xref: /freebsd/libexec/rtld-elf/rtld.c (revision 68344a95478e7f7a30cc2d93820595aad7e7bc5b)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 /*
29  * Dynamic linker for ELF.
30  *
31  * John Polstra <jdp@polstra.com>.
32  */
33 
34 #ifndef __GNUC__
35 #error "GCC is needed to compile this file"
36 #endif
37 
38 #include <sys/param.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 
42 #include <dlfcn.h>
43 #include <err.h>
44 #include <errno.h>
45 #include <fcntl.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <unistd.h>
51 
52 #include "debug.h"
53 #include "rtld.h"
54 
55 #define END_SYM		"_end"
56 #define PATH_RTLD	"/usr/libexec/ld-elf.so.1"
57 
58 /* Types. */
59 typedef void (*func_ptr_type)();
60 
61 /*
62  * This structure provides a reentrant way to keep a list of objects and
63  * check which ones have already been processed in some way.
64  */
65 typedef struct Struct_DoneList {
66     const Obj_Entry **objs;		/* Array of object pointers */
67     unsigned int num_alloc;		/* Allocated size of the array */
68     unsigned int num_used;		/* Number of array slots used */
69 } DoneList;
70 
71 /*
72  * Function declarations.
73  */
74 static const char *basename(const char *);
75 static void die(void);
76 static void digest_dynamic(Obj_Entry *);
77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78 static Obj_Entry *dlcheck(void *);
79 static bool donelist_check(DoneList *, const Obj_Entry *);
80 static void errmsg_restore(char *);
81 static char *errmsg_save(void);
82 static char *find_library(const char *, const Obj_Entry *);
83 static const char *gethints(void);
84 static void init_dag(Obj_Entry *);
85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
86 static void init_rtld(caddr_t);
87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
89   Objlist *list);
90 static bool is_exported(const Elf_Sym *);
91 static void linkmap_add(Obj_Entry *);
92 static void linkmap_delete(Obj_Entry *);
93 static int load_needed_objects(Obj_Entry *);
94 static int load_preload_objects(void);
95 static Obj_Entry *load_object(char *);
96 static void lock_check(void);
97 static Obj_Entry *obj_from_addr(const void *);
98 static void objlist_call_fini(Objlist *);
99 static void objlist_call_init(Objlist *);
100 static void objlist_clear(Objlist *);
101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
102 static void objlist_init(Objlist *);
103 static void objlist_push_head(Objlist *, Obj_Entry *);
104 static void objlist_push_tail(Objlist *, Obj_Entry *);
105 static void objlist_remove(Objlist *, Obj_Entry *);
106 static void objlist_remove_unref(Objlist *);
107 static int relocate_objects(Obj_Entry *, bool);
108 static void rtld_exit(void);
109 static char *search_library_path(const char *, const char *);
110 static void set_program_var(const char *, const void *);
111 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
112   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
113 static const Elf_Sym *symlook_list(const char *, unsigned long,
114   Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
115 static void trace_loaded_objects(Obj_Entry *obj);
116 static void unload_object(Obj_Entry *);
117 static void unref_dag(Obj_Entry *);
118 
119 void r_debug_state(struct r_debug*, struct link_map*);
120 void xprintf(const char *, ...);
121 
122 /*
123  * Data declarations.
124  */
125 static char *error_message;	/* Message for dlerror(), or NULL */
126 struct r_debug r_debug;	/* for GDB; */
127 static bool trust;		/* False for setuid and setgid programs */
128 static char *ld_bind_now;	/* Environment variable for immediate binding */
129 static char *ld_debug;		/* Environment variable for debugging */
130 static char *ld_library_path;	/* Environment variable for search path */
131 static char *ld_preload;	/* Environment variable for libraries to
132 				   load first */
133 static char *ld_tracing;	/* Called from ldd to print libs */
134 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
135 static Obj_Entry **obj_tail;	/* Link field of last object in list */
136 static Obj_Entry *obj_main;	/* The main program shared object */
137 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
138 static unsigned int obj_count;	/* Number of objects in obj_list */
139 
140 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
141   STAILQ_HEAD_INITIALIZER(list_global);
142 static Objlist list_main =	/* Objects loaded at program startup */
143   STAILQ_HEAD_INITIALIZER(list_main);
144 static Objlist list_fini =	/* Objects needing fini() calls */
145   STAILQ_HEAD_INITIALIZER(list_fini);
146 
147 static LockInfo lockinfo;
148 
149 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
150 
151 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
152 
153 extern Elf_Dyn _DYNAMIC;
154 #pragma weak _DYNAMIC
155 
156 /*
157  * These are the functions the dynamic linker exports to application
158  * programs.  They are the only symbols the dynamic linker is willing
159  * to export from itself.
160  */
161 static func_ptr_type exports[] = {
162     (func_ptr_type) &_rtld_error,
163     (func_ptr_type) &dlclose,
164     (func_ptr_type) &dlerror,
165     (func_ptr_type) &dlopen,
166     (func_ptr_type) &dlsym,
167     (func_ptr_type) &dladdr,
168     (func_ptr_type) &dllockinit,
169     NULL
170 };
171 
172 /*
173  * Global declarations normally provided by crt1.  The dynamic linker is
174  * not built with crt1, so we have to provide them ourselves.
175  */
176 char *__progname;
177 char **environ;
178 
179 /*
180  * Fill in a DoneList with an allocation large enough to hold all of
181  * the currently-loaded objects.  Keep this as a macro since it calls
182  * alloca and we want that to occur within the scope of the caller.
183  */
184 #define donelist_init(dlp)					\
185     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
186     assert((dlp)->objs != NULL),				\
187     (dlp)->num_alloc = obj_count,				\
188     (dlp)->num_used = 0)
189 
190 static __inline void
191 rlock_acquire(void)
192 {
193     lockinfo.rlock_acquire(lockinfo.thelock);
194     atomic_incr_int(&lockinfo.rcount);
195     lock_check();
196 }
197 
198 static __inline void
199 wlock_acquire(void)
200 {
201     lockinfo.wlock_acquire(lockinfo.thelock);
202     atomic_incr_int(&lockinfo.wcount);
203     lock_check();
204 }
205 
206 static __inline void
207 rlock_release(void)
208 {
209     atomic_decr_int(&lockinfo.rcount);
210     lockinfo.rlock_release(lockinfo.thelock);
211 }
212 
213 static __inline void
214 wlock_release(void)
215 {
216     atomic_decr_int(&lockinfo.wcount);
217     lockinfo.wlock_release(lockinfo.thelock);
218 }
219 
220 /*
221  * Main entry point for dynamic linking.  The first argument is the
222  * stack pointer.  The stack is expected to be laid out as described
223  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
224  * Specifically, the stack pointer points to a word containing
225  * ARGC.  Following that in the stack is a null-terminated sequence
226  * of pointers to argument strings.  Then comes a null-terminated
227  * sequence of pointers to environment strings.  Finally, there is a
228  * sequence of "auxiliary vector" entries.
229  *
230  * The second argument points to a place to store the dynamic linker's
231  * exit procedure pointer and the third to a place to store the main
232  * program's object.
233  *
234  * The return value is the main program's entry point.
235  */
236 func_ptr_type
237 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
238 {
239     Elf_Auxinfo *aux_info[AT_COUNT];
240     int i;
241     int argc;
242     char **argv;
243     char **env;
244     Elf_Auxinfo *aux;
245     Elf_Auxinfo *auxp;
246     const char *argv0;
247     Obj_Entry *obj;
248     Obj_Entry **preload_tail;
249     Objlist initlist;
250 
251     /*
252      * On entry, the dynamic linker itself has not been relocated yet.
253      * Be very careful not to reference any global data until after
254      * init_rtld has returned.  It is OK to reference file-scope statics
255      * and string constants, and to call static and global functions.
