xref: /freebsd/libexec/rtld-elf/rtld.c (revision 6871d4882591c9a8fcab24d084c93f0a2972e1af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern char* __progname;
81 extern void (*__cleanup)(void);
82 
83 
84 /*
85  * Function declarations.
86  */
87 static const char *basename(const char *);
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **, const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
91     const Elf_Dyn *);
92 static void digest_dynamic(Obj_Entry *, int);
93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
94 static Obj_Entry *dlcheck(void *);
95 static int dlclose_locked(void *, RtldLockState *);
96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
97     int lo_flags, int mode, RtldLockState *lockstate);
98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
100 static bool donelist_check(DoneList *, const Obj_Entry *);
101 static void errmsg_restore(char *);
102 static char *errmsg_save(void);
103 static void *fill_search_info(const char *, size_t, void *);
104 static char *find_library(const char *, const Obj_Entry *, int *);
105 static const char *gethints(bool);
106 static void hold_object(Obj_Entry *);
107 static void unhold_object(Obj_Entry *);
108 static void init_dag(Obj_Entry *);
109 static void init_marker(Obj_Entry *);
110 static void init_pagesizes(Elf_Auxinfo **aux_info);
111 static void init_rtld(caddr_t, Elf_Auxinfo **);
112 static void initlist_add_neededs(Needed_Entry *, Objlist *);
113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
114 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
115 static void linkmap_add(Obj_Entry *);
116 static void linkmap_delete(Obj_Entry *);
117 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
118 static void unload_filtees(Obj_Entry *, RtldLockState *);
119 static int load_needed_objects(Obj_Entry *, int);
120 static int load_preload_objects(void);
121 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
122 static void map_stacks_exec(RtldLockState *);
123 static int obj_disable_relro(Obj_Entry *);
124 static int obj_enforce_relro(Obj_Entry *);
125 static Obj_Entry *obj_from_addr(const void *);
126 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
127 static void objlist_call_init(Objlist *, RtldLockState *);
128 static void objlist_clear(Objlist *);
129 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
130 static void objlist_init(Objlist *);
131 static void objlist_push_head(Objlist *, Obj_Entry *);
132 static void objlist_push_tail(Objlist *, Obj_Entry *);
133 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
134 static void objlist_remove(Objlist *, Obj_Entry *);
135 static int open_binary_fd(const char *argv0, bool search_in_path);
136 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
137 static int parse_integer(const char *);
138 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
139 static void print_usage(const char *argv0);
140 static void release_object(Obj_Entry *);
141 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
142     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
143 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
144     int flags, RtldLockState *lockstate);
145 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
146     RtldLockState *);
147 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
148 static int rtld_dirname(const char *, char *);
149 static int rtld_dirname_abs(const char *, char *);
150 static void *rtld_dlopen(const char *name, int fd, int mode);
151 static void rtld_exit(void);
152 static char *search_library_path(const char *, const char *, const char *,
153     int *);
154 static char *search_library_pathfds(const char *, const char *, int *);
155 static const void **get_program_var_addr(const char *, RtldLockState *);
156 static void set_program_var(const char *, const void *);
157 static int symlook_default(SymLook *, const Obj_Entry *refobj);
158 static int symlook_global(SymLook *, DoneList *);
159 static void symlook_init_from_req(SymLook *, const SymLook *);
160 static int symlook_list(SymLook *, const Objlist *, DoneList *);
161 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
162 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
163 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
164 static void trace_loaded_objects(Obj_Entry *);
165 static void unlink_object(Obj_Entry *);
166 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
167 static void unref_dag(Obj_Entry *);
168 static void ref_dag(Obj_Entry *);
169 static char *origin_subst_one(Obj_Entry *, char *, const char *,
170     const char *, bool);
171 static char *origin_subst(Obj_Entry *, const char *);
172 static bool obj_resolve_origin(Obj_Entry *obj);
173 static void preinit_main(void);
174 static int  rtld_verify_versions(const Objlist *);
175 static int  rtld_verify_object_versions(Obj_Entry *);
176 static void object_add_name(Obj_Entry *, const char *);
177 static int  object_match_name(const Obj_Entry *, const char *);
178 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
179 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
180     struct dl_phdr_info *phdr_info);
181 static uint32_t gnu_hash(const char *);
182 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
183     const unsigned long);
184 
185 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
186 void _r_debug_postinit(struct link_map *) __noinline __exported;
187 
188 int __sys_openat(int, const char *, int, ...);
189 
190 /*
191  * Data declarations.
192  */
193 static char *error_message;	/* Message for dlerror(), or NULL */
194 struct r_debug r_debug __exported;	/* for GDB; */
195 static bool libmap_disable;	/* Disable libmap */
196 static bool ld_loadfltr;	/* Immediate filters processing */
197 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
198 static bool trust;		/* False for setuid and setgid programs */
199 static bool dangerous_ld_env;	/* True if environment variables have been
200 				   used to affect the libraries loaded */
201 bool ld_bind_not;		/* Disable PLT update */
202 static char *ld_bind_now;	/* Environment variable for immediate binding */
203 static char *ld_debug;		/* Environment variable for debugging */
204 static char *ld_library_path;	/* Environment variable for search path */
205 static char *ld_library_dirs;	/* Environment variable for library descriptors */
206 static char *ld_preload;	/* Environment variable for libraries to
207 				   load first */
208 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
209 static const char *ld_tracing;	/* Called from ldd to print libs */
210 static char *ld_utrace;		/* Use utrace() to log events. */
211 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
212 static Obj_Entry *obj_main;	/* The main program shared object */
213 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
214 static unsigned int obj_count;	/* Number of objects in obj_list */
215 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
216 
217 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
218   STAILQ_HEAD_INITIALIZER(list_global);
219 static Objlist list_main =	/* Objects loaded at program startup */
220   STAILQ_HEAD_INITIALIZER(list_main);
221 static Objlist list_fini =	/* Objects needing fini() calls */
222   STAILQ_HEAD_INITIALIZER(list_fini);
223 
224 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
225 
226 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
227 
228 extern Elf_Dyn _DYNAMIC;
229 #pragma weak _DYNAMIC
230 
231 int dlclose(void *) __exported;
232 char *dlerror(void) __exported;
233 void *dlopen(const char *, int) __exported;
234 void *fdlopen(int, int) __exported;
235 void *dlsym(void *, const char *) __exported;
236 dlfunc_t dlfunc(void *, const char *) __exported;
237 void *dlvsym(void *, const char *, const char *) __exported;
238 int dladdr(const void *, Dl_info *) __exported;
239 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
240     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
241 int dlinfo(void *, int , void *) __exported;
242 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
243 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
244 int _rtld_get_stack_prot(void) __exported;
245 int _rtld_is_dlopened(void *) __exported;
246 void _rtld_error(const char *, ...) __exported;
247 
248 /* Only here to fix -Wmissing-prototypes warnings */
249 int __getosreldate(void);
250 void __pthread_cxa_finalize(struct dl_phdr_info *a);
251 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
252 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
253 
254 
255 int npagesizes;
256 static int osreldate;
257 size_t *pagesizes;
258 
259 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
260 static int max_stack_flags;
261 
262 /*
263  * Global declarations normally provided by crt1.  The dynamic linker is
264  * not built with crt1, so we have to provide them ourselves.
265  */
266 char *__progname;
267 char **environ;
268 
269 /*
270  * Used to pass argc, argv to init functions.
271  */
272 int main_argc;
273 char **main_argv;
274 
275 /*
276  * Globals to control TLS allocation.
277  */
278 size_t tls_last_offset;		/* Static TLS offset of last module */
279 size_t tls_last_size;		/* Static TLS size of last module */
280 size_t tls_static_space;	/* Static TLS space allocated */
281 static size_t tls_static_max_align;
282 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
283 int tls_max_index = 1;		/* Largest module index allocated */
284 
285 static bool ld_library_path_rpath = false;
286 
287 /*
288  * Globals for path names, and such
289  */
290 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
291 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
292 const char *ld_path_rtld = _PATH_RTLD;
293 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
294 const char *ld_env_prefix = LD_;
295 
296 /*
297  * Fill in a DoneList with an allocation large enough to hold all of
298  * the currently-loaded objects.  Keep this as a macro since it calls
299  * alloca and we want that to occur within the scope of the caller.
300  */
301 #define donelist_init(dlp)					\
302     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
303     assert((dlp)->objs != NULL),				\
304     (dlp)->num_alloc = obj_count,				\
305     (dlp)->num_used = 0)
306 
307 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
308 	if (ld_utrace != NULL)					\
309 		ld_utrace_log(e, h, mb, ms, r, n);		\
310 } while (0)
311 
312 static void
313 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
314     int refcnt, const char *name)
315 {
316 	struct utrace_rtld ut;
317 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
318 
319 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
320 	ut.event = event;
321 	ut.handle = handle;
322 	ut.mapbase = mapbase;
323 	ut.mapsize = mapsize;
324 	ut.refcnt = refcnt;
325 	bzero(ut.name, sizeof(ut.name));
326 	if (name)
327 		strlcpy(ut.name, name, sizeof(ut.name));
328 	utrace(&ut, sizeof(ut));
329 }
330 
331 #ifdef RTLD_VARIANT_ENV_NAMES
332 /*
333  * construct the env variable based on the type of binary that's
334  * running.
335  */
336 static inline const char *
337 _LD(const char *var)
338 {
339 	static char buffer[128];
340 
341 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
342 	strlcat(buffer, var, sizeof(buffer));
343 	return (buffer);
344 }
345 #else
346 #define _LD(x)	LD_ x
347 #endif
348 
349 /*
350  * Main entry point for dynamic linking.  The first argument is the
351  * stack pointer.  The stack is expected to be laid out as described
352  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
353  * Specifically, the stack pointer points to a word containing
354  * ARGC.  Following that in the stack is a null-terminated sequence
355  * of pointers to argument strings.  Then comes a null-terminated
356  * sequence of pointers to environment strings.  Finally, there is a
357  * sequence of "auxiliary vector" entries.
358  *
359  * The second argument points to a place to store the dynamic linker's
360  * exit procedure pointer and the third to a place to store the main
361  * program's object.
362  *
363  * The return value is the main program's entry point.
364  */
365 func_ptr_type
366 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
367 {
368     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
369     Objlist_Entry *entry;
370     Obj_Entry *last_interposer, *obj, *preload_tail;
371     const Elf_Phdr *phdr;
372     Objlist initlist;
373     RtldLockState lockstate;
374     struct stat st;
375     Elf_Addr *argcp;
376     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
377     const char *argv0;
378     caddr_t imgentry;
379     char buf[MAXPATHLEN];
380     int argc, fd, i, phnum, rtld_argc;
381     bool dir_enable, explicit_fd, search_in_path;
382 
383     /*
384      * On entry, the dynamic linker itself has not been relocated yet.
385      * Be very careful not to reference any global data until after
386      * init_rtld has returned.  It is OK to reference file-scope statics
387      * and string constants, and to call static and global functions.
388      */
389 
390     /* Find the auxiliary vector on the stack. */
391     argcp = sp;
392     argc = *sp++;
393     argv = (char **) sp;
394     sp += argc + 1;	/* Skip over arguments and NULL terminator */
395     env = (char **) sp;
396     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
397 	;
398     aux = (Elf_Auxinfo *) sp;
399 
400     /* Digest the auxiliary vector. */
401     for (i = 0;  i < AT_COUNT;  i++)
402 	aux_info[i] = NULL;
403     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
404 	if (auxp->a_type < AT_COUNT)
405 	    aux_info[auxp->a_type] = auxp;
406     }
407 
408     /* Initialize and relocate ourselves. */
409     assert(aux_info[AT_BASE] != NULL);
410     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
411 
412     __progname = obj_rtld.path;
413     argv0 = argv[0] != NULL ? argv[0] : "(null)";
414     environ = env;
415     main_argc = argc;
416     main_argv = argv;
417 
418     trust = !issetugid();
419 
420     md_abi_variant_hook(aux_info);
421 
422     fd = -1;
423     if (aux_info[AT_EXECFD] != NULL) {
424 	fd = aux_info[AT_EXECFD]->a_un.a_val;
425     } else {
426 	assert(aux_info[AT_PHDR] != NULL);
427 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
428 	if (phdr == obj_rtld.phdr) {
429 	    if (!trust) {
430 		_rtld_error("Tainted process refusing to run binary %s",
431 		    argv0);
432 		rtld_die();
433 	    }
434 	    dbg("opening main program in direct exec mode");
435 	    if (argc >= 2) {
436 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
437 		argv0 = argv[rtld_argc];
438 		explicit_fd = (fd != -1);
439 		if (!explicit_fd)
440 		    fd = open_binary_fd(argv0, search_in_path);
441 		if (fstat(fd, &st) == -1) {
442 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
443 		      explicit_fd ? "user-provided descriptor" : argv0,
444 		      rtld_strerror(errno));
445 		    rtld_die();
446 		}
447 
448 		/*
449 		 * Rough emulation of the permission checks done by
450 		 * execve(2), only Unix DACs are checked, ACLs are
451 		 * ignored.  Preserve the semantic of disabling owner
452 		 * to execute if owner x bit is cleared, even if
453 		 * others x bit is enabled.
454 		 * mmap(2) does not allow to mmap with PROT_EXEC if
455 		 * binary' file comes from noexec mount.  We cannot
456 		 * set VV_TEXT on the binary.
457 		 */
458 		dir_enable = false;
459 		if (st.st_uid == geteuid()) {
460 		    if ((st.st_mode & S_IXUSR) != 0)
461 			dir_enable = true;
462 		} else if (st.st_gid == getegid()) {
463 		    if ((st.st_mode & S_IXGRP) != 0)
464 			dir_enable = true;
465 		} else if ((st.st_mode & S_IXOTH) != 0) {
466 		    dir_enable = true;
467 		}
468 		if (!dir_enable) {
469 		    _rtld_error("No execute permission for binary %s",
470 		        argv0);
471 		    rtld_die();
472 		}
473 
474 		/*
475 		 * For direct exec mode, argv[0] is the interpreter
476 		 * name, we must remove it and shift arguments left
477 		 * before invoking binary main.  Since stack layout
478 		 * places environment pointers and aux vectors right
479 		 * after the terminating NULL, we must shift
480 		 * environment and aux as well.
481 		 */
482 		main_argc = argc - rtld_argc;
483 		for (i = 0; i <= main_argc; i++)
484 		    argv[i] = argv[i + rtld_argc];
485 		*argcp -= rtld_argc;
486 		environ = env = envp = argv + main_argc + 1;
487 		do {
488 		    *envp = *(envp + rtld_argc);
489 		    envp++;
490 		} while (*envp != NULL);
491 		aux = auxp = (Elf_Auxinfo *)envp;
492 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
493 		for (;; auxp++, auxpf++) {
494 		    *auxp = *auxpf;
495 		    if (auxp->a_type == AT_NULL)
496 			    break;
497 		}
498 	    } else {
499 		_rtld_error("No binary");
500 		rtld_die();
501 	    }
502 	}
503     }
504 
505     ld_bind_now = getenv(_LD("BIND_NOW"));
506 
507     /*
508      * If the process is tainted, then we un-set the dangerous environment
509      * variables.  The process will be marked as tainted until setuid(2)
510      * is called.  If any child process calls setuid(2) we do not want any
511      * future processes to honor the potentially un-safe variables.
512      */
513     if (!trust) {
514 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
515 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
516 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
517 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
518 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
519 		_rtld_error("environment corrupt; aborting");
520 		rtld_die();
521 	}
522     }
523     ld_debug = getenv(_LD("DEBUG"));
524     if (ld_bind_now == NULL)
525 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
526     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
527     libmap_override = getenv(_LD("LIBMAP"));
528     ld_library_path = getenv(_LD("LIBRARY_PATH"));
529     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
530     ld_preload = getenv(_LD("PRELOAD"));
531     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
532     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
533     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
534     if (library_path_rpath != NULL) {
535 	    if (library_path_rpath[0] == 'y' ||
536 		library_path_rpath[0] == 'Y' ||
537 		library_path_rpath[0] == '1')
538 		    ld_library_path_rpath = true;
539 	    else
540 		    ld_library_path_rpath = false;
541     }
542     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
543 	(ld_library_path != NULL) || (ld_preload != NULL) ||
544 	(ld_elf_hints_path != NULL) || ld_loadfltr;
545     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
546     ld_utrace = getenv(_LD("UTRACE"));
547 
548     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
549 	ld_elf_hints_path = ld_elf_hints_default;
550 
551     if (ld_debug != NULL && *ld_debug != '\0')
552 	debug = 1;
553     dbg("%s is initialized, base address = %p", __progname,
554 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
555     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
556     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
557 
558     dbg("initializing thread locks");
559     lockdflt_init();
560 
561     /*
562      * Load the main program, or process its program header if it is
563      * already loaded.
564      */
565     if (fd != -1) {	/* Load the main program. */
566 	dbg("loading main program");
567 	obj_main = map_object(fd, argv0, NULL);
568 	close(fd);
569 	if (obj_main == NULL)
570 	    rtld_die();
571 	max_stack_flags = obj_main->stack_flags;
572     } else {				/* Main program already loaded. */
573 	dbg("processing main program's program header");
574 	assert(aux_info[AT_PHDR] != NULL);
575 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
576 	assert(aux_info[AT_PHNUM] != NULL);
577 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
578 	assert(aux_info[AT_PHENT] != NULL);
579 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
580 	assert(aux_info[AT_ENTRY] != NULL);
581 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
582 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
583 	    rtld_die();
584     }
585 
586     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
587 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
588 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
589 	    if (kexecpath[0] == '/')
590 		    obj_main->path = kexecpath;
591 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
592 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
593 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
594 		    obj_main->path = xstrdup(argv0);
595 	    else
596 		    obj_main->path = xstrdup(buf);
597     } else {
598 	    dbg("No AT_EXECPATH or direct exec");
599 	    obj_main->path = xstrdup(argv0);
600     }
601     dbg("obj_main path %s", obj_main->path);
602     obj_main->mainprog = true;
603 
604     if (aux_info[AT_STACKPROT] != NULL &&
605       aux_info[AT_STACKPROT]->a_un.a_val != 0)
606 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
607 
608 #ifndef COMPAT_32BIT
609     /*
610      * Get the actual dynamic linker pathname from the executable if
611      * possible.  (It should always be possible.)  That ensures that
612      * gdb will find the right dynamic linker even if a non-standard
613      * one is being used.
614      */
615     if (obj_main->interp != NULL &&
616       strcmp(obj_main->interp, obj_rtld.path) != 0) {
617 	free(obj_rtld.path);
618 	obj_rtld.path = xstrdup(obj_main->interp);
619         __progname = obj_rtld.path;
620     }
621 #endif
622 
623     digest_dynamic(obj_main, 0);
624     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
625 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
626 	obj_main->dynsymcount);
627 
628     linkmap_add(obj_main);
629     linkmap_add(&obj_rtld);
630 
631     /* Link the main program into the list of objects. */
632     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
633     obj_count++;
634     obj_loads++;
635 
636     /* Initialize a fake symbol for resolving undefined weak references. */
637     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
638     sym_zero.st_shndx = SHN_UNDEF;
639     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
640 
641     if (!libmap_disable)
642         libmap_disable = (bool)lm_init(libmap_override);
643 
644     dbg("loading LD_PRELOAD libraries");
645     if (load_preload_objects() == -1)
646 	rtld_die();
647     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
648 
649     dbg("loading needed objects");
650     if (load_needed_objects(obj_main, 0) == -1)
651 	rtld_die();
652 
653     /* Make a list of all objects loaded at startup. */
654     last_interposer = obj_main;
655     TAILQ_FOREACH(obj, &obj_list, next) {
656 	if (obj->marker)
657 	    continue;
658 	if (obj->z_interpose && obj != obj_main) {
659 	    objlist_put_after(&list_main, last_interposer, obj);
660 	    last_interposer = obj;
661 	} else {
662 	    objlist_push_tail(&list_main, obj);
663 	}
664     	obj->refcount++;
665     }
666 
667     dbg("checking for required versions");
668     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
669 	rtld_die();
670 
671     if (ld_tracing) {		/* We're done */
672 	trace_loaded_objects(obj_main);
673 	exit(0);
674     }
675 
676     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
677        dump_relocations(obj_main);
678        exit (0);
679     }
680 
681     /*
682      * Processing tls relocations requires having the tls offsets
683      * initialized.  Prepare offsets before starting initial
684      * relocation processing.
685      */
686     dbg("initializing initial thread local storage offsets");
687     STAILQ_FOREACH(entry, &list_main, link) {
688 	/*
689 	 * Allocate all the initial objects out of the static TLS
690 	 * block even if they didn't ask for it.
