pointer.  The stack is expected to be laid out as described
225  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
226  * Specifically, the stack pointer points to a word containing
227  * ARGC.  Following that in the stack is a null-terminated sequence
228  * of pointers to argument strings.  Then comes a null-terminated
229  * sequence of pointers to environment strings.  Finally, there is a
230  * sequence of "auxiliary vector" entries.
231  *
232  * The second argument points to a place to store the dynamic linker's
233  * exit procedure pointer and the third to a place to store the main
234  * program's object.
235  *
236  * The return value is the main program's entry point.
237  */
238 func_ptr_type
239 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
240 {
241     Elf_Auxinfo *aux_info[AT_COUNT];
242     int i;
243     int argc;
244     char **argv;
245     char **env;
246     Elf_Auxinfo *aux;
247     Elf_Auxinfo *auxp;
248     const char *argv0;
249     Objlist_Entry *entry;
250     Obj_Entry *obj;
251     Obj_Entry **preload_tail;
252     Objlist initlist;
253     int lockstate;
254 
255     /*
256      * On entry, the dynamic linker itself has not been relocated yet.
257      * Be very careful not to reference any global data until after
258      * init_rtld has returned.  It is OK to reference file-scope statics
259      * and string constants, and to call static and global functions.
260      */
261 
262     /* Find the auxiliary vector on the stack. */
263     argc = *sp++;
264     argv = (char **) sp;
265     sp += argc + 1;	/* Skip over arguments and NULL terminator */
266     env = (char **) sp;
267     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
268 	;
269     aux = (Elf_Auxinfo *) sp;
270 
271     /* Digest the auxiliary vector. */
272     for (i = 0;  i < AT_COUNT;  i++)
273 	aux_info[i] = NULL;
274     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
275 	if (auxp->a_type < AT_COUNT)
276 	    aux_info[auxp->a_type] = auxp;
277     }
278 
279     /* Initialize and relocate ourselves. */
280     assert(aux_info[AT_BASE] != NULL);
281     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
282 
283     __progname = obj_rtld.path;
284     argv0 = argv[0] != NULL ? argv[0] : "(null)";
285     environ = env;
286 
287     trust = !issetugid();
288 
289     ld_bind_now = getenv(LD_ "BIND_NOW");
290     if (trust) {
291 	ld_debug = getenv(LD_ "DEBUG");
292 	libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
293 	libmap_override = getenv(LD_ "LIBMAP");
294 	ld_library_path = getenv(LD_ "LIBRARY_PATH");
295 	ld_preload = getenv(LD_ "PRELOAD");
296     }
297     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
298 
299     if (ld_debug != NULL && *ld_debug != '\0')
300 	debug = 1;
301     dbg("%s is initialized, base address = %p", __progname,
302 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
303     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
304     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
305 
306     /*
307      * Load the main program, or process its program header if it is
308      * already loaded.
309      */
310     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
311 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
312 	dbg("loading main program");
313 	obj_main = map_object(fd, argv0, NULL);
314 	close(fd);
315 	if (obj_main == NULL)
316 	    die();
317     } else {				/* Main program already loaded. */
318 	const Elf_Phdr *phdr;
319 	int phnum;
320 	caddr_t entry;
321 
322 	dbg("processing main program's program header");
323 	assert(aux_info[AT_PHDR] != NULL);
324 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
325 	assert(aux_info[AT_PHNUM] != NULL);
326 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
327 	assert(aux_info[AT_PHENT] != NULL);
328 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
329 	assert(aux_info[AT_ENTRY] != NULL);
330 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
331 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
332 	    die();
333     }
334 
335     obj_main->path = xstrdup(argv0);
336     obj_main->mainprog = true;
337 
338     /*
339      * Get the actual dynamic linker pathname from the executable if
340      * possible.  (It should always be possible.)  That ensures that
341      * gdb will find the right dynamic linker even if a non-standard
342      * one is being used.
343      */
344     if (obj_main->interp != NULL &&
345       strcmp(obj_main->interp, obj_rtld.path) != 0) {
346 	free(obj_rtld.path);
347 	obj_rtld.path = xstrdup(obj_main->interp);
348         __progname = obj_rtld.path;
349     }
350 
351     digest_dynamic(obj_main, 0);
352 
353     linkmap_add(obj_main);
354     linkmap_add(&obj_rtld);
355 
356     /* Link the main program into the list of objects. */
357     *obj_tail = obj_main;
358     obj_tail = &obj_main->next;
359     obj_count++;
360     /* Make sure we don't call the main program's init and fini functions. */
361     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
362 
363     /* Initialize a fake symbol for resolving undefined weak references. */
364     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
365     sym_zero.st_shndx = SHN_UNDEF;
366 
367     if (!libmap_disable)
368         libmap_disable = (bool)lm_init(libmap_override);
369 
370     dbg("loading LD_PRELOAD libraries");
371     if (load_preload_objects() == -1)
372 	die();
373     preload_tail = obj_tail;
374 
375     dbg("loading needed objects");
376     if (load_needed_objects(obj_main) == -1)
377 	die();
378 
379     /* Make a list of all objects loaded at startup. */
380     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
381 	objlist_push_tail(&list_main, obj);
382     	obj->refcount++;
383     }
384 
385     if (ld_tracing) {		/* We're done */
386 	trace_loaded_objects(obj_main);
387 	exit(0);
388     }
389 
390     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
391        dump_relocations(obj_main);
392        exit (0);
393     }
394 
395     /* setup TLS for main thread */
396     dbg("initializing initial thread local storage");
397     STAILQ_FOREACH(entry, &list_main, link) {
398 	/*
399 	 * Allocate all the initial objects out of the static TLS
400 	 * block even if they didn't ask for it.
401 	 */
402 	allocate_tls_offset(entry->obj);
403     }
404     allocate_initial_tls(obj_list);
405 
406     if (relocate_objects(obj_main,
407 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
408 	die();
409 
410     dbg("doing copy relocations");
411     if (do_copy_relocations(obj_main) == -1)
412 	die();
413 
414     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
415        dump_relocations(obj_main);
416        exit (0);
417     }
418 
419     dbg("initializing key program variables");
420     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
421     set_program_var("environ", env);
422 
423     dbg("initializing thread locks");
424     lockdflt_init();
425 
426     /* Make a list of init functions to call. */
427     objlist_init(&initlist);
428     initlist_add_objects(obj_list, preload_tail, &initlist);
429 
430     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
431 
432     objlist_call_init(&initlist);
433     lockstate = wlock_acquire(rtld_bind_lock);
434     objlist_clear(&initlist);
435     wlock_release(rtld_bind_lock, lockstate);
436 
437     dbg("transferring control to program entry point = %p", obj_main->entry);
438 
439     /* Return the exit procedure and the program entry point. */
440     *exit_proc = rtld_exit;
441     *objp = obj_main;
442     return (func_ptr_type) obj_main->entry;
443 }
444 
445 Elf_Addr
446 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
447 {
448     const Elf_Rel *rel;
449     const Elf_Sym *def;
450     const Obj_Entry *defobj;
451     Elf_Addr *where;
452     Elf_Addr target;
453     int lockstate;
454 
455     lockstate = rlock_acquire(rtld_bind_lock);
456     if (obj->pltrel)
457 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
458     else
459 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
460 
461     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
462     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
463     if (def == NULL)
464 	die();
465 
466     target = (Elf_Addr)(defobj->relocbase + def->st_value);
467 
468     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
469       defobj->strtab + def->st_name, basename(obj->path),
470       (void *)target, basename(defobj->path));
471 
472     /*
473      * Write the new contents for the jmpslot. Note that depending on
474      * architecture, the value which we need to return back to the
475      * lazy binding trampoline may or may not be the target
476      * address. The value returned from reloc_jmpslot() is the value
477      * that the trampoline needs.
478      */
479     target = reloc_jmpslot(where, target, defobj, obj, rel);
480     rlock_release(rtld_bind_lock, lockstate);
481     return target;
482 }
483 
484 /*
485  * Error reporting function.  Use it like printf.  If formats the message
486  * into a buffer, and sets things up so that the next call to dlerror()
487  * will return the message.
488  */
489 void
490 _rtld_error(const char *fmt, ...)
491 {
492     static char buf[512];
493     va_list ap;
494 
495     va_start(ap, fmt);
496     vsnprintf(buf, sizeof buf, fmt, ap);
497     error_message = buf;
498     va_end(ap);
499 }
500 
501 /*
502  * Return a dynamically-allocated copy of the current error message, if any.
503  */
504 static char *
505 errmsg_save(void)
506 {
507     return error_message == NULL ? NULL : xstrdup(error_message);
508 }
509 
510 /*
511  * Restore the current error message from a copy which was previously saved
512  * by errmsg_save().  The copy is freed.
513  */
514 static void
515 errmsg_restore(char *saved_msg)
516 {
517     if (saved_msg == NULL)
518 	error_message = NULL;
519     else {
520 	_rtld_error("%s", saved_msg);
521 	free(saved_msg);
522     }
523 }
524 
525 static const char *
526 basename(const char *name)
527 {
528     const char *p = strrchr(name, '/');
529     return p != NULL ? p + 1 : name;
530 }
531 
532 static void
533 die(void)
534 {
535     const char *msg = dlerror();
536 
537     if (msg == NULL)
538 	msg = "Fatal error";
539     errx(1, "%s", msg);
540 }
541 
542 /*
543  * Process a shared object's DYNAMIC section, and save the important
544  * information in its Obj_Entry structure.