256      */
257 
258     /* Find the auxiliary vector on the stack. */
259     argc = *sp++;
260     argv = (char **) sp;
261     sp += argc + 1;	/* Skip over arguments and NULL terminator */
262     env = (char **) sp;
263     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
264 	;
265     aux = (Elf_Auxinfo *) sp;
266 
267     /* Digest the auxiliary vector. */
268     for (i = 0;  i < AT_COUNT;  i++)
269 	aux_info[i] = NULL;
270     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
271 	if (auxp->a_type < AT_COUNT)
272 	    aux_info[auxp->a_type] = auxp;
273     }
274 
275     /* Initialize and relocate ourselves. */
276     assert(aux_info[AT_BASE] != NULL);
277     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
278 
279     __progname = obj_rtld.path;
280     argv0 = argv[0] != NULL ? argv[0] : "(null)";
281     environ = env;
282 
283     trust = geteuid() == getuid() && getegid() == getgid();
284 
285     ld_bind_now = getenv("LD_BIND_NOW");
286     if (trust) {
287 	ld_debug = getenv("LD_DEBUG");
288 	ld_library_path = getenv("LD_LIBRARY_PATH");
289 	ld_preload = getenv("LD_PRELOAD");
290     }
291     ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS");
292 
293     if (ld_debug != NULL && *ld_debug != '\0')
294 	debug = 1;
295     dbg("%s is initialized, base address = %p", __progname,
296 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
297     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
298     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
299 
300     /*
301      * Load the main program, or process its program header if it is
302      * already loaded.
303      */
304     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
305 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
306 	dbg("loading main program");
307 	obj_main = map_object(fd, argv0, NULL);
308 	close(fd);
309 	if (obj_main == NULL)
310 	    die();
311     } else {				/* Main program already loaded. */
312 	const Elf_Phdr *phdr;
313 	int phnum;
314 	caddr_t entry;
315 
316 	dbg("processing main program's program header");
317 	assert(aux_info[AT_PHDR] != NULL);
318 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
319 	assert(aux_info[AT_PHNUM] != NULL);
320 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
321 	assert(aux_info[AT_PHENT] != NULL);
322 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
323 	assert(aux_info[AT_ENTRY] != NULL);
324 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
325 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
326 	    die();
327     }
328 
329     obj_main->path = xstrdup(argv0);
330     obj_main->mainprog = true;
331 
332     /*
333      * Get the actual dynamic linker pathname from the executable if
334      * possible.  (It should always be possible.)  That ensures that
335      * gdb will find the right dynamic linker even if a non-standard
336      * one is being used.
337      */
338     if (obj_main->interp != NULL &&
339       strcmp(obj_main->interp, obj_rtld.path) != 0) {
340 	free(obj_rtld.path);
341 	obj_rtld.path = xstrdup(obj_main->interp);
342     }
343 
344     digest_dynamic(obj_main);
345 
346     linkmap_add(obj_main);
347     linkmap_add(&obj_rtld);
348 
349     /* Link the main program into the list of objects. */
350     *obj_tail = obj_main;
351     obj_tail = &obj_main->next;
352     obj_count++;
353     obj_main->refcount++;
354     /* Make sure we don't call the main program's init and fini functions. */
355     obj_main->init = obj_main->fini = NULL;
356 
357     /* Initialize a fake symbol for resolving undefined weak references. */
358     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
359     sym_zero.st_shndx = SHN_ABS;
360 
361     dbg("loading LD_PRELOAD libraries");
362     if (load_preload_objects() == -1)
363 	die();
364     preload_tail = obj_tail;
365 
366     dbg("loading needed objects");
367     if (load_needed_objects(obj_main) == -1)
368 	die();
369 
370     /* Make a list of all objects loaded at startup. */
371     for (obj = obj_list;  obj != NULL;  obj = obj->next)
372 	objlist_push_tail(&list_main, obj);
373 
374     if (ld_tracing) {		/* We're done */
375 	trace_loaded_objects(obj_main);
376 	exit(0);
377     }
378 
379     if (relocate_objects(obj_main,
380 	ld_bind_now != NULL && *ld_bind_now != '\0') == -1)
381 	die();
382 
383     dbg("doing copy relocations");
384     if (do_copy_relocations(obj_main) == -1)
385 	die();
386 
387     dbg("initializing key program variables");
388     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
389     set_program_var("environ", env);
390 
391     dbg("initializing thread locks");
392     lockdflt_init(&lockinfo);
393     lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
394 
395     /* Make a list of init functions to call. */
396     objlist_init(&initlist);
397     initlist_add_objects(obj_list, preload_tail, &initlist);
398 
399     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
400 
401     objlist_call_init(&initlist);
402     wlock_acquire();
403     objlist_clear(&initlist);
404     wlock_release();
405 
406     dbg("transferring control to program entry point = %p", obj_main->entry);
407 
408     /* Return the exit procedure and the program entry point. */
409     *exit_proc = rtld_exit;
410     *objp = obj_main;
411     return (func_ptr_type) obj_main->entry;
412 }
413 
414 Elf_Addr
415 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
416 {
417     const Elf_Rel *rel;
418     const Elf_Sym *def;
419     const Obj_Entry *defobj;
420     Elf_Addr *where;
421     Elf_Addr target;
422 
423     rlock_acquire();
424     if (obj->pltrel)
425 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
426     else
427 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
428 
429     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
430     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
431     if (def == NULL)
432 	die();
433 
434     target = (Elf_Addr)(defobj->relocbase + def->st_value);
435 
436     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
437       defobj->strtab + def->st_name, basename(obj->path),
438       (void *)target, basename(defobj->path));
439 
440     /*
441      * Write the new contents for the jmpslot. Note that depending on
442      * architecture, the value which we need to return back to the
443      * lazy binding trampoline may or may not be the target
444      * address. The value returned from reloc_jmpslot() is the value
445      * that the trampoline needs.
446      */
447     target = reloc_jmpslot(where, target, defobj);
448     rlock_release();
449     return target;
450 }
451 
452 /*
453  * Error reporting function.  Use it like printf.  If formats the message
454  * into a buffer, and sets things up so that the next call to dlerror()
455  * will return the message.
456  */
457 void
458 _rtld_error(const char *fmt, ...)
459 {
460     static char buf[512];
461     va_list ap;
462 
463     va_start(ap, fmt);
464     vsnprintf(buf, sizeof buf, fmt, ap);
465     error_message = buf;
466     va_end(ap);
467 }
468 
469 /*
470  * Return a dynamically-allocated copy of the current error message, if any.
471  */
472 static char *
473 errmsg_save(void)
474 {
475     return error_message == NULL ? NULL : xstrdup(error_message);
476 }
477 
478 /*
479  * Restore the current error message from a copy which was previously saved
480  * by errmsg_save().  The copy is freed.
481  */
482 static void
483 errmsg_restore(char *saved_msg)
484 {
485     if (saved_msg == NULL)
486 	error_message = NULL;
487     else {
488 	_rtld_error("%s", saved_msg);
489 	free(saved_msg);
490     }
491 }
492 
493 static const char *
494 basename(const char *name)
495 {
496     const char *p = strrchr(name, '/');
497     return p != NULL ? p + 1 : name;
498 }
499 
500 static void
501 die(void)
502 {
503     const char *msg = dlerror();
504 
505     if (msg == NULL)
506 	msg = "Fatal error";
507     errx(1, "%s", msg);
508 }
509 
510 /*
511  * Process a shared object's DYNAMIC section, and save the important
512  * information in its Obj_Entry structure.