691 	 */
692 	allocate_tls_offset(entry->obj);
693     }
694 
695     if (relocate_objects(obj_main,
696       ld_bind_now != NULL && *ld_bind_now != '\0',
697       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
698 	rtld_die();
699 
700     dbg("doing copy relocations");
701     if (do_copy_relocations(obj_main) == -1)
702 	rtld_die();
703 
704     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
705        dump_relocations(obj_main);
706        exit (0);
707     }
708 
709     ifunc_init(aux);
710 
711     /*
712      * Setup TLS for main thread.  This must be done after the
713      * relocations are processed, since tls initialization section
714      * might be the subject for relocations.
715      */
716     dbg("initializing initial thread local storage");
717     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
718 
719     dbg("initializing key program variables");
720     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
721     set_program_var("environ", env);
722     set_program_var("__elf_aux_vector", aux);
723 
724     /* Make a list of init functions to call. */
725     objlist_init(&initlist);
726     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
727       preload_tail, &initlist);
728 
729     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
730 
731     map_stacks_exec(NULL);
732 
733     if (!obj_main->crt_no_init) {
734 	/*
735 	 * Make sure we don't call the main program's init and fini
736 	 * functions for binaries linked with old crt1 which calls
737 	 * _init itself.
738 	 */
739 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
740 	obj_main->preinit_array = obj_main->init_array =
741 	    obj_main->fini_array = (Elf_Addr)NULL;
742     }
743 
744     /*
745      * Execute MD initializers required before we call the objects'
746      * init functions.
747      */
748     pre_init();
749 
750     wlock_acquire(rtld_bind_lock, &lockstate);
751 
752     dbg("resolving ifuncs");
753     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
754       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
755 	rtld_die();
756 
757     if (obj_main->crt_no_init)
758 	preinit_main();
759     objlist_call_init(&initlist, &lockstate);
760     _r_debug_postinit(&obj_main->linkmap);
761     objlist_clear(&initlist);
762     dbg("loading filtees");
763     TAILQ_FOREACH(obj, &obj_list, next) {
764 	if (obj->marker)
765 	    continue;
766 	if (ld_loadfltr || obj->z_loadfltr)
767 	    load_filtees(obj, 0, &lockstate);
768     }
769 
770     dbg("enforcing main obj relro");
771     if (obj_enforce_relro(obj_main) == -1)
772 	rtld_die();
773 
774     lock_release(rtld_bind_lock, &lockstate);
775 
776     dbg("transferring control to program entry point = %p", obj_main->entry);
777 
778     /* Return the exit procedure and the program entry point. */
779     *exit_proc = rtld_exit;
780     *objp = obj_main;
781     return (func_ptr_type) obj_main->entry;
782 }
783 
784 void *
785 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
786 {
787 	void *ptr;
788 	Elf_Addr target;
789 
790 	ptr = (void *)make_function_pointer(def, obj);
791 	target = call_ifunc_resolver(ptr);
792 	return ((void *)target);
793 }
794 
795 /*
796  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
797  * Changes to this function should be applied there as well.
798  */
799 Elf_Addr
800 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
801 {
802     const Elf_Rel *rel;
803     const Elf_Sym *def;
804     const Obj_Entry *defobj;
805     Elf_Addr *where;
806     Elf_Addr target;
807     RtldLockState lockstate;
808 
809     rlock_acquire(rtld_bind_lock, &lockstate);
810     if (sigsetjmp(lockstate.env, 0) != 0)
811 	    lock_upgrade(rtld_bind_lock, &lockstate);
812     if (obj->pltrel)
813 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
814     else
815 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
816 
817     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
818     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
819 	NULL, &lockstate);
820     if (def == NULL)
821 	rtld_die();
822     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
823 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
824     else
825 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
826 
827     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
828       defobj->strtab + def->st_name, basename(obj->path),
829       (void *)target, basename(defobj->path));
830 
831     /*
832      * Write the new contents for the jmpslot. Note that depending on
833      * architecture, the value which we need to return back to the
834      * lazy binding trampoline may or may not be the target
835      * address. The value returned from reloc_jmpslot() is the value
836      * that the trampoline needs.
837      */
838     target = reloc_jmpslot(where, target, defobj, obj, rel);
839     lock_release(rtld_bind_lock, &lockstate);
840     return target;
841 }
842 
843 /*
844  * Error reporting function.  Use it like printf.  If formats the message
845  * into a buffer, and sets things up so that the next call to dlerror()
846  * will return the message.
847  */
848 void
849 _rtld_error(const char *fmt, ...)
850 {
851     static char buf[512];
852     va_list ap;
853 
854     va_start(ap, fmt);
855     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
856     error_message = buf;
857     va_end(ap);
858     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
859 }
860 
861 /*
862  * Return a dynamically-allocated copy of the current error message, if any.
863  */
864 static char *
865 errmsg_save(void)
866 {
867     return error_message == NULL ? NULL : xstrdup(error_message);
868 }
869 
870 /*
871  * Restore the current error message from a copy which was previously saved
872  * by errmsg_save().  The copy is freed.
873  */
874 static void
875 errmsg_restore(char *saved_msg)
876 {
877     if (saved_msg == NULL)
878 	error_message = NULL;
879     else {
880 	_rtld_error("%s", saved_msg);
881 	free(saved_msg);
882     }
883 }
884 
885 static const char *
886 basename(const char *name)
887 {
888     const char *p = strrchr(name, '/');
889     return p != NULL ? p + 1 : name;
890 }
891 
892 static struct utsname uts;
893 
894 static char *
895 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
896     const char *subst, bool may_free)
897 {
898 	char *p, *p1, *res, *resp;
899 	int subst_len, kw_len, subst_count, old_len, new_len;
900 
901 	kw_len = strlen(kw);
902 
903 	/*
904 	 * First, count the number of the keyword occurrences, to
905 	 * preallocate the final string.
906 	 */
907 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
908 		p1 = strstr(p, kw);
909 		if (p1 == NULL)
910 			break;
911 	}
912 
913 	/*
914 	 * If the keyword is not found, just return.
915 	 *
916 	 * Return non-substituted string if resolution failed.  We
917 	 * cannot do anything more reasonable, the failure mode of the
918 	 * caller is unresolved library anyway.
919 	 */
920 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
921 		return (may_free ? real : xstrdup(real));
922 	if (obj != NULL)
923 		subst = obj->origin_path;
924 
925 	/*
926 	 * There is indeed something to substitute.  Calculate the
927 	 * length of the resulting string, and allocate it.
928 	 */
929 	subst_len = strlen(subst);
930 	old_len = strlen(real);
931 	new_len = old_len + (subst_len - kw_len) * subst_count;
932 	res = xmalloc(new_len + 1);
933 
934 	/*
935 	 * Now, execute the substitution loop.
936 	 */
937 	for (p = real, resp = res, *resp = '\0';;) {
938 		p1 = strstr(p, kw);
939 		if (p1 != NULL) {
940 			/* Copy the prefix before keyword. */
941 			memcpy(resp, p, p1 - p);
942 			resp += p1 - p;
943 			/* Keyword replacement. */
944 			memcpy(resp, subst, subst_len);
945 			resp += subst_len;
946 			*resp = '\0';
947 			p = p1 + kw_len;
948 		} else
949 			break;
950 	}
951 
952 	/* Copy to the end of string and finish. */
953 	strcat(resp, p);
954 	if (may_free)
955 		free(real);
956 	return (res);
957 }
958 
959 static char *
960 origin_subst(Obj_Entry *obj, const char *real)
961 {
962 	char *res1, *res2, *res3, *res4;
963 
964 	if (obj == NULL || !trust)
965 		return (xstrdup(real));
966 	if (uts.sysname[0] == '\0') {
967 		if (uname(&uts) != 0) {
968 			_rtld_error("utsname failed: %d", errno);
969 			return (NULL);
970 		}
971 	}
972 	/* __DECONST is safe here since without may_free real is unchanged */
973 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
974 	    false);
975 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
976 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
977 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
978 	return (res4);
979 }
980 
981 void
982 rtld_die(void)
983 {
984     const char *msg = dlerror();
985 
986     if (msg == NULL)
987 	msg = "Fatal error";
988     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
989     rtld_fdputstr(STDERR_FILENO, msg);
990     rtld_fdputchar(STDERR_FILENO, '\n');
991     _exit(1);
992 }
993 
994 /*
995  * Process a shared object's DYNAMIC section, and save the important
996  * information in its Obj_Entry structure.
997  */
998 static void
999 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1000     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1001 {
1002     const Elf_Dyn *dynp;
1003     Needed_Entry **needed_tail = &obj->needed;
1004     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1005     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1006     const Elf_Hashelt *hashtab;
1007     const Elf32_Word *hashval;
1008     Elf32_Word bkt, nmaskwords;
1009     int bloom_size32;
1010     int plttype = DT_REL;
1011 
1012     *dyn_rpath = NULL;
1013     *dyn_soname = NULL;
1014     *dyn_runpath = NULL;
1015 
1016     obj->bind_now = false;
1017     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1018 	switch (dynp->d_tag) {
1019 
1020 	case DT_REL:
1021 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1022 	    break;
1023 
1024 	case DT_RELSZ:
1025 	    obj->relsize = dynp->d_un.d_val;
1026 	    break;
1027 
1028 	case DT_RELENT:
1029 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1030 	    break;
1031 
1032 	case DT_JMPREL:
1033 	    obj->pltrel = (const Elf_Rel *)
1034 	      (obj->relocbase + dynp->d_un.d_ptr);
1035 	    break;
1036 
1037 	case DT_PLTRELSZ:
1038 	    obj->pltrelsize = dynp->d_un.d_val;
1039 	    break;
1040 
1041 	case DT_RELA:
1042 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1043 	    break;
1044 
1045 	case DT_RELASZ:
1046 	    obj->relasize = dynp->d_un.d_val;
1047 	    break;
1048 
1049 	case DT_RELAENT:
1050 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1051 	    break;
1052 
1053 	case DT_PLTREL:
1054 	    plttype = dynp->d_un.d_val;
1055 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1056 	    break;
1057 
1058 	case DT_SYMTAB:
1059 	    obj->symtab = (const Elf_Sym *)
1060 	      (obj->relocbase + dynp->d_un.d_ptr);
1061 	    break;
1062 
1063 	case DT_SYMENT:
1064 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1065 	    break;
1066 
1067 	case DT_STRTAB:
1068 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1069 	    break;
1070 
1071 	case DT_STRSZ:
1072 	    obj->strsize = dynp->d_un.d_val;
1073 	    break;
1074 
1075 	case DT_VERNEED:
1076 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1077 		dynp->d_un.d_val);
1078 	    break;
1079 
1080 	case DT_VERNEEDNUM:
1081 	    obj->verneednum = dynp->d_un.d_val;
1082 	    break;
1083 
1084 	case DT_VERDEF:
1085 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1086 		dynp->d_un.d_val);
1087 	    break;
1088 
1089 	case DT_VERDEFNUM:
1090 	    obj->verdefnum = dynp->d_un.d_val;
1091 	    break;
1092 
1093 	case DT_VERSYM:
1094 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1095 		dynp->d_un.d_val);
1096 	    break;
1097 
1098 	case DT_HASH:
1099 	    {
1100 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1101 		    dynp->d_un.d_ptr);
1102 		obj->nbuckets = hashtab[0];
1103 		obj->nchains = hashtab[1];
1104 		obj->buckets = hashtab + 2;
1105 		obj->chains = obj->buckets + obj->nbuckets;
1106 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1107 		  obj->buckets != NULL;
1108 	    }
1109 	    break;
1110 
1111 	case DT_GNU_HASH:
1112 	    {
1113 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1114 		    dynp->d_un.d_ptr);
1115 		obj->nbuckets_gnu = hashtab[0];
1116 		obj->symndx_gnu = hashtab[1];
1117 		nmaskwords = hashtab[2];
1118 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1119 		obj->maskwords_bm_gnu = nmaskwords - 1;
1120 		obj->shift2_gnu = hashtab[3];
1121 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1122 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1123 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1124 		  obj->symndx_gnu;
1125 		/* Number of bitmask words is required to be power of 2 */
1126 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1127 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1128 	    }
1129 	    break;
1130 
1131 	case DT_NEEDED:
1132 	    if (!obj->rtld) {
1133 		Needed_Entry *nep = NEW(Needed_Entry);
1134 		nep->name = dynp->d_un.d_val;
1135 		nep->obj = NULL;
1136 		nep->next = NULL;
1137 
1138 		*needed_tail = nep;
1139 		needed_tail = &nep->next;
1140 	    }
1141 	    break;
1142 
1143 	case DT_FILTER:
1144 	    if (!obj->rtld) {
1145 		Needed_Entry *nep = NEW(Needed_Entry);
1146 		nep->name = dynp->d_un.d_val;
1147 		nep->obj = NULL;
1148 		nep->next = NULL;
1149 
1150 		*needed_filtees_tail = nep;
1151 		needed_filtees_tail = &nep->next;
1152 	    }
1153 	    break;
1154 
1155 	case DT_AUXILIARY:
1156 	    if (!obj->rtld) {
1157 		Needed_Entry *nep = NEW(Needed_Entry);
1158 		nep->name = dynp->d_un.d_val;
1159 		nep->obj = NULL;
1160 		nep->next = NULL;
1161 
1162 		*needed_aux_filtees_tail = nep;
1163 		needed_aux_filtees_tail = &nep->next;
1164 	    }
1165 	    break;
1166 
1167 	case DT_PLTGOT:
1168 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1169 	    break;
1170 
1171 	case DT_TEXTREL:
1172 	    obj->textrel = true;
1173 	    break;
1174 
1175 	case DT_SYMBOLIC:
1176 	    obj->symbolic = true;
1177 	    break;
1178 
1179 	case DT_RPATH:
1180 	    /*
1181 	     * We have to wait until later to process this, because we
1182 	     * might not have gotten the address of the string table yet.
1183 	     */
1184 	    *dyn_rpath = dynp;
1185 	    break;
1186 
1187 	case DT_SONAME:
1188 	    *dyn_soname = dynp;
1189 	    break;
1190 
1191 	case DT_RUNPATH:
1192 	    *dyn_runpath = dynp;
1193 	    break;
1194 
1195 	case DT_INIT:
1196 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1197 	    break;
1198 
1199 	case DT_PREINIT_ARRAY:
1200 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1201 	    break;
1202 
1203 	case DT_PREINIT_ARRAYSZ:
1204 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1205 	    break;
1206 
1207 	case DT_INIT_ARRAY:
1208 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1209 	    break;
1210 
1211 	case DT_INIT_ARRAYSZ:
1212 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1213 	    break;
1214 
1215 	case DT_FINI:
1216 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1217 	    break;
1218 
1219 	case DT_FINI_ARRAY:
1220 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1221 	    break;
1222 
1223 	case DT_FINI_ARRAYSZ:
1224 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1225 	    break;
1226 
1227 	/*
1228 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1229 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1230 	 */
1231 
1232 #ifndef __mips__
1233 	case DT_DEBUG:
1234 	    if (!early)
1235 		dbg("Filling in DT_DEBUG entry");
1236 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1237 	    break;
1238 #endif
1239 
1240 	case DT_FLAGS:
1241 		if (dynp->d_un.d_val & DF_ORIGIN)
1242 		    obj->z_origin = true;
1243 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1244 		    obj->symbolic = true;
1245 		if (dynp->d_un.d_val & DF_TEXTREL)
1246 		    obj->textrel = true;
1247 		if (dynp->d_un.d_val & DF_BIND_NOW)
1248 		    obj->bind_now = true;
1249 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1250 		    ;*/
1251 	    break;
1252 #ifdef __mips__
1253 	case DT_MIPS_LOCAL_GOTNO:
1254 		obj->local_gotno = dynp->d_un.d_val;
1255 		break;
1256 
1257 	case DT_MIPS_SYMTABNO:
1258 		obj->symtabno = dynp->d_un.d_val;
1259 		break;
1260 
1261 	case DT_MIPS_GOTSYM:
1262 		obj->gotsym = dynp->d_un.d_val;
1263 		break;
1264 
1265 	case DT_MIPS_RLD_MAP:
1266 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1267 		break;
1268 
1269 	case DT_MIPS_RLD_MAP_REL:
1270 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1271 		// section relative to the address of the tag itself.
1272 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1273 		    (Elf_Addr) &r_debug;
1274 		break;
1275 
1276 	case DT_MIPS_PLTGOT:
1277 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1278 		    dynp->d_un.d_ptr);
1279 		break;
1280 
1281 #endif
1282 
1283 #ifdef __powerpc64__
1284 	case DT_PPC64_GLINK:
1285 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1286 		break;
1287 #endif
1288 
1289 	case DT_FLAGS_1:
1290 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1291 		    obj->z_noopen = true;
1292 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1293 		    obj->z_origin = true;
1294 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1295 		    obj->z_global = true;
1296 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1297 		    obj->bind_now = true;
1298 		if (dynp->d_un.d_val & DF_1_NODELETE)
1299 		    obj->z_nodelete = true;
1300 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1301 		    obj->z_loadfltr = true;
1302 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1303 		    obj->z_interpose = true;
1304 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1305 		    obj->z_nodeflib = true;
1306 	    break;
1307 
1308 	default:
1309 	    if (!early) {
1310 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1311 		    (long)dynp->d_tag);
1312 	    }
1313 	    break;
1314 	}
1315     }
1316 
1317     obj->traced = false;
1318 
1319     if (plttype == DT_RELA) {
1320 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1321 	obj->pltrel = NULL;
1322 	obj->pltrelasize = obj->pltrelsize;
1323 	obj->pltrelsize = 0;
1324     }
1325 
1326     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1327     if (obj->valid_hash_sysv)
1328 	obj->dynsymcount = obj->nchains;
1329     else if (obj->valid_hash_gnu) {
1330 	obj->dynsymcount = 0;
1331 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1332 	    if (obj->buckets_gnu[bkt] == 0)
1333 		continue;
1334 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1335 	    do
1336 		obj->dynsymcount++;
1337 	    while ((*hashval++ & 1u) == 0);
1338 	}
1339 	obj->dynsymcount += obj->symndx_gnu;
1340     }
1341 }
1342 
1343 static bool
1344 obj_resolve_origin(Obj_Entry *obj)
1345 {
1346 
1347 	if (obj->origin_path != NULL)
1348 		return (true);
1349 	obj->origin_path = xmalloc(PATH_MAX);
1350 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1351 }
1352 
1353 static void
1354 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1355     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1356 {
1357 
1358 	if (obj->z_origin && !obj_resolve_origin(obj))
1359 		rtld_die();
1360 
1361 	if (dyn_runpath != NULL) {
1362 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1363 		obj->runpath = origin_subst(obj, obj->runpath);
1364 	} else if (dyn_rpath != NULL) {
1365 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1366 		obj->rpath = origin_subst(obj, obj->rpath);
1367 	}
1368 	if (dyn_soname != NULL)
1369 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1370 }
1371 
1372 static void
1373 digest_dynamic(Obj_Entry *obj, int early)
1374 {
1375 	const Elf_Dyn *dyn_rpath;
1376 	const Elf_Dyn *dyn_soname;
1377 	const Elf_Dyn *dyn_runpath;
1378 
1379 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1380 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1381 }
1382 
1383 /*
1384  * Process a shared object's program header.  This is used only for the
1385  * main program, when the kernel has already loaded the main program
1386  * into memory before calling the dynamic linker.  It creates and
1387  * returns an Obj_Entry structure.