545  */
546 static void
547 digest_dynamic(Obj_Entry *obj, int early)
548 {
549     const Elf_Dyn *dynp;
550     Needed_Entry **needed_tail = &obj->needed;
551     const Elf_Dyn *dyn_rpath = NULL;
552     int plttype = DT_REL;
553 
554     obj->bind_now = false;
555     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
556 	switch (dynp->d_tag) {
557 
558 	case DT_REL:
559 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
560 	    break;
561 
562 	case DT_RELSZ:
563 	    obj->relsize = dynp->d_un.d_val;
564 	    break;
565 
566 	case DT_RELENT:
567 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
568 	    break;
569 
570 	case DT_JMPREL:
571 	    obj->pltrel = (const Elf_Rel *)
572 	      (obj->relocbase + dynp->d_un.d_ptr);
573 	    break;
574 
575 	case DT_PLTRELSZ:
576 	    obj->pltrelsize = dynp->d_un.d_val;
577 	    break;
578 
579 	case DT_RELA:
580 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
581 	    break;
582 
583 	case DT_RELASZ:
584 	    obj->relasize = dynp->d_un.d_val;
585 	    break;
586 
587 	case DT_RELAENT:
588 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
589 	    break;
590 
591 	case DT_PLTREL:
592 	    plttype = dynp->d_un.d_val;
593 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
594 	    break;
595 
596 	case DT_SYMTAB:
597 	    obj->symtab = (const Elf_Sym *)
598 	      (obj->relocbase + dynp->d_un.d_ptr);
599 	    break;
600 
601 	case DT_SYMENT:
602 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
603 	    break;
604 
605 	case DT_STRTAB:
606 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
607 	    break;
608 
609 	case DT_STRSZ:
610 	    obj->strsize = dynp->d_un.d_val;
611 	    break;
612 
613 	case DT_HASH:
614 	    {
615 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
616 		  (obj->relocbase + dynp->d_un.d_ptr);
617 		obj->nbuckets = hashtab[0];
618 		obj->nchains = hashtab[1];
619 		obj->buckets = hashtab + 2;
620 		obj->chains = obj->buckets + obj->nbuckets;
621 	    }
622 	    break;
623 
624 	case DT_NEEDED:
625 	    if (!obj->rtld) {
626 		Needed_Entry *nep = NEW(Needed_Entry);
627 		nep->name = dynp->d_un.d_val;
628 		nep->obj = NULL;
629 		nep->next = NULL;
630 
631 		*needed_tail = nep;
632 		needed_tail = &nep->next;
633 	    }
634 	    break;
635 
636 	case DT_PLTGOT:
637 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
638 	    break;
639 
640 	case DT_TEXTREL:
641 	    obj->textrel = true;
642 	    break;
643 
644 	case DT_SYMBOLIC:
645 	    obj->symbolic = true;
646 	    break;
647 
648 	case DT_RPATH:
649 	case DT_RUNPATH:	/* XXX: process separately */
650 	    /*
651 	     * We have to wait until later to process this, because we
652 	     * might not have gotten the address of the string table yet.
653 	     */
654 	    dyn_rpath = dynp;
655 	    break;
656 
657 	case DT_SONAME:
658 	    /* Not used by the dynamic linker. */
659 	    break;
660 
661 	case DT_INIT:
662 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
663 	    break;
664 
665 	case DT_FINI:
666 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
667 	    break;
668 
669 	case DT_DEBUG:
670 	    /* XXX - not implemented yet */
671 	    if (!early)
672 		dbg("Filling in DT_DEBUG entry");
673 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
674 	    break;
675 
676 	case DT_FLAGS:
677 		if (dynp->d_un.d_val & DF_ORIGIN) {
678 		    obj->origin_path = xmalloc(PATH_MAX);
679 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
680 			die();
681 		}
682 		if (dynp->d_un.d_val & DF_SYMBOLIC)
683 		    obj->symbolic = true;
684 		if (dynp->d_un.d_val & DF_TEXTREL)
685 		    obj->textrel = true;
686 		if (dynp->d_un.d_val & DF_BIND_NOW)
687 		    obj->bind_now = true;
688 		if (dynp->d_un.d_val & DF_STATIC_TLS)
689 		    ;
690 	    break;
691 
692 	default:
693 	    if (!early) {
694 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
695 		    (long)dynp->d_tag);
696 	    }
697 	    break;
698 	}
699     }
700 
701     obj->traced = false;
702 
703     if (plttype == DT_RELA) {
704 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
705 	obj->pltrel = NULL;
706 	obj->pltrelasize = obj->pltrelsize;
707 	obj->pltrelsize = 0;
708     }
709 
710     if (dyn_rpath != NULL)
711 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
712 }
713 
714 /*
715  * Process a shared object's program header.  This is used only for the
716  * main program, when the kernel has already loaded the main program
717  * into memory before calling the dynamic linker.  It creates and
718  * returns an Obj_Entry structure.
719  */
720 static Obj_Entry *
721 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
722 {
723     Obj_Entry *obj;
724     const Elf_Phdr *phlimit = phdr + phnum;
725     const Elf_Phdr *ph;
726     int nsegs = 0;
727 
728     obj = obj_new();
729     for (ph = phdr;  ph < phlimit;  ph++) {
730 	switch (ph->p_type) {
731 
732 	case PT_PHDR:
733 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
734 		_rtld_error("%s: invalid PT_PHDR", path);
735 		return NULL;
736 	    }
737 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
738 	    obj->phsize = ph->p_memsz;
739 	    break;
740 
741 	case PT_INTERP:
742 	    obj->interp = (const char *) ph->p_vaddr;
743 	    break;
744 
745 	case PT_LOAD:
746 	    if (nsegs == 0) {	/* First load segment */
747 		obj->vaddrbase = trunc_page(ph->p_vaddr);
748 		obj->mapbase = (caddr_t) obj->vaddrbase;
749 		obj->relocbase = obj->mapbase - obj->vaddrbase;
750 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
751 		  obj->vaddrbase;
752 	    } else {		/* Last load segment */
753 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
754 		  obj->vaddrbase;
755 	    }
756 	    nsegs++;
757 	    break;
758 
759 	case PT_DYNAMIC:
760 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
761 	    break;
762 
763 	case PT_TLS:
764 	    obj->tlsindex = 1;
765 	    obj->tlssize = ph->p_memsz;
766 	    obj->tlsalign = ph->p_align;
767 	    obj->tlsinitsize = ph->p_filesz;
768 	    obj->tlsinit = (void*) ph->p_vaddr;
769 	    break;
770 	}
771     }
772     if (nsegs < 1) {
773 	_rtld_error("%s: too few PT_LOAD segments", path);
774 	return NULL;
775     }
776 
777     obj->entry = entry;
778     return obj;
779 }
780 
781 static Obj_Entry *
782 dlcheck(void *handle)
783 {
784     Obj_Entry *obj;
785 
786     for (obj = obj_list;  obj != NULL;  obj = obj->next)
787 	if (obj == (Obj_Entry *) handle)
788 	    break;
789 
790     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
791 	_rtld_error("Invalid shared object handle %p", handle);
792 	return NULL;
793     }
794     return obj;
795 }
796 
797 /*
798  * If the given object is already in the donelist, return true.  Otherwise
799  * add the object to the list and return false.
800  */
801 static bool
802 donelist_check(DoneList *dlp, const Obj_Entry *obj)
803 {
804     unsigned int i;
805 
806     for (i = 0;  i < dlp->num_used;  i++)
807 	if (dlp->objs[i] == obj)
808 	    return true;
809     /*
810      * Our donelist allocation should always be sufficient.  But if
811      * our threads locking isn't working properly, more shared objects
812      * could have been loaded since we allocated the list.  That should
813      * never happen, but we'll handle it properly just in case it does.
814      */
815     if (dlp->num_used < dlp->num_alloc)
816 	dlp->objs[dlp->num_used++] = obj;
817     return false;
818 }
819 
820 /*
821  * Hash function for symbol table lookup.  Don't even think about changing
822  * this.  It is specified by the System V ABI.
823  */
824 unsigned long
825 elf_hash(const char *name)
826 {
827     const unsigned char *p = (const unsigned char *) name;
828     unsigned long h = 0;
829     unsigned long g;
830 
831     while (*p != '\0') {
832 	h = (h << 4) + *p++;
833 	if ((g = h & 0xf0000000) != 0)
834 	    h ^= g >> 24;
835 	h &= ~g;
836     }
837     return h;
838 }
839 
840 /*
841  * Find the library with the given name, and return its full pathname.
842  * The returned string is dynamically allocated.  Generates an error
843  * message and returns NULL if the library cannot be found.
844  *
845  * If the second argument is non-NULL, then it refers to an already-
846  * loaded shared object, whose library search path will be searched.
847  *
848  * The search order is:
849  *   LD_LIBRARY_PATH
850  *   rpath in the referencing file
851  *   ldconfig hints
852  *   /lib:/usr/lib
853  */
854 static char *
855 find_library(const char *xname, const Obj_Entry *refobj)
856 {
857     char *pathname;
858     char *name;
859 
860     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
861 	if (xname[0] != '/' && !trust) {
862 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
863 	      xname);
864 	    return NULL;
865 	}
866 	return xstrdup(xname);
867     }
868 
869     if (libmap_disable || (refobj == NULL) ||
870 	(name = lm_find(refobj->path, xname)) == NULL)
871 	name = (char *)xname;
872 
873     dbg(" Searching for \"%s\"", name);
874 
875     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
876       (refobj != NULL &&
877       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
878       (pathname = search_library_path(name, gethints())) != NULL ||
879       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
880 	return pathname;
881 
882     if(refobj != NULL && refobj->path != NULL) {
883 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
884 	  name, basename(refobj->path));
885     } else {
886 	_rtld_error("Shared object \"%s\" not found", name);
887     }
888     return NULL;
889 }
890 
891 /*
892  * Given a symbol number in a referencing object, find the corresponding
893  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
894  * no definition was found.  Returns a pointer to the Obj_Entry of the
895  * defining object via the reference parameter DEFOBJ_OUT.
