xref: /freebsd/libexec/rtld-elf/rtld.c (revision 5ac01ce026aa871e24065f931b5b5c36024c96f9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
388     size_t sz;
389 #ifdef __powerpc__
390     int old_auxv_format = 1;
391 #endif
392     bool dir_enable, direct_exec, explicit_fd, search_in_path;
393 
394     /*
395      * On entry, the dynamic linker itself has not been relocated yet.
396      * Be very careful not to reference any global data until after
397      * init_rtld has returned.  It is OK to reference file-scope statics
398      * and string constants, and to call static and global functions.
399      */
400 
401     /* Find the auxiliary vector on the stack. */
402     argcp = sp;
403     argc = *sp++;
404     argv = (char **) sp;
405     sp += argc + 1;	/* Skip over arguments and NULL terminator */
406     env = (char **) sp;
407     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
408 	;
409     aux = (Elf_Auxinfo *) sp;
410 
411     /* Digest the auxiliary vector. */
412     for (i = 0;  i < AT_COUNT;  i++)
413 	aux_info[i] = NULL;
414     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
415 	if (auxp->a_type < AT_COUNT)
416 	    aux_info[auxp->a_type] = auxp;
417 #ifdef __powerpc__
418 	if (auxp->a_type == 23) /* AT_STACKPROT */
419 	    old_auxv_format = 0;
420 #endif
421     }
422 
423 #ifdef __powerpc__
424     if (old_auxv_format) {
425 	/* Remap from old-style auxv numbers. */
426 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
427 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
428 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
429 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
430 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
431 	aux_info[13] = NULL;		/* AT_GID */
432 
433 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
434 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
435 	aux_info[16] = aux_info[14];	/* AT_CANARY */
436 	aux_info[14] = NULL;		/* AT_EGID */
437     }
438 #endif
439 
440     /* Initialize and relocate ourselves. */
441     assert(aux_info[AT_BASE] != NULL);
442     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
443 
444     __progname = obj_rtld.path;
445     argv0 = argv[0] != NULL ? argv[0] : "(null)";
446     environ = env;
447     main_argc = argc;
448     main_argv = argv;
449 
450     if (aux_info[AT_BSDFLAGS] != NULL &&
451 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
452 	    ld_fast_sigblock = true;
453 
454     trust = !issetugid();
455     direct_exec = false;
456 
457     md_abi_variant_hook(aux_info);
458 
459     fd = -1;
460     if (aux_info[AT_EXECFD] != NULL) {
461 	fd = aux_info[AT_EXECFD]->a_un.a_val;
462     } else {
463 	assert(aux_info[AT_PHDR] != NULL);
464 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
465 	if (phdr == obj_rtld.phdr) {
466 	    if (!trust) {
467 		_rtld_error("Tainted process refusing to run binary %s",
468 		    argv0);
469 		rtld_die();
470 	    }
471 	    direct_exec = true;
472 
473 	    dbg("opening main program in direct exec mode");
474 	    if (argc >= 2) {
475 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
476 		explicit_fd = (fd != -1);
477 		binpath = NULL;
478 		if (!explicit_fd)
479 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
480 		if (fstat(fd, &st) == -1) {
481 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
482 		      explicit_fd ? "user-provided descriptor" : argv0,
483 		      rtld_strerror(errno));
484 		    rtld_die();
485 		}
486 
487 		/*
488 		 * Rough emulation of the permission checks done by
489 		 * execve(2), only Unix DACs are checked, ACLs are
490 		 * ignored.  Preserve the semantic of disabling owner
491 		 * to execute if owner x bit is cleared, even if
492 		 * others x bit is enabled.
493 		 * mmap(2) does not allow to mmap with PROT_EXEC if
494 		 * binary' file comes from noexec mount.  We cannot
495 		 * set a text reference on the binary.
496 		 */
497 		dir_enable = false;
498 		if (st.st_uid == geteuid()) {
499 		    if ((st.st_mode & S_IXUSR) != 0)
500 			dir_enable = true;
501 		} else if (st.st_gid == getegid()) {
502 		    if ((st.st_mode & S_IXGRP) != 0)
503 			dir_enable = true;
504 		} else if ((st.st_mode & S_IXOTH) != 0) {
505 		    dir_enable = true;
506 		}
507 		if (!dir_enable) {
508 		    _rtld_error("No execute permission for binary %s",
509 		        argv0);
510 		    rtld_die();
511 		}
512 
513 		/*
514 		 * For direct exec mode, argv[0] is the interpreter
515 		 * name, we must remove it and shift arguments left
516 		 * before invoking binary main.  Since stack layout
517 		 * places environment pointers and aux vectors right
518 		 * after the terminating NULL, we must shift
519 		 * environment and aux as well.