1388  */
1389 static Obj_Entry *
1390 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1391 {
1392     Obj_Entry *obj;
1393     const Elf_Phdr *phlimit = phdr + phnum;
1394     const Elf_Phdr *ph;
1395     Elf_Addr note_start, note_end;
1396     int nsegs = 0;
1397 
1398     obj = obj_new();
1399     for (ph = phdr;  ph < phlimit;  ph++) {
1400 	if (ph->p_type != PT_PHDR)
1401 	    continue;
1402 
1403 	obj->phdr = phdr;
1404 	obj->phsize = ph->p_memsz;
1405 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1406 	break;
1407     }
1408 
1409     obj->stack_flags = PF_X | PF_R | PF_W;
1410 
1411     for (ph = phdr;  ph < phlimit;  ph++) {
1412 	switch (ph->p_type) {
1413 
1414 	case PT_INTERP:
1415 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1416 	    break;
1417 
1418 	case PT_LOAD:
1419 	    if (nsegs == 0) {	/* First load segment */
1420 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1421 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1422 	    } else {		/* Last load segment */
1423 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1424 		  obj->vaddrbase;
1425 	    }
1426 	    nsegs++;
1427 	    break;
1428 
1429 	case PT_DYNAMIC:
1430 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1431 	    break;
1432 
1433 	case PT_TLS:
1434 	    obj->tlsindex = 1;
1435 	    obj->tlssize = ph->p_memsz;
1436 	    obj->tlsalign = ph->p_align;
1437 	    obj->tlsinitsize = ph->p_filesz;
1438 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1439 	    break;
1440 
1441 	case PT_GNU_STACK:
1442 	    obj->stack_flags = ph->p_flags;
1443 	    break;
1444 
1445 	case PT_GNU_RELRO:
1446 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1447 	    obj->relro_size = round_page(ph->p_memsz);
1448 	    break;
1449 
1450 	case PT_NOTE:
1451 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1452 	    note_end = note_start + ph->p_filesz;
1453 	    digest_notes(obj, note_start, note_end);
1454 	    break;
1455 	}
1456     }
1457     if (nsegs < 1) {
1458 	_rtld_error("%s: too few PT_LOAD segments", path);
1459 	return NULL;
1460     }
1461 
1462     obj->entry = entry;
1463     return obj;
1464 }
1465 
1466 void
1467 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1468 {
1469 	const Elf_Note *note;
1470 	const char *note_name;
1471 	uintptr_t p;
1472 
1473 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1474 	    note = (const Elf_Note *)((const char *)(note + 1) +
1475 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1476 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1477 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1478 		    note->n_descsz != sizeof(int32_t))
1479 			continue;
1480 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1481 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1482 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1483 			continue;
1484 		note_name = (const char *)(note + 1);
1485 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1486 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1487 			continue;
1488 		switch (note->n_type) {
1489 		case NT_FREEBSD_ABI_TAG:
1490 			/* FreeBSD osrel note */
1491 			p = (uintptr_t)(note + 1);
1492 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1493 			obj->osrel = *(const int32_t *)(p);
1494 			dbg("note osrel %d", obj->osrel);
1495 			break;
1496 		case NT_FREEBSD_FEATURE_CTL:
1497 			/* FreeBSD ABI feature control note */
1498 			p = (uintptr_t)(note + 1);
1499 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1500 			obj->fctl0 = *(const uint32_t *)(p);
1501 			dbg("note fctl0 %#x", obj->fctl0);
1502 			break;
1503 		case NT_FREEBSD_NOINIT_TAG:
1504 			/* FreeBSD 'crt does not call init' note */
1505 			obj->crt_no_init = true;
1506 			dbg("note crt_no_init");
1507 			break;
1508 		}
1509 	}
1510 }
1511 
1512 static Obj_Entry *
1513 dlcheck(void *handle)
1514 {
1515     Obj_Entry *obj;
1516 
1517     TAILQ_FOREACH(obj, &obj_list, next) {
1518 	if (obj == (Obj_Entry *) handle)
1519 	    break;
1520     }
1521 
1522     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1523 	_rtld_error("Invalid shared object handle %p", handle);
1524 	return NULL;
1525     }
1526     return obj;
1527 }
1528 
1529 /*
1530  * If the given object is already in the donelist, return true.  Otherwise
1531  * add the object to the list and return false.
1532  */
1533 static bool
1534 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1535 {
1536     unsigned int i;
1537 
1538     for (i = 0;  i < dlp->num_used;  i++)
1539 	if (dlp->objs[i] == obj)
1540 	    return true;
1541     /*
1542      * Our donelist allocation should always be sufficient.  But if
1543      * our threads locking isn't working properly, more shared objects
1544      * could have been loaded since we allocated the list.  That should
1545      * never happen, but we'll handle it properly just in case it does.
1546      */
1547     if (dlp->num_used < dlp->num_alloc)
1548 	dlp->objs[dlp->num_used++] = obj;
1549     return false;
1550 }
1551 
1552 /*
1553  * Hash function for symbol table lookup.  Don't even think about changing
1554  * this.  It is specified by the System V ABI.
1555  */
1556 unsigned long
1557 elf_hash(const char *name)
1558 {
1559     const unsigned char *p = (const unsigned char *) name;
1560     unsigned long h = 0;
1561     unsigned long g;
1562 
1563     while (*p != '\0') {
1564 	h = (h << 4) + *p++;
1565 	if ((g = h & 0xf0000000) != 0)
1566 	    h ^= g >> 24;
1567 	h &= ~g;
1568     }
1569     return h;
1570 }
1571 
1572 /*
1573  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1574  * unsigned in case it's implemented with a wider type.
1575  */
1576 static uint32_t
1577 gnu_hash(const char *s)
1578 {
1579 	uint32_t h;
1580 	unsigned char c;
1581 
1582 	h = 5381;
1583 	for (c = *s; c != '\0'; c = *++s)
1584 		h = h * 33 + c;
1585 	return (h & 0xffffffff);
1586 }
1587 
1588 
1589 /*
1590  * Find the library with the given name, and return its full pathname.
1591  * The returned string is dynamically allocated.  Generates an error
1592  * message and returns NULL if the library cannot be found.
1593  *
1594  * If the second argument is non-NULL, then it refers to an already-
1595  * loaded shared object, whose library search path will be searched.
1596  *
1597  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1598  * descriptor (which is close-on-exec) will be passed out via the third
1599  * argument.
1600  *
1601  * The search order is:
1602  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1603  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1604  *   LD_LIBRARY_PATH
1605  *   DT_RUNPATH in the referencing file
1606  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1607  *	 from list)
1608  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1609  *
1610  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1611  */
1612 static char *
1613 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1614 {
1615 	char *pathname, *refobj_path;
1616 	const char *name;
1617 	bool nodeflib, objgiven;
1618 
1619 	objgiven = refobj != NULL;
1620 
1621 	if (libmap_disable || !objgiven ||
1622 	    (name = lm_find(refobj->path, xname)) == NULL)
1623 		name = xname;
1624 
1625 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1626 		if (name[0] != '/' && !trust) {
1627 			_rtld_error("Absolute pathname required "
1628 			    "for shared object \"%s\"", name);
1629 			return (NULL);
1630 		}
1631 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1632 		    __DECONST(char *, name)));
1633 	}
1634 
1635 	dbg(" Searching for \"%s\"", name);
1636 	refobj_path = objgiven ? refobj->path : NULL;
1637 
1638 	/*
1639 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1640 	 * back to pre-conforming behaviour if user requested so with
1641 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1642 	 * nodeflib.
1643 	 */
1644 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1645 		pathname = search_library_path(name, ld_library_path,
1646 		    refobj_path, fdp);
1647 		if (pathname != NULL)
1648 			return (pathname);
1649 		if (refobj != NULL) {
1650 			pathname = search_library_path(name, refobj->rpath,
1651 			    refobj_path, fdp);
1652 			if (pathname != NULL)
1653 				return (pathname);
1654 		}
1655 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1656 		if (pathname != NULL)
1657 			return (pathname);
1658 		pathname = search_library_path(name, gethints(false),
1659 		    refobj_path, fdp);
1660 		if (pathname != NULL)
1661 			return (pathname);
1662 		pathname = search_library_path(name, ld_standard_library_path,
1663 		    refobj_path, fdp);
1664 		if (pathname != NULL)
1665 			return (pathname);
1666 	} else {
1667 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1668 		if (objgiven) {
1669 			pathname = search_library_path(name, refobj->rpath,
1670 			    refobj->path, fdp);
1671 			if (pathname != NULL)
1672 				return (pathname);
1673 		}
1674 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1675 			pathname = search_library_path(name, obj_main->rpath,
1676 			    refobj_path, fdp);
1677 			if (pathname != NULL)
1678 				return (pathname);
1679 		}
1680 		pathname = search_library_path(name, ld_library_path,
1681 		    refobj_path, fdp);
1682 		if (pathname != NULL)
1683 			return (pathname);
1684 		if (objgiven) {
1685 			pathname = search_library_path(name, refobj->runpath,
1686 			    refobj_path, fdp);
1687 			if (pathname != NULL)
1688 				return (pathname);
1689 		}
1690 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1691 		if (pathname != NULL)
1692 			return (pathname);
1693 		pathname = search_library_path(name, gethints(nodeflib),
1694 		    refobj_path, fdp);
1695 		if (pathname != NULL)
1696 			return (pathname);
1697 		if (objgiven && !nodeflib) {
1698 			pathname = search_library_path(name,
1699 			    ld_standard_library_path, refobj_path, fdp);
1700 			if (pathname != NULL)
1701 				return (pathname);
1702 		}
1703 	}
1704 
1705 	if (objgiven && refobj->path != NULL) {
1706 		_rtld_error("Shared object \"%s\" not found, "
1707 		    "required by \"%s\"", name, basename(refobj->path));
1708 	} else {
1709 		_rtld_error("Shared object \"%s\" not found", name);
1710 	}
1711 	return (NULL);
1712 }
1713 
1714 /*
1715  * Given a symbol number in a referencing object, find the corresponding
1716  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1717  * no definition was found.  Returns a pointer to the Obj_Entry of the
1718  * defining object via the reference parameter DEFOBJ_OUT.
1719  */
1720 const Elf_Sym *
1721 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1722     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1723     RtldLockState *lockstate)
1724 {
1725     const Elf_Sym *ref;
1726     const Elf_Sym *def;
1727     const Obj_Entry *defobj;
1728     const Ver_Entry *ve;
1729     SymLook req;
1730     const char *name;
1731     int res;
1732 
1733     /*
1734      * If we have already found this symbol, get the information from
1735      * the cache.
1736      */
1737     if (symnum >= refobj->dynsymcount)
1738 	return NULL;	/* Bad object */
1739     if (cache != NULL && cache[symnum].sym != NULL) {
1740 	*defobj_out = cache[symnum].obj;
1741 	return cache[symnum].sym;
1742     }
1743 
1744     ref = refobj->symtab + symnum;
1745     name = refobj->strtab + ref->st_name;
1746     def = NULL;
1747     defobj = NULL;
1748     ve = NULL;
1749 
1750     /*
1751      * We don't have to do a full scale lookup if the symbol is local.
1752      * We know it will bind to the instance in this load module; to
1753      * which we already have a pointer (ie ref). By not doing a lookup,
1754      * we not only improve performance, but it also avoids unresolvable
1755      * symbols when local symbols are not in the hash table. This has
1756      * been seen with the ia64 toolchain.
1757      */
1758     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1759 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1760 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1761 		symnum);
1762 	}
1763 	symlook_init(&req, name);
1764 	req.flags = flags;
1765 	ve = req.ventry = fetch_ventry(refobj, symnum);
1766 	req.lockstate = lockstate;
1767 	res = symlook_default(&req, refobj);
1768 	if (res == 0) {
1769 	    def = req.sym_out;
1770 	    defobj = req.defobj_out;
1771 	}
1772     } else {
1773 	def = ref;
1774 	defobj = refobj;
1775     }
1776 
1777     /*
1778      * If we found no definition and the reference is weak, treat the
1779      * symbol as having the value zero.
1780      */
1781     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1782 	def = &sym_zero;
1783 	defobj = obj_main;
1784     }
1785 
1786     if (def != NULL) {
1787 	*defobj_out = defobj;
1788 	/* Record the information in the cache to avoid subsequent lookups. */
1789 	if (cache != NULL) {
1790 	    cache[symnum].sym = def;
1791 	    cache[symnum].obj = defobj;
1792 	}
1793     } else {
1794 	if (refobj != &obj_rtld)
1795 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1796 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1797     }
1798     return def;
1799 }
1800 
1801 /*
1802  * Return the search path from the ldconfig hints file, reading it if
1803  * necessary.  If nostdlib is true, then the default search paths are
1804  * not added to result.
1805  *
1806  * Returns NULL if there are problems with the hints file,
1807  * or if the search path there is empty.
1808  */
1809 static const char *
1810 gethints(bool nostdlib)
1811 {
1812 	static char *filtered_path;
1813 	static const char *hints;
1814 	static struct elfhints_hdr hdr;
1815 	struct fill_search_info_args sargs, hargs;
1816 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1817 	struct dl_serpath *SLPpath, *hintpath;
1818 	char *p;
1819 	struct stat hint_stat;
1820 	unsigned int SLPndx, hintndx, fndx, fcount;
1821 	int fd;
1822 	size_t flen;
1823 	uint32_t dl;
1824 	bool skip;
1825 
1826 	/* First call, read the hints file */
1827 	if (hints == NULL) {
1828 		/* Keep from trying again in case the hints file is bad. */
1829 		hints = "";
1830 
1831 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1832 			return (NULL);
1833 
1834 		/*
1835 		 * Check of hdr.dirlistlen value against type limit
1836 		 * intends to pacify static analyzers.  Further
1837 		 * paranoia leads to checks that dirlist is fully
1838 		 * contained in the file range.
1839 		 */
1840 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1841 		    hdr.magic != ELFHINTS_MAGIC ||
1842 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1843 		    fstat(fd, &hint_stat) == -1) {
1844 cleanup1:
1845 			close(fd);
1846 			hdr.dirlistlen = 0;
1847 			return (NULL);
1848 		}
1849 		dl = hdr.strtab;
1850 		if (dl + hdr.dirlist < dl)
1851 			goto cleanup1;
1852 		dl += hdr.dirlist;
1853 		if (dl + hdr.dirlistlen < dl)
1854 			goto cleanup1;
1855 		dl += hdr.dirlistlen;
1856 		if (dl > hint_stat.st_size)
1857 			goto cleanup1;
1858 		p = xmalloc(hdr.dirlistlen + 1);
1859 		if (pread(fd, p, hdr.dirlistlen + 1,
1860 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1861 		    p[hdr.dirlistlen] != '\0') {
1862 			free(p);
1863 			goto cleanup1;
1864 		}
1865 		hints = p;
1866 		close(fd);
1867 	}
1868 
1869 	/*
1870 	 * If caller agreed to receive list which includes the default
1871 	 * paths, we are done. Otherwise, if we still did not
1872 	 * calculated filtered result, do it now.
1873 	 */
1874 	if (!nostdlib)
1875 		return (hints[0] != '\0' ? hints : NULL);
1876 	if (filtered_path != NULL)
1877 		goto filt_ret;
1878 
1879 	/*
1880 	 * Obtain the list of all configured search paths, and the
1881 	 * list of the default paths.
1882 	 *
1883 	 * First estimate the size of the results.
1884 	 */
1885 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1886 	smeta.dls_cnt = 0;
1887 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1888 	hmeta.dls_cnt = 0;
1889 
1890 	sargs.request = RTLD_DI_SERINFOSIZE;
1891 	sargs.serinfo = &smeta;
1892 	hargs.request = RTLD_DI_SERINFOSIZE;
1893 	hargs.serinfo = &hmeta;
1894 
1895 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1896 	    &sargs);
1897 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1898 
1899 	SLPinfo = xmalloc(smeta.dls_size);
1900 	hintinfo = xmalloc(hmeta.dls_size);
1901 
1902 	/*
1903 	 * Next fetch both sets of paths.
1904 	 */
1905 	sargs.request = RTLD_DI_SERINFO;
1906 	sargs.serinfo = SLPinfo;
1907 	sargs.serpath = &SLPinfo->dls_serpath[0];
1908 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1909 
1910 	hargs.request = RTLD_DI_SERINFO;
1911 	hargs.serinfo = hintinfo;
1912 	hargs.serpath = &hintinfo->dls_serpath[0];
1913 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1914 
1915 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1916 	    &sargs);
1917 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1918 
1919 	/*
1920 	 * Now calculate the difference between two sets, by excluding
1921 	 * standard paths from the full set.
1922 	 */
1923 	fndx = 0;
1924 	fcount = 0;
1925 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1926 	hintpath = &hintinfo->dls_serpath[0];
1927 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1928 		skip = false;
1929 		SLPpath = &SLPinfo->dls_serpath[0];
1930 		/*
1931 		 * Check each standard path against current.
1932 		 */
1933 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1934 			/* matched, skip the path */
1935 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1936 				skip = true;
1937 				break;
1938 			}
1939 		}
1940 		if (skip)
1941 			continue;
1942 		/*
1943 		 * Not matched against any standard path, add the path
1944 		 * to result. Separate consequtive paths with ':'.
1945 		 */
1946 		if (fcount > 0) {
1947 			filtered_path[fndx] = ':';
1948 			fndx++;
1949 		}
1950 		fcount++;
1951 		flen = strlen(hintpath->dls_name);
1952 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1953 		fndx += flen;
1954 	}
1955 	filtered_path[fndx] = '\0';
1956 
1957 	free(SLPinfo);
1958 	free(hintinfo);
1959 
1960 filt_ret:
1961 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1962 }
1963 
1964 static void
1965 init_dag(Obj_Entry *root)
1966 {
1967     const Needed_Entry *needed;
1968     const Objlist_Entry *elm;
1969     DoneList donelist;
1970 
1971     if (root->dag_inited)
1972 	return;
1973     donelist_init(&donelist);
1974 
1975     /* Root object belongs to own DAG. */
1976     objlist_push_tail(&root->dldags, root);
1977     objlist_push_tail(&root->dagmembers, root);
1978     donelist_check(&donelist, root);
1979 
1980     /*
1981      * Add dependencies of root object to DAG in breadth order
1982      * by exploiting the fact that each new object get added
1983      * to the tail of the dagmembers list.
1984      */
1985     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1986 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1987 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1988 		continue;
1989 	    objlist_push_tail(&needed->obj->dldags, root);
1990 	    objlist_push_tail(&root->dagmembers, needed->obj);
1991 	}
1992     }
1993     root->dag_inited = true;
1994 }
1995 
1996 static void
1997 init_marker(Obj_Entry *marker)
1998 {
1999 
2000 	bzero(marker, sizeof(*marker));
2001 	marker->marker = true;
2002 }
2003 
2004 Obj_Entry *
2005 globallist_curr(const Obj_Entry *obj)
2006 {
2007 
2008 	for (;;) {
2009 		if (obj == NULL)
2010 			return (NULL);
2011 		if (!obj->marker)
2012 			return (__DECONST(Obj_Entry *, obj));
2013 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2014 	}
2015 }
2016 
2017 Obj_Entry *
2018 globallist_next(const Obj_Entry *obj)
2019 {
2020 
2021 	for (;;) {
2022 		obj = TAILQ_NEXT(obj, next);
2023 		if (obj == NULL)
2024 			return (NULL);
2025 		if (!obj->marker)
2026 			return (__DECONST(Obj_Entry *, obj));
2027 	}
2028 }
2029 
2030 /* Prevent the object from being unmapped while the bind lock is dropped. */
2031 static void
2032 hold_object(Obj_Entry *obj)
2033 {
2034 
2035 	obj->holdcount++;
2036 }
2037 
2038 static void
2039 unhold_object(Obj_Entry *obj)
2040 {
2041 
2042 	assert(obj->holdcount > 0);
2043 	if (--obj->holdcount == 0 && obj->unholdfree)
2044 		release_object(obj);
2045 }
2046 
2047 static void
2048 process_z(Obj_Entry *root)
2049 {
2050 	const Objlist_Entry *elm;
2051 	Obj_Entry *obj;
2052 
2053 	/*
2054 	 * Walk over object DAG and process every dependent object
2055 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2056 	 * to grow their own DAG.
2057 	 *
2058 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2059 	 * symlook_global() to work.
2060 	 *
2061 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2062 	 */
2063 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2064 		obj = elm->obj;
2065 		if (obj == NULL)
2066 			continue;
2067 		if (obj->z_nodelete && !obj->ref_nodel) {
2068 			dbg("obj %s -z nodelete", obj->path);
2069 			init_dag(obj);
2070 			ref_dag(obj);
2071 			obj->ref_nodel = true;
2072 		}
2073 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2074 			dbg("obj %s -z global", obj->path);
2075 			objlist_push_tail(&list_global, obj);
2076 			init_dag(obj);
2077 		}
2078 	}
2079 }
2080 /*
2081  * Initialize the dynamic linker.  The argument is the address at which
2082  * the dynamic linker has been mapped into memory.  The primary task of
2083  * this function is to relocate the dynamic linker.
2084  */
2085 static void
2086 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2087 {
2088     Obj_Entry objtmp;	/* Temporary rtld object */
2089     const Elf_Ehdr *ehdr;
2090     const Elf_Dyn *dyn_rpath;
2091     const Elf_Dyn *dyn_soname;
2092     const Elf_Dyn *dyn_runpath;
2093 
2094 #ifdef RTLD_INIT_PAGESIZES_EARLY
2095     /* The page size is required by the dynamic memory allocator. */
2096     init_pagesizes(aux_info);
2097 #endif
2098 
2099     /*
2100      * Conjure up an Obj_Entry structure for the dynamic linker.
2101      *
2102      * The "path" member can't be initialized yet because string constants
2103      * cannot yet be accessed. Below we will set it correctly.
2104      */
2105     memset(&objtmp, 0, sizeof(objtmp));
2106     objtmp.path = NULL;
2107     objtmp.rtld = true;
2108     objtmp.mapbase = mapbase;
2109 #ifdef PIC
2110     objtmp.relocbase = mapbase;
2111 #endif
2112 
2113     objtmp.dynamic = rtld_dynamic(&objtmp);
2114     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2115     assert(objtmp.needed == NULL);
2116 #if !defined(__mips__)
2117     /* MIPS has a bogus DT_TEXTREL. */
2118     assert(!objtmp.textrel);
2119 #endif
2120     /*
2121      * Temporarily put the dynamic linker entry into the object list, so
2122      * that symbols can be found.
