xref: /freebsd/libexec/rtld-elf/rtld.c (revision 63cbe8d1d95f97e93929ec66f1138693d08dd9f6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern char* __progname;
81 extern void (*__cleanup)(void);
82 
83 
84 /*
85  * Function declarations.
86  */
87 static const char *basename(const char *);
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **, const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
91     const Elf_Dyn *);
92 static void digest_dynamic(Obj_Entry *, int);
93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
94 static Obj_Entry *dlcheck(void *);
95 static int dlclose_locked(void *, RtldLockState *);
96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
97     int lo_flags, int mode, RtldLockState *lockstate);
98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
100 static bool donelist_check(DoneList *, const Obj_Entry *);
101 static void errmsg_restore(char *);
102 static char *errmsg_save(void);
103 static void *fill_search_info(const char *, size_t, void *);
104 static char *find_library(const char *, const Obj_Entry *, int *);
105 static const char *gethints(bool);
106 static void hold_object(Obj_Entry *);
107 static void unhold_object(Obj_Entry *);
108 static void init_dag(Obj_Entry *);
109 static void init_marker(Obj_Entry *);
110 static void init_pagesizes(Elf_Auxinfo **aux_info);
111 static void init_rtld(caddr_t, Elf_Auxinfo **);
112 static void initlist_add_neededs(Needed_Entry *, Objlist *);
113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
114 static void linkmap_add(Obj_Entry *);
115 static void linkmap_delete(Obj_Entry *);
116 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
117 static void unload_filtees(Obj_Entry *, RtldLockState *);
118 static int load_needed_objects(Obj_Entry *, int);
119 static int load_preload_objects(void);
120 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
121 static void map_stacks_exec(RtldLockState *);
122 static int obj_enforce_relro(Obj_Entry *);
123 static Obj_Entry *obj_from_addr(const void *);
124 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
125 static void objlist_call_init(Objlist *, RtldLockState *);
126 static void objlist_clear(Objlist *);
127 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
128 static void objlist_init(Objlist *);
129 static void objlist_push_head(Objlist *, Obj_Entry *);
130 static void objlist_push_tail(Objlist *, Obj_Entry *);
131 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
132 static void objlist_remove(Objlist *, Obj_Entry *);
133 static int open_binary_fd(const char *argv0, bool search_in_path);
134 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
135 static int parse_integer(const char *);
136 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
137 static void print_usage(const char *argv0);
138 static void release_object(Obj_Entry *);
139 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
140     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
141 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
142     int flags, RtldLockState *lockstate);
143 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
144     RtldLockState *);
145 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
146 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
147     int flags, RtldLockState *lockstate);
148 static int rtld_dirname(const char *, char *);
149 static int rtld_dirname_abs(const char *, char *);
150 static void *rtld_dlopen(const char *name, int fd, int mode);
151 static void rtld_exit(void);
152 static char *search_library_path(const char *, const char *, const char *,
153     int *);
154 static char *search_library_pathfds(const char *, const char *, int *);
155 static const void **get_program_var_addr(const char *, RtldLockState *);
156 static void set_program_var(const char *, const void *);
157 static int symlook_default(SymLook *, const Obj_Entry *refobj);
158 static int symlook_global(SymLook *, DoneList *);
159 static void symlook_init_from_req(SymLook *, const SymLook *);
160 static int symlook_list(SymLook *, const Objlist *, DoneList *);
161 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
162 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
163 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
164 static void trace_loaded_objects(Obj_Entry *);
165 static void unlink_object(Obj_Entry *);
166 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
167 static void unref_dag(Obj_Entry *);
168 static void ref_dag(Obj_Entry *);
169 static char *origin_subst_one(Obj_Entry *, char *, const char *,
170     const char *, bool);
171 static char *origin_subst(Obj_Entry *, const char *);
172 static bool obj_resolve_origin(Obj_Entry *obj);
173 static void preinit_main(void);
174 static int  rtld_verify_versions(const Objlist *);
175 static int  rtld_verify_object_versions(Obj_Entry *);
176 static void object_add_name(Obj_Entry *, const char *);
177 static int  object_match_name(const Obj_Entry *, const char *);
178 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
179 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
180     struct dl_phdr_info *phdr_info);
181 static uint32_t gnu_hash(const char *);
182 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
183     const unsigned long);
184 
185 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
186 void _r_debug_postinit(struct link_map *) __noinline __exported;
187 
188 int __sys_openat(int, const char *, int, ...);
189 
190 /*
191  * Data declarations.
192  */
193 static char *error_message;	/* Message for dlerror(), or NULL */
194 struct r_debug r_debug __exported;	/* for GDB; */
195 static bool libmap_disable;	/* Disable libmap */
196 static bool ld_loadfltr;	/* Immediate filters processing */
197 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
198 static bool trust;		/* False for setuid and setgid programs */
199 static bool dangerous_ld_env;	/* True if environment variables have been
200 				   used to affect the libraries loaded */
201 bool ld_bind_not;		/* Disable PLT update */
202 static char *ld_bind_now;	/* Environment variable for immediate binding */
203 static char *ld_debug;		/* Environment variable for debugging */
204 static char *ld_library_path;	/* Environment variable for search path */
205 static char *ld_library_dirs;	/* Environment variable for library descriptors */
206 static char *ld_preload;	/* Environment variable for libraries to
207 				   load first */
208 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
209 static const char *ld_tracing;	/* Called from ldd to print libs */
210 static char *ld_utrace;		/* Use utrace() to log events. */
211 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
212 static Obj_Entry *obj_main;	/* The main program shared object */
213 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
214 static unsigned int obj_count;	/* Number of objects in obj_list */
215 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
216 
217 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
218   STAILQ_HEAD_INITIALIZER(list_global);
219 static Objlist list_main =	/* Objects loaded at program startup */
220   STAILQ_HEAD_INITIALIZER(list_main);
221 static Objlist list_fini =	/* Objects needing fini() calls */
222   STAILQ_HEAD_INITIALIZER(list_fini);
223 
224 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
225 
226 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
227 
228 extern Elf_Dyn _DYNAMIC;
229 #pragma weak _DYNAMIC
230 
231 int dlclose(void *) __exported;
232 char *dlerror(void) __exported;
233 void *dlopen(const char *, int) __exported;
234 void *fdlopen(int, int) __exported;
235 void *dlsym(void *, const char *) __exported;
236 dlfunc_t dlfunc(void *, const char *) __exported;
237 void *dlvsym(void *, const char *, const char *) __exported;
238 int dladdr(const void *, Dl_info *) __exported;
239 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
240     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
241 int dlinfo(void *, int , void *) __exported;
242 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
243 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
244 int _rtld_get_stack_prot(void) __exported;
245 int _rtld_is_dlopened(void *) __exported;
246 void _rtld_error(const char *, ...) __exported;
247 
248 /* Only here to fix -Wmissing-prototypes warnings */
249 int __getosreldate(void);
250 void __pthread_cxa_finalize(struct dl_phdr_info *a);
251 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
252 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
253 
254 
255 int npagesizes;
256 static int osreldate;
257 size_t *pagesizes;
258 
259 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
260 static int max_stack_flags;
261 
262 /*
263  * Global declarations normally provided by crt1.  The dynamic linker is
264  * not built with crt1, so we have to provide them ourselves.
265  */
266 char *__progname;
267 char **environ;
268 
269 /*
270  * Used to pass argc, argv to init functions.
271  */
272 int main_argc;
273 char **main_argv;
274 
275 /*
276  * Globals to control TLS allocation.
277  */
278 size_t tls_last_offset;		/* Static TLS offset of last module */
279 size_t tls_last_size;		/* Static TLS size of last module */
280 size_t tls_static_space;	/* Static TLS space allocated */
281 static size_t tls_static_max_align;
282 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
283 int tls_max_index = 1;		/* Largest module index allocated */
284 
285 static bool ld_library_path_rpath = false;
286 
287 /*
288  * Globals for path names, and such
289  */
290 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
291 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
292 const char *ld_path_rtld = _PATH_RTLD;
293 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
294 const char *ld_env_prefix = LD_;
295 
296 /*
297  * Fill in a DoneList with an allocation large enough to hold all of
298  * the currently-loaded objects.  Keep this as a macro since it calls
299  * alloca and we want that to occur within the scope of the caller.
300  */
301 #define donelist_init(dlp)					\
302     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
303     assert((dlp)->objs != NULL),				\
304     (dlp)->num_alloc = obj_count,				\
305     (dlp)->num_used = 0)
306 
307 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
308 	if (ld_utrace != NULL)					\
309 		ld_utrace_log(e, h, mb, ms, r, n);		\
310 } while (0)
311 
312 static void
313 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
314     int refcnt, const char *name)
315 {
316 	struct utrace_rtld ut;
317 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
318 
319 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
320 	ut.event = event;
321 	ut.handle = handle;
322 	ut.mapbase = mapbase;
323 	ut.mapsize = mapsize;
324 	ut.refcnt = refcnt;
325 	bzero(ut.name, sizeof(ut.name));
326 	if (name)
327 		strlcpy(ut.name, name, sizeof(ut.name));
328 	utrace(&ut, sizeof(ut));
329 }
330 
331 #ifdef RTLD_VARIANT_ENV_NAMES
332 /*
333  * construct the env variable based on the type of binary that's
334  * running.
335  */
336 static inline const char *
337 _LD(const char *var)
338 {
339 	static char buffer[128];
340 
341 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
342 	strlcat(buffer, var, sizeof(buffer));
343 	return (buffer);
344 }
345 #else
346 #define _LD(x)	LD_ x
347 #endif
348 
349 /*
350  * Main entry point for dynamic linking.  The first argument is the
351  * stack pointer.  The stack is expected to be laid out as described
352  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
353  * Specifically, the stack pointer points to a word containing
354  * ARGC.  Following that in the stack is a null-terminated sequence
355  * of pointers to argument strings.  Then comes a null-terminated
356  * sequence of pointers to environment strings.  Finally, there is a
357  * sequence of "auxiliary vector" entries.
358  *
359  * The second argument points to a place to store the dynamic linker's
360  * exit procedure pointer and the third to a place to store the main
361  * program's object.
362  *
363  * The return value is the main program's entry point.
364  */
365 func_ptr_type
366 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
367 {
368     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
369     Objlist_Entry *entry;
370     Obj_Entry *last_interposer, *obj, *preload_tail;
371     const Elf_Phdr *phdr;
372     Objlist initlist;
373     RtldLockState lockstate;
374     struct stat st;
375     Elf_Addr *argcp;
376     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
377     const char *argv0;
378     caddr_t imgentry;
379     char buf[MAXPATHLEN];
380     int argc, fd, i, phnum, rtld_argc;
381     bool dir_enable, explicit_fd, search_in_path;
382 
383     /*
384      * On entry, the dynamic linker itself has not been relocated yet.
385      * Be very careful not to reference any global data until after
386      * init_rtld has returned.  It is OK to reference file-scope statics
387      * and string constants, and to call static and global functions.
388      */
389 
390     /* Find the auxiliary vector on the stack. */
391     argcp = sp;
392     argc = *sp++;
393     argv = (char **) sp;
394     sp += argc + 1;	/* Skip over arguments and NULL terminator */
395     env = (char **) sp;
396     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
397 	;
398     aux = (Elf_Auxinfo *) sp;
399 
400     /* Digest the auxiliary vector. */
401     for (i = 0;  i < AT_COUNT;  i++)
402 	aux_info[i] = NULL;
403     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
404 	if (auxp->a_type < AT_COUNT)
405 	    aux_info[auxp->a_type] = auxp;
406     }
407 
408     /* Initialize and relocate ourselves. */
409     assert(aux_info[AT_BASE] != NULL);
410     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
411 
412     __progname = obj_rtld.path;
413     argv0 = argv[0] != NULL ? argv[0] : "(null)";
414     environ = env;
415     main_argc = argc;
416     main_argv = argv;
417 
418     trust = !issetugid();
419 
420     md_abi_variant_hook(aux_info);
421 
422     fd = -1;
423     if (aux_info[AT_EXECFD] != NULL) {
424 	fd = aux_info[AT_EXECFD]->a_un.a_val;
425     } else {
426 	assert(aux_info[AT_PHDR] != NULL);
427 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
428 	if (phdr == obj_rtld.phdr) {
429 	    if (!trust) {
430 		_rtld_error("Tainted process refusing to run binary %s",
431 		    argv0);
432 		rtld_die();
433 	    }
434 	    dbg("opening main program in direct exec mode");
435 	    if (argc >= 2) {
436 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
437 		argv0 = argv[rtld_argc];
438 		explicit_fd = (fd != -1);
439 		if (!explicit_fd)
440 		    fd = open_binary_fd(argv0, search_in_path);
441 		if (fstat(fd, &st) == -1) {
442 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
443 		      explicit_fd ? "user-provided descriptor" : argv0,
444 		      rtld_strerror(errno));
445 		    rtld_die();
446 		}
447 
448 		/*
449 		 * Rough emulation of the permission checks done by
450 		 * execve(2), only Unix DACs are checked, ACLs are
451 		 * ignored.  Preserve the semantic of disabling owner
452 		 * to execute if owner x bit is cleared, even if
453 		 * others x bit is enabled.
454 		 * mmap(2) does not allow to mmap with PROT_EXEC if
455 		 * binary' file comes from noexec mount.  We cannot
456 		 * set VV_TEXT on the binary.
457 		 */
458 		dir_enable = false;
459 		if (st.st_uid == geteuid()) {
460 		    if ((st.st_mode & S_IXUSR) != 0)
461 			dir_enable = true;
462 		} else if (st.st_gid == getegid()) {
463 		    if ((st.st_mode & S_IXGRP) != 0)
464 			dir_enable = true;
465 		} else if ((st.st_mode & S_IXOTH) != 0) {
466 		    dir_enable = true;
467 		}
468 		if (!dir_enable) {
469 		    _rtld_error("No execute permission for binary %s",
470 		        argv0);
471 		    rtld_die();
472 		}
473 
474 		/*
475 		 * For direct exec mode, argv[0] is the interpreter
476 		 * name, we must remove it and shift arguments left
477 		 * before invoking binary main.  Since stack layout
478 		 * places environment pointers and aux vectors right
479 		 * after the terminating NULL, we must shift
480 		 * environment and aux as well.
481 		 */
482 		main_argc = argc - rtld_argc;
483 		for (i = 0; i <= main_argc; i++)
484 		    argv[i] = argv[i + rtld_argc];
485 		*argcp -= rtld_argc;
486 		environ = env = envp = argv + main_argc + 1;
487 		do {
488 		    *envp = *(envp + rtld_argc);
489 		    envp++;
490 		} while (*envp != NULL);
491 		aux = auxp = (Elf_Auxinfo *)envp;
492 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
493 		for (;; auxp++, auxpf++) {
494 		    *auxp = *auxpf;
495 		    if (auxp->a_type == AT_NULL)
496 			    break;
497 		}
498 	    } else {
499 		_rtld_error("No binary");
500 		rtld_die();
501 	    }
502 	}
503     }
504 
505     ld_bind_now = getenv(_LD("BIND_NOW"));
506 
507     /*
508      * If the process is tainted, then we un-set the dangerous environment
509      * variables.  The process will be marked as tainted until setuid(2)
510      * is called.  If any child process calls setuid(2) we do not want any
511      * future processes to honor the potentially un-safe variables.
512      */
513     if (!trust) {
514 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
515 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
516 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
517 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
518 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
519 		_rtld_error("environment corrupt; aborting");
520 		rtld_die();
521 	}
522     }
523     ld_debug = getenv(_LD("DEBUG"));
524     if (ld_bind_now == NULL)
525 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
526     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
527     libmap_override = getenv(_LD("LIBMAP"));
528     ld_library_path = getenv(_LD("LIBRARY_PATH"));
529     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
530     ld_preload = getenv(_LD("PRELOAD"));
531     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
532     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
533     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
534     if (library_path_rpath != NULL) {
535 	    if (library_path_rpath[0] == 'y' ||
536 		library_path_rpath[0] == 'Y' ||
537 		library_path_rpath[0] == '1')
538 		    ld_library_path_rpath = true;
539 	    else
540 		    ld_library_path_rpath = false;
541     }
542     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
543 	(ld_library_path != NULL) || (ld_preload != NULL) ||
544 	(ld_elf_hints_path != NULL) || ld_loadfltr;
545     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
546     ld_utrace = getenv(_LD("UTRACE"));
547 
548     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
549 	ld_elf_hints_path = ld_elf_hints_default;
550 
551     if (ld_debug != NULL && *ld_debug != '\0')
552 	debug = 1;
553     dbg("%s is initialized, base address = %p", __progname,
554 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
555     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
556     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
557 
558     dbg("initializing thread locks");
559     lockdflt_init();
560 
561     /*
562      * Load the main program, or process its program header if it is
563      * already loaded.
564      */
565     if (fd != -1) {	/* Load the main program. */
566 	dbg("loading main program");
567 	obj_main = map_object(fd, argv0, NULL);
568 	close(fd);
569 	if (obj_main == NULL)
570 	    rtld_die();
571 	max_stack_flags = obj_main->stack_flags;
572     } else {				/* Main program already loaded. */
573 	dbg("processing main program's program header");
574 	assert(aux_info[AT_PHDR] != NULL);
575 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
576 	assert(aux_info[AT_PHNUM] != NULL);
577 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
578 	assert(aux_info[AT_PHENT] != NULL);
579 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
580 	assert(aux_info[AT_ENTRY] != NULL);
581 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
582 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
583 	    rtld_die();
584     }
585 
586     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
587 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
588 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
589 	    if (kexecpath[0] == '/')
590 		    obj_main->path = kexecpath;
591 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
592 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
593 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
594 		    obj_main->path = xstrdup(argv0);
595 	    else
596 		    obj_main->path = xstrdup(buf);
597     } else {
598 	    dbg("No AT_EXECPATH or direct exec");
599 	    obj_main->path = xstrdup(argv0);
600     }
601     dbg("obj_main path %s", obj_main->path);
602     obj_main->mainprog = true;
603 
604     if (aux_info[AT_STACKPROT] != NULL &&
605       aux_info[AT_STACKPROT]->a_un.a_val != 0)
606 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
607 
608 #ifndef COMPAT_32BIT
609     /*
610      * Get the actual dynamic linker pathname from the executable if
611      * possible.  (It should always be possible.)  That ensures that
612      * gdb will find the right dynamic linker even if a non-standard
613      * one is being used.
614      */
615     if (obj_main->interp != NULL &&
616       strcmp(obj_main->interp, obj_rtld.path) != 0) {
617 	free(obj_rtld.path);
618 	obj_rtld.path = xstrdup(obj_main->interp);
619         __progname = obj_rtld.path;
620     }
621 #endif
622 
623     digest_dynamic(obj_main, 0);
624     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
625 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
626 	obj_main->dynsymcount);
627 
628     linkmap_add(obj_main);
629     linkmap_add(&obj_rtld);
630 
631     /* Link the main program into the list of objects. */
632     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
633     obj_count++;
634     obj_loads++;
635 
636     /* Initialize a fake symbol for resolving undefined weak references. */
637     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
638     sym_zero.st_shndx = SHN_UNDEF;
639     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
640 
641     if (!libmap_disable)
642         libmap_disable = (bool)lm_init(libmap_override);
643 
644     dbg("loading LD_PRELOAD libraries");
645     if (load_preload_objects() == -1)
646 	rtld_die();
647     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
648 
649     dbg("loading needed objects");
650     if (load_needed_objects(obj_main, 0) == -1)
651 	rtld_die();
652 
653     /* Make a list of all objects loaded at startup. */
654     last_interposer = obj_main;
655     TAILQ_FOREACH(obj, &obj_list, next) {
656 	if (obj->marker)
657 	    continue;
658 	if (obj->z_interpose && obj != obj_main) {
659 	    objlist_put_after(&list_main, last_interposer, obj);
660 	    last_interposer = obj;
661 	} else {
662 	    objlist_push_tail(&list_main, obj);
663 	}
664     	obj->refcount++;
665     }
666 
667     dbg("checking for required versions");
668     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
669 	rtld_die();
670 
671     if (ld_tracing) {		/* We're done */
672 	trace_loaded_objects(obj_main);
673 	exit(0);
674     }
675 
676     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
677        dump_relocations(obj_main);
678        exit (0);
679     }
680 
681     /*
682      * Processing tls relocations requires having the tls offsets
683      * initialized.  Prepare offsets before starting initial
684      * relocation processing.
685      */
686     dbg("initializing initial thread local storage offsets");
687     STAILQ_FOREACH(entry, &list_main, link) {
688 	/*
689 	 * Allocate all the initial objects out of the static TLS
690 	 * block even if they didn't ask for it.