520 		 */
521 		main_argc = argc - rtld_argc;
522 		for (i = 0; i <= main_argc; i++)
523 		    argv[i] = argv[i + rtld_argc];
524 		*argcp -= rtld_argc;
525 		environ = env = envp = argv + main_argc + 1;
526 		dbg("move env from %p to %p", envp + rtld_argc, envp);
527 		do {
528 		    *envp = *(envp + rtld_argc);
529 		}  while (*envp++ != NULL);
530 		aux = auxp = (Elf_Auxinfo *)envp;
531 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
532 		dbg("move aux from %p to %p", auxpf, aux);
533 		/* XXXKIB insert place for AT_EXECPATH if not present */
534 		for (;; auxp++, auxpf++) {
535 		    *auxp = *auxpf;
536 		    if (auxp->a_type == AT_NULL)
537 			    break;
538 		}
539 		/* Since the auxiliary vector has moved, redigest it. */
540 		for (i = 0;  i < AT_COUNT;  i++)
541 		    aux_info[i] = NULL;
542 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
543 		    if (auxp->a_type < AT_COUNT)
544 			aux_info[auxp->a_type] = auxp;
545 		}
546 
547 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
548 		if (binpath == NULL) {
549 		    aux_info[AT_EXECPATH] = NULL;
550 		} else {
551 		    if (aux_info[AT_EXECPATH] == NULL) {
552 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
553 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
554 		    }
555 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
556 		      binpath);
557 		}
558 	    } else {
559 		_rtld_error("No binary");
560 		rtld_die();
561 	    }
562 	}
563     }
564 
565     ld_bind_now = getenv(_LD("BIND_NOW"));
566 
567     /*
568      * If the process is tainted, then we un-set the dangerous environment
569      * variables.  The process will be marked as tainted until setuid(2)
570      * is called.  If any child process calls setuid(2) we do not want any
571      * future processes to honor the potentially un-safe variables.
572      */
573     if (!trust) {
574 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
575 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
576 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
577 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
578 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
579 		_rtld_error("environment corrupt; aborting");
580 		rtld_die();
581 	}
582     }
583     ld_debug = getenv(_LD("DEBUG"));
584     if (ld_bind_now == NULL)
585 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
586     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
587     libmap_override = getenv(_LD("LIBMAP"));
588     ld_library_path = getenv(_LD("LIBRARY_PATH"));
589     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
590     ld_preload = getenv(_LD("PRELOAD"));
591     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
592     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
593     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
594     if (library_path_rpath != NULL) {
595 	    if (library_path_rpath[0] == 'y' ||
596 		library_path_rpath[0] == 'Y' ||
597 		library_path_rpath[0] == '1')
598 		    ld_library_path_rpath = true;
599 	    else
600 		    ld_library_path_rpath = false;
601     }
602     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
603 	(ld_library_path != NULL) || (ld_preload != NULL) ||
604 	(ld_elf_hints_path != NULL) || ld_loadfltr;
605     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
606     ld_utrace = getenv(_LD("UTRACE"));
607 
608     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
609 	ld_elf_hints_path = ld_elf_hints_default;
610 
611     if (ld_debug != NULL && *ld_debug != '\0')
612 	debug = 1;
613     dbg("%s is initialized, base address = %p", __progname,
614 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
615     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
616     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
617 
618     dbg("initializing thread locks");
619     lockdflt_init();
620 
621     /*
622      * Load the main program, or process its program header if it is
623      * already loaded.
624      */
625     if (fd != -1) {	/* Load the main program. */
626 	dbg("loading main program");
627 	obj_main = map_object(fd, argv0, NULL);
628 	close(fd);
629 	if (obj_main == NULL)
630 	    rtld_die();
631 	max_stack_flags = obj_main->stack_flags;
632     } else {				/* Main program already loaded. */
633 	dbg("processing main program's program header");
634 	assert(aux_info[AT_PHDR] != NULL);
635 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
636 	assert(aux_info[AT_PHNUM] != NULL);
637 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
638 	assert(aux_info[AT_PHENT] != NULL);
639 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
640 	assert(aux_info[AT_ENTRY] != NULL);
641 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
642 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
643 	    rtld_die();
644     }
645 
646     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
647 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
648 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
649 	    if (kexecpath[0] == '/')
650 		    obj_main->path = kexecpath;
651 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
652 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
653 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
654 		    obj_main->path = xstrdup(argv0);
655 	    else
656 		    obj_main->path = xstrdup(buf);
657     } else {
658 	    dbg("No AT_EXECPATH or direct exec");
659 	    obj_main->path = xstrdup(argv0);
660     }
661     dbg("obj_main path %s", obj_main->path);
662     obj_main->mainprog = true;
663 
664     if (aux_info[AT_STACKPROT] != NULL &&
665       aux_info[AT_STACKPROT]->a_un.a_val != 0)
666 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
667 
668 #ifndef COMPAT_32BIT
669     /*
670      * Get the actual dynamic linker pathname from the executable if
671      * possible.  (It should always be possible.)  That ensures that
672      * gdb will find the right dynamic linker even if a non-standard
673      * one is being used.