2123      */
2124     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2125 
2126     ehdr = (Elf_Ehdr *)mapbase;
2127     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2128     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2129 
2130     /* Initialize the object list. */
2131     TAILQ_INIT(&obj_list);
2132 
2133     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2134     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2135 
2136 #ifndef RTLD_INIT_PAGESIZES_EARLY
2137     /* The page size is required by the dynamic memory allocator. */
2138     init_pagesizes(aux_info);
2139 #endif
2140 
2141     if (aux_info[AT_OSRELDATE] != NULL)
2142 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2143 
2144     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2145 
2146     /* Replace the path with a dynamically allocated copy. */
2147     obj_rtld.path = xstrdup(ld_path_rtld);
2148 
2149     r_debug.r_brk = r_debug_state;
2150     r_debug.r_state = RT_CONSISTENT;
2151 }
2152 
2153 /*
2154  * Retrieve the array of supported page sizes.  The kernel provides the page
2155  * sizes in increasing order.
2156  */
2157 static void
2158 init_pagesizes(Elf_Auxinfo **aux_info)
2159 {
2160 	static size_t psa[MAXPAGESIZES];
2161 	int mib[2];
2162 	size_t len, size;
2163 
2164 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2165 	    NULL) {
2166 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2167 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2168 	} else {
2169 		len = 2;
2170 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2171 			size = sizeof(psa);
2172 		else {
2173 			/* As a fallback, retrieve the base page size. */
2174 			size = sizeof(psa[0]);
2175 			if (aux_info[AT_PAGESZ] != NULL) {
2176 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2177 				goto psa_filled;
2178 			} else {
2179 				mib[0] = CTL_HW;
2180 				mib[1] = HW_PAGESIZE;
2181 				len = 2;
2182 			}
2183 		}
2184 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2185 			_rtld_error("sysctl for hw.pagesize(s) failed");
2186 			rtld_die();
2187 		}
2188 psa_filled:
2189 		pagesizes = psa;
2190 	}
2191 	npagesizes = size / sizeof(pagesizes[0]);
2192 	/* Discard any invalid entries at the end of the array. */
2193 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2194 		npagesizes--;
2195 }
2196 
2197 /*
2198  * Add the init functions from a needed object list (and its recursive
2199  * needed objects) to "list".  This is not used directly; it is a helper
2200  * function for initlist_add_objects().  The write lock must be held
2201  * when this function is called.
2202  */
2203 static void
2204 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2205 {
2206     /* Recursively process the successor needed objects. */
2207     if (needed->next != NULL)
2208 	initlist_add_neededs(needed->next, list);
2209 
2210     /* Process the current needed object. */
2211     if (needed->obj != NULL)
2212 	initlist_add_objects(needed->obj, needed->obj, list);
2213 }
2214 
2215 /*
2216  * Scan all of the DAGs rooted in the range of objects from "obj" to
2217  * "tail" and add their init functions to "list".  This recurses over
2218  * the DAGs and ensure the proper init ordering such that each object's
2219  * needed libraries are initialized before the object itself.  At the
2220  * same time, this function adds the objects to the global finalization
2221  * list "list_fini" in the opposite order.  The write lock must be
2222  * held when this function is called.
2223  */
2224 static void
2225 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2226 {
2227     Obj_Entry *nobj;
2228 
2229     if (obj->init_scanned || obj->init_done)
2230 	return;
2231     obj->init_scanned = true;
2232 
2233     /* Recursively process the successor objects. */
2234     nobj = globallist_next(obj);
2235     if (nobj != NULL && obj != tail)
2236 	initlist_add_objects(nobj, tail, list);
2237 
2238     /* Recursively process the needed objects. */
2239     if (obj->needed != NULL)
2240 	initlist_add_neededs(obj->needed, list);
2241     if (obj->needed_filtees != NULL)
2242 	initlist_add_neededs(obj->needed_filtees, list);
2243     if (obj->needed_aux_filtees != NULL)
2244 	initlist_add_neededs(obj->needed_aux_filtees, list);
2245 
2246     /* Add the object to the init list. */
2247     objlist_push_tail(list, obj);
2248 
2249     /* Add the object to the global fini list in the reverse order. */
2250     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2251       && !obj->on_fini_list) {
2252 	objlist_push_head(&list_fini, obj);
2253 	obj->on_fini_list = true;
2254     }
2255 }
2256 
2257 #ifndef FPTR_TARGET
2258 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2259 #endif
2260 
2261 static void
2262 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2263 {
2264     Needed_Entry *needed, *needed1;
2265 
2266     for (needed = n; needed != NULL; needed = needed->next) {
2267 	if (needed->obj != NULL) {
2268 	    dlclose_locked(needed->obj, lockstate);
2269 	    needed->obj = NULL;
2270 	}
2271     }
2272     for (needed = n; needed != NULL; needed = needed1) {
2273 	needed1 = needed->next;
2274 	free(needed);
2275     }
2276 }
2277 
2278 static void
2279 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2280 {
2281 
2282 	free_needed_filtees(obj->needed_filtees, lockstate);
2283 	obj->needed_filtees = NULL;
2284 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2285 	obj->needed_aux_filtees = NULL;
2286 	obj->filtees_loaded = false;
2287 }
2288 
2289 static void
2290 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2291     RtldLockState *lockstate)
2292 {
2293 
2294     for (; needed != NULL; needed = needed->next) {
2295 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2296 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2297 	  RTLD_LOCAL, lockstate);
2298     }
2299 }
2300 
2301 static void
2302 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2303 {
2304 
2305     lock_restart_for_upgrade(lockstate);
2306     if (!obj->filtees_loaded) {
2307 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2308 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2309 	obj->filtees_loaded = true;
2310     }
2311 }
2312 
2313 static int
2314 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2315 {
2316     Obj_Entry *obj1;
2317 
2318     for (; needed != NULL; needed = needed->next) {
2319 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2320 	  flags & ~RTLD_LO_NOLOAD);
2321 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2322 	    return (-1);
2323     }
2324     return (0);
2325 }
2326 
2327 /*
2328  * Given a shared object, traverse its list of needed objects, and load
2329  * each of them.  Returns 0 on success.  Generates an error message and
2330  * returns -1 on failure.
2331  */
2332 static int
2333 load_needed_objects(Obj_Entry *first, int flags)
2334 {
2335     Obj_Entry *obj;
2336 
2337     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2338 	if (obj->marker)
2339 	    continue;
2340 	if (process_needed(obj, obj->needed, flags) == -1)
2341 	    return (-1);
2342     }
2343     return (0);
2344 }
2345 
2346 static int
2347 load_preload_objects(void)
2348 {
2349     char *p = ld_preload;
2350     Obj_Entry *obj;
2351     static const char delim[] = " \t:;";
2352 
2353     if (p == NULL)
2354 	return 0;
2355 
2356     p += strspn(p, delim);
2357     while (*p != '\0') {
2358 	size_t len = strcspn(p, delim);
2359 	char savech;
2360 
2361 	savech = p[len];
2362 	p[len] = '\0';
2363 	obj = load_object(p, -1, NULL, 0);
2364 	if (obj == NULL)
2365 	    return -1;	/* XXX - cleanup */
2366 	obj->z_interpose = true;
2367 	p[len] = savech;
2368 	p += len;
2369 	p += strspn(p, delim);
2370     }
2371     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2372     return 0;
2373 }
2374 
2375 static const char *
2376 printable_path(const char *path)
2377 {
2378 
2379 	return (path == NULL ? "<unknown>" : path);
2380 }
2381 
2382 /*
2383  * Load a shared object into memory, if it is not already loaded.  The
2384  * object may be specified by name or by user-supplied file descriptor
2385  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2386  * duplicate is.
2387  *
2388  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2389  * on failure.
2390  */
2391 static Obj_Entry *
2392 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2393 {
2394     Obj_Entry *obj;
2395     int fd;
2396     struct stat sb;
2397     char *path;
2398 
2399     fd = -1;
2400     if (name != NULL) {
2401 	TAILQ_FOREACH(obj, &obj_list, next) {
2402 	    if (obj->marker || obj->doomed)
2403 		continue;
2404 	    if (object_match_name(obj, name))
2405 		return (obj);
2406 	}
2407 
2408 	path = find_library(name, refobj, &fd);
2409 	if (path == NULL)
2410 	    return (NULL);
2411     } else
2412 	path = NULL;
2413 
2414     if (fd >= 0) {
2415 	/*
2416 	 * search_library_pathfds() opens a fresh file descriptor for the
2417 	 * library, so there is no need to dup().
2418 	 */
2419     } else if (fd_u == -1) {
2420 	/*
2421 	 * If we didn't find a match by pathname, or the name is not
2422 	 * supplied, open the file and check again by device and inode.
2423 	 * This avoids false mismatches caused by multiple links or ".."
2424 	 * in pathnames.
2425 	 *
2426 	 * To avoid a race, we open the file and use fstat() rather than
2427 	 * using stat().
2428 	 */
2429 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2430 	    _rtld_error("Cannot open \"%s\"", path);
2431 	    free(path);
2432 	    return (NULL);
2433 	}
2434     } else {
2435 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2436 	if (fd == -1) {
2437 	    _rtld_error("Cannot dup fd");
2438 	    free(path);
2439 	    return (NULL);
2440 	}
2441     }
2442     if (fstat(fd, &sb) == -1) {
2443 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2444 	close(fd);
2445 	free(path);
2446 	return NULL;
2447     }
2448     TAILQ_FOREACH(obj, &obj_list, next) {
2449 	if (obj->marker || obj->doomed)
2450 	    continue;
2451 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2452 	    break;
2453     }
2454     if (obj != NULL && name != NULL) {
2455 	object_add_name(obj, name);
2456 	free(path);
2457 	close(fd);
2458 	return obj;
2459     }
2460     if (flags & RTLD_LO_NOLOAD) {
2461 	free(path);
2462 	close(fd);
2463 	return (NULL);
2464     }
2465 
2466     /* First use of this object, so we must map it in */
2467     obj = do_load_object(fd, name, path, &sb, flags);
2468     if (obj == NULL)
2469 	free(path);
2470     close(fd);
2471 
2472     return obj;
2473 }
2474 
2475 static Obj_Entry *
2476 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2477   int flags)
2478 {
2479     Obj_Entry *obj;
2480     struct statfs fs;
2481 
2482     /*
2483      * but first, make sure that environment variables haven't been
2484      * used to circumvent the noexec flag on a filesystem.
2485      */
2486     if (dangerous_ld_env) {
2487 	if (fstatfs(fd, &fs) != 0) {
2488 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2489 	    return NULL;
2490 	}
2491 	if (fs.f_flags & MNT_NOEXEC) {
2492 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2493 	    return NULL;
2494 	}
2495     }
2496     dbg("loading \"%s\"", printable_path(path));
2497     obj = map_object(fd, printable_path(path), sbp);
2498     if (obj == NULL)
2499         return NULL;
2500 
2501     /*
2502      * If DT_SONAME is present in the object, digest_dynamic2 already
2503      * added it to the object names.
2504      */
2505     if (name != NULL)
2506 	object_add_name(obj, name);
2507     obj->path = path;
2508     digest_dynamic(obj, 0);
2509     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2510 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2511     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2512       RTLD_LO_DLOPEN) {
2513 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2514 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2515 	munmap(obj->mapbase, obj->mapsize);
2516 	obj_free(obj);
2517 	return (NULL);
2518     }
2519 
2520     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2521     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2522     obj_count++;
2523     obj_loads++;
2524     linkmap_add(obj);	/* for GDB & dlinfo() */
2525     max_stack_flags |= obj->stack_flags;
2526 
2527     dbg("  %p .. %p: %s", obj->mapbase,
2528          obj->mapbase + obj->mapsize - 1, obj->path);
2529     if (obj->textrel)
2530 	dbg("  WARNING: %s has impure text", obj->path);
2531     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2532 	obj->path);
2533 
2534     return obj;
2535 }
2536 
2537 static Obj_Entry *
2538 obj_from_addr(const void *addr)
2539 {
2540     Obj_Entry *obj;
2541 
2542     TAILQ_FOREACH(obj, &obj_list, next) {
2543 	if (obj->marker)
2544 	    continue;
2545 	if (addr < (void *) obj->mapbase)
2546 	    continue;
2547 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2548 	    return obj;
2549     }
2550     return NULL;
2551 }
2552 
2553 static void
2554 preinit_main(void)
2555 {
2556     Elf_Addr *preinit_addr;
2557     int index;
2558 
2559     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2560     if (preinit_addr == NULL)
2561 	return;
2562 
2563     for (index = 0; index < obj_main->preinit_array_num; index++) {
2564 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2565 	    dbg("calling preinit function for %s at %p", obj_main->path,
2566 	      (void *)preinit_addr[index]);
2567 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2568 	      0, 0, obj_main->path);
2569 	    call_init_pointer(obj_main, preinit_addr[index]);
2570 	}
2571     }
2572 }
2573 
2574 /*
2575  * Call the finalization functions for each of the objects in "list"
2576  * belonging to the DAG of "root" and referenced once. If NULL "root"
2577  * is specified, every finalization function will be called regardless
2578  * of the reference count and the list elements won't be freed. All of
2579  * the objects are expected to have non-NULL fini functions.
2580  */
2581 static void
2582 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2583 {
2584     Objlist_Entry *elm;
2585     char *saved_msg;
2586     Elf_Addr *fini_addr;
2587     int index;
2588 
2589     assert(root == NULL || root->refcount == 1);
2590 
2591     if (root != NULL)
2592 	root->doomed = true;
2593 
2594     /*
2595      * Preserve the current error message since a fini function might
2596      * call into the dynamic linker and overwrite it.
2597      */
2598     saved_msg = errmsg_save();
2599     do {
2600 	STAILQ_FOREACH(elm, list, link) {
2601 	    if (root != NULL && (elm->obj->refcount != 1 ||
2602 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2603 		continue;
2604 	    /* Remove object from fini list to prevent recursive invocation. */
2605 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2606 	    /* Ensure that new references cannot be acquired. */
2607 	    elm->obj->doomed = true;
2608 
2609 	    hold_object(elm->obj);
2610 	    lock_release(rtld_bind_lock, lockstate);
2611 	    /*
2612 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2613 	     * When this happens, DT_FINI_ARRAY is processed first.
2614 	     */
2615 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2616 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2617 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2618 		  index--) {
2619 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2620 			dbg("calling fini function for %s at %p",
2621 			    elm->obj->path, (void *)fini_addr[index]);
2622 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2623 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2624 			call_initfini_pointer(elm->obj, fini_addr[index]);
2625 		    }
2626 		}
2627 	    }
2628 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2629 		dbg("calling fini function for %s at %p", elm->obj->path,
2630 		    (void *)elm->obj->fini);
2631 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2632 		    0, 0, elm->obj->path);
2633 		call_initfini_pointer(elm->obj, elm->obj->fini);
2634 	    }
2635 	    wlock_acquire(rtld_bind_lock, lockstate);
2636 	    unhold_object(elm->obj);
2637 	    /* No need to free anything if process is going down. */
2638 	    if (root != NULL)
2639 	    	free(elm);
2640 	    /*
2641 	     * We must restart the list traversal after every fini call
2642 	     * because a dlclose() call from the fini function or from
2643 	     * another thread might have modified the reference counts.
2644 	     */
2645 	    break;
2646 	}
2647     } while (elm != NULL);
2648     errmsg_restore(saved_msg);
2649 }
2650 
2651 /*
2652  * Call the initialization functions for each of the objects in
2653  * "list".  All of the objects are expected to have non-NULL init
2654  * functions.
2655  */
2656 static void
2657 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2658 {
2659     Objlist_Entry *elm;
2660     Obj_Entry *obj;
2661     char *saved_msg;
2662     Elf_Addr *init_addr;
2663     int index;
2664 
2665     /*
2666      * Clean init_scanned flag so that objects can be rechecked and
2667      * possibly initialized earlier if any of vectors called below
2668      * cause the change by using dlopen.
2669      */
2670     TAILQ_FOREACH(obj, &obj_list, next) {
2671 	if (obj->marker)
2672 	    continue;
2673 	obj->init_scanned = false;
2674     }
2675 
2676     /*
2677      * Preserve the current error message since an init function might
2678      * call into the dynamic linker and overwrite it.
2679      */
2680     saved_msg = errmsg_save();
2681     STAILQ_FOREACH(elm, list, link) {
2682 	if (elm->obj->init_done) /* Initialized early. */
2683 	    continue;
2684 	/*
2685 	 * Race: other thread might try to use this object before current
2686 	 * one completes the initialization. Not much can be done here
2687 	 * without better locking.
2688 	 */
2689 	elm->obj->init_done = true;
2690 	hold_object(elm->obj);
2691 	lock_release(rtld_bind_lock, lockstate);
2692 
2693         /*
2694          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2695          * When this happens, DT_INIT is processed first.
2696          */
2697 	if (elm->obj->init != (Elf_Addr)NULL) {
2698 	    dbg("calling init function for %s at %p", elm->obj->path,
2699 	        (void *)elm->obj->init);
2700 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2701 	        0, 0, elm->obj->path);
2702 	    call_initfini_pointer(elm->obj, elm->obj->init);
2703 	}
2704 	init_addr = (Elf_Addr *)elm->obj->init_array;
2705 	if (init_addr != NULL) {
2706 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2707 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2708 		    dbg("calling init function for %s at %p", elm->obj->path,
2709 			(void *)init_addr[index]);
2710 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2711 			(void *)init_addr[index], 0, 0, elm->obj->path);
2712 		    call_init_pointer(elm->obj, init_addr[index]);
2713 		}
2714 	    }
2715 	}
2716 	wlock_acquire(rtld_bind_lock, lockstate);
2717 	unhold_object(elm->obj);
2718     }
2719     errmsg_restore(saved_msg);
2720 }
2721 
2722 static void
2723 objlist_clear(Objlist *list)
2724 {
2725     Objlist_Entry *elm;
2726 
2727     while (!STAILQ_EMPTY(list)) {
2728 	elm = STAILQ_FIRST(list);
2729 	STAILQ_REMOVE_HEAD(list, link);
2730 	free(elm);
2731     }
2732 }
2733 
2734 static Objlist_Entry *
2735 objlist_find(Objlist *list, const Obj_Entry *obj)
2736 {
2737     Objlist_Entry *elm;
2738 
2739     STAILQ_FOREACH(elm, list, link)
2740 	if (elm->obj == obj)
2741 	    return elm;
2742     return NULL;
2743 }
2744 
2745 static void
2746 objlist_init(Objlist *list)
2747 {
2748     STAILQ_INIT(list);
2749 }
2750 
2751 static void
2752 objlist_push_head(Objlist *list, Obj_Entry *obj)
2753 {
2754     Objlist_Entry *elm;
2755 
2756     elm = NEW(Objlist_Entry);
2757     elm->obj = obj;
2758     STAILQ_INSERT_HEAD(list, elm, link);
2759 }
2760 
2761 static void
2762 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2763 {
2764     Objlist_Entry *elm;
2765 
2766     elm = NEW(Objlist_Entry);
2767     elm->obj = obj;
2768     STAILQ_INSERT_TAIL(list, elm, link);
2769 }
2770 
2771 static void
2772 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2773 {
2774 	Objlist_Entry *elm, *listelm;
2775 
2776 	STAILQ_FOREACH(listelm, list, link) {
2777 		if (listelm->obj == listobj)
2778 			break;
2779 	}
2780 	elm = NEW(Objlist_Entry);
2781 	elm->obj = obj;
2782 	if (listelm != NULL)
2783 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2784 	else
2785 		STAILQ_INSERT_TAIL(list, elm, link);
2786 }
2787 
2788 static void
2789 objlist_remove(Objlist *list, Obj_Entry *obj)
2790 {
2791     Objlist_Entry *elm;
2792 
2793     if ((elm = objlist_find(list, obj)) != NULL) {
2794 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2795 	free(elm);
2796     }
2797 }
2798 
2799 /*
2800  * Relocate dag rooted in the specified object.
2801  * Returns 0 on success, or -1 on failure.
2802  */
2803 
2804 static int
2805 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2806     int flags, RtldLockState *lockstate)
2807 {
2808 	Objlist_Entry *elm;
2809 	int error;
2810 
2811 	error = 0;
2812 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2813 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2814 		    lockstate);
2815 		if (error == -1)
2816 			break;
2817 	}
2818 	return (error);
2819 }
2820 
2821 /*
2822  * Prepare for, or clean after, relocating an object marked with
2823  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2824  * segments are remapped read-write.  After relocations are done, the
2825  * segment's permissions are returned back to the modes specified in
2826  * the phdrs.  If any relocation happened, or always for wired
2827  * program, COW is triggered.