513  */
514 static void
515 digest_dynamic(Obj_Entry *obj)
516 {
517     const Elf_Dyn *dynp;
518     Needed_Entry **needed_tail = &obj->needed;
519     const Elf_Dyn *dyn_rpath = NULL;
520     int plttype = DT_REL;
521 
522     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
523 	switch (dynp->d_tag) {
524 
525 	case DT_REL:
526 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
527 	    break;
528 
529 	case DT_RELSZ:
530 	    obj->relsize = dynp->d_un.d_val;
531 	    break;
532 
533 	case DT_RELENT:
534 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
535 	    break;
536 
537 	case DT_JMPREL:
538 	    obj->pltrel = (const Elf_Rel *)
539 	      (obj->relocbase + dynp->d_un.d_ptr);
540 	    break;
541 
542 	case DT_PLTRELSZ:
543 	    obj->pltrelsize = dynp->d_un.d_val;
544 	    break;
545 
546 	case DT_RELA:
547 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
548 	    break;
549 
550 	case DT_RELASZ:
551 	    obj->relasize = dynp->d_un.d_val;
552 	    break;
553 
554 	case DT_RELAENT:
555 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
556 	    break;
557 
558 	case DT_PLTREL:
559 	    plttype = dynp->d_un.d_val;
560 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
561 	    break;
562 
563 	case DT_SYMTAB:
564 	    obj->symtab = (const Elf_Sym *)
565 	      (obj->relocbase + dynp->d_un.d_ptr);
566 	    break;
567 
568 	case DT_SYMENT:
569 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
570 	    break;
571 
572 	case DT_STRTAB:
573 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
574 	    break;
575 
576 	case DT_STRSZ:
577 	    obj->strsize = dynp->d_un.d_val;
578 	    break;
579 
580 	case DT_HASH:
581 	    {
582 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
583 		  (obj->relocbase + dynp->d_un.d_ptr);
584 		obj->nbuckets = hashtab[0];
585 		obj->nchains = hashtab[1];
586 		obj->buckets = hashtab + 2;
587 		obj->chains = obj->buckets + obj->nbuckets;
588 	    }
589 	    break;
590 
591 	case DT_NEEDED:
592 	    if (!obj->rtld) {
593 		Needed_Entry *nep = NEW(Needed_Entry);
594 		nep->name = dynp->d_un.d_val;
595 		nep->obj = NULL;
596 		nep->next = NULL;
597 
598 		*needed_tail = nep;
599 		needed_tail = &nep->next;
600 	    }
601 	    break;
602 
603 	case DT_PLTGOT:
604 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
605 	    break;
606 
607 	case DT_TEXTREL:
608 	    obj->textrel = true;
609 	    break;
610 
611 	case DT_SYMBOLIC:
612 	    obj->symbolic = true;
613 	    break;
614 
615 	case DT_RPATH:
616 	    /*
617 	     * We have to wait until later to process this, because we
618 	     * might not have gotten the address of the string table yet.
619 	     */
620 	    dyn_rpath = dynp;
621 	    break;
622 
623 	case DT_SONAME:
624 	    /* Not used by the dynamic linker. */
625 	    break;
626 
627 	case DT_INIT:
628 	    obj->init = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
629 	    break;
630 
631 	case DT_FINI:
632 	    obj->fini = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
633 	    break;
634 
635 	case DT_DEBUG:
636 	    /* XXX - not implemented yet */
637 	    dbg("Filling in DT_DEBUG entry");
638 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
639 	    break;
640 
641 	default:
642 	    dbg("Ignoring d_tag %d = %#x", dynp->d_tag, dynp->d_tag);
643 	    break;
644 	}
645     }
646 
647     obj->traced = false;
648 
649     if (plttype == DT_RELA) {
650 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
651 	obj->pltrel = NULL;
652 	obj->pltrelasize = obj->pltrelsize;
653 	obj->pltrelsize = 0;
654     }
655 
656     if (dyn_rpath != NULL)
657 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
658 }
659 
660 /*
661  * Process a shared object's program header.  This is used only for the
662  * main program, when the kernel has already loaded the main program
663  * into memory before calling the dynamic linker.  It creates and
664  * returns an Obj_Entry structure.
665  */
666 static Obj_Entry *
667 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
668 {
669     Obj_Entry *obj;
670     const Elf_Phdr *phlimit = phdr + phnum;
671     const Elf_Phdr *ph;
672     int nsegs = 0;
673 
674     obj = obj_new();
675     for (ph = phdr;  ph < phlimit;  ph++) {
676 	switch (ph->p_type) {
677 
678 	case PT_PHDR:
679 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
680 		_rtld_error("%s: invalid PT_PHDR", path);
681 		return NULL;
682 	    }
683 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
684 	    obj->phsize = ph->p_memsz;
685 	    break;
686 
687 	case PT_INTERP:
688 	    obj->interp = (const char *) ph->p_vaddr;
689 	    break;
690 
691 	case PT_LOAD:
692 	    if (nsegs >= 2) {
693 		_rtld_error("%s: too many PT_LOAD segments", path);
694 		return NULL;
695 	    }
696 	    if (nsegs == 0) {	/* First load segment */
697 		obj->vaddrbase = trunc_page(ph->p_vaddr);
698 		obj->mapbase = (caddr_t) obj->vaddrbase;
699 		obj->relocbase = obj->mapbase - obj->vaddrbase;
700 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
701 		  obj->vaddrbase;
702 	    } else {		/* Last load segment */
703 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
704 		  obj->vaddrbase;
705 	    }
706 	    nsegs++;
707 	    break;
708 
709 	case PT_DYNAMIC:
710 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
711 	    break;
712 	}
713     }
714     if (nsegs < 2) {
715 	_rtld_error("%s: too few PT_LOAD segments", path);
716 	return NULL;
717     }
718 
719     obj->entry = entry;
720     return obj;
721 }
722 
723 static Obj_Entry *
724 dlcheck(void *handle)
725 {
726     Obj_Entry *obj;
727 
728     for (obj = obj_list;  obj != NULL;  obj = obj->next)
729 	if (obj == (Obj_Entry *) handle)
730 	    break;
731 
732     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
733 	_rtld_error("Invalid shared object handle %p", handle);
734 	return NULL;
735     }
736     return obj;
737 }
738 
739 /*
740  * If the given object is already in the donelist, return true.  Otherwise
741  * add the object to the list and return false.
742  */
743 static bool
744 donelist_check(DoneList *dlp, const Obj_Entry *obj)
745 {
746     unsigned int i;
747 
748     for (i = 0;  i < dlp->num_used;  i++)
749 	if (dlp->objs[i] == obj)
750 	    return true;
751     /*
752      * Our donelist allocation should always be sufficient.  But if
753      * our threads locking isn't working properly, more shared objects
754      * could have been loaded since we allocated the list.  That should
755      * never happen, but we'll handle it properly just in case it does.
756      */
757     if (dlp->num_used < dlp->num_alloc)
758 	dlp->objs[dlp->num_used++] = obj;
759     return false;
760 }
761 
762 /*
763  * Hash function for symbol table lookup.  Don't even think about changing
764  * this.  It is specified by the System V ABI.
765  */
766 unsigned long
767 elf_hash(const char *name)
768 {
769     const unsigned char *p = (const unsigned char *) name;
770     unsigned long h = 0;
771     unsigned long g;
772 
773     while (*p != '\0') {
774 	h = (h << 4) + *p++;
775 	if ((g = h & 0xf0000000) != 0)
776 	    h ^= g >> 24;
777 	h &= ~g;
778     }
779     return h;
780 }
781 
782 /*
783  * Find the library with the given name, and return its full pathname.
784  * The returned string is dynamically allocated.  Generates an error
785  * message and returns NULL if the library cannot be found.
786  *
787  * If the second argument is non-NULL, then it refers to an already-
788  * loaded shared object, whose library search path will be searched.
789  *
790  * The search order is:
791  *   rpath in the referencing file
792  *   LD_LIBRARY_PATH
793  *   ldconfig hints
794  *   /usr/lib
795  */
796 static char *
797 find_library(const char *name, const Obj_Entry *refobj)
798 {
799     char *pathname;
800 
801     if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
802 	if (name[0] != '/' && !trust) {
803 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
804 	      name);
805 	    return NULL;
806 	}
807 	return xstrdup(name);
808     }
809 
810     dbg(" Searching for \"%s\"", name);
811 
812     if ((refobj != NULL &&
813       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
814       (pathname = search_library_path(name, ld_library_path)) != NULL ||
815       (pathname = search_library_path(name, gethints())) != NULL ||
816       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
817 	return pathname;
818 
819     _rtld_error("Shared object \"%s\" not found", name);
820     return NULL;
821 }
822 
823 /*
824  * Given a symbol number in a referencing object, find the corresponding
825  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
826  * no definition was found.  Returns a pointer to the Obj_Entry of the
827  * defining object via the reference parameter DEFOBJ_OUT.