674      */
675     if (obj_main->interp != NULL &&
676       strcmp(obj_main->interp, obj_rtld.path) != 0) {
677 	free(obj_rtld.path);
678 	obj_rtld.path = xstrdup(obj_main->interp);
679         __progname = obj_rtld.path;
680     }
681 #endif
682 
683     if (!digest_dynamic(obj_main, 0))
684 	rtld_die();
685     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
686 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
687 	obj_main->dynsymcount);
688 
689     linkmap_add(obj_main);
690     linkmap_add(&obj_rtld);
691 
692     /* Link the main program into the list of objects. */
693     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
694     obj_count++;
695     obj_loads++;
696 
697     /* Initialize a fake symbol for resolving undefined weak references. */
698     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
699     sym_zero.st_shndx = SHN_UNDEF;
700     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
701 
702     if (!libmap_disable)
703         libmap_disable = (bool)lm_init(libmap_override);
704 
705     dbg("loading LD_PRELOAD libraries");
706     if (load_preload_objects() == -1)
707 	rtld_die();
708     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
709 
710     dbg("loading needed objects");
711     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
712       0) == -1)
713 	rtld_die();
714 
715     /* Make a list of all objects loaded at startup. */
716     last_interposer = obj_main;
717     TAILQ_FOREACH(obj, &obj_list, next) {
718 	if (obj->marker)
719 	    continue;
720 	if (obj->z_interpose && obj != obj_main) {
721 	    objlist_put_after(&list_main, last_interposer, obj);
722 	    last_interposer = obj;
723 	} else {
724 	    objlist_push_tail(&list_main, obj);
725 	}
726     	obj->refcount++;
727     }
728 
729     dbg("checking for required versions");
730     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
731 	rtld_die();
732 
733     if (ld_tracing) {		/* We're done */
734 	trace_loaded_objects(obj_main);
735 	exit(0);
736     }
737 
738     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
739        dump_relocations(obj_main);
740        exit (0);
741     }
742 
743     /*
744      * Processing tls relocations requires having the tls offsets
745      * initialized.  Prepare offsets before starting initial
746      * relocation processing.
747      */
748     dbg("initializing initial thread local storage offsets");
749     STAILQ_FOREACH(entry, &list_main, link) {
750 	/*
751 	 * Allocate all the initial objects out of the static TLS
752 	 * block even if they didn't ask for it.
753 	 */
754 	allocate_tls_offset(entry->obj);
755     }
756 
757     if (relocate_objects(obj_main,
758       ld_bind_now != NULL && *ld_bind_now != '\0',
759       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
760 	rtld_die();
761 
762     dbg("doing copy relocations");
763     if (do_copy_relocations(obj_main) == -1)
764 	rtld_die();
765 
766     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
767        dump_relocations(obj_main);
768        exit (0);
769     }
770 
771     ifunc_init(aux);
772 
773     /*
774      * Setup TLS for main thread.  This must be done after the
775      * relocations are processed, since tls initialization section
776      * might be the subject for relocations.
777      */
778     dbg("initializing initial thread local storage");
779     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
780 
781     dbg("initializing key program variables");
782     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
783     set_program_var("environ", env);
784     set_program_var("__elf_aux_vector", aux);
785 
786     /* Make a list of init functions to call. */
787     objlist_init(&initlist);
788     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
789       preload_tail, &initlist);
790 
791     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
792 
793     map_stacks_exec(NULL);
794 
795     if (!obj_main->crt_no_init) {
796 	/*
797 	 * Make sure we don't call the main program's init and fini
798 	 * functions for binaries linked with old crt1 which calls
799 	 * _init itself.
800 	 */
801 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
802 	obj_main->preinit_array = obj_main->init_array =
803 	    obj_main->fini_array = (Elf_Addr)NULL;
804     }
805 
806     /*
807      * Execute MD initializers required before we call the objects'
808      * init functions.
809      */
810     pre_init();
811 
812     if (direct_exec) {
813 	/* Set osrel for direct-execed binary */
814 	mib[0] = CTL_KERN;
815 	mib[1] = KERN_PROC;
816 	mib[2] = KERN_PROC_OSREL;
817 	mib[3] = getpid();
818 	osrel = obj_main->osrel;
819 	sz = sizeof(old_osrel);
820 	dbg("setting osrel to %d", osrel);
821 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
822     }
823 
824     wlock_acquire(rtld_bind_lock, &lockstate);
825 
826     dbg("resolving ifuncs");
827     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
828       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
829 	rtld_die();
830 
831     rtld_exit_ptr = rtld_exit;
832     if (obj_main->crt_no_init)
833 	preinit_main();
834     objlist_call_init(&initlist, &lockstate);
835     _r_debug_postinit(&obj_main->linkmap);
836     objlist_clear(&initlist);
837     dbg("loading filtees");
838     TAILQ_FOREACH(obj, &obj_list, next) {
839 	if (obj->marker)
840 	    continue;
841 	if (ld_loadfltr || obj->z_loadfltr)
842 	    load_filtees(obj, 0, &lockstate);
843     }
844 
845     dbg("enforcing main obj relro");
846     if (obj_enforce_relro(obj_main) == -1)
847 	rtld_die();
848 
849     lock_release(rtld_bind_lock, &lockstate);
850 
851     dbg("transferring control to program entry point = %p", obj_main->entry);
852 
853     /* Return the exit procedure and the program entry point. */
854     *exit_proc = rtld_exit_ptr;
855     *objp = obj_main;
856     return (func_ptr_type) obj_main->entry;
857 }
858 
859 void *
860 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
861 {
862 	void *ptr;
863 	Elf_Addr target;
864 
865 	ptr = (void *)make_function_pointer(def, obj);
866 	target = call_ifunc_resolver(ptr);
867 	return ((void *)target);
868 }
869 
870 /*
871  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
872  * Changes to this function should be applied there as well.