2828  */
2829 static int
2830 reloc_textrel_prot(Obj_Entry *obj, bool before)
2831 {
2832 	const Elf_Phdr *ph;
2833 	void *base;
2834 	size_t l, sz;
2835 	int prot;
2836 
2837 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2838 	    l--, ph++) {
2839 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2840 			continue;
2841 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2842 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2843 		    trunc_page(ph->p_vaddr);
2844 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2845 		if (mprotect(base, sz, prot) == -1) {
2846 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2847 			    obj->path, before ? "en" : "dis",
2848 			    rtld_strerror(errno));
2849 			return (-1);
2850 		}
2851 	}
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Relocate single object.
2857  * Returns 0 on success, or -1 on failure.
2858  */
2859 static int
2860 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2861     int flags, RtldLockState *lockstate)
2862 {
2863 
2864 	if (obj->relocated)
2865 		return (0);
2866 	obj->relocated = true;
2867 	if (obj != rtldobj)
2868 		dbg("relocating \"%s\"", obj->path);
2869 
2870 	if (obj->symtab == NULL || obj->strtab == NULL ||
2871 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2872 		_rtld_error("%s: Shared object has no run-time symbol table",
2873 			    obj->path);
2874 		return (-1);
2875 	}
2876 
2877 	/* There are relocations to the write-protected text segment. */
2878 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2879 		return (-1);
2880 
2881 	/* Process the non-PLT non-IFUNC relocations. */
2882 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2883 		return (-1);
2884 
2885 	/* Re-protected the text segment. */
2886 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2887 		return (-1);
2888 
2889 	/* Set the special PLT or GOT entries. */
2890 	init_pltgot(obj);
2891 
2892 	/* Process the PLT relocations. */
2893 	if (reloc_plt(obj, flags, lockstate) == -1)
2894 		return (-1);
2895 	/* Relocate the jump slots if we are doing immediate binding. */
2896 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2897 	    lockstate) == -1)
2898 		return (-1);
2899 
2900 	/*
2901 	 * Process the non-PLT IFUNC relocations.  The relocations are
2902 	 * processed in two phases, because IFUNC resolvers may
2903 	 * reference other symbols, which must be readily processed
2904 	 * before resolvers are called.
2905 	 */
2906 	if (obj->non_plt_gnu_ifunc &&
2907 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2908 		return (-1);
2909 
2910 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2911 		return (-1);
2912 
2913 	/*
2914 	 * Set up the magic number and version in the Obj_Entry.  These
2915 	 * were checked in the crt1.o from the original ElfKit, so we
2916 	 * set them for backward compatibility.
2917 	 */
2918 	obj->magic = RTLD_MAGIC;
2919 	obj->version = RTLD_VERSION;
2920 
2921 	return (0);
2922 }
2923 
2924 /*
2925  * Relocate newly-loaded shared objects.  The argument is a pointer to
2926  * the Obj_Entry for the first such object.  All objects from the first
2927  * to the end of the list of objects are relocated.  Returns 0 on success,
2928  * or -1 on failure.
2929  */
2930 static int
2931 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2932     int flags, RtldLockState *lockstate)
2933 {
2934 	Obj_Entry *obj;
2935 	int error;
2936 
2937 	for (error = 0, obj = first;  obj != NULL;
2938 	    obj = TAILQ_NEXT(obj, next)) {
2939 		if (obj->marker)
2940 			continue;
2941 		error = relocate_object(obj, bind_now, rtldobj, flags,
2942 		    lockstate);
2943 		if (error == -1)
2944 			break;
2945 	}
2946 	return (error);
2947 }
2948 
2949 /*
2950  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2951  * referencing STT_GNU_IFUNC symbols is postponed till the other
2952  * relocations are done.  The indirect functions specified as
2953  * ifunc are allowed to call other symbols, so we need to have
2954  * objects relocated before asking for resolution from indirects.
2955  *
2956  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2957  * instead of the usual lazy handling of PLT slots.  It is
2958  * consistent with how GNU does it.
2959  */
2960 static int
2961 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2962     RtldLockState *lockstate)
2963 {
2964 
2965 	if (obj->ifuncs_resolved)
2966 		return (0);
2967 	obj->ifuncs_resolved = true;
2968 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2969 		return (-1);
2970 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc) {
2971 		if (obj_disable_relro(obj) ||
2972 		    reloc_gnu_ifunc(obj, flags, lockstate) == -1 ||
2973 		    obj_enforce_relro(obj))
2974 			return (-1);
2975 	}
2976 	return (0);
2977 }
2978 
2979 static int
2980 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2981     RtldLockState *lockstate)
2982 {
2983 	Objlist_Entry *elm;
2984 	Obj_Entry *obj;
2985 
2986 	STAILQ_FOREACH(elm, list, link) {
2987 		obj = elm->obj;
2988 		if (obj->marker)
2989 			continue;
2990 		if (resolve_object_ifunc(obj, bind_now, flags,
2991 		    lockstate) == -1)
2992 			return (-1);
2993 	}
2994 	return (0);
2995 }
2996 
2997 /*
2998  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2999  * before the process exits.
3000  */
3001 static void
3002 rtld_exit(void)
3003 {
3004     RtldLockState lockstate;
3005 
3006     wlock_acquire(rtld_bind_lock, &lockstate);
3007     dbg("rtld_exit()");
3008     objlist_call_fini(&list_fini, NULL, &lockstate);
3009     /* No need to remove the items from the list, since we are exiting. */
3010     if (!libmap_disable)
3011         lm_fini();
3012     lock_release(rtld_bind_lock, &lockstate);
3013 }
3014 
3015 /*
3016  * Iterate over a search path, translate each element, and invoke the
3017  * callback on the result.
3018  */
3019 static void *
3020 path_enumerate(const char *path, path_enum_proc callback,
3021     const char *refobj_path, void *arg)
3022 {
3023     const char *trans;
3024     if (path == NULL)
3025 	return (NULL);
3026 
3027     path += strspn(path, ":;");
3028     while (*path != '\0') {
3029 	size_t len;
3030 	char  *res;
3031 
3032 	len = strcspn(path, ":;");
3033 	trans = lm_findn(refobj_path, path, len);
3034 	if (trans)
3035 	    res = callback(trans, strlen(trans), arg);
3036 	else
3037 	    res = callback(path, len, arg);
3038 
3039 	if (res != NULL)
3040 	    return (res);
3041 
3042 	path += len;
3043 	path += strspn(path, ":;");
3044     }
3045 
3046     return (NULL);
3047 }
3048 
3049 struct try_library_args {
3050     const char	*name;
3051     size_t	 namelen;
3052     char	*buffer;
3053     size_t	 buflen;
3054     int		 fd;
3055 };
3056 
3057 static void *
3058 try_library_path(const char *dir, size_t dirlen, void *param)
3059 {
3060     struct try_library_args *arg;
3061     int fd;
3062 
3063     arg = param;
3064     if (*dir == '/' || trust) {
3065 	char *pathname;
3066 
3067 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3068 		return (NULL);
3069 
3070 	pathname = arg->buffer;
3071 	strncpy(pathname, dir, dirlen);
3072 	pathname[dirlen] = '/';
3073 	strcpy(pathname + dirlen + 1, arg->name);
3074 
3075 	dbg("  Trying \"%s\"", pathname);
3076 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3077 	if (fd >= 0) {
3078 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3079 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3080 	    strcpy(pathname, arg->buffer);
3081 	    arg->fd = fd;
3082 	    return (pathname);
3083 	} else {
3084 	    dbg("  Failed to open \"%s\": %s",
3085 		pathname, rtld_strerror(errno));
3086 	}
3087     }
3088     return (NULL);
3089 }
3090 
3091 static char *
3092 search_library_path(const char *name, const char *path,
3093     const char *refobj_path, int *fdp)
3094 {
3095     char *p;
3096     struct try_library_args arg;
3097 
3098     if (path == NULL)
3099 	return NULL;
3100 
3101     arg.name = name;
3102     arg.namelen = strlen(name);
3103     arg.buffer = xmalloc(PATH_MAX);
3104     arg.buflen = PATH_MAX;
3105     arg.fd = -1;
3106 
3107     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3108     *fdp = arg.fd;
3109 
3110     free(arg.buffer);
3111 
3112     return (p);
3113 }
3114 
3115 
3116 /*
3117  * Finds the library with the given name using the directory descriptors
3118  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3119  *
3120  * Returns a freshly-opened close-on-exec file descriptor for the library,
3121  * or -1 if the library cannot be found.
3122  */
3123 static char *
3124 search_library_pathfds(const char *name, const char *path, int *fdp)
3125 {
3126 	char *envcopy, *fdstr, *found, *last_token;
3127 	size_t len;
3128 	int dirfd, fd;
3129 
3130 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3131 
3132 	/* Don't load from user-specified libdirs into setuid binaries. */
3133 	if (!trust)
3134 		return (NULL);
3135 
3136 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3137 	if (path == NULL)
3138 		return (NULL);
3139 
3140 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3141 	if (name[0] == '/') {
3142 		dbg("Absolute path (%s) passed to %s", name, __func__);
3143 		return (NULL);
3144 	}
3145 
3146 	/*
3147 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3148 	 * copy of the path, as strtok_r rewrites separator tokens
3149 	 * with '\0'.
3150 	 */
3151 	found = NULL;
3152 	envcopy = xstrdup(path);
3153 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3154 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3155 		dirfd = parse_integer(fdstr);
3156 		if (dirfd < 0) {
3157 			_rtld_error("failed to parse directory FD: '%s'",
3158 				fdstr);
3159 			break;
3160 		}
3161 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3162 		if (fd >= 0) {
3163 			*fdp = fd;
3164 			len = strlen(fdstr) + strlen(name) + 3;
3165 			found = xmalloc(len);
3166 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3167 				_rtld_error("error generating '%d/%s'",
3168 				    dirfd, name);
3169 				rtld_die();
3170 			}
3171 			dbg("open('%s') => %d", found, fd);
3172 			break;
3173 		}
3174 	}
3175 	free(envcopy);
3176 
3177 	return (found);
3178 }
3179 
3180 
3181 int
3182 dlclose(void *handle)
3183 {
3184 	RtldLockState lockstate;
3185 	int error;
3186 
3187 	wlock_acquire(rtld_bind_lock, &lockstate);
3188 	error = dlclose_locked(handle, &lockstate);
3189 	lock_release(rtld_bind_lock, &lockstate);
3190 	return (error);
3191 }
3192 
3193 static int
3194 dlclose_locked(void *handle, RtldLockState *lockstate)
3195 {
3196     Obj_Entry *root;
3197 
3198     root = dlcheck(handle);
3199     if (root == NULL)
3200 	return -1;
3201     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3202 	root->path);
3203 
3204     /* Unreference the object and its dependencies. */
3205     root->dl_refcount--;
3206 
3207     if (root->refcount == 1) {
3208 	/*
3209 	 * The object will be no longer referenced, so we must unload it.
3210 	 * First, call the fini functions.
3211 	 */
3212 	objlist_call_fini(&list_fini, root, lockstate);
3213 
3214 	unref_dag(root);
3215 
3216 	/* Finish cleaning up the newly-unreferenced objects. */
3217 	GDB_STATE(RT_DELETE,&root->linkmap);
3218 	unload_object(root, lockstate);
3219 	GDB_STATE(RT_CONSISTENT,NULL);
3220     } else
3221 	unref_dag(root);
3222 
3223     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3224     return 0;
3225 }
3226 
3227 char *
3228 dlerror(void)
3229 {
3230     char *msg = error_message;
3231     error_message = NULL;
3232     return msg;
3233 }
3234 
3235 /*
3236  * This function is deprecated and has no effect.
3237  */
3238 void
3239 dllockinit(void *context,
3240     void *(*_lock_create)(void *context) __unused,
3241     void (*_rlock_acquire)(void *lock) __unused,
3242     void (*_wlock_acquire)(void *lock)  __unused,
3243     void (*_lock_release)(void *lock) __unused,
3244     void (*_lock_destroy)(void *lock) __unused,
3245     void (*context_destroy)(void *context))
3246 {
3247     static void *cur_context;
3248     static void (*cur_context_destroy)(void *);
3249 
3250     /* Just destroy the context from the previous call, if necessary. */
3251     if (cur_context_destroy != NULL)
3252 	cur_context_destroy(cur_context);
3253     cur_context = context;
3254     cur_context_destroy = context_destroy;
3255 }
3256 
3257 void *
3258 dlopen(const char *name, int mode)
3259 {
3260 
3261 	return (rtld_dlopen(name, -1, mode));
3262 }
3263 
3264 void *
3265 fdlopen(int fd, int mode)
3266 {
3267 
3268 	return (rtld_dlopen(NULL, fd, mode));
3269 }
3270 
3271 static void *
3272 rtld_dlopen(const char *name, int fd, int mode)
3273 {
3274     RtldLockState lockstate;
3275     int lo_flags;
3276 
3277     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3278     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3279     if (ld_tracing != NULL) {
3280 	rlock_acquire(rtld_bind_lock, &lockstate);
3281 	if (sigsetjmp(lockstate.env, 0) != 0)
3282 	    lock_upgrade(rtld_bind_lock, &lockstate);
3283 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3284 	lock_release(rtld_bind_lock, &lockstate);
3285     }
3286     lo_flags = RTLD_LO_DLOPEN;
3287     if (mode & RTLD_NODELETE)
3288 	    lo_flags |= RTLD_LO_NODELETE;
3289     if (mode & RTLD_NOLOAD)
3290 	    lo_flags |= RTLD_LO_NOLOAD;
3291     if (ld_tracing != NULL)
3292 	    lo_flags |= RTLD_LO_TRACE;
3293 
3294     return (dlopen_object(name, fd, obj_main, lo_flags,
3295       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3296 }
3297 
3298 static void
3299 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3300 {
3301 
3302 	obj->dl_refcount--;
3303 	unref_dag(obj);
3304 	if (obj->refcount == 0)
3305 		unload_object(obj, lockstate);
3306 }
3307 
3308 static Obj_Entry *
3309 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3310     int mode, RtldLockState *lockstate)
3311 {
3312     Obj_Entry *old_obj_tail;
3313     Obj_Entry *obj;
3314     Objlist initlist;
3315     RtldLockState mlockstate;
3316     int result;
3317 
3318     objlist_init(&initlist);
3319 
3320     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3321 	wlock_acquire(rtld_bind_lock, &mlockstate);
3322 	lockstate = &mlockstate;
3323     }
3324     GDB_STATE(RT_ADD,NULL);
3325 
3326     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3327     obj = NULL;
3328     if (name == NULL && fd == -1) {
3329 	obj = obj_main;
3330 	obj->refcount++;
3331     } else {
3332 	obj = load_object(name, fd, refobj, lo_flags);
3333     }
3334 
3335     if (obj) {
3336 	obj->dl_refcount++;
3337 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3338 	    objlist_push_tail(&list_global, obj);
3339 	if (globallist_next(old_obj_tail) != NULL) {
3340 	    /* We loaded something new. */
3341 	    assert(globallist_next(old_obj_tail) == obj);
3342 	    result = load_needed_objects(obj,
3343 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3344 	    init_dag(obj);
3345 	    ref_dag(obj);
3346 	    if (result != -1)
3347 		result = rtld_verify_versions(&obj->dagmembers);
3348 	    if (result != -1 && ld_tracing)
3349 		goto trace;
3350 	    if (result == -1 || relocate_object_dag(obj,
3351 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3352 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3353 	      lockstate) == -1) {
3354 		dlopen_cleanup(obj, lockstate);
3355 		obj = NULL;
3356 	    } else if (lo_flags & RTLD_LO_EARLY) {
3357 		/*
3358 		 * Do not call the init functions for early loaded
3359 		 * filtees.  The image is still not initialized enough
3360 		 * for them to work.
3361 		 *
3362 		 * Our object is found by the global object list and
3363 		 * will be ordered among all init calls done right
3364 		 * before transferring control to main.
3365 		 */
3366 	    } else {
3367 		/* Make list of init functions to call. */
3368 		initlist_add_objects(obj, obj, &initlist);
3369 	    }
3370 	    /*
3371 	     * Process all no_delete or global objects here, given
3372 	     * them own DAGs to prevent their dependencies from being
3373 	     * unloaded.  This has to be done after we have loaded all
3374 	     * of the dependencies, so that we do not miss any.
3375 	     */
3376 	    if (obj != NULL)
3377 		process_z(obj);
3378 	} else {
3379 	    /*
3380 	     * Bump the reference counts for objects on this DAG.  If
3381 	     * this is the first dlopen() call for the object that was
3382 	     * already loaded as a dependency, initialize the dag
3383 	     * starting at it.
3384 	     */
3385 	    init_dag(obj);
3386 	    ref_dag(obj);
3387 
3388 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3389 		goto trace;
3390 	}
3391 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3392 	  obj->z_nodelete) && !obj->ref_nodel) {
3393 	    dbg("obj %s nodelete", obj->path);
3394 	    ref_dag(obj);
3395 	    obj->z_nodelete = obj->ref_nodel = true;
3396 	}
3397     }
3398 
3399     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3400 	name);
3401     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3402 
3403     if (!(lo_flags & RTLD_LO_EARLY)) {
3404 	map_stacks_exec(lockstate);
3405     }
3406 
3407     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3408       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3409       lockstate) == -1) {
3410 	objlist_clear(&initlist);
3411 	dlopen_cleanup(obj, lockstate);
3412 	if (lockstate == &mlockstate)
3413 	    lock_release(rtld_bind_lock, lockstate);
3414 	return (NULL);
3415     }
3416 
3417     if (!(lo_flags & RTLD_LO_EARLY)) {
3418 	/* Call the init functions. */
3419 	objlist_call_init(&initlist, lockstate);
3420     }
3421     objlist_clear(&initlist);
3422     if (lockstate == &mlockstate)
3423 	lock_release(rtld_bind_lock, lockstate);
3424     return obj;
3425 trace:
3426     trace_loaded_objects(obj);
3427     if (lockstate == &mlockstate)
3428 	lock_release(rtld_bind_lock, lockstate);
3429     exit(0);
3430 }
3431 
3432 static void *
3433 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3434     int flags)
3435 {
3436     DoneList donelist;
3437     const Obj_Entry *obj, *defobj;
3438     const Elf_Sym *def;
3439     SymLook req;
3440     RtldLockState lockstate;
3441     tls_index ti;
3442     void *sym;
3443     int res;
3444 
3445     def = NULL;
3446     defobj = NULL;
3447     symlook_init(&req, name);
3448     req.ventry = ve;
3449     req.flags = flags | SYMLOOK_IN_PLT;
3450     req.lockstate = &lockstate;
3451 
3452     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3453     rlock_acquire(rtld_bind_lock, &lockstate);
3454     if (sigsetjmp(lockstate.env, 0) != 0)
3455 	    lock_upgrade(rtld_bind_lock, &lockstate);
3456     if (handle == NULL || handle == RTLD_NEXT ||
3457 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3458 
3459 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3460 	    _rtld_error("Cannot determine caller's shared object");
3461 	    lock_release(rtld_bind_lock, &lockstate);
3462 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3463 	    return NULL;
3464 	}
3465 	if (handle == NULL) {	/* Just the caller's shared object. */
3466 	    res = symlook_obj(&req, obj);
3467 	    if (res == 0) {
3468 		def = req.sym_out;
3469 		defobj = req.defobj_out;
3470 	    }
3471 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3472 		   handle == RTLD_SELF) { /* ... caller included */
3473 	    if (handle == RTLD_NEXT)
3474 		obj = globallist_next(obj);
3475 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3476 		if (obj->marker)
3477 		    continue;
3478 		res = symlook_obj(&req, obj);
3479 		if (res == 0) {
3480 		    if (def == NULL ||
3481 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3482 			def = req.sym_out;
3483 			defobj = req.defobj_out;
3484 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3485 			    break;
3486 		    }
3487 		}
3488 	    }
3489 	    /*
3490 	     * Search the dynamic linker itself, and possibly resolve the
3491 	     * symbol from there.  This is how the application links to
3492 	     * dynamic linker services such as dlopen.
3493 	     */
3494 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3495 		res = symlook_obj(&req, &obj_rtld);
3496 		if (res == 0) {
3497 		    def = req.sym_out;
3498 		    defobj = req.defobj_out;
3499 		}
3500 	    }
3501 	} else {
3502 	    assert(handle == RTLD_DEFAULT);
3503 	    res = symlook_default(&req, obj);
3504 	    if (res == 0) {
3505 		defobj = req.defobj_out;
3506 		def = req.sym_out;
3507 	    }
3508 	}
3509     } else {
3510 	if ((obj = dlcheck(handle)) == NULL) {
3511 	    lock_release(rtld_bind_lock, &lockstate);
3512 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3513 	    return NULL;
3514 	}
3515 
3516 	donelist_init(&donelist);
3517 	if (obj->mainprog) {
3518             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3519 	    res = symlook_global(&req, &donelist);
3520 	    if (res == 0) {
3521 		def = req.sym_out;
3522 		defobj = req.defobj_out;
3523 	    }
3524 	    /*
3525 	     * Search the dynamic linker itself, and possibly resolve the
3526 	     * symbol from there.  This is how the application links to
3527 	     * dynamic linker services such as dlopen.