828  */
829 const Elf_Sym *
830 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
831     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
832 {
833     const Elf_Sym *ref;
834     const Elf_Sym *def;
835     const Obj_Entry *defobj;
836     const char *name;
837     unsigned long hash;
838 
839     /*
840      * If we have already found this symbol, get the information from
841      * the cache.
842      */
843     if (symnum >= refobj->nchains)
844 	return NULL;	/* Bad object */
845     if (cache != NULL && cache[symnum].sym != NULL) {
846 	*defobj_out = cache[symnum].obj;
847 	return cache[symnum].sym;
848     }
849 
850     ref = refobj->symtab + symnum;
851     name = refobj->strtab + ref->st_name;
852     hash = elf_hash(name);
853     defobj = NULL;
854 
855     def = symlook_default(name, hash, refobj, &defobj, in_plt);
856 
857     /*
858      * If we found no definition and the reference is weak, treat the
859      * symbol as having the value zero.
860      */
861     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
862 	def = &sym_zero;
863 	defobj = obj_main;
864     }
865 
866     if (def != NULL) {
867 	*defobj_out = defobj;
868 	/* Record the information in the cache to avoid subsequent lookups. */
869 	if (cache != NULL) {
870 	    cache[symnum].sym = def;
871 	    cache[symnum].obj = defobj;
872 	}
873     } else {
874 	if (refobj != &obj_rtld)
875 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
876     }
877     return def;
878 }
879 
880 /*
881  * Return the search path from the ldconfig hints file, reading it if
882  * necessary.  Returns NULL if there are problems with the hints file,
883  * or if the search path there is empty.
884  */
885 static const char *
886 gethints(void)
887 {
888     static char *hints;
889 
890     if (hints == NULL) {
891 	int fd;
892 	struct elfhints_hdr hdr;
893 	char *p;
894 
895 	/* Keep from trying again in case the hints file is bad. */
896 	hints = "";
897 
898 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
899 	    return NULL;
900 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
901 	  hdr.magic != ELFHINTS_MAGIC ||
902 	  hdr.version != 1) {
903 	    close(fd);
904 	    return NULL;
905 	}
906 	p = xmalloc(hdr.dirlistlen + 1);
907 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
908 	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
909 	    free(p);
910 	    close(fd);
911 	    return NULL;
912 	}
913 	hints = p;
914 	close(fd);
915     }
916     return hints[0] != '\0' ? hints : NULL;
917 }
918 
919 static void
920 init_dag(Obj_Entry *root)
921 {
922     DoneList donelist;
923 
924     donelist_init(&donelist);
925     init_dag1(root, root, &donelist);
926 }
927 
928 static void
929 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
930 {
931     const Needed_Entry *needed;
932 
933     if (donelist_check(dlp, obj))
934 	return;
935     objlist_push_tail(&obj->dldags, root);
936     objlist_push_tail(&root->dagmembers, obj);
937     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
938 	if (needed->obj != NULL)
939 	    init_dag1(root, needed->obj, dlp);
940 }
941 
942 /*
943  * Initialize the dynamic linker.  The argument is the address at which
944  * the dynamic linker has been mapped into memory.  The primary task of
945  * this function is to relocate the dynamic linker.
946  */
947 static void
948 init_rtld(caddr_t mapbase)
949 {
950     /*
951      * Conjure up an Obj_Entry structure for the dynamic linker.
952      *
953      * The "path" member is supposed to be dynamically-allocated, but we
954      * aren't yet initialized sufficiently to do that.  Below we will
955      * replace the static version with a dynamically-allocated copy.
956      */
957     obj_rtld.path = PATH_RTLD;
958     obj_rtld.rtld = true;
959     obj_rtld.mapbase = mapbase;
960 #ifdef PIC
961     obj_rtld.relocbase = mapbase;
962 #endif
963     if (&_DYNAMIC != 0) {
964 	obj_rtld.dynamic = rtld_dynamic(&obj_rtld);
965 	digest_dynamic(&obj_rtld);
966 	assert(obj_rtld.needed == NULL);
967 	assert(!obj_rtld.textrel);
968 
969 	/*
970 	 * Temporarily put the dynamic linker entry into the object list, so
971 	 * that symbols can be found.
972 	 */
973 	obj_list = &obj_rtld;
974 	obj_tail = &obj_rtld.next;
975 	obj_count = 1;
976 
977 	relocate_objects(&obj_rtld, true);
978     }
979 
980     /* Make the object list empty again. */
981     obj_list = NULL;
982     obj_tail = &obj_list;
983     obj_count = 0;
984 
985     /* Replace the path with a dynamically allocated copy. */
986     obj_rtld.path = xstrdup(obj_rtld.path);
987 
988     r_debug.r_brk = r_debug_state;
989     r_debug.r_state = RT_CONSISTENT;
990 }
991 
992 /*
993  * Add the init functions from a needed object list (and its recursive
994  * needed objects) to "list".  This is not used directly; it is a helper
995  * function for initlist_add_objects().  The write lock must be held
996  * when this function is called.
997  */
998 static void
999 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1000 {
1001     /* Recursively process the successor needed objects. */
1002     if (needed->next != NULL)
1003 	initlist_add_neededs(needed->next, list);
1004 
1005     /* Process the current needed object. */
1006     if (needed->obj != NULL)
1007 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1008 }
1009 
1010 /*
1011  * Scan all of the DAGs rooted in the range of objects from "obj" to
1012  * "tail" and add their init functions to "list".  This recurses over
1013  * the DAGs and ensure the proper init ordering such that each object's
1014  * needed libraries are initialized before the object itself.  At the
1015  * same time, this function adds the objects to the global finalization
1016  * list "list_fini" in the opposite order.  The write lock must be
1017  * held when this function is called.
1018  */
1019 static void
1020 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1021 {
1022     if (obj->init_done)
1023 	return;
1024     obj->init_done = true;
1025 
1026     /* Recursively process the successor objects. */
1027     if (&obj->next != tail)
1028 	initlist_add_objects(obj->next, tail, list);
1029 
1030     /* Recursively process the needed objects. */
1031     if (obj->needed != NULL)
1032 	initlist_add_neededs(obj->needed, list);
1033 
1034     /* Add the object to the init list. */
1035     if (obj->init != NULL)
1036 	objlist_push_tail(list, obj);
1037 
1038     /* Add the object to the global fini list in the reverse order. */
1039     if (obj->fini != NULL)
1040 	objlist_push_head(&list_fini, obj);
1041 }
1042 
1043 #ifndef FPTR_TARGET
1044 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1045 #endif
1046 
1047 static bool
1048 is_exported(const Elf_Sym *def)
1049 {
1050     Elf_Addr value;
1051     const func_ptr_type *p;
1052 
1053     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1054     for (p = exports;  *p != NULL;  p++)
1055 	if (FPTR_TARGET(*p) == value)
1056 	    return true;
1057     return false;
1058 }
1059 
1060 /*
1061  * Given a shared object, traverse its list of needed objects, and load
1062  * each of them.  Returns 0 on success.  Generates an error message and
1063  * returns -1 on failure.