873  */
874 Elf_Addr
875 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
876 {
877     const Elf_Rel *rel;
878     const Elf_Sym *def;
879     const Obj_Entry *defobj;
880     Elf_Addr *where;
881     Elf_Addr target;
882     RtldLockState lockstate;
883 
884     rlock_acquire(rtld_bind_lock, &lockstate);
885     if (sigsetjmp(lockstate.env, 0) != 0)
886 	    lock_upgrade(rtld_bind_lock, &lockstate);
887     if (obj->pltrel)
888 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
889     else
890 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
891 
892     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
893     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
894 	NULL, &lockstate);
895     if (def == NULL)
896 	rtld_die();
897     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
898 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
899     else
900 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
901 
902     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
903       defobj->strtab + def->st_name, basename(obj->path),
904       (void *)target, basename(defobj->path));
905 
906     /*
907      * Write the new contents for the jmpslot. Note that depending on
908      * architecture, the value which we need to return back to the
909      * lazy binding trampoline may or may not be the target
910      * address. The value returned from reloc_jmpslot() is the value
911      * that the trampoline needs.
912      */
913     target = reloc_jmpslot(where, target, defobj, obj, rel);
914     lock_release(rtld_bind_lock, &lockstate);
915     return target;
916 }
917 
918 /*
919  * Error reporting function.  Use it like printf.  If formats the message
920  * into a buffer, and sets things up so that the next call to dlerror()
921  * will return the message.
922  */
923 void
924 _rtld_error(const char *fmt, ...)
925 {
926     static char buf[512];
927     va_list ap;
928 
929     va_start(ap, fmt);
930     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
931     error_message = buf;
932     va_end(ap);
933     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
934 }
935 
936 /*
937  * Return a dynamically-allocated copy of the current error message, if any.
938  */
939 static char *
940 errmsg_save(void)
941 {
942     return error_message == NULL ? NULL : xstrdup(error_message);
943 }
944 
945 /*
946  * Restore the current error message from a copy which was previously saved
947  * by errmsg_save().  The copy is freed.
948  */
949 static void
950 errmsg_restore(char *saved_msg)
951 {
952     if (saved_msg == NULL)
953 	error_message = NULL;
954     else {
955 	_rtld_error("%s", saved_msg);
956 	free(saved_msg);
957     }
958 }
959 
960 static const char *
961 basename(const char *name)
962 {
963     const char *p = strrchr(name, '/');
964     return p != NULL ? p + 1 : name;
965 }
966 
967 static struct utsname uts;
968 
969 static char *
970 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
971     const char *subst, bool may_free)
972 {
973 	char *p, *p1, *res, *resp;
974 	int subst_len, kw_len, subst_count, old_len, new_len;
975 
976 	kw_len = strlen(kw);
977 
978 	/*
979 	 * First, count the number of the keyword occurrences, to
980 	 * preallocate the final string.
981 	 */
982 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
983 		p1 = strstr(p, kw);
984 		if (p1 == NULL)
985 			break;
986 	}
987 
988 	/*
989 	 * If the keyword is not found, just return.
990 	 *
991 	 * Return non-substituted string if resolution failed.  We
992 	 * cannot do anything more reasonable, the failure mode of the
993 	 * caller is unresolved library anyway.
994 	 */
995 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
996 		return (may_free ? real : xstrdup(real));
997 	if (obj != NULL)
998 		subst = obj->origin_path;
999 
1000 	/*
1001 	 * There is indeed something to substitute.  Calculate the
1002 	 * length of the resulting string, and allocate it.
1003 	 */
1004 	subst_len = strlen(subst);
1005 	old_len = strlen(real);
1006 	new_len = old_len + (subst_len - kw_len) * subst_count;
1007 	res = xmalloc(new_len + 1);
1008 
1009 	/*
1010 	 * Now, execute the substitution loop.