3528 	     */
3529 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3530 		res = symlook_obj(&req, &obj_rtld);
3531 		if (res == 0) {
3532 		    def = req.sym_out;
3533 		    defobj = req.defobj_out;
3534 		}
3535 	    }
3536 	}
3537 	else {
3538 	    /* Search the whole DAG rooted at the given object. */
3539 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3540 	    if (res == 0) {
3541 		def = req.sym_out;
3542 		defobj = req.defobj_out;
3543 	    }
3544 	}
3545     }
3546 
3547     if (def != NULL) {
3548 	lock_release(rtld_bind_lock, &lockstate);
3549 
3550 	/*
3551 	 * The value required by the caller is derived from the value
3552 	 * of the symbol. this is simply the relocated value of the
3553 	 * symbol.
3554 	 */
3555 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3556 	    sym = make_function_pointer(def, defobj);
3557 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3558 	    sym = rtld_resolve_ifunc(defobj, def);
3559 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3560 	    ti.ti_module = defobj->tlsindex;
3561 	    ti.ti_offset = def->st_value;
3562 	    sym = __tls_get_addr(&ti);
3563 	} else
3564 	    sym = defobj->relocbase + def->st_value;
3565 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3566 	return (sym);
3567     }
3568 
3569     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3570       ve != NULL ? ve->name : "");
3571     lock_release(rtld_bind_lock, &lockstate);
3572     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3573     return NULL;
3574 }
3575 
3576 void *
3577 dlsym(void *handle, const char *name)
3578 {
3579 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3580 	    SYMLOOK_DLSYM);
3581 }
3582 
3583 dlfunc_t
3584 dlfunc(void *handle, const char *name)
3585 {
3586 	union {
3587 		void *d;
3588 		dlfunc_t f;
3589 	} rv;
3590 
3591 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3592 	    SYMLOOK_DLSYM);
3593 	return (rv.f);
3594 }
3595 
3596 void *
3597 dlvsym(void *handle, const char *name, const char *version)
3598 {
3599 	Ver_Entry ventry;
3600 
3601 	ventry.name = version;
3602 	ventry.file = NULL;
3603 	ventry.hash = elf_hash(version);
3604 	ventry.flags= 0;
3605 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3606 	    SYMLOOK_DLSYM);
3607 }
3608 
3609 int
3610 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3611 {
3612     const Obj_Entry *obj;
3613     RtldLockState lockstate;
3614 
3615     rlock_acquire(rtld_bind_lock, &lockstate);
3616     obj = obj_from_addr(addr);
3617     if (obj == NULL) {
3618         _rtld_error("No shared object contains address");
3619 	lock_release(rtld_bind_lock, &lockstate);
3620         return (0);
3621     }
3622     rtld_fill_dl_phdr_info(obj, phdr_info);
3623     lock_release(rtld_bind_lock, &lockstate);
3624     return (1);
3625 }
3626 
3627 int
3628 dladdr(const void *addr, Dl_info *info)
3629 {
3630     const Obj_Entry *obj;
3631     const Elf_Sym *def;
3632     void *symbol_addr;
3633     unsigned long symoffset;
3634     RtldLockState lockstate;
3635 
3636     rlock_acquire(rtld_bind_lock, &lockstate);
3637     obj = obj_from_addr(addr);
3638     if (obj == NULL) {
3639         _rtld_error("No shared object contains address");
3640 	lock_release(rtld_bind_lock, &lockstate);
3641         return 0;
3642     }
3643     info->dli_fname = obj->path;
3644     info->dli_fbase = obj->mapbase;
3645     info->dli_saddr = (void *)0;
3646     info->dli_sname = NULL;
3647 
3648     /*
3649      * Walk the symbol list looking for the symbol whose address is
3650      * closest to the address sent in.
3651      */
3652     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3653         def = obj->symtab + symoffset;
3654 
3655         /*
3656          * For skip the symbol if st_shndx is either SHN_UNDEF or
3657          * SHN_COMMON.
3658          */
3659         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3660             continue;
3661 
3662         /*
3663          * If the symbol is greater than the specified address, or if it
3664          * is further away from addr than the current nearest symbol,
3665          * then reject it.
3666          */
3667         symbol_addr = obj->relocbase + def->st_value;
3668         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3669             continue;
3670 
3671         /* Update our idea of the nearest symbol. */
3672         info->dli_sname = obj->strtab + def->st_name;
3673         info->dli_saddr = symbol_addr;
3674 
3675         /* Exact match? */
3676         if (info->dli_saddr == addr)
3677             break;
3678     }
3679     lock_release(rtld_bind_lock, &lockstate);
3680     return 1;
3681 }
3682 
3683 int
3684 dlinfo(void *handle, int request, void *p)
3685 {
3686     const Obj_Entry *obj;
3687     RtldLockState lockstate;
3688     int error;
3689 
3690     rlock_acquire(rtld_bind_lock, &lockstate);
3691 
3692     if (handle == NULL || handle == RTLD_SELF) {
3693 	void *retaddr;
3694 
3695 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3696 	if ((obj = obj_from_addr(retaddr)) == NULL)
3697 	    _rtld_error("Cannot determine caller's shared object");
3698     } else
3699 	obj = dlcheck(handle);
3700 
3701     if (obj == NULL) {
3702 	lock_release(rtld_bind_lock, &lockstate);
3703 	return (-1);
3704     }
3705 
3706     error = 0;
3707     switch (request) {
3708     case RTLD_DI_LINKMAP:
3709 	*((struct link_map const **)p) = &obj->linkmap;
3710 	break;
3711     case RTLD_DI_ORIGIN:
3712 	error = rtld_dirname(obj->path, p);
3713 	break;
3714 
3715     case RTLD_DI_SERINFOSIZE:
3716     case RTLD_DI_SERINFO:
3717 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3718 	break;
3719 
3720     default:
3721 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3722 	error = -1;
3723     }
3724 
3725     lock_release(rtld_bind_lock, &lockstate);
3726 
3727     return (error);
3728 }
3729 
3730 static void
3731 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3732 {
3733 
3734 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3735 	phdr_info->dlpi_name = obj->path;
3736 	phdr_info->dlpi_phdr = obj->phdr;
3737 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3738 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3739 	phdr_info->dlpi_tls_data = obj->tlsinit;
3740 	phdr_info->dlpi_adds = obj_loads;
3741 	phdr_info->dlpi_subs = obj_loads - obj_count;
3742 }
3743 
3744 int
3745 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3746 {
3747 	struct dl_phdr_info phdr_info;
3748 	Obj_Entry *obj, marker;
3749 	RtldLockState bind_lockstate, phdr_lockstate;
3750 	int error;
3751 
3752 	init_marker(&marker);
3753 	error = 0;
3754 
3755 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3756 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3757 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3758 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3759 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3760 		hold_object(obj);
3761 		lock_release(rtld_bind_lock, &bind_lockstate);
3762 
3763 		error = callback(&phdr_info, sizeof phdr_info, param);
3764 
3765 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3766 		unhold_object(obj);
3767 		obj = globallist_next(&marker);
3768 		TAILQ_REMOVE(&obj_list, &marker, next);
3769 		if (error != 0) {
3770 			lock_release(rtld_bind_lock, &bind_lockstate);
3771 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3772 			return (error);
3773 		}
3774 	}
3775 
3776 	if (error == 0) {
3777 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3778 		lock_release(rtld_bind_lock, &bind_lockstate);
3779 		error = callback(&phdr_info, sizeof(phdr_info), param);
3780 	}
3781 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3782 	return (error);
3783 }
3784 
3785 static void *
3786 fill_search_info(const char *dir, size_t dirlen, void *param)
3787 {
3788     struct fill_search_info_args *arg;
3789 
3790     arg = param;
3791 
3792     if (arg->request == RTLD_DI_SERINFOSIZE) {
3793 	arg->serinfo->dls_cnt ++;
3794 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3795     } else {
3796 	struct dl_serpath *s_entry;
3797 
3798 	s_entry = arg->serpath;
3799 	s_entry->dls_name  = arg->strspace;
3800 	s_entry->dls_flags = arg->flags;
3801 
3802 	strncpy(arg->strspace, dir, dirlen);
3803 	arg->strspace[dirlen] = '\0';
3804 
3805 	arg->strspace += dirlen + 1;
3806 	arg->serpath++;
3807     }
3808 
3809     return (NULL);
3810 }
3811 
3812 static int
3813 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3814 {
3815     struct dl_serinfo _info;
3816     struct fill_search_info_args args;
3817 
3818     args.request = RTLD_DI_SERINFOSIZE;
3819     args.serinfo = &_info;
3820 
3821     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3822     _info.dls_cnt  = 0;
3823 
3824     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3825     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3826     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3827     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3828     if (!obj->z_nodeflib)
3829       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3830 
3831 
3832     if (request == RTLD_DI_SERINFOSIZE) {
3833 	info->dls_size = _info.dls_size;
3834 	info->dls_cnt = _info.dls_cnt;
3835 	return (0);
3836     }
3837 
3838     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3839 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3840 	return (-1);
3841     }
3842 
3843     args.request  = RTLD_DI_SERINFO;
3844     args.serinfo  = info;
3845     args.serpath  = &info->dls_serpath[0];
3846     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3847 
3848     args.flags = LA_SER_RUNPATH;
3849     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3850 	return (-1);
3851 
3852     args.flags = LA_SER_LIBPATH;
3853     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3854 	return (-1);
3855 
3856     args.flags = LA_SER_RUNPATH;
3857     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3858 	return (-1);
3859 
3860     args.flags = LA_SER_CONFIG;
3861     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3862       != NULL)
3863 	return (-1);
3864 
3865     args.flags = LA_SER_DEFAULT;
3866     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3867       fill_search_info, NULL, &args) != NULL)
3868 	return (-1);
3869     return (0);
3870 }
3871 
3872 static int
3873 rtld_dirname(const char *path, char *bname)
3874 {
3875     const char *endp;
3876 
3877     /* Empty or NULL string gets treated as "." */
3878     if (path == NULL || *path == '\0') {
3879 	bname[0] = '.';
3880 	bname[1] = '\0';
3881 	return (0);
3882     }
3883 
3884     /* Strip trailing slashes */
3885     endp = path + strlen(path) - 1;
3886     while (endp > path && *endp == '/')
3887 	endp--;
3888 
3889     /* Find the start of the dir */
3890     while (endp > path && *endp != '/')
3891 	endp--;
3892 
3893     /* Either the dir is "/" or there are no slashes */
3894     if (endp == path) {
3895 	bname[0] = *endp == '/' ? '/' : '.';
3896 	bname[1] = '\0';
3897 	return (0);
3898     } else {
3899 	do {
3900 	    endp--;
3901 	} while (endp > path && *endp == '/');
3902     }
3903 
3904     if (endp - path + 2 > PATH_MAX)
3905     {
3906 	_rtld_error("Filename is too long: %s", path);
3907 	return(-1);
3908     }
3909 
3910     strncpy(bname, path, endp - path + 1);
3911     bname[endp - path + 1] = '\0';
3912     return (0);
3913 }
3914 
3915 static int
3916 rtld_dirname_abs(const char *path, char *base)
3917 {
3918 	char *last;
3919 
3920 	if (realpath(path, base) == NULL)
3921 		return (-1);
3922 	dbg("%s -> %s", path, base);
3923 	last = strrchr(base, '/');
3924 	if (last == NULL)
3925 		return (-1);
3926 	if (last != base)
3927 		*last = '\0';
3928 	return (0);
3929 }
3930 
3931 static void
3932 linkmap_add(Obj_Entry *obj)
3933 {
3934     struct link_map *l = &obj->linkmap;
3935     struct link_map *prev;
3936 
3937     obj->linkmap.l_name = obj->path;
3938     obj->linkmap.l_addr = obj->mapbase;
3939     obj->linkmap.l_ld = obj->dynamic;
3940 #ifdef __mips__
3941     /* GDB needs load offset on MIPS to use the symbols */
3942     obj->linkmap.l_offs = obj->relocbase;
3943 #endif
3944 
3945     if (r_debug.r_map == NULL) {
3946 	r_debug.r_map = l;
3947 	return;
3948     }
3949 
3950     /*
3951      * Scan to the end of the list, but not past the entry for the
3952      * dynamic linker, which we want to keep at the very end.
3953      */
3954     for (prev = r_debug.r_map;
3955       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3956       prev = prev->l_next)
3957 	;
3958 
3959     /* Link in the new entry. */
3960     l->l_prev = prev;
3961     l->l_next = prev->l_next;
3962     if (l->l_next != NULL)
3963 	l->l_next->l_prev = l;
3964     prev->l_next = l;
3965 }
3966 
3967 static void
3968 linkmap_delete(Obj_Entry *obj)
3969 {
3970     struct link_map *l = &obj->linkmap;
3971 
3972     if (l->l_prev == NULL) {
3973 	if ((r_debug.r_map = l->l_next) != NULL)
3974 	    l->l_next->l_prev = NULL;
3975 	return;
3976     }
3977 
3978     if ((l->l_prev->l_next = l->l_next) != NULL)
3979 	l->l_next->l_prev = l->l_prev;
3980 }
3981 
3982 /*
3983  * Function for the debugger to set a breakpoint on to gain control.
3984  *
3985  * The two parameters allow the debugger to easily find and determine
3986  * what the runtime loader is doing and to whom it is doing it.
3987  *
3988  * When the loadhook trap is hit (r_debug_state, set at program
3989  * initialization), the arguments can be found on the stack:
3990  *
3991  *  +8   struct link_map *m
3992  *  +4   struct r_debug  *rd
3993  *  +0   RetAddr
3994  */
3995 void
3996 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
3997 {
3998     /*
3999      * The following is a hack to force the compiler to emit calls to
4000      * this function, even when optimizing.  If the function is empty,
4001      * the compiler is not obliged to emit any code for calls to it,
4002      * even when marked __noinline.  However, gdb depends on those
4003      * calls being made.
4004      */
4005     __compiler_membar();
4006 }
4007 
4008 /*
4009  * A function called after init routines have completed. This can be used to
4010  * break before a program's entry routine is called, and can be used when
4011  * main is not available in the symbol table.
4012  */
4013 void
4014 _r_debug_postinit(struct link_map *m __unused)
4015 {
4016 
4017 	/* See r_debug_state(). */
4018 	__compiler_membar();
4019 }
4020 
4021 static void
4022 release_object(Obj_Entry *obj)
4023 {
4024 
4025 	if (obj->holdcount > 0) {
4026 		obj->unholdfree = true;
4027 		return;
4028 	}
4029 	munmap(obj->mapbase, obj->mapsize);
4030 	linkmap_delete(obj);
4031 	obj_free(obj);
4032 }
4033 
4034 /*
4035  * Get address of the pointer variable in the main program.
4036  * Prefer non-weak symbol over the weak one.
4037  */
4038 static const void **
4039 get_program_var_addr(const char *name, RtldLockState *lockstate)
4040 {
4041     SymLook req;
4042     DoneList donelist;
4043 
4044     symlook_init(&req, name);
4045     req.lockstate = lockstate;
4046     donelist_init(&donelist);
4047     if (symlook_global(&req, &donelist) != 0)
4048 	return (NULL);
4049     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4050 	return ((const void **)make_function_pointer(req.sym_out,
4051 	  req.defobj_out));
4052     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4053 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4054     else
4055 	return ((const void **)(req.defobj_out->relocbase +
4056 	  req.sym_out->st_value));
4057 }
4058 
4059 /*
4060  * Set a pointer variable in the main program to the given value.  This
4061  * is used to set key variables such as "environ" before any of the
4062  * init functions are called.
4063  */
4064 static void
4065 set_program_var(const char *name, const void *value)
4066 {
4067     const void **addr;
4068 
4069     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4070 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4071 	*addr = value;
4072     }
4073 }
4074 
4075 /*
4076  * Search the global objects, including dependencies and main object,
4077  * for the given symbol.
4078  */
4079 static int
4080 symlook_global(SymLook *req, DoneList *donelist)
4081 {
4082     SymLook req1;
4083     const Objlist_Entry *elm;
4084     int res;
4085 
4086     symlook_init_from_req(&req1, req);
4087 
4088     /* Search all objects loaded at program start up. */
4089     if (req->defobj_out == NULL ||
4090       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4091 	res = symlook_list(&req1, &list_main, donelist);
4092 	if (res == 0 && (req->defobj_out == NULL ||
4093 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4094 	    req->sym_out = req1.sym_out;
4095 	    req->defobj_out = req1.defobj_out;
4096 	    assert(req->defobj_out != NULL);
4097 	}
4098     }
4099 
4100     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4101     STAILQ_FOREACH(elm, &list_global, link) {
4102 	if (req->defobj_out != NULL &&
4103 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4104 	    break;
4105 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4106 	if (res == 0 && (req->defobj_out == NULL ||
4107 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4108 	    req->sym_out = req1.sym_out;
4109 	    req->defobj_out = req1.defobj_out;
4110 	    assert(req->defobj_out != NULL);
4111 	}
4112     }
4113 
4114     return (req->sym_out != NULL ? 0 : ESRCH);
4115 }
4116 
4117 /*
4118  * Given a symbol name in a referencing object, find the corresponding
4119  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4120  * no definition was found.  Returns a pointer to the Obj_Entry of the
4121  * defining object via the reference parameter DEFOBJ_OUT.
4122  */
4123 static int
4124 symlook_default(SymLook *req, const Obj_Entry *refobj)
4125 {
4126     DoneList donelist;
4127     const Objlist_Entry *elm;
4128     SymLook req1;
4129     int res;
4130 
4131     donelist_init(&donelist);
4132     symlook_init_from_req(&req1, req);
4133 
4134     /*
4135      * Look first in the referencing object if linked symbolically,
4136      * and similarly handle protected symbols.
4137      */
4138     res = symlook_obj(&req1, refobj);
4139     if (res == 0 && (refobj->symbolic ||
4140       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4141 	req->sym_out = req1.sym_out;
4142 	req->defobj_out = req1.defobj_out;
4143 	assert(req->defobj_out != NULL);
4144     }
4145     if (refobj->symbolic || req->defobj_out != NULL)
4146 	donelist_check(&donelist, refobj);
4147 
4148     symlook_global(req, &donelist);
4149 
4150     /* Search all dlopened DAGs containing the referencing object. */
4151     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4152 	if (req->sym_out != NULL &&
4153 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4154 	    break;
4155 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4156 	if (res == 0 && (req->sym_out == NULL ||
4157 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4158 	    req->sym_out = req1.sym_out;
4159 	    req->defobj_out = req1.defobj_out;
4160 	    assert(req->defobj_out != NULL);
4161 	}
4162     }
4163 
4164     /*
4165      * Search the dynamic linker itself, and possibly resolve the
4166      * symbol from there.  This is how the application links to
4167      * dynamic linker services such as dlopen.
4168      */
4169     if (req->sym_out == NULL ||
4170       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4171 	res = symlook_obj(&req1, &obj_rtld);
4172 	if (res == 0) {
4173 	    req->sym_out = req1.sym_out;
4174 	    req->defobj_out = req1.defobj_out;
4175 	    assert(req->defobj_out != NULL);
4176 	}
4177     }
4178 
4179     return (req->sym_out != NULL ? 0 : ESRCH);
4180 }
4181 
4182 static int
4183 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4184 {
4185     const Elf_Sym *def;
4186     const Obj_Entry *defobj;
4187     const Objlist_Entry *elm;
4188     SymLook req1;
4189     int res;
4190 
4191     def = NULL;
4192     defobj = NULL;
4193     STAILQ_FOREACH(elm, objlist, link) {
4194 	if (donelist_check(dlp, elm->obj))
4195 	    continue;
4196 	symlook_init_from_req(&req1, req);
4197 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4198 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4199 		def = req1.sym_out;
4200 		defobj = req1.defobj_out;
4201 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4202 		    break;
4203 	    }
4204 	}
4205     }
4206     if (def != NULL) {
4207 	req->sym_out = def;
4208 	req->defobj_out = defobj;
4209 	return (0);
4210     }
4211     return (ESRCH);
4212 }
4213 
4214 /*
4215  * Search the chain of DAGS cointed to by the given Needed_Entry
4216  * for a symbol of the given name.  Each DAG is scanned completely
4217  * before advancing to the next one.  Returns a pointer to the symbol,
4218  * or NULL if no definition was found.