896  */
897 const Elf_Sym *
898 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
899     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
900 {
901     const Elf_Sym *ref;
902     const Elf_Sym *def;
903     const Obj_Entry *defobj;
904     const char *name;
905     unsigned long hash;
906 
907     /*
908      * If we have already found this symbol, get the information from
909      * the cache.
910      */
911     if (symnum >= refobj->nchains)
912 	return NULL;	/* Bad object */
913     if (cache != NULL && cache[symnum].sym != NULL) {
914 	*defobj_out = cache[symnum].obj;
915 	return cache[symnum].sym;
916     }
917 
918     ref = refobj->symtab + symnum;
919     name = refobj->strtab + ref->st_name;
920     defobj = NULL;
921 
922     /*
923      * We don't have to do a full scale lookup if the symbol is local.
924      * We know it will bind to the instance in this load module; to
925      * which we already have a pointer (ie ref). By not doing a lookup,
926      * we not only improve performance, but it also avoids unresolvable
927      * symbols when local symbols are not in the hash table. This has
928      * been seen with the ia64 toolchain.
929      */
930     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
931 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
932 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
933 		symnum);
934 	}
935 	hash = elf_hash(name);
936 	def = symlook_default(name, hash, refobj, &defobj, in_plt);
937     } else {
938 	def = ref;
939 	defobj = refobj;
940     }
941 
942     /*
943      * If we found no definition and the reference is weak, treat the
944      * symbol as having the value zero.
945      */
946     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
947 	def = &sym_zero;
948 	defobj = obj_main;
949     }
950 
951     if (def != NULL) {
952 	*defobj_out = defobj;
953 	/* Record the information in the cache to avoid subsequent lookups. */
954 	if (cache != NULL) {
955 	    cache[symnum].sym = def;
956 	    cache[symnum].obj = defobj;
957 	}
958     } else {
959 	if (refobj != &obj_rtld)
960 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
961     }
962     return def;
963 }
964 
965 /*
966  * Return the search path from the ldconfig hints file, reading it if
967  * necessary.  Returns NULL if there are problems with the hints file,
968  * or if the search path there is empty.
969  */
970 static const char *
971 gethints(void)
972 {
973     static char *hints;
974 
975     if (hints == NULL) {
976 	int fd;
977 	struct elfhints_hdr hdr;
978 	char *p;
979 
980 	/* Keep from trying again in case the hints file is bad. */
981 	hints = "";
982 
983 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
984 	    return NULL;
985 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
986 	  hdr.magic != ELFHINTS_MAGIC ||
987 	  hdr.version != 1) {
988 	    close(fd);
989 	    return NULL;
990 	}
991 	p = xmalloc(hdr.dirlistlen + 1);
992 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
993 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
994 	    free(p);
995 	    close(fd);
996 	    return NULL;
997 	}
998 	hints = p;
999 	close(fd);
1000     }
1001     return hints[0] != '\0' ? hints : NULL;
1002 }
1003 
1004 static void
1005 init_dag(Obj_Entry *root)
1006 {
1007     DoneList donelist;
1008 
1009     donelist_init(&donelist);
1010     init_dag1(root, root, &donelist);
1011 }
1012 
1013 static void
1014 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1015 {
1016     const Needed_Entry *needed;
1017 
1018     if (donelist_check(dlp, obj))
1019 	return;
1020 
1021     obj->refcount++;
1022     objlist_push_tail(&obj->dldags, root);
1023     objlist_push_tail(&root->dagmembers, obj);
1024     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1025 	if (needed->obj != NULL)
1026 	    init_dag1(root, needed->obj, dlp);
1027 }
1028 
1029 /*
1030  * Initialize the dynamic linker.  The argument is the address at which
1031  * the dynamic linker has been mapped into memory.  The primary task of
1032  * this function is to relocate the dynamic linker.
1033  */
1034 static void
1035 init_rtld(caddr_t mapbase)
1036 {
1037     Obj_Entry objtmp;	/* Temporary rtld object */
1038 
1039     /*
1040      * Conjure up an Obj_Entry structure for the dynamic linker.
1041      *
1042      * The "path" member can't be initialized yet because string constatns
1043      * cannot yet be acessed. Below we will set it correctly.
1044      */
1045     memset(&objtmp, 0, sizeof(objtmp));
1046     objtmp.path = NULL;
1047     objtmp.rtld = true;
1048     objtmp.mapbase = mapbase;
1049 #ifdef PIC
1050     objtmp.relocbase = mapbase;
1051 #endif
1052     if (RTLD_IS_DYNAMIC()) {
1053 	objtmp.dynamic = rtld_dynamic(&objtmp);
1054 	digest_dynamic(&objtmp, 1);
1055 	assert(objtmp.needed == NULL);
1056 	assert(!objtmp.textrel);
1057 
1058 	/*
1059 	 * Temporarily put the dynamic linker entry into the object list, so
1060 	 * that symbols can be found.
1061 	 */
1062 
1063 	relocate_objects(&objtmp, true, &objtmp);
1064     }
1065 
1066     /* Initialize the object list. */
1067     obj_tail = &obj_list;
1068 
1069     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1070     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1071 
1072     /* Replace the path with a dynamically allocated copy. */
1073     obj_rtld.path = xstrdup(PATH_RTLD);
1074 
1075     r_debug.r_brk = r_debug_state;
1076     r_debug.r_state = RT_CONSISTENT;
1077 }
1078 
1079 /*
1080  * Add the init functions from a needed object list (and its recursive
1081  * needed objects) to "list".  This is not used directly; it is a helper
1082  * function for initlist_add_objects().  The write lock must be held
1083  * when this function is called.
1084  */
1085 static void
1086 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1087 {
1088     /* Recursively process the successor needed objects. */
1089     if (needed->next != NULL)
1090 	initlist_add_neededs(needed->next, list);
1091 
1092     /* Process the current needed object. */
1093     if (needed->obj != NULL)
1094 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1095 }
1096 
1097 /*
1098  * Scan all of the DAGs rooted in the range of objects from "obj" to
1099  * "tail" and add their init functions to "list".  This recurses over
1100  * the DAGs and ensure the proper init ordering such that each object's
1101  * needed libraries are initialized before the object itself.  At the
1102  * same time, this function adds the objects to the global finalization
1103  * list "list_fini" in the opposite order.  The write lock must be
1104  * held when this function is called.
1105  */
1106 static void
1107 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1108 {
1109     if (obj->init_done)
1110 	return;
1111     obj->init_done = true;
1112 
1113     /* Recursively process the successor objects. */
1114     if (&obj->next != tail)
1115 	initlist_add_objects(obj->next, tail, list);
1116 
1117     /* Recursively process the needed objects. */
1118     if (obj->needed != NULL)
1119 	initlist_add_neededs(obj->needed, list);
1120 
1121     /* Add the object to the init list. */
1122     if (obj->init != (Elf_Addr)NULL)
1123 	objlist_push_tail(list, obj);
1124 
1125     /* Add the object to the global fini list in the reverse order. */
1126     if (obj->fini != (Elf_Addr)NULL)
1127 	objlist_push_head(&list_fini, obj);
1128 }
1129 
1130 #ifndef FPTR_TARGET
1131 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1132 #endif
1133 
1134 static bool
1135 is_exported(const Elf_Sym *def)
1136 {
1137     Elf_Addr value;
1138     const func_ptr_type *p;
1139 
1140     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1141     for (p = exports;  *p != NULL;  p++)
1142 	if (FPTR_TARGET(*p) == value)
1143 	    return true;
1144     return false;
1145 }
1146 
1147 /*
1148  * Given a shared object, traverse its list of needed objects, and load
1149  * each of them.  Returns 0 on success.  Generates an error message and
1150  * returns -1 on failure.
1151  */
1152 static int
1153 load_needed_objects(Obj_Entry *first)
1154 {
1155     Obj_Entry *obj;
1156 
1157     for (obj = first;  obj != NULL;  obj = obj->next) {
1158 	Needed_Entry *needed;
1159 
1160 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1161 	    const char *name = obj->strtab + needed->name;
1162 	    char *path = find_library(name, obj);
1163 
1164 	    needed->obj = NULL;
1165 	    if (path == NULL && !ld_tracing)
1166 		return -1;
1167 
1168 	    if (path) {
1169 		needed->obj = load_object(path);
1170 		if (needed->obj == NULL && !ld_tracing)
1171 		    return -1;		/* XXX - cleanup */
1172 	    }
1173 	}
1174     }
1175 
1176     return 0;
1177 }
1178 
1179 static int
1180 load_preload_objects(void)
1181 {
1182     char *p = ld_preload;
1183     static const char delim[] = " \t:;";
1184 
1185     if (p == NULL)
1186 	return 0;
1187 
1188     p += strspn(p, delim);
1189     while (*p != '\0') {
1190 	size_t len = strcspn(p, delim);
1191 	char *path;
1192 	char savech;
1193 
1194 	savech = p[len];
1195 	p[len] = '\0';
1196 	if ((path = find_library(p, NULL)) == NULL)
1197 	    return -1;
1198 	if (load_object(path) == NULL)
1199 	    return -1;	/* XXX - cleanup */
1200 	p[len] = savech;
1201 	p += len;
1202 	p += strspn(p, delim);
1203     }
1204     return 0;
1205 }
1206 
1207 /*
1208  * Load a shared object into memory, if it is not already loaded.  The
1209  * argument must be a string allocated on the heap.  This function assumes
1210  * responsibility for freeing it when necessary.