1011 	 */
1012 	for (p = real, resp = res, *resp = '\0';;) {
1013 		p1 = strstr(p, kw);
1014 		if (p1 != NULL) {
1015 			/* Copy the prefix before keyword. */
1016 			memcpy(resp, p, p1 - p);
1017 			resp += p1 - p;
1018 			/* Keyword replacement. */
1019 			memcpy(resp, subst, subst_len);
1020 			resp += subst_len;
1021 			*resp = '\0';
1022 			p = p1 + kw_len;
1023 		} else
1024 			break;
1025 	}
1026 
1027 	/* Copy to the end of string and finish. */
1028 	strcat(resp, p);
1029 	if (may_free)
1030 		free(real);
1031 	return (res);
1032 }
1033 
1034 static char *
1035 origin_subst(Obj_Entry *obj, const char *real)
1036 {
1037 	char *res1, *res2, *res3, *res4;
1038 
1039 	if (obj == NULL || !trust)
1040 		return (xstrdup(real));
1041 	if (uts.sysname[0] == '\0') {
1042 		if (uname(&uts) != 0) {
1043 			_rtld_error("utsname failed: %d", errno);
1044 			return (NULL);
1045 		}
1046 	}
1047 	/* __DECONST is safe here since without may_free real is unchanged */
1048 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1049 	    false);
1050 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1051 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1052 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1053 	return (res4);
1054 }
1055 
1056 void
1057 rtld_die(void)
1058 {
1059     const char *msg = dlerror();
1060 
1061     if (msg == NULL)
1062 	msg = "Fatal error";
1063     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1064     rtld_fdputstr(STDERR_FILENO, msg);
1065     rtld_fdputchar(STDERR_FILENO, '\n');
1066     _exit(1);
1067 }
1068 
1069 /*
1070  * Process a shared object's DYNAMIC section, and save the important
1071  * information in its Obj_Entry structure.
1072  */
1073 static void
1074 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1075     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1076 {
1077     const Elf_Dyn *dynp;
1078     Needed_Entry **needed_tail = &obj->needed;
1079     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1080     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1081     const Elf_Hashelt *hashtab;
1082     const Elf32_Word *hashval;
1083     Elf32_Word bkt, nmaskwords;
1084     int bloom_size32;
1085     int plttype = DT_REL;
1086 
1087     *dyn_rpath = NULL;
1088     *dyn_soname = NULL;
1089     *dyn_runpath = NULL;
1090 
1091     obj->bind_now = false;
1092     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1093 	switch (dynp->d_tag) {
1094 
1095 	case DT_REL:
1096 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1097 	    break;
1098 
1099 	case DT_RELSZ:
1100 	    obj->relsize = dynp->d_un.d_val;
1101 	    break;
1102 
1103 	case DT_RELENT:
1104 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1105 	    break;
1106 
1107 	case DT_JMPREL:
1108 	    obj->pltrel = (const Elf_Rel *)
1109 	      (obj->relocbase + dynp->d_un.d_ptr);
1110 	    break;
1111 
1112 	case DT_PLTRELSZ:
1113 	    obj->pltrelsize = dynp->d_un.d_val;
1114 	    break;
1115 
1116 	case DT_RELA:
1117 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1118 	    break;
1119 
1120 	case DT_RELASZ:
1121 	    obj->relasize = dynp->d_un.d_val;
1122 	    break;
1123 
1124 	case DT_RELAENT:
1125 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1126 	    break;
1127 
1128 	case DT_PLTREL:
1129 	    plttype = dynp->d_un.d_val;
1130 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1131 	    break;
1132 
1133 	case DT_SYMTAB:
1134 	    obj->symtab = (const Elf_Sym *)
1135 	      (obj->relocbase + dynp->d_un.d_ptr);
1136 	    break;
1137 
1138 	case DT_SYMENT:
1139 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1140 	    break;
1141 
1142 	case DT_STRTAB:
1143 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1144 	    break;
1145 
1146 	case DT_STRSZ:
1147 	    obj->strsize = dynp->d_un.d_val;
1148 	    break;
1149 
1150 	case DT_VERNEED:
1151 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1152 		dynp->d_un.d_val);
1153 	    break;
1154 
1155 	case DT_VERNEEDNUM:
1156 	    obj->verneednum = dynp->d_un.d_val;
1157 	    break;
1158 
1159 	case DT_VERDEF:
1160 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1161 		dynp->d_un.d_val);
1162 	    break;
1163 
1164 	case DT_VERDEFNUM:
1165 	    obj->verdefnum = dynp->d_un.d_val;
1166 	    break;
1167 
1168 	case DT_VERSYM:
1169 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1170 		dynp->d_un.d_val);
1171 	    break;
1172 
1173 	case DT_HASH:
1174 	    {
1175 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1176 		    dynp->d_un.d_ptr);
1177 		obj->nbuckets = hashtab[0];
1178 		obj->nchains = hashtab[1];
1179 		obj->buckets = hashtab + 2;
1180 		obj->chains = obj->buckets + obj->nbuckets;