4219  */
4220 static int
4221 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4222 {
4223     const Elf_Sym *def;
4224     const Needed_Entry *n;
4225     const Obj_Entry *defobj;
4226     SymLook req1;
4227     int res;
4228 
4229     def = NULL;
4230     defobj = NULL;
4231     symlook_init_from_req(&req1, req);
4232     for (n = needed; n != NULL; n = n->next) {
4233 	if (n->obj == NULL ||
4234 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4235 	    continue;
4236 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4237 	    def = req1.sym_out;
4238 	    defobj = req1.defobj_out;
4239 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4240 		break;
4241 	}
4242     }
4243     if (def != NULL) {
4244 	req->sym_out = def;
4245 	req->defobj_out = defobj;
4246 	return (0);
4247     }
4248     return (ESRCH);
4249 }
4250 
4251 /*
4252  * Search the symbol table of a single shared object for a symbol of
4253  * the given name and version, if requested.  Returns a pointer to the
4254  * symbol, or NULL if no definition was found.  If the object is
4255  * filter, return filtered symbol from filtee.
4256  *
4257  * The symbol's hash value is passed in for efficiency reasons; that
4258  * eliminates many recomputations of the hash value.
4259  */
4260 int
4261 symlook_obj(SymLook *req, const Obj_Entry *obj)
4262 {
4263     DoneList donelist;
4264     SymLook req1;
4265     int flags, res, mres;
4266 
4267     /*
4268      * If there is at least one valid hash at this point, we prefer to
4269      * use the faster GNU version if available.
4270      */
4271     if (obj->valid_hash_gnu)
4272 	mres = symlook_obj1_gnu(req, obj);
4273     else if (obj->valid_hash_sysv)
4274 	mres = symlook_obj1_sysv(req, obj);
4275     else
4276 	return (EINVAL);
4277 
4278     if (mres == 0) {
4279 	if (obj->needed_filtees != NULL) {
4280 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4281 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4282 	    donelist_init(&donelist);
4283 	    symlook_init_from_req(&req1, req);
4284 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4285 	    if (res == 0) {
4286 		req->sym_out = req1.sym_out;
4287 		req->defobj_out = req1.defobj_out;
4288 	    }
4289 	    return (res);
4290 	}
4291 	if (obj->needed_aux_filtees != NULL) {
4292 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4293 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4294 	    donelist_init(&donelist);
4295 	    symlook_init_from_req(&req1, req);
4296 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4297 	    if (res == 0) {
4298 		req->sym_out = req1.sym_out;
4299 		req->defobj_out = req1.defobj_out;
4300 		return (res);
4301 	    }
4302 	}
4303     }
4304     return (mres);
4305 }
4306 
4307 /* Symbol match routine common to both hash functions */
4308 static bool
4309 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4310     const unsigned long symnum)
4311 {
4312 	Elf_Versym verndx;
4313 	const Elf_Sym *symp;
4314 	const char *strp;
4315 
4316 	symp = obj->symtab + symnum;
4317 	strp = obj->strtab + symp->st_name;
4318 
4319 	switch (ELF_ST_TYPE(symp->st_info)) {
4320 	case STT_FUNC:
4321 	case STT_NOTYPE:
4322 	case STT_OBJECT:
4323 	case STT_COMMON:
4324 	case STT_GNU_IFUNC:
4325 		if (symp->st_value == 0)
4326 			return (false);
4327 		/* fallthrough */
4328 	case STT_TLS:
4329 		if (symp->st_shndx != SHN_UNDEF)
4330 			break;
4331 #ifndef __mips__
4332 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4333 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4334 			break;
4335 #endif
4336 		/* fallthrough */
4337 	default:
4338 		return (false);
4339 	}
4340 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4341 		return (false);
4342 
4343 	if (req->ventry == NULL) {
4344 		if (obj->versyms != NULL) {
4345 			verndx = VER_NDX(obj->versyms[symnum]);
4346 			if (verndx > obj->vernum) {
4347 				_rtld_error(
4348 				    "%s: symbol %s references wrong version %d",
4349 				    obj->path, obj->strtab + symnum, verndx);
4350 				return (false);
4351 			}
4352 			/*
4353 			 * If we are not called from dlsym (i.e. this
4354 			 * is a normal relocation from unversioned
4355 			 * binary), accept the symbol immediately if
4356 			 * it happens to have first version after this
4357 			 * shared object became versioned.  Otherwise,
4358 			 * if symbol is versioned and not hidden,
4359 			 * remember it. If it is the only symbol with
4360 			 * this name exported by the shared object, it
4361 			 * will be returned as a match by the calling
4362 			 * function. If symbol is global (verndx < 2)
4363 			 * accept it unconditionally.
4364 			 */
4365 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4366 			    verndx == VER_NDX_GIVEN) {
4367 				result->sym_out = symp;
4368 				return (true);
4369 			}
4370 			else if (verndx >= VER_NDX_GIVEN) {
4371 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4372 				    == 0) {
4373 					if (result->vsymp == NULL)
4374 						result->vsymp = symp;
4375 					result->vcount++;
4376 				}
4377 				return (false);
4378 			}
4379 		}
4380 		result->sym_out = symp;
4381 		return (true);
4382 	}
4383 	if (obj->versyms == NULL) {
4384 		if (object_match_name(obj, req->ventry->name)) {
4385 			_rtld_error("%s: object %s should provide version %s "
4386 			    "for symbol %s", obj_rtld.path, obj->path,
4387 			    req->ventry->name, obj->strtab + symnum);
4388 			return (false);
4389 		}
4390 	} else {
4391 		verndx = VER_NDX(obj->versyms[symnum]);
4392 		if (verndx > obj->vernum) {
4393 			_rtld_error("%s: symbol %s references wrong version %d",
4394 			    obj->path, obj->strtab + symnum, verndx);
4395 			return (false);
4396 		}
4397 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4398 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4399 			/*
4400 			 * Version does not match. Look if this is a
4401 			 * global symbol and if it is not hidden. If
4402 			 * global symbol (verndx < 2) is available,
4403 			 * use it. Do not return symbol if we are
4404 			 * called by dlvsym, because dlvsym looks for
4405 			 * a specific version and default one is not
4406 			 * what dlvsym wants.
4407 			 */
4408 			if ((req->flags & SYMLOOK_DLSYM) ||
4409 			    (verndx >= VER_NDX_GIVEN) ||
4410 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4411 				return (false);
4412 		}
4413 	}
4414 	result->sym_out = symp;
4415 	return (true);
4416 }
4417 
4418 /*
4419  * Search for symbol using SysV hash function.
4420  * obj->buckets is known not to be NULL at this point; the test for this was
4421  * performed with the obj->valid_hash_sysv assignment.
4422  */
4423 static int
4424 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4425 {
4426 	unsigned long symnum;
4427 	Sym_Match_Result matchres;
4428 
4429 	matchres.sym_out = NULL;
4430 	matchres.vsymp = NULL;
4431 	matchres.vcount = 0;
4432 
4433 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4434 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4435 		if (symnum >= obj->nchains)
4436 			return (ESRCH);	/* Bad object */
4437 
4438 		if (matched_symbol(req, obj, &matchres, symnum)) {
4439 			req->sym_out = matchres.sym_out;
4440 			req->defobj_out = obj;
4441 			return (0);
4442 		}
4443 	}
4444 	if (matchres.vcount == 1) {
4445 		req->sym_out = matchres.vsymp;
4446 		req->defobj_out = obj;
4447 		return (0);
4448 	}
4449 	return (ESRCH);
4450 }
4451 
4452 /* Search for symbol using GNU hash function */
4453 static int
4454 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4455 {
4456 	Elf_Addr bloom_word;
4457 	const Elf32_Word *hashval;
4458 	Elf32_Word bucket;
4459 	Sym_Match_Result matchres;
4460 	unsigned int h1, h2;
4461 	unsigned long symnum;
4462 
4463 	matchres.sym_out = NULL;
4464 	matchres.vsymp = NULL;
4465 	matchres.vcount = 0;
4466 
4467 	/* Pick right bitmask word from Bloom filter array */
4468 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4469 	    obj->maskwords_bm_gnu];
4470 
4471 	/* Calculate modulus word size of gnu hash and its derivative */
4472 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4473 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4474 
4475 	/* Filter out the "definitely not in set" queries */
4476 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4477 		return (ESRCH);
4478 
4479 	/* Locate hash chain and corresponding value element*/
4480 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4481 	if (bucket == 0)
4482 		return (ESRCH);
4483 	hashval = &obj->chain_zero_gnu[bucket];
4484 	do {
4485 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4486 			symnum = hashval - obj->chain_zero_gnu;
4487 			if (matched_symbol(req, obj, &matchres, symnum)) {
4488 				req->sym_out = matchres.sym_out;
4489 				req->defobj_out = obj;
4490 				return (0);
4491 			}
4492 		}
4493 	} while ((*hashval++ & 1) == 0);
4494 	if (matchres.vcount == 1) {
4495 		req->sym_out = matchres.vsymp;
4496 		req->defobj_out = obj;
4497 		return (0);
4498 	}
4499 	return (ESRCH);
4500 }
4501 
4502 static void
4503 trace_loaded_objects(Obj_Entry *obj)
4504 {
4505     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4506     int c;
4507 
4508     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4509 	main_local = "";
4510 
4511     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4512 	fmt1 = "\t%o => %p (%x)\n";
4513 
4514     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4515 	fmt2 = "\t%o (%x)\n";
4516 
4517     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4518 
4519     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4520 	Needed_Entry *needed;
4521 	const char *name, *path;
4522 	bool is_lib;
4523 
4524 	if (obj->marker)
4525 	    continue;
4526 	if (list_containers && obj->needed != NULL)
4527 	    rtld_printf("%s:\n", obj->path);
4528 	for (needed = obj->needed; needed; needed = needed->next) {
4529 	    if (needed->obj != NULL) {
4530 		if (needed->obj->traced && !list_containers)
4531 		    continue;
4532 		needed->obj->traced = true;
4533 		path = needed->obj->path;
4534 	    } else
4535 		path = "not found";
4536 
4537 	    name = obj->strtab + needed->name;
4538 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4539 
4540 	    fmt = is_lib ? fmt1 : fmt2;
4541 	    while ((c = *fmt++) != '\0') {
4542 		switch (c) {
4543 		default:
4544 		    rtld_putchar(c);
4545 		    continue;
4546 		case '\\':
4547 		    switch (c = *fmt) {
4548 		    case '\0':
4549 			continue;
4550 		    case 'n':
4551 			rtld_putchar('\n');
4552 			break;
4553 		    case 't':
4554 			rtld_putchar('\t');
4555 			break;
4556 		    }
4557 		    break;
4558 		case '%':
4559 		    switch (c = *fmt) {
4560 		    case '\0':
4561 			continue;
4562 		    case '%':
4563 		    default:
4564 			rtld_putchar(c);
4565 			break;
4566 		    case 'A':
4567 			rtld_putstr(main_local);
4568 			break;
4569 		    case 'a':
4570 			rtld_putstr(obj_main->path);
4571 			break;
4572 		    case 'o':
4573 			rtld_putstr(name);
4574 			break;
4575 #if 0
4576 		    case 'm':
4577 			rtld_printf("%d", sodp->sod_major);
4578 			break;
4579 		    case 'n':
4580 			rtld_printf("%d", sodp->sod_minor);
4581 			break;
4582 #endif
4583 		    case 'p':
4584 			rtld_putstr(path);
4585 			break;
4586 		    case 'x':
4587 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4588 			  0);
4589 			break;
4590 		    }
4591 		    break;
4592 		}
4593 		++fmt;
4594 	    }
4595 	}
4596     }
4597 }
4598 
4599 /*
4600  * Unload a dlopened object and its dependencies from memory and from
4601  * our data structures.  It is assumed that the DAG rooted in the
4602  * object has already been unreferenced, and that the object has a
4603  * reference count of 0.
4604  */
4605 static void
4606 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4607 {
4608 	Obj_Entry marker, *obj, *next;
4609 
4610 	assert(root->refcount == 0);
4611 
4612 	/*
4613 	 * Pass over the DAG removing unreferenced objects from
4614 	 * appropriate lists.
4615 	 */
4616 	unlink_object(root);
4617 
4618 	/* Unmap all objects that are no longer referenced. */
4619 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4620 		next = TAILQ_NEXT(obj, next);
4621 		if (obj->marker || obj->refcount != 0)
4622 			continue;
4623 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4624 		    obj->mapsize, 0, obj->path);
4625 		dbg("unloading \"%s\"", obj->path);
4626 		/*
4627 		 * Unlink the object now to prevent new references from
4628 		 * being acquired while the bind lock is dropped in
4629 		 * recursive dlclose() invocations.
4630 		 */
4631 		TAILQ_REMOVE(&obj_list, obj, next);
4632 		obj_count--;
4633 
4634 		if (obj->filtees_loaded) {
4635 			if (next != NULL) {
4636 				init_marker(&marker);
4637 				TAILQ_INSERT_BEFORE(next, &marker, next);
4638 				unload_filtees(obj, lockstate);
4639 				next = TAILQ_NEXT(&marker, next);
4640 				TAILQ_REMOVE(&obj_list, &marker, next);
4641 			} else
4642 				unload_filtees(obj, lockstate);
4643 		}
4644 		release_object(obj);
4645 	}
4646 }
4647 
4648 static void
4649 unlink_object(Obj_Entry *root)
4650 {
4651     Objlist_Entry *elm;
4652 
4653     if (root->refcount == 0) {
4654 	/* Remove the object from the RTLD_GLOBAL list. */
4655 	objlist_remove(&list_global, root);
4656 
4657     	/* Remove the object from all objects' DAG lists. */
4658     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4659 	    objlist_remove(&elm->obj->dldags, root);
4660 	    if (elm->obj != root)
4661 		unlink_object(elm->obj);
4662 	}
4663     }
4664 }
4665 
4666 static void
4667 ref_dag(Obj_Entry *root)
4668 {
4669     Objlist_Entry *elm;
4670 
4671     assert(root->dag_inited);
4672     STAILQ_FOREACH(elm, &root->dagmembers, link)
4673 	elm->obj->refcount++;
4674 }
4675 
4676 static void
4677 unref_dag(Obj_Entry *root)
4678 {
4679     Objlist_Entry *elm;
4680 
4681     assert(root->dag_inited);
4682     STAILQ_FOREACH(elm, &root->dagmembers, link)
4683 	elm->obj->refcount--;
4684 }
4685 
4686 /*
4687  * Common code for MD __tls_get_addr().
4688  */
4689 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4690 static void *
4691 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4692 {
4693     Elf_Addr *newdtv, *dtv;
4694     RtldLockState lockstate;
4695     int to_copy;
4696 
4697     dtv = *dtvp;
4698     /* Check dtv generation in case new modules have arrived */
4699     if (dtv[0] != tls_dtv_generation) {
4700 	wlock_acquire(rtld_bind_lock, &lockstate);
4701 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4702 	to_copy = dtv[1];
4703 	if (to_copy > tls_max_index)
4704 	    to_copy = tls_max_index;
4705 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4706 	newdtv[0] = tls_dtv_generation;
4707 	newdtv[1] = tls_max_index;
4708 	free(dtv);
4709 	lock_release(rtld_bind_lock, &lockstate);
4710 	dtv = *dtvp = newdtv;
4711     }
4712 
4713     /* Dynamically allocate module TLS if necessary */
4714     if (dtv[index + 1] == 0) {
4715 	/* Signal safe, wlock will block out signals. */
4716 	wlock_acquire(rtld_bind_lock, &lockstate);
4717 	if (!dtv[index + 1])
4718 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4719 	lock_release(rtld_bind_lock, &lockstate);
4720     }
4721     return ((void *)(dtv[index + 1] + offset));
4722 }
4723 
4724 void *
4725 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4726 {
4727 	Elf_Addr *dtv;
4728 
4729 	dtv = *dtvp;
4730 	/* Check dtv generation in case new modules have arrived */
4731 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4732 	    dtv[index + 1] != 0))
4733 		return ((void *)(dtv[index + 1] + offset));
4734 	return (tls_get_addr_slow(dtvp, index, offset));
4735 }
4736 
4737 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4738     defined(__powerpc__) || defined(__riscv)
4739 
4740 /*
4741  * Return pointer to allocated TLS block
4742  */
4743 static void *
4744 get_tls_block_ptr(void *tcb, size_t tcbsize)
4745 {
4746     size_t extra_size, post_size, pre_size, tls_block_size;
4747     size_t tls_init_align;
4748 
4749     tls_init_align = MAX(obj_main->tlsalign, 1);
4750 
4751     /* Compute fragments sizes. */
4752     extra_size = tcbsize - TLS_TCB_SIZE;
4753     post_size = calculate_tls_post_size(tls_init_align);
4754     tls_block_size = tcbsize + post_size;
4755     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4756 
4757     return ((char *)tcb - pre_size - extra_size);
4758 }
4759 
4760 /*
4761  * Allocate Static TLS using the Variant I method.
4762  *
4763  * For details on the layout, see lib/libc/gen/tls.c.
4764  *
4765  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4766  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4767  *     offsets, whereas libc's tls_static_space is just the executable's static
4768  *     TLS segment.
4769  */
4770 void *
4771 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4772 {
4773     Obj_Entry *obj;
4774     char *tls_block;
4775     Elf_Addr *dtv, **tcb;
4776     Elf_Addr addr;
4777     Elf_Addr i;
4778     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4779     size_t tls_init_align;
4780 
4781     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4782 	return (oldtcb);
4783 
4784     assert(tcbsize >= TLS_TCB_SIZE);
4785     maxalign = MAX(tcbalign, tls_static_max_align);
4786     tls_init_align = MAX(obj_main->tlsalign, 1);
4787 
4788     /* Compute fragmets sizes. */
4789     extra_size = tcbsize - TLS_TCB_SIZE;
4790     post_size = calculate_tls_post_size(tls_init_align);
4791     tls_block_size = tcbsize + post_size;
4792     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4793     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4794 
4795     /* Allocate whole TLS block */
4796     tls_block = malloc_aligned(tls_block_size, maxalign);
4797     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4798 
4799     if (oldtcb != NULL) {
4800 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4801 	    tls_static_space);
4802 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4803 
4804 	/* Adjust the DTV. */
4805 	dtv = tcb[0];
4806 	for (i = 0; i < dtv[1]; i++) {
4807 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4808 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4809 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4810 	    }
4811 	}
4812     } else {
4813 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4814 	tcb[0] = dtv;
4815 	dtv[0] = tls_dtv_generation;
4816 	dtv[1] = tls_max_index;
4817 
4818 	for (obj = globallist_curr(objs); obj != NULL;
4819 	  obj = globallist_next(obj)) {
4820 	    if (obj->tlsoffset > 0) {
4821 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4822 		if (obj->tlsinitsize > 0)
4823 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4824 		if (obj->tlssize > obj->tlsinitsize)
4825 		    memset((void*)(addr + obj->tlsinitsize), 0,
4826 			   obj->tlssize - obj->tlsinitsize);
4827 		dtv[obj->tlsindex + 1] = addr;
4828 	    }
4829 	}
4830     }
4831 
4832     return (tcb);
4833 }
4834 
4835 void
4836 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4837 {
4838     Elf_Addr *dtv;
4839     Elf_Addr tlsstart, tlsend;
4840     size_t post_size;
4841     size_t dtvsize, i, tls_init_align;
4842 
4843     assert(tcbsize >= TLS_TCB_SIZE);
4844     tls_init_align = MAX(obj_main->tlsalign, 1);
4845 
4846     /* Compute fragments sizes. */
4847     post_size = calculate_tls_post_size(tls_init_align);
4848 
4849     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4850     tlsend = (Elf_Addr)tcb + tls_static_space;
4851 
4852     dtv = *(Elf_Addr **)tcb;
4853     dtvsize = dtv[1];
4854     for (i = 0; i < dtvsize; i++) {
4855 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4856 	    free((void*)dtv[i+2]);
4857 	}
4858     }
4859     free(dtv);
4860     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4861 }
4862 
4863 #endif
4864 
4865 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4866 
4867 /*
4868  * Allocate Static TLS using the Variant II method.
4869  */
4870 void *
4871 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4872 {
4873     Obj_Entry *obj;
4874     size_t size, ralign;
4875     char *tls;
4876     Elf_Addr *dtv, *olddtv;
4877     Elf_Addr segbase, oldsegbase, addr;
4878     size_t i;
4879 
4880     ralign = tcbalign;
4881     if (tls_static_max_align > ralign)
4882 	    ralign = tls_static_max_align;
4883     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4884 
4885     assert(tcbsize >= 2*sizeof(Elf_Addr));
4886     tls = malloc_aligned(size, ralign);
4887     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4888 
4889     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4890     ((Elf_Addr*)segbase)[0] = segbase;
4891     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4892 
4893     dtv[0] = tls_dtv_generation;
4894     dtv[1] = tls_max_index;
4895 
4896     if (oldtls) {
4897 	/*
4898 	 * Copy the static TLS block over whole.
4899 	 */
4900 	oldsegbase = (Elf_Addr) oldtls;
4901 	memcpy((void *)(segbase - tls_static_space),
4902 	       (const void *)(oldsegbase - tls_static_space),
4903 	       tls_static_space);
4904 
4905 	/*
4906 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4907 	 * move them over.