691 	 */
692 	allocate_tls_offset(entry->obj);
693     }
694 
695     if (relocate_objects(obj_main,
696       ld_bind_now != NULL && *ld_bind_now != '\0',
697       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
698 	rtld_die();
699 
700     dbg("doing copy relocations");
701     if (do_copy_relocations(obj_main) == -1)
702 	rtld_die();
703 
704     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
705        dump_relocations(obj_main);
706        exit (0);
707     }
708 
709     ifunc_init(aux);
710 
711     /*
712      * Setup TLS for main thread.  This must be done after the
713      * relocations are processed, since tls initialization section
714      * might be the subject for relocations.
715      */
716     dbg("initializing initial thread local storage");
717     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
718 
719     dbg("initializing key program variables");
720     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
721     set_program_var("environ", env);
722     set_program_var("__elf_aux_vector", aux);
723 
724     /* Make a list of init functions to call. */
725     objlist_init(&initlist);
726     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
727       preload_tail, &initlist);
728 
729     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
730 
731     map_stacks_exec(NULL);
732 
733     dbg("resolving ifuncs");
734     if (resolve_objects_ifunc(obj_main,
735       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
736       NULL) == -1)
737 	rtld_die();
738 
739     dbg("enforcing main obj relro");
740     if (obj_enforce_relro(obj_main) == -1)
741 	rtld_die();
742 
743     if (!obj_main->crt_no_init) {
744 	/*
745 	 * Make sure we don't call the main program's init and fini
746 	 * functions for binaries linked with old crt1 which calls
747 	 * _init itself.
748 	 */
749 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
750 	obj_main->preinit_array = obj_main->init_array =
751 	    obj_main->fini_array = (Elf_Addr)NULL;
752     }
753 
754     /*
755      * Execute MD initializers required before we call the objects'
756      * init functions.
757      */
758     pre_init();
759 
760     wlock_acquire(rtld_bind_lock, &lockstate);
761     if (obj_main->crt_no_init)
762 	preinit_main();
763     objlist_call_init(&initlist, &lockstate);
764     _r_debug_postinit(&obj_main->linkmap);
765     objlist_clear(&initlist);
766     dbg("loading filtees");
767     TAILQ_FOREACH(obj, &obj_list, next) {
768 	if (obj->marker)
769 	    continue;
770 	if (ld_loadfltr || obj->z_loadfltr)
771 	    load_filtees(obj, 0, &lockstate);
772     }
773     lock_release(rtld_bind_lock, &lockstate);
774 
775     dbg("transferring control to program entry point = %p", obj_main->entry);
776 
777     /* Return the exit procedure and the program entry point. */
778     *exit_proc = rtld_exit;
779     *objp = obj_main;
780     return (func_ptr_type) obj_main->entry;
781 }
782 
783 void *
784 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
785 {
786 	void *ptr;
787 	Elf_Addr target;
788 
789 	ptr = (void *)make_function_pointer(def, obj);
790 	target = call_ifunc_resolver(ptr);
791 	return ((void *)target);
792 }
793 
794 /*
795  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
796  * Changes to this function should be applied there as well.
797  */
798 Elf_Addr
799 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
800 {
801     const Elf_Rel *rel;
802     const Elf_Sym *def;
803     const Obj_Entry *defobj;
804     Elf_Addr *where;
805     Elf_Addr target;
806     RtldLockState lockstate;
807 
808     rlock_acquire(rtld_bind_lock, &lockstate);
809     if (sigsetjmp(lockstate.env, 0) != 0)
810 	    lock_upgrade(rtld_bind_lock, &lockstate);
811     if (obj->pltrel)
812 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
813     else
814 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
815 
816     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
817     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
818 	NULL, &lockstate);
819     if (def == NULL)
820 	rtld_die();
821     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
822 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
823     else
824 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
825 
826     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
827       defobj->strtab + def->st_name, basename(obj->path),
828       (void *)target, basename(defobj->path));
829 
830     /*
831      * Write the new contents for the jmpslot. Note that depending on
832      * architecture, the value which we need to return back to the
833      * lazy binding trampoline may or may not be the target
834      * address. The value returned from reloc_jmpslot() is the value
835      * that the trampoline needs.
836      */
837     target = reloc_jmpslot(where, target, defobj, obj, rel);
838     lock_release(rtld_bind_lock, &lockstate);
839     return target;
840 }
841 
842 /*
843  * Error reporting function.  Use it like printf.  If formats the message
844  * into a buffer, and sets things up so that the next call to dlerror()
845  * will return the message.
846  */
847 void
848 _rtld_error(const char *fmt, ...)
849 {
850     static char buf[512];
851     va_list ap;
852 
853     va_start(ap, fmt);
854     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
855     error_message = buf;
856     va_end(ap);
857     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
858 }
859 
860 /*
861  * Return a dynamically-allocated copy of the current error message, if any.
862  */
863 static char *
864 errmsg_save(void)
865 {
866     return error_message == NULL ? NULL : xstrdup(error_message);
867 }
868 
869 /*
870  * Restore the current error message from a copy which was previously saved
871  * by errmsg_save().  The copy is freed.
872  */
873 static void
874 errmsg_restore(char *saved_msg)
875 {
876     if (saved_msg == NULL)
877 	error_message = NULL;
878     else {
879 	_rtld_error("%s", saved_msg);
880 	free(saved_msg);
881     }
882 }
883 
884 static const char *
885 basename(const char *name)
886 {
887     const char *p = strrchr(name, '/');
888     return p != NULL ? p + 1 : name;
889 }
890 
891 static struct utsname uts;
892 
893 static char *
894 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
895     const char *subst, bool may_free)
896 {
897 	char *p, *p1, *res, *resp;
898 	int subst_len, kw_len, subst_count, old_len, new_len;
899 
900 	kw_len = strlen(kw);
901 
902 	/*
903 	 * First, count the number of the keyword occurrences, to
904 	 * preallocate the final string.
905 	 */
906 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
907 		p1 = strstr(p, kw);
908 		if (p1 == NULL)
909 			break;
910 	}
911 
912 	/*
913 	 * If the keyword is not found, just return.
914 	 *
915 	 * Return non-substituted string if resolution failed.  We
916 	 * cannot do anything more reasonable, the failure mode of the
917 	 * caller is unresolved library anyway.
918 	 */
919 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
920 		return (may_free ? real : xstrdup(real));
921 	if (obj != NULL)
922 		subst = obj->origin_path;
923 
924 	/*
925 	 * There is indeed something to substitute.  Calculate the
926 	 * length of the resulting string, and allocate it.
927 	 */
928 	subst_len = strlen(subst);
929 	old_len = strlen(real);
930 	new_len = old_len + (subst_len - kw_len) * subst_count;
931 	res = xmalloc(new_len + 1);
932 
933 	/*
934 	 * Now, execute the substitution loop.
935 	 */
936 	for (p = real, resp = res, *resp = '\0';;) {
937 		p1 = strstr(p, kw);
938 		if (p1 != NULL) {
939 			/* Copy the prefix before keyword. */
940 			memcpy(resp, p, p1 - p);
941 			resp += p1 - p;
942 			/* Keyword replacement. */
943 			memcpy(resp, subst, subst_len);
944 			resp += subst_len;
945 			*resp = '\0';
946 			p = p1 + kw_len;
947 		} else
948 			break;
949 	}
950 
951 	/* Copy to the end of string and finish. */
952 	strcat(resp, p);
953 	if (may_free)
954 		free(real);
955 	return (res);
956 }
957 
958 static char *
959 origin_subst(Obj_Entry *obj, const char *real)
960 {
961 	char *res1, *res2, *res3, *res4;
962 
963 	if (obj == NULL || !trust)
964 		return (xstrdup(real));
965 	if (uts.sysname[0] == '\0') {
966 		if (uname(&uts) != 0) {
967 			_rtld_error("utsname failed: %d", errno);
968 			return (NULL);
969 		}
970 	}
971 	/* __DECONST is safe here since without may_free real is unchanged */
972 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
973 	    false);
974 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
975 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
976 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
977 	return (res4);
978 }
979 
980 void
981 rtld_die(void)
982 {
983     const char *msg = dlerror();
984 
985     if (msg == NULL)
986 	msg = "Fatal error";
987     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
988     rtld_fdputstr(STDERR_FILENO, msg);
989     rtld_fdputchar(STDERR_FILENO, '\n');
990     _exit(1);
991 }
992 
993 /*
994  * Process a shared object's DYNAMIC section, and save the important
995  * information in its Obj_Entry structure.
996  */
997 static void
998 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
999     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1000 {
1001     const Elf_Dyn *dynp;
1002     Needed_Entry **needed_tail = &obj->needed;
1003     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1004     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1005     const Elf_Hashelt *hashtab;
1006     const Elf32_Word *hashval;
1007     Elf32_Word bkt, nmaskwords;
1008     int bloom_size32;
1009     int plttype = DT_REL;
1010 
1011     *dyn_rpath = NULL;
1012     *dyn_soname = NULL;
1013     *dyn_runpath = NULL;
1014 
1015     obj->bind_now = false;
1016     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1017 	switch (dynp->d_tag) {
1018 
1019 	case DT_REL:
1020 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1021 	    break;
1022 
1023 	case DT_RELSZ:
1024 	    obj->relsize = dynp->d_un.d_val;
1025 	    break;
1026 
1027 	case DT_RELENT:
1028 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1029 	    break;
1030 
1031 	case DT_JMPREL:
1032 	    obj->pltrel = (const Elf_Rel *)
1033 	      (obj->relocbase + dynp->d_un.d_ptr);
1034 	    break;
1035 
1036 	case DT_PLTRELSZ:
1037 	    obj->pltrelsize = dynp->d_un.d_val;
1038 	    break;
1039 
1040 	case DT_RELA:
1041 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1042 	    break;
1043 
1044 	case DT_RELASZ:
1045 	    obj->relasize = dynp->d_un.d_val;
1046 	    break;
1047 
1048 	case DT_RELAENT:
1049 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1050 	    break;
1051 
1052 	case DT_PLTREL:
1053 	    plttype = dynp->d_un.d_val;
1054 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1055 	    break;
1056 
1057 	case DT_SYMTAB:
1058 	    obj->symtab = (const Elf_Sym *)
1059 	      (obj->relocbase + dynp->d_un.d_ptr);
1060 	    break;
1061 
1062 	case DT_SYMENT:
1063 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1064 	    break;
1065 
1066 	case DT_STRTAB:
1067 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_STRSZ:
1071 	    obj->strsize = dynp->d_un.d_val;
1072 	    break;
1073 
1074 	case DT_VERNEED:
1075 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1076 		dynp->d_un.d_val);
1077 	    break;
1078 
1079 	case DT_VERNEEDNUM:
1080 	    obj->verneednum = dynp->d_un.d_val;
1081 	    break;
1082 
1083 	case DT_VERDEF:
1084 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1085 		dynp->d_un.d_val);
1086 	    break;
1087 
1088 	case DT_VERDEFNUM:
1089 	    obj->verdefnum = dynp->d_un.d_val;
1090 	    break;
1091 
1092 	case DT_VERSYM:
1093 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1094 		dynp->d_un.d_val);
1095 	    break;
1096 
1097 	case DT_HASH:
1098 	    {
1099 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1100 		    dynp->d_un.d_ptr);
1101 		obj->nbuckets = hashtab[0];
1102 		obj->nchains = hashtab[1];
1103 		obj->buckets = hashtab + 2;
1104 		obj->chains = obj->buckets + obj->nbuckets;
1105 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1106 		  obj->buckets != NULL;
1107 	    }
1108 	    break;
1109 
1110 	case DT_GNU_HASH:
1111 	    {
1112 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1113 		    dynp->d_un.d_ptr);
1114 		obj->nbuckets_gnu = hashtab[0];
1115 		obj->symndx_gnu = hashtab[1];
1116 		nmaskwords = hashtab[2];
1117 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1118 		obj->maskwords_bm_gnu = nmaskwords - 1;
1119 		obj->shift2_gnu = hashtab[3];
1120 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1121 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1122 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1123 		  obj->symndx_gnu;
1124 		/* Number of bitmask words is required to be power of 2 */
1125 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1126 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1127 	    }
1128 	    break;
1129 
1130 	case DT_NEEDED:
1131 	    if (!obj->rtld) {
1132 		Needed_Entry *nep = NEW(Needed_Entry);
1133 		nep->name = dynp->d_un.d_val;
1134 		nep->obj = NULL;
1135 		nep->next = NULL;
1136 
1137 		*needed_tail = nep;
1138 		needed_tail = &nep->next;
1139 	    }
1140 	    break;
1141 
1142 	case DT_FILTER:
1143 	    if (!obj->rtld) {
1144 		Needed_Entry *nep = NEW(Needed_Entry);
1145 		nep->name = dynp->d_un.d_val;
1146 		nep->obj = NULL;
1147 		nep->next = NULL;
1148 
1149 		*needed_filtees_tail = nep;
1150 		needed_filtees_tail = &nep->next;
1151 	    }
1152 	    break;
1153 
1154 	case DT_AUXILIARY:
1155 	    if (!obj->rtld) {
1156 		Needed_Entry *nep = NEW(Needed_Entry);
1157 		nep->name = dynp->d_un.d_val;
1158 		nep->obj = NULL;
1159 		nep->next = NULL;
1160 
1161 		*needed_aux_filtees_tail = nep;
1162 		needed_aux_filtees_tail = &nep->next;
1163 	    }
1164 	    break;
1165 
1166 	case DT_PLTGOT:
1167 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1168 	    break;
1169 
1170 	case DT_TEXTREL:
1171 	    obj->textrel = true;
1172 	    break;
1173 
1174 	case DT_SYMBOLIC:
1175 	    obj->symbolic = true;
1176 	    break;
1177 
1178 	case DT_RPATH:
1179 	    /*
1180 	     * We have to wait until later to process this, because we
1181 	     * might not have gotten the address of the string table yet.
1182 	     */
1183 	    *dyn_rpath = dynp;
1184 	    break;
1185 
1186 	case DT_SONAME:
1187 	    *dyn_soname = dynp;
1188 	    break;
1189 
1190 	case DT_RUNPATH:
1191 	    *dyn_runpath = dynp;
1192 	    break;
1193 
1194 	case DT_INIT:
1195 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1196 	    break;
1197 
1198 	case DT_PREINIT_ARRAY:
1199 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1200 	    break;
1201 
1202 	case DT_PREINIT_ARRAYSZ:
1203 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1204 	    break;
1205 
1206 	case DT_INIT_ARRAY:
1207 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1208 	    break;
1209 
1210 	case DT_INIT_ARRAYSZ:
1211 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1212 	    break;
1213 
1214 	case DT_FINI:
1215 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1216 	    break;
1217 
1218 	case DT_FINI_ARRAY:
1219 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1220 	    break;
1221 
1222 	case DT_FINI_ARRAYSZ:
1223 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1224 	    break;
1225 
1226 	/*
1227 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1228 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1229 	 */
1230 
1231 #ifndef __mips__
1232 	case DT_DEBUG:
1233 	    if (!early)
1234 		dbg("Filling in DT_DEBUG entry");
1235 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1236 	    break;
1237 #endif
1238 
1239 	case DT_FLAGS:
1240 		if (dynp->d_un.d_val & DF_ORIGIN)
1241 		    obj->z_origin = true;
1242 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1243 		    obj->symbolic = true;
1244 		if (dynp->d_un.d_val & DF_TEXTREL)
1245 		    obj->textrel = true;
1246 		if (dynp->d_un.d_val & DF_BIND_NOW)
1247 		    obj->bind_now = true;
1248 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1249 		    ;*/
1250 	    break;
1251 #ifdef __mips__
1252 	case DT_MIPS_LOCAL_GOTNO:
1253 		obj->local_gotno = dynp->d_un.d_val;
1254 		break;
1255 
1256 	case DT_MIPS_SYMTABNO:
1257 		obj->symtabno = dynp->d_un.d_val;
1258 		break;
1259 
1260 	case DT_MIPS_GOTSYM:
1261 		obj->gotsym = dynp->d_un.d_val;
1262 		break;
1263 
1264 	case DT_MIPS_RLD_MAP:
1265 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1266 		break;
1267 
1268 	case DT_MIPS_RLD_MAP_REL:
1269 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1270 		// section relative to the address of the tag itself.
1271 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1272 		    (Elf_Addr) &r_debug;
1273 		break;
1274 
1275 	case DT_MIPS_PLTGOT:
1276 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1277 		    dynp->d_un.d_ptr);
1278 		break;
1279 
1280 #endif
1281 
1282 #ifdef __powerpc64__
1283 	case DT_PPC64_GLINK:
1284 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1285 		break;
1286 #endif
1287 
1288 	case DT_FLAGS_1:
1289 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1290 		    obj->z_noopen = true;
1291 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1292 		    obj->z_origin = true;
1293 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1294 		    obj->z_global = true;
1295 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1296 		    obj->bind_now = true;
1297 		if (dynp->d_un.d_val & DF_1_NODELETE)
1298 		    obj->z_nodelete = true;
1299 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1300 		    obj->z_loadfltr = true;
1301 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1302 		    obj->z_interpose = true;
1303 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1304 		    obj->z_nodeflib = true;
1305 	    break;
1306 
1307 	default:
1308 	    if (!early) {
1309 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1310 		    (long)dynp->d_tag);
1311 	    }
1312 	    break;
1313 	}
1314     }
1315 
1316     obj->traced = false;
1317 
1318     if (plttype == DT_RELA) {
1319 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1320 	obj->pltrel = NULL;
1321 	obj->pltrelasize = obj->pltrelsize;
1322 	obj->pltrelsize = 0;
1323     }
1324 
1325     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1326     if (obj->valid_hash_sysv)
1327 	obj->dynsymcount = obj->nchains;
1328     else if (obj->valid_hash_gnu) {
1329 	obj->dynsymcount = 0;
1330 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1331 	    if (obj->buckets_gnu[bkt] == 0)
1332 		continue;
1333 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1334 	    do
1335 		obj->dynsymcount++;
1336 	    while ((*hashval++ & 1u) == 0);
1337 	}
1338 	obj->dynsymcount += obj->symndx_gnu;
1339     }
1340 }
1341 
1342 static bool
1343 obj_resolve_origin(Obj_Entry *obj)
1344 {
1345 
1346 	if (obj->origin_path != NULL)
1347 		return (true);
1348 	obj->origin_path = xmalloc(PATH_MAX);
1349 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1350 }
1351 
1352 static void
1353 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1354     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1355 {
1356 
1357 	if (obj->z_origin && !obj_resolve_origin(obj))
1358 		rtld_die();
1359 
1360 	if (dyn_runpath != NULL) {
1361 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1362 		obj->runpath = origin_subst(obj, obj->runpath);
1363 	} else if (dyn_rpath != NULL) {
1364 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1365 		obj->rpath = origin_subst(obj, obj->rpath);
1366 	}
1367 	if (dyn_soname != NULL)
1368 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1369 }
1370 
1371 static void
1372 digest_dynamic(Obj_Entry *obj, int early)
1373 {
1374 	const Elf_Dyn *dyn_rpath;
1375 	const Elf_Dyn *dyn_soname;
1376 	const Elf_Dyn *dyn_runpath;
1377 
1378 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1379 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1380 }
1381 
1382 /*
1383  * Process a shared object's program header.  This is used only for the
1384  * main program, when the kernel has already loaded the main program
1385  * into memory before calling the dynamic linker.  It creates and
1386  * returns an Obj_Entry structure.