1211  *
1212  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1213  * on failure.
1214  */
1215 static Obj_Entry *
1216 load_object(char *path)
1217 {
1218     Obj_Entry *obj;
1219     int fd = -1;
1220     struct stat sb;
1221 
1222     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1223 	if (strcmp(obj->path, path) == 0)
1224 	    break;
1225 
1226     /*
1227      * If we didn't find a match by pathname, open the file and check
1228      * again by device and inode.  This avoids false mismatches caused
1229      * by multiple links or ".." in pathnames.
1230      *
1231      * To avoid a race, we open the file and use fstat() rather than
1232      * using stat().
1233      */
1234     if (obj == NULL) {
1235 	if ((fd = open(path, O_RDONLY)) == -1) {
1236 	    _rtld_error("Cannot open \"%s\"", path);
1237 	    return NULL;
1238 	}
1239 	if (fstat(fd, &sb) == -1) {
1240 	    _rtld_error("Cannot fstat \"%s\"", path);
1241 	    close(fd);
1242 	    return NULL;
1243 	}
1244 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1245 	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1246 		close(fd);
1247 		break;
1248 	    }
1249 	}
1250     }
1251 
1252     if (obj == NULL) {	/* First use of this object, so we must map it in */
1253 	dbg("loading \"%s\"", path);
1254 	obj = map_object(fd, path, &sb);
1255 	close(fd);
1256 	if (obj == NULL) {
1257 	    free(path);
1258 	    return NULL;
1259 	}
1260 
1261 	obj->path = path;
1262 	digest_dynamic(obj, 0);
1263 
1264 	*obj_tail = obj;
1265 	obj_tail = &obj->next;
1266 	obj_count++;
1267 	linkmap_add(obj);	/* for GDB & dlinfo() */
1268 
1269 	dbg("  %p .. %p: %s", obj->mapbase,
1270 	  obj->mapbase + obj->mapsize - 1, obj->path);
1271 	if (obj->textrel)
1272 	    dbg("  WARNING: %s has impure text", obj->path);
1273     } else
1274 	free(path);
1275 
1276     return obj;
1277 }
1278 
1279 static Obj_Entry *
1280 obj_from_addr(const void *addr)
1281 {
1282     Obj_Entry *obj;
1283 
1284     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1285 	if (addr < (void *) obj->mapbase)
1286 	    continue;
1287 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1288 	    return obj;
1289     }
1290     return NULL;
1291 }
1292 
1293 /*
1294  * Call the finalization functions for each of the objects in "list"
1295  * which are unreferenced.  All of the objects are expected to have
1296  * non-NULL fini functions.
1297  */
1298 static void
1299 objlist_call_fini(Objlist *list)
1300 {
1301     Objlist_Entry *elm;
1302     char *saved_msg;
1303 
1304     /*
1305      * Preserve the current error message since a fini function might
1306      * call into the dynamic linker and overwrite it.
1307      */
1308     saved_msg = errmsg_save();
1309     STAILQ_FOREACH(elm, list, link) {
1310 	if (elm->obj->refcount == 0) {
1311 	    dbg("calling fini function for %s at %p", elm->obj->path,
1312 	        (void *)elm->obj->fini);
1313 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1314 	}
1315     }
1316     errmsg_restore(saved_msg);
1317 }
1318 
1319 /*
1320  * Call the initialization functions for each of the objects in
1321  * "list".  All of the objects are expected to have non-NULL init
1322  * functions.
1323  */
1324 static void
1325 objlist_call_init(Objlist *list)
1326 {
1327     Objlist_Entry *elm;
1328     char *saved_msg;
1329 
1330     /*
1331      * Preserve the current error message since an init function might
1332      * call into the dynamic linker and overwrite it.
1333      */
1334     saved_msg = errmsg_save();
1335     STAILQ_FOREACH(elm, list, link) {
1336 	dbg("calling init function for %s at %p", elm->obj->path,
1337 	    (void *)elm->obj->init);
1338 	call_initfini_pointer(elm->obj, elm->obj->init);
1339     }
1340     errmsg_restore(saved_msg);
1341 }
1342 
1343 static void
1344 objlist_clear(Objlist *list)
1345 {
1346     Objlist_Entry *elm;
1347 
1348     while (!STAILQ_EMPTY(list)) {
1349 	elm = STAILQ_FIRST(list);
1350 	STAILQ_REMOVE_HEAD(list, link);
1351 	free(elm);
1352     }
1353 }
1354 
1355 static Objlist_Entry *
1356 objlist_find(Objlist *list, const Obj_Entry *obj)
1357 {
1358     Objlist_Entry *elm;
1359 
1360     STAILQ_FOREACH(elm, list, link)
1361 	if (elm->obj == obj)
1362 	    return elm;
1363     return NULL;
1364 }
1365 
1366 static void
1367 objlist_init(Objlist *list)
1368 {
1369     STAILQ_INIT(list);
1370 }
1371 
1372 static void
1373 objlist_push_head(Objlist *list, Obj_Entry *obj)
1374 {
1375     Objlist_Entry *elm;
1376 
1377     elm = NEW(Objlist_Entry);
1378     elm->obj = obj;
1379     STAILQ_INSERT_HEAD(list, elm, link);
1380 }
1381 
1382 static void
1383 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1384 {
1385     Objlist_Entry *elm;
1386 
1387     elm = NEW(Objlist_Entry);
1388     elm->obj = obj;
1389     STAILQ_INSERT_TAIL(list, elm, link);
1390 }
1391 
1392 static void
1393 objlist_remove(Objlist *list, Obj_Entry *obj)
1394 {
1395     Objlist_Entry *elm;
1396 
1397     if ((elm = objlist_find(list, obj)) != NULL) {
1398 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1399 	free(elm);
1400     }
1401 }
1402 
1403 /*
1404  * Remove all of the unreferenced objects from "list".
1405  */
1406 static void
1407 objlist_remove_unref(Objlist *list)
1408 {
1409     Objlist newlist;
1410     Objlist_Entry *elm;
1411 
1412     STAILQ_INIT(&newlist);
1413     while (!STAILQ_EMPTY(list)) {
1414 	elm = STAILQ_FIRST(list);
1415 	STAILQ_REMOVE_HEAD(list, link);
1416 	if (elm->obj->refcount == 0)
1417 	    free(elm);
1418 	else
1419 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1420     }
1421     *list = newlist;
1422 }
1423 
1424 /*
1425  * Relocate newly-loaded shared objects.  The argument is a pointer to
1426  * the Obj_Entry for the first such object.  All objects from the first
1427  * to the end of the list of objects are relocated.  Returns 0 on success,
1428  * or -1 on failure.
1429  */
1430 static int
1431 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1432 {
1433     Obj_Entry *obj;
1434 
1435     for (obj = first;  obj != NULL;  obj = obj->next) {
1436 	if (obj != rtldobj)
1437 	    dbg("relocating \"%s\"", obj->path);
1438 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1439 	    obj->symtab == NULL || obj->strtab == NULL) {
1440 	    _rtld_error("%s: Shared object has no run-time symbol table",
1441 	      obj->path);
1442 	    return -1;
1443 	}
1444 
1445 	if (obj->textrel) {
1446 	    /* There are relocations to the write-protected text segment. */
1447 	    if (mprotect(obj->mapbase, obj->textsize,
1448 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1449 		_rtld_error("%s: Cannot write-enable text segment: %s",
1450 		  obj->path, strerror(errno));
1451 		return -1;
1452 	    }
1453 	}
1454 
1455 	/* Process the non-PLT relocations. */
1456 	if (reloc_non_plt(obj, rtldobj))
1457 		return -1;
1458 
1459 	if (obj->textrel) {	/* Re-protected the text segment. */
1460 	    if (mprotect(obj->mapbase, obj->textsize,
1461 	      PROT_READ|PROT_EXEC) == -1) {
1462 		_rtld_error("%s: Cannot write-protect text segment: %s",
1463 		  obj->path, strerror(errno));
1464 		return -1;
1465 	    }
1466 	}
1467 
1468 	/* Process the PLT relocations. */
1469 	if (reloc_plt(obj) == -1)
1470 	    return -1;
1471 	/* Relocate the jump slots if we are doing immediate binding. */
1472 	if (obj->bind_now || bind_now)
1473 	    if (reloc_jmpslots(obj) == -1)
1474 		return -1;
1475 
1476 
1477 	/*
1478 	 * Set up the magic number and version in the Obj_Entry.  These
1479 	 * were checked in the crt1.o from the original ElfKit, so we
1480 	 * set them for backward compatibility.
1481 	 */
1482 	obj->magic = RTLD_MAGIC;
1483 	obj->version = RTLD_VERSION;
1484 
1485 	/* Set the special PLT or GOT entries. */
1486 	init_pltgot(obj);
1487     }
1488 
1489     return 0;
1490 }
1491 
1492 /*
1493  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1494  * before the process exits.
