xref: /freebsd/libexec/rtld-elf/rtld.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 #include "notes.h"
65 
66 #ifndef COMPAT_32BIT
67 #define PATH_RTLD	"/libexec/ld-elf.so.1"
68 #else
69 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
70 #endif
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void die(void) __dead2;
81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82     const Elf_Dyn **);
83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88     int lo_flags, int mode, RtldLockState *lockstate);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_rtld(caddr_t, Elf_Auxinfo **);
99 static void initlist_add_neededs(Needed_Entry *, Objlist *);
100 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
101 static void linkmap_add(Obj_Entry *);
102 static void linkmap_delete(Obj_Entry *);
103 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104 static void unload_filtees(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *, int);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
108 static void map_stacks_exec(RtldLockState *);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111 static void objlist_call_init(Objlist *, RtldLockState *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120     RtldLockState *);
121 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122     int flags, RtldLockState *lockstate);
123 static int rtld_dirname(const char *, char *);
124 static int rtld_dirname_abs(const char *, char *);
125 static void *rtld_dlopen(const char *name, int fd, int mode);
126 static void rtld_exit(void);
127 static char *search_library_path(const char *, const char *);
128 static const void **get_program_var_addr(const char *, RtldLockState *);
129 static void set_program_var(const char *, const void *);
130 static int symlook_default(SymLook *, const Obj_Entry *refobj);
131 static int symlook_global(SymLook *, DoneList *);
132 static void symlook_init_from_req(SymLook *, const SymLook *);
133 static int symlook_list(SymLook *, const Objlist *, DoneList *);
134 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135 static int symlook_obj1(SymLook *, const Obj_Entry *);
136 static void trace_loaded_objects(Obj_Entry *);
137 static void unlink_object(Obj_Entry *);
138 static void unload_object(Obj_Entry *);
139 static void unref_dag(Obj_Entry *);
140 static void ref_dag(Obj_Entry *);
141 static int origin_subst_one(char **, const char *, const char *,
142   const char *, char *);
143 static char *origin_subst(const char *, const char *);
144 static void preinit_main(void);
145 static int  rtld_verify_versions(const Objlist *);
146 static int  rtld_verify_object_versions(Obj_Entry *);
147 static void object_add_name(Obj_Entry *, const char *);
148 static int  object_match_name(const Obj_Entry *, const char *);
149 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
150 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
151     struct dl_phdr_info *phdr_info);
152 
153 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
154 
155 /*
156  * Data declarations.
157  */
158 static char *error_message;	/* Message for dlerror(), or NULL */
159 struct r_debug r_debug;		/* for GDB; */
160 static bool libmap_disable;	/* Disable libmap */
161 static bool ld_loadfltr;	/* Immediate filters processing */
162 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
163 static bool trust;		/* False for setuid and setgid programs */
164 static bool dangerous_ld_env;	/* True if environment variables have been
165 				   used to affect the libraries loaded */
166 static char *ld_bind_now;	/* Environment variable for immediate binding */
167 static char *ld_debug;		/* Environment variable for debugging */
168 static char *ld_library_path;	/* Environment variable for search path */
169 static char *ld_preload;	/* Environment variable for libraries to
170 				   load first */
171 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
172 static char *ld_tracing;	/* Called from ldd to print libs */
173 static char *ld_utrace;		/* Use utrace() to log events. */
174 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
175 static Obj_Entry **obj_tail;	/* Link field of last object in list */
176 static Obj_Entry *obj_main;	/* The main program shared object */
177 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
178 static unsigned int obj_count;	/* Number of objects in obj_list */
179 static unsigned int obj_loads;	/* Number of objects in obj_list */
180 
181 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
182   STAILQ_HEAD_INITIALIZER(list_global);
183 static Objlist list_main =	/* Objects loaded at program startup */
184   STAILQ_HEAD_INITIALIZER(list_main);
185 static Objlist list_fini =	/* Objects needing fini() calls */
186   STAILQ_HEAD_INITIALIZER(list_fini);
187 
188 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
189 
190 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
191 
192 extern Elf_Dyn _DYNAMIC;
193 #pragma weak _DYNAMIC
194 #ifndef RTLD_IS_DYNAMIC
195 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
196 #endif
197 
198 int osreldate, pagesize;
199 
200 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
201 
202 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
203 static int max_stack_flags;
204 
205 /*
206  * Global declarations normally provided by crt1.  The dynamic linker is
207  * not built with crt1, so we have to provide them ourselves.
208  */
209 char *__progname;
210 char **environ;
211 
212 /*
213  * Used to pass argc, argv to init functions.
214  */
215 int main_argc;
216 char **main_argv;
217 
218 /*
219  * Globals to control TLS allocation.
220  */
221 size_t tls_last_offset;		/* Static TLS offset of last module */
222 size_t tls_last_size;		/* Static TLS size of last module */
223 size_t tls_static_space;	/* Static TLS space allocated */
224 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
225 int tls_max_index = 1;		/* Largest module index allocated */
226 
227 /*
228  * Fill in a DoneList with an allocation large enough to hold all of
229  * the currently-loaded objects.  Keep this as a macro since it calls
230  * alloca and we want that to occur within the scope of the caller.
231  */
232 #define donelist_init(dlp)					\
233     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
234     assert((dlp)->objs != NULL),				\
235     (dlp)->num_alloc = obj_count,				\
236     (dlp)->num_used = 0)
237 
238 #define	UTRACE_DLOPEN_START		1
239 #define	UTRACE_DLOPEN_STOP		2
240 #define	UTRACE_DLCLOSE_START		3
241 #define	UTRACE_DLCLOSE_STOP		4
242 #define	UTRACE_LOAD_OBJECT		5
243 #define	UTRACE_UNLOAD_OBJECT		6
244 #define	UTRACE_ADD_RUNDEP		7
245 #define	UTRACE_PRELOAD_FINISHED		8
246 #define	UTRACE_INIT_CALL		9
247 #define	UTRACE_FINI_CALL		10
248 
249 struct utrace_rtld {
250 	char sig[4];			/* 'RTLD' */
251 	int event;
252 	void *handle;
253 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
254 	size_t mapsize;
255 	int refcnt;			/* Used for 'mode' */
256 	char name[MAXPATHLEN];
257 };
258 
259 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
260 	if (ld_utrace != NULL)					\
261 		ld_utrace_log(e, h, mb, ms, r, n);		\
262 } while (0)
263 
264 static void
265 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
266     int refcnt, const char *name)
267 {
268 	struct utrace_rtld ut;
269 
270 	ut.sig[0] = 'R';
271 	ut.sig[1] = 'T';
272 	ut.sig[2] = 'L';
273 	ut.sig[3] = 'D';
274 	ut.event = event;
275 	ut.handle = handle;
276 	ut.mapbase = mapbase;
277 	ut.mapsize = mapsize;
278 	ut.refcnt = refcnt;
279 	bzero(ut.name, sizeof(ut.name));
280 	if (name)
281 		strlcpy(ut.name, name, sizeof(ut.name));
282 	utrace(&ut, sizeof(ut));
283 }
284 
285 /*
286  * Main entry point for dynamic linking.  The first argument is the
287  * stack pointer.  The stack is expected to be laid out as described
288  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
289  * Specifically, the stack pointer points to a word containing
290  * ARGC.  Following that in the stack is a null-terminated sequence
291  * of pointers to argument strings.  Then comes a null-terminated
292  * sequence of pointers to environment strings.  Finally, there is a
293  * sequence of "auxiliary vector" entries.
294  *
295  * The second argument points to a place to store the dynamic linker's
296  * exit procedure pointer and the third to a place to store the main
297  * program's object.
298  *
299  * The return value is the main program's entry point.
300  */
301 func_ptr_type
302 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
303 {
304     Elf_Auxinfo *aux_info[AT_COUNT];
305     int i;
306     int argc;
307     char **argv;
308     char **env;
309     Elf_Auxinfo *aux;
310     Elf_Auxinfo *auxp;
311     const char *argv0;
312     Objlist_Entry *entry;
313     Obj_Entry *obj;
314     Obj_Entry **preload_tail;
315     Objlist initlist;
316     RtldLockState lockstate;
317     int mib[2];
318     size_t len;
319 
320     /*
321      * On entry, the dynamic linker itself has not been relocated yet.
322      * Be very careful not to reference any global data until after
323      * init_rtld has returned.  It is OK to reference file-scope statics
324      * and string constants, and to call static and global functions.
325      */
326 
327     /* Find the auxiliary vector on the stack. */
328     argc = *sp++;
329     argv = (char **) sp;
330     sp += argc + 1;	/* Skip over arguments and NULL terminator */
331     env = (char **) sp;
332     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
333 	;
334     aux = (Elf_Auxinfo *) sp;
335 
336     /* Digest the auxiliary vector. */
337     for (i = 0;  i < AT_COUNT;  i++)
338 	aux_info[i] = NULL;
339     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
340 	if (auxp->a_type < AT_COUNT)
341 	    aux_info[auxp->a_type] = auxp;
342     }
343 
344     /* Initialize and relocate ourselves. */
345     assert(aux_info[AT_BASE] != NULL);
346     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
347 
348     __progname = obj_rtld.path;
349     argv0 = argv[0] != NULL ? argv[0] : "(null)";
350     environ = env;
351     main_argc = argc;
352     main_argv = argv;
353 
354     if (aux_info[AT_CANARY] != NULL &&
355 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
356 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
357 	    if (i > sizeof(__stack_chk_guard))
358 		    i = sizeof(__stack_chk_guard);
359 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
360     } else {
361 	mib[0] = CTL_KERN;
362 	mib[1] = KERN_ARND;
363 
364 	len = sizeof(__stack_chk_guard);
365 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
366 	    len != sizeof(__stack_chk_guard)) {
367 		/* If sysctl was unsuccessful, use the "terminator canary". */
368 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
369 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
370 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
371 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
372 	}
373     }
374 
375     trust = !issetugid();
376 
377     ld_bind_now = getenv(LD_ "BIND_NOW");
378     /*
379      * If the process is tainted, then we un-set the dangerous environment
380      * variables.  The process will be marked as tainted until setuid(2)
381      * is called.  If any child process calls setuid(2) we do not want any
382      * future processes to honor the potentially un-safe variables.
383      */
384     if (!trust) {
385         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
386 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
387 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
388 	    unsetenv(LD_ "LOADFLTR")) {
389 		_rtld_error("environment corrupt; aborting");
390 		die();
391 	}
392     }
393     ld_debug = getenv(LD_ "DEBUG");
394     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
395     libmap_override = getenv(LD_ "LIBMAP");
396     ld_library_path = getenv(LD_ "LIBRARY_PATH");
397     ld_preload = getenv(LD_ "PRELOAD");
398     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
399     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
400     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
401 	(ld_library_path != NULL) || (ld_preload != NULL) ||
402 	(ld_elf_hints_path != NULL) || ld_loadfltr;
403     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
404     ld_utrace = getenv(LD_ "UTRACE");
405 
406     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
407 	ld_elf_hints_path = _PATH_ELF_HINTS;
408 
409     if (ld_debug != NULL && *ld_debug != '\0')
410 	debug = 1;
411     dbg("%s is initialized, base address = %p", __progname,
412 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
413     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
414     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
415 
416     dbg("initializing thread locks");
417     lockdflt_init();
418 
419     /*
420      * Load the main program, or process its program header if it is
421      * already loaded.
422      */
423     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
424 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
425 	dbg("loading main program");
426 	obj_main = map_object(fd, argv0, NULL);
427 	close(fd);
428 	if (obj_main == NULL)
429 	    die();
430 	max_stack_flags = obj->stack_flags;
431     } else {				/* Main program already loaded. */
432 	const Elf_Phdr *phdr;
433 	int phnum;
434 	caddr_t entry;
435 
436 	dbg("processing main program's program header");
437 	assert(aux_info[AT_PHDR] != NULL);
438 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
439 	assert(aux_info[AT_PHNUM] != NULL);
440 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
441 	assert(aux_info[AT_PHENT] != NULL);
442 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
443 	assert(aux_info[AT_ENTRY] != NULL);
444 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
445 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
446 	    die();
447     }
448 
449     if (aux_info[AT_EXECPATH] != 0) {
450 	    char *kexecpath;
451 	    char buf[MAXPATHLEN];
452 
453 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
454 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
455 	    if (kexecpath[0] == '/')
456 		    obj_main->path = kexecpath;
457 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
458 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
459 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
460 		    obj_main->path = xstrdup(argv0);
461 	    else
462 		    obj_main->path = xstrdup(buf);
463     } else {
464 	    dbg("No AT_EXECPATH");
465 	    obj_main->path = xstrdup(argv0);
466     }
467     dbg("obj_main path %s", obj_main->path);
468     obj_main->mainprog = true;
469 
470     if (aux_info[AT_STACKPROT] != NULL &&
471       aux_info[AT_STACKPROT]->a_un.a_val != 0)
472 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
473 
474     /*
475      * Get the actual dynamic linker pathname from the executable if
476      * possible.  (It should always be possible.)  That ensures that
477      * gdb will find the right dynamic linker even if a non-standard
478      * one is being used.
479      */
480     if (obj_main->interp != NULL &&
481       strcmp(obj_main->interp, obj_rtld.path) != 0) {
482 	free(obj_rtld.path);
483 	obj_rtld.path = xstrdup(obj_main->interp);
484         __progname = obj_rtld.path;
485     }
486 
487     digest_dynamic(obj_main, 0);
488 
489     linkmap_add(obj_main);
490     linkmap_add(&obj_rtld);
491 
492     /* Link the main program into the list of objects. */
493     *obj_tail = obj_main;
494     obj_tail = &obj_main->next;
495     obj_count++;
496     obj_loads++;
497 
498     /* Initialize a fake symbol for resolving undefined weak references. */
499     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
500     sym_zero.st_shndx = SHN_UNDEF;
501     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
502 
503     if (!libmap_disable)
504         libmap_disable = (bool)lm_init(libmap_override);
505 
506     dbg("loading LD_PRELOAD libraries");
507     if (load_preload_objects() == -1)
508 	die();
509     preload_tail = obj_tail;
510 
511     dbg("loading needed objects");
512     if (load_needed_objects(obj_main, 0) == -1)
513 	die();
514 
515     /* Make a list of all objects loaded at startup. */
516     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
517 	objlist_push_tail(&list_main, obj);
518     	obj->refcount++;
519     }
520 
521     dbg("checking for required versions");
522     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
523 	die();
524 
525     if (ld_tracing) {		/* We're done */
526 	trace_loaded_objects(obj_main);
527 	exit(0);
528     }
529 
530     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
531        dump_relocations(obj_main);
532        exit (0);
533     }
534 
535     /*
536      * Processing tls relocations requires having the tls offsets
537      * initialized.  Prepare offsets before starting initial
538      * relocation processing.
539      */
540     dbg("initializing initial thread local storage offsets");
541     STAILQ_FOREACH(entry, &list_main, link) {
542 	/*
543 	 * Allocate all the initial objects out of the static TLS
544 	 * block even if they didn't ask for it.
545 	 */
546 	allocate_tls_offset(entry->obj);
547     }
548 
549     if (relocate_objects(obj_main,
550       ld_bind_now != NULL && *ld_bind_now != '\0',
551       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
552 	die();
553 
554     dbg("doing copy relocations");
555     if (do_copy_relocations(obj_main) == -1)
556 	die();
557 
558     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
559        dump_relocations(obj_main);
560        exit (0);
561     }
562 
563     /*
564      * Setup TLS for main thread.  This must be done after the
565      * relocations are processed, since tls initialization section
566      * might be the subject for relocations.
567      */
568     dbg("initializing initial thread local storage");
569     allocate_initial_tls(obj_list);
570 
571     dbg("initializing key program variables");
572     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
573     set_program_var("environ", env);
574     set_program_var("__elf_aux_vector", aux);
575 
576     /* Make a list of init functions to call. */
577     objlist_init(&initlist);
578     initlist_add_objects(obj_list, preload_tail, &initlist);
579 
580     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
581 
582     map_stacks_exec(NULL);
583 
584     dbg("resolving ifuncs");
585     if (resolve_objects_ifunc(obj_main,
586       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
587       NULL) == -1)
588 	die();
589 
590     if (!obj_main->crt_no_init) {
591 	/*
592 	 * Make sure we don't call the main program's init and fini
593 	 * functions for binaries linked with old crt1 which calls
594 	 * _init itself.