1387  */
1388 static Obj_Entry *
1389 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1390 {
1391     Obj_Entry *obj;
1392     const Elf_Phdr *phlimit = phdr + phnum;
1393     const Elf_Phdr *ph;
1394     Elf_Addr note_start, note_end;
1395     int nsegs = 0;
1396 
1397     obj = obj_new();
1398     for (ph = phdr;  ph < phlimit;  ph++) {
1399 	if (ph->p_type != PT_PHDR)
1400 	    continue;
1401 
1402 	obj->phdr = phdr;
1403 	obj->phsize = ph->p_memsz;
1404 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1405 	break;
1406     }
1407 
1408     obj->stack_flags = PF_X | PF_R | PF_W;
1409 
1410     for (ph = phdr;  ph < phlimit;  ph++) {
1411 	switch (ph->p_type) {
1412 
1413 	case PT_INTERP:
1414 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1415 	    break;
1416 
1417 	case PT_LOAD:
1418 	    if (nsegs == 0) {	/* First load segment */
1419 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1420 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1421 	    } else {		/* Last load segment */
1422 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1423 		  obj->vaddrbase;
1424 	    }
1425 	    nsegs++;
1426 	    break;
1427 
1428 	case PT_DYNAMIC:
1429 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1430 	    break;
1431 
1432 	case PT_TLS:
1433 	    obj->tlsindex = 1;
1434 	    obj->tlssize = ph->p_memsz;
1435 	    obj->tlsalign = ph->p_align;
1436 	    obj->tlsinitsize = ph->p_filesz;
1437 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1438 	    break;
1439 
1440 	case PT_GNU_STACK:
1441 	    obj->stack_flags = ph->p_flags;
1442 	    break;
1443 
1444 	case PT_GNU_RELRO:
1445 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1446 	    obj->relro_size = round_page(ph->p_memsz);
1447 	    break;
1448 
1449 	case PT_NOTE:
1450 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1451 	    note_end = note_start + ph->p_filesz;
1452 	    digest_notes(obj, note_start, note_end);
1453 	    break;
1454 	}
1455     }
1456     if (nsegs < 1) {
1457 	_rtld_error("%s: too few PT_LOAD segments", path);
1458 	return NULL;
1459     }
1460 
1461     obj->entry = entry;
1462     return obj;
1463 }
1464 
1465 void
1466 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1467 {
1468 	const Elf_Note *note;
1469 	const char *note_name;
1470 	uintptr_t p;
1471 
1472 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1473 	    note = (const Elf_Note *)((const char *)(note + 1) +
1474 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1475 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1476 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1477 		    note->n_descsz != sizeof(int32_t))
1478 			continue;
1479 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1480 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1481 			continue;
1482 		note_name = (const char *)(note + 1);
1483 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1484 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1485 			continue;
1486 		switch (note->n_type) {
1487 		case NT_FREEBSD_ABI_TAG:
1488 			/* FreeBSD osrel note */
1489 			p = (uintptr_t)(note + 1);
1490 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1491 			obj->osrel = *(const int32_t *)(p);
1492 			dbg("note osrel %d", obj->osrel);
1493 			break;
1494 		case NT_FREEBSD_NOINIT_TAG:
1495 			/* FreeBSD 'crt does not call init' note */
1496 			obj->crt_no_init = true;
1497 			dbg("note crt_no_init");
1498 			break;
1499 		}
1500 	}
1501 }
1502 
1503 static Obj_Entry *
1504 dlcheck(void *handle)
1505 {
1506     Obj_Entry *obj;
1507 
1508     TAILQ_FOREACH(obj, &obj_list, next) {
1509 	if (obj == (Obj_Entry *) handle)
1510 	    break;
1511     }
1512 
1513     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1514 	_rtld_error("Invalid shared object handle %p", handle);
1515 	return NULL;
1516     }
1517     return obj;
1518 }
1519 
1520 /*
1521  * If the given object is already in the donelist, return true.  Otherwise
1522  * add the object to the list and return false.
1523  */
1524 static bool
1525 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1526 {
1527     unsigned int i;
1528 
1529     for (i = 0;  i < dlp->num_used;  i++)
1530 	if (dlp->objs[i] == obj)
1531 	    return true;
1532     /*
1533      * Our donelist allocation should always be sufficient.  But if
1534      * our threads locking isn't working properly, more shared objects
1535      * could have been loaded since we allocated the list.  That should
1536      * never happen, but we'll handle it properly just in case it does.
1537      */
1538     if (dlp->num_used < dlp->num_alloc)
1539 	dlp->objs[dlp->num_used++] = obj;
1540     return false;
1541 }
1542 
1543 /*
1544  * Hash function for symbol table lookup.  Don't even think about changing
1545  * this.  It is specified by the System V ABI.
1546  */
1547 unsigned long
1548 elf_hash(const char *name)
1549 {
1550     const unsigned char *p = (const unsigned char *) name;
1551     unsigned long h = 0;
1552     unsigned long g;
1553 
1554     while (*p != '\0') {
1555 	h = (h << 4) + *p++;
1556 	if ((g = h & 0xf0000000) != 0)
1557 	    h ^= g >> 24;
1558 	h &= ~g;
1559     }
1560     return h;
1561 }
1562 
1563 /*
1564  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1565  * unsigned in case it's implemented with a wider type.
1566  */
1567 static uint32_t
1568 gnu_hash(const char *s)
1569 {
1570 	uint32_t h;
1571 	unsigned char c;
1572 
1573 	h = 5381;
1574 	for (c = *s; c != '\0'; c = *++s)
1575 		h = h * 33 + c;
1576 	return (h & 0xffffffff);
1577 }
1578 
1579 
1580 /*
1581  * Find the library with the given name, and return its full pathname.
1582  * The returned string is dynamically allocated.  Generates an error
1583  * message and returns NULL if the library cannot be found.
1584  *
1585  * If the second argument is non-NULL, then it refers to an already-
1586  * loaded shared object, whose library search path will be searched.
1587  *
1588  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1589  * descriptor (which is close-on-exec) will be passed out via the third
1590  * argument.
1591  *
1592  * The search order is:
1593  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1594  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1595  *   LD_LIBRARY_PATH
1596  *   DT_RUNPATH in the referencing file
1597  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1598  *	 from list)
1599  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1600  *
1601  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1602  */
1603 static char *
1604 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1605 {
1606 	char *pathname, *refobj_path;
1607 	const char *name;
1608 	bool nodeflib, objgiven;
1609 
1610 	objgiven = refobj != NULL;
1611 
1612 	if (libmap_disable || !objgiven ||
1613 	    (name = lm_find(refobj->path, xname)) == NULL)
1614 		name = xname;
1615 
1616 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1617 		if (name[0] != '/' && !trust) {
1618 			_rtld_error("Absolute pathname required "
1619 			    "for shared object \"%s\"", name);
1620 			return (NULL);
1621 		}
1622 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1623 		    __DECONST(char *, name)));
1624 	}
1625 
1626 	dbg(" Searching for \"%s\"", name);
1627 	refobj_path = objgiven ? refobj->path : NULL;
1628 
1629 	/*
1630 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1631 	 * back to pre-conforming behaviour if user requested so with
1632 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1633 	 * nodeflib.
1634 	 */
1635 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1636 		pathname = search_library_path(name, ld_library_path,
1637 		    refobj_path, fdp);
1638 		if (pathname != NULL)
1639 			return (pathname);
1640 		if (refobj != NULL) {
1641 			pathname = search_library_path(name, refobj->rpath,
1642 			    refobj_path, fdp);
1643 			if (pathname != NULL)
1644 				return (pathname);
1645 		}
1646 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1647 		if (pathname != NULL)
1648 			return (pathname);
1649 		pathname = search_library_path(name, gethints(false),
1650 		    refobj_path, fdp);
1651 		if (pathname != NULL)
1652 			return (pathname);
1653 		pathname = search_library_path(name, ld_standard_library_path,
1654 		    refobj_path, fdp);
1655 		if (pathname != NULL)
1656 			return (pathname);
1657 	} else {
1658 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1659 		if (objgiven) {
1660 			pathname = search_library_path(name, refobj->rpath,
1661 			    refobj->path, fdp);
1662 			if (pathname != NULL)
1663 				return (pathname);
1664 		}
1665 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1666 			pathname = search_library_path(name, obj_main->rpath,
1667 			    refobj_path, fdp);
1668 			if (pathname != NULL)
1669 				return (pathname);
1670 		}
1671 		pathname = search_library_path(name, ld_library_path,
1672 		    refobj_path, fdp);
1673 		if (pathname != NULL)
1674 			return (pathname);
1675 		if (objgiven) {
1676 			pathname = search_library_path(name, refobj->runpath,
1677 			    refobj_path, fdp);
1678 			if (pathname != NULL)
1679 				return (pathname);
1680 		}
1681 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1682 		if (pathname != NULL)
1683 			return (pathname);
1684 		pathname = search_library_path(name, gethints(nodeflib),
1685 		    refobj_path, fdp);
1686 		if (pathname != NULL)
1687 			return (pathname);
1688 		if (objgiven && !nodeflib) {
1689 			pathname = search_library_path(name,
1690 			    ld_standard_library_path, refobj_path, fdp);
1691 			if (pathname != NULL)
1692 				return (pathname);
1693 		}
1694 	}
1695 
1696 	if (objgiven && refobj->path != NULL) {
1697 		_rtld_error("Shared object \"%s\" not found, "
1698 		    "required by \"%s\"", name, basename(refobj->path));
1699 	} else {
1700 		_rtld_error("Shared object \"%s\" not found", name);
1701 	}
1702 	return (NULL);
1703 }
1704 
1705 /*
1706  * Given a symbol number in a referencing object, find the corresponding
1707  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1708  * no definition was found.  Returns a pointer to the Obj_Entry of the
1709  * defining object via the reference parameter DEFOBJ_OUT.
1710  */
1711 const Elf_Sym *
1712 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1713     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1714     RtldLockState *lockstate)
1715 {
1716     const Elf_Sym *ref;
1717     const Elf_Sym *def;
1718     const Obj_Entry *defobj;
1719     const Ver_Entry *ve;
1720     SymLook req;
1721     const char *name;
1722     int res;
1723 
1724     /*
1725      * If we have already found this symbol, get the information from
1726      * the cache.
1727      */
1728     if (symnum >= refobj->dynsymcount)
1729 	return NULL;	/* Bad object */
1730     if (cache != NULL && cache[symnum].sym != NULL) {
1731 	*defobj_out = cache[symnum].obj;
1732 	return cache[symnum].sym;
1733     }
1734 
1735     ref = refobj->symtab + symnum;
1736     name = refobj->strtab + ref->st_name;
1737     def = NULL;
1738     defobj = NULL;
1739     ve = NULL;
1740 
1741     /*
1742      * We don't have to do a full scale lookup if the symbol is local.
1743      * We know it will bind to the instance in this load module; to
1744      * which we already have a pointer (ie ref). By not doing a lookup,
1745      * we not only improve performance, but it also avoids unresolvable
1746      * symbols when local symbols are not in the hash table. This has
1747      * been seen with the ia64 toolchain.
1748      */
1749     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1750 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1751 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1752 		symnum);
1753 	}
1754 	symlook_init(&req, name);
1755 	req.flags = flags;
1756 	ve = req.ventry = fetch_ventry(refobj, symnum);
1757 	req.lockstate = lockstate;
1758 	res = symlook_default(&req, refobj);
1759 	if (res == 0) {
1760 	    def = req.sym_out;
1761 	    defobj = req.defobj_out;
1762 	}
1763     } else {
1764 	def = ref;
1765 	defobj = refobj;
1766     }
1767 
1768     /*
1769      * If we found no definition and the reference is weak, treat the
1770      * symbol as having the value zero.
1771      */
1772     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1773 	def = &sym_zero;
1774 	defobj = obj_main;
1775     }
1776 
1777     if (def != NULL) {
1778 	*defobj_out = defobj;
1779 	/* Record the information in the cache to avoid subsequent lookups. */
1780 	if (cache != NULL) {
1781 	    cache[symnum].sym = def;
1782 	    cache[symnum].obj = defobj;
1783 	}
1784     } else {
1785 	if (refobj != &obj_rtld)
1786 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1787 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1788     }
1789     return def;
1790 }
1791 
1792 /*
1793  * Return the search path from the ldconfig hints file, reading it if
1794  * necessary.  If nostdlib is true, then the default search paths are
1795  * not added to result.
1796  *
1797  * Returns NULL if there are problems with the hints file,
1798  * or if the search path there is empty.
1799  */
1800 static const char *
1801 gethints(bool nostdlib)
1802 {
1803 	static char *filtered_path;
1804 	static const char *hints;
1805 	static struct elfhints_hdr hdr;
1806 	struct fill_search_info_args sargs, hargs;
1807 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1808 	struct dl_serpath *SLPpath, *hintpath;
1809 	char *p;
1810 	struct stat hint_stat;
1811 	unsigned int SLPndx, hintndx, fndx, fcount;
1812 	int fd;
1813 	size_t flen;
1814 	uint32_t dl;
1815 	bool skip;
1816 
1817 	/* First call, read the hints file */
1818 	if (hints == NULL) {
1819 		/* Keep from trying again in case the hints file is bad. */
1820 		hints = "";
1821 
1822 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1823 			return (NULL);
1824 
1825 		/*
1826 		 * Check of hdr.dirlistlen value against type limit
1827 		 * intends to pacify static analyzers.  Further
1828 		 * paranoia leads to checks that dirlist is fully
1829 		 * contained in the file range.
1830 		 */
1831 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1832 		    hdr.magic != ELFHINTS_MAGIC ||
1833 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1834 		    fstat(fd, &hint_stat) == -1) {
1835 cleanup1:
1836 			close(fd);
1837 			hdr.dirlistlen = 0;
1838 			return (NULL);
1839 		}
1840 		dl = hdr.strtab;
1841 		if (dl + hdr.dirlist < dl)
1842 			goto cleanup1;
1843 		dl += hdr.dirlist;
1844 		if (dl + hdr.dirlistlen < dl)
1845 			goto cleanup1;
1846 		dl += hdr.dirlistlen;
1847 		if (dl > hint_stat.st_size)
1848 			goto cleanup1;
1849 		p = xmalloc(hdr.dirlistlen + 1);
1850 		if (pread(fd, p, hdr.dirlistlen + 1,
1851 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1852 		    p[hdr.dirlistlen] != '\0') {
1853 			free(p);
1854 			goto cleanup1;
1855 		}
1856 		hints = p;
1857 		close(fd);
1858 	}
1859 
1860 	/*
1861 	 * If caller agreed to receive list which includes the default
1862 	 * paths, we are done. Otherwise, if we still did not
1863 	 * calculated filtered result, do it now.
1864 	 */
1865 	if (!nostdlib)
1866 		return (hints[0] != '\0' ? hints : NULL);
1867 	if (filtered_path != NULL)
1868 		goto filt_ret;
1869 
1870 	/*
1871 	 * Obtain the list of all configured search paths, and the
1872 	 * list of the default paths.
1873 	 *
1874 	 * First estimate the size of the results.
1875 	 */
1876 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1877 	smeta.dls_cnt = 0;
1878 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1879 	hmeta.dls_cnt = 0;
1880 
1881 	sargs.request = RTLD_DI_SERINFOSIZE;
1882 	sargs.serinfo = &smeta;
1883 	hargs.request = RTLD_DI_SERINFOSIZE;
1884 	hargs.serinfo = &hmeta;
1885 
1886 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1887 	    &sargs);
1888 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1889 
1890 	SLPinfo = xmalloc(smeta.dls_size);
1891 	hintinfo = xmalloc(hmeta.dls_size);
1892 
1893 	/*
1894 	 * Next fetch both sets of paths.
1895 	 */
1896 	sargs.request = RTLD_DI_SERINFO;
1897 	sargs.serinfo = SLPinfo;
1898 	sargs.serpath = &SLPinfo->dls_serpath[0];
1899 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1900 
1901 	hargs.request = RTLD_DI_SERINFO;
1902 	hargs.serinfo = hintinfo;
1903 	hargs.serpath = &hintinfo->dls_serpath[0];
1904 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1905 
1906 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1907 	    &sargs);
1908 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1909 
1910 	/*
1911 	 * Now calculate the difference between two sets, by excluding
1912 	 * standard paths from the full set.
1913 	 */
1914 	fndx = 0;
1915 	fcount = 0;
1916 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1917 	hintpath = &hintinfo->dls_serpath[0];
1918 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1919 		skip = false;
1920 		SLPpath = &SLPinfo->dls_serpath[0];
1921 		/*
1922 		 * Check each standard path against current.
1923 		 */
1924 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1925 			/* matched, skip the path */
1926 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1927 				skip = true;
1928 				break;
1929 			}
1930 		}
1931 		if (skip)
1932 			continue;
1933 		/*
1934 		 * Not matched against any standard path, add the path
1935 		 * to result. Separate consequtive paths with ':'.
1936 		 */
1937 		if (fcount > 0) {
1938 			filtered_path[fndx] = ':';
1939 			fndx++;
1940 		}
1941 		fcount++;
1942 		flen = strlen(hintpath->dls_name);
1943 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1944 		fndx += flen;
1945 	}
1946 	filtered_path[fndx] = '\0';
1947 
1948 	free(SLPinfo);
1949 	free(hintinfo);
1950 
1951 filt_ret:
1952 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1953 }
1954 
1955 static void
1956 init_dag(Obj_Entry *root)
1957 {
1958     const Needed_Entry *needed;
1959     const Objlist_Entry *elm;
1960     DoneList donelist;
1961 
1962     if (root->dag_inited)
1963 	return;
1964     donelist_init(&donelist);
1965 
1966     /* Root object belongs to own DAG. */
1967     objlist_push_tail(&root->dldags, root);
1968     objlist_push_tail(&root->dagmembers, root);
1969     donelist_check(&donelist, root);
1970 
1971     /*
1972      * Add dependencies of root object to DAG in breadth order
1973      * by exploiting the fact that each new object get added
1974      * to the tail of the dagmembers list.
1975      */
1976     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1977 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1978 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1979 		continue;
1980 	    objlist_push_tail(&needed->obj->dldags, root);
1981 	    objlist_push_tail(&root->dagmembers, needed->obj);
1982 	}
1983     }
1984     root->dag_inited = true;
1985 }
1986 
1987 static void
1988 init_marker(Obj_Entry *marker)
1989 {
1990 
1991 	bzero(marker, sizeof(*marker));
1992 	marker->marker = true;
1993 }
1994 
1995 Obj_Entry *
1996 globallist_curr(const Obj_Entry *obj)
1997 {
1998 
1999 	for (;;) {
2000 		if (obj == NULL)
2001 			return (NULL);
2002 		if (!obj->marker)
2003 			return (__DECONST(Obj_Entry *, obj));
2004 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2005 	}
2006 }
2007 
2008 Obj_Entry *
2009 globallist_next(const Obj_Entry *obj)
2010 {
2011 
2012 	for (;;) {
2013 		obj = TAILQ_NEXT(obj, next);
2014 		if (obj == NULL)
2015 			return (NULL);
2016 		if (!obj->marker)
2017 			return (__DECONST(Obj_Entry *, obj));
2018 	}
2019 }
2020 
2021 /* Prevent the object from being unmapped while the bind lock is dropped. */
2022 static void
2023 hold_object(Obj_Entry *obj)
2024 {
2025 
2026 	obj->holdcount++;
2027 }
2028 
2029 static void
2030 unhold_object(Obj_Entry *obj)
2031 {
2032 
2033 	assert(obj->holdcount > 0);
2034 	if (--obj->holdcount == 0 && obj->unholdfree)
2035 		release_object(obj);
2036 }
2037 
2038 static void
2039 process_z(Obj_Entry *root)
2040 {
2041 	const Objlist_Entry *elm;
2042 	Obj_Entry *obj;
2043 
2044 	/*
2045 	 * Walk over object DAG and process every dependent object
2046 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2047 	 * to grow their own DAG.
2048 	 *
2049 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2050 	 * symlook_global() to work.
2051 	 *
2052 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2053 	 */
2054 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2055 		obj = elm->obj;
2056 		if (obj == NULL)
2057 			continue;
2058 		if (obj->z_nodelete && !obj->ref_nodel) {
2059 			dbg("obj %s -z nodelete", obj->path);
2060 			init_dag(obj);
2061 			ref_dag(obj);
2062 			obj->ref_nodel = true;
2063 		}
2064 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2065 			dbg("obj %s -z global", obj->path);
2066 			objlist_push_tail(&list_global, obj);
2067 			init_dag(obj);
2068 		}
2069 	}
2070 }
2071 /*
2072  * Initialize the dynamic linker.  The argument is the address at which
2073  * the dynamic linker has been mapped into memory.  The primary task of
2074  * this function is to relocate the dynamic linker.
2075  */
2076 static void
2077 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2078 {
2079     Obj_Entry objtmp;	/* Temporary rtld object */
2080     const Elf_Ehdr *ehdr;
2081     const Elf_Dyn *dyn_rpath;
2082     const Elf_Dyn *dyn_soname;
2083     const Elf_Dyn *dyn_runpath;
2084 
2085 #ifdef RTLD_INIT_PAGESIZES_EARLY
2086     /* The page size is required by the dynamic memory allocator. */
2087     init_pagesizes(aux_info);
2088 #endif
2089 
2090     /*
2091      * Conjure up an Obj_Entry structure for the dynamic linker.
2092      *
2093      * The "path" member can't be initialized yet because string constants
2094      * cannot yet be accessed. Below we will set it correctly.
2095      */
2096     memset(&objtmp, 0, sizeof(objtmp));
2097     objtmp.path = NULL;
2098     objtmp.rtld = true;
2099     objtmp.mapbase = mapbase;
2100 #ifdef PIC
2101     objtmp.relocbase = mapbase;
2102 #endif
2103 
2104     objtmp.dynamic = rtld_dynamic(&objtmp);
2105     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2106     assert(objtmp.needed == NULL);
2107 #if !defined(__mips__)
2108     /* MIPS has a bogus DT_TEXTREL. */
2109     assert(!objtmp.textrel);
2110 #endif
2111     /*
2112      * Temporarily put the dynamic linker entry into the object list, so
2113      * that symbols can be found.