1495  */
1496 static void
1497 rtld_exit(void)
1498 {
1499     Obj_Entry *obj;
1500 
1501     dbg("rtld_exit()");
1502     /* Clear all the reference counts so the fini functions will be called. */
1503     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1504 	obj->refcount = 0;
1505     objlist_call_fini(&list_fini);
1506     /* No need to remove the items from the list, since we are exiting. */
1507     if (!libmap_disable)
1508         lm_fini();
1509 }
1510 
1511 static void *
1512 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1513 {
1514 #ifdef COMPAT_32BIT
1515     const char *trans;
1516 #endif
1517     if (path == NULL)
1518 	return (NULL);
1519 
1520     path += strspn(path, ":;");
1521     while (*path != '\0') {
1522 	size_t len;
1523 	char  *res;
1524 
1525 	len = strcspn(path, ":;");
1526 #ifdef COMPAT_32BIT
1527 	trans = lm_findn(NULL, path, len);
1528 	if (trans)
1529 	    res = callback(trans, strlen(trans), arg);
1530 	else
1531 #endif
1532 	res = callback(path, len, arg);
1533 
1534 	if (res != NULL)
1535 	    return (res);
1536 
1537 	path += len;
1538 	path += strspn(path, ":;");
1539     }
1540 
1541     return (NULL);
1542 }
1543 
1544 struct try_library_args {
1545     const char	*name;
1546     size_t	 namelen;
1547     char	*buffer;
1548     size_t	 buflen;
1549 };
1550 
1551 static void *
1552 try_library_path(const char *dir, size_t dirlen, void *param)
1553 {
1554     struct try_library_args *arg;
1555 
1556     arg = param;
1557     if (*dir == '/' || trust) {
1558 	char *pathname;
1559 
1560 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1561 		return (NULL);
1562 
1563 	pathname = arg->buffer;
1564 	strncpy(pathname, dir, dirlen);
1565 	pathname[dirlen] = '/';
1566 	strcpy(pathname + dirlen + 1, arg->name);
1567 
1568 	dbg("  Trying \"%s\"", pathname);
1569 	if (access(pathname, F_OK) == 0) {		/* We found it */
1570 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1571 	    strcpy(pathname, arg->buffer);
1572 	    return (pathname);
1573 	}
1574     }
1575     return (NULL);
1576 }
1577 
1578 static char *
1579 search_library_path(const char *name, const char *path)
1580 {
1581     char *p;
1582     struct try_library_args arg;
1583 
1584     if (path == NULL)
1585 	return NULL;
1586 
1587     arg.name = name;
1588     arg.namelen = strlen(name);
1589     arg.buffer = xmalloc(PATH_MAX);
1590     arg.buflen = PATH_MAX;
1591 
1592     p = path_enumerate(path, try_library_path, &arg);
1593 
1594     free(arg.buffer);
1595 
1596     return (p);
1597 }
1598 
1599 int
1600 dlclose(void *handle)
1601 {
1602     Obj_Entry *root;
1603     int lockstate;
1604 
1605     lockstate = wlock_acquire(rtld_bind_lock);
1606     root = dlcheck(handle);
1607     if (root == NULL) {
1608 	wlock_release(rtld_bind_lock, lockstate);
1609 	return -1;
1610     }
1611 
1612     /* Unreference the object and its dependencies. */
1613     root->dl_refcount--;
1614 
1615     unref_dag(root);
1616 
1617     if (root->refcount == 0) {
1618 	/*
1619 	 * The object is no longer referenced, so we must unload it.
1620 	 * First, call the fini functions with no locks held.
1621 	 */
1622 	wlock_release(rtld_bind_lock, lockstate);
1623 	objlist_call_fini(&list_fini);
1624 	lockstate = wlock_acquire(rtld_bind_lock);
1625 	objlist_remove_unref(&list_fini);
1626 
1627 	/* Finish cleaning up the newly-unreferenced objects. */
1628 	GDB_STATE(RT_DELETE,&root->linkmap);
1629 	unload_object(root);
1630 	GDB_STATE(RT_CONSISTENT,NULL);
1631     }
1632     wlock_release(rtld_bind_lock, lockstate);
1633     return 0;
1634 }
1635 
1636 const char *
1637 dlerror(void)
1638 {
1639     char *msg = error_message;
1640     error_message = NULL;
1641     return msg;
1642 }
1643 
1644 /*
1645  * This function is deprecated and has no effect.
1646  */
1647 void
1648 dllockinit(void *context,
1649 	   void *(*lock_create)(void *context),
1650            void (*rlock_acquire)(void *lock),
1651            void (*wlock_acquire)(void *lock),
1652            void (*lock_release)(void *lock),
1653            void (*lock_destroy)(void *lock),
1654 	   void (*context_destroy)(void *context))
1655 {
1656     static void *cur_context;
1657     static void (*cur_context_destroy)(void *);
1658 
1659     /* Just destroy the context from the previous call, if necessary. */
1660     if (cur_context_destroy != NULL)
1661 	cur_context_destroy(cur_context);
1662     cur_context = context;
1663     cur_context_destroy = context_destroy;
1664 }
1665 
1666 void *
1667 dlopen(const char *name, int mode)
1668 {
1669     Obj_Entry **old_obj_tail;
1670     Obj_Entry *obj;
1671     Objlist initlist;
1672     int result, lockstate;
1673 
1674     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1675     if (ld_tracing != NULL)
1676 	environ = (char **)*get_program_var_addr("environ");
1677 
1678     objlist_init(&initlist);
1679 
1680     lockstate = wlock_acquire(rtld_bind_lock);
1681     GDB_STATE(RT_ADD,NULL);
1682 
1683     old_obj_tail = obj_tail;
1684     obj = NULL;
1685     if (name == NULL) {
1686 	obj = obj_main;
1687 	obj->refcount++;
1688     } else {
1689 	char *path = find_library(name, obj_main);
1690 	if (path != NULL)
1691 	    obj = load_object(path);
1692     }
1693 
1694     if (obj) {
1695 	obj->dl_refcount++;
1696 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1697 	    objlist_push_tail(&list_global, obj);
1698 	mode &= RTLD_MODEMASK;
1699 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1700 	    assert(*old_obj_tail == obj);
1701 
1702 	    result = load_needed_objects(obj);
1703 	    if (result != -1 && ld_tracing)
1704 		goto trace;
1705 
1706 	    if (result == -1 ||
1707 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1708 	       &obj_rtld)) == -1) {
1709 		obj->dl_refcount--;
1710 		unref_dag(obj);
1711 		if (obj->refcount == 0)
1712 		    unload_object(obj);
1713 		obj = NULL;
1714 	    } else {
1715 		/* Make list of init functions to call. */
1716 		initlist_add_objects(obj, &obj->next, &initlist);
1717 	    }
1718 	} else {
1719 
1720 	    /* Bump the reference counts for objects on this DAG. */
1721 	    ref_dag(obj);
1722 
1723 	    if (ld_tracing)
1724 		goto trace;
1725 	}
1726     }
1727 
1728     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1729 
1730     /* Call the init functions with no locks held. */
1731     wlock_release(rtld_bind_lock, lockstate);
1732     objlist_call_init(&initlist);
1733     lockstate = wlock_acquire(rtld_bind_lock);
1734     objlist_clear(&initlist);
1735     wlock_release(rtld_bind_lock, lockstate);
1736     return obj;
1737 trace:
1738     trace_loaded_objects(obj);
1739     wlock_release(rtld_bind_lock, lockstate);
1740     exit(0);
1741 }
1742 
1743 void *
1744 dlsym(void *handle, const char *name)
1745 {
1746     const Obj_Entry *obj;
1747     unsigned long hash;
1748     const Elf_Sym *def;
1749     const Obj_Entry *defobj;
1750     int lockstate;
1751 
1752     hash = elf_hash(name);
1753     def = NULL;
1754     defobj = NULL;
1755 
1756     lockstate = rlock_acquire(rtld_bind_lock);
1757     if (handle == NULL || handle == RTLD_NEXT ||
1758 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1759 	void *retaddr;
1760 
1761 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1762 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1763 	    _rtld_error("Cannot determine caller's shared object");
1764 	    rlock_release(rtld_bind_lock, lockstate);
1765 	    return NULL;
1766 	}
1767 	if (handle == NULL) {	/* Just the caller's shared object. */
1768 	    def = symlook_obj(name, hash, obj, true);
1769 	    defobj = obj;
1770 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1771 		   handle == RTLD_SELF) { /* ... caller included */
1772 	    if (handle == RTLD_NEXT)
1773 		obj = obj->next;
1774 	    for (; obj != NULL; obj = obj->next) {
1775 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1776 		    defobj = obj;
1777 		    break;
1778 		}
1779 	    }
1780 	} else {
1781 	    assert(handle == RTLD_DEFAULT);
1782 	    def = symlook_default(name, hash, obj, &defobj, true);
1783 	}
1784     } else {
1785 	if ((obj = dlcheck(handle)) == NULL) {
1786 	    rlock_release(rtld_bind_lock, lockstate);
1787 	    return NULL;
1788 	}
1789 
1790 	if (obj->mainprog) {
1791 	    DoneList donelist;
1792 
1793 	    /* Search main program and all libraries loaded by it. */
1794 	    donelist_init(&donelist);
1795 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1796 	      &donelist);
1797 	} else {
1798 	    /*
1799 	     * XXX - This isn't correct.  The search should include the whole
1800 	     * DAG rooted at the given object.
1801 	     */
1802 	    def = symlook_obj(name, hash, obj, true);
1803 	    defobj = obj;
1804 	}
1805     }
1806 
1807     if (def != NULL) {
1808 	rlock_release(rtld_bind_lock, lockstate);
1809 
1810 	/*
1811 	 * The value required by the caller is derived from the value
1812 	 * of the symbol. For the ia64 architecture, we need to
1813 	 * construct a function descriptor which the caller can use to
1814 	 * call the function with the right 'gp' value. For other
1815 	 * architectures and for non-functions, the value is simply
1816 	 * the relocated value of the symbol.