1181 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1182 		  obj->buckets != NULL;
1183 	    }
1184 	    break;
1185 
1186 	case DT_GNU_HASH:
1187 	    {
1188 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1189 		    dynp->d_un.d_ptr);
1190 		obj->nbuckets_gnu = hashtab[0];
1191 		obj->symndx_gnu = hashtab[1];
1192 		nmaskwords = hashtab[2];
1193 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1194 		obj->maskwords_bm_gnu = nmaskwords - 1;
1195 		obj->shift2_gnu = hashtab[3];
1196 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1197 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1198 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1199 		  obj->symndx_gnu;
1200 		/* Number of bitmask words is required to be power of 2 */
1201 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1202 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1203 	    }
1204 	    break;
1205 
1206 	case DT_NEEDED:
1207 	    if (!obj->rtld) {
1208 		Needed_Entry *nep = NEW(Needed_Entry);
1209 		nep->name = dynp->d_un.d_val;
1210 		nep->obj = NULL;
1211 		nep->next = NULL;
1212 
1213 		*needed_tail = nep;
1214 		needed_tail = &nep->next;
1215 	    }
1216 	    break;
1217 
1218 	case DT_FILTER:
1219 	    if (!obj->rtld) {
1220 		Needed_Entry *nep = NEW(Needed_Entry);
1221 		nep->name = dynp->d_un.d_val;
1222 		nep->obj = NULL;
1223 		nep->next = NULL;
1224 
1225 		*needed_filtees_tail = nep;
1226 		needed_filtees_tail = &nep->next;
1227 
1228 		if (obj->linkmap.l_refname == NULL)
1229 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1230 	    }
1231 	    break;
1232 
1233 	case DT_AUXILIARY:
1234 	    if (!obj->rtld) {
1235 		Needed_Entry *nep = NEW(Needed_Entry);
1236 		nep->name = dynp->d_un.d_val;
1237 		nep->obj = NULL;
1238 		nep->next = NULL;
1239 
1240 		*needed_aux_filtees_tail = nep;
1241 		needed_aux_filtees_tail = &nep->next;
1242 	    }
1243 	    break;
1244 
1245 	case DT_PLTGOT:
1246 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1247 	    break;
1248 
1249 	case DT_TEXTREL:
1250 	    obj->textrel = true;
1251 	    break;
1252 
1253 	case DT_SYMBOLIC:
1254 	    obj->symbolic = true;
1255 	    break;
1256 
1257 	case DT_RPATH:
1258 	    /*
1259 	     * We have to wait until later to process this, because we
1260 	     * might not have gotten the address of the string table yet.
1261 	     */
1262 	    *dyn_rpath = dynp;
1263 	    break;
1264 
1265 	case DT_SONAME:
1266 	    *dyn_soname = dynp;
1267 	    break;
1268 
1269 	case DT_RUNPATH:
1270 	    *dyn_runpath = dynp;
1271 	    break;
1272 
1273 	case DT_INIT:
1274 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1275 	    break;
1276 
1277 	case DT_PREINIT_ARRAY:
1278 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1279 	    break;
1280 
1281 	case DT_PREINIT_ARRAYSZ:
1282 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1283 	    break;
1284 
1285 	case DT_INIT_ARRAY:
1286 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1287 	    break;
1288 
1289 	case DT_INIT_ARRAYSZ:
1290 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1291 	    break;
1292 
1293 	case DT_FINI:
1294 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1295 	    break;
1296 
1297 	case DT_FINI_ARRAY:
1298 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1299 	    break;
1300 
1301 	case DT_FINI_ARRAYSZ:
1302 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1303 	    break;
1304 
1305 	/*
1306 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1307 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1308 	 */
1309 
1310 #ifndef __mips__
1311 	case DT_DEBUG:
1312 	    if (!early)
1313 		dbg("Filling in DT_DEBUG entry");
1314 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1315 	    break;
1316 #endif
1317 
1318 	case DT_FLAGS:
1319 		if (dynp->d_un.d_val & DF_ORIGIN)
1320 		    obj->z_origin = true;
1321 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1322 		    obj->symbolic = true;
1323 		if (dynp->d_un.d_val & DF_TEXTREL)
1324 		    obj->textrel = true;
1325 		if (dynp->d_un.d_val & DF_BIND_NOW)
1326 		    obj->bind_now = true;
1327 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1328 		    obj->static_tls = true;
1329 	    break;
1330 #ifdef __mips__
1331 	case DT_MIPS_LOCAL_GOTNO:
1332 		obj->local_gotno = dynp->d_un.d_val;
1333 		break;
1334 
1335 	case DT_MIPS_SYMTABNO:
1336 		obj->symtabno = dynp->d_un.d_val;
1337 		break;
1338 
1339 	case DT_MIPS_GOTSYM:
1340 		obj->gotsym = dynp->d_un.d_val;
1341 		break;
1342 
1343 	case DT_MIPS_RLD_MAP:
1344 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1345 		break;
1346 
1347 	case DT_MIPS_RLD_MAP_REL:
1348 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1349 		// section relative to the address of the tag itself.