2114      */
2115     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2116 
2117     ehdr = (Elf_Ehdr *)mapbase;
2118     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2119     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2120 
2121     /* Initialize the object list. */
2122     TAILQ_INIT(&obj_list);
2123 
2124     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2125     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2126 
2127 #ifndef RTLD_INIT_PAGESIZES_EARLY
2128     /* The page size is required by the dynamic memory allocator. */
2129     init_pagesizes(aux_info);
2130 #endif
2131 
2132     if (aux_info[AT_OSRELDATE] != NULL)
2133 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2134 
2135     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2136 
2137     /* Replace the path with a dynamically allocated copy. */
2138     obj_rtld.path = xstrdup(ld_path_rtld);
2139 
2140     r_debug.r_brk = r_debug_state;
2141     r_debug.r_state = RT_CONSISTENT;
2142 }
2143 
2144 /*
2145  * Retrieve the array of supported page sizes.  The kernel provides the page
2146  * sizes in increasing order.
2147  */
2148 static void
2149 init_pagesizes(Elf_Auxinfo **aux_info)
2150 {
2151 	static size_t psa[MAXPAGESIZES];
2152 	int mib[2];
2153 	size_t len, size;
2154 
2155 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2156 	    NULL) {
2157 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2158 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2159 	} else {
2160 		len = 2;
2161 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2162 			size = sizeof(psa);
2163 		else {
2164 			/* As a fallback, retrieve the base page size. */
2165 			size = sizeof(psa[0]);
2166 			if (aux_info[AT_PAGESZ] != NULL) {
2167 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2168 				goto psa_filled;
2169 			} else {
2170 				mib[0] = CTL_HW;
2171 				mib[1] = HW_PAGESIZE;
2172 				len = 2;
2173 			}
2174 		}
2175 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2176 			_rtld_error("sysctl for hw.pagesize(s) failed");
2177 			rtld_die();
2178 		}
2179 psa_filled:
2180 		pagesizes = psa;
2181 	}
2182 	npagesizes = size / sizeof(pagesizes[0]);
2183 	/* Discard any invalid entries at the end of the array. */
2184 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2185 		npagesizes--;
2186 }
2187 
2188 /*
2189  * Add the init functions from a needed object list (and its recursive
2190  * needed objects) to "list".  This is not used directly; it is a helper
2191  * function for initlist_add_objects().  The write lock must be held
2192  * when this function is called.
2193  */
2194 static void
2195 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2196 {
2197     /* Recursively process the successor needed objects. */
2198     if (needed->next != NULL)
2199 	initlist_add_neededs(needed->next, list);
2200 
2201     /* Process the current needed object. */
2202     if (needed->obj != NULL)
2203 	initlist_add_objects(needed->obj, needed->obj, list);
2204 }
2205 
2206 /*
2207  * Scan all of the DAGs rooted in the range of objects from "obj" to
2208  * "tail" and add their init functions to "list".  This recurses over
2209  * the DAGs and ensure the proper init ordering such that each object's
2210  * needed libraries are initialized before the object itself.  At the
2211  * same time, this function adds the objects to the global finalization
2212  * list "list_fini" in the opposite order.  The write lock must be
2213  * held when this function is called.
2214  */
2215 static void
2216 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2217 {
2218     Obj_Entry *nobj;
2219 
2220     if (obj->init_scanned || obj->init_done)
2221 	return;
2222     obj->init_scanned = true;
2223 
2224     /* Recursively process the successor objects. */
2225     nobj = globallist_next(obj);
2226     if (nobj != NULL && obj != tail)
2227 	initlist_add_objects(nobj, tail, list);
2228 
2229     /* Recursively process the needed objects. */
2230     if (obj->needed != NULL)
2231 	initlist_add_neededs(obj->needed, list);
2232     if (obj->needed_filtees != NULL)
2233 	initlist_add_neededs(obj->needed_filtees, list);
2234     if (obj->needed_aux_filtees != NULL)
2235 	initlist_add_neededs(obj->needed_aux_filtees, list);
2236 
2237     /* Add the object to the init list. */
2238     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2239       obj->init_array != (Elf_Addr)NULL)
2240 	objlist_push_tail(list, obj);
2241 
2242     /* Add the object to the global fini list in the reverse order. */
2243     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2244       && !obj->on_fini_list) {
2245 	objlist_push_head(&list_fini, obj);
2246 	obj->on_fini_list = true;
2247     }
2248 }
2249 
2250 #ifndef FPTR_TARGET
2251 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2252 #endif
2253 
2254 static void
2255 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2256 {
2257     Needed_Entry *needed, *needed1;
2258 
2259     for (needed = n; needed != NULL; needed = needed->next) {
2260 	if (needed->obj != NULL) {
2261 	    dlclose_locked(needed->obj, lockstate);
2262 	    needed->obj = NULL;
2263 	}
2264     }
2265     for (needed = n; needed != NULL; needed = needed1) {
2266 	needed1 = needed->next;
2267 	free(needed);
2268     }
2269 }
2270 
2271 static void
2272 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2273 {
2274 
2275 	free_needed_filtees(obj->needed_filtees, lockstate);
2276 	obj->needed_filtees = NULL;
2277 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2278 	obj->needed_aux_filtees = NULL;
2279 	obj->filtees_loaded = false;
2280 }
2281 
2282 static void
2283 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2284     RtldLockState *lockstate)
2285 {
2286 
2287     for (; needed != NULL; needed = needed->next) {
2288 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2289 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2290 	  RTLD_LOCAL, lockstate);
2291     }
2292 }
2293 
2294 static void
2295 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2296 {
2297 
2298     lock_restart_for_upgrade(lockstate);
2299     if (!obj->filtees_loaded) {
2300 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2301 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2302 	obj->filtees_loaded = true;
2303     }
2304 }
2305 
2306 static int
2307 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2308 {
2309     Obj_Entry *obj1;
2310 
2311     for (; needed != NULL; needed = needed->next) {
2312 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2313 	  flags & ~RTLD_LO_NOLOAD);
2314 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2315 	    return (-1);
2316     }
2317     return (0);
2318 }
2319 
2320 /*
2321  * Given a shared object, traverse its list of needed objects, and load
2322  * each of them.  Returns 0 on success.  Generates an error message and
2323  * returns -1 on failure.
2324  */
2325 static int
2326 load_needed_objects(Obj_Entry *first, int flags)
2327 {
2328     Obj_Entry *obj;
2329 
2330     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2331 	if (obj->marker)
2332 	    continue;
2333 	if (process_needed(obj, obj->needed, flags) == -1)
2334 	    return (-1);
2335     }
2336     return (0);
2337 }
2338 
2339 static int
2340 load_preload_objects(void)
2341 {
2342     char *p = ld_preload;
2343     Obj_Entry *obj;
2344     static const char delim[] = " \t:;";
2345 
2346     if (p == NULL)
2347 	return 0;
2348 
2349     p += strspn(p, delim);
2350     while (*p != '\0') {
2351 	size_t len = strcspn(p, delim);
2352 	char savech;
2353 
2354 	savech = p[len];
2355 	p[len] = '\0';
2356 	obj = load_object(p, -1, NULL, 0);
2357 	if (obj == NULL)
2358 	    return -1;	/* XXX - cleanup */
2359 	obj->z_interpose = true;
2360 	p[len] = savech;
2361 	p += len;
2362 	p += strspn(p, delim);
2363     }
2364     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2365     return 0;
2366 }
2367 
2368 static const char *
2369 printable_path(const char *path)
2370 {
2371 
2372 	return (path == NULL ? "<unknown>" : path);
2373 }
2374 
2375 /*
2376  * Load a shared object into memory, if it is not already loaded.  The
2377  * object may be specified by name or by user-supplied file descriptor
2378  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2379  * duplicate is.
2380  *
2381  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2382  * on failure.
2383  */
2384 static Obj_Entry *
2385 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2386 {
2387     Obj_Entry *obj;
2388     int fd;
2389     struct stat sb;
2390     char *path;
2391 
2392     fd = -1;
2393     if (name != NULL) {
2394 	TAILQ_FOREACH(obj, &obj_list, next) {
2395 	    if (obj->marker || obj->doomed)
2396 		continue;
2397 	    if (object_match_name(obj, name))
2398 		return (obj);
2399 	}
2400 
2401 	path = find_library(name, refobj, &fd);
2402 	if (path == NULL)
2403 	    return (NULL);
2404     } else
2405 	path = NULL;
2406 
2407     if (fd >= 0) {
2408 	/*
2409 	 * search_library_pathfds() opens a fresh file descriptor for the
2410 	 * library, so there is no need to dup().
2411 	 */
2412     } else if (fd_u == -1) {
2413 	/*
2414 	 * If we didn't find a match by pathname, or the name is not
2415 	 * supplied, open the file and check again by device and inode.
2416 	 * This avoids false mismatches caused by multiple links or ".."
2417 	 * in pathnames.
2418 	 *
2419 	 * To avoid a race, we open the file and use fstat() rather than
2420 	 * using stat().
2421 	 */
2422 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2423 	    _rtld_error("Cannot open \"%s\"", path);
2424 	    free(path);
2425 	    return (NULL);
2426 	}
2427     } else {
2428 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2429 	if (fd == -1) {
2430 	    _rtld_error("Cannot dup fd");
2431 	    free(path);
2432 	    return (NULL);
2433 	}
2434     }
2435     if (fstat(fd, &sb) == -1) {
2436 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2437 	close(fd);
2438 	free(path);
2439 	return NULL;
2440     }
2441     TAILQ_FOREACH(obj, &obj_list, next) {
2442 	if (obj->marker || obj->doomed)
2443 	    continue;
2444 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2445 	    break;
2446     }
2447     if (obj != NULL && name != NULL) {
2448 	object_add_name(obj, name);
2449 	free(path);
2450 	close(fd);
2451 	return obj;
2452     }
2453     if (flags & RTLD_LO_NOLOAD) {
2454 	free(path);
2455 	close(fd);
2456 	return (NULL);
2457     }
2458 
2459     /* First use of this object, so we must map it in */
2460     obj = do_load_object(fd, name, path, &sb, flags);
2461     if (obj == NULL)
2462 	free(path);
2463     close(fd);
2464 
2465     return obj;
2466 }
2467 
2468 static Obj_Entry *
2469 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2470   int flags)
2471 {
2472     Obj_Entry *obj;
2473     struct statfs fs;
2474 
2475     /*
2476      * but first, make sure that environment variables haven't been
2477      * used to circumvent the noexec flag on a filesystem.
2478      */
2479     if (dangerous_ld_env) {
2480 	if (fstatfs(fd, &fs) != 0) {
2481 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2482 	    return NULL;
2483 	}
2484 	if (fs.f_flags & MNT_NOEXEC) {
2485 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2486 	    return NULL;
2487 	}
2488     }
2489     dbg("loading \"%s\"", printable_path(path));
2490     obj = map_object(fd, printable_path(path), sbp);
2491     if (obj == NULL)
2492         return NULL;
2493 
2494     /*
2495      * If DT_SONAME is present in the object, digest_dynamic2 already
2496      * added it to the object names.
2497      */
2498     if (name != NULL)
2499 	object_add_name(obj, name);
2500     obj->path = path;
2501     digest_dynamic(obj, 0);
2502     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2503 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2504     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2505       RTLD_LO_DLOPEN) {
2506 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2507 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2508 	munmap(obj->mapbase, obj->mapsize);
2509 	obj_free(obj);
2510 	return (NULL);
2511     }
2512 
2513     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2514     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2515     obj_count++;
2516     obj_loads++;
2517     linkmap_add(obj);	/* for GDB & dlinfo() */
2518     max_stack_flags |= obj->stack_flags;
2519 
2520     dbg("  %p .. %p: %s", obj->mapbase,
2521          obj->mapbase + obj->mapsize - 1, obj->path);
2522     if (obj->textrel)
2523 	dbg("  WARNING: %s has impure text", obj->path);
2524     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2525 	obj->path);
2526 
2527     return obj;
2528 }
2529 
2530 static Obj_Entry *
2531 obj_from_addr(const void *addr)
2532 {
2533     Obj_Entry *obj;
2534 
2535     TAILQ_FOREACH(obj, &obj_list, next) {
2536 	if (obj->marker)
2537 	    continue;
2538 	if (addr < (void *) obj->mapbase)
2539 	    continue;
2540 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2541 	    return obj;
2542     }
2543     return NULL;
2544 }
2545 
2546 static void
2547 preinit_main(void)
2548 {
2549     Elf_Addr *preinit_addr;
2550     int index;
2551 
2552     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2553     if (preinit_addr == NULL)
2554 	return;
2555 
2556     for (index = 0; index < obj_main->preinit_array_num; index++) {
2557 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2558 	    dbg("calling preinit function for %s at %p", obj_main->path,
2559 	      (void *)preinit_addr[index]);
2560 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2561 	      0, 0, obj_main->path);
2562 	    call_init_pointer(obj_main, preinit_addr[index]);
2563 	}
2564     }
2565 }
2566 
2567 /*
2568  * Call the finalization functions for each of the objects in "list"
2569  * belonging to the DAG of "root" and referenced once. If NULL "root"
2570  * is specified, every finalization function will be called regardless
2571  * of the reference count and the list elements won't be freed. All of
2572  * the objects are expected to have non-NULL fini functions.
2573  */
2574 static void
2575 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2576 {
2577     Objlist_Entry *elm;
2578     char *saved_msg;
2579     Elf_Addr *fini_addr;
2580     int index;
2581 
2582     assert(root == NULL || root->refcount == 1);
2583 
2584     if (root != NULL)
2585 	root->doomed = true;
2586 
2587     /*
2588      * Preserve the current error message since a fini function might
2589      * call into the dynamic linker and overwrite it.
2590      */
2591     saved_msg = errmsg_save();
2592     do {
2593 	STAILQ_FOREACH(elm, list, link) {
2594 	    if (root != NULL && (elm->obj->refcount != 1 ||
2595 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2596 		continue;
2597 	    /* Remove object from fini list to prevent recursive invocation. */
2598 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2599 	    /* Ensure that new references cannot be acquired. */
2600 	    elm->obj->doomed = true;
2601 
2602 	    hold_object(elm->obj);
2603 	    lock_release(rtld_bind_lock, lockstate);
2604 	    /*
2605 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2606 	     * When this happens, DT_FINI_ARRAY is processed first.
2607 	     */
2608 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2609 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2610 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2611 		  index--) {
2612 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2613 			dbg("calling fini function for %s at %p",
2614 			    elm->obj->path, (void *)fini_addr[index]);
2615 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2616 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2617 			call_initfini_pointer(elm->obj, fini_addr[index]);
2618 		    }
2619 		}
2620 	    }
2621 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2622 		dbg("calling fini function for %s at %p", elm->obj->path,
2623 		    (void *)elm->obj->fini);
2624 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2625 		    0, 0, elm->obj->path);
2626 		call_initfini_pointer(elm->obj, elm->obj->fini);
2627 	    }
2628 	    wlock_acquire(rtld_bind_lock, lockstate);
2629 	    unhold_object(elm->obj);
2630 	    /* No need to free anything if process is going down. */
2631 	    if (root != NULL)
2632 	    	free(elm);
2633 	    /*
2634 	     * We must restart the list traversal after every fini call
2635 	     * because a dlclose() call from the fini function or from
2636 	     * another thread might have modified the reference counts.
2637 	     */
2638 	    break;
2639 	}
2640     } while (elm != NULL);
2641     errmsg_restore(saved_msg);
2642 }
2643 
2644 /*
2645  * Call the initialization functions for each of the objects in
2646  * "list".  All of the objects are expected to have non-NULL init
2647  * functions.
2648  */
2649 static void
2650 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2651 {
2652     Objlist_Entry *elm;
2653     Obj_Entry *obj;
2654     char *saved_msg;
2655     Elf_Addr *init_addr;
2656     int index;
2657 
2658     /*
2659      * Clean init_scanned flag so that objects can be rechecked and
2660      * possibly initialized earlier if any of vectors called below
2661      * cause the change by using dlopen.
2662      */
2663     TAILQ_FOREACH(obj, &obj_list, next) {
2664 	if (obj->marker)
2665 	    continue;
2666 	obj->init_scanned = false;
2667     }
2668 
2669     /*
2670      * Preserve the current error message since an init function might
2671      * call into the dynamic linker and overwrite it.
2672      */
2673     saved_msg = errmsg_save();
2674     STAILQ_FOREACH(elm, list, link) {
2675 	if (elm->obj->init_done) /* Initialized early. */
2676 	    continue;
2677 	/*
2678 	 * Race: other thread might try to use this object before current
2679 	 * one completes the initialization. Not much can be done here
2680 	 * without better locking.
2681 	 */
2682 	elm->obj->init_done = true;
2683 	hold_object(elm->obj);
2684 	lock_release(rtld_bind_lock, lockstate);
2685 
2686         /*
2687          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2688          * When this happens, DT_INIT is processed first.
2689          */
2690 	if (elm->obj->init != (Elf_Addr)NULL) {
2691 	    dbg("calling init function for %s at %p", elm->obj->path,
2692 	        (void *)elm->obj->init);
2693 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2694 	        0, 0, elm->obj->path);
2695 	    call_initfini_pointer(elm->obj, elm->obj->init);
2696 	}
2697 	init_addr = (Elf_Addr *)elm->obj->init_array;
2698 	if (init_addr != NULL) {
2699 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2700 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2701 		    dbg("calling init function for %s at %p", elm->obj->path,
2702 			(void *)init_addr[index]);
2703 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2704 			(void *)init_addr[index], 0, 0, elm->obj->path);
2705 		    call_init_pointer(elm->obj, init_addr[index]);
2706 		}
2707 	    }
2708 	}
2709 	wlock_acquire(rtld_bind_lock, lockstate);
2710 	unhold_object(elm->obj);
2711     }
2712     errmsg_restore(saved_msg);
2713 }
2714 
2715 static void
2716 objlist_clear(Objlist *list)
2717 {
2718     Objlist_Entry *elm;
2719 
2720     while (!STAILQ_EMPTY(list)) {
2721 	elm = STAILQ_FIRST(list);
2722 	STAILQ_REMOVE_HEAD(list, link);
2723 	free(elm);
2724     }
2725 }
2726 
2727 static Objlist_Entry *
2728 objlist_find(Objlist *list, const Obj_Entry *obj)
2729 {
2730     Objlist_Entry *elm;
2731 
2732     STAILQ_FOREACH(elm, list, link)
2733 	if (elm->obj == obj)
2734 	    return elm;
2735     return NULL;
2736 }
2737 
2738 static void
2739 objlist_init(Objlist *list)
2740 {
2741     STAILQ_INIT(list);
2742 }
2743 
2744 static void
2745 objlist_push_head(Objlist *list, Obj_Entry *obj)
2746 {
2747     Objlist_Entry *elm;
2748 
2749     elm = NEW(Objlist_Entry);
2750     elm->obj = obj;
2751     STAILQ_INSERT_HEAD(list, elm, link);
2752 }
2753 
2754 static void
2755 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2756 {
2757     Objlist_Entry *elm;
2758 
2759     elm = NEW(Objlist_Entry);
2760     elm->obj = obj;
2761     STAILQ_INSERT_TAIL(list, elm, link);
2762 }
2763 
2764 static void
2765 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2766 {
2767 	Objlist_Entry *elm, *listelm;
2768 
2769 	STAILQ_FOREACH(listelm, list, link) {
2770 		if (listelm->obj == listobj)
2771 			break;
2772 	}
2773 	elm = NEW(Objlist_Entry);
2774 	elm->obj = obj;
2775 	if (listelm != NULL)
2776 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2777 	else
2778 		STAILQ_INSERT_TAIL(list, elm, link);
2779 }
2780 
2781 static void
2782 objlist_remove(Objlist *list, Obj_Entry *obj)
2783 {
2784     Objlist_Entry *elm;
2785 
2786     if ((elm = objlist_find(list, obj)) != NULL) {
2787 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2788 	free(elm);
2789     }
2790 }
2791 
2792 /*
2793  * Relocate dag rooted in the specified object.
2794  * Returns 0 on success, or -1 on failure.
2795  */
2796 
2797 static int
2798 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2799     int flags, RtldLockState *lockstate)
2800 {
2801 	Objlist_Entry *elm;
2802 	int error;
2803 
2804 	error = 0;
2805 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2806 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2807 		    lockstate);
2808 		if (error == -1)
2809 			break;
2810 	}
2811 	return (error);
2812 }
2813 
2814 /*
2815  * Prepare for, or clean after, relocating an object marked with
2816  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2817  * segments are remapped read-write.  After relocations are done, the
2818  * segment's permissions are returned back to the modes specified in
2819  * the phdrs.  If any relocation happened, or always for wired
2820  * program, COW is triggered.