1817 	 */
1818 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1819 	    return make_function_pointer(def, defobj);
1820 	else
1821 	    return defobj->relocbase + def->st_value;
1822     }
1823 
1824     _rtld_error("Undefined symbol \"%s\"", name);
1825     rlock_release(rtld_bind_lock, lockstate);
1826     return NULL;
1827 }
1828 
1829 int
1830 dladdr(const void *addr, Dl_info *info)
1831 {
1832     const Obj_Entry *obj;
1833     const Elf_Sym *def;
1834     void *symbol_addr;
1835     unsigned long symoffset;
1836     int lockstate;
1837 
1838     lockstate = rlock_acquire(rtld_bind_lock);
1839     obj = obj_from_addr(addr);
1840     if (obj == NULL) {
1841         _rtld_error("No shared object contains address");
1842 	rlock_release(rtld_bind_lock, lockstate);
1843         return 0;
1844     }
1845     info->dli_fname = obj->path;
1846     info->dli_fbase = obj->mapbase;
1847     info->dli_saddr = (void *)0;
1848     info->dli_sname = NULL;
1849 
1850     /*
1851      * Walk the symbol list looking for the symbol whose address is
1852      * closest to the address sent in.
1853      */
1854     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1855         def = obj->symtab + symoffset;
1856 
1857         /*
1858          * For skip the symbol if st_shndx is either SHN_UNDEF or
1859          * SHN_COMMON.
1860          */
1861         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1862             continue;
1863 
1864         /*
1865          * If the symbol is greater than the specified address, or if it
1866          * is further away from addr than the current nearest symbol,
1867          * then reject it.
1868          */
1869         symbol_addr = obj->relocbase + def->st_value;
1870         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1871             continue;
1872 
1873         /* Update our idea of the nearest symbol. */
1874         info->dli_sname = obj->strtab + def->st_name;
1875         info->dli_saddr = symbol_addr;
1876 
1877         /* Exact match? */
1878         if (info->dli_saddr == addr)
1879             break;
1880     }
1881     rlock_release(rtld_bind_lock, lockstate);
1882     return 1;
1883 }
1884 
1885 int
1886 dlinfo(void *handle, int request, void *p)
1887 {
1888     const Obj_Entry *obj;
1889     int error, lockstate;
1890 
1891     lockstate = rlock_acquire(rtld_bind_lock);
1892 
1893     if (handle == NULL || handle == RTLD_SELF) {
1894 	void *retaddr;
1895 
1896 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1897 	if ((obj = obj_from_addr(retaddr)) == NULL)
1898 	    _rtld_error("Cannot determine caller's shared object");
1899     } else
1900 	obj = dlcheck(handle);
1901 
1902     if (obj == NULL) {
1903 	rlock_release(rtld_bind_lock, lockstate);
1904 	return (-1);
1905     }
1906 
1907     error = 0;
1908     switch (request) {
1909     case RTLD_DI_LINKMAP:
1910 	*((struct link_map const **)p) = &obj->linkmap;
1911 	break;
1912     case RTLD_DI_ORIGIN:
1913 	error = rtld_dirname(obj->path, p);
1914 	break;
1915 
1916     case RTLD_DI_SERINFOSIZE:
1917     case RTLD_DI_SERINFO:
1918 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1919 	break;
1920 
1921     default:
1922 	_rtld_error("Invalid request %d passed to dlinfo()", request);
1923 	error = -1;
1924     }
1925 
1926     rlock_release(rtld_bind_lock, lockstate);
1927 
1928     return (error);
1929 }
1930 
1931 struct fill_search_info_args {
1932     int		 request;
1933     unsigned int flags;
1934     Dl_serinfo  *serinfo;
1935     Dl_serpath  *serpath;
1936     char	*strspace;
1937 };
1938 
1939 static void *
1940 fill_search_info(const char *dir, size_t dirlen, void *param)
1941 {
1942     struct fill_search_info_args *arg;
1943 
1944     arg = param;
1945 
1946     if (arg->request == RTLD_DI_SERINFOSIZE) {
1947 	arg->serinfo->dls_cnt ++;
1948 	arg->serinfo->dls_size += dirlen + 1;
1949     } else {
1950 	struct dl_serpath *s_entry;
1951 
1952 	s_entry = arg->serpath;
1953 	s_entry->dls_name  = arg->strspace;
1954 	s_entry->dls_flags = arg->flags;
1955 
1956 	strncpy(arg->strspace, dir, dirlen);
1957 	arg->strspace[dirlen] = '\0';
1958 
1959 	arg->strspace += dirlen + 1;
1960 	arg->serpath++;
1961     }
1962 
1963     return (NULL);
1964 }
1965 
1966 static int
1967 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
1968 {
1969     struct dl_serinfo _info;
1970     struct fill_search_info_args args;
1971 
1972     args.request = RTLD_DI_SERINFOSIZE;
1973     args.serinfo = &_info;
1974 
1975     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1976     _info.dls_cnt  = 0;
1977 
1978     path_enumerate(ld_library_path, fill_search_info, &args);
1979     path_enumerate(obj->rpath, fill_search_info, &args);
1980     path_enumerate(gethints(), fill_search_info, &args);
1981     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
1982 
1983 
1984     if (request == RTLD_DI_SERINFOSIZE) {
1985 	info->dls_size = _info.dls_size;
1986 	info->dls_cnt = _info.dls_cnt;
1987 	return (0);
1988     }
1989 
1990     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
1991 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
1992 	return (-1);
1993     }
1994 
1995     args.request  = RTLD_DI_SERINFO;
1996     args.serinfo  = info;
1997     args.serpath  = &info->dls_serpath[0];
1998     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
1999 
2000     args.flags = LA_SER_LIBPATH;
2001     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2002 	return (-1);
2003 
2004     args.flags = LA_SER_RUNPATH;
2005     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2006 	return (-1);
2007 
2008     args.flags = LA_SER_CONFIG;
2009     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2010 	return (-1);
2011 
2012     args.flags = LA_SER_DEFAULT;
2013     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2014 	return (-1);
2015     return (0);
2016 }
2017 
2018 static int
2019 rtld_dirname(const char *path, char *bname)
2020 {
2021     const char *endp;
2022 
2023     /* Empty or NULL string gets treated as "." */
2024     if (path == NULL || *path == '\0') {
2025 	bname[0] = '.';
2026 	bname[1] = '\0';
2027 	return (0);
2028     }
2029 
2030     /* Strip trailing slashes */
2031     endp = path + strlen(path) - 1;
2032     while (endp > path && *endp == '/')
2033 	endp--;
2034 
2035     /* Find the start of the dir */
2036     while (endp > path && *endp != '/')
2037 	endp--;
2038 
2039     /* Either the dir is "/" or there are no slashes */
2040     if (endp == path) {
2041 	bname[0] = *endp == '/' ? '/' : '.';
2042 	bname[1] = '\0';
2043 	return (0);
2044     } else {
2045 	do {
2046 	    endp--;
2047 	} while (endp > path && *endp == '/');
2048     }
2049 
2050     if (endp - path + 2 > PATH_MAX)
2051     {
2052 	_rtld_error("Filename is too long: %s", path);
2053 	return(-1);
2054     }
2055 
2056     strncpy(bname, path, endp - path + 1);
2057     bname[endp - path + 1] = '\0';
2058     return (0);
2059 }
2060 
2061 static void
2062 linkmap_add(Obj_Entry *obj)
2063 {
2064     struct link_map *l = &obj->linkmap;
2065     struct link_map *prev;
2066 
2067     obj->linkmap.l_name = obj->path;
2068     obj->linkmap.l_addr = obj->mapbase;
2069     obj->linkmap.l_ld = obj->dynamic;
2070 #ifdef __mips__
2071     /* GDB needs load offset on MIPS to use the symbols */
2072     obj->linkmap.l_offs = obj->relocbase;
2073 #endif
2074 
2075     if (r_debug.r_map == NULL) {
2076 	r_debug.r_map = l;
2077 	return;
2078     }
2079 
2080     /*
2081      * Scan to the end of the list, but not past the entry for the
2082      * dynamic linker, which we want to keep at the very end.
2083      */
2084     for (prev = r_debug.r_map;
2085       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2086       prev = prev->l_next)
2087 	;
2088 
2089     /* Link in the new entry. */
2090     l->l_prev = prev;
2091     l->l_next = prev->l_next;
2092     if (l->l_next != NULL)
2093 	l->l_next->l_prev = l;
2094     prev->l_next = l;
2095 }
2096 
2097 static void
2098 linkmap_delete(Obj_Entry *obj)
2099 {
2100     struct link_map *l = &obj->linkmap;
2101 
2102     if (l->l_prev == NULL) {
2103 	if ((r_debug.r_map = l->l_next) != NULL)
2104 	    l->l_next->l_prev = NULL;
2105 	return;
2106     }
2107 
2108     if ((l->l_prev->l_next = l->l_next) != NULL)
2109 	l->l_next->l_prev = l->l_prev;
2110 }
2111 
2112 /*
2113  * Function for the debugger to set a breakpoint on to gain control.
2114  *
2115  * The two parameters allow the debugger to easily find and determine
2116  * what the runtime loader is doing and to whom it is doing it.
2117  *
2118  * When the loadhook trap is hit (r_debug_state, set at program
2119  * initialization), the arguments can be found on the stack:
2120  *
2121  *  +8   struct link_map *m
2122  *  +4   struct r_debug  *rd
2123  *  +0   RetAddr
2124  */
2125 void
2126 r_debug_state(struct r_debug* rd, struct link_map *m)
2127 {
2128 }
2129 
2130 /*
2131  * Get address of the pointer variable in the main program.