4908 	 */
4909 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4910 	for (i = 0; i < olddtv[1]; i++) {
4911 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4912 		dtv[i+2] = olddtv[i+2];
4913 		olddtv[i+2] = 0;
4914 	    }
4915 	}
4916 
4917 	/*
4918 	 * We assume that this block was the one we created with
4919 	 * allocate_initial_tls().
4920 	 */
4921 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4922     } else {
4923 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4924 		if (obj->marker || obj->tlsoffset == 0)
4925 			continue;
4926 		addr = segbase - obj->tlsoffset;
4927 		memset((void*)(addr + obj->tlsinitsize),
4928 		       0, obj->tlssize - obj->tlsinitsize);
4929 		if (obj->tlsinit)
4930 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4931 		dtv[obj->tlsindex + 1] = addr;
4932 	}
4933     }
4934 
4935     return (void*) segbase;
4936 }
4937 
4938 void
4939 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4940 {
4941     Elf_Addr* dtv;
4942     size_t size, ralign;
4943     int dtvsize, i;
4944     Elf_Addr tlsstart, tlsend;
4945 
4946     /*
4947      * Figure out the size of the initial TLS block so that we can
4948      * find stuff which ___tls_get_addr() allocated dynamically.
4949      */
4950     ralign = tcbalign;
4951     if (tls_static_max_align > ralign)
4952 	    ralign = tls_static_max_align;
4953     size = round(tls_static_space, ralign);
4954 
4955     dtv = ((Elf_Addr**)tls)[1];
4956     dtvsize = dtv[1];
4957     tlsend = (Elf_Addr) tls;
4958     tlsstart = tlsend - size;
4959     for (i = 0; i < dtvsize; i++) {
4960 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4961 		free_aligned((void *)dtv[i + 2]);
4962 	}
4963     }
4964 
4965     free_aligned((void *)tlsstart);
4966     free((void*) dtv);
4967 }
4968 
4969 #endif
4970 
4971 /*
4972  * Allocate TLS block for module with given index.
4973  */
4974 void *
4975 allocate_module_tls(int index)
4976 {
4977     Obj_Entry* obj;
4978     char* p;
4979 
4980     TAILQ_FOREACH(obj, &obj_list, next) {
4981 	if (obj->marker)
4982 	    continue;
4983 	if (obj->tlsindex == index)
4984 	    break;
4985     }
4986     if (!obj) {
4987 	_rtld_error("Can't find module with TLS index %d", index);
4988 	rtld_die();
4989     }
4990 
4991     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4992     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4993     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4994 
4995     return p;
4996 }
4997 
4998 bool
4999 allocate_tls_offset(Obj_Entry *obj)
5000 {
5001     size_t off;
5002 
5003     if (obj->tls_done)
5004 	return true;
5005 
5006     if (obj->tlssize == 0) {
5007 	obj->tls_done = true;
5008 	return true;
5009     }
5010 
5011     if (tls_last_offset == 0)
5012 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5013     else
5014 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5015 				   obj->tlssize, obj->tlsalign);
5016 
5017     /*
5018      * If we have already fixed the size of the static TLS block, we
5019      * must stay within that size. When allocating the static TLS, we
5020      * leave a small amount of space spare to be used for dynamically
5021      * loading modules which use static TLS.
5022      */
5023     if (tls_static_space != 0) {
5024 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5025 	    return false;
5026     } else if (obj->tlsalign > tls_static_max_align) {
5027 	    tls_static_max_align = obj->tlsalign;
5028     }
5029 
5030     tls_last_offset = obj->tlsoffset = off;
5031     tls_last_size = obj->tlssize;
5032     obj->tls_done = true;
5033 
5034     return true;
5035 }
5036 
5037 void
5038 free_tls_offset(Obj_Entry *obj)
5039 {
5040 
5041     /*
5042      * If we were the last thing to allocate out of the static TLS
5043      * block, we give our space back to the 'allocator'. This is a
5044      * simplistic workaround to allow libGL.so.1 to be loaded and
5045      * unloaded multiple times.
5046      */
5047     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5048 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5049 	tls_last_offset -= obj->tlssize;
5050 	tls_last_size = 0;
5051     }
5052 }
5053 
5054 void *
5055 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5056 {
5057     void *ret;
5058     RtldLockState lockstate;
5059 
5060     wlock_acquire(rtld_bind_lock, &lockstate);
5061     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5062       tcbsize, tcbalign);
5063     lock_release(rtld_bind_lock, &lockstate);
5064     return (ret);
5065 }
5066 
5067 void
5068 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5069 {
5070     RtldLockState lockstate;
5071 
5072     wlock_acquire(rtld_bind_lock, &lockstate);
5073     free_tls(tcb, tcbsize, tcbalign);
5074     lock_release(rtld_bind_lock, &lockstate);
5075 }
5076 
5077 static void
5078 object_add_name(Obj_Entry *obj, const char *name)
5079 {
5080     Name_Entry *entry;
5081     size_t len;
5082 
5083     len = strlen(name);
5084     entry = malloc(sizeof(Name_Entry) + len);
5085 
5086     if (entry != NULL) {
5087 	strcpy(entry->name, name);
5088 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5089     }
5090 }
5091 
5092 static int
5093 object_match_name(const Obj_Entry *obj, const char *name)
5094 {
5095     Name_Entry *entry;
5096 
5097     STAILQ_FOREACH(entry, &obj->names, link) {
5098 	if (strcmp(name, entry->name) == 0)
5099 	    return (1);
5100     }
5101     return (0);
5102 }
5103 
5104 static Obj_Entry *
5105 locate_dependency(const Obj_Entry *obj, const char *name)
5106 {
5107     const Objlist_Entry *entry;
5108     const Needed_Entry *needed;
5109 
5110     STAILQ_FOREACH(entry, &list_main, link) {
5111 	if (object_match_name(entry->obj, name))
5112 	    return entry->obj;
5113     }
5114 
5115     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5116 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5117 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5118 	    /*
5119 	     * If there is DT_NEEDED for the name we are looking for,
5120 	     * we are all set.  Note that object might not be found if
5121 	     * dependency was not loaded yet, so the function can
5122 	     * return NULL here.  This is expected and handled
5123 	     * properly by the caller.
5124 	     */
5125 	    return (needed->obj);
5126 	}
5127     }
5128     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5129 	obj->path, name);
5130     rtld_die();
5131 }
5132 
5133 static int
5134 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5135     const Elf_Vernaux *vna)
5136 {
5137     const Elf_Verdef *vd;
5138     const char *vername;
5139 
5140     vername = refobj->strtab + vna->vna_name;
5141     vd = depobj->verdef;
5142     if (vd == NULL) {
5143 	_rtld_error("%s: version %s required by %s not defined",
5144 	    depobj->path, vername, refobj->path);
5145 	return (-1);
5146     }
5147     for (;;) {
5148 	if (vd->vd_version != VER_DEF_CURRENT) {
5149 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5150 		depobj->path, vd->vd_version);
5151 	    return (-1);
5152 	}
5153 	if (vna->vna_hash == vd->vd_hash) {
5154 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5155 		((const char *)vd + vd->vd_aux);
5156 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5157 		return (0);
5158 	}
5159 	if (vd->vd_next == 0)
5160 	    break;
5161 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5162     }
5163     if (vna->vna_flags & VER_FLG_WEAK)
5164 	return (0);
5165     _rtld_error("%s: version %s required by %s not found",
5166 	depobj->path, vername, refobj->path);
5167     return (-1);
5168 }
5169 
5170 static int
5171 rtld_verify_object_versions(Obj_Entry *obj)
5172 {
5173     const Elf_Verneed *vn;
5174     const Elf_Verdef  *vd;
5175     const Elf_Verdaux *vda;
5176     const Elf_Vernaux *vna;
5177     const Obj_Entry *depobj;
5178     int maxvernum, vernum;
5179 
5180     if (obj->ver_checked)
5181 	return (0);
5182     obj->ver_checked = true;
5183 
5184     maxvernum = 0;
5185     /*
5186      * Walk over defined and required version records and figure out
5187      * max index used by any of them. Do very basic sanity checking
5188      * while there.
5189      */
5190     vn = obj->verneed;
5191     while (vn != NULL) {
5192 	if (vn->vn_version != VER_NEED_CURRENT) {
5193 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5194 		obj->path, vn->vn_version);
5195 	    return (-1);
5196 	}
5197 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5198 	for (;;) {
5199 	    vernum = VER_NEED_IDX(vna->vna_other);
5200 	    if (vernum > maxvernum)
5201 		maxvernum = vernum;
5202 	    if (vna->vna_next == 0)
5203 		 break;
5204 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5205 	}
5206 	if (vn->vn_next == 0)
5207 	    break;
5208 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5209     }
5210 
5211     vd = obj->verdef;
5212     while (vd != NULL) {
5213 	if (vd->vd_version != VER_DEF_CURRENT) {
5214 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5215 		obj->path, vd->vd_version);
5216 	    return (-1);
5217 	}
5218 	vernum = VER_DEF_IDX(vd->vd_ndx);
5219 	if (vernum > maxvernum)
5220 		maxvernum = vernum;
5221 	if (vd->vd_next == 0)
5222 	    break;
5223 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5224     }
5225 
5226     if (maxvernum == 0)
5227 	return (0);
5228 
5229     /*
5230      * Store version information in array indexable by version index.
5231      * Verify that object version requirements are satisfied along the
5232      * way.
5233      */
5234     obj->vernum = maxvernum + 1;
5235     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5236 
5237     vd = obj->verdef;
5238     while (vd != NULL) {
5239 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5240 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5241 	    assert(vernum <= maxvernum);
5242 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5243 	    obj->vertab[vernum].hash = vd->vd_hash;
5244 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5245 	    obj->vertab[vernum].file = NULL;
5246 	    obj->vertab[vernum].flags = 0;
5247 	}
5248 	if (vd->vd_next == 0)
5249 	    break;
5250 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5251     }
5252 
5253     vn = obj->verneed;
5254     while (vn != NULL) {
5255 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5256 	if (depobj == NULL)
5257 	    return (-1);
5258 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5259 	for (;;) {
5260 	    if (check_object_provided_version(obj, depobj, vna))
5261 		return (-1);
5262 	    vernum = VER_NEED_IDX(vna->vna_other);
5263 	    assert(vernum <= maxvernum);
5264 	    obj->vertab[vernum].hash = vna->vna_hash;
5265 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5266 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5267 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5268 		VER_INFO_HIDDEN : 0;
5269 	    if (vna->vna_next == 0)
5270 		 break;
5271 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5272 	}
5273 	if (vn->vn_next == 0)
5274 	    break;
5275 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5276     }
5277     return 0;
5278 }
5279 
5280 static int
5281 rtld_verify_versions(const Objlist *objlist)
5282 {
5283     Objlist_Entry *entry;
5284     int rc;
5285 
5286     rc = 0;
5287     STAILQ_FOREACH(entry, objlist, link) {
5288 	/*
5289 	 * Skip dummy objects or objects that have their version requirements
5290 	 * already checked.
5291 	 */
5292 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5293 	    continue;
5294 	if (rtld_verify_object_versions(entry->obj) == -1) {
5295 	    rc = -1;
5296 	    if (ld_tracing == NULL)
5297 		break;
5298 	}
5299     }
5300     if (rc == 0 || ld_tracing != NULL)
5301     	rc = rtld_verify_object_versions(&obj_rtld);
5302     return rc;
5303 }
5304 
5305 const Ver_Entry *
5306 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5307 {
5308     Elf_Versym vernum;
5309 
5310     if (obj->vertab) {
5311 	vernum = VER_NDX(obj->versyms[symnum]);
5312 	if (vernum >= obj->vernum) {
5313 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5314 		obj->path, obj->strtab + symnum, vernum);
5315 	} else if (obj->vertab[vernum].hash != 0) {
5316 	    return &obj->vertab[vernum];
5317 	}
5318     }
5319     return NULL;
5320 }
5321 
5322 int
5323 _rtld_get_stack_prot(void)
5324 {
5325 
5326 	return (stack_prot);
5327 }
5328 
5329 int
5330 _rtld_is_dlopened(void *arg)
5331 {
5332 	Obj_Entry *obj;
5333 	RtldLockState lockstate;
5334 	int res;
5335 
5336 	rlock_acquire(rtld_bind_lock, &lockstate);
5337 	obj = dlcheck(arg);
5338 	if (obj == NULL)
5339 		obj = obj_from_addr(arg);
5340 	if (obj == NULL) {
5341 		_rtld_error("No shared object contains address");
5342 		lock_release(rtld_bind_lock, &lockstate);
5343 		return (-1);
5344 	}
5345 	res = obj->dlopened ? 1 : 0;
5346 	lock_release(rtld_bind_lock, &lockstate);
5347 	return (res);
5348 }
5349 
5350 static int
5351 obj_remap_relro(Obj_Entry *obj, int prot)
5352 {
5353 
5354 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5355 	    prot) == -1) {
5356 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5357 		    obj->path, prot, rtld_strerror(errno));
5358 		return (-1);
5359 	}
5360 	return (0);
5361 }
5362 
5363 static int
5364 obj_disable_relro(Obj_Entry *obj)
5365 {
5366 
5367 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5368 }
5369 
5370 static int
5371 obj_enforce_relro(Obj_Entry *obj)
5372 {
5373 
5374 	return (obj_remap_relro(obj, PROT_READ));
5375 }
5376 
5377 static void
5378 map_stacks_exec(RtldLockState *lockstate)
5379 {
5380 	void (*thr_map_stacks_exec)(void);
5381 
5382 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5383 		return;
5384 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5385 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5386 	if (thr_map_stacks_exec != NULL) {
5387 		stack_prot |= PROT_EXEC;
5388 		thr_map_stacks_exec();
5389 	}
5390 }
5391 
5392 void
5393 symlook_init(SymLook *dst, const char *name)
5394 {
5395 
5396 	bzero(dst, sizeof(*dst));
5397 	dst->name = name;
5398 	dst->hash = elf_hash(name);
5399 	dst->hash_gnu = gnu_hash(name);
5400 }
5401 
5402 static void
5403 symlook_init_from_req(SymLook *dst, const SymLook *src)
5404 {
5405 
5406 	dst->name = src->name;
5407 	dst->hash = src->hash;
5408 	dst->hash_gnu = src->hash_gnu;
5409 	dst->ventry = src->ventry;
5410 	dst->flags = src->flags;
5411 	dst->defobj_out = NULL;
5412 	dst->sym_out = NULL;
5413 	dst->lockstate = src->lockstate;
5414 }
5415 
5416 static int
5417 open_binary_fd(const char *argv0, bool search_in_path)
5418 {
5419 	char *pathenv, *pe, binpath[PATH_MAX];
5420 	int fd;
5421 
5422 	if (search_in_path && strchr(argv0, '/') == NULL) {
5423 		pathenv = getenv("PATH");
5424 		if (pathenv == NULL) {
5425 			_rtld_error("-p and no PATH environment variable");
5426 			rtld_die();
5427 		}
5428 		pathenv = strdup(pathenv);
5429 		if (pathenv == NULL) {
5430 			_rtld_error("Cannot allocate memory");
5431 			rtld_die();
5432 		}
5433 		fd = -1;
5434 		errno = ENOENT;
5435 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5436 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5437 			    sizeof(binpath))
5438 				continue;
5439 			if (binpath[0] != '\0' &&
5440 			    strlcat(binpath, "/", sizeof(binpath)) >=
5441 			    sizeof(binpath))
5442 				continue;
5443 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5444 			    sizeof(binpath))
5445 				continue;
5446 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5447 			if (fd != -1 || errno != ENOENT)
5448 				break;
5449 		}
5450 		free(pathenv);
5451 	} else {
5452 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5453 	}
5454 
5455 	if (fd == -1) {
5456 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5457 		rtld_die();
5458 	}
5459 	return (fd);
5460 }
5461 
5462 /*
5463  * Parse a set of command-line arguments.
5464  */
5465 static int
5466 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5467 {
5468 	const char *arg;
5469 	int fd, i, j, arglen;
5470 	char opt;
5471 
5472 	dbg("Parsing command-line arguments");
5473 	*use_pathp = false;
5474 	*fdp = -1;
5475 
5476 	for (i = 1; i < argc; i++ ) {
5477 		arg = argv[i];
5478 		dbg("argv[%d]: '%s'", i, arg);
5479 
5480 		/*
5481 		 * rtld arguments end with an explicit "--" or with the first
5482 		 * non-prefixed argument.
5483 		 */
5484 		if (strcmp(arg, "--") == 0) {
5485 			i++;
5486 			break;
5487 		}
5488 		if (arg[0] != '-')
5489 			break;
5490 
5491 		/*
5492 		 * All other arguments are single-character options that can
5493 		 * be combined, so we need to search through `arg` for them.
5494 		 */
5495 		arglen = strlen(arg);
5496 		for (j = 1; j < arglen; j++) {
5497 			opt = arg[j];
5498 			if (opt == 'h') {
5499 				print_usage(argv[0]);
5500 				_exit(0);
5501 			} else if (opt == 'f') {
5502 			/*
5503 			 * -f XX can be used to specify a descriptor for the
5504 			 * binary named at the command line (i.e., the later
5505 			 * argument will specify the process name but the
5506 			 * descriptor is what will actually be executed)
5507 			 */
5508 			if (j != arglen - 1) {
5509 				/* -f must be the last option in, e.g., -abcf */
5510 				_rtld_error("Invalid options: %s", arg);
5511 				rtld_die();
5512 			}
5513 			i++;
5514 			fd = parse_integer(argv[i]);
5515 			if (fd == -1) {
5516 				_rtld_error("Invalid file descriptor: '%s'",
5517 				    argv[i]);
5518 				rtld_die();
5519 			}
5520 			*fdp = fd;
5521 			break;
5522 			} else if (opt == 'p') {
5523 				*use_pathp = true;
5524 			} else {
5525 				_rtld_error("Invalid argument: '%s'", arg);
5526 				print_usage(argv[0]);
5527 				rtld_die();
5528 			}
5529 		}
5530 	}
5531 
5532 	return (i);
5533 }
5534 
5535 /*
5536  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5537  */
5538 static int
5539 parse_integer(const char *str)
5540 {
5541 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5542 	const char *orig;
5543 	int n;
5544 	char c;
5545 
5546 	orig = str;
5547 	n = 0;
5548 	for (c = *str; c != '\0'; c = *++str) {
5549 		if (c < '0' || c > '9')
5550 			return (-1);
5551 
5552 		n *= RADIX;
5553 		n += c - '0';
5554 	}
5555 
5556 	/* Make sure we actually parsed something. */
5557 	if (str == orig)
5558 		return (-1);
5559 	return (n);
5560 }
5561 
5562 static void
5563 print_usage(const char *argv0)
5564 {
5565 
5566 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5567 		"\n"
5568 		"Options:\n"
5569 		"  -h        Display this help message\n"
5570 		"  -p        Search in PATH for named binary\n"
5571 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5572 		"  --        End of RTLD options\n"
5573 		"  <binary>  Name of process to execute\n"
5574 		"  <args>    Arguments to the executed process\n", argv0);
5575 }
5576 
5577 /*
5578  * Overrides for libc_pic-provided functions.
5579  */
5580 
5581 int
5582 __getosreldate(void)
5583 {
5584 	size_t len;
5585 	int oid[2];
5586 	int error, osrel;
5587 
5588 	if (osreldate != 0)
5589 		return (osreldate);
5590 
5591 	oid[0] = CTL_KERN;
5592 	oid[1] = KERN_OSRELDATE;
5593 	osrel = 0;
5594 	len = sizeof(osrel);
5595 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5596 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5597 		osreldate = osrel;
5598 	return (osreldate);
5599 }
5600 
5601 void
5602 exit(int status)
5603 {
5604 
5605 	_exit(status);
5606 }
5607 
5608 void (*__cleanup)(void);
5609 int __isthreaded = 0;
5610 int _thread_autoinit_dummy_decl = 1;
5611 
5612 /*
5613  * No unresolved symbols for rtld.
5614  */
5615 void
5616 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5617 {
5618 }
5619 
5620 const char *
5621 rtld_strerror(int errnum)
5622 {
5623 
5624 	if (errnum < 0 || errnum >= sys_nerr)
5625 		return ("Unknown error");
5626 	return (sys_errlist[errnum]);
5627 }
5628 
5629 /*
5630  * No ifunc relocations.
5631  */
5632 void *
5633 memset(void *dest, int c, size_t len)
5634 {
5635 	size_t i;
5636 
5637 	for (i = 0; i < len; i++)
5638 		((char *)dest)[i] = c;
5639 	return (dest);
5640 }
5641 
5642 void
5643 bzero(void *dest, size_t len)
5644 {
5645 	size_t i;
5646 
5647 	for (i = 0; i < len; i++)
5648 		((char *)dest)[i] = 0;
5649 }
5650