2821  */
2822 static int
2823 reloc_textrel_prot(Obj_Entry *obj, bool before)
2824 {
2825 	const Elf_Phdr *ph;
2826 	void *base;
2827 	size_t l, sz;
2828 	int prot;
2829 
2830 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2831 	    l--, ph++) {
2832 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2833 			continue;
2834 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2835 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2836 		    trunc_page(ph->p_vaddr);
2837 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2838 		if (mprotect(base, sz, prot) == -1) {
2839 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2840 			    obj->path, before ? "en" : "dis",
2841 			    rtld_strerror(errno));
2842 			return (-1);
2843 		}
2844 	}
2845 	return (0);
2846 }
2847 
2848 /*
2849  * Relocate single object.
2850  * Returns 0 on success, or -1 on failure.
2851  */
2852 static int
2853 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2854     int flags, RtldLockState *lockstate)
2855 {
2856 
2857 	if (obj->relocated)
2858 		return (0);
2859 	obj->relocated = true;
2860 	if (obj != rtldobj)
2861 		dbg("relocating \"%s\"", obj->path);
2862 
2863 	if (obj->symtab == NULL || obj->strtab == NULL ||
2864 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2865 		_rtld_error("%s: Shared object has no run-time symbol table",
2866 			    obj->path);
2867 		return (-1);
2868 	}
2869 
2870 	/* There are relocations to the write-protected text segment. */
2871 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2872 		return (-1);
2873 
2874 	/* Process the non-PLT non-IFUNC relocations. */
2875 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2876 		return (-1);
2877 
2878 	/* Re-protected the text segment. */
2879 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2880 		return (-1);
2881 
2882 	/* Set the special PLT or GOT entries. */
2883 	init_pltgot(obj);
2884 
2885 	/* Process the PLT relocations. */
2886 	if (reloc_plt(obj) == -1)
2887 		return (-1);
2888 	/* Relocate the jump slots if we are doing immediate binding. */
2889 	if (obj->bind_now || bind_now) {
2890 		if (reloc_jmpslots(obj, flags, lockstate) == -1 ||
2891 		    resolve_object_ifunc(obj, true, flags, lockstate) == -1)
2892 			return (-1);
2893 	}
2894 
2895 	/*
2896 	 * Process the non-PLT IFUNC relocations.  The relocations are
2897 	 * processed in two phases, because IFUNC resolvers may
2898 	 * reference other symbols, which must be readily processed
2899 	 * before resolvers are called.
2900 	 */
2901 	if (obj->non_plt_gnu_ifunc &&
2902 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2903 		return (-1);
2904 
2905 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2906 		return (-1);
2907 
2908 	/*
2909 	 * Set up the magic number and version in the Obj_Entry.  These
2910 	 * were checked in the crt1.o from the original ElfKit, so we
2911 	 * set them for backward compatibility.
2912 	 */
2913 	obj->magic = RTLD_MAGIC;
2914 	obj->version = RTLD_VERSION;
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Relocate newly-loaded shared objects.  The argument is a pointer to
2921  * the Obj_Entry for the first such object.  All objects from the first
2922  * to the end of the list of objects are relocated.  Returns 0 on success,
2923  * or -1 on failure.
2924  */
2925 static int
2926 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2927     int flags, RtldLockState *lockstate)
2928 {
2929 	Obj_Entry *obj;
2930 	int error;
2931 
2932 	for (error = 0, obj = first;  obj != NULL;
2933 	    obj = TAILQ_NEXT(obj, next)) {
2934 		if (obj->marker)
2935 			continue;
2936 		error = relocate_object(obj, bind_now, rtldobj, flags,
2937 		    lockstate);
2938 		if (error == -1)
2939 			break;
2940 	}
2941 	return (error);
2942 }
2943 
2944 /*
2945  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2946  * referencing STT_GNU_IFUNC symbols is postponed till the other
2947  * relocations are done.  The indirect functions specified as
2948  * ifunc are allowed to call other symbols, so we need to have
2949  * objects relocated before asking for resolution from indirects.
2950  *
2951  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2952  * instead of the usual lazy handling of PLT slots.  It is
2953  * consistent with how GNU does it.
2954  */
2955 static int
2956 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2957     RtldLockState *lockstate)
2958 {
2959 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2960 		return (-1);
2961 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2962 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2963 		return (-1);
2964 	return (0);
2965 }
2966 
2967 static int
2968 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2969     RtldLockState *lockstate)
2970 {
2971 	Obj_Entry *obj;
2972 
2973 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2974 		if (obj->marker)
2975 			continue;
2976 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2977 			return (-1);
2978 	}
2979 	return (0);
2980 }
2981 
2982 static int
2983 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2984     RtldLockState *lockstate)
2985 {
2986 	Objlist_Entry *elm;
2987 
2988 	STAILQ_FOREACH(elm, list, link) {
2989 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2990 		    lockstate) == -1)
2991 			return (-1);
2992 	}
2993 	return (0);
2994 }
2995 
2996 /*
2997  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2998  * before the process exits.
2999  */
3000 static void
3001 rtld_exit(void)
3002 {
3003     RtldLockState lockstate;
3004 
3005     wlock_acquire(rtld_bind_lock, &lockstate);
3006     dbg("rtld_exit()");
3007     objlist_call_fini(&list_fini, NULL, &lockstate);
3008     /* No need to remove the items from the list, since we are exiting. */
3009     if (!libmap_disable)
3010         lm_fini();
3011     lock_release(rtld_bind_lock, &lockstate);
3012 }
3013 
3014 /*
3015  * Iterate over a search path, translate each element, and invoke the
3016  * callback on the result.
3017  */
3018 static void *
3019 path_enumerate(const char *path, path_enum_proc callback,
3020     const char *refobj_path, void *arg)
3021 {
3022     const char *trans;
3023     if (path == NULL)
3024 	return (NULL);
3025 
3026     path += strspn(path, ":;");
3027     while (*path != '\0') {
3028 	size_t len;
3029 	char  *res;
3030 
3031 	len = strcspn(path, ":;");
3032 	trans = lm_findn(refobj_path, path, len);
3033 	if (trans)
3034 	    res = callback(trans, strlen(trans), arg);
3035 	else
3036 	    res = callback(path, len, arg);
3037 
3038 	if (res != NULL)
3039 	    return (res);
3040 
3041 	path += len;
3042 	path += strspn(path, ":;");
3043     }
3044 
3045     return (NULL);
3046 }
3047 
3048 struct try_library_args {
3049     const char	*name;
3050     size_t	 namelen;
3051     char	*buffer;
3052     size_t	 buflen;
3053     int		 fd;
3054 };
3055 
3056 static void *
3057 try_library_path(const char *dir, size_t dirlen, void *param)
3058 {
3059     struct try_library_args *arg;
3060     int fd;
3061 
3062     arg = param;
3063     if (*dir == '/' || trust) {
3064 	char *pathname;
3065 
3066 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3067 		return (NULL);
3068 
3069 	pathname = arg->buffer;
3070 	strncpy(pathname, dir, dirlen);
3071 	pathname[dirlen] = '/';
3072 	strcpy(pathname + dirlen + 1, arg->name);
3073 
3074 	dbg("  Trying \"%s\"", pathname);
3075 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3076 	if (fd >= 0) {
3077 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3078 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3079 	    strcpy(pathname, arg->buffer);
3080 	    arg->fd = fd;
3081 	    return (pathname);
3082 	} else {
3083 	    dbg("  Failed to open \"%s\": %s",
3084 		pathname, rtld_strerror(errno));
3085 	}
3086     }
3087     return (NULL);
3088 }
3089 
3090 static char *
3091 search_library_path(const char *name, const char *path,
3092     const char *refobj_path, int *fdp)
3093 {
3094     char *p;
3095     struct try_library_args arg;
3096 
3097     if (path == NULL)
3098 	return NULL;
3099 
3100     arg.name = name;
3101     arg.namelen = strlen(name);
3102     arg.buffer = xmalloc(PATH_MAX);
3103     arg.buflen = PATH_MAX;
3104     arg.fd = -1;
3105 
3106     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3107     *fdp = arg.fd;
3108 
3109     free(arg.buffer);
3110 
3111     return (p);
3112 }
3113 
3114 
3115 /*
3116  * Finds the library with the given name using the directory descriptors
3117  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3118  *
3119  * Returns a freshly-opened close-on-exec file descriptor for the library,
3120  * or -1 if the library cannot be found.
3121  */
3122 static char *
3123 search_library_pathfds(const char *name, const char *path, int *fdp)
3124 {
3125 	char *envcopy, *fdstr, *found, *last_token;
3126 	size_t len;
3127 	int dirfd, fd;
3128 
3129 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3130 
3131 	/* Don't load from user-specified libdirs into setuid binaries. */
3132 	if (!trust)
3133 		return (NULL);
3134 
3135 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3136 	if (path == NULL)
3137 		return (NULL);
3138 
3139 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3140 	if (name[0] == '/') {
3141 		dbg("Absolute path (%s) passed to %s", name, __func__);
3142 		return (NULL);
3143 	}
3144 
3145 	/*
3146 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3147 	 * copy of the path, as strtok_r rewrites separator tokens
3148 	 * with '\0'.
3149 	 */
3150 	found = NULL;
3151 	envcopy = xstrdup(path);
3152 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3153 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3154 		dirfd = parse_integer(fdstr);
3155 		if (dirfd < 0) {
3156 			_rtld_error("failed to parse directory FD: '%s'",
3157 				fdstr);
3158 			break;
3159 		}
3160 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3161 		if (fd >= 0) {
3162 			*fdp = fd;
3163 			len = strlen(fdstr) + strlen(name) + 3;
3164 			found = xmalloc(len);
3165 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3166 				_rtld_error("error generating '%d/%s'",
3167 				    dirfd, name);
3168 				rtld_die();
3169 			}
3170 			dbg("open('%s') => %d", found, fd);
3171 			break;
3172 		}
3173 	}
3174 	free(envcopy);
3175 
3176 	return (found);
3177 }
3178 
3179 
3180 int
3181 dlclose(void *handle)
3182 {
3183 	RtldLockState lockstate;
3184 	int error;
3185 
3186 	wlock_acquire(rtld_bind_lock, &lockstate);
3187 	error = dlclose_locked(handle, &lockstate);
3188 	lock_release(rtld_bind_lock, &lockstate);
3189 	return (error);
3190 }
3191 
3192 static int
3193 dlclose_locked(void *handle, RtldLockState *lockstate)
3194 {
3195     Obj_Entry *root;
3196 
3197     root = dlcheck(handle);
3198     if (root == NULL)
3199 	return -1;
3200     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3201 	root->path);
3202 
3203     /* Unreference the object and its dependencies. */
3204     root->dl_refcount--;
3205 
3206     if (root->refcount == 1) {
3207 	/*
3208 	 * The object will be no longer referenced, so we must unload it.
3209 	 * First, call the fini functions.
3210 	 */
3211 	objlist_call_fini(&list_fini, root, lockstate);
3212 
3213 	unref_dag(root);
3214 
3215 	/* Finish cleaning up the newly-unreferenced objects. */
3216 	GDB_STATE(RT_DELETE,&root->linkmap);
3217 	unload_object(root, lockstate);
3218 	GDB_STATE(RT_CONSISTENT,NULL);
3219     } else
3220 	unref_dag(root);
3221 
3222     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3223     return 0;
3224 }
3225 
3226 char *
3227 dlerror(void)
3228 {
3229     char *msg = error_message;
3230     error_message = NULL;
3231     return msg;
3232 }
3233 
3234 /*
3235  * This function is deprecated and has no effect.
3236  */
3237 void
3238 dllockinit(void *context,
3239     void *(*_lock_create)(void *context) __unused,
3240     void (*_rlock_acquire)(void *lock) __unused,
3241     void (*_wlock_acquire)(void *lock)  __unused,
3242     void (*_lock_release)(void *lock) __unused,
3243     void (*_lock_destroy)(void *lock) __unused,
3244     void (*context_destroy)(void *context))
3245 {
3246     static void *cur_context;
3247     static void (*cur_context_destroy)(void *);
3248 
3249     /* Just destroy the context from the previous call, if necessary. */
3250     if (cur_context_destroy != NULL)
3251 	cur_context_destroy(cur_context);
3252     cur_context = context;
3253     cur_context_destroy = context_destroy;
3254 }
3255 
3256 void *
3257 dlopen(const char *name, int mode)
3258 {
3259 
3260 	return (rtld_dlopen(name, -1, mode));
3261 }
3262 
3263 void *
3264 fdlopen(int fd, int mode)
3265 {
3266 
3267 	return (rtld_dlopen(NULL, fd, mode));
3268 }
3269 
3270 static void *
3271 rtld_dlopen(const char *name, int fd, int mode)
3272 {
3273     RtldLockState lockstate;
3274     int lo_flags;
3275 
3276     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3277     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3278     if (ld_tracing != NULL) {
3279 	rlock_acquire(rtld_bind_lock, &lockstate);
3280 	if (sigsetjmp(lockstate.env, 0) != 0)
3281 	    lock_upgrade(rtld_bind_lock, &lockstate);
3282 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3283 	lock_release(rtld_bind_lock, &lockstate);
3284     }
3285     lo_flags = RTLD_LO_DLOPEN;
3286     if (mode & RTLD_NODELETE)
3287 	    lo_flags |= RTLD_LO_NODELETE;
3288     if (mode & RTLD_NOLOAD)
3289 	    lo_flags |= RTLD_LO_NOLOAD;
3290     if (ld_tracing != NULL)
3291 	    lo_flags |= RTLD_LO_TRACE;
3292 
3293     return (dlopen_object(name, fd, obj_main, lo_flags,
3294       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3295 }
3296 
3297 static void
3298 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3299 {
3300 
3301 	obj->dl_refcount--;
3302 	unref_dag(obj);
3303 	if (obj->refcount == 0)
3304 		unload_object(obj, lockstate);
3305 }
3306 
3307 static Obj_Entry *
3308 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3309     int mode, RtldLockState *lockstate)
3310 {
3311     Obj_Entry *old_obj_tail;
3312     Obj_Entry *obj;
3313     Objlist initlist;
3314     RtldLockState mlockstate;
3315     int result;
3316 
3317     objlist_init(&initlist);
3318 
3319     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3320 	wlock_acquire(rtld_bind_lock, &mlockstate);
3321 	lockstate = &mlockstate;
3322     }
3323     GDB_STATE(RT_ADD,NULL);
3324 
3325     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3326     obj = NULL;
3327     if (name == NULL && fd == -1) {
3328 	obj = obj_main;
3329 	obj->refcount++;
3330     } else {
3331 	obj = load_object(name, fd, refobj, lo_flags);
3332     }
3333 
3334     if (obj) {
3335 	obj->dl_refcount++;
3336 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3337 	    objlist_push_tail(&list_global, obj);
3338 	if (globallist_next(old_obj_tail) != NULL) {
3339 	    /* We loaded something new. */
3340 	    assert(globallist_next(old_obj_tail) == obj);
3341 	    result = load_needed_objects(obj,
3342 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3343 	    init_dag(obj);
3344 	    ref_dag(obj);
3345 	    if (result != -1)
3346 		result = rtld_verify_versions(&obj->dagmembers);
3347 	    if (result != -1 && ld_tracing)
3348 		goto trace;
3349 	    if (result == -1 || relocate_object_dag(obj,
3350 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3351 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3352 	      lockstate) == -1) {
3353 		dlopen_cleanup(obj, lockstate);
3354 		obj = NULL;
3355 	    } else if (lo_flags & RTLD_LO_EARLY) {
3356 		/*
3357 		 * Do not call the init functions for early loaded
3358 		 * filtees.  The image is still not initialized enough
3359 		 * for them to work.
3360 		 *
3361 		 * Our object is found by the global object list and
3362 		 * will be ordered among all init calls done right
3363 		 * before transferring control to main.
3364 		 */
3365 	    } else {
3366 		/* Make list of init functions to call. */
3367 		initlist_add_objects(obj, obj, &initlist);
3368 	    }
3369 	    /*
3370 	     * Process all no_delete or global objects here, given
3371 	     * them own DAGs to prevent their dependencies from being
3372 	     * unloaded.  This has to be done after we have loaded all
3373 	     * of the dependencies, so that we do not miss any.
3374 	     */
3375 	    if (obj != NULL)
3376 		process_z(obj);
3377 	} else {
3378 	    /*
3379 	     * Bump the reference counts for objects on this DAG.  If
3380 	     * this is the first dlopen() call for the object that was
3381 	     * already loaded as a dependency, initialize the dag
3382 	     * starting at it.
3383 	     */
3384 	    init_dag(obj);
3385 	    ref_dag(obj);
3386 
3387 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3388 		goto trace;
3389 	}
3390 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3391 	  obj->z_nodelete) && !obj->ref_nodel) {
3392 	    dbg("obj %s nodelete", obj->path);
3393 	    ref_dag(obj);
3394 	    obj->z_nodelete = obj->ref_nodel = true;
3395 	}
3396     }
3397 
3398     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3399 	name);
3400     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3401 
3402     if (!(lo_flags & RTLD_LO_EARLY)) {
3403 	map_stacks_exec(lockstate);
3404     }
3405 
3406     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3407       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3408       lockstate) == -1) {
3409 	objlist_clear(&initlist);
3410 	dlopen_cleanup(obj, lockstate);
3411 	if (lockstate == &mlockstate)
3412 	    lock_release(rtld_bind_lock, lockstate);
3413 	return (NULL);
3414     }
3415 
3416     if (!(lo_flags & RTLD_LO_EARLY)) {
3417 	/* Call the init functions. */
3418 	objlist_call_init(&initlist, lockstate);
3419     }
3420     objlist_clear(&initlist);
3421     if (lockstate == &mlockstate)
3422 	lock_release(rtld_bind_lock, lockstate);
3423     return obj;
3424 trace:
3425     trace_loaded_objects(obj);
3426     if (lockstate == &mlockstate)
3427 	lock_release(rtld_bind_lock, lockstate);
3428     exit(0);
3429 }
3430 
3431 static void *
3432 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3433     int flags)
3434 {
3435     DoneList donelist;
3436     const Obj_Entry *obj, *defobj;
3437     const Elf_Sym *def;
3438     SymLook req;
3439     RtldLockState lockstate;
3440     tls_index ti;
3441     void *sym;
3442     int res;
3443 
3444     def = NULL;
3445     defobj = NULL;
3446     symlook_init(&req, name);
3447     req.ventry = ve;
3448     req.flags = flags | SYMLOOK_IN_PLT;
3449     req.lockstate = &lockstate;
3450 
3451     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3452     rlock_acquire(rtld_bind_lock, &lockstate);
3453     if (sigsetjmp(lockstate.env, 0) != 0)
3454 	    lock_upgrade(rtld_bind_lock, &lockstate);
3455     if (handle == NULL || handle == RTLD_NEXT ||
3456 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3457 
3458 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3459 	    _rtld_error("Cannot determine caller's shared object");
3460 	    lock_release(rtld_bind_lock, &lockstate);
3461 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3462 	    return NULL;
3463 	}
3464 	if (handle == NULL) {	/* Just the caller's shared object. */
3465 	    res = symlook_obj(&req, obj);
3466 	    if (res == 0) {
3467 		def = req.sym_out;
3468 		defobj = req.defobj_out;
3469 	    }
3470 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3471 		   handle == RTLD_SELF) { /* ... caller included */
3472 	    if (handle == RTLD_NEXT)
3473 		obj = globallist_next(obj);
3474 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3475 		if (obj->marker)
3476 		    continue;
3477 		res = symlook_obj(&req, obj);
3478 		if (res == 0) {
3479 		    if (def == NULL ||
3480 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3481 			def = req.sym_out;
3482 			defobj = req.defobj_out;
3483 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3484 			    break;
3485 		    }
3486 		}
3487 	    }
3488 	    /*
3489 	     * Search the dynamic linker itself, and possibly resolve the
3490 	     * symbol from there.  This is how the application links to
3491 	     * dynamic linker services such as dlopen.
3492 	     */
3493 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3494 		res = symlook_obj(&req, &obj_rtld);
3495 		if (res == 0) {
3496 		    def = req.sym_out;
3497 		    defobj = req.defobj_out;
3498 		}
3499 	    }
3500 	} else {
3501 	    assert(handle == RTLD_DEFAULT);
3502 	    res = symlook_default(&req, obj);
3503 	    if (res == 0) {
3504 		defobj = req.defobj_out;
3505 		def = req.sym_out;
3506 	    }
3507 	}
3508     } else {
3509 	if ((obj = dlcheck(handle)) == NULL) {
3510 	    lock_release(rtld_bind_lock, &lockstate);
3511 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3512 	    return NULL;
3513 	}
3514 
3515 	donelist_init(&donelist);
3516 	if (obj->mainprog) {
3517             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3518 	    res = symlook_global(&req, &donelist);
3519 	    if (res == 0) {
3520 		def = req.sym_out;
3521 		defobj = req.defobj_out;
3522 	    }
3523 	    /*
3524 	     * Search the dynamic linker itself, and possibly resolve the
3525 	     * symbol from there.  This is how the application links to
3526 	     * dynamic linker services such as dlopen.