1064  */
1065 static int
1066 load_needed_objects(Obj_Entry *first)
1067 {
1068     Obj_Entry *obj;
1069 
1070     for (obj = first;  obj != NULL;  obj = obj->next) {
1071 	Needed_Entry *needed;
1072 
1073 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1074 	    const char *name = obj->strtab + needed->name;
1075 	    char *path = find_library(name, obj);
1076 
1077 	    needed->obj = NULL;
1078 	    if (path == NULL && !ld_tracing)
1079 		return -1;
1080 
1081 	    if (path) {
1082 		needed->obj = load_object(path);
1083 		if (needed->obj == NULL && !ld_tracing)
1084 		    return -1;		/* XXX - cleanup */
1085 	    }
1086 	}
1087     }
1088 
1089     return 0;
1090 }
1091 
1092 static int
1093 load_preload_objects(void)
1094 {
1095     char *p = ld_preload;
1096     static const char delim[] = " \t:;";
1097 
1098     if (p == NULL)
1099 	return NULL;
1100 
1101     p += strspn(p, delim);
1102     while (*p != '\0') {
1103 	size_t len = strcspn(p, delim);
1104 	char *path;
1105 	char savech;
1106 
1107 	savech = p[len];
1108 	p[len] = '\0';
1109 	if ((path = find_library(p, NULL)) == NULL)
1110 	    return -1;
1111 	if (load_object(path) == NULL)
1112 	    return -1;	/* XXX - cleanup */
1113 	p[len] = savech;
1114 	p += len;
1115 	p += strspn(p, delim);
1116     }
1117     return 0;
1118 }
1119 
1120 /*
1121  * Load a shared object into memory, if it is not already loaded.  The
1122  * argument must be a string allocated on the heap.  This function assumes
1123  * responsibility for freeing it when necessary.
1124  *
1125  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1126  * on failure.
1127  */
1128 static Obj_Entry *
1129 load_object(char *path)
1130 {
1131     Obj_Entry *obj;
1132     int fd = -1;
1133     struct stat sb;
1134 
1135     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1136 	if (strcmp(obj->path, path) == 0)
1137 	    break;
1138 
1139     /*
1140      * If we didn't find a match by pathname, open the file and check
1141      * again by device and inode.  This avoids false mismatches caused
1142      * by multiple links or ".." in pathnames.
1143      *
1144      * To avoid a race, we open the file and use fstat() rather than
1145      * using stat().
1146      */
1147     if (obj == NULL) {
1148 	if ((fd = open(path, O_RDONLY)) == -1) {
1149 	    _rtld_error("Cannot open \"%s\"", path);
1150 	    return NULL;
1151 	}
1152 	if (fstat(fd, &sb) == -1) {
1153 	    _rtld_error("Cannot fstat \"%s\"", path);
1154 	    close(fd);
1155 	    return NULL;
1156 	}
1157 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1158 	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1159 		close(fd);
1160 		break;
1161 	    }
1162 	}
1163     }
1164 
1165     if (obj == NULL) {	/* First use of this object, so we must map it in */
1166 	dbg("loading \"%s\"", path);
1167 	obj = map_object(fd, path, &sb);
1168 	close(fd);
1169 	if (obj == NULL) {
1170 	    free(path);
1171 	    return NULL;
1172 	}
1173 
1174 	obj->path = path;
1175 	digest_dynamic(obj);
1176 
1177 	*obj_tail = obj;
1178 	obj_tail = &obj->next;
1179 	obj_count++;
1180 	linkmap_add(obj);	/* for GDB */
1181 
1182 	dbg("  %p .. %p: %s", obj->mapbase,
1183 	  obj->mapbase + obj->mapsize - 1, obj->path);
1184 	if (obj->textrel)
1185 	    dbg("  WARNING: %s has impure text", obj->path);
1186     } else
1187 	free(path);
1188 
1189     obj->refcount++;
1190     return obj;
1191 }
1192 
1193 /*
1194  * Check for locking violations and die if one is found.
1195  */
1196 static void
1197 lock_check(void)
1198 {
1199     int rcount, wcount;
1200 
1201     rcount = lockinfo.rcount;
1202     wcount = lockinfo.wcount;
1203     assert(rcount >= 0);
1204     assert(wcount >= 0);
1205     if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1206 	_rtld_error("Application locking error: %d readers and %d writers"
1207 	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1208 	  rcount, wcount);
1209 	die();
1210     }
1211 }
1212 
1213 static Obj_Entry *
1214 obj_from_addr(const void *addr)
1215 {
1216     unsigned long endhash;
1217     Obj_Entry *obj;
1218 
1219     endhash = elf_hash(END_SYM);
1220     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1221 	const Elf_Sym *endsym;
1222 
1223 	if (addr < (void *) obj->mapbase)
1224 	    continue;
1225 	if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL)
1226 	    continue;	/* No "end" symbol?! */
1227 	if (addr < (void *) (obj->relocbase + endsym->st_value))
1228 	    return obj;
1229     }
1230     return NULL;
1231 }
1232 
1233 /*
1234  * Call the finalization functions for each of the objects in "list"
1235  * which are unreferenced.  All of the objects are expected to have
1236  * non-NULL fini functions.
1237  */
1238 static void
1239 objlist_call_fini(Objlist *list)
1240 {
1241     Objlist_Entry *elm;
1242     char *saved_msg;
1243 
1244     /*
1245      * Preserve the current error message since a fini function might
1246      * call into the dynamic linker and overwrite it.
1247      */
1248     saved_msg = errmsg_save();
1249     STAILQ_FOREACH(elm, list, link) {
1250 	if (elm->obj->refcount == 0) {
1251 	    dbg("calling fini function for %s", elm->obj->path);
1252 	    (*elm->obj->fini)();
1253 	}
1254     }
1255     errmsg_restore(saved_msg);
1256 }
1257 
1258 /*
1259  * Call the initialization functions for each of the objects in
1260  * "list".  All of the objects are expected to have non-NULL init
1261  * functions.
1262  */
1263 static void
1264 objlist_call_init(Objlist *list)
1265 {
1266     Objlist_Entry *elm;
1267     char *saved_msg;
1268 
1269     /*
1270      * Preserve the current error message since an init function might
1271      * call into the dynamic linker and overwrite it.
1272      */
1273     saved_msg = errmsg_save();
1274     STAILQ_FOREACH(elm, list, link) {
1275 	dbg("calling init function for %s", elm->obj->path);
1276 	(*elm->obj->init)();
1277     }
1278     errmsg_restore(saved_msg);
1279 }
1280 
1281 static void
1282 objlist_clear(Objlist *list)
1283 {
1284     Objlist_Entry *elm;
1285 
1286     while (!STAILQ_EMPTY(list)) {
1287 	elm = STAILQ_FIRST(list);
1288 	STAILQ_REMOVE_HEAD(list, link);
1289 	free(elm);
1290     }
1291 }
1292 
1293 static Objlist_Entry *
1294 objlist_find(Objlist *list, const Obj_Entry *obj)
1295 {
1296     Objlist_Entry *elm;
1297 
1298     STAILQ_FOREACH(elm, list, link)
1299 	if (elm->obj == obj)
1300 	    return elm;
1301     return NULL;
1302 }
1303 
1304 static void
1305 objlist_init(Objlist *list)
1306 {
1307     STAILQ_INIT(list);
1308 }
1309 
1310 static void
1311 objlist_push_head(Objlist *list, Obj_Entry *obj)
1312 {
1313     Objlist_Entry *elm;
1314 
1315     elm = NEW(Objlist_Entry);
1316     elm->obj = obj;
1317     STAILQ_INSERT_HEAD(list, elm, link);
1318 }
1319 
1320 static void
1321 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1322 {
1323     Objlist_Entry *elm;
1324 
1325     elm = NEW(Objlist_Entry);
1326     elm->obj = obj;
1327     STAILQ_INSERT_TAIL(list, elm, link);
1328 }
1329 
1330 static void
1331 objlist_remove(Objlist *list, Obj_Entry *obj)
1332 {
1333     Objlist_Entry *elm;
1334 
1335     if ((elm = objlist_find(list, obj)) != NULL) {
1336 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1337 	free(elm);
1338     }
1339 }
1340 
1341 /*
1342  * Remove all of the unreferenced objects from "list".
1343  */
1344 static void
1345 objlist_remove_unref(Objlist *list)
1346 {
1347     Objlist newlist;
1348     Objlist_Entry *elm;
1349 
1350     STAILQ_INIT(&newlist);
1351     while (!STAILQ_EMPTY(list)) {
1352 	elm = STAILQ_FIRST(list);
1353 	STAILQ_REMOVE_HEAD(list, link);
1354 	if (elm->obj->refcount == 0)
1355 	    free(elm);
1356 	else
1357 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1358     }
1359     *list = newlist;
1360 }
1361 
1362 /*
1363  * Relocate newly-loaded shared objects.  The argument is a pointer to
1364  * the Obj_Entry for the first such object.  All objects from the first
1365  * to the end of the list of objects are relocated.  Returns 0 on success,
1366  * or -1 on failure.