1350 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1351 		    (Elf_Addr) &r_debug;
1352 		break;
1353 
1354 	case DT_MIPS_PLTGOT:
1355 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1356 		    dynp->d_un.d_ptr);
1357 		break;
1358 
1359 #endif
1360 
1361 #ifdef __powerpc__
1362 #ifdef __powerpc64__
1363 	case DT_PPC64_GLINK:
1364 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1365 		break;
1366 #else
1367 	case DT_PPC_GOT:
1368 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1369 		break;
1370 #endif
1371 #endif
1372 
1373 	case DT_FLAGS_1:
1374 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1375 		    obj->z_noopen = true;
1376 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1377 		    obj->z_origin = true;
1378 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1379 		    obj->z_global = true;
1380 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1381 		    obj->bind_now = true;
1382 		if (dynp->d_un.d_val & DF_1_NODELETE)
1383 		    obj->z_nodelete = true;
1384 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1385 		    obj->z_loadfltr = true;
1386 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1387 		    obj->z_interpose = true;
1388 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1389 		    obj->z_nodeflib = true;
1390 		if (dynp->d_un.d_val & DF_1_PIE)
1391 		    obj->z_pie = true;
1392 	    break;
1393 
1394 	default:
1395 	    if (!early) {
1396 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1397 		    (long)dynp->d_tag);
1398 	    }
1399 	    break;
1400 	}
1401     }
1402 
1403     obj->traced = false;
1404 
1405     if (plttype == DT_RELA) {
1406 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1407 	obj->pltrel = NULL;
1408 	obj->pltrelasize = obj->pltrelsize;
1409 	obj->pltrelsize = 0;
1410     }
1411 
1412     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1413     if (obj->valid_hash_sysv)
1414 	obj->dynsymcount = obj->nchains;
1415     else if (obj->valid_hash_gnu) {
1416 	obj->dynsymcount = 0;
1417 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1418 	    if (obj->buckets_gnu[bkt] == 0)
1419 		continue;
1420 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1421 	    do
1422 		obj->dynsymcount++;
1423 	    while ((*hashval++ & 1u) == 0);
1424 	}
1425 	obj->dynsymcount += obj->symndx_gnu;
1426     }
1427 
1428     if (obj->linkmap.l_refname != NULL)
1429 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1430 	  linkmap.l_refname;
1431 }
1432 
1433 static bool
1434 obj_resolve_origin(Obj_Entry *obj)
1435 {
1436 
1437 	if (obj->origin_path != NULL)
1438 		return (true);
1439 	obj->origin_path = xmalloc(PATH_MAX);
1440 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1441 }
1442 
1443 static bool
1444 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1445     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1446 {
1447 
1448 	if (obj->z_origin && !obj_resolve_origin(obj))
1449 		return (false);
1450 
1451 	if (dyn_runpath != NULL) {
1452 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1453 		obj->runpath = origin_subst(obj, obj->runpath);
1454 	} else if (dyn_rpath != NULL) {
1455 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1456 		obj->rpath = origin_subst(obj, obj->rpath);
1457 	}
1458 	if (dyn_soname != NULL)
1459 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1460 	return (true);
1461 }
1462 
1463 static bool
1464 digest_dynamic(Obj_Entry *obj, int early)
1465 {
1466 	const Elf_Dyn *dyn_rpath;
1467 	const Elf_Dyn *dyn_soname;
1468 	const Elf_Dyn *dyn_runpath;
1469 
1470 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1471 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1472 }
1473 
1474 /*
1475  * Process a shared object's program header.  This is used only for the
1476  * main program, when the kernel has already loaded the main program
1477  * into memory before calling the dynamic linker.  It creates and
1478  * returns an Obj_Entry structure.