3527 	     */
3528 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3529 		res = symlook_obj(&req, &obj_rtld);
3530 		if (res == 0) {
3531 		    def = req.sym_out;
3532 		    defobj = req.defobj_out;
3533 		}
3534 	    }
3535 	}
3536 	else {
3537 	    /* Search the whole DAG rooted at the given object. */
3538 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3539 	    if (res == 0) {
3540 		def = req.sym_out;
3541 		defobj = req.defobj_out;
3542 	    }
3543 	}
3544     }
3545 
3546     if (def != NULL) {
3547 	lock_release(rtld_bind_lock, &lockstate);
3548 
3549 	/*
3550 	 * The value required by the caller is derived from the value
3551 	 * of the symbol. this is simply the relocated value of the
3552 	 * symbol.
3553 	 */
3554 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3555 	    sym = make_function_pointer(def, defobj);
3556 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3557 	    sym = rtld_resolve_ifunc(defobj, def);
3558 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3559 	    ti.ti_module = defobj->tlsindex;
3560 	    ti.ti_offset = def->st_value;
3561 	    sym = __tls_get_addr(&ti);
3562 	} else
3563 	    sym = defobj->relocbase + def->st_value;
3564 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3565 	return (sym);
3566     }
3567 
3568     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3569       ve != NULL ? ve->name : "");
3570     lock_release(rtld_bind_lock, &lockstate);
3571     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3572     return NULL;
3573 }
3574 
3575 void *
3576 dlsym(void *handle, const char *name)
3577 {
3578 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3579 	    SYMLOOK_DLSYM);
3580 }
3581 
3582 dlfunc_t
3583 dlfunc(void *handle, const char *name)
3584 {
3585 	union {
3586 		void *d;
3587 		dlfunc_t f;
3588 	} rv;
3589 
3590 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3591 	    SYMLOOK_DLSYM);
3592 	return (rv.f);
3593 }
3594 
3595 void *
3596 dlvsym(void *handle, const char *name, const char *version)
3597 {
3598 	Ver_Entry ventry;
3599 
3600 	ventry.name = version;
3601 	ventry.file = NULL;
3602 	ventry.hash = elf_hash(version);
3603 	ventry.flags= 0;
3604 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3605 	    SYMLOOK_DLSYM);
3606 }
3607 
3608 int
3609 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3610 {
3611     const Obj_Entry *obj;
3612     RtldLockState lockstate;
3613 
3614     rlock_acquire(rtld_bind_lock, &lockstate);
3615     obj = obj_from_addr(addr);
3616     if (obj == NULL) {
3617         _rtld_error("No shared object contains address");
3618 	lock_release(rtld_bind_lock, &lockstate);
3619         return (0);
3620     }
3621     rtld_fill_dl_phdr_info(obj, phdr_info);
3622     lock_release(rtld_bind_lock, &lockstate);
3623     return (1);
3624 }
3625 
3626 int
3627 dladdr(const void *addr, Dl_info *info)
3628 {
3629     const Obj_Entry *obj;
3630     const Elf_Sym *def;
3631     void *symbol_addr;
3632     unsigned long symoffset;
3633     RtldLockState lockstate;
3634 
3635     rlock_acquire(rtld_bind_lock, &lockstate);
3636     obj = obj_from_addr(addr);
3637     if (obj == NULL) {
3638         _rtld_error("No shared object contains address");
3639 	lock_release(rtld_bind_lock, &lockstate);
3640         return 0;
3641     }
3642     info->dli_fname = obj->path;
3643     info->dli_fbase = obj->mapbase;
3644     info->dli_saddr = (void *)0;
3645     info->dli_sname = NULL;
3646 
3647     /*
3648      * Walk the symbol list looking for the symbol whose address is
3649      * closest to the address sent in.
3650      */
3651     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3652         def = obj->symtab + symoffset;
3653 
3654         /*
3655          * For skip the symbol if st_shndx is either SHN_UNDEF or
3656          * SHN_COMMON.
3657          */
3658         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3659             continue;
3660 
3661         /*
3662          * If the symbol is greater than the specified address, or if it
3663          * is further away from addr than the current nearest symbol,
3664          * then reject it.
3665          */
3666         symbol_addr = obj->relocbase + def->st_value;
3667         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3668             continue;
3669 
3670         /* Update our idea of the nearest symbol. */
3671         info->dli_sname = obj->strtab + def->st_name;
3672         info->dli_saddr = symbol_addr;
3673 
3674         /* Exact match? */
3675         if (info->dli_saddr == addr)
3676             break;
3677     }
3678     lock_release(rtld_bind_lock, &lockstate);
3679     return 1;
3680 }
3681 
3682 int
3683 dlinfo(void *handle, int request, void *p)
3684 {
3685     const Obj_Entry *obj;
3686     RtldLockState lockstate;
3687     int error;
3688 
3689     rlock_acquire(rtld_bind_lock, &lockstate);
3690 
3691     if (handle == NULL || handle == RTLD_SELF) {
3692 	void *retaddr;
3693 
3694 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3695 	if ((obj = obj_from_addr(retaddr)) == NULL)
3696 	    _rtld_error("Cannot determine caller's shared object");
3697     } else
3698 	obj = dlcheck(handle);
3699 
3700     if (obj == NULL) {
3701 	lock_release(rtld_bind_lock, &lockstate);
3702 	return (-1);
3703     }
3704 
3705     error = 0;
3706     switch (request) {
3707     case RTLD_DI_LINKMAP:
3708 	*((struct link_map const **)p) = &obj->linkmap;
3709 	break;
3710     case RTLD_DI_ORIGIN:
3711 	error = rtld_dirname(obj->path, p);
3712 	break;
3713 
3714     case RTLD_DI_SERINFOSIZE:
3715     case RTLD_DI_SERINFO:
3716 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3717 	break;
3718 
3719     default:
3720 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3721 	error = -1;
3722     }
3723 
3724     lock_release(rtld_bind_lock, &lockstate);
3725 
3726     return (error);
3727 }
3728 
3729 static void
3730 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3731 {
3732 
3733 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3734 	phdr_info->dlpi_name = obj->path;
3735 	phdr_info->dlpi_phdr = obj->phdr;
3736 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3737 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3738 	phdr_info->dlpi_tls_data = obj->tlsinit;
3739 	phdr_info->dlpi_adds = obj_loads;
3740 	phdr_info->dlpi_subs = obj_loads - obj_count;
3741 }
3742 
3743 int
3744 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3745 {
3746 	struct dl_phdr_info phdr_info;
3747 	Obj_Entry *obj, marker;
3748 	RtldLockState bind_lockstate, phdr_lockstate;
3749 	int error;
3750 
3751 	init_marker(&marker);
3752 	error = 0;
3753 
3754 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3755 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3756 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3757 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3758 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3759 		hold_object(obj);
3760 		lock_release(rtld_bind_lock, &bind_lockstate);
3761 
3762 		error = callback(&phdr_info, sizeof phdr_info, param);
3763 
3764 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3765 		unhold_object(obj);
3766 		obj = globallist_next(&marker);
3767 		TAILQ_REMOVE(&obj_list, &marker, next);
3768 		if (error != 0) {
3769 			lock_release(rtld_bind_lock, &bind_lockstate);
3770 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3771 			return (error);
3772 		}
3773 	}
3774 
3775 	if (error == 0) {
3776 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3777 		lock_release(rtld_bind_lock, &bind_lockstate);
3778 		error = callback(&phdr_info, sizeof(phdr_info), param);
3779 	}
3780 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3781 	return (error);
3782 }
3783 
3784 static void *
3785 fill_search_info(const char *dir, size_t dirlen, void *param)
3786 {
3787     struct fill_search_info_args *arg;
3788 
3789     arg = param;
3790 
3791     if (arg->request == RTLD_DI_SERINFOSIZE) {
3792 	arg->serinfo->dls_cnt ++;
3793 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3794     } else {
3795 	struct dl_serpath *s_entry;
3796 
3797 	s_entry = arg->serpath;
3798 	s_entry->dls_name  = arg->strspace;
3799 	s_entry->dls_flags = arg->flags;
3800 
3801 	strncpy(arg->strspace, dir, dirlen);
3802 	arg->strspace[dirlen] = '\0';
3803 
3804 	arg->strspace += dirlen + 1;
3805 	arg->serpath++;
3806     }
3807 
3808     return (NULL);
3809 }
3810 
3811 static int
3812 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3813 {
3814     struct dl_serinfo _info;
3815     struct fill_search_info_args args;
3816 
3817     args.request = RTLD_DI_SERINFOSIZE;
3818     args.serinfo = &_info;
3819 
3820     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3821     _info.dls_cnt  = 0;
3822 
3823     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3824     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3825     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3826     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3827     if (!obj->z_nodeflib)
3828       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3829 
3830 
3831     if (request == RTLD_DI_SERINFOSIZE) {
3832 	info->dls_size = _info.dls_size;
3833 	info->dls_cnt = _info.dls_cnt;
3834 	return (0);
3835     }
3836 
3837     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3838 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3839 	return (-1);
3840     }
3841 
3842     args.request  = RTLD_DI_SERINFO;
3843     args.serinfo  = info;
3844     args.serpath  = &info->dls_serpath[0];
3845     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3846 
3847     args.flags = LA_SER_RUNPATH;
3848     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3849 	return (-1);
3850 
3851     args.flags = LA_SER_LIBPATH;
3852     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3853 	return (-1);
3854 
3855     args.flags = LA_SER_RUNPATH;
3856     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3857 	return (-1);
3858 
3859     args.flags = LA_SER_CONFIG;
3860     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3861       != NULL)
3862 	return (-1);
3863 
3864     args.flags = LA_SER_DEFAULT;
3865     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3866       fill_search_info, NULL, &args) != NULL)
3867 	return (-1);
3868     return (0);
3869 }
3870 
3871 static int
3872 rtld_dirname(const char *path, char *bname)
3873 {
3874     const char *endp;
3875 
3876     /* Empty or NULL string gets treated as "." */
3877     if (path == NULL || *path == '\0') {
3878 	bname[0] = '.';
3879 	bname[1] = '\0';
3880 	return (0);
3881     }
3882 
3883     /* Strip trailing slashes */
3884     endp = path + strlen(path) - 1;
3885     while (endp > path && *endp == '/')
3886 	endp--;
3887 
3888     /* Find the start of the dir */
3889     while (endp > path && *endp != '/')
3890 	endp--;
3891 
3892     /* Either the dir is "/" or there are no slashes */
3893     if (endp == path) {
3894 	bname[0] = *endp == '/' ? '/' : '.';
3895 	bname[1] = '\0';
3896 	return (0);
3897     } else {
3898 	do {
3899 	    endp--;
3900 	} while (endp > path && *endp == '/');
3901     }
3902 
3903     if (endp - path + 2 > PATH_MAX)
3904     {
3905 	_rtld_error("Filename is too long: %s", path);
3906 	return(-1);
3907     }
3908 
3909     strncpy(bname, path, endp - path + 1);
3910     bname[endp - path + 1] = '\0';
3911     return (0);
3912 }
3913 
3914 static int
3915 rtld_dirname_abs(const char *path, char *base)
3916 {
3917 	char *last;
3918 
3919 	if (realpath(path, base) == NULL)
3920 		return (-1);
3921 	dbg("%s -> %s", path, base);
3922 	last = strrchr(base, '/');
3923 	if (last == NULL)
3924 		return (-1);
3925 	if (last != base)
3926 		*last = '\0';
3927 	return (0);
3928 }
3929 
3930 static void
3931 linkmap_add(Obj_Entry *obj)
3932 {
3933     struct link_map *l = &obj->linkmap;
3934     struct link_map *prev;
3935 
3936     obj->linkmap.l_name = obj->path;
3937     obj->linkmap.l_addr = obj->mapbase;
3938     obj->linkmap.l_ld = obj->dynamic;
3939 #ifdef __mips__
3940     /* GDB needs load offset on MIPS to use the symbols */
3941     obj->linkmap.l_offs = obj->relocbase;
3942 #endif
3943 
3944     if (r_debug.r_map == NULL) {
3945 	r_debug.r_map = l;
3946 	return;
3947     }
3948 
3949     /*
3950      * Scan to the end of the list, but not past the entry for the
3951      * dynamic linker, which we want to keep at the very end.
3952      */
3953     for (prev = r_debug.r_map;
3954       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3955       prev = prev->l_next)
3956 	;
3957 
3958     /* Link in the new entry. */
3959     l->l_prev = prev;
3960     l->l_next = prev->l_next;
3961     if (l->l_next != NULL)
3962 	l->l_next->l_prev = l;
3963     prev->l_next = l;
3964 }
3965 
3966 static void
3967 linkmap_delete(Obj_Entry *obj)
3968 {
3969     struct link_map *l = &obj->linkmap;
3970 
3971     if (l->l_prev == NULL) {
3972 	if ((r_debug.r_map = l->l_next) != NULL)
3973 	    l->l_next->l_prev = NULL;
3974 	return;
3975     }
3976 
3977     if ((l->l_prev->l_next = l->l_next) != NULL)
3978 	l->l_next->l_prev = l->l_prev;
3979 }
3980 
3981 /*
3982  * Function for the debugger to set a breakpoint on to gain control.
3983  *
3984  * The two parameters allow the debugger to easily find and determine
3985  * what the runtime loader is doing and to whom it is doing it.
3986  *
3987  * When the loadhook trap is hit (r_debug_state, set at program
3988  * initialization), the arguments can be found on the stack:
3989  *
3990  *  +8   struct link_map *m
3991  *  +4   struct r_debug  *rd
3992  *  +0   RetAddr
3993  */
3994 void
3995 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
3996 {
3997     /*
3998      * The following is a hack to force the compiler to emit calls to
3999      * this function, even when optimizing.  If the function is empty,
4000      * the compiler is not obliged to emit any code for calls to it,
4001      * even when marked __noinline.  However, gdb depends on those
4002      * calls being made.
4003      */
4004     __compiler_membar();
4005 }
4006 
4007 /*
4008  * A function called after init routines have completed. This can be used to
4009  * break before a program's entry routine is called, and can be used when
4010  * main is not available in the symbol table.
4011  */
4012 void
4013 _r_debug_postinit(struct link_map *m __unused)
4014 {
4015 
4016 	/* See r_debug_state(). */
4017 	__compiler_membar();
4018 }
4019 
4020 static void
4021 release_object(Obj_Entry *obj)
4022 {
4023 
4024 	if (obj->holdcount > 0) {
4025 		obj->unholdfree = true;
4026 		return;
4027 	}
4028 	munmap(obj->mapbase, obj->mapsize);
4029 	linkmap_delete(obj);
4030 	obj_free(obj);
4031 }
4032 
4033 /*
4034  * Get address of the pointer variable in the main program.
4035  * Prefer non-weak symbol over the weak one.
4036  */
4037 static const void **
4038 get_program_var_addr(const char *name, RtldLockState *lockstate)
4039 {
4040     SymLook req;
4041     DoneList donelist;
4042 
4043     symlook_init(&req, name);
4044     req.lockstate = lockstate;
4045     donelist_init(&donelist);
4046     if (symlook_global(&req, &donelist) != 0)
4047 	return (NULL);
4048     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4049 	return ((const void **)make_function_pointer(req.sym_out,
4050 	  req.defobj_out));
4051     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4052 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4053     else
4054 	return ((const void **)(req.defobj_out->relocbase +
4055 	  req.sym_out->st_value));
4056 }
4057 
4058 /*
4059  * Set a pointer variable in the main program to the given value.  This
4060  * is used to set key variables such as "environ" before any of the
4061  * init functions are called.
4062  */
4063 static void
4064 set_program_var(const char *name, const void *value)
4065 {
4066     const void **addr;
4067 
4068     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4069 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4070 	*addr = value;
4071     }
4072 }
4073 
4074 /*
4075  * Search the global objects, including dependencies and main object,
4076  * for the given symbol.
4077  */
4078 static int
4079 symlook_global(SymLook *req, DoneList *donelist)
4080 {
4081     SymLook req1;
4082     const Objlist_Entry *elm;
4083     int res;
4084 
4085     symlook_init_from_req(&req1, req);
4086 
4087     /* Search all objects loaded at program start up. */
4088     if (req->defobj_out == NULL ||
4089       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4090 	res = symlook_list(&req1, &list_main, donelist);
4091 	if (res == 0 && (req->defobj_out == NULL ||
4092 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4093 	    req->sym_out = req1.sym_out;
4094 	    req->defobj_out = req1.defobj_out;
4095 	    assert(req->defobj_out != NULL);
4096 	}
4097     }
4098 
4099     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4100     STAILQ_FOREACH(elm, &list_global, link) {
4101 	if (req->defobj_out != NULL &&
4102 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4103 	    break;
4104 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4105 	if (res == 0 && (req->defobj_out == NULL ||
4106 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4107 	    req->sym_out = req1.sym_out;
4108 	    req->defobj_out = req1.defobj_out;
4109 	    assert(req->defobj_out != NULL);
4110 	}
4111     }
4112 
4113     return (req->sym_out != NULL ? 0 : ESRCH);
4114 }
4115 
4116 /*
4117  * Given a symbol name in a referencing object, find the corresponding
4118  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4119  * no definition was found.  Returns a pointer to the Obj_Entry of the
4120  * defining object via the reference parameter DEFOBJ_OUT.
4121  */
4122 static int
4123 symlook_default(SymLook *req, const Obj_Entry *refobj)
4124 {
4125     DoneList donelist;
4126     const Objlist_Entry *elm;
4127     SymLook req1;
4128     int res;
4129 
4130     donelist_init(&donelist);
4131     symlook_init_from_req(&req1, req);
4132 
4133     /*
4134      * Look first in the referencing object if linked symbolically,
4135      * and similarly handle protected symbols.
4136      */
4137     res = symlook_obj(&req1, refobj);
4138     if (res == 0 && (refobj->symbolic ||
4139       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4140 	req->sym_out = req1.sym_out;
4141 	req->defobj_out = req1.defobj_out;
4142 	assert(req->defobj_out != NULL);
4143     }
4144     if (refobj->symbolic || req->defobj_out != NULL)
4145 	donelist_check(&donelist, refobj);
4146 
4147     symlook_global(req, &donelist);
4148 
4149     /* Search all dlopened DAGs containing the referencing object. */
4150     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4151 	if (req->sym_out != NULL &&
4152 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4153 	    break;
4154 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4155 	if (res == 0 && (req->sym_out == NULL ||
4156 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4157 	    req->sym_out = req1.sym_out;
4158 	    req->defobj_out = req1.defobj_out;
4159 	    assert(req->defobj_out != NULL);
4160 	}
4161     }
4162 
4163     /*
4164      * Search the dynamic linker itself, and possibly resolve the
4165      * symbol from there.  This is how the application links to
4166      * dynamic linker services such as dlopen.
4167      */
4168     if (req->sym_out == NULL ||
4169       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4170 	res = symlook_obj(&req1, &obj_rtld);
4171 	if (res == 0) {
4172 	    req->sym_out = req1.sym_out;
4173 	    req->defobj_out = req1.defobj_out;
4174 	    assert(req->defobj_out != NULL);
4175 	}
4176     }
4177 
4178     return (req->sym_out != NULL ? 0 : ESRCH);
4179 }
4180 
4181 static int
4182 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4183 {
4184     const Elf_Sym *def;
4185     const Obj_Entry *defobj;
4186     const Objlist_Entry *elm;
4187     SymLook req1;
4188     int res;
4189 
4190     def = NULL;
4191     defobj = NULL;
4192     STAILQ_FOREACH(elm, objlist, link) {
4193 	if (donelist_check(dlp, elm->obj))
4194 	    continue;
4195 	symlook_init_from_req(&req1, req);
4196 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4197 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4198 		def = req1.sym_out;
4199 		defobj = req1.defobj_out;
4200 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4201 		    break;
4202 	    }
4203 	}
4204     }
4205     if (def != NULL) {
4206 	req->sym_out = def;
4207 	req->defobj_out = defobj;
4208 	return (0);
4209     }
4210     return (ESRCH);
4211 }
4212 
4213 /*
4214  * Search the chain of DAGS cointed to by the given Needed_Entry
4215  * for a symbol of the given name.  Each DAG is scanned completely
4216  * before advancing to the next one.  Returns a pointer to the symbol,
4217  * or NULL if no definition was found.