1367  */
1368 static int
1369 relocate_objects(Obj_Entry *first, bool bind_now)
1370 {
1371     Obj_Entry *obj;
1372 
1373     for (obj = first;  obj != NULL;  obj = obj->next) {
1374 	if (obj != &obj_rtld)
1375 	    dbg("relocating \"%s\"", obj->path);
1376 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1377 	    obj->symtab == NULL || obj->strtab == NULL) {
1378 	    _rtld_error("%s: Shared object has no run-time symbol table",
1379 	      obj->path);
1380 	    return -1;
1381 	}
1382 
1383 	if (obj->textrel) {
1384 	    /* There are relocations to the write-protected text segment. */
1385 	    if (mprotect(obj->mapbase, obj->textsize,
1386 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1387 		_rtld_error("%s: Cannot write-enable text segment: %s",
1388 		  obj->path, strerror(errno));
1389 		return -1;
1390 	    }
1391 	}
1392 
1393 	/* Process the non-PLT relocations. */
1394 	if (reloc_non_plt(obj, &obj_rtld))
1395 		return -1;
1396 
1397 	if (obj->textrel) {	/* Re-protected the text segment. */
1398 	    if (mprotect(obj->mapbase, obj->textsize,
1399 	      PROT_READ|PROT_EXEC) == -1) {
1400 		_rtld_error("%s: Cannot write-protect text segment: %s",
1401 		  obj->path, strerror(errno));
1402 		return -1;
1403 	    }
1404 	}
1405 
1406 	/* Process the PLT relocations. */
1407 	if (reloc_plt(obj) == -1)
1408 	    return -1;
1409 	/* Relocate the jump slots if we are doing immediate binding. */
1410 	if (bind_now)
1411 	    if (reloc_jmpslots(obj) == -1)
1412 		return -1;
1413 
1414 
1415 	/*
1416 	 * Set up the magic number and version in the Obj_Entry.  These
1417 	 * were checked in the crt1.o from the original ElfKit, so we
1418 	 * set them for backward compatibility.
1419 	 */
1420 	obj->magic = RTLD_MAGIC;
1421 	obj->version = RTLD_VERSION;
1422 
1423 	/* Set the special PLT or GOT entries. */
1424 	init_pltgot(obj);
1425     }
1426 
1427     return 0;
1428 }
1429 
1430 /*
1431  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1432  * before the process exits.
1433  */
1434 static void
1435 rtld_exit(void)
1436 {
1437     Obj_Entry *obj;
1438 
1439     dbg("rtld_exit()");
1440     wlock_acquire();
1441     /* Clear all the reference counts so the fini functions will be called. */
1442     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1443 	obj->refcount = 0;
1444     wlock_release();
1445     objlist_call_fini(&list_fini);
1446     /* No need to remove the items from the list, since we are exiting. */
1447 }
1448 
1449 static char *
1450 search_library_path(const char *name, const char *path)
1451 {
1452     size_t namelen = strlen(name);
1453     const char *p = path;
1454 
1455     if (p == NULL)
1456 	return NULL;
1457 
1458     p += strspn(p, ":;");
1459     while (*p != '\0') {
1460 	size_t len = strcspn(p, ":;");
1461 
1462 	if (*p == '/' || trust) {
1463 	    char *pathname;
1464 	    const char *dir = p;
1465 	    size_t dirlen = len;
1466 
1467 	    pathname = xmalloc(dirlen + 1 + namelen + 1);
1468 	    strncpy(pathname, dir, dirlen);
1469 	    pathname[dirlen] = '/';
1470 	    strcpy(pathname + dirlen + 1, name);
1471 
1472 	    dbg("  Trying \"%s\"", pathname);
1473 	    if (access(pathname, F_OK) == 0)		/* We found it */
1474 		return pathname;
1475 
1476 	    free(pathname);
1477 	}
1478 	p += len;
1479 	p += strspn(p, ":;");
1480     }
1481 
1482     return NULL;
1483 }
1484 
1485 int
1486 dlclose(void *handle)
1487 {
1488     Obj_Entry *root;
1489 
1490     wlock_acquire();
1491     root = dlcheck(handle);
1492     if (root == NULL) {
1493 	wlock_release();
1494 	return -1;
1495     }
1496 
1497     /* Unreference the object and its dependencies. */
1498     root->dl_refcount--;
1499     unref_dag(root);
1500 
1501     if (root->refcount == 0) {
1502 	/*
1503 	 * The object is no longer referenced, so we must unload it.
1504 	 * First, call the fini functions with no locks held.
1505 	 */
1506 	wlock_release();
1507 	objlist_call_fini(&list_fini);
1508 	wlock_acquire();
1509 	objlist_remove_unref(&list_fini);
1510 
1511 	/* Finish cleaning up the newly-unreferenced objects. */
1512 	GDB_STATE(RT_DELETE,&root->linkmap);
1513 	unload_object(root);
1514 	GDB_STATE(RT_CONSISTENT,NULL);
1515     }
1516     wlock_release();
1517     return 0;
1518 }
1519 
1520 const char *
1521 dlerror(void)
1522 {
1523     char *msg = error_message;
1524     error_message = NULL;
1525     return msg;
1526 }
1527 
1528 /*
1529  * This function is deprecated and has no effect.
1530  */
1531 void
1532 dllockinit(void *context,
1533 	   void *(*lock_create)(void *context),
1534            void (*rlock_acquire)(void *lock),
1535            void (*wlock_acquire)(void *lock),
1536            void (*lock_release)(void *lock),
1537            void (*lock_destroy)(void *lock),
1538 	   void (*context_destroy)(void *context))
1539 {
1540     static void *cur_context;
1541     static void (*cur_context_destroy)(void *);
1542 
1543     /* Just destroy the context from the previous call, if necessary. */
1544     if (cur_context_destroy != NULL)
1545 	cur_context_destroy(cur_context);
1546     cur_context = context;
1547     cur_context_destroy = context_destroy;
1548 }
1549 
1550 void *
1551 dlopen(const char *name, int mode)
1552 {
1553     Obj_Entry **old_obj_tail;
1554     Obj_Entry *obj;
1555     Objlist initlist;
1556 
1557     objlist_init(&initlist);
1558 
1559     wlock_acquire();
1560     GDB_STATE(RT_ADD,NULL);
1561 
1562     old_obj_tail = obj_tail;
1563     obj = NULL;
1564     if (name == NULL) {
1565 	obj = obj_main;
1566 	obj->refcount++;
1567     } else {
1568 	char *path = find_library(name, obj_main);
1569 	if (path != NULL)
1570 	    obj = load_object(path);
1571     }
1572 
1573     if (obj) {
1574 	obj->dl_refcount++;
1575 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1576 	    objlist_push_tail(&list_global, obj);
1577 	mode &= RTLD_MODEMASK;
1578 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1579 	    assert(*old_obj_tail == obj);
1580 
1581 	    if (load_needed_objects(obj) == -1 ||
1582 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW)) == -1) {
1583 		obj->dl_refcount--;
1584 		unref_dag(obj);
1585 		if (obj->refcount == 0)
1586 		    unload_object(obj);
1587 		obj = NULL;
1588 	    } else {
1589 		/* Make list of init functions to call. */
1590 		initlist_add_objects(obj, &obj->next, &initlist);
1591 	    }
1592 	}
1593     }
1594 
1595     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1596 
1597     /* Call the init functions with no locks held. */
1598     wlock_release();
1599     objlist_call_init(&initlist);
1600     wlock_acquire();
1601     objlist_clear(&initlist);
1602     wlock_release();
1603     return obj;
1604 }
1605 
1606 void *
1607 dlsym(void *handle, const char *name)
1608 {
1609     const Obj_Entry *obj;
1610     unsigned long hash;
1611     const Elf_Sym *def;
1612     const Obj_Entry *defobj;
1613 
1614     hash = elf_hash(name);
1615     def = NULL;
1616     defobj = NULL;
1617 
1618     rlock_acquire();
1619     if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) {
1620 	void *retaddr;
1621 
1622 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1623 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1624 	    _rtld_error("Cannot determine caller's shared object");
1625 	    rlock_release();
1626 	    return NULL;
1627 	}
1628 	if (handle == NULL) {	/* Just the caller's shared object. */
1629 	    def = symlook_obj(name, hash, obj, true);
1630 	    defobj = obj;
1631 	} else if (handle == RTLD_NEXT) {	/* Objects after caller's */
1632 	    while ((obj = obj->next) != NULL) {
1633 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1634 		    defobj = obj;
1635 		    break;
1636 		}
1637 	    }
1638 	} else {
1639 	    assert(handle == RTLD_DEFAULT);
1640 	    def = symlook_default(name, hash, obj, &defobj, true);
1641 	}
1642     } else {
1643 	if ((obj = dlcheck(handle)) == NULL) {
1644 	    rlock_release();
1645 	    return NULL;
1646 	}
1647 
1648 	if (obj->mainprog) {
1649 	    DoneList donelist;
1650 
1651 	    /* Search main program and all libraries loaded by it. */
1652 	    donelist_init(&donelist);
1653 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1654 	      &donelist);
1655 	} else {
1656 	    /*
1657 	     * XXX - This isn't correct.  The search should include the whole
1658 	     * DAG rooted at the given object.