595 	 */
596 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
597 	obj_main->preinit_array = obj_main->init_array =
598 	    obj_main->fini_array = (Elf_Addr)NULL;
599     }
600 
601     wlock_acquire(rtld_bind_lock, &lockstate);
602     if (obj_main->crt_no_init)
603 	preinit_main();
604     objlist_call_init(&initlist, &lockstate);
605     objlist_clear(&initlist);
606     dbg("loading filtees");
607     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
608 	if (ld_loadfltr || obj->z_loadfltr)
609 	    load_filtees(obj, 0, &lockstate);
610     }
611     lock_release(rtld_bind_lock, &lockstate);
612 
613     dbg("transferring control to program entry point = %p", obj_main->entry);
614 
615     /* Return the exit procedure and the program entry point. */
616     *exit_proc = rtld_exit;
617     *objp = obj_main;
618     return (func_ptr_type) obj_main->entry;
619 }
620 
621 void *
622 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
623 {
624 	void *ptr;
625 	Elf_Addr target;
626 
627 	ptr = (void *)make_function_pointer(def, obj);
628 	target = ((Elf_Addr (*)(void))ptr)();
629 	return ((void *)target);
630 }
631 
632 Elf_Addr
633 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
634 {
635     const Elf_Rel *rel;
636     const Elf_Sym *def;
637     const Obj_Entry *defobj;
638     Elf_Addr *where;
639     Elf_Addr target;
640     RtldLockState lockstate;
641 
642     rlock_acquire(rtld_bind_lock, &lockstate);
643     if (sigsetjmp(lockstate.env, 0) != 0)
644 	    lock_upgrade(rtld_bind_lock, &lockstate);
645     if (obj->pltrel)
646 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
647     else
648 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
649 
650     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
651     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
652 	&lockstate);
653     if (def == NULL)
654 	die();
655     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
656 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
657     else
658 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
659 
660     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
661       defobj->strtab + def->st_name, basename(obj->path),
662       (void *)target, basename(defobj->path));
663 
664     /*
665      * Write the new contents for the jmpslot. Note that depending on
666      * architecture, the value which we need to return back to the
667      * lazy binding trampoline may or may not be the target
668      * address. The value returned from reloc_jmpslot() is the value
669      * that the trampoline needs.
670      */
671     target = reloc_jmpslot(where, target, defobj, obj, rel);
672     lock_release(rtld_bind_lock, &lockstate);
673     return target;
674 }
675 
676 /*
677  * Error reporting function.  Use it like printf.  If formats the message
678  * into a buffer, and sets things up so that the next call to dlerror()
679  * will return the message.
680  */
681 void
682 _rtld_error(const char *fmt, ...)
683 {
684     static char buf[512];
685     va_list ap;
686 
687     va_start(ap, fmt);
688     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
689     error_message = buf;
690     va_end(ap);
691 }
692 
693 /*
694  * Return a dynamically-allocated copy of the current error message, if any.
695  */
696 static char *
697 errmsg_save(void)
698 {
699     return error_message == NULL ? NULL : xstrdup(error_message);
700 }
701 
702 /*
703  * Restore the current error message from a copy which was previously saved
704  * by errmsg_save().  The copy is freed.
705  */
706 static void
707 errmsg_restore(char *saved_msg)
708 {
709     if (saved_msg == NULL)
710 	error_message = NULL;
711     else {
712 	_rtld_error("%s", saved_msg);
713 	free(saved_msg);
714     }
715 }
716 
717 static const char *
718 basename(const char *name)
719 {
720     const char *p = strrchr(name, '/');
721     return p != NULL ? p + 1 : name;
722 }
723 
724 static struct utsname uts;
725 
726 static int
727 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
728     char *may_free)
729 {
730     const char *p, *p1;
731     char *res1;
732     int subst_len;
733     int kw_len;
734 
735     res1 = *res = NULL;
736     p = real;
737     subst_len = kw_len = 0;
738     for (;;) {
739 	 p1 = strstr(p, kw);
740 	 if (p1 != NULL) {
741 	     if (subst_len == 0) {
742 		 subst_len = strlen(subst);
743 		 kw_len = strlen(kw);
744 	     }
745 	     if (*res == NULL) {
746 		 *res = xmalloc(PATH_MAX);
747 		 res1 = *res;
748 	     }
749 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
750 		 _rtld_error("Substitution of %s in %s cannot be performed",
751 		     kw, real);
752 		 if (may_free != NULL)
753 		     free(may_free);
754 		 free(res);
755 		 return (false);
756 	     }
757 	     memcpy(res1, p, p1 - p);
758 	     res1 += p1 - p;
759 	     memcpy(res1, subst, subst_len);
760 	     res1 += subst_len;
761 	     p = p1 + kw_len;
762 	 } else {
763 	    if (*res == NULL) {
764 		if (may_free != NULL)
765 		    *res = may_free;
766 		else
767 		    *res = xstrdup(real);
768 		return (true);
769 	    }
770 	    *res1 = '\0';
771 	    if (may_free != NULL)
772 		free(may_free);
773 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
774 		free(res);
775 		return (false);
776 	    }
777 	    return (true);
778 	 }
779     }
780 }
781 
782 static char *
783 origin_subst(const char *real, const char *origin_path)
784 {
785     char *res1, *res2, *res3, *res4;
786 
787     if (uts.sysname[0] == '\0') {
788 	if (uname(&uts) != 0) {
789 	    _rtld_error("utsname failed: %d", errno);
790 	    return (NULL);
791 	}
792     }
793     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
794 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
795 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
796 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
797 	    return (NULL);
798     return (res4);
799 }
800 
801 static void
802 die(void)
803 {
804     const char *msg = dlerror();
805 
806     if (msg == NULL)
807 	msg = "Fatal error";
808     rtld_fdputstr(STDERR_FILENO, msg);
809     rtld_fdputchar(STDERR_FILENO, '\n');
810     _exit(1);
811 }
812 
813 /*
814  * Process a shared object's DYNAMIC section, and save the important
815  * information in its Obj_Entry structure.
816  */
817 static void
818 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
819     const Elf_Dyn **dyn_soname)
820 {
821     const Elf_Dyn *dynp;
822     Needed_Entry **needed_tail = &obj->needed;
823     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
824     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
825     int plttype = DT_REL;
826 
827     *dyn_rpath = NULL;
828     *dyn_soname = NULL;
829 
830     obj->bind_now = false;
831     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
832 	switch (dynp->d_tag) {
833 
834 	case DT_REL:
835 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
836 	    break;
837 
838 	case DT_RELSZ:
839 	    obj->relsize = dynp->d_un.d_val;
840 	    break;
841 
842 	case DT_RELENT:
843 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
844 	    break;
845 
846 	case DT_JMPREL:
847 	    obj->pltrel = (const Elf_Rel *)
848 	      (obj->relocbase + dynp->d_un.d_ptr);
849 	    break;
850 
851 	case DT_PLTRELSZ:
852 	    obj->pltrelsize = dynp->d_un.d_val;
853 	    break;
854 
855 	case DT_RELA:
856 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
857 	    break;
858 
859 	case DT_RELASZ:
860 	    obj->relasize = dynp->d_un.d_val;
861 	    break;
862 
863 	case DT_RELAENT:
864 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
865 	    break;
866 
867 	case DT_PLTREL:
868 	    plttype = dynp->d_un.d_val;
869 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
870 	    break;
871 
872 	case DT_SYMTAB:
873 	    obj->symtab = (const Elf_Sym *)
874 	      (obj->relocbase + dynp->d_un.d_ptr);
875 	    break;
876 
877 	case DT_SYMENT:
878 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
879 	    break;
880 
881 	case DT_STRTAB:
882 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
883 	    break;
884 
885 	case DT_STRSZ:
886 	    obj->strsize = dynp->d_un.d_val;
887 	    break;
888 
889 	case DT_VERNEED:
890 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
891 		dynp->d_un.d_val);
892 	    break;
893 
894 	case DT_VERNEEDNUM:
895 	    obj->verneednum = dynp->d_un.d_val;
896 	    break;
897 
898 	case DT_VERDEF:
899 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
900 		dynp->d_un.d_val);
901 	    break;
902 
903 	case DT_VERDEFNUM:
904 	    obj->verdefnum = dynp->d_un.d_val;
905 	    break;
906 
907 	case DT_VERSYM:
908 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
909 		dynp->d_un.d_val);
910 	    break;
911 
912 	case DT_HASH:
913 	    {
914 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
915 		  (obj->relocbase + dynp->d_un.d_ptr);
916 		obj->nbuckets = hashtab[0];
917 		obj->nchains = hashtab[1];
918 		obj->buckets = hashtab + 2;
919 		obj->chains = obj->buckets + obj->nbuckets;
920 	    }
921 	    break;
922 
923 	case DT_NEEDED:
924 	    if (!obj->rtld) {
925 		Needed_Entry *nep = NEW(Needed_Entry);
926 		nep->name = dynp->d_un.d_val;
927 		nep->obj = NULL;
928 		nep->next = NULL;
929 
930 		*needed_tail = nep;
931 		needed_tail = &nep->next;
932 	    }
933 	    break;
934 
935 	case DT_FILTER:
936 	    if (!obj->rtld) {
937 		Needed_Entry *nep = NEW(Needed_Entry);
938 		nep->name = dynp->d_un.d_val;
939 		nep->obj = NULL;
940 		nep->next = NULL;
941 
942 		*needed_filtees_tail = nep;
943 		needed_filtees_tail = &nep->next;
944 	    }
945 	    break;
946 
947 	case DT_AUXILIARY:
948 	    if (!obj->rtld) {
949 		Needed_Entry *nep = NEW(Needed_Entry);
950 		nep->name = dynp->d_un.d_val;
951 		nep->obj = NULL;
952 		nep->next = NULL;
953 
954 		*needed_aux_filtees_tail = nep;
955 		needed_aux_filtees_tail = &nep->next;
956 	    }
957 	    break;
958 
959 	case DT_PLTGOT:
960 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
961 	    break;
962 
963 	case DT_TEXTREL:
964 	    obj->textrel = true;
965 	    break;
966 
967 	case DT_SYMBOLIC:
968 	    obj->symbolic = true;
969 	    break;
970 
971 	case DT_RPATH:
972 	case DT_RUNPATH:	/* XXX: process separately */
973 	    /*
974 	     * We have to wait until later to process this, because we
975 	     * might not have gotten the address of the string table yet.
976 	     */
977 	    *dyn_rpath = dynp;
978 	    break;
979 
980 	case DT_SONAME:
981 	    *dyn_soname = dynp;
982 	    break;
983 
984 	case DT_INIT:
985 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
986 	    break;
987 
988 	case DT_PREINIT_ARRAY:
989 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
990 	    break;
991 
992 	case DT_PREINIT_ARRAYSZ:
993 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
994 	    break;
995 
996 	case DT_INIT_ARRAY:
997 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
998 	    break;
999 
1000 	case DT_INIT_ARRAYSZ:
1001 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1002 	    break;
1003 
1004 	case DT_FINI:
1005 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1006 	    break;
1007 
1008 	case DT_FINI_ARRAY:
1009 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1010 	    break;
1011 
1012 	case DT_FINI_ARRAYSZ:
1013 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1014 	    break;
1015 
1016 	/*
1017 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1018 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1019 	 */
1020 
1021 #ifndef __mips__
1022 	case DT_DEBUG:
1023 	    /* XXX - not implemented yet */
1024 	    if (!early)
1025 		dbg("Filling in DT_DEBUG entry");
1026 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1027 	    break;
1028 #endif
1029 
1030 	case DT_FLAGS:
1031 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1032 		    obj->z_origin = true;
1033 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1034 		    obj->symbolic = true;
1035 		if (dynp->d_un.d_val & DF_TEXTREL)
1036 		    obj->textrel = true;
1037 		if (dynp->d_un.d_val & DF_BIND_NOW)
1038 		    obj->bind_now = true;
1039 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1040 		    ;*/
1041 	    break;
1042 #ifdef __mips__
1043 	case DT_MIPS_LOCAL_GOTNO:
1044 		obj->local_gotno = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_MIPS_SYMTABNO:
1048 		obj->symtabno = dynp->d_un.d_val;
1049 		break;
1050 
1051 	case DT_MIPS_GOTSYM:
1052 		obj->gotsym = dynp->d_un.d_val;
1053 		break;
1054 
1055 	case DT_MIPS_RLD_MAP:
1056 #ifdef notyet
1057 		if (!early)
1058 			dbg("Filling in DT_DEBUG entry");
1059 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1060 #endif
1061 		break;
1062 #endif
1063 
1064 	case DT_FLAGS_1:
1065 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1066 		    obj->z_noopen = true;
1067 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1068 		    obj->z_origin = true;
1069 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1070 		    XXX ;*/
1071 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1072 		    obj->bind_now = true;
1073 		if (dynp->d_un.d_val & DF_1_NODELETE)
1074 		    obj->z_nodelete = true;
1075 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1076 		    obj->z_loadfltr = true;
1077 	    break;
1078 
1079 	default:
1080 	    if (!early) {
1081 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1082 		    (long)dynp->d_tag);
1083 	    }
1084 	    break;
1085 	}
1086     }
1087 
1088     obj->traced = false;
1089 
1090     if (plttype == DT_RELA) {
1091 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1092 	obj->pltrel = NULL;
1093 	obj->pltrelasize = obj->pltrelsize;
1094 	obj->pltrelsize = 0;
1095     }
1096 }
1097 
1098 static void
1099 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1100     const Elf_Dyn *dyn_soname)
1101 {
1102 
1103     if (obj->z_origin && obj->origin_path == NULL) {
1104 	obj->origin_path = xmalloc(PATH_MAX);
1105 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1106 	    die();
1107     }
1108 
1109     if (dyn_rpath != NULL) {
1110 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1111 	if (obj->z_origin)
1112 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1113     }
1114 
1115     if (dyn_soname != NULL)
1116 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1117 }
1118 
1119 static void
1120 digest_dynamic(Obj_Entry *obj, int early)
1121 {
1122 	const Elf_Dyn *dyn_rpath;
1123 	const Elf_Dyn *dyn_soname;
1124 
1125 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1126 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1127 }
1128 
1129 /*
1130  * Process a shared object's program header.  This is used only for the
1131  * main program, when the kernel has already loaded the main program
1132  * into memory before calling the dynamic linker.  It creates and
1133  * returns an Obj_Entry structure.