2132  */
2133 static const void **
2134 get_program_var_addr(const char *name)
2135 {
2136     const Obj_Entry *obj;
2137     unsigned long hash;
2138 
2139     hash = elf_hash(name);
2140     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2141 	const Elf_Sym *def;
2142 
2143 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2144 	    const void **addr;
2145 
2146 	    addr = (const void **)(obj->relocbase + def->st_value);
2147 	    return addr;
2148 	}
2149     }
2150     return NULL;
2151 }
2152 
2153 /*
2154  * Set a pointer variable in the main program to the given value.  This
2155  * is used to set key variables such as "environ" before any of the
2156  * init functions are called.
2157  */
2158 static void
2159 set_program_var(const char *name, const void *value)
2160 {
2161     const void **addr;
2162 
2163     if ((addr = get_program_var_addr(name)) != NULL) {
2164 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2165 	*addr = value;
2166     }
2167 }
2168 
2169 /*
2170  * Given a symbol name in a referencing object, find the corresponding
2171  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2172  * no definition was found.  Returns a pointer to the Obj_Entry of the
2173  * defining object via the reference parameter DEFOBJ_OUT.
2174  */
2175 static const Elf_Sym *
2176 symlook_default(const char *name, unsigned long hash,
2177     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2178 {
2179     DoneList donelist;
2180     const Elf_Sym *def;
2181     const Elf_Sym *symp;
2182     const Obj_Entry *obj;
2183     const Obj_Entry *defobj;
2184     const Objlist_Entry *elm;
2185     def = NULL;
2186     defobj = NULL;
2187     donelist_init(&donelist);
2188 
2189     /* Look first in the referencing object if linked symbolically. */
2190     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2191 	symp = symlook_obj(name, hash, refobj, in_plt);
2192 	if (symp != NULL) {
2193 	    def = symp;
2194 	    defobj = refobj;
2195 	}
2196     }
2197 
2198     /* Search all objects loaded at program start up. */
2199     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2200 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2201 	if (symp != NULL &&
2202 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2203 	    def = symp;
2204 	    defobj = obj;
2205 	}
2206     }
2207 
2208     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2209     STAILQ_FOREACH(elm, &list_global, link) {
2210        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2211            break;
2212        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2213          &donelist);
2214 	if (symp != NULL &&
2215 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2216 	    def = symp;
2217 	    defobj = obj;
2218 	}
2219     }
2220 
2221     /* Search all dlopened DAGs containing the referencing object. */
2222     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2223 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2224 	    break;
2225 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2226 	  &donelist);
2227 	if (symp != NULL &&
2228 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2229 	    def = symp;
2230 	    defobj = obj;
2231 	}
2232     }
2233 
2234     /*
2235      * Search the dynamic linker itself, and possibly resolve the
2236      * symbol from there.  This is how the application links to
2237      * dynamic linker services such as dlopen.  Only the values listed
2238      * in the "exports" array can be resolved from the dynamic linker.
2239      */
2240     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2241 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2242 	if (symp != NULL && is_exported(symp)) {
2243 	    def = symp;
2244 	    defobj = &obj_rtld;
2245 	}
2246     }
2247 
2248     if (def != NULL)
2249 	*defobj_out = defobj;
2250     return def;
2251 }
2252 
2253 static const Elf_Sym *
2254 symlook_list(const char *name, unsigned long hash, Objlist *objlist,
2255   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2256 {
2257     const Elf_Sym *symp;
2258     const Elf_Sym *def;
2259     const Obj_Entry *defobj;
2260     const Objlist_Entry *elm;
2261 
2262     def = NULL;
2263     defobj = NULL;
2264     STAILQ_FOREACH(elm, objlist, link) {
2265 	if (donelist_check(dlp, elm->obj))
2266 	    continue;
2267 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2268 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2269 		def = symp;
2270 		defobj = elm->obj;
2271 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2272 		    break;
2273 	    }
2274 	}
2275     }
2276     if (def != NULL)
2277 	*defobj_out = defobj;
2278     return def;
2279 }
2280 
2281 /*
2282  * Search the symbol table of a single shared object for a symbol of
2283  * the given name.  Returns a pointer to the symbol, or NULL if no
2284  * definition was found.
2285  *
2286  * The symbol's hash value is passed in for efficiency reasons; that
2287  * eliminates many recomputations of the hash value.
2288  */
2289 const Elf_Sym *
2290 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2291   bool in_plt)
2292 {
2293     if (obj->buckets != NULL) {
2294 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2295 
2296 	while (symnum != STN_UNDEF) {
2297 	    const Elf_Sym *symp;
2298 	    const char *strp;
2299 
2300 	    if (symnum >= obj->nchains)
2301 		return NULL;	/* Bad object */
2302 	    symp = obj->symtab + symnum;
2303 	    strp = obj->strtab + symp->st_name;
2304 
2305 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2306 		return symp->st_shndx != SHN_UNDEF ||
2307 		  (!in_plt && symp->st_value != 0 &&
2308 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2309 
2310 	    symnum = obj->chains[symnum];
2311 	}
2312     }
2313     return NULL;
2314 }
2315 
2316 static void
2317 trace_loaded_objects(Obj_Entry *obj)
2318 {
2319     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2320     int		c;
2321 
2322     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2323 	main_local = "";
2324 
2325     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2326 	fmt1 = "\t%o => %p (%x)\n";
2327 
2328     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2329 	fmt2 = "\t%o (%x)\n";
2330 
2331     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2332 
2333     for (; obj; obj = obj->next) {
2334 	Needed_Entry		*needed;
2335 	char			*name, *path;
2336 	bool			is_lib;
2337 
2338 	if (list_containers && obj->needed != NULL)
2339 	    printf("%s:\n", obj->path);
2340 	for (needed = obj->needed; needed; needed = needed->next) {
2341 	    if (needed->obj != NULL) {
2342 		if (needed->obj->traced && !list_containers)
2343 		    continue;
2344 		needed->obj->traced = true;
2345 		path = needed->obj->path;
2346 	    } else
2347 		path = "not found";
2348 
2349 	    name = (char *)obj->strtab + needed->name;
2350 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2351 
2352 	    fmt = is_lib ? fmt1 : fmt2;
2353 	    while ((c = *fmt++) != '\0') {
2354 		switch (c) {
2355 		default:
2356 		    putchar(c);
2357 		    continue;
2358 		case '\\':
2359 		    switch (c = *fmt) {
2360 		    case '\0':
2361 			continue;
2362 		    case 'n':
2363 			putchar('\n');
2364 			break;
2365 		    case 't':
2366 			putchar('\t');
2367 			break;
2368 		    }
2369 		    break;
2370 		case '%':
2371 		    switch (c = *fmt) {
2372 		    case '\0':
2373 			continue;
2374 		    case '%':
2375 		    default:
2376 			putchar(c);
2377 			break;
2378 		    case 'A':
2379 			printf("%s", main_local);
2380 			break;
2381 		    case 'a':
2382 			printf("%s", obj_main->path);
2383 			break;
2384 		    case 'o':
2385 			printf("%s", name);
2386 			break;
2387 #if 0
2388 		    case 'm':
2389 			printf("%d", sodp->sod_major);
2390 			break;
2391 		    case 'n':
2392 			printf("%d", sodp->sod_minor);
2393 			break;
2394 #endif
2395 		    case 'p':
2396 			printf("%s", path);
2397 			break;
2398 		    case 'x':
2399 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2400 			break;
2401 		    }
2402 		    break;
2403 		}
2404 		++fmt;
2405 	    }
2406 	}
2407     }
2408 }
2409 
2410 /*
2411  * Unload a dlopened object and its dependencies from memory and from
2412  * our data structures.  It is assumed that the DAG rooted in the
2413  * object has already been unreferenced, and that the object has a
2414  * reference count of 0.
2415  */
2416 static void
2417 unload_object(Obj_Entry *root)
2418 {
2419     Obj_Entry *obj;
2420     Obj_Entry **linkp;
2421 
2422     assert(root->refcount == 0);
2423 
2424     /*
2425      * Pass over the DAG removing unreferenced objects from
2426      * appropriate lists.
2427      */
2428     unlink_object(root);
2429 
2430     /* Unmap all objects that are no longer referenced. */
2431     linkp = &obj_list->next;
2432     while ((obj = *linkp) != NULL) {
2433 	if (obj->refcount == 0) {
2434 	    dbg("unloading \"%s\"", obj->path);
2435 	    munmap(obj->mapbase, obj->mapsize);
2436 	    linkmap_delete(obj);
2437 	    *linkp = obj->next;
2438 	    obj_count--;
2439 	    obj_free(obj);
2440 	} else
2441 	    linkp = &obj->next;
2442     }
2443     obj_tail = linkp;
2444 }
2445 
2446 static void
2447 unlink_object(Obj_Entry *root)
2448 {
2449     Objlist_Entry *elm;
2450 
2451     if (root->refcount == 0) {
2452 	/* Remove the object from the RTLD_GLOBAL list. */
2453 	objlist_remove(&list_global, root);
2454 
2455     	/* Remove the object from all objects' DAG lists. */
2456     	STAILQ_FOREACH(elm, &root->dagmembers , link) {
2457 	    objlist_remove(&elm->obj->dldags, root);
2458 	    if (elm->obj != root)
2459 		unlink_object(elm->obj);
2460 	}
2461     }
2462 }
2463 
2464 static void
2465 ref_dag(Obj_Entry *root)
2466 {
2467     Objlist_Entry *elm;
2468 
2469     STAILQ_FOREACH(elm, &root->dagmembers , link)
2470 	elm->obj->refcount++;
2471 }
2472 
2473 static void
2474 unref_dag(Obj_Entry *root)
2475 {
2476     Objlist_Entry *elm;
2477 
2478     STAILQ_FOREACH(elm, &root->dagmembers , link)
2479 	elm->obj->refcount--;
2480 }
2481 
2482 /*
2483  * Common code for MD __tls_get_addr().