1659 	     */
1660 	    def = symlook_obj(name, hash, obj, true);
1661 	    defobj = obj;
1662 	}
1663     }
1664 
1665     if (def != NULL) {
1666 	rlock_release();
1667 
1668 	/*
1669 	 * The value required by the caller is derived from the value
1670 	 * of the symbol. For the ia64 architecture, we need to
1671 	 * construct a function descriptor which the caller can use to
1672 	 * call the function with the right 'gp' value. For other
1673 	 * architectures and for non-functions, the value is simply
1674 	 * the relocated value of the symbol.
1675 	 */
1676 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1677 	    return make_function_pointer(def, defobj);
1678 	else
1679 	    return defobj->relocbase + def->st_value;
1680     }
1681 
1682     _rtld_error("Undefined symbol \"%s\"", name);
1683     rlock_release();
1684     return NULL;
1685 }
1686 
1687 int
1688 dladdr(const void *addr, Dl_info *info)
1689 {
1690     const Obj_Entry *obj;
1691     const Elf_Sym *def;
1692     void *symbol_addr;
1693     unsigned long symoffset;
1694 
1695     rlock_acquire();
1696     obj = obj_from_addr(addr);
1697     if (obj == NULL) {
1698         _rtld_error("No shared object contains address");
1699 	rlock_release();
1700         return 0;
1701     }
1702     info->dli_fname = obj->path;
1703     info->dli_fbase = obj->mapbase;
1704     info->dli_saddr = (void *)0;
1705     info->dli_sname = NULL;
1706 
1707     /*
1708      * Walk the symbol list looking for the symbol whose address is
1709      * closest to the address sent in.
1710      */
1711     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1712         def = obj->symtab + symoffset;
1713 
1714         /*
1715          * For skip the symbol if st_shndx is either SHN_UNDEF or
1716          * SHN_COMMON.
1717          */
1718         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1719             continue;
1720 
1721         /*
1722          * If the symbol is greater than the specified address, or if it
1723          * is further away from addr than the current nearest symbol,
1724          * then reject it.
1725          */
1726         symbol_addr = obj->relocbase + def->st_value;
1727         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1728             continue;
1729 
1730         /* Update our idea of the nearest symbol. */
1731         info->dli_sname = obj->strtab + def->st_name;
1732         info->dli_saddr = symbol_addr;
1733 
1734         /* Exact match? */
1735         if (info->dli_saddr == addr)
1736             break;
1737     }
1738     rlock_release();
1739     return 1;
1740 }
1741 
1742 static void
1743 linkmap_add(Obj_Entry *obj)
1744 {
1745     struct link_map *l = &obj->linkmap;
1746     struct link_map *prev;
1747 
1748     obj->linkmap.l_name = obj->path;
1749     obj->linkmap.l_addr = obj->mapbase;
1750     obj->linkmap.l_ld = obj->dynamic;
1751 #ifdef __mips__
1752     /* GDB needs load offset on MIPS to use the symbols */
1753     obj->linkmap.l_offs = obj->relocbase;
1754 #endif
1755 
1756     if (r_debug.r_map == NULL) {
1757 	r_debug.r_map = l;
1758 	return;
1759     }
1760 
1761     /*
1762      * Scan to the end of the list, but not past the entry for the
1763      * dynamic linker, which we want to keep at the very end.
1764      */
1765     for (prev = r_debug.r_map;
1766       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
1767       prev = prev->l_next)
1768 	;
1769 
1770     /* Link in the new entry. */
1771     l->l_prev = prev;
1772     l->l_next = prev->l_next;
1773     if (l->l_next != NULL)
1774 	l->l_next->l_prev = l;
1775     prev->l_next = l;
1776 }
1777 
1778 static void
1779 linkmap_delete(Obj_Entry *obj)
1780 {
1781     struct link_map *l = &obj->linkmap;
1782 
1783     if (l->l_prev == NULL) {
1784 	if ((r_debug.r_map = l->l_next) != NULL)
1785 	    l->l_next->l_prev = NULL;
1786 	return;
1787     }
1788 
1789     if ((l->l_prev->l_next = l->l_next) != NULL)
1790 	l->l_next->l_prev = l->l_prev;
1791 }
1792 
1793 /*
1794  * Function for the debugger to set a breakpoint on to gain control.
1795  *
1796  * The two parameters allow the debugger to easily find and determine
1797  * what the runtime loader is doing and to whom it is doing it.
1798  *
1799  * When the loadhook trap is hit (r_debug_state, set at program
1800  * initialization), the arguments can be found on the stack:
1801  *
1802  *  +8   struct link_map *m
1803  *  +4   struct r_debug  *rd
1804  *  +0   RetAddr
1805  */
1806 void
1807 r_debug_state(struct r_debug* rd, struct link_map *m)
1808 {
1809 }
1810 
1811 /*
1812  * Set a pointer variable in the main program to the given value.  This
1813  * is used to set key variables such as "environ" before any of the
1814  * init functions are called.
1815  */
1816 static void
1817 set_program_var(const char *name, const void *value)
1818 {
1819     const Obj_Entry *obj;
1820     unsigned long hash;
1821 
1822     hash = elf_hash(name);
1823     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
1824 	const Elf_Sym *def;
1825 
1826 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
1827 	    const void **addr;
1828 
1829 	    addr = (const void **)(obj->relocbase + def->st_value);
1830 	    dbg("\"%s\": *%p <-- %p", name, addr, value);
1831 	    *addr = value;
1832 	    break;
1833 	}
1834     }
1835 }
1836 
1837 /*
1838  * Given a symbol name in a referencing object, find the corresponding
1839  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1840  * no definition was found.  Returns a pointer to the Obj_Entry of the
1841  * defining object via the reference parameter DEFOBJ_OUT.