1134  */
1135 static Obj_Entry *
1136 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1137 {
1138     Obj_Entry *obj;
1139     const Elf_Phdr *phlimit = phdr + phnum;
1140     const Elf_Phdr *ph;
1141     Elf_Addr note_start, note_end;
1142     int nsegs = 0;
1143 
1144     obj = obj_new();
1145     for (ph = phdr;  ph < phlimit;  ph++) {
1146 	if (ph->p_type != PT_PHDR)
1147 	    continue;
1148 
1149 	obj->phdr = phdr;
1150 	obj->phsize = ph->p_memsz;
1151 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1152 	break;
1153     }
1154 
1155     obj->stack_flags = PF_X | PF_R | PF_W;
1156 
1157     for (ph = phdr;  ph < phlimit;  ph++) {
1158 	switch (ph->p_type) {
1159 
1160 	case PT_INTERP:
1161 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1162 	    break;
1163 
1164 	case PT_LOAD:
1165 	    if (nsegs == 0) {	/* First load segment */
1166 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1167 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1168 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1169 		  obj->vaddrbase;
1170 	    } else {		/* Last load segment */
1171 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1172 		  obj->vaddrbase;
1173 	    }
1174 	    nsegs++;
1175 	    break;
1176 
1177 	case PT_DYNAMIC:
1178 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1179 	    break;
1180 
1181 	case PT_TLS:
1182 	    obj->tlsindex = 1;
1183 	    obj->tlssize = ph->p_memsz;
1184 	    obj->tlsalign = ph->p_align;
1185 	    obj->tlsinitsize = ph->p_filesz;
1186 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1187 	    break;
1188 
1189 	case PT_GNU_STACK:
1190 	    obj->stack_flags = ph->p_flags;
1191 	    break;
1192 
1193 	case PT_GNU_RELRO:
1194 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1195 	    obj->relro_size = round_page(ph->p_memsz);
1196 	    break;
1197 
1198 	case PT_NOTE:
1199 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1200 	    note_end = note_start + ph->p_filesz;
1201 	    digest_notes(obj, note_start, note_end);
1202 	    break;
1203 	}
1204     }
1205     if (nsegs < 1) {
1206 	_rtld_error("%s: too few PT_LOAD segments", path);
1207 	return NULL;
1208     }
1209 
1210     obj->entry = entry;
1211     return obj;
1212 }
1213 
1214 void
1215 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1216 {
1217 	const Elf_Note *note;
1218 	const char *note_name;
1219 	uintptr_t p;
1220 
1221 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1222 	    note = (const Elf_Note *)((const char *)(note + 1) +
1223 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1224 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1225 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1226 		    note->n_descsz != sizeof(int32_t))
1227 			continue;
1228 		if (note->n_type != ABI_NOTETYPE &&
1229 		    note->n_type != CRT_NOINIT_NOTETYPE)
1230 			continue;
1231 		note_name = (const char *)(note + 1);
1232 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1233 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1234 			continue;
1235 		switch (note->n_type) {
1236 		case ABI_NOTETYPE:
1237 			/* FreeBSD osrel note */
1238 			p = (uintptr_t)(note + 1);
1239 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1240 			obj->osrel = *(const int32_t *)(p);
1241 			dbg("note osrel %d", obj->osrel);
1242 			break;
1243 		case CRT_NOINIT_NOTETYPE:
1244 			/* FreeBSD 'crt does not call init' note */
1245 			obj->crt_no_init = true;
1246 			dbg("note crt_no_init");
1247 			break;
1248 		}
1249 	}
1250 }
1251 
1252 static Obj_Entry *
1253 dlcheck(void *handle)
1254 {
1255     Obj_Entry *obj;
1256 
1257     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1258 	if (obj == (Obj_Entry *) handle)
1259 	    break;
1260 
1261     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1262 	_rtld_error("Invalid shared object handle %p", handle);
1263 	return NULL;
1264     }
1265     return obj;
1266 }
1267 
1268 /*
1269  * If the given object is already in the donelist, return true.  Otherwise
1270  * add the object to the list and return false.
1271  */
1272 static bool
1273 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1274 {
1275     unsigned int i;
1276 
1277     for (i = 0;  i < dlp->num_used;  i++)
1278 	if (dlp->objs[i] == obj)
1279 	    return true;
1280     /*
1281      * Our donelist allocation should always be sufficient.  But if
1282      * our threads locking isn't working properly, more shared objects
1283      * could have been loaded since we allocated the list.  That should
1284      * never happen, but we'll handle it properly just in case it does.
1285      */
1286     if (dlp->num_used < dlp->num_alloc)
1287 	dlp->objs[dlp->num_used++] = obj;
1288     return false;
1289 }
1290 
1291 /*
1292  * Hash function for symbol table lookup.  Don't even think about changing
1293  * this.  It is specified by the System V ABI.
1294  */
1295 unsigned long
1296 elf_hash(const char *name)
1297 {
1298     const unsigned char *p = (const unsigned char *) name;
1299     unsigned long h = 0;
1300     unsigned long g;
1301 
1302     while (*p != '\0') {
1303 	h = (h << 4) + *p++;
1304 	if ((g = h & 0xf0000000) != 0)
1305 	    h ^= g >> 24;
1306 	h &= ~g;
1307     }
1308     return h;
1309 }
1310 
1311 /*
1312  * Find the library with the given name, and return its full pathname.
1313  * The returned string is dynamically allocated.  Generates an error
1314  * message and returns NULL if the library cannot be found.
1315  *
1316  * If the second argument is non-NULL, then it refers to an already-
1317  * loaded shared object, whose library search path will be searched.
1318  *
1319  * The search order is:
1320  *   LD_LIBRARY_PATH
1321  *   rpath in the referencing file
1322  *   ldconfig hints
1323  *   /lib:/usr/lib
1324  */
1325 static char *
1326 find_library(const char *xname, const Obj_Entry *refobj)
1327 {
1328     char *pathname;
1329     char *name;
1330 
1331     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1332 	if (xname[0] != '/' && !trust) {
1333 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1334 	      xname);
1335 	    return NULL;
1336 	}
1337 	if (refobj != NULL && refobj->z_origin)
1338 	    return origin_subst(xname, refobj->origin_path);
1339 	else
1340 	    return xstrdup(xname);
1341     }
1342 
1343     if (libmap_disable || (refobj == NULL) ||
1344 	(name = lm_find(refobj->path, xname)) == NULL)
1345 	name = (char *)xname;
1346 
1347     dbg(" Searching for \"%s\"", name);
1348 
1349     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1350       (refobj != NULL &&
1351       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1352       (pathname = search_library_path(name, gethints())) != NULL ||
1353       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1354 	return pathname;
1355 
1356     if(refobj != NULL && refobj->path != NULL) {
1357 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1358 	  name, basename(refobj->path));
1359     } else {
1360 	_rtld_error("Shared object \"%s\" not found", name);
1361     }
1362     return NULL;
1363 }
1364 
1365 /*
1366  * Given a symbol number in a referencing object, find the corresponding
1367  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1368  * no definition was found.  Returns a pointer to the Obj_Entry of the
1369  * defining object via the reference parameter DEFOBJ_OUT.
1370  */
1371 const Elf_Sym *
1372 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1373     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1374     RtldLockState *lockstate)
1375 {
1376     const Elf_Sym *ref;
1377     const Elf_Sym *def;
1378     const Obj_Entry *defobj;
1379     SymLook req;
1380     const char *name;
1381     int res;
1382 
1383     /*
1384      * If we have already found this symbol, get the information from
1385      * the cache.
1386      */
1387     if (symnum >= refobj->nchains)
1388 	return NULL;	/* Bad object */
1389     if (cache != NULL && cache[symnum].sym != NULL) {
1390 	*defobj_out = cache[symnum].obj;
1391 	return cache[symnum].sym;
1392     }
1393 
1394     ref = refobj->symtab + symnum;
1395     name = refobj->strtab + ref->st_name;
1396     def = NULL;
1397     defobj = NULL;
1398 
1399     /*
1400      * We don't have to do a full scale lookup if the symbol is local.
1401      * We know it will bind to the instance in this load module; to
1402      * which we already have a pointer (ie ref). By not doing a lookup,
1403      * we not only improve performance, but it also avoids unresolvable
1404      * symbols when local symbols are not in the hash table. This has
1405      * been seen with the ia64 toolchain.
1406      */
1407     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1408 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1409 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1410 		symnum);
1411 	}
1412 	symlook_init(&req, name);
1413 	req.flags = flags;
1414 	req.ventry = fetch_ventry(refobj, symnum);
1415 	req.lockstate = lockstate;
1416 	res = symlook_default(&req, refobj);
1417 	if (res == 0) {
1418 	    def = req.sym_out;
1419 	    defobj = req.defobj_out;
1420 	}
1421     } else {
1422 	def = ref;
1423 	defobj = refobj;
1424     }
1425 
1426     /*
1427      * If we found no definition and the reference is weak, treat the
1428      * symbol as having the value zero.
1429      */
1430     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1431 	def = &sym_zero;
1432 	defobj = obj_main;
1433     }
1434 
1435     if (def != NULL) {
1436 	*defobj_out = defobj;
1437 	/* Record the information in the cache to avoid subsequent lookups. */
1438 	if (cache != NULL) {
1439 	    cache[symnum].sym = def;
1440 	    cache[symnum].obj = defobj;
1441 	}
1442     } else {
1443 	if (refobj != &obj_rtld)
1444 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1445     }
1446     return def;
1447 }
1448 
1449 /*
1450  * Return the search path from the ldconfig hints file, reading it if
1451  * necessary.  Returns NULL if there are problems with the hints file,
1452  * or if the search path there is empty.
1453  */
1454 static const char *
1455 gethints(void)
1456 {
1457     static char *hints;
1458 
1459     if (hints == NULL) {
1460 	int fd;
1461 	struct elfhints_hdr hdr;
1462 	char *p;
1463 
1464 	/* Keep from trying again in case the hints file is bad. */
1465 	hints = "";
1466 
1467 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1468 	    return NULL;
1469 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1470 	  hdr.magic != ELFHINTS_MAGIC ||
1471 	  hdr.version != 1) {
1472 	    close(fd);
1473 	    return NULL;
1474 	}
1475 	p = xmalloc(hdr.dirlistlen + 1);
1476 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1477 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1478 	    free(p);
1479 	    close(fd);
1480 	    return NULL;
1481 	}
1482 	hints = p;
1483 	close(fd);
1484     }
1485     return hints[0] != '\0' ? hints : NULL;
1486 }
1487 
1488 static void
1489 init_dag(Obj_Entry *root)
1490 {
1491     const Needed_Entry *needed;
1492     const Objlist_Entry *elm;
1493     DoneList donelist;
1494 
1495     if (root->dag_inited)
1496 	return;
1497     donelist_init(&donelist);
1498 
1499     /* Root object belongs to own DAG. */
1500     objlist_push_tail(&root->dldags, root);
1501     objlist_push_tail(&root->dagmembers, root);
1502     donelist_check(&donelist, root);
1503 
1504     /*
1505      * Add dependencies of root object to DAG in breadth order
1506      * by exploiting the fact that each new object get added
1507      * to the tail of the dagmembers list.
1508      */
1509     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1510 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1511 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1512 		continue;
1513 	    objlist_push_tail(&needed->obj->dldags, root);
1514 	    objlist_push_tail(&root->dagmembers, needed->obj);
1515 	}
1516     }
1517     root->dag_inited = true;
1518 }
1519 
1520 /*
1521  * Initialize the dynamic linker.  The argument is the address at which
1522  * the dynamic linker has been mapped into memory.  The primary task of
1523  * this function is to relocate the dynamic linker.
1524  */
1525 static void
1526 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1527 {
1528     Obj_Entry objtmp;	/* Temporary rtld object */
1529     const Elf_Dyn *dyn_rpath;
1530     const Elf_Dyn *dyn_soname;
1531 
1532     /*
1533      * Conjure up an Obj_Entry structure for the dynamic linker.
1534      *
1535      * The "path" member can't be initialized yet because string constants
1536      * cannot yet be accessed. Below we will set it correctly.
1537      */
1538     memset(&objtmp, 0, sizeof(objtmp));
1539     objtmp.path = NULL;
1540     objtmp.rtld = true;
1541     objtmp.mapbase = mapbase;
1542 #ifdef PIC
1543     objtmp.relocbase = mapbase;
1544 #endif
1545     if (RTLD_IS_DYNAMIC()) {
1546 	objtmp.dynamic = rtld_dynamic(&objtmp);
1547 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1548 	assert(objtmp.needed == NULL);
1549 #if !defined(__mips__)
1550 	/* MIPS has a bogus DT_TEXTREL. */
1551 	assert(!objtmp.textrel);
1552 #endif
1553 
1554 	/*
1555 	 * Temporarily put the dynamic linker entry into the object list, so
1556 	 * that symbols can be found.
1557 	 */
1558 
1559 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1560     }
1561 
1562     /* Initialize the object list. */
1563     obj_tail = &obj_list;
1564 
1565     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1566     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1567 
1568     if (aux_info[AT_PAGESZ] != NULL)
1569 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1570     if (aux_info[AT_OSRELDATE] != NULL)
1571 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1572 
1573     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1574 
1575     /* Replace the path with a dynamically allocated copy. */
1576     obj_rtld.path = xstrdup(PATH_RTLD);
1577 
1578     r_debug.r_brk = r_debug_state;
1579     r_debug.r_state = RT_CONSISTENT;
1580 }
1581 
1582 /*
1583  * Add the init functions from a needed object list (and its recursive
1584  * needed objects) to "list".  This is not used directly; it is a helper
1585  * function for initlist_add_objects().  The write lock must be held
1586  * when this function is called.
1587  */
1588 static void
1589 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1590 {
1591     /* Recursively process the successor needed objects. */
1592     if (needed->next != NULL)
1593 	initlist_add_neededs(needed->next, list);
1594 
1595     /* Process the current needed object. */
1596     if (needed->obj != NULL)
1597 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1598 }
1599 
1600 /*
1601  * Scan all of the DAGs rooted in the range of objects from "obj" to
1602  * "tail" and add their init functions to "list".  This recurses over
1603  * the DAGs and ensure the proper init ordering such that each object's
1604  * needed libraries are initialized before the object itself.  At the
1605  * same time, this function adds the objects to the global finalization
1606  * list "list_fini" in the opposite order.  The write lock must be
1607  * held when this function is called.
1608  */
1609 static void
1610 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1611 {
1612 
1613     if (obj->init_scanned || obj->init_done)
1614 	return;
1615     obj->init_scanned = true;
1616 
1617     /* Recursively process the successor objects. */
1618     if (&obj->next != tail)
1619 	initlist_add_objects(obj->next, tail, list);
1620 
1621     /* Recursively process the needed objects. */
1622     if (obj->needed != NULL)
1623 	initlist_add_neededs(obj->needed, list);
1624     if (obj->needed_filtees != NULL)
1625 	initlist_add_neededs(obj->needed_filtees, list);
1626     if (obj->needed_aux_filtees != NULL)
1627 	initlist_add_neededs(obj->needed_aux_filtees, list);
1628 
1629     /* Add the object to the init list. */
1630     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1631       obj->init_array != (Elf_Addr)NULL)
1632 	objlist_push_tail(list, obj);
1633 
1634     /* Add the object to the global fini list in the reverse order. */
1635     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1636       && !obj->on_fini_list) {
1637 	objlist_push_head(&list_fini, obj);
1638 	obj->on_fini_list = true;
1639     }
1640 }
1641 
1642 #ifndef FPTR_TARGET
1643 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1644 #endif
1645 
1646 static void
1647 free_needed_filtees(Needed_Entry *n)
1648 {
1649     Needed_Entry *needed, *needed1;
1650 
1651     for (needed = n; needed != NULL; needed = needed->next) {
1652 	if (needed->obj != NULL) {
1653 	    dlclose(needed->obj);
1654 	    needed->obj = NULL;
1655 	}
1656     }
1657     for (needed = n; needed != NULL; needed = needed1) {
1658 	needed1 = needed->next;
1659 	free(needed);
1660     }
1661 }
1662 
1663 static void
1664 unload_filtees(Obj_Entry *obj)
1665 {
1666 
1667     free_needed_filtees(obj->needed_filtees);
1668     obj->needed_filtees = NULL;
1669     free_needed_filtees(obj->needed_aux_filtees);
1670     obj->needed_aux_filtees = NULL;
1671     obj->filtees_loaded = false;
1672 }
1673 
1674 static void
1675 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1676     RtldLockState *lockstate)
1677 {
1678 
1679     for (; needed != NULL; needed = needed->next) {
1680 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1681 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1682 	  RTLD_LOCAL, lockstate);
1683     }
1684 }
1685 
1686 static void
1687 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1688 {
1689 
1690     lock_restart_for_upgrade(lockstate);
1691     if (!obj->filtees_loaded) {
1692 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1693 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1694 	obj->filtees_loaded = true;
1695     }
1696 }
1697 
1698 static int
1699 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1700 {
1701     Obj_Entry *obj1;
1702 
1703     for (; needed != NULL; needed = needed->next) {
1704 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1705 	  flags & ~RTLD_LO_NOLOAD);
1706 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1707 	    return (-1);
1708 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1709 	    dbg("obj %s nodelete", obj1->path);
1710 	    init_dag(obj1);
1711 	    ref_dag(obj1);
1712 	    obj1->ref_nodel = true;
1713 	}
1714     }
1715     return (0);
1716 }
1717 
1718 /*
1719  * Given a shared object, traverse its list of needed objects, and load
1720  * each of them.  Returns 0 on success.  Generates an error message and
1721  * returns -1 on failure.