4218  */
4219 static int
4220 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4221 {
4222     const Elf_Sym *def;
4223     const Needed_Entry *n;
4224     const Obj_Entry *defobj;
4225     SymLook req1;
4226     int res;
4227 
4228     def = NULL;
4229     defobj = NULL;
4230     symlook_init_from_req(&req1, req);
4231     for (n = needed; n != NULL; n = n->next) {
4232 	if (n->obj == NULL ||
4233 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4234 	    continue;
4235 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4236 	    def = req1.sym_out;
4237 	    defobj = req1.defobj_out;
4238 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4239 		break;
4240 	}
4241     }
4242     if (def != NULL) {
4243 	req->sym_out = def;
4244 	req->defobj_out = defobj;
4245 	return (0);
4246     }
4247     return (ESRCH);
4248 }
4249 
4250 /*
4251  * Search the symbol table of a single shared object for a symbol of
4252  * the given name and version, if requested.  Returns a pointer to the
4253  * symbol, or NULL if no definition was found.  If the object is
4254  * filter, return filtered symbol from filtee.
4255  *
4256  * The symbol's hash value is passed in for efficiency reasons; that
4257  * eliminates many recomputations of the hash value.
4258  */
4259 int
4260 symlook_obj(SymLook *req, const Obj_Entry *obj)
4261 {
4262     DoneList donelist;
4263     SymLook req1;
4264     int flags, res, mres;
4265 
4266     /*
4267      * If there is at least one valid hash at this point, we prefer to
4268      * use the faster GNU version if available.
4269      */
4270     if (obj->valid_hash_gnu)
4271 	mres = symlook_obj1_gnu(req, obj);
4272     else if (obj->valid_hash_sysv)
4273 	mres = symlook_obj1_sysv(req, obj);
4274     else
4275 	return (EINVAL);
4276 
4277     if (mres == 0) {
4278 	if (obj->needed_filtees != NULL) {
4279 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4280 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4281 	    donelist_init(&donelist);
4282 	    symlook_init_from_req(&req1, req);
4283 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4284 	    if (res == 0) {
4285 		req->sym_out = req1.sym_out;
4286 		req->defobj_out = req1.defobj_out;
4287 	    }
4288 	    return (res);
4289 	}
4290 	if (obj->needed_aux_filtees != NULL) {
4291 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4292 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4293 	    donelist_init(&donelist);
4294 	    symlook_init_from_req(&req1, req);
4295 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4296 	    if (res == 0) {
4297 		req->sym_out = req1.sym_out;
4298 		req->defobj_out = req1.defobj_out;
4299 		return (res);
4300 	    }
4301 	}
4302     }
4303     return (mres);
4304 }
4305 
4306 /* Symbol match routine common to both hash functions */
4307 static bool
4308 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4309     const unsigned long symnum)
4310 {
4311 	Elf_Versym verndx;
4312 	const Elf_Sym *symp;
4313 	const char *strp;
4314 
4315 	symp = obj->symtab + symnum;
4316 	strp = obj->strtab + symp->st_name;
4317 
4318 	switch (ELF_ST_TYPE(symp->st_info)) {
4319 	case STT_FUNC:
4320 	case STT_NOTYPE:
4321 	case STT_OBJECT:
4322 	case STT_COMMON:
4323 	case STT_GNU_IFUNC:
4324 		if (symp->st_value == 0)
4325 			return (false);
4326 		/* fallthrough */
4327 	case STT_TLS:
4328 		if (symp->st_shndx != SHN_UNDEF)
4329 			break;
4330 #ifndef __mips__
4331 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4332 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4333 			break;
4334 #endif
4335 		/* fallthrough */
4336 	default:
4337 		return (false);
4338 	}
4339 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4340 		return (false);
4341 
4342 	if (req->ventry == NULL) {
4343 		if (obj->versyms != NULL) {
4344 			verndx = VER_NDX(obj->versyms[symnum]);
4345 			if (verndx > obj->vernum) {
4346 				_rtld_error(
4347 				    "%s: symbol %s references wrong version %d",
4348 				    obj->path, obj->strtab + symnum, verndx);
4349 				return (false);
4350 			}
4351 			/*
4352 			 * If we are not called from dlsym (i.e. this
4353 			 * is a normal relocation from unversioned
4354 			 * binary), accept the symbol immediately if
4355 			 * it happens to have first version after this
4356 			 * shared object became versioned.  Otherwise,
4357 			 * if symbol is versioned and not hidden,
4358 			 * remember it. If it is the only symbol with
4359 			 * this name exported by the shared object, it
4360 			 * will be returned as a match by the calling
4361 			 * function. If symbol is global (verndx < 2)
4362 			 * accept it unconditionally.
4363 			 */
4364 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4365 			    verndx == VER_NDX_GIVEN) {
4366 				result->sym_out = symp;
4367 				return (true);
4368 			}
4369 			else if (verndx >= VER_NDX_GIVEN) {
4370 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4371 				    == 0) {
4372 					if (result->vsymp == NULL)
4373 						result->vsymp = symp;
4374 					result->vcount++;
4375 				}
4376 				return (false);
4377 			}
4378 		}
4379 		result->sym_out = symp;
4380 		return (true);
4381 	}
4382 	if (obj->versyms == NULL) {
4383 		if (object_match_name(obj, req->ventry->name)) {
4384 			_rtld_error("%s: object %s should provide version %s "
4385 			    "for symbol %s", obj_rtld.path, obj->path,
4386 			    req->ventry->name, obj->strtab + symnum);
4387 			return (false);
4388 		}
4389 	} else {
4390 		verndx = VER_NDX(obj->versyms[symnum]);
4391 		if (verndx > obj->vernum) {
4392 			_rtld_error("%s: symbol %s references wrong version %d",
4393 			    obj->path, obj->strtab + symnum, verndx);
4394 			return (false);
4395 		}
4396 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4397 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4398 			/*
4399 			 * Version does not match. Look if this is a
4400 			 * global symbol and if it is not hidden. If
4401 			 * global symbol (verndx < 2) is available,
4402 			 * use it. Do not return symbol if we are
4403 			 * called by dlvsym, because dlvsym looks for
4404 			 * a specific version and default one is not
4405 			 * what dlvsym wants.
4406 			 */
4407 			if ((req->flags & SYMLOOK_DLSYM) ||
4408 			    (verndx >= VER_NDX_GIVEN) ||
4409 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4410 				return (false);
4411 		}
4412 	}
4413 	result->sym_out = symp;
4414 	return (true);
4415 }
4416 
4417 /*
4418  * Search for symbol using SysV hash function.
4419  * obj->buckets is known not to be NULL at this point; the test for this was
4420  * performed with the obj->valid_hash_sysv assignment.
4421  */
4422 static int
4423 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4424 {
4425 	unsigned long symnum;
4426 	Sym_Match_Result matchres;
4427 
4428 	matchres.sym_out = NULL;
4429 	matchres.vsymp = NULL;
4430 	matchres.vcount = 0;
4431 
4432 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4433 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4434 		if (symnum >= obj->nchains)
4435 			return (ESRCH);	/* Bad object */
4436 
4437 		if (matched_symbol(req, obj, &matchres, symnum)) {
4438 			req->sym_out = matchres.sym_out;
4439 			req->defobj_out = obj;
4440 			return (0);
4441 		}
4442 	}
4443 	if (matchres.vcount == 1) {
4444 		req->sym_out = matchres.vsymp;
4445 		req->defobj_out = obj;
4446 		return (0);
4447 	}
4448 	return (ESRCH);
4449 }
4450 
4451 /* Search for symbol using GNU hash function */
4452 static int
4453 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4454 {
4455 	Elf_Addr bloom_word;
4456 	const Elf32_Word *hashval;
4457 	Elf32_Word bucket;
4458 	Sym_Match_Result matchres;
4459 	unsigned int h1, h2;
4460 	unsigned long symnum;
4461 
4462 	matchres.sym_out = NULL;
4463 	matchres.vsymp = NULL;
4464 	matchres.vcount = 0;
4465 
4466 	/* Pick right bitmask word from Bloom filter array */
4467 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4468 	    obj->maskwords_bm_gnu];
4469 
4470 	/* Calculate modulus word size of gnu hash and its derivative */
4471 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4472 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4473 
4474 	/* Filter out the "definitely not in set" queries */
4475 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4476 		return (ESRCH);
4477 
4478 	/* Locate hash chain and corresponding value element*/
4479 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4480 	if (bucket == 0)
4481 		return (ESRCH);
4482 	hashval = &obj->chain_zero_gnu[bucket];
4483 	do {
4484 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4485 			symnum = hashval - obj->chain_zero_gnu;
4486 			if (matched_symbol(req, obj, &matchres, symnum)) {
4487 				req->sym_out = matchres.sym_out;
4488 				req->defobj_out = obj;
4489 				return (0);
4490 			}
4491 		}
4492 	} while ((*hashval++ & 1) == 0);
4493 	if (matchres.vcount == 1) {
4494 		req->sym_out = matchres.vsymp;
4495 		req->defobj_out = obj;
4496 		return (0);
4497 	}
4498 	return (ESRCH);
4499 }
4500 
4501 static void
4502 trace_loaded_objects(Obj_Entry *obj)
4503 {
4504     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4505     int c;
4506 
4507     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4508 	main_local = "";
4509 
4510     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4511 	fmt1 = "\t%o => %p (%x)\n";
4512 
4513     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4514 	fmt2 = "\t%o (%x)\n";
4515 
4516     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4517 
4518     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4519 	Needed_Entry *needed;
4520 	const char *name, *path;
4521 	bool is_lib;
4522 
4523 	if (obj->marker)
4524 	    continue;
4525 	if (list_containers && obj->needed != NULL)
4526 	    rtld_printf("%s:\n", obj->path);
4527 	for (needed = obj->needed; needed; needed = needed->next) {
4528 	    if (needed->obj != NULL) {
4529 		if (needed->obj->traced && !list_containers)
4530 		    continue;
4531 		needed->obj->traced = true;
4532 		path = needed->obj->path;
4533 	    } else
4534 		path = "not found";
4535 
4536 	    name = obj->strtab + needed->name;
4537 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4538 
4539 	    fmt = is_lib ? fmt1 : fmt2;
4540 	    while ((c = *fmt++) != '\0') {
4541 		switch (c) {
4542 		default:
4543 		    rtld_putchar(c);
4544 		    continue;
4545 		case '\\':
4546 		    switch (c = *fmt) {
4547 		    case '\0':
4548 			continue;
4549 		    case 'n':
4550 			rtld_putchar('\n');
4551 			break;
4552 		    case 't':
4553 			rtld_putchar('\t');
4554 			break;
4555 		    }
4556 		    break;
4557 		case '%':
4558 		    switch (c = *fmt) {
4559 		    case '\0':
4560 			continue;
4561 		    case '%':
4562 		    default:
4563 			rtld_putchar(c);
4564 			break;
4565 		    case 'A':
4566 			rtld_putstr(main_local);
4567 			break;
4568 		    case 'a':
4569 			rtld_putstr(obj_main->path);
4570 			break;
4571 		    case 'o':
4572 			rtld_putstr(name);
4573 			break;
4574 #if 0
4575 		    case 'm':
4576 			rtld_printf("%d", sodp->sod_major);
4577 			break;
4578 		    case 'n':
4579 			rtld_printf("%d", sodp->sod_minor);
4580 			break;
4581 #endif
4582 		    case 'p':
4583 			rtld_putstr(path);
4584 			break;
4585 		    case 'x':
4586 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4587 			  0);
4588 			break;
4589 		    }
4590 		    break;
4591 		}
4592 		++fmt;
4593 	    }
4594 	}
4595     }
4596 }
4597 
4598 /*
4599  * Unload a dlopened object and its dependencies from memory and from
4600  * our data structures.  It is assumed that the DAG rooted in the
4601  * object has already been unreferenced, and that the object has a
4602  * reference count of 0.
4603  */
4604 static void
4605 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4606 {
4607 	Obj_Entry marker, *obj, *next;
4608 
4609 	assert(root->refcount == 0);
4610 
4611 	/*
4612 	 * Pass over the DAG removing unreferenced objects from
4613 	 * appropriate lists.
4614 	 */
4615 	unlink_object(root);
4616 
4617 	/* Unmap all objects that are no longer referenced. */
4618 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4619 		next = TAILQ_NEXT(obj, next);
4620 		if (obj->marker || obj->refcount != 0)
4621 			continue;
4622 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4623 		    obj->mapsize, 0, obj->path);
4624 		dbg("unloading \"%s\"", obj->path);
4625 		/*
4626 		 * Unlink the object now to prevent new references from
4627 		 * being acquired while the bind lock is dropped in
4628 		 * recursive dlclose() invocations.
4629 		 */
4630 		TAILQ_REMOVE(&obj_list, obj, next);
4631 		obj_count--;
4632 
4633 		if (obj->filtees_loaded) {
4634 			if (next != NULL) {
4635 				init_marker(&marker);
4636 				TAILQ_INSERT_BEFORE(next, &marker, next);
4637 				unload_filtees(obj, lockstate);
4638 				next = TAILQ_NEXT(&marker, next);
4639 				TAILQ_REMOVE(&obj_list, &marker, next);
4640 			} else
4641 				unload_filtees(obj, lockstate);
4642 		}
4643 		release_object(obj);
4644 	}
4645 }
4646 
4647 static void
4648 unlink_object(Obj_Entry *root)
4649 {
4650     Objlist_Entry *elm;
4651 
4652     if (root->refcount == 0) {
4653 	/* Remove the object from the RTLD_GLOBAL list. */
4654 	objlist_remove(&list_global, root);
4655 
4656     	/* Remove the object from all objects' DAG lists. */
4657     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4658 	    objlist_remove(&elm->obj->dldags, root);
4659 	    if (elm->obj != root)
4660 		unlink_object(elm->obj);
4661 	}
4662     }
4663 }
4664 
4665 static void
4666 ref_dag(Obj_Entry *root)
4667 {
4668     Objlist_Entry *elm;
4669 
4670     assert(root->dag_inited);
4671     STAILQ_FOREACH(elm, &root->dagmembers, link)
4672 	elm->obj->refcount++;
4673 }
4674 
4675 static void
4676 unref_dag(Obj_Entry *root)
4677 {
4678     Objlist_Entry *elm;
4679 
4680     assert(root->dag_inited);
4681     STAILQ_FOREACH(elm, &root->dagmembers, link)
4682 	elm->obj->refcount--;
4683 }
4684 
4685 /*
4686  * Common code for MD __tls_get_addr().
4687  */
4688 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4689 static void *
4690 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4691 {
4692     Elf_Addr *newdtv, *dtv;
4693     RtldLockState lockstate;
4694     int to_copy;
4695 
4696     dtv = *dtvp;
4697     /* Check dtv generation in case new modules have arrived */
4698     if (dtv[0] != tls_dtv_generation) {
4699 	wlock_acquire(rtld_bind_lock, &lockstate);
4700 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4701 	to_copy = dtv[1];
4702 	if (to_copy > tls_max_index)
4703 	    to_copy = tls_max_index;
4704 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4705 	newdtv[0] = tls_dtv_generation;
4706 	newdtv[1] = tls_max_index;
4707 	free(dtv);
4708 	lock_release(rtld_bind_lock, &lockstate);
4709 	dtv = *dtvp = newdtv;
4710     }
4711 
4712     /* Dynamically allocate module TLS if necessary */
4713     if (dtv[index + 1] == 0) {
4714 	/* Signal safe, wlock will block out signals. */
4715 	wlock_acquire(rtld_bind_lock, &lockstate);
4716 	if (!dtv[index + 1])
4717 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4718 	lock_release(rtld_bind_lock, &lockstate);
4719     }
4720     return ((void *)(dtv[index + 1] + offset));
4721 }
4722 
4723 void *
4724 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4725 {
4726 	Elf_Addr *dtv;
4727 
4728 	dtv = *dtvp;
4729 	/* Check dtv generation in case new modules have arrived */
4730 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4731 	    dtv[index + 1] != 0))
4732 		return ((void *)(dtv[index + 1] + offset));
4733 	return (tls_get_addr_slow(dtvp, index, offset));
4734 }
4735 
4736 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4737     defined(__powerpc__) || defined(__riscv)
4738 
4739 /*
4740  * Return pointer to allocated TLS block
4741  */
4742 static void *
4743 get_tls_block_ptr(void *tcb, size_t tcbsize)
4744 {
4745     size_t extra_size, post_size, pre_size, tls_block_size;
4746     size_t tls_init_align;
4747 
4748     tls_init_align = MAX(obj_main->tlsalign, 1);
4749 
4750     /* Compute fragments sizes. */
4751     extra_size = tcbsize - TLS_TCB_SIZE;
4752     post_size = calculate_tls_post_size(tls_init_align);
4753     tls_block_size = tcbsize + post_size;
4754     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4755 
4756     return ((char *)tcb - pre_size - extra_size);
4757 }
4758 
4759 /*
4760  * Allocate Static TLS using the Variant I method.
4761  *
4762  * For details on the layout, see lib/libc/gen/tls.c.
4763  *
4764  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4765  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4766  *     offsets, whereas libc's tls_static_space is just the executable's static
4767  *     TLS segment.
4768  */
4769 void *
4770 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4771 {
4772     Obj_Entry *obj;
4773     char *tls_block;
4774     Elf_Addr *dtv, **tcb;
4775     Elf_Addr addr;
4776     Elf_Addr i;
4777     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4778     size_t tls_init_align;
4779 
4780     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4781 	return (oldtcb);
4782 
4783     assert(tcbsize >= TLS_TCB_SIZE);
4784     maxalign = MAX(tcbalign, tls_static_max_align);
4785     tls_init_align = MAX(obj_main->tlsalign, 1);
4786 
4787     /* Compute fragmets sizes. */
4788     extra_size = tcbsize - TLS_TCB_SIZE;
4789     post_size = calculate_tls_post_size(tls_init_align);
4790     tls_block_size = tcbsize + post_size;
4791     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4792     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4793 
4794     /* Allocate whole TLS block */
4795     tls_block = malloc_aligned(tls_block_size, maxalign);
4796     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4797 
4798     if (oldtcb != NULL) {
4799 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4800 	    tls_static_space);
4801 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4802 
4803 	/* Adjust the DTV. */
4804 	dtv = tcb[0];
4805 	for (i = 0; i < dtv[1]; i++) {
4806 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4807 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4808 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4809 	    }
4810 	}
4811     } else {
4812 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4813 	tcb[0] = dtv;
4814 	dtv[0] = tls_dtv_generation;
4815 	dtv[1] = tls_max_index;
4816 
4817 	for (obj = globallist_curr(objs); obj != NULL;
4818 	  obj = globallist_next(obj)) {
4819 	    if (obj->tlsoffset > 0) {
4820 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4821 		if (obj->tlsinitsize > 0)
4822 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4823 		if (obj->tlssize > obj->tlsinitsize)
4824 		    memset((void*)(addr + obj->tlsinitsize), 0,
4825 			   obj->tlssize - obj->tlsinitsize);
4826 		dtv[obj->tlsindex + 1] = addr;
4827 	    }
4828 	}
4829     }
4830 
4831     return (tcb);
4832 }
4833 
4834 void
4835 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4836 {
4837     Elf_Addr *dtv;
4838     Elf_Addr tlsstart, tlsend;
4839     size_t post_size;
4840     size_t dtvsize, i, tls_init_align;
4841 
4842     assert(tcbsize >= TLS_TCB_SIZE);
4843     tls_init_align = MAX(obj_main->tlsalign, 1);
4844 
4845     /* Compute fragments sizes. */
4846     post_size = calculate_tls_post_size(tls_init_align);
4847 
4848     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4849     tlsend = (Elf_Addr)tcb + tls_static_space;
4850 
4851     dtv = *(Elf_Addr **)tcb;
4852     dtvsize = dtv[1];
4853     for (i = 0; i < dtvsize; i++) {
4854 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4855 	    free((void*)dtv[i+2]);
4856 	}
4857     }
4858     free(dtv);
4859     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4860 }
4861 
4862 #endif
4863 
4864 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4865 
4866 /*
4867  * Allocate Static TLS using the Variant II method.
4868  */
4869 void *
4870 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4871 {
4872     Obj_Entry *obj;
4873     size_t size, ralign;
4874     char *tls;
4875     Elf_Addr *dtv, *olddtv;
4876     Elf_Addr segbase, oldsegbase, addr;
4877     size_t i;
4878 
4879     ralign = tcbalign;
4880     if (tls_static_max_align > ralign)
4881 	    ralign = tls_static_max_align;
4882     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4883 
4884     assert(tcbsize >= 2*sizeof(Elf_Addr));
4885     tls = malloc_aligned(size, ralign);
4886     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4887 
4888     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4889     ((Elf_Addr*)segbase)[0] = segbase;
4890     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4891 
4892     dtv[0] = tls_dtv_generation;
4893     dtv[1] = tls_max_index;
4894 
4895     if (oldtls) {
4896 	/*
4897 	 * Copy the static TLS block over whole.