1842  */
1843 static const Elf_Sym *
1844 symlook_default(const char *name, unsigned long hash,
1845     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
1846 {
1847     DoneList donelist;
1848     const Elf_Sym *def;
1849     const Elf_Sym *symp;
1850     const Obj_Entry *obj;
1851     const Obj_Entry *defobj;
1852     const Objlist_Entry *elm;
1853     def = NULL;
1854     defobj = NULL;
1855     donelist_init(&donelist);
1856 
1857     /* Look first in the referencing object if linked symbolically. */
1858     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
1859 	symp = symlook_obj(name, hash, refobj, in_plt);
1860 	if (symp != NULL) {
1861 	    def = symp;
1862 	    defobj = refobj;
1863 	}
1864     }
1865 
1866     /* Search all objects loaded at program start up. */
1867     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1868 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
1869 	if (symp != NULL &&
1870 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1871 	    def = symp;
1872 	    defobj = obj;
1873 	}
1874     }
1875 
1876     /* Search all dlopened DAGs containing the referencing object. */
1877     STAILQ_FOREACH(elm, &refobj->dldags, link) {
1878 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
1879 	    break;
1880 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
1881 	  &donelist);
1882 	if (symp != NULL &&
1883 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1884 	    def = symp;
1885 	    defobj = obj;
1886 	}
1887     }
1888 
1889     /* Search all RTLD_GLOBAL objects. */
1890     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1891 	symp = symlook_list(name, hash, &list_global, &obj, in_plt, &donelist);
1892 	if (symp != NULL &&
1893 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1894 	    def = symp;
1895 	    defobj = obj;
1896 	}
1897     }
1898 
1899     /*
1900      * Search the dynamic linker itself, and possibly resolve the
1901      * symbol from there.  This is how the application links to
1902      * dynamic linker services such as dlopen.  Only the values listed
1903      * in the "exports" array can be resolved from the dynamic linker.
1904      */
1905     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1906 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
1907 	if (symp != NULL && is_exported(symp)) {
1908 	    def = symp;
1909 	    defobj = &obj_rtld;
1910 	}
1911     }
1912 
1913     if (def != NULL)
1914 	*defobj_out = defobj;
1915     return def;
1916 }
1917 
1918 static const Elf_Sym *
1919 symlook_list(const char *name, unsigned long hash, Objlist *objlist,
1920   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
1921 {
1922     const Elf_Sym *symp;
1923     const Elf_Sym *def;
1924     const Obj_Entry *defobj;
1925     const Objlist_Entry *elm;
1926 
1927     def = NULL;
1928     defobj = NULL;
1929     STAILQ_FOREACH(elm, objlist, link) {
1930 	if (donelist_check(dlp, elm->obj))
1931 	    continue;
1932 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
1933 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
1934 		def = symp;
1935 		defobj = elm->obj;
1936 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
1937 		    break;
1938 	    }
1939 	}
1940     }
1941     if (def != NULL)
1942 	*defobj_out = defobj;
1943     return def;
1944 }
1945 
1946 /*
1947  * Search the symbol table of a single shared object for a symbol of
1948  * the given name.  Returns a pointer to the symbol, or NULL if no
1949  * definition was found.
1950  *
1951  * The symbol's hash value is passed in for efficiency reasons; that
1952  * eliminates many recomputations of the hash value.
1953  */
1954 const Elf_Sym *
1955 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
1956   bool in_plt)
1957 {
1958     if (obj->buckets != NULL) {
1959 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
1960 
1961 	while (symnum != STN_UNDEF) {
1962 	    const Elf_Sym *symp;
1963 	    const char *strp;
1964 
1965 	    if (symnum >= obj->nchains)
1966 		return NULL;	/* Bad object */
1967 	    symp = obj->symtab + symnum;
1968 	    strp = obj->strtab + symp->st_name;
1969 
1970 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
1971 		return symp->st_shndx != SHN_UNDEF ||
1972 		  (!in_plt && symp->st_value != 0 &&
1973 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
1974 
1975 	    symnum = obj->chains[symnum];
1976 	}
1977     }
1978     return NULL;
1979 }
1980 
1981 static void
1982 trace_loaded_objects(Obj_Entry *obj)
1983 {
1984     char	*fmt1, *fmt2, *fmt, *main_local;
1985     int		c;
1986 
1987     if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
1988 	main_local = "";
1989 
1990     if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
1991 	fmt1 = "\t%o => %p (%x)\n";
1992 
1993     if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
1994 	fmt2 = "\t%o (%x)\n";
1995 
1996     for (; obj; obj = obj->next) {
1997 	Needed_Entry		*needed;
1998 	char			*name, *path;
1999 	bool			is_lib;
2000 
2001 	for (needed = obj->needed; needed; needed = needed->next) {
2002 	    if (needed->obj != NULL) {
2003 		if (needed->obj->traced)
2004 		    continue;
2005 		needed->obj->traced = true;
2006 		path = needed->obj->path;
2007 	    } else
2008 		path = "not found";
2009 
2010 	    name = (char *)obj->strtab + needed->name;
2011 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2012 
2013 	    fmt = is_lib ? fmt1 : fmt2;
2014 	    while ((c = *fmt++) != '\0') {
2015 		switch (c) {
2016 		default:
2017 		    putchar(c);
2018 		    continue;
2019 		case '\\':
2020 		    switch (c = *fmt) {
2021 		    case '\0':
2022 			continue;
2023 		    case 'n':
2024 			putchar('\n');
2025 			break;
2026 		    case 't':
2027 			putchar('\t');
2028 			break;
2029 		    }
2030 		    break;
2031 		case '%':
2032 		    switch (c = *fmt) {
2033 		    case '\0':
2034 			continue;
2035 		    case '%':
2036 		    default:
2037 			putchar(c);
2038 			break;
2039 		    case 'A':
2040 			printf("%s", main_local);
2041 			break;
2042 		    case 'a':
2043 			printf("%s", obj_main->path);
2044 			break;
2045 		    case 'o':
2046 			printf("%s", name);
2047 			break;
2048 #if 0
2049 		    case 'm':
2050 			printf("%d", sodp->sod_major);
2051 			break;
2052 		    case 'n':
2053 			printf("%d", sodp->sod_minor);
2054 			break;
2055 #endif
2056 		    case 'p':
2057 			printf("%s", path);
2058 			break;
2059 		    case 'x':
2060 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2061 			break;
2062 		    }
2063 		    break;
2064 		}
2065 		++fmt;
2066 	    }
2067 	}
2068     }
2069 }
2070 
2071 /*
2072  * Unload a dlopened object and its dependencies from memory and from
2073  * our data structures.  It is assumed that the DAG rooted in the
2074  * object has already been unreferenced, and that the object has a
2075  * reference count of 0.
2076  */
2077 static void
2078 unload_object(Obj_Entry *root)
2079 {
2080     Obj_Entry *obj;
2081     Obj_Entry **linkp;
2082     Objlist_Entry *elm;
2083 
2084     assert(root->refcount == 0);
2085 
2086     /* Remove the DAG from all objects' DAG lists. */
2087     STAILQ_FOREACH(elm, &root->dagmembers , link)
2088 	objlist_remove(&elm->obj->dldags, root);
2089 
2090     /* Remove the DAG from the RTLD_GLOBAL list. */
2091     objlist_remove(&list_global, root);
2092 
2093     /* Unmap all objects that are no longer referenced. */
2094     linkp = &obj_list->next;
2095     while ((obj = *linkp) != NULL) {
2096 	if (obj->refcount == 0) {
2097 	    dbg("unloading \"%s\"", obj->path);
2098 	    munmap(obj->mapbase, obj->mapsize);
2099 	    linkmap_delete(obj);
2100 	    *linkp = obj->next;
2101 	    obj_count--;
2102 	    obj_free(obj);
2103 	} else
2104 	    linkp = &obj->next;
2105     }
2106     obj_tail = linkp;
2107 }
2108 
2109 static void
2110 unref_dag(Obj_Entry *root)
2111 {
2112     const Needed_Entry *needed;
2113 
2114     if (root->refcount == 0)
2115 	return;
2116     root->refcount--;
2117     if (root->refcount == 0)
2118 	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2119 	    if (needed->obj != NULL)
2120 		unref_dag(needed->obj);
2121 }
2122 
2123 /*
2124  * Non-mallocing printf, for use by malloc itself.
2125  * XXX - This doesn't belong in this module.
2126  */
2127 void
2128 xprintf(const char *fmt, ...)
2129 {
2130     char buf[256];
2131     va_list ap;
2132 
2133     va_start(ap, fmt);
2134     vsprintf(buf, fmt, ap);
2135     (void)write(STDOUT_FILENO, buf, strlen(buf));
2136     va_end(ap);
2137 }
2138