1722  */
1723 static int
1724 load_needed_objects(Obj_Entry *first, int flags)
1725 {
1726     Obj_Entry *obj;
1727 
1728     for (obj = first;  obj != NULL;  obj = obj->next) {
1729 	if (process_needed(obj, obj->needed, flags) == -1)
1730 	    return (-1);
1731     }
1732     return (0);
1733 }
1734 
1735 static int
1736 load_preload_objects(void)
1737 {
1738     char *p = ld_preload;
1739     static const char delim[] = " \t:;";
1740 
1741     if (p == NULL)
1742 	return 0;
1743 
1744     p += strspn(p, delim);
1745     while (*p != '\0') {
1746 	size_t len = strcspn(p, delim);
1747 	char savech;
1748 
1749 	savech = p[len];
1750 	p[len] = '\0';
1751 	if (load_object(p, -1, NULL, 0) == NULL)
1752 	    return -1;	/* XXX - cleanup */
1753 	p[len] = savech;
1754 	p += len;
1755 	p += strspn(p, delim);
1756     }
1757     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1758     return 0;
1759 }
1760 
1761 static const char *
1762 printable_path(const char *path)
1763 {
1764 
1765 	return (path == NULL ? "<unknown>" : path);
1766 }
1767 
1768 /*
1769  * Load a shared object into memory, if it is not already loaded.  The
1770  * object may be specified by name or by user-supplied file descriptor
1771  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1772  * duplicate is.
1773  *
1774  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1775  * on failure.
1776  */
1777 static Obj_Entry *
1778 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1779 {
1780     Obj_Entry *obj;
1781     int fd;
1782     struct stat sb;
1783     char *path;
1784 
1785     if (name != NULL) {
1786 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1787 	    if (object_match_name(obj, name))
1788 		return (obj);
1789 	}
1790 
1791 	path = find_library(name, refobj);
1792 	if (path == NULL)
1793 	    return (NULL);
1794     } else
1795 	path = NULL;
1796 
1797     /*
1798      * If we didn't find a match by pathname, or the name is not
1799      * supplied, open the file and check again by device and inode.
1800      * This avoids false mismatches caused by multiple links or ".."
1801      * in pathnames.
1802      *
1803      * To avoid a race, we open the file and use fstat() rather than
1804      * using stat().
1805      */
1806     fd = -1;
1807     if (fd_u == -1) {
1808 	if ((fd = open(path, O_RDONLY)) == -1) {
1809 	    _rtld_error("Cannot open \"%s\"", path);
1810 	    free(path);
1811 	    return (NULL);
1812 	}
1813     } else {
1814 	fd = dup(fd_u);
1815 	if (fd == -1) {
1816 	    _rtld_error("Cannot dup fd");
1817 	    free(path);
1818 	    return (NULL);
1819 	}
1820     }
1821     if (fstat(fd, &sb) == -1) {
1822 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1823 	close(fd);
1824 	free(path);
1825 	return NULL;
1826     }
1827     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1828 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1829 	    break;
1830     if (obj != NULL && name != NULL) {
1831 	object_add_name(obj, name);
1832 	free(path);
1833 	close(fd);
1834 	return obj;
1835     }
1836     if (flags & RTLD_LO_NOLOAD) {
1837 	free(path);
1838 	close(fd);
1839 	return (NULL);
1840     }
1841 
1842     /* First use of this object, so we must map it in */
1843     obj = do_load_object(fd, name, path, &sb, flags);
1844     if (obj == NULL)
1845 	free(path);
1846     close(fd);
1847 
1848     return obj;
1849 }
1850 
1851 static Obj_Entry *
1852 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1853   int flags)
1854 {
1855     Obj_Entry *obj;
1856     struct statfs fs;
1857 
1858     /*
1859      * but first, make sure that environment variables haven't been
1860      * used to circumvent the noexec flag on a filesystem.
1861      */
1862     if (dangerous_ld_env) {
1863 	if (fstatfs(fd, &fs) != 0) {
1864 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1865 	    return NULL;
1866 	}
1867 	if (fs.f_flags & MNT_NOEXEC) {
1868 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1869 	    return NULL;
1870 	}
1871     }
1872     dbg("loading \"%s\"", printable_path(path));
1873     obj = map_object(fd, printable_path(path), sbp);
1874     if (obj == NULL)
1875         return NULL;
1876 
1877     /*
1878      * If DT_SONAME is present in the object, digest_dynamic2 already
1879      * added it to the object names.
1880      */
1881     if (name != NULL)
1882 	object_add_name(obj, name);
1883     obj->path = path;
1884     digest_dynamic(obj, 0);
1885     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1886       RTLD_LO_DLOPEN) {
1887 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1888 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1889 	munmap(obj->mapbase, obj->mapsize);
1890 	obj_free(obj);
1891 	return (NULL);
1892     }
1893 
1894     *obj_tail = obj;
1895     obj_tail = &obj->next;
1896     obj_count++;
1897     obj_loads++;
1898     linkmap_add(obj);	/* for GDB & dlinfo() */
1899     max_stack_flags |= obj->stack_flags;
1900 
1901     dbg("  %p .. %p: %s", obj->mapbase,
1902          obj->mapbase + obj->mapsize - 1, obj->path);
1903     if (obj->textrel)
1904 	dbg("  WARNING: %s has impure text", obj->path);
1905     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1906 	obj->path);
1907 
1908     return obj;
1909 }
1910 
1911 static Obj_Entry *
1912 obj_from_addr(const void *addr)
1913 {
1914     Obj_Entry *obj;
1915 
1916     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1917 	if (addr < (void *) obj->mapbase)
1918 	    continue;
1919 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1920 	    return obj;
1921     }
1922     return NULL;
1923 }
1924 
1925 static void
1926 preinit_main(void)
1927 {
1928     Elf_Addr *preinit_addr;
1929     int index;
1930 
1931     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
1932     if (preinit_addr == NULL)
1933 	return;
1934 
1935     for (index = 0; index < obj_main->preinit_array_num; index++) {
1936 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
1937 	    dbg("calling preinit function for %s at %p", obj_main->path,
1938 	      (void *)preinit_addr[index]);
1939 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
1940 	      0, 0, obj_main->path);
1941 	    call_init_pointer(obj_main, preinit_addr[index]);
1942 	}
1943     }
1944 }
1945 
1946 /*
1947  * Call the finalization functions for each of the objects in "list"
1948  * belonging to the DAG of "root" and referenced once. If NULL "root"
1949  * is specified, every finalization function will be called regardless
1950  * of the reference count and the list elements won't be freed. All of
1951  * the objects are expected to have non-NULL fini functions.
1952  */
1953 static void
1954 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1955 {
1956     Objlist_Entry *elm;
1957     char *saved_msg;
1958     Elf_Addr *fini_addr;
1959     int index;
1960 
1961     assert(root == NULL || root->refcount == 1);
1962 
1963     /*
1964      * Preserve the current error message since a fini function might
1965      * call into the dynamic linker and overwrite it.
1966      */
1967     saved_msg = errmsg_save();
1968     do {
1969 	STAILQ_FOREACH(elm, list, link) {
1970 	    if (root != NULL && (elm->obj->refcount != 1 ||
1971 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1972 		continue;
1973 	    /* Remove object from fini list to prevent recursive invocation. */
1974 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1975 	    /*
1976 	     * XXX: If a dlopen() call references an object while the
1977 	     * fini function is in progress, we might end up trying to
1978 	     * unload the referenced object in dlclose() or the object
1979 	     * won't be unloaded although its fini function has been
1980 	     * called.
1981 	     */
1982 	    lock_release(rtld_bind_lock, lockstate);
1983 
1984 	    /*
1985 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
1986 	     * When this happens, DT_FINI_ARRAY is processed first.
1987 	     */
1988 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
1989 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
1990 		for (index = elm->obj->fini_array_num - 1; index >= 0;
1991 		  index--) {
1992 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
1993 			dbg("calling fini function for %s at %p",
1994 			    elm->obj->path, (void *)fini_addr[index]);
1995 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
1996 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
1997 			call_initfini_pointer(elm->obj, fini_addr[index]);
1998 		    }
1999 		}
2000 	    }
2001 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2002 		dbg("calling fini function for %s at %p", elm->obj->path,
2003 		    (void *)elm->obj->fini);
2004 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2005 		    0, 0, elm->obj->path);
2006 		call_initfini_pointer(elm->obj, elm->obj->fini);
2007 	    }
2008 	    wlock_acquire(rtld_bind_lock, lockstate);
2009 	    /* No need to free anything if process is going down. */
2010 	    if (root != NULL)
2011 	    	free(elm);
2012 	    /*
2013 	     * We must restart the list traversal after every fini call
2014 	     * because a dlclose() call from the fini function or from
2015 	     * another thread might have modified the reference counts.
2016 	     */
2017 	    break;
2018 	}
2019     } while (elm != NULL);
2020     errmsg_restore(saved_msg);
2021 }
2022 
2023 /*
2024  * Call the initialization functions for each of the objects in
2025  * "list".  All of the objects are expected to have non-NULL init
2026  * functions.
2027  */
2028 static void
2029 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2030 {
2031     Objlist_Entry *elm;
2032     Obj_Entry *obj;
2033     char *saved_msg;
2034     Elf_Addr *init_addr;
2035     int index;
2036 
2037     /*
2038      * Clean init_scanned flag so that objects can be rechecked and
2039      * possibly initialized earlier if any of vectors called below
2040      * cause the change by using dlopen.
2041      */
2042     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2043 	obj->init_scanned = false;
2044 
2045     /*
2046      * Preserve the current error message since an init function might
2047      * call into the dynamic linker and overwrite it.
2048      */
2049     saved_msg = errmsg_save();
2050     STAILQ_FOREACH(elm, list, link) {
2051 	if (elm->obj->init_done) /* Initialized early. */
2052 	    continue;
2053 	/*
2054 	 * Race: other thread might try to use this object before current
2055 	 * one completes the initilization. Not much can be done here
2056 	 * without better locking.
2057 	 */
2058 	elm->obj->init_done = true;
2059 	lock_release(rtld_bind_lock, lockstate);
2060 
2061         /*
2062          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2063          * When this happens, DT_INIT is processed first.
2064          */
2065 	if (elm->obj->init != (Elf_Addr)NULL) {
2066 	    dbg("calling init function for %s at %p", elm->obj->path,
2067 	        (void *)elm->obj->init);
2068 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2069 	        0, 0, elm->obj->path);
2070 	    call_initfini_pointer(elm->obj, elm->obj->init);
2071 	}
2072 	init_addr = (Elf_Addr *)elm->obj->init_array;
2073 	if (init_addr != NULL) {
2074 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2075 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2076 		    dbg("calling init function for %s at %p", elm->obj->path,
2077 			(void *)init_addr[index]);
2078 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2079 			(void *)init_addr[index], 0, 0, elm->obj->path);
2080 		    call_init_pointer(elm->obj, init_addr[index]);
2081 		}
2082 	    }
2083 	}
2084 	wlock_acquire(rtld_bind_lock, lockstate);
2085     }
2086     errmsg_restore(saved_msg);
2087 }
2088 
2089 static void
2090 objlist_clear(Objlist *list)
2091 {
2092     Objlist_Entry *elm;
2093 
2094     while (!STAILQ_EMPTY(list)) {
2095 	elm = STAILQ_FIRST(list);
2096 	STAILQ_REMOVE_HEAD(list, link);
2097 	free(elm);
2098     }
2099 }
2100 
2101 static Objlist_Entry *
2102 objlist_find(Objlist *list, const Obj_Entry *obj)
2103 {
2104     Objlist_Entry *elm;
2105 
2106     STAILQ_FOREACH(elm, list, link)
2107 	if (elm->obj == obj)
2108 	    return elm;
2109     return NULL;
2110 }
2111 
2112 static void
2113 objlist_init(Objlist *list)
2114 {
2115     STAILQ_INIT(list);
2116 }
2117 
2118 static void
2119 objlist_push_head(Objlist *list, Obj_Entry *obj)
2120 {
2121     Objlist_Entry *elm;
2122 
2123     elm = NEW(Objlist_Entry);
2124     elm->obj = obj;
2125     STAILQ_INSERT_HEAD(list, elm, link);
2126 }
2127 
2128 static void
2129 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2130 {
2131     Objlist_Entry *elm;
2132 
2133     elm = NEW(Objlist_Entry);
2134     elm->obj = obj;
2135     STAILQ_INSERT_TAIL(list, elm, link);
2136 }
2137 
2138 static void
2139 objlist_remove(Objlist *list, Obj_Entry *obj)
2140 {
2141     Objlist_Entry *elm;
2142 
2143     if ((elm = objlist_find(list, obj)) != NULL) {
2144 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2145 	free(elm);
2146     }
2147 }
2148 
2149 /*
2150  * Relocate newly-loaded shared objects.  The argument is a pointer to
2151  * the Obj_Entry for the first such object.  All objects from the first
2152  * to the end of the list of objects are relocated.  Returns 0 on success,
2153  * or -1 on failure.
2154  */
2155 static int
2156 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2157     int flags, RtldLockState *lockstate)
2158 {
2159     Obj_Entry *obj;
2160 
2161     for (obj = first;  obj != NULL;  obj = obj->next) {
2162 	if (obj->relocated)
2163 	    continue;
2164 	obj->relocated = true;
2165 	if (obj != rtldobj)
2166 	    dbg("relocating \"%s\"", obj->path);
2167 
2168 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2169 	    obj->symtab == NULL || obj->strtab == NULL) {
2170 	    _rtld_error("%s: Shared object has no run-time symbol table",
2171 	      obj->path);
2172 	    return -1;
2173 	}
2174 
2175 	if (obj->textrel) {
2176 	    /* There are relocations to the write-protected text segment. */
2177 	    if (mprotect(obj->mapbase, obj->textsize,
2178 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2179 		_rtld_error("%s: Cannot write-enable text segment: %s",
2180 		  obj->path, rtld_strerror(errno));
2181 		return -1;
2182 	    }
2183 	}
2184 
2185 	/* Process the non-PLT relocations. */
2186 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2187 		return -1;
2188 
2189 	if (obj->textrel) {	/* Re-protected the text segment. */
2190 	    if (mprotect(obj->mapbase, obj->textsize,
2191 	      PROT_READ|PROT_EXEC) == -1) {
2192 		_rtld_error("%s: Cannot write-protect text segment: %s",
2193 		  obj->path, rtld_strerror(errno));
2194 		return -1;
2195 	    }
2196 	}
2197 
2198 
2199 	/* Set the special PLT or GOT entries. */
2200 	init_pltgot(obj);
2201 
2202 	/* Process the PLT relocations. */
2203 	if (reloc_plt(obj) == -1)
2204 	    return -1;
2205 	/* Relocate the jump slots if we are doing immediate binding. */
2206 	if (obj->bind_now || bind_now)
2207 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2208 		return -1;
2209 
2210 	if (obj->relro_size > 0) {
2211 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2212 		_rtld_error("%s: Cannot enforce relro protection: %s",
2213 		  obj->path, rtld_strerror(errno));
2214 		return -1;
2215 	    }
2216 	}
2217 
2218 	/*
2219 	 * Set up the magic number and version in the Obj_Entry.  These
2220 	 * were checked in the crt1.o from the original ElfKit, so we
2221 	 * set them for backward compatibility.
2222 	 */
2223 	obj->magic = RTLD_MAGIC;
2224 	obj->version = RTLD_VERSION;
2225     }
2226 
2227     return (0);
2228 }
2229 
2230 /*
2231  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2232  * referencing STT_GNU_IFUNC symbols is postponed till the other
2233  * relocations are done.  The indirect functions specified as
2234  * ifunc are allowed to call other symbols, so we need to have
2235  * objects relocated before asking for resolution from indirects.
2236  *
2237  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2238  * instead of the usual lazy handling of PLT slots.  It is
2239  * consistent with how GNU does it.