4898 	 */
4899 	oldsegbase = (Elf_Addr) oldtls;
4900 	memcpy((void *)(segbase - tls_static_space),
4901 	       (const void *)(oldsegbase - tls_static_space),
4902 	       tls_static_space);
4903 
4904 	/*
4905 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4906 	 * move them over.
4907 	 */
4908 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4909 	for (i = 0; i < olddtv[1]; i++) {
4910 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4911 		dtv[i+2] = olddtv[i+2];
4912 		olddtv[i+2] = 0;
4913 	    }
4914 	}
4915 
4916 	/*
4917 	 * We assume that this block was the one we created with
4918 	 * allocate_initial_tls().
4919 	 */
4920 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4921     } else {
4922 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4923 		if (obj->marker || obj->tlsoffset == 0)
4924 			continue;
4925 		addr = segbase - obj->tlsoffset;
4926 		memset((void*)(addr + obj->tlsinitsize),
4927 		       0, obj->tlssize - obj->tlsinitsize);
4928 		if (obj->tlsinit)
4929 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4930 		dtv[obj->tlsindex + 1] = addr;
4931 	}
4932     }
4933 
4934     return (void*) segbase;
4935 }
4936 
4937 void
4938 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4939 {
4940     Elf_Addr* dtv;
4941     size_t size, ralign;
4942     int dtvsize, i;
4943     Elf_Addr tlsstart, tlsend;
4944 
4945     /*
4946      * Figure out the size of the initial TLS block so that we can
4947      * find stuff which ___tls_get_addr() allocated dynamically.
4948      */
4949     ralign = tcbalign;
4950     if (tls_static_max_align > ralign)
4951 	    ralign = tls_static_max_align;
4952     size = round(tls_static_space, ralign);
4953 
4954     dtv = ((Elf_Addr**)tls)[1];
4955     dtvsize = dtv[1];
4956     tlsend = (Elf_Addr) tls;
4957     tlsstart = tlsend - size;
4958     for (i = 0; i < dtvsize; i++) {
4959 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4960 		free_aligned((void *)dtv[i + 2]);
4961 	}
4962     }
4963 
4964     free_aligned((void *)tlsstart);
4965     free((void*) dtv);
4966 }
4967 
4968 #endif
4969 
4970 /*
4971  * Allocate TLS block for module with given index.
4972  */
4973 void *
4974 allocate_module_tls(int index)
4975 {
4976     Obj_Entry* obj;
4977     char* p;
4978 
4979     TAILQ_FOREACH(obj, &obj_list, next) {
4980 	if (obj->marker)
4981 	    continue;
4982 	if (obj->tlsindex == index)
4983 	    break;
4984     }
4985     if (!obj) {
4986 	_rtld_error("Can't find module with TLS index %d", index);
4987 	rtld_die();
4988     }
4989 
4990     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4991     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4992     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4993 
4994     return p;
4995 }
4996 
4997 bool
4998 allocate_tls_offset(Obj_Entry *obj)
4999 {
5000     size_t off;
5001 
5002     if (obj->tls_done)
5003 	return true;
5004 
5005     if (obj->tlssize == 0) {
5006 	obj->tls_done = true;
5007 	return true;
5008     }
5009 
5010     if (tls_last_offset == 0)
5011 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5012     else
5013 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5014 				   obj->tlssize, obj->tlsalign);
5015 
5016     /*
5017      * If we have already fixed the size of the static TLS block, we
5018      * must stay within that size. When allocating the static TLS, we
5019      * leave a small amount of space spare to be used for dynamically
5020      * loading modules which use static TLS.
5021      */
5022     if (tls_static_space != 0) {
5023 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5024 	    return false;
5025     } else if (obj->tlsalign > tls_static_max_align) {
5026 	    tls_static_max_align = obj->tlsalign;
5027     }
5028 
5029     tls_last_offset = obj->tlsoffset = off;
5030     tls_last_size = obj->tlssize;
5031     obj->tls_done = true;
5032 
5033     return true;
5034 }
5035 
5036 void
5037 free_tls_offset(Obj_Entry *obj)
5038 {
5039 
5040     /*
5041      * If we were the last thing to allocate out of the static TLS
5042      * block, we give our space back to the 'allocator'. This is a
5043      * simplistic workaround to allow libGL.so.1 to be loaded and
5044      * unloaded multiple times.
5045      */
5046     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5047 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5048 	tls_last_offset -= obj->tlssize;
5049 	tls_last_size = 0;
5050     }
5051 }
5052 
5053 void *
5054 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5055 {
5056     void *ret;
5057     RtldLockState lockstate;
5058 
5059     wlock_acquire(rtld_bind_lock, &lockstate);
5060     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5061       tcbsize, tcbalign);
5062     lock_release(rtld_bind_lock, &lockstate);
5063     return (ret);
5064 }
5065 
5066 void
5067 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5068 {
5069     RtldLockState lockstate;
5070 
5071     wlock_acquire(rtld_bind_lock, &lockstate);
5072     free_tls(tcb, tcbsize, tcbalign);
5073     lock_release(rtld_bind_lock, &lockstate);
5074 }
5075 
5076 static void
5077 object_add_name(Obj_Entry *obj, const char *name)
5078 {
5079     Name_Entry *entry;
5080     size_t len;
5081 
5082     len = strlen(name);
5083     entry = malloc(sizeof(Name_Entry) + len);
5084 
5085     if (entry != NULL) {
5086 	strcpy(entry->name, name);
5087 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5088     }
5089 }
5090 
5091 static int
5092 object_match_name(const Obj_Entry *obj, const char *name)
5093 {
5094     Name_Entry *entry;
5095 
5096     STAILQ_FOREACH(entry, &obj->names, link) {
5097 	if (strcmp(name, entry->name) == 0)
5098 	    return (1);
5099     }
5100     return (0);
5101 }
5102 
5103 static Obj_Entry *
5104 locate_dependency(const Obj_Entry *obj, const char *name)
5105 {
5106     const Objlist_Entry *entry;
5107     const Needed_Entry *needed;
5108 
5109     STAILQ_FOREACH(entry, &list_main, link) {
5110 	if (object_match_name(entry->obj, name))
5111 	    return entry->obj;
5112     }
5113 
5114     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5115 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5116 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5117 	    /*
5118 	     * If there is DT_NEEDED for the name we are looking for,
5119 	     * we are all set.  Note that object might not be found if
5120 	     * dependency was not loaded yet, so the function can
5121 	     * return NULL here.  This is expected and handled
5122 	     * properly by the caller.
5123 	     */
5124 	    return (needed->obj);
5125 	}
5126     }
5127     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5128 	obj->path, name);
5129     rtld_die();
5130 }
5131 
5132 static int
5133 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5134     const Elf_Vernaux *vna)
5135 {
5136     const Elf_Verdef *vd;
5137     const char *vername;
5138 
5139     vername = refobj->strtab + vna->vna_name;
5140     vd = depobj->verdef;
5141     if (vd == NULL) {
5142 	_rtld_error("%s: version %s required by %s not defined",
5143 	    depobj->path, vername, refobj->path);
5144 	return (-1);
5145     }
5146     for (;;) {
5147 	if (vd->vd_version != VER_DEF_CURRENT) {
5148 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5149 		depobj->path, vd->vd_version);
5150 	    return (-1);
5151 	}
5152 	if (vna->vna_hash == vd->vd_hash) {
5153 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5154 		((const char *)vd + vd->vd_aux);
5155 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5156 		return (0);
5157 	}
5158 	if (vd->vd_next == 0)
5159 	    break;
5160 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5161     }
5162     if (vna->vna_flags & VER_FLG_WEAK)
5163 	return (0);
5164     _rtld_error("%s: version %s required by %s not found",
5165 	depobj->path, vername, refobj->path);
5166     return (-1);
5167 }
5168 
5169 static int
5170 rtld_verify_object_versions(Obj_Entry *obj)
5171 {
5172     const Elf_Verneed *vn;
5173     const Elf_Verdef  *vd;
5174     const Elf_Verdaux *vda;
5175     const Elf_Vernaux *vna;
5176     const Obj_Entry *depobj;
5177     int maxvernum, vernum;
5178 
5179     if (obj->ver_checked)
5180 	return (0);
5181     obj->ver_checked = true;
5182 
5183     maxvernum = 0;
5184     /*
5185      * Walk over defined and required version records and figure out
5186      * max index used by any of them. Do very basic sanity checking
5187      * while there.
5188      */
5189     vn = obj->verneed;
5190     while (vn != NULL) {
5191 	if (vn->vn_version != VER_NEED_CURRENT) {
5192 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5193 		obj->path, vn->vn_version);
5194 	    return (-1);
5195 	}
5196 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5197 	for (;;) {
5198 	    vernum = VER_NEED_IDX(vna->vna_other);
5199 	    if (vernum > maxvernum)
5200 		maxvernum = vernum;
5201 	    if (vna->vna_next == 0)
5202 		 break;
5203 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5204 	}
5205 	if (vn->vn_next == 0)
5206 	    break;
5207 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5208     }
5209 
5210     vd = obj->verdef;
5211     while (vd != NULL) {
5212 	if (vd->vd_version != VER_DEF_CURRENT) {
5213 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5214 		obj->path, vd->vd_version);
5215 	    return (-1);
5216 	}
5217 	vernum = VER_DEF_IDX(vd->vd_ndx);
5218 	if (vernum > maxvernum)
5219 		maxvernum = vernum;
5220 	if (vd->vd_next == 0)
5221 	    break;
5222 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5223     }
5224 
5225     if (maxvernum == 0)
5226 	return (0);
5227 
5228     /*
5229      * Store version information in array indexable by version index.
5230      * Verify that object version requirements are satisfied along the
5231      * way.
5232      */
5233     obj->vernum = maxvernum + 1;
5234     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5235 
5236     vd = obj->verdef;
5237     while (vd != NULL) {
5238 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5239 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5240 	    assert(vernum <= maxvernum);
5241 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5242 	    obj->vertab[vernum].hash = vd->vd_hash;
5243 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5244 	    obj->vertab[vernum].file = NULL;
5245 	    obj->vertab[vernum].flags = 0;
5246 	}
5247 	if (vd->vd_next == 0)
5248 	    break;
5249 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5250     }
5251 
5252     vn = obj->verneed;
5253     while (vn != NULL) {
5254 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5255 	if (depobj == NULL)
5256 	    return (-1);
5257 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5258 	for (;;) {
5259 	    if (check_object_provided_version(obj, depobj, vna))
5260 		return (-1);
5261 	    vernum = VER_NEED_IDX(vna->vna_other);
5262 	    assert(vernum <= maxvernum);
5263 	    obj->vertab[vernum].hash = vna->vna_hash;
5264 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5265 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5266 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5267 		VER_INFO_HIDDEN : 0;
5268 	    if (vna->vna_next == 0)
5269 		 break;
5270 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5271 	}
5272 	if (vn->vn_next == 0)
5273 	    break;
5274 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5275     }
5276     return 0;
5277 }
5278 
5279 static int
5280 rtld_verify_versions(const Objlist *objlist)
5281 {
5282     Objlist_Entry *entry;
5283     int rc;
5284 
5285     rc = 0;
5286     STAILQ_FOREACH(entry, objlist, link) {
5287 	/*
5288 	 * Skip dummy objects or objects that have their version requirements
5289 	 * already checked.
5290 	 */
5291 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5292 	    continue;
5293 	if (rtld_verify_object_versions(entry->obj) == -1) {
5294 	    rc = -1;
5295 	    if (ld_tracing == NULL)
5296 		break;
5297 	}
5298     }
5299     if (rc == 0 || ld_tracing != NULL)
5300     	rc = rtld_verify_object_versions(&obj_rtld);
5301     return rc;
5302 }
5303 
5304 const Ver_Entry *
5305 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5306 {
5307     Elf_Versym vernum;
5308 
5309     if (obj->vertab) {
5310 	vernum = VER_NDX(obj->versyms[symnum]);
5311 	if (vernum >= obj->vernum) {
5312 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5313 		obj->path, obj->strtab + symnum, vernum);
5314 	} else if (obj->vertab[vernum].hash != 0) {
5315 	    return &obj->vertab[vernum];
5316 	}
5317     }
5318     return NULL;
5319 }
5320 
5321 int
5322 _rtld_get_stack_prot(void)
5323 {
5324 
5325 	return (stack_prot);
5326 }
5327 
5328 int
5329 _rtld_is_dlopened(void *arg)
5330 {
5331 	Obj_Entry *obj;
5332 	RtldLockState lockstate;
5333 	int res;
5334 
5335 	rlock_acquire(rtld_bind_lock, &lockstate);
5336 	obj = dlcheck(arg);
5337 	if (obj == NULL)
5338 		obj = obj_from_addr(arg);
5339 	if (obj == NULL) {
5340 		_rtld_error("No shared object contains address");
5341 		lock_release(rtld_bind_lock, &lockstate);
5342 		return (-1);
5343 	}
5344 	res = obj->dlopened ? 1 : 0;
5345 	lock_release(rtld_bind_lock, &lockstate);
5346 	return (res);
5347 }
5348 
5349 int
5350 obj_enforce_relro(Obj_Entry *obj)
5351 {
5352 
5353 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5354 	    PROT_READ) == -1) {
5355 		_rtld_error("%s: Cannot enforce relro protection: %s",
5356 		    obj->path, rtld_strerror(errno));
5357 		return (-1);
5358 	}
5359 	return (0);
5360 }
5361 
5362 static void
5363 map_stacks_exec(RtldLockState *lockstate)
5364 {
5365 	void (*thr_map_stacks_exec)(void);
5366 
5367 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5368 		return;
5369 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5370 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5371 	if (thr_map_stacks_exec != NULL) {
5372 		stack_prot |= PROT_EXEC;
5373 		thr_map_stacks_exec();
5374 	}
5375 }
5376 
5377 void
5378 symlook_init(SymLook *dst, const char *name)
5379 {
5380 
5381 	bzero(dst, sizeof(*dst));
5382 	dst->name = name;
5383 	dst->hash = elf_hash(name);
5384 	dst->hash_gnu = gnu_hash(name);
5385 }
5386 
5387 static void
5388 symlook_init_from_req(SymLook *dst, const SymLook *src)
5389 {
5390 
5391 	dst->name = src->name;
5392 	dst->hash = src->hash;
5393 	dst->hash_gnu = src->hash_gnu;
5394 	dst->ventry = src->ventry;
5395 	dst->flags = src->flags;
5396 	dst->defobj_out = NULL;
5397 	dst->sym_out = NULL;
5398 	dst->lockstate = src->lockstate;
5399 }
5400 
5401 static int
5402 open_binary_fd(const char *argv0, bool search_in_path)
5403 {
5404 	char *pathenv, *pe, binpath[PATH_MAX];
5405 	int fd;
5406 
5407 	if (search_in_path && strchr(argv0, '/') == NULL) {
5408 		pathenv = getenv("PATH");
5409 		if (pathenv == NULL) {
5410 			_rtld_error("-p and no PATH environment variable");
5411 			rtld_die();
5412 		}
5413 		pathenv = strdup(pathenv);
5414 		if (pathenv == NULL) {
5415 			_rtld_error("Cannot allocate memory");
5416 			rtld_die();
5417 		}
5418 		fd = -1;
5419 		errno = ENOENT;
5420 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5421 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5422 			    sizeof(binpath))
5423 				continue;
5424 			if (binpath[0] != '\0' &&
5425 			    strlcat(binpath, "/", sizeof(binpath)) >=
5426 			    sizeof(binpath))
5427 				continue;
5428 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5429 			    sizeof(binpath))
5430 				continue;
5431 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5432 			if (fd != -1 || errno != ENOENT)
5433 				break;
5434 		}
5435 		free(pathenv);
5436 	} else {
5437 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5438 	}
5439 
5440 	if (fd == -1) {
5441 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5442 		rtld_die();
5443 	}
5444 	return (fd);
5445 }
5446 
5447 /*
5448  * Parse a set of command-line arguments.
5449  */
5450 static int
5451 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5452 {
5453 	const char *arg;
5454 	int fd, i, j, arglen;
5455 	char opt;
5456 
5457 	dbg("Parsing command-line arguments");
5458 	*use_pathp = false;
5459 	*fdp = -1;
5460 
5461 	for (i = 1; i < argc; i++ ) {
5462 		arg = argv[i];
5463 		dbg("argv[%d]: '%s'", i, arg);
5464 
5465 		/*
5466 		 * rtld arguments end with an explicit "--" or with the first
5467 		 * non-prefixed argument.
5468 		 */
5469 		if (strcmp(arg, "--") == 0) {
5470 			i++;
5471 			break;
5472 		}
5473 		if (arg[0] != '-')
5474 			break;
5475 
5476 		/*
5477 		 * All other arguments are single-character options that can
5478 		 * be combined, so we need to search through `arg` for them.
5479 		 */
5480 		arglen = strlen(arg);
5481 		for (j = 1; j < arglen; j++) {
5482 			opt = arg[j];
5483 			if (opt == 'h') {
5484 				print_usage(argv[0]);
5485 				_exit(0);
5486 			} else if (opt == 'f') {
5487 			/*
5488 			 * -f XX can be used to specify a descriptor for the
5489 			 * binary named at the command line (i.e., the later
5490 			 * argument will specify the process name but the
5491 			 * descriptor is what will actually be executed)
5492 			 */
5493 			if (j != arglen - 1) {
5494 				/* -f must be the last option in, e.g., -abcf */
5495 				_rtld_error("Invalid options: %s", arg);
5496 				rtld_die();
5497 			}
5498 			i++;
5499 			fd = parse_integer(argv[i]);
5500 			if (fd == -1) {
5501 				_rtld_error("Invalid file descriptor: '%s'",
5502 				    argv[i]);
5503 				rtld_die();
5504 			}
5505 			*fdp = fd;
5506 			break;
5507 			} else if (opt == 'p') {
5508 				*use_pathp = true;
5509 			} else {
5510 				_rtld_error("Invalid argument: '%s'", arg);
5511 				print_usage(argv[0]);
5512 				rtld_die();
5513 			}
5514 		}
5515 	}
5516 
5517 	return (i);
5518 }
5519 
5520 /*
5521  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5522  */
5523 static int
5524 parse_integer(const char *str)
5525 {
5526 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5527 	const char *orig;
5528 	int n;
5529 	char c;
5530 
5531 	orig = str;
5532 	n = 0;
5533 	for (c = *str; c != '\0'; c = *++str) {
5534 		if (c < '0' || c > '9')
5535 			return (-1);
5536 
5537 		n *= RADIX;
5538 		n += c - '0';
5539 	}
5540 
5541 	/* Make sure we actually parsed something. */
5542 	if (str == orig)
5543 		return (-1);
5544 	return (n);
5545 }
5546 
5547 static void
5548 print_usage(const char *argv0)
5549 {
5550 
5551 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5552 		"\n"
5553 		"Options:\n"
5554 		"  -h        Display this help message\n"
5555 		"  -p        Search in PATH for named binary\n"
5556 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5557 		"  --        End of RTLD options\n"
5558 		"  <binary>  Name of process to execute\n"
5559 		"  <args>    Arguments to the executed process\n", argv0);
5560 }
5561 
5562 /*
5563  * Overrides for libc_pic-provided functions.
5564  */
5565 
5566 int
5567 __getosreldate(void)
5568 {
5569 	size_t len;
5570 	int oid[2];
5571 	int error, osrel;
5572 
5573 	if (osreldate != 0)
5574 		return (osreldate);
5575 
5576 	oid[0] = CTL_KERN;
5577 	oid[1] = KERN_OSRELDATE;
5578 	osrel = 0;
5579 	len = sizeof(osrel);
5580 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5581 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5582 		osreldate = osrel;
5583 	return (osreldate);
5584 }
5585 
5586 void
5587 exit(int status)
5588 {
5589 
5590 	_exit(status);
5591 }
5592 
5593 void (*__cleanup)(void);
5594 int __isthreaded = 0;
5595 int _thread_autoinit_dummy_decl = 1;
5596 
5597 /*
5598  * No unresolved symbols for rtld.
5599  */
5600 void
5601 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5602 {
5603 }
5604 
5605 const char *
5606 rtld_strerror(int errnum)
5607 {
5608 
5609 	if (errnum < 0 || errnum >= sys_nerr)
5610 		return ("Unknown error");
5611 	return (sys_errlist[errnum]);
5612 }
5613