2484  */
2485 void *
2486 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2487 {
2488     Elf_Addr* dtv = *dtvp;
2489 
2490     /* Check dtv generation in case new modules have arrived */
2491     if (dtv[0] != tls_dtv_generation) {
2492 	Elf_Addr* newdtv;
2493 	int to_copy;
2494 
2495 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2496 	to_copy = dtv[1];
2497 	if (to_copy > tls_max_index)
2498 	    to_copy = tls_max_index;
2499 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2500 	newdtv[0] = tls_dtv_generation;
2501 	newdtv[1] = tls_max_index;
2502 	free(dtv);
2503 	*dtvp = newdtv;
2504     }
2505 
2506     /* Dynamically allocate module TLS if necessary */
2507     if (!dtv[index + 1])
2508 	dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2509 
2510     return (void*) (dtv[index + 1] + offset);
2511 }
2512 
2513 /* XXX not sure what variants to use for arm. */
2514 
2515 #if defined(__ia64__) || defined(__alpha__) || defined(__powerpc__)
2516 
2517 /*
2518  * Allocate Static TLS using the Variant I method.
2519  */
2520 void *
2521 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2522 {
2523     Obj_Entry *obj;
2524     size_t size;
2525     char *tls;
2526     Elf_Addr *dtv, *olddtv;
2527     Elf_Addr addr;
2528     int i;
2529 
2530     size = tls_static_space;
2531 
2532     tls = malloc(size);
2533     dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2534 
2535     *(Elf_Addr**) tls = dtv;
2536 
2537     dtv[0] = tls_dtv_generation;
2538     dtv[1] = tls_max_index;
2539 
2540     if (oldtls) {
2541 	/*
2542 	 * Copy the static TLS block over whole.
2543 	 */
2544 	memcpy(tls + tcbsize, oldtls + tcbsize, tls_static_space - tcbsize);
2545 
2546 	/*
2547 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2548 	 * move them over.
2549 	 */
2550 	olddtv = *(Elf_Addr**) oldtls;
2551 	for (i = 0; i < olddtv[1]; i++) {
2552 	    if (olddtv[i+2] < (Elf_Addr)oldtls ||
2553 		olddtv[i+2] > (Elf_Addr)oldtls + tls_static_space) {
2554 		dtv[i+2] = olddtv[i+2];
2555 		olddtv[i+2] = 0;
2556 	    }
2557 	}
2558 
2559 	/*
2560 	 * We assume that all tls blocks are allocated with the same
2561 	 * size and alignment.
2562 	 */
2563 	free_tls(oldtls, tcbsize, tcbalign);
2564     } else {
2565 	for (obj = objs; obj; obj = obj->next) {
2566 	    if (obj->tlsoffset) {
2567 		addr = (Elf_Addr)tls + obj->tlsoffset;
2568 		memset((void*) (addr + obj->tlsinitsize),
2569 		       0, obj->tlssize - obj->tlsinitsize);
2570 		if (obj->tlsinit)
2571 		    memcpy((void*) addr, obj->tlsinit,
2572 			   obj->tlsinitsize);
2573 		dtv[obj->tlsindex + 1] = addr;
2574 	    } else if (obj->tlsindex) {
2575 		dtv[obj->tlsindex + 1] = 0;
2576 	    }
2577 	}
2578     }
2579 
2580     return tls;
2581 }
2582 
2583 void
2584 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2585 {
2586     size_t size;
2587     Elf_Addr* dtv;
2588     int dtvsize, i;
2589     Elf_Addr tlsstart, tlsend;
2590 
2591     /*
2592      * Figure out the size of the initial TLS block so that we can
2593      * find stuff which __tls_get_addr() allocated dynamically.
2594      */
2595     size = tls_static_space;
2596 
2597     dtv = ((Elf_Addr**)tls)[0];
2598     dtvsize = dtv[1];
2599     tlsstart = (Elf_Addr) tls;
2600     tlsend = tlsstart + size;
2601     for (i = 0; i < dtvsize; i++) {
2602 	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2603 	    free((void*) dtv[i+2]);
2604 	}
2605     }
2606 
2607     free((void*) tlsstart);
2608 }
2609 
2610 #endif
2611 
2612 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2613     defined(__arm__)
2614 
2615 /*
2616  * Allocate Static TLS using the Variant II method.
2617  */
2618 void *
2619 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2620 {
2621     Obj_Entry *obj;
2622     size_t size;
2623     char *tls;
2624     Elf_Addr *dtv, *olddtv;
2625     Elf_Addr segbase, oldsegbase, addr;
2626     int i;
2627 
2628     size = round(tls_static_space, tcbalign);
2629 
2630     assert(tcbsize >= 2*sizeof(Elf_Addr));
2631     tls = malloc(size + tcbsize);
2632     dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2633 
2634     segbase = (Elf_Addr)(tls + size);
2635     ((Elf_Addr*)segbase)[0] = segbase;
2636     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
2637 
2638     dtv[0] = tls_dtv_generation;
2639     dtv[1] = tls_max_index;
2640 
2641     if (oldtls) {
2642 	/*
2643 	 * Copy the static TLS block over whole.
2644 	 */
2645 	oldsegbase = (Elf_Addr) oldtls;
2646 	memcpy((void *)(segbase - tls_static_space),
2647 	       (const void *)(oldsegbase - tls_static_space),
2648 	       tls_static_space);
2649 
2650 	/*
2651 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2652 	 * move them over.
2653 	 */
2654 	olddtv = ((Elf_Addr**)oldsegbase)[1];
2655 	for (i = 0; i < olddtv[1]; i++) {
2656 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
2657 		dtv[i+2] = olddtv[i+2];
2658 		olddtv[i+2] = 0;
2659 	    }
2660 	}
2661 
2662 	/*
2663 	 * We assume that this block was the one we created with
2664 	 * allocate_initial_tls().
2665 	 */
2666 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
2667     } else {
2668 	for (obj = objs; obj; obj = obj->next) {
2669 	    if (obj->tlsoffset) {
2670 		addr = segbase - obj->tlsoffset;
2671 		memset((void*) (addr + obj->tlsinitsize),
2672 		       0, obj->tlssize - obj->tlsinitsize);
2673 		if (obj->tlsinit)
2674 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2675 		dtv[obj->tlsindex + 1] = addr;
2676 	    } else if (obj->tlsindex) {
2677 		dtv[obj->tlsindex + 1] = 0;
2678 	    }
2679 	}
2680     }
2681 
2682     return (void*) segbase;
2683 }
2684 
2685 void
2686 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2687 {
2688     size_t size;
2689     Elf_Addr* dtv;
2690     int dtvsize, i;
2691     Elf_Addr tlsstart, tlsend;
2692 
2693     /*
2694      * Figure out the size of the initial TLS block so that we can
2695      * find stuff which ___tls_get_addr() allocated dynamically.
2696      */
2697     size = round(tls_static_space, tcbalign);
2698 
2699     dtv = ((Elf_Addr**)tls)[1];
2700     dtvsize = dtv[1];
2701     tlsend = (Elf_Addr) tls;
2702     tlsstart = tlsend - size;
2703     for (i = 0; i < dtvsize; i++) {
2704 	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2705 	    free((void*) dtv[i+2]);
2706 	}
2707     }
2708 
2709     free((void*) tlsstart);
2710 }
2711 
2712 #endif
2713 
2714 /*
2715  * Allocate TLS block for module with given index.
2716  */
2717 void *
2718 allocate_module_tls(int index)
2719 {
2720     Obj_Entry* obj;
2721     char* p;
2722 
2723     for (obj = obj_list; obj; obj = obj->next) {
2724 	if (obj->tlsindex == index)
2725 	    break;
2726     }
2727     if (!obj) {
2728 	_rtld_error("Can't find module with TLS index %d", index);
2729 	die();
2730     }
2731 
2732     p = malloc(obj->tlssize);
2733     memcpy(p, obj->tlsinit, obj->tlsinitsize);
2734     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2735 
2736     return p;
2737 }
2738 
2739 bool
2740 allocate_tls_offset(Obj_Entry *obj)
2741 {
2742     size_t off;
2743 
2744     if (obj->tls_done)
2745 	return true;
2746 
2747     if (obj->tlssize == 0) {
2748 	obj->tls_done = true;
2749 	return true;
2750     }
2751 
2752     if (obj->tlsindex == 1)
2753 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2754     else
2755 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2756 				   obj->tlssize, obj->tlsalign);
2757 
2758     /*
2759      * If we have already fixed the size of the static TLS block, we
2760      * must stay within that size. When allocating the static TLS, we
2761      * leave a small amount of space spare to be used for dynamically
2762      * loading modules which use static TLS.
2763      */
2764     if (tls_static_space) {
2765 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2766 	    return false;
2767     }
2768 
2769     tls_last_offset = obj->tlsoffset = off;
2770     tls_last_size = obj->tlssize;
2771     obj->tls_done = true;
2772 
2773     return true;
2774 }
2775 
2776 void *
2777 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
2778 {
2779     return allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
2780 }
2781 
2782 void
2783 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2784 {
2785     free_tls(tcb, tcbsize, tcbalign);
2786 }
2787