2240  */
2241 static int
2242 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2243     RtldLockState *lockstate)
2244 {
2245 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2246 		return (-1);
2247 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2248 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2249 		return (-1);
2250 	return (0);
2251 }
2252 
2253 static int
2254 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2255     RtldLockState *lockstate)
2256 {
2257 	Obj_Entry *obj;
2258 
2259 	for (obj = first;  obj != NULL;  obj = obj->next) {
2260 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2261 			return (-1);
2262 	}
2263 	return (0);
2264 }
2265 
2266 static int
2267 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2268     RtldLockState *lockstate)
2269 {
2270 	Objlist_Entry *elm;
2271 
2272 	STAILQ_FOREACH(elm, list, link) {
2273 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2274 		    lockstate) == -1)
2275 			return (-1);
2276 	}
2277 	return (0);
2278 }
2279 
2280 /*
2281  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2282  * before the process exits.
2283  */
2284 static void
2285 rtld_exit(void)
2286 {
2287     RtldLockState lockstate;
2288 
2289     wlock_acquire(rtld_bind_lock, &lockstate);
2290     dbg("rtld_exit()");
2291     objlist_call_fini(&list_fini, NULL, &lockstate);
2292     /* No need to remove the items from the list, since we are exiting. */
2293     if (!libmap_disable)
2294         lm_fini();
2295     lock_release(rtld_bind_lock, &lockstate);
2296 }
2297 
2298 static void *
2299 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2300 {
2301 #ifdef COMPAT_32BIT
2302     const char *trans;
2303 #endif
2304     if (path == NULL)
2305 	return (NULL);
2306 
2307     path += strspn(path, ":;");
2308     while (*path != '\0') {
2309 	size_t len;
2310 	char  *res;
2311 
2312 	len = strcspn(path, ":;");
2313 #ifdef COMPAT_32BIT
2314 	trans = lm_findn(NULL, path, len);
2315 	if (trans)
2316 	    res = callback(trans, strlen(trans), arg);
2317 	else
2318 #endif
2319 	res = callback(path, len, arg);
2320 
2321 	if (res != NULL)
2322 	    return (res);
2323 
2324 	path += len;
2325 	path += strspn(path, ":;");
2326     }
2327 
2328     return (NULL);
2329 }
2330 
2331 struct try_library_args {
2332     const char	*name;
2333     size_t	 namelen;
2334     char	*buffer;
2335     size_t	 buflen;
2336 };
2337 
2338 static void *
2339 try_library_path(const char *dir, size_t dirlen, void *param)
2340 {
2341     struct try_library_args *arg;
2342 
2343     arg = param;
2344     if (*dir == '/' || trust) {
2345 	char *pathname;
2346 
2347 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2348 		return (NULL);
2349 
2350 	pathname = arg->buffer;
2351 	strncpy(pathname, dir, dirlen);
2352 	pathname[dirlen] = '/';
2353 	strcpy(pathname + dirlen + 1, arg->name);
2354 
2355 	dbg("  Trying \"%s\"", pathname);
2356 	if (access(pathname, F_OK) == 0) {		/* We found it */
2357 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2358 	    strcpy(pathname, arg->buffer);
2359 	    return (pathname);
2360 	}
2361     }
2362     return (NULL);
2363 }
2364 
2365 static char *
2366 search_library_path(const char *name, const char *path)
2367 {
2368     char *p;
2369     struct try_library_args arg;
2370 
2371     if (path == NULL)
2372 	return NULL;
2373 
2374     arg.name = name;
2375     arg.namelen = strlen(name);
2376     arg.buffer = xmalloc(PATH_MAX);
2377     arg.buflen = PATH_MAX;
2378 
2379     p = path_enumerate(path, try_library_path, &arg);
2380 
2381     free(arg.buffer);
2382 
2383     return (p);
2384 }
2385 
2386 int
2387 dlclose(void *handle)
2388 {
2389     Obj_Entry *root;
2390     RtldLockState lockstate;
2391 
2392     wlock_acquire(rtld_bind_lock, &lockstate);
2393     root = dlcheck(handle);
2394     if (root == NULL) {
2395 	lock_release(rtld_bind_lock, &lockstate);
2396 	return -1;
2397     }
2398     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2399 	root->path);
2400 
2401     /* Unreference the object and its dependencies. */
2402     root->dl_refcount--;
2403 
2404     if (root->refcount == 1) {
2405 	/*
2406 	 * The object will be no longer referenced, so we must unload it.
2407 	 * First, call the fini functions.
2408 	 */
2409 	objlist_call_fini(&list_fini, root, &lockstate);
2410 
2411 	unref_dag(root);
2412 
2413 	/* Finish cleaning up the newly-unreferenced objects. */
2414 	GDB_STATE(RT_DELETE,&root->linkmap);
2415 	unload_object(root);
2416 	GDB_STATE(RT_CONSISTENT,NULL);
2417     } else
2418 	unref_dag(root);
2419 
2420     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2421     lock_release(rtld_bind_lock, &lockstate);
2422     return 0;
2423 }
2424 
2425 char *
2426 dlerror(void)
2427 {
2428     char *msg = error_message;
2429     error_message = NULL;
2430     return msg;
2431 }
2432 
2433 /*
2434  * This function is deprecated and has no effect.
2435  */
2436 void
2437 dllockinit(void *context,
2438 	   void *(*lock_create)(void *context),
2439            void (*rlock_acquire)(void *lock),
2440            void (*wlock_acquire)(void *lock),
2441            void (*lock_release)(void *lock),
2442            void (*lock_destroy)(void *lock),
2443 	   void (*context_destroy)(void *context))
2444 {
2445     static void *cur_context;
2446     static void (*cur_context_destroy)(void *);
2447 
2448     /* Just destroy the context from the previous call, if necessary. */
2449     if (cur_context_destroy != NULL)
2450 	cur_context_destroy(cur_context);
2451     cur_context = context;
2452     cur_context_destroy = context_destroy;
2453 }
2454 
2455 void *
2456 dlopen(const char *name, int mode)
2457 {
2458 
2459 	return (rtld_dlopen(name, -1, mode));
2460 }
2461 
2462 void *
2463 fdlopen(int fd, int mode)
2464 {
2465 
2466 	return (rtld_dlopen(NULL, fd, mode));
2467 }
2468 
2469 static void *
2470 rtld_dlopen(const char *name, int fd, int mode)
2471 {
2472     RtldLockState lockstate;
2473     int lo_flags;
2474 
2475     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2476     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2477     if (ld_tracing != NULL) {
2478 	rlock_acquire(rtld_bind_lock, &lockstate);
2479 	if (sigsetjmp(lockstate.env, 0) != 0)
2480 	    lock_upgrade(rtld_bind_lock, &lockstate);
2481 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2482 	lock_release(rtld_bind_lock, &lockstate);
2483     }
2484     lo_flags = RTLD_LO_DLOPEN;
2485     if (mode & RTLD_NODELETE)
2486 	    lo_flags |= RTLD_LO_NODELETE;
2487     if (mode & RTLD_NOLOAD)
2488 	    lo_flags |= RTLD_LO_NOLOAD;
2489     if (ld_tracing != NULL)
2490 	    lo_flags |= RTLD_LO_TRACE;
2491 
2492     return (dlopen_object(name, fd, obj_main, lo_flags,
2493       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2494 }
2495 
2496 static void
2497 dlopen_cleanup(Obj_Entry *obj)
2498 {
2499 
2500 	obj->dl_refcount--;
2501 	unref_dag(obj);
2502 	if (obj->refcount == 0)
2503 		unload_object(obj);
2504 }
2505 
2506 static Obj_Entry *
2507 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2508     int mode, RtldLockState *lockstate)
2509 {
2510     Obj_Entry **old_obj_tail;
2511     Obj_Entry *obj;
2512     Objlist initlist;
2513     RtldLockState mlockstate;
2514     int result;
2515 
2516     objlist_init(&initlist);
2517 
2518     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2519 	wlock_acquire(rtld_bind_lock, &mlockstate);
2520 	lockstate = &mlockstate;
2521     }
2522     GDB_STATE(RT_ADD,NULL);
2523 
2524     old_obj_tail = obj_tail;
2525     obj = NULL;
2526     if (name == NULL && fd == -1) {
2527 	obj = obj_main;
2528 	obj->refcount++;
2529     } else {
2530 	obj = load_object(name, fd, refobj, lo_flags);
2531     }
2532 
2533     if (obj) {
2534 	obj->dl_refcount++;
2535 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2536 	    objlist_push_tail(&list_global, obj);
2537 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2538 	    assert(*old_obj_tail == obj);
2539 	    result = load_needed_objects(obj,
2540 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2541 	    init_dag(obj);
2542 	    ref_dag(obj);
2543 	    if (result != -1)
2544 		result = rtld_verify_versions(&obj->dagmembers);
2545 	    if (result != -1 && ld_tracing)
2546 		goto trace;
2547 	    if (result == -1 || (relocate_objects(obj,
2548 	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2549 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2550 	      lockstate)) == -1) {
2551 		dlopen_cleanup(obj);
2552 		obj = NULL;
2553 	    } else if (lo_flags & RTLD_LO_EARLY) {
2554 		/*
2555 		 * Do not call the init functions for early loaded
2556 		 * filtees.  The image is still not initialized enough
2557 		 * for them to work.
2558 		 *
2559 		 * Our object is found by the global object list and
2560 		 * will be ordered among all init calls done right
2561 		 * before transferring control to main.
2562 		 */
2563 	    } else {
2564 		/* Make list of init functions to call. */
2565 		initlist_add_objects(obj, &obj->next, &initlist);
2566 	    }
2567 	} else {
2568 
2569 	    /*
2570 	     * Bump the reference counts for objects on this DAG.  If
2571 	     * this is the first dlopen() call for the object that was
2572 	     * already loaded as a dependency, initialize the dag
2573 	     * starting at it.
2574 	     */
2575 	    init_dag(obj);
2576 	    ref_dag(obj);
2577 
2578 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2579 		goto trace;
2580 	}
2581 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2582 	  obj->z_nodelete) && !obj->ref_nodel) {
2583 	    dbg("obj %s nodelete", obj->path);
2584 	    ref_dag(obj);
2585 	    obj->z_nodelete = obj->ref_nodel = true;
2586 	}
2587     }
2588 
2589     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2590 	name);
2591     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2592 
2593     if (!(lo_flags & RTLD_LO_EARLY)) {
2594 	map_stacks_exec(lockstate);
2595     }
2596 
2597     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2598       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2599       lockstate) == -1) {
2600 	objlist_clear(&initlist);
2601 	dlopen_cleanup(obj);
2602 	if (lockstate == &mlockstate)
2603 	    lock_release(rtld_bind_lock, lockstate);
2604 	return (NULL);
2605     }
2606 
2607     if (!(lo_flags & RTLD_LO_EARLY)) {
2608 	/* Call the init functions. */
2609 	objlist_call_init(&initlist, lockstate);
2610     }
2611     objlist_clear(&initlist);
2612     if (lockstate == &mlockstate)
2613 	lock_release(rtld_bind_lock, lockstate);
2614     return obj;
2615 trace:
2616     trace_loaded_objects(obj);
2617     if (lockstate == &mlockstate)
2618 	lock_release(rtld_bind_lock, lockstate);
2619     exit(0);
2620 }
2621 
2622 static void *
2623 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2624     int flags)
2625 {
2626     DoneList donelist;
2627     const Obj_Entry *obj, *defobj;
2628     const Elf_Sym *def;
2629     SymLook req;
2630     RtldLockState lockstate;
2631 #ifndef __ia64__
2632     tls_index ti;
2633 #endif
2634     int res;
2635 
2636     def = NULL;
2637     defobj = NULL;
2638     symlook_init(&req, name);
2639     req.ventry = ve;
2640     req.flags = flags | SYMLOOK_IN_PLT;
2641     req.lockstate = &lockstate;
2642 
2643     rlock_acquire(rtld_bind_lock, &lockstate);
2644     if (sigsetjmp(lockstate.env, 0) != 0)
2645 	    lock_upgrade(rtld_bind_lock, &lockstate);
2646     if (handle == NULL || handle == RTLD_NEXT ||
2647 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2648 
2649 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2650 	    _rtld_error("Cannot determine caller's shared object");
2651 	    lock_release(rtld_bind_lock, &lockstate);
2652 	    return NULL;
2653 	}
2654 	if (handle == NULL) {	/* Just the caller's shared object. */
2655 	    res = symlook_obj(&req, obj);
2656 	    if (res == 0) {
2657 		def = req.sym_out;
2658 		defobj = req.defobj_out;
2659 	    }
2660 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2661 		   handle == RTLD_SELF) { /* ... caller included */
2662 	    if (handle == RTLD_NEXT)
2663 		obj = obj->next;
2664 	    for (; obj != NULL; obj = obj->next) {
2665 		res = symlook_obj(&req, obj);
2666 		if (res == 0) {
2667 		    if (def == NULL ||
2668 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2669 			def = req.sym_out;
2670 			defobj = req.defobj_out;
2671 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2672 			    break;
2673 		    }
2674 		}
2675 	    }
2676 	    /*
2677 	     * Search the dynamic linker itself, and possibly resolve the
2678 	     * symbol from there.  This is how the application links to
2679 	     * dynamic linker services such as dlopen.
2680 	     */
2681 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2682 		res = symlook_obj(&req, &obj_rtld);
2683 		if (res == 0) {
2684 		    def = req.sym_out;
2685 		    defobj = req.defobj_out;
2686 		}
2687 	    }
2688 	} else {
2689 	    assert(handle == RTLD_DEFAULT);
2690 	    res = symlook_default(&req, obj);
2691 	    if (res == 0) {
2692 		defobj = req.defobj_out;
2693 		def = req.sym_out;
2694 	    }
2695 	}
2696     } else {
2697 	if ((obj = dlcheck(handle)) == NULL) {
2698 	    lock_release(rtld_bind_lock, &lockstate);
2699 	    return NULL;
2700 	}
2701 
2702 	donelist_init(&donelist);
2703 	if (obj->mainprog) {
2704             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2705 	    res = symlook_global(&req, &donelist);
2706 	    if (res == 0) {
2707 		def = req.sym_out;
2708 		defobj = req.defobj_out;
2709 	    }
2710 	    /*
2711 	     * Search the dynamic linker itself, and possibly resolve the
2712 	     * symbol from there.  This is how the application links to
2713 	     * dynamic linker services such as dlopen.
2714 	     */
2715 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2716 		res = symlook_obj(&req, &obj_rtld);
2717 		if (res == 0) {
2718 		    def = req.sym_out;
2719 		    defobj = req.defobj_out;
2720 		}
2721 	    }
2722 	}
2723 	else {
2724 	    /* Search the whole DAG rooted at the given object. */
2725 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2726 	    if (res == 0) {
2727 		def = req.sym_out;
2728 		defobj = req.defobj_out;
2729 	    }
2730 	}
2731     }
2732 
2733     if (def != NULL) {
2734 	lock_release(rtld_bind_lock, &lockstate);
2735 
2736 	/*
2737 	 * The value required by the caller is derived from the value
2738 	 * of the symbol. For the ia64 architecture, we need to
2739 	 * construct a function descriptor which the caller can use to
2740 	 * call the function with the right 'gp' value. For other
2741 	 * architectures and for non-functions, the value is simply
2742 	 * the relocated value of the symbol.
2743 	 */
2744 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2745 	    return (make_function_pointer(def, defobj));
2746 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2747 	    return (rtld_resolve_ifunc(defobj, def));
2748 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2749 #ifdef __ia64__
2750 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
2751 #else
2752 	    ti.ti_module = defobj->tlsindex;
2753 	    ti.ti_offset = def->st_value;
2754 	    return (__tls_get_addr(&ti));
2755 #endif
2756 	} else
2757 	    return (defobj->relocbase + def->st_value);
2758     }
2759 
2760     _rtld_error("Undefined symbol \"%s\"", name);
2761     lock_release(rtld_bind_lock, &lockstate);
2762     return NULL;
2763 }
2764 
2765 void *
2766 dlsym(void *handle, const char *name)
2767 {
2768 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2769 	    SYMLOOK_DLSYM);
2770 }
2771 
2772 dlfunc_t
2773 dlfunc(void *handle, const char *name)
2774 {
2775 	union {
2776 		void *d;
2777 		dlfunc_t f;
2778 	} rv;
2779 
2780 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2781 	    SYMLOOK_DLSYM);
2782 	return (rv.f);
2783 }
2784 
2785 void *
2786 dlvsym(void *handle, const char *name, const char *version)
2787 {
2788 	Ver_Entry ventry;
2789 
2790 	ventry.name = version;
2791 	ventry.file = NULL;
2792 	ventry.hash = elf_hash(version);
2793 	ventry.flags= 0;
2794 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2795 	    SYMLOOK_DLSYM);
2796 }
2797 
2798 int
2799 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2800 {
2801     const Obj_Entry *obj;
2802     RtldLockState lockstate;
2803 
2804     rlock_acquire(rtld_bind_lock, &lockstate);
2805     obj = obj_from_addr(addr);
2806     if (obj == NULL) {
2807         _rtld_error("No shared object contains address");
2808 	lock_release(rtld_bind_lock, &lockstate);
2809         return (0);
2810     }
2811     rtld_fill_dl_phdr_info(obj, phdr_info);
2812     lock_release(rtld_bind_lock, &lockstate);
2813     return (1);
2814 }
2815 
2816 int
2817 dladdr(const void *addr, Dl_info *info)
2818 {
2819     const Obj_Entry *obj;
2820     const Elf_Sym *def;
2821     void *symbol_addr;
2822     unsigned long symoffset;
2823     RtldLockState lockstate;
2824 
2825     rlock_acquire(rtld_bind_lock, &lockstate);
2826     obj = obj_from_addr(addr);
2827     if (obj == NULL) {
2828         _rtld_error("No shared object contains address");
2829 	lock_release(rtld_bind_lock, &lockstate);
2830         return 0;
2831     }
2832     info->dli_fname = obj->path;
2833     info->dli_fbase = obj->mapbase;
2834     info->dli_saddr = (void *)0;
2835     info->dli_sname = NULL;
2836 
2837     /*
2838      * Walk the symbol list looking for the symbol whose address is
2839      * closest to the address sent in.
2840      */
2841     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2842         def = obj->symtab + symoffset;
2843 
2844         /*
2845          * For skip the symbol if st_shndx is either SHN_UNDEF or
2846          * SHN_COMMON.
2847          */
2848         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2849             continue;
2850 
2851         /*
2852          * If the symbol is greater than the specified address, or if it
2853          * is further away from addr than the current nearest symbol,
2854          * then reject it.
2855          */
2856         symbol_addr = obj->relocbase + def->st_value;
2857         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2858             continue;
2859 
2860         /* Update our idea of the nearest symbol. */
2861         info->dli_sname = obj->strtab + def->st_name;
2862         info->dli_saddr = symbol_addr;
2863 
2864         /* Exact match? */
2865         if (info->dli_saddr == addr)
2866             break;
2867     }
2868     lock_release(rtld_bind_lock, &lockstate);
2869     return 1;
2870 }
2871 
2872 int
2873 dlinfo(void *handle, int request, void *p)
2874 {
2875     const Obj_Entry *obj;
2876     RtldLockState lockstate;
2877     int error;
2878 
2879     rlock_acquire(rtld_bind_lock, &lockstate);
2880 
2881     if (handle == NULL || handle == RTLD_SELF) {
2882 	void *retaddr;
2883 
2884 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2885 	if ((obj = obj_from_addr(retaddr)) == NULL)
2886 	    _rtld_error("Cannot determine caller's shared object");
2887     } else
2888 	obj = dlcheck(handle);
2889 
2890     if (obj == NULL) {
2891 	lock_release(rtld_bind_lock, &lockstate);
2892 	return (-1);
2893     }
2894 
2895     error = 0;
2896     switch (request) {
2897     case RTLD_DI_LINKMAP:
2898 	*((struct link_map const **)p) = &obj->linkmap;
2899 	break;
2900     case RTLD_DI_ORIGIN:
2901 	error = rtld_dirname(obj->path, p);
2902 	break;
2903 
2904     case RTLD_DI_SERINFOSIZE:
2905     case RTLD_DI_SERINFO:
2906 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2907 	break;
2908 
2909     default:
2910 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2911 	error = -1;
2912     }
2913 
2914     lock_release(rtld_bind_lock, &lockstate);
2915 
2916     return (error);
2917 }
2918 
2919 static void
2920 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2921 {
2922 
2923 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2924 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2925 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2926 	phdr_info->dlpi_phdr = obj->phdr;
2927 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2928 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2929 	phdr_info->dlpi_tls_data = obj->tlsinit;
2930 	phdr_info->dlpi_adds = obj_loads;
2931 	phdr_info->dlpi_subs = obj_loads - obj_count;
2932 }
2933 
2934 int
2935 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2936 {
2937     struct dl_phdr_info phdr_info;
2938     const Obj_Entry *obj;
2939     RtldLockState bind_lockstate, phdr_lockstate;
2940     int error;
2941 
2942     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2943     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2944 
2945     error = 0;
2946 
2947     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2948 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2949 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2950 		break;
2951 
2952     }
2953     lock_release(rtld_bind_lock, &bind_lockstate);
2954     lock_release(rtld_phdr_lock, &phdr_lockstate);
2955 
2956     return (error);
2957 }
2958 
2959 struct fill_search_info_args {
2960     int		 request;
2961     unsigned int flags;
2962     Dl_serinfo  *serinfo;
2963     Dl_serpath  *serpath;
2964     char	*strspace;
2965 };
2966 
2967 static void *
2968 fill_search_info(const char *dir, size_t dirlen, void *param)
2969 {
2970     struct fill_search_info_args *arg;
2971 
2972     arg = param;
2973 
2974     if (arg->request == RTLD_DI_SERINFOSIZE) {
2975 	arg->serinfo->dls_cnt ++;
2976 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2977     } else {
2978 	struct dl_serpath *s_entry;
2979 
2980 	s_entry = arg->serpath;
2981 	s_entry->dls_name  = arg->strspace;
2982 	s_entry->dls_flags = arg->flags;
2983 
2984 	strncpy(arg->strspace, dir, dirlen);
2985 	arg->strspace[dirlen] = '\0';
2986 
2987 	arg->strspace += dirlen + 1;
2988 	arg->serpath++;
2989     }
2990 
2991     return (NULL);
2992 }
2993 
2994 static int
2995 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2996 {
2997     struct dl_serinfo _info;
2998     struct fill_search_info_args args;
2999 
3000     args.request = RTLD_DI_SERINFOSIZE;
3001     args.serinfo = &_info;
3002 
3003     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3004     _info.dls_cnt  = 0;
3005 
3006     path_enumerate(ld_library_path, fill_search_info, &args);
3007     path_enumerate(obj->rpath, fill_search_info, &args);
3008     path_enumerate(gethints(), fill_search_info, &args);
3009     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3010 
3011 
3012     if (request == RTLD_DI_SERINFOSIZE) {
3013 	info->dls_size = _info.dls_size;
3014 	info->dls_cnt = _info.dls_cnt;
3015 	return (0);
3016     }
3017 
3018     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3019 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3020 	return (-1);
3021     }
3022 
3023     args.request  = RTLD_DI_SERINFO;
3024     args.serinfo  = info;
3025     args.serpath  = &info->dls_serpath[0];
3026     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3027 
3028     args.flags = LA_SER_LIBPATH;
3029     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3030 	return (-1);
3031 
3032     args.flags = LA_SER_RUNPATH;
3033     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3034 	return (-1);
3035 
3036     args.flags = LA_SER_CONFIG;
3037     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3038 	return (-1);
3039 
3040     args.flags = LA_SER_DEFAULT;
3041     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3042 	return (-1);
3043     return (0);
3044 }
3045 
3046 static int
3047 rtld_dirname(const char *path, char *bname)
3048 {
3049     const char *endp;
3050 
3051     /* Empty or NULL string gets treated as "." */
3052     if (path == NULL || *path == '\0') {
3053 	bname[0] = '.';
3054 	bname[1] = '\0';
3055 	return (0);
3056     }
3057 
3058     /* Strip trailing slashes */
3059     endp = path + strlen(path) - 1;
3060     while (endp > path && *endp == '/')
3061 	endp--;
3062 
3063     /* Find the start of the dir */
3064     while (endp > path && *endp != '/')
3065 	endp--;
3066 
3067     /* Either the dir is "/" or there are no slashes */
3068     if (endp == path) {
3069 	bname[0] = *endp == '/' ? '/' : '.';
3070 	bname[1] = '\0';
3071 	return (0);
3072     } else {
3073 	do {
3074 	    endp--;
3075 	} while (endp > path && *endp == '/');
3076     }
3077 
3078     if (endp - path + 2 > PATH_MAX)
3079     {
3080 	_rtld_error("Filename is too long: %s", path);
3081 	return(-1);
3082     }
3083 
3084     strncpy(bname, path, endp - path + 1);
3085     bname[endp - path + 1] = '\0';
3086     return (0);
3087 }
3088 
3089 static int
3090 rtld_dirname_abs(const char *path, char *base)
3091 {
3092 	char base_rel[PATH_MAX];
3093 
3094 	if (rtld_dirname(path, base) == -1)
3095 		return (-1);
3096 	if (base[0] == '/')
3097 		return (0);
3098 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3099 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3100 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3101 		return (-1);
3102 	strcpy(base, base_rel);
3103 	return (0);
3104 }
3105 
3106 static void
3107 linkmap_add(Obj_Entry *obj)
3108 {
3109     struct link_map *l = &obj->linkmap;
3110     struct link_map *prev;
3111 
3112     obj->linkmap.l_name = obj->path;
3113     obj->linkmap.l_addr = obj->mapbase;
3114     obj->linkmap.l_ld = obj->dynamic;
3115 #ifdef __mips__
3116     /* GDB needs load offset on MIPS to use the symbols */
3117     obj->linkmap.l_offs = obj->relocbase;
3118 #endif
3119 
3120     if (r_debug.r_map == NULL) {
3121 	r_debug.r_map = l;
3122 	return;
3123     }
3124 
3125     /*
3126      * Scan to the end of the list, but not past the entry for the
3127      * dynamic linker, which we want to keep at the very end.
3128      */
3129     for (prev = r_debug.r_map;
3130       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3131       prev = prev->l_next)
3132 	;
3133 
3134     /* Link in the new entry. */
3135     l->l_prev = prev;
3136     l->l_next = prev->l_next;
3137     if (l->l_next != NULL)
3138 	l->l_next->l_prev = l;
3139     prev->l_next = l;
3140 }
3141 
3142 static void
3143 linkmap_delete(Obj_Entry *obj)
3144 {
3145     struct link_map *l = &obj->linkmap;
3146 
3147     if (l->l_prev == NULL) {
3148 	if ((r_debug.r_map = l->l_next) != NULL)
3149 	    l->l_next->l_prev = NULL;
3150 	return;
3151     }
3152 
3153     if ((l->l_prev->l_next = l->l_next) != NULL)
3154 	l->l_next->l_prev = l->l_prev;
3155 }
3156 
3157 /*
3158  * Function for the debugger to set a breakpoint on to gain control.
3159  *
3160  * The two parameters allow the debugger to easily find and determine
3161  * what the runtime loader is doing and to whom it is doing it.
3162  *
3163  * When the loadhook trap is hit (r_debug_state, set at program
3164  * initialization), the arguments can be found on the stack:
3165  *
3166  *  +8   struct link_map *m
3167  *  +4   struct r_debug  *rd
3168  *  +0   RetAddr
3169  */
3170 void
3171 r_debug_state(struct r_debug* rd, struct link_map *m)
3172 {
3173     /*
3174      * The following is a hack to force the compiler to emit calls to
3175      * this function, even when optimizing.  If the function is empty,
3176      * the compiler is not obliged to emit any code for calls to it,
3177      * even when marked __noinline.  However, gdb depends on those
3178      * calls being made.
3179      */
3180     __asm __volatile("" : : : "memory");
3181 }
3182 
3183 /*
3184  * Get address of the pointer variable in the main program.
3185  * Prefer non-weak symbol over the weak one.
3186  */
3187 static const void **
3188 get_program_var_addr(const char *name, RtldLockState *lockstate)
3189 {
3190     SymLook req;
3191     DoneList donelist;
3192 
3193     symlook_init(&req, name);
3194     req.lockstate = lockstate;
3195     donelist_init(&donelist);
3196     if (symlook_global(&req, &donelist) != 0)
3197 	return (NULL);
3198     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3199 	return ((const void **)make_function_pointer(req.sym_out,
3200 	  req.defobj_out));
3201     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3202 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3203     else
3204 	return ((const void **)(req.defobj_out->relocbase +
3205 	  req.sym_out->st_value));
3206 }
3207 
3208 /*
3209  * Set a pointer variable in the main program to the given value.  This
3210  * is used to set key variables such as "environ" before any of the
3211  * init functions are called.
3212  */
3213 static void
3214 set_program_var(const char *name, const void *value)
3215 {
3216     const void **addr;
3217 
3218     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3219 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3220 	*addr = value;
3221     }
3222 }
3223 
3224 /*
3225  * Search the global objects, including dependencies and main object,
3226  * for the given symbol.
3227  */
3228 static int
3229 symlook_global(SymLook *req, DoneList *donelist)
3230 {
3231     SymLook req1;
3232     const Objlist_Entry *elm;
3233     int res;
3234 
3235     symlook_init_from_req(&req1, req);
3236 
3237     /* Search all objects loaded at program start up. */
3238     if (req->defobj_out == NULL ||
3239       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3240 	res = symlook_list(&req1, &list_main, donelist);
3241 	if (res == 0 && (req->defobj_out == NULL ||
3242 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3243 	    req->sym_out = req1.sym_out;
3244 	    req->defobj_out = req1.defobj_out;
3245 	    assert(req->defobj_out != NULL);
3246 	}
3247     }
3248 
3249     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3250     STAILQ_FOREACH(elm, &list_global, link) {
3251 	if (req->defobj_out != NULL &&
3252 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3253 	    break;
3254 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3255 	if (res == 0 && (req->defobj_out == NULL ||
3256 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3257 	    req->sym_out = req1.sym_out;
3258 	    req->defobj_out = req1.defobj_out;
3259 	    assert(req->defobj_out != NULL);
3260 	}
3261     }
3262 
3263     return (req->sym_out != NULL ? 0 : ESRCH);
3264 }
3265 
3266 /*
3267  * Given a symbol name in a referencing object, find the corresponding
3268  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3269  * no definition was found.  Returns a pointer to the Obj_Entry of the
3270  * defining object via the reference parameter DEFOBJ_OUT.
3271  */
3272 static int
3273 symlook_default(SymLook *req, const Obj_Entry *refobj)
3274 {
3275     DoneList donelist;
3276     const Objlist_Entry *elm;
3277     SymLook req1;
3278     int res;
3279 
3280     donelist_init(&donelist);
3281     symlook_init_from_req(&req1, req);
3282 
3283     /* Look first in the referencing object if linked symbolically. */
3284     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3285 	res = symlook_obj(&req1, refobj);
3286 	if (res == 0) {
3287 	    req->sym_out = req1.sym_out;
3288 	    req->defobj_out = req1.defobj_out;
3289 	    assert(req->defobj_out != NULL);
3290 	}
3291     }
3292 
3293     symlook_global(req, &donelist);
3294 
3295     /* Search all dlopened DAGs containing the referencing object. */
3296     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3297 	if (req->sym_out != NULL &&
3298 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3299 	    break;
3300 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3301 	if (res == 0 && (req->sym_out == NULL ||
3302 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3303 	    req->sym_out = req1.sym_out;
3304 	    req->defobj_out = req1.defobj_out;
3305 	    assert(req->defobj_out != NULL);
3306 	}
3307     }
3308 
3309     /*
3310      * Search the dynamic linker itself, and possibly resolve the
3311      * symbol from there.  This is how the application links to
3312      * dynamic linker services such as dlopen.
3313      */
3314     if (req->sym_out == NULL ||
3315       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3316 	res = symlook_obj(&req1, &obj_rtld);
3317 	if (res == 0) {
3318 	    req->sym_out = req1.sym_out;
3319 	    req->defobj_out = req1.defobj_out;
3320 	    assert(req->defobj_out != NULL);
3321 	}
3322     }
3323 
3324     return (req->sym_out != NULL ? 0 : ESRCH);
3325 }
3326 
3327 static int
3328 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3329 {
3330     const Elf_Sym *def;
3331     const Obj_Entry *defobj;
3332     const Objlist_Entry *elm;
3333     SymLook req1;
3334     int res;
3335 
3336     def = NULL;
3337     defobj = NULL;
3338     STAILQ_FOREACH(elm, objlist, link) {
3339 	if (donelist_check(dlp, elm->obj))
3340 	    continue;
3341 	symlook_init_from_req(&req1, req);
3342 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3343 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3344 		def = req1.sym_out;
3345 		defobj = req1.defobj_out;
3346 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3347 		    break;
3348 	    }
3349 	}
3350     }
3351     if (def != NULL) {
3352 	req->sym_out = def;
3353 	req->defobj_out = defobj;
3354 	return (0);
3355     }
3356     return (ESRCH);
3357 }
3358 
3359 /*
3360  * Search the chain of DAGS cointed to by the given Needed_Entry
3361  * for a symbol of the given name.  Each DAG is scanned completely
3362  * before advancing to the next one.  Returns a pointer to the symbol,
3363  * or NULL if no definition was found.
3364  */
3365 static int
3366 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3367 {
3368     const Elf_Sym *def;
3369     const Needed_Entry *n;
3370     const Obj_Entry *defobj;
3371     SymLook req1;
3372     int res;
3373 
3374     def = NULL;
3375     defobj = NULL;
3376     symlook_init_from_req(&req1, req);
3377     for (n = needed; n != NULL; n = n->next) {
3378 	if (n->obj == NULL ||
3379 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3380 	    continue;
3381 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3382 	    def = req1.sym_out;
3383 	    defobj = req1.defobj_out;
3384 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3385 		break;
3386 	}
3387     }
3388     if (def != NULL) {
3389 	req->sym_out = def;
3390 	req->defobj_out = defobj;
3391 	return (0);
3392     }
3393     return (ESRCH);
3394 }
3395 
3396 /*
3397  * Search the symbol table of a single shared object for a symbol of
3398  * the given name and version, if requested.  Returns a pointer to the
3399  * symbol, or NULL if no definition was found.  If the object is
3400  * filter, return filtered symbol from filtee.
3401  *
3402  * The symbol's hash value is passed in for efficiency reasons; that
3403  * eliminates many recomputations of the hash value.
3404  */
3405 int
3406 symlook_obj(SymLook *req, const Obj_Entry *obj)
3407 {
3408     DoneList donelist;
3409     SymLook req1;
3410     int flags, res, mres;
3411 
3412     mres = symlook_obj1(req, obj);
3413     if (mres == 0) {
3414 	if (obj->needed_filtees != NULL) {
3415 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3416 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3417 	    donelist_init(&donelist);
3418 	    symlook_init_from_req(&req1, req);
3419 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3420 	    if (res == 0) {
3421 		req->sym_out = req1.sym_out;
3422 		req->defobj_out = req1.defobj_out;
3423 	    }
3424 	    return (res);
3425 	}
3426 	if (obj->needed_aux_filtees != NULL) {
3427 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3428 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3429 	    donelist_init(&donelist);
3430 	    symlook_init_from_req(&req1, req);
3431 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3432 	    if (res == 0) {
3433 		req->sym_out = req1.sym_out;
3434 		req->defobj_out = req1.defobj_out;
3435 		return (res);
3436 	    }
3437 	}
3438     }
3439     return (mres);
3440 }
3441 
3442 static int
3443 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3444 {
3445     unsigned long symnum;
3446     const Elf_Sym *vsymp;
3447     Elf_Versym verndx;
3448     int vcount;
3449 
3450     if (obj->buckets == NULL)
3451 	return (ESRCH);
3452 
3453     vsymp = NULL;
3454     vcount = 0;
3455     symnum = obj->buckets[req->hash % obj->nbuckets];
3456 
3457     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3458 	const Elf_Sym *symp;
3459 	const char *strp;
3460 
3461 	if (symnum >= obj->nchains)
3462 	    return (ESRCH);	/* Bad object */
3463 
3464 	symp = obj->symtab + symnum;
3465 	strp = obj->strtab + symp->st_name;
3466 
3467 	switch (ELF_ST_TYPE(symp->st_info)) {
3468 	case STT_FUNC:
3469 	case STT_NOTYPE:
3470 	case STT_OBJECT:
3471 	case STT_GNU_IFUNC:
3472 	    if (symp->st_value == 0)
3473 		continue;
3474 		/* fallthrough */
3475 	case STT_TLS:
3476 	    if (symp->st_shndx != SHN_UNDEF)
3477 		break;
3478 #ifndef __mips__
3479 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3480 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3481 		break;
3482 		/* fallthrough */
3483 #endif
3484 	default:
3485 	    continue;
3486 	}
3487 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3488 	    continue;
3489 
3490 	if (req->ventry == NULL) {
3491 	    if (obj->versyms != NULL) {
3492 		verndx = VER_NDX(obj->versyms[symnum]);
3493 		if (verndx > obj->vernum) {
3494 		    _rtld_error("%s: symbol %s references wrong version %d",
3495 			obj->path, obj->strtab + symnum, verndx);
3496 		    continue;
3497 		}
3498 		/*
3499 		 * If we are not called from dlsym (i.e. this is a normal
3500 		 * relocation from unversioned binary), accept the symbol
3501 		 * immediately if it happens to have first version after
3502 		 * this shared object became versioned. Otherwise, if
3503 		 * symbol is versioned and not hidden, remember it. If it
3504 		 * is the only symbol with this name exported by the
3505 		 * shared object, it will be returned as a match at the
3506 		 * end of the function. If symbol is global (verndx < 2)
3507 		 * accept it unconditionally.
3508 		 */
3509 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3510 		  verndx == VER_NDX_GIVEN) {
3511 		    req->sym_out = symp;
3512 		    req->defobj_out = obj;
3513 		    return (0);
3514 		}
3515 		else if (verndx >= VER_NDX_GIVEN) {
3516 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3517 			if (vsymp == NULL)
3518 			    vsymp = symp;
3519 			vcount ++;
3520 		    }
3521 		    continue;
3522 		}
3523 	    }
3524 	    req->sym_out = symp;
3525 	    req->defobj_out = obj;
3526 	    return (0);
3527 	} else {
3528 	    if (obj->versyms == NULL) {
3529 		if (object_match_name(obj, req->ventry->name)) {
3530 		    _rtld_error("%s: object %s should provide version %s for "
3531 			"symbol %s", obj_rtld.path, obj->path,
3532 			req->ventry->name, obj->strtab + symnum);
3533 		    continue;
3534 		}
3535 	    } else {
3536 		verndx = VER_NDX(obj->versyms[symnum]);
3537 		if (verndx > obj->vernum) {
3538 		    _rtld_error("%s: symbol %s references wrong version %d",
3539 			obj->path, obj->strtab + symnum, verndx);
3540 		    continue;
3541 		}
3542 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3543 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3544 		    /*
3545 		     * Version does not match. Look if this is a global symbol
3546 		     * and if it is not hidden. If global symbol (verndx < 2)
3547 		     * is available, use it. Do not return symbol if we are
3548 		     * called by dlvsym, because dlvsym looks for a specific
3549 		     * version and default one is not what dlvsym wants.
3550 		     */
3551 		    if ((req->flags & SYMLOOK_DLSYM) ||
3552 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3553 			(verndx >= VER_NDX_GIVEN))
3554 			continue;
3555 		}
3556 	    }
3557 	    req->sym_out = symp;
3558 	    req->defobj_out = obj;
3559 	    return (0);
3560 	}
3561     }
3562     if (vcount == 1) {
3563 	req->sym_out = vsymp;
3564 	req->defobj_out = obj;
3565 	return (0);
3566     }
3567     return (ESRCH);
3568 }
3569 
3570 static void
3571 trace_loaded_objects(Obj_Entry *obj)
3572 {
3573     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3574     int		c;
3575 
3576     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3577 	main_local = "";
3578 
3579     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3580 	fmt1 = "\t%o => %p (%x)\n";
3581 
3582     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3583 	fmt2 = "\t%o (%x)\n";
3584 
3585     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3586 
3587     for (; obj; obj = obj->next) {
3588 	Needed_Entry		*needed;
3589 	char			*name, *path;
3590 	bool			is_lib;
3591 
3592 	if (list_containers && obj->needed != NULL)
3593 	    rtld_printf("%s:\n", obj->path);
3594 	for (needed = obj->needed; needed; needed = needed->next) {
3595 	    if (needed->obj != NULL) {
3596 		if (needed->obj->traced && !list_containers)
3597 		    continue;
3598 		needed->obj->traced = true;
3599 		path = needed->obj->path;
3600 	    } else
3601 		path = "not found";
3602 
3603 	    name = (char *)obj->strtab + needed->name;
3604 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3605 
3606 	    fmt = is_lib ? fmt1 : fmt2;
3607 	    while ((c = *fmt++) != '\0') {
3608 		switch (c) {
3609 		default:
3610 		    rtld_putchar(c);
3611 		    continue;
3612 		case '\\':
3613 		    switch (c = *fmt) {
3614 		    case '\0':
3615 			continue;
3616 		    case 'n':
3617 			rtld_putchar('\n');
3618 			break;
3619 		    case 't':
3620 			rtld_putchar('\t');
3621 			break;
3622 		    }
3623 		    break;
3624 		case '%':
3625 		    switch (c = *fmt) {
3626 		    case '\0':
3627 			continue;
3628 		    case '%':
3629 		    default:
3630 			rtld_putchar(c);
3631 			break;
3632 		    case 'A':
3633 			rtld_putstr(main_local);
3634 			break;
3635 		    case 'a':
3636 			rtld_putstr(obj_main->path);
3637 			break;
3638 		    case 'o':
3639 			rtld_putstr(name);
3640 			break;
3641 #if 0
3642 		    case 'm':
3643 			rtld_printf("%d", sodp->sod_major);
3644 			break;
3645 		    case 'n':
3646 			rtld_printf("%d", sodp->sod_minor);
3647 			break;
3648 #endif
3649 		    case 'p':
3650 			rtld_putstr(path);
3651 			break;
3652 		    case 'x':
3653 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3654 			  0);
3655 			break;
3656 		    }
3657 		    break;
3658 		}
3659 		++fmt;
3660 	    }
3661 	}
3662     }
3663 }
3664 
3665 /*
3666  * Unload a dlopened object and its dependencies from memory and from
3667  * our data structures.  It is assumed that the DAG rooted in the
3668  * object has already been unreferenced, and that the object has a
3669  * reference count of 0.
3670  */
3671 static void
3672 unload_object(Obj_Entry *root)
3673 {
3674     Obj_Entry *obj;
3675     Obj_Entry **linkp;
3676 
3677     assert(root->refcount == 0);
3678 
3679     /*
3680      * Pass over the DAG removing unreferenced objects from
3681      * appropriate lists.
3682      */
3683     unlink_object(root);
3684 
3685     /* Unmap all objects that are no longer referenced. */
3686     linkp = &obj_list->next;
3687     while ((obj = *linkp) != NULL) {
3688 	if (obj->refcount == 0) {
3689 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3690 		obj->path);
3691 	    dbg("unloading \"%s\"", obj->path);
3692 	    unload_filtees(root);
3693 	    munmap(obj->mapbase, obj->mapsize);
3694 	    linkmap_delete(obj);
3695 	    *linkp = obj->next;
3696 	    obj_count--;
3697 	    obj_free(obj);
3698 	} else
3699 	    linkp = &obj->next;
3700     }
3701     obj_tail = linkp;
3702 }
3703 
3704 static void
3705 unlink_object(Obj_Entry *root)
3706 {
3707     Objlist_Entry *elm;
3708 
3709     if (root->refcount == 0) {
3710 	/* Remove the object from the RTLD_GLOBAL list. */
3711 	objlist_remove(&list_global, root);
3712 
3713     	/* Remove the object from all objects' DAG lists. */
3714     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3715 	    objlist_remove(&elm->obj->dldags, root);
3716 	    if (elm->obj != root)
3717 		unlink_object(elm->obj);
3718 	}
3719     }
3720 }
3721 
3722 static void
3723 ref_dag(Obj_Entry *root)
3724 {
3725     Objlist_Entry *elm;
3726 
3727     assert(root->dag_inited);
3728     STAILQ_FOREACH(elm, &root->dagmembers, link)
3729 	elm->obj->refcount++;
3730 }
3731 
3732 static void
3733 unref_dag(Obj_Entry *root)
3734 {
3735     Objlist_Entry *elm;
3736 
3737     assert(root->dag_inited);
3738     STAILQ_FOREACH(elm, &root->dagmembers, link)
3739 	elm->obj->refcount--;
3740 }
3741 
3742 /*
3743  * Common code for MD __tls_get_addr().
3744  */
3745 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3746 static void *
3747 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3748 {
3749     Elf_Addr *newdtv, *dtv;
3750     RtldLockState lockstate;
3751     int to_copy;
3752 
3753     dtv = *dtvp;
3754     /* Check dtv generation in case new modules have arrived */
3755     if (dtv[0] != tls_dtv_generation) {
3756 	wlock_acquire(rtld_bind_lock, &lockstate);
3757 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3758 	to_copy = dtv[1];
3759 	if (to_copy > tls_max_index)
3760 	    to_copy = tls_max_index;
3761 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3762 	newdtv[0] = tls_dtv_generation;
3763 	newdtv[1] = tls_max_index;
3764 	free(dtv);
3765 	lock_release(rtld_bind_lock, &lockstate);
3766 	dtv = *dtvp = newdtv;
3767     }
3768 
3769     /* Dynamically allocate module TLS if necessary */
3770     if (dtv[index + 1] == 0) {
3771 	/* Signal safe, wlock will block out signals. */
3772 	wlock_acquire(rtld_bind_lock, &lockstate);
3773 	if (!dtv[index + 1])
3774 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3775 	lock_release(rtld_bind_lock, &lockstate);
3776     }
3777     return ((void *)(dtv[index + 1] + offset));
3778 }
3779 
3780 void *
3781 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3782 {
3783 	Elf_Addr *dtv;
3784 
3785 	dtv = *dtvp;
3786 	/* Check dtv generation in case new modules have arrived */
3787 	if (__predict_true(dtv[0] == tls_dtv_generation &&
3788 	    dtv[index + 1] != 0))
3789 		return ((void *)(dtv[index + 1] + offset));
3790 	return (tls_get_addr_slow(dtvp, index, offset));
3791 }
3792 
3793 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3794 
3795 /*
3796  * Allocate Static TLS using the Variant I method.
3797  */
3798 void *
3799 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3800 {
3801     Obj_Entry *obj;
3802     char *tcb;
3803     Elf_Addr **tls;
3804     Elf_Addr *dtv;
3805     Elf_Addr addr;
3806     int i;
3807 
3808     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3809 	return (oldtcb);
3810 
3811     assert(tcbsize >= TLS_TCB_SIZE);
3812     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3813     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3814 
3815     if (oldtcb != NULL) {
3816 	memcpy(tls, oldtcb, tls_static_space);
3817 	free(oldtcb);
3818 
3819 	/* Adjust the DTV. */
3820 	dtv = tls[0];
3821 	for (i = 0; i < dtv[1]; i++) {
3822 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3823 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3824 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3825 	    }
3826 	}
3827     } else {
3828 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3829 	tls[0] = dtv;
3830 	dtv[0] = tls_dtv_generation;
3831 	dtv[1] = tls_max_index;
3832 
3833 	for (obj = objs; obj; obj = obj->next) {
3834 	    if (obj->tlsoffset > 0) {
3835 		addr = (Elf_Addr)tls + obj->tlsoffset;
3836 		if (obj->tlsinitsize > 0)
3837 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3838 		if (obj->tlssize > obj->tlsinitsize)
3839 		    memset((void*) (addr + obj->tlsinitsize), 0,
3840 			   obj->tlssize - obj->tlsinitsize);
3841 		dtv[obj->tlsindex + 1] = addr;
3842 	    }
3843 	}
3844     }
3845 
3846     return (tcb);
3847 }
3848 
3849 void
3850 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3851 {
3852     Elf_Addr *dtv;
3853     Elf_Addr tlsstart, tlsend;
3854     int dtvsize, i;
3855 
3856     assert(tcbsize >= TLS_TCB_SIZE);
3857 
3858     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3859     tlsend = tlsstart + tls_static_space;
3860 
3861     dtv = *(Elf_Addr **)tlsstart;
3862     dtvsize = dtv[1];
3863     for (i = 0; i < dtvsize; i++) {
3864 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3865 	    free((void*)dtv[i+2]);
3866 	}
3867     }
3868     free(dtv);
3869     free(tcb);
3870 }
3871 
3872 #endif
3873 
3874 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3875 
3876 /*
3877  * Allocate Static TLS using the Variant II method.
3878  */
3879 void *
3880 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3881 {
3882     Obj_Entry *obj;
3883     size_t size;
3884     char *tls;
3885     Elf_Addr *dtv, *olddtv;
3886     Elf_Addr segbase, oldsegbase, addr;
3887     int i;
3888 
3889     size = round(tls_static_space, tcbalign);
3890 
3891     assert(tcbsize >= 2*sizeof(Elf_Addr));
3892     tls = xcalloc(1, size + tcbsize);
3893     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3894 
3895     segbase = (Elf_Addr)(tls + size);
3896     ((Elf_Addr*)segbase)[0] = segbase;
3897     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3898 
3899     dtv[0] = tls_dtv_generation;
3900     dtv[1] = tls_max_index;
3901 
3902     if (oldtls) {
3903 	/*
3904 	 * Copy the static TLS block over whole.
3905 	 */
3906 	oldsegbase = (Elf_Addr) oldtls;
3907 	memcpy((void *)(segbase - tls_static_space),
3908 	       (const void *)(oldsegbase - tls_static_space),
3909 	       tls_static_space);
3910 
3911 	/*
3912 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3913 	 * move them over.
3914 	 */
3915 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3916 	for (i = 0; i < olddtv[1]; i++) {
3917 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3918 		dtv[i+2] = olddtv[i+2];
3919 		olddtv[i+2] = 0;
3920 	    }
3921 	}
3922 
3923 	/*
3924 	 * We assume that this block was the one we created with
3925 	 * allocate_initial_tls().
3926 	 */
3927 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3928     } else {
3929 	for (obj = objs; obj; obj = obj->next) {
3930 	    if (obj->tlsoffset) {
3931 		addr = segbase - obj->tlsoffset;
3932 		memset((void*) (addr + obj->tlsinitsize),
3933 		       0, obj->tlssize - obj->tlsinitsize);
3934 		if (obj->tlsinit)
3935 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3936 		dtv[obj->tlsindex + 1] = addr;
3937 	    }
3938 	}
3939     }
3940 
3941     return (void*) segbase;
3942 }
3943 
3944 void
3945 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3946 {
3947     size_t size;
3948     Elf_Addr* dtv;
3949     int dtvsize, i;
3950     Elf_Addr tlsstart, tlsend;
3951 
3952     /*
3953      * Figure out the size of the initial TLS block so that we can
3954      * find stuff which ___tls_get_addr() allocated dynamically.
3955      */
3956     size = round(tls_static_space, tcbalign);
3957 
3958     dtv = ((Elf_Addr**)tls)[1];
3959     dtvsize = dtv[1];
3960     tlsend = (Elf_Addr) tls;
3961     tlsstart = tlsend - size;
3962     for (i = 0; i < dtvsize; i++) {
3963 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3964 	    free((void*) dtv[i+2]);
3965 	}
3966     }
3967 
3968     free((void*) tlsstart);
3969     free((void*) dtv);
3970 }
3971 
3972 #endif
3973 
3974 /*
3975  * Allocate TLS block for module with given index.
3976  */
3977 void *
3978 allocate_module_tls(int index)
3979 {
3980     Obj_Entry* obj;
3981     char* p;
3982 
3983     for (obj = obj_list; obj; obj = obj->next) {
3984 	if (obj->tlsindex == index)
3985 	    break;
3986     }
3987     if (!obj) {
3988 	_rtld_error("Can't find module with TLS index %d", index);
3989 	die();
3990     }
3991 
3992     p = malloc(obj->tlssize);
3993     if (p == NULL) {
3994 	_rtld_error("Cannot allocate TLS block for index %d", index);
3995 	die();
3996     }
3997     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3998     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3999 
4000     return p;
4001 }
4002 
4003 bool
4004 allocate_tls_offset(Obj_Entry *obj)
4005 {
4006     size_t off;
4007 
4008     if (obj->tls_done)
4009 	return true;
4010 
4011     if (obj->tlssize == 0) {
4012 	obj->tls_done = true;
4013 	return true;
4014     }
4015 
4016     if (obj->tlsindex == 1)
4017 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4018     else
4019 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4020 				   obj->tlssize, obj->tlsalign);
4021 
4022     /*
4023      * If we have already fixed the size of the static TLS block, we
4024      * must stay within that size. When allocating the static TLS, we
4025      * leave a small amount of space spare to be used for dynamically
4026      * loading modules which use static TLS.
4027      */
4028     if (tls_static_space) {
4029 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4030 	    return false;
4031     }
4032 
4033     tls_last_offset = obj->tlsoffset = off;
4034     tls_last_size = obj->tlssize;
4035     obj->tls_done = true;
4036 
4037     return true;
4038 }
4039 
4040 void
4041 free_tls_offset(Obj_Entry *obj)
4042 {
4043 
4044     /*
4045      * If we were the last thing to allocate out of the static TLS
4046      * block, we give our space back to the 'allocator'. This is a
4047      * simplistic workaround to allow libGL.so.1 to be loaded and
4048      * unloaded multiple times.
4049      */
4050     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4051 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4052 	tls_last_offset -= obj->tlssize;
4053 	tls_last_size = 0;
4054     }
4055 }
4056 
4057 void *
4058 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4059 {
4060     void *ret;
4061     RtldLockState lockstate;
4062 
4063     wlock_acquire(rtld_bind_lock, &lockstate);
4064     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4065     lock_release(rtld_bind_lock, &lockstate);
4066     return (ret);
4067 }
4068 
4069 void
4070 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4071 {
4072     RtldLockState lockstate;
4073 
4074     wlock_acquire(rtld_bind_lock, &lockstate);
4075     free_tls(tcb, tcbsize, tcbalign);
4076     lock_release(rtld_bind_lock, &lockstate);
4077 }
4078 
4079 static void
4080 object_add_name(Obj_Entry *obj, const char *name)
4081 {
4082     Name_Entry *entry;
4083     size_t len;
4084 
4085     len = strlen(name);
4086     entry = malloc(sizeof(Name_Entry) + len);
4087 
4088     if (entry != NULL) {
4089 	strcpy(entry->name, name);
4090 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4091     }
4092 }
4093 
4094 static int
4095 object_match_name(const Obj_Entry *obj, const char *name)
4096 {
4097     Name_Entry *entry;
4098 
4099     STAILQ_FOREACH(entry, &obj->names, link) {
4100 	if (strcmp(name, entry->name) == 0)
4101 	    return (1);
4102     }
4103     return (0);
4104 }
4105 
4106 static Obj_Entry *
4107 locate_dependency(const Obj_Entry *obj, const char *name)
4108 {
4109     const Objlist_Entry *entry;
4110     const Needed_Entry *needed;
4111 
4112     STAILQ_FOREACH(entry, &list_main, link) {
4113 	if (object_match_name(entry->obj, name))
4114 	    return entry->obj;
4115     }
4116 
4117     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4118 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4119 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4120 	    /*
4121 	     * If there is DT_NEEDED for the name we are looking for,
4122 	     * we are all set.  Note that object might not be found if
4123 	     * dependency was not loaded yet, so the function can
4124 	     * return NULL here.  This is expected and handled
4125 	     * properly by the caller.
4126 	     */
4127 	    return (needed->obj);
4128 	}
4129     }
4130     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4131 	obj->path, name);
4132     die();
4133 }
4134 
4135 static int
4136 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4137     const Elf_Vernaux *vna)
4138 {
4139     const Elf_Verdef *vd;
4140     const char *vername;
4141 
4142     vername = refobj->strtab + vna->vna_name;
4143     vd = depobj->verdef;
4144     if (vd == NULL) {
4145 	_rtld_error("%s: version %s required by %s not defined",
4146 	    depobj->path, vername, refobj->path);
4147 	return (-1);
4148     }
4149     for (;;) {
4150 	if (vd->vd_version != VER_DEF_CURRENT) {
4151 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4152 		depobj->path, vd->vd_version);
4153 	    return (-1);
4154 	}
4155 	if (vna->vna_hash == vd->vd_hash) {
4156 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4157 		((char *)vd + vd->vd_aux);
4158 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4159 		return (0);
4160 	}
4161 	if (vd->vd_next == 0)
4162 	    break;
4163 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4164     }
4165     if (vna->vna_flags & VER_FLG_WEAK)
4166 	return (0);
4167     _rtld_error("%s: version %s required by %s not found",
4168 	depobj->path, vername, refobj->path);
4169     return (-1);
4170 }
4171 
4172 static int
4173 rtld_verify_object_versions(Obj_Entry *obj)
4174 {
4175     const Elf_Verneed *vn;
4176     const Elf_Verdef  *vd;
4177     const Elf_Verdaux *vda;
4178     const Elf_Vernaux *vna;
4179     const Obj_Entry *depobj;
4180     int maxvernum, vernum;
4181 
4182     if (obj->ver_checked)
4183 	return (0);
4184     obj->ver_checked = true;
4185 
4186     maxvernum = 0;
4187     /*
4188      * Walk over defined and required version records and figure out
4189      * max index used by any of them. Do very basic sanity checking
4190      * while there.
4191      */
4192     vn = obj->verneed;
4193     while (vn != NULL) {
4194 	if (vn->vn_version != VER_NEED_CURRENT) {
4195 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4196 		obj->path, vn->vn_version);
4197 	    return (-1);
4198 	}
4199 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4200 	for (;;) {
4201 	    vernum = VER_NEED_IDX(vna->vna_other);
4202 	    if (vernum > maxvernum)
4203 		maxvernum = vernum;
4204 	    if (vna->vna_next == 0)
4205 		 break;
4206 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4207 	}
4208 	if (vn->vn_next == 0)
4209 	    break;
4210 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4211     }
4212 
4213     vd = obj->verdef;
4214     while (vd != NULL) {
4215 	if (vd->vd_version != VER_DEF_CURRENT) {
4216 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4217 		obj->path, vd->vd_version);
4218 	    return (-1);
4219 	}
4220 	vernum = VER_DEF_IDX(vd->vd_ndx);
4221 	if (vernum > maxvernum)
4222 		maxvernum = vernum;
4223 	if (vd->vd_next == 0)
4224 	    break;
4225 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4226     }
4227 
4228     if (maxvernum == 0)
4229 	return (0);
4230 
4231     /*
4232      * Store version information in array indexable by version index.
4233      * Verify that object version requirements are satisfied along the
4234      * way.
4235      */
4236     obj->vernum = maxvernum + 1;
4237     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4238 
4239     vd = obj->verdef;
4240     while (vd != NULL) {
4241 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4242 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4243 	    assert(vernum <= maxvernum);
4244 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4245 	    obj->vertab[vernum].hash = vd->vd_hash;
4246 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4247 	    obj->vertab[vernum].file = NULL;
4248 	    obj->vertab[vernum].flags = 0;
4249 	}
4250 	if (vd->vd_next == 0)
4251 	    break;
4252 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4253     }
4254 
4255     vn = obj->verneed;
4256     while (vn != NULL) {
4257 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4258 	if (depobj == NULL)
4259 	    return (-1);
4260 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4261 	for (;;) {
4262 	    if (check_object_provided_version(obj, depobj, vna))
4263 		return (-1);
4264 	    vernum = VER_NEED_IDX(vna->vna_other);
4265 	    assert(vernum <= maxvernum);
4266 	    obj->vertab[vernum].hash = vna->vna_hash;
4267 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4268 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4269 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4270 		VER_INFO_HIDDEN : 0;
4271 	    if (vna->vna_next == 0)
4272 		 break;
4273 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4274 	}
4275 	if (vn->vn_next == 0)
4276 	    break;
4277 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4278     }
4279     return 0;
4280 }
4281 
4282 static int
4283 rtld_verify_versions(const Objlist *objlist)
4284 {
4285     Objlist_Entry *entry;
4286     int rc;
4287 
4288     rc = 0;
4289     STAILQ_FOREACH(entry, objlist, link) {
4290 	/*
4291 	 * Skip dummy objects or objects that have their version requirements
4292 	 * already checked.
4293 	 */
4294 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4295 	    continue;
4296 	if (rtld_verify_object_versions(entry->obj) == -1) {
4297 	    rc = -1;
4298 	    if (ld_tracing == NULL)
4299 		break;
4300 	}
4301     }
4302     if (rc == 0 || ld_tracing != NULL)
4303     	rc = rtld_verify_object_versions(&obj_rtld);
4304     return rc;
4305 }
4306 
4307 const Ver_Entry *
4308 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4309 {
4310     Elf_Versym vernum;
4311 
4312     if (obj->vertab) {
4313 	vernum = VER_NDX(obj->versyms[symnum]);
4314 	if (vernum >= obj->vernum) {
4315 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4316 		obj->path, obj->strtab + symnum, vernum);
4317 	} else if (obj->vertab[vernum].hash != 0) {
4318 	    return &obj->vertab[vernum];
4319 	}
4320     }
4321     return NULL;
4322 }
4323 
4324 int
4325 _rtld_get_stack_prot(void)
4326 {
4327 
4328 	return (stack_prot);
4329 }
4330 
4331 static void
4332 map_stacks_exec(RtldLockState *lockstate)
4333 {
4334 	void (*thr_map_stacks_exec)(void);
4335 
4336 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4337 		return;
4338 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4339 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4340 	if (thr_map_stacks_exec != NULL) {
4341 		stack_prot |= PROT_EXEC;
4342 		thr_map_stacks_exec();
4343 	}
4344 }
4345 
4346 void
4347 symlook_init(SymLook *dst, const char *name)
4348 {
4349 
4350 	bzero(dst, sizeof(*dst));
4351 	dst->name = name;
4352 	dst->hash = elf_hash(name);
4353 }
4354 
4355 static void
4356 symlook_init_from_req(SymLook *dst, const SymLook *src)
4357 {
4358 
4359 	dst->name = src->name;
4360 	dst->hash = src->hash;
4361 	dst->ventry = src->ventry;
4362 	dst->flags = src->flags;
4363 	dst->defobj_out = NULL;
4364 	dst->sym_out = NULL;
4365 	dst->lockstate = src->lockstate;
4366 }
4367 
4368 /*
4369  * Overrides for libc_pic-provided functions.
4370  */
4371 
4372 int
4373 __getosreldate(void)
4374 {
4375 	size_t len;
4376 	int oid[2];
4377 	int error, osrel;
4378 
4379 	if (osreldate != 0)
4380 		return (osreldate);
4381 
4382 	oid[0] = CTL_KERN;
4383 	oid[1] = KERN_OSRELDATE;
4384 	osrel = 0;
4385 	len = sizeof(osrel);
4386 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4387 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4388 		osreldate = osrel;
4389 	return (osreldate);
4390 }
4391 
4392 void
4393 exit(int status)
4394 {
4395 
4396 	_exit(status);
4397 }
4398 
4399 void (*__cleanup)(void);
4400 int __isthreaded = 0;
4401 int _thread_autoinit_dummy_decl = 1;
4402 
4403 /*
4404  * No unresolved symbols for rtld.
4405  */
4406 void
4407 __pthread_cxa_finalize(struct dl_phdr_info *a)
4408 {
4409 }
4410 
4411 void
4412 __stack_chk_fail(void)
4413 {
4414 
4415 	_rtld_error("stack overflow detected; terminated");
4416 	die();
4417 }
4418 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4419 
4420 void
4421 __chk_fail(void)
4422 {
4423 
4424 	_rtld_error("buffer overflow detected; terminated");
4425 	die();
4426 }
4427 
4428 const char *
4429 rtld_strerror(int errnum)
4430 {
4431 
4432 	if (errnum < 0 || errnum >= sys_nerr)
4433 		return ("Unknown error");
4434 	return (sys_errlist[errnum]);
4435 }
4436