1479  */
1480 static Obj_Entry *
1481 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1482 {
1483     Obj_Entry *obj;
1484     const Elf_Phdr *phlimit = phdr + phnum;
1485     const Elf_Phdr *ph;
1486     Elf_Addr note_start, note_end;
1487     int nsegs = 0;
1488 
1489     obj = obj_new();
1490     for (ph = phdr;  ph < phlimit;  ph++) {
1491 	if (ph->p_type != PT_PHDR)
1492 	    continue;
1493 
1494 	obj->phdr = phdr;
1495 	obj->phsize = ph->p_memsz;
1496 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1497 	break;
1498     }
1499 
1500     obj->stack_flags = PF_X | PF_R | PF_W;
1501 
1502     for (ph = phdr;  ph < phlimit;  ph++) {
1503 	switch (ph->p_type) {
1504 
1505 	case PT_INTERP:
1506 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1507 	    break;
1508 
1509 	case PT_LOAD:
1510 	    if (nsegs == 0) {	/* First load segment */
1511 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1512 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1513 	    } else {		/* Last load segment */
1514 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1515 		  obj->vaddrbase;
1516 	    }
1517 	    nsegs++;
1518 	    break;
1519 
1520 	case PT_DYNAMIC:
1521 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1522 	    break;
1523 
1524 	case PT_TLS:
1525 	    obj->tlsindex = 1;
1526 	    obj->tlssize = ph->p_memsz;
1527 	    obj->tlsalign = ph->p_align;
1528 	    obj->tlsinitsize = ph->p_filesz;
1529 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1530 	    obj->tlspoffset = ph->p_offset;
1531 	    break;
1532 
1533 	case PT_GNU_STACK:
1534 	    obj->stack_flags = ph->p_flags;
1535 	    break;
1536 
1537 	case PT_GNU_RELRO:
1538 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1539 	    obj->relro_size = round_page(ph->p_memsz);
1540 	    break;
1541 
1542 	case PT_NOTE:
1543 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1544 	    note_end = note_start + ph->p_filesz;
1545 	    digest_notes(obj, note_start, note_end);
1546 	    break;
1547 	}
1548     }
1549     if (nsegs < 1) {
1550 	_rtld_error("%s: too few PT_LOAD segments", path);
1551 	return NULL;
1552     }
1553 
1554     obj->entry = entry;
1555     return obj;
1556 }
1557 
1558 void
1559 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1560 {
1561 	const Elf_Note *note;
1562 	const char *note_name;
1563 	uintptr_t p;
1564 
1565 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1566 	    note = (const Elf_Note *)((const char *)(note + 1) +
1567 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1568 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1569 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1570 		    note->n_descsz != sizeof(int32_t))
1571 			continue;
1572 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1573 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1574 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1575 			continue;
1576 		note_name = (const char *)(note + 1);
1577 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1578 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1579 			continue;
1580 		switch (note->n_type) {
1581 		case NT_FREEBSD_ABI_TAG:
1582 			/* FreeBSD osrel note */
1583 			p = (uintptr_t)(note + 1);
1584 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1585 			obj->osrel = *(const int32_t *)(p);
1586 			dbg("note osrel %d", obj->osrel);
1587 			break;
1588 		case NT_FREEBSD_FEATURE_CTL:
1589 			/* FreeBSD ABI feature control note */
1590 			p = (uintptr_t)(note + 1);
1591 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1592 			obj->fctl0 = *(const uint32_t *)(p);
1593 			dbg("note fctl0 %#x", obj->fctl0);
1594 			break;
1595 		case NT_FREEBSD_NOINIT_TAG:
1596 			/* FreeBSD 'crt does not call init' note */
1597 			obj->crt_no_init = true;
1598 			dbg("note crt_no_init");
1599 			break;
1600 		}
1601 	}
1602 }
1603 
1604 static Obj_Entry *
1605 dlcheck(void *handle)
1606 {
1607     Obj_Entry *obj;
1608 
1609     TAILQ_FOREACH(obj, &obj_list, next) {
1610 	if (obj == (Obj_Entry *) handle)
1611 	    break;
1612     }
1613 
1614     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1615 	_rtld_error("Invalid shared object handle %p", handle);
1616 	return NULL;
1617     }
1618     return obj;
1619 }
1620 
1621 /*
1622  * If the given object is already in the donelist, return true.  Otherwise
1623  * add the object to the list and return false.
1624  */
1625 static bool
1626 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1627 {
1628     unsigned int i;
1629 
1630     for (i = 0;  i < dlp->num_used;  i++)
1631 	if (dlp->objs[i] == obj)
1632 	    return true;
1633     /*
1634      * Our donelist allocation should always be sufficient.  But if
1635      * our threads locking isn't working properly, more shared objects
1636      * could have been loaded since we allocated the list.  That should
1637      * never happen, but we'll handle it properly just in case it does.
1638      */
1639     if (dlp->num_used < dlp->num_alloc)
1640 	dlp->objs[dlp->num_used++] = obj;
1641     return false;
1642 }
1643 
1644 /*
1645  * Hash function for symbol table lookup.  Don't even think about changing
1646  * this.  It is specified by the System V ABI.
1647  */
1648 unsigned long
1649 elf_hash(const char *name)
1650 {
1651     const unsigned char *p = (const unsigned char *) name;
1652     unsigned long h = 0;
1653     unsigned long g;
1654 
1655     while (*p != '\0') {
1656 	h = (h << 4) + *p++;
1657 	if ((g = h & 0xf0000000) != 0)
1658 	    h ^= g >> 24;
1659 	h &= ~g;
1660     }
1661     return h;
1662 }
1663 
1664 /*
1665  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1666  * unsigned in case it's implemented with a wider type.
1667  */
1668 static uint32_t
1669 gnu_hash(const char *s)
1670 {
1671 	uint32_t h;
1672 	unsigned char c;
1673 
1674 	h = 5381;
1675 	for (c = *s; c != '\0'; c = *++s)
1676 		h = h * 33 + c;
1677 	return (h & 0xffffffff);
1678 }
1679 
1680 
1681 /*
1682  * Find the library with the given name, and return its full pathname.
1683  * The returned string is dynamically allocated.  Generates an error
1684  * message and returns NULL if the library cannot be found.
1685  *
1686  * If the second argument is non-NULL, then it refers to an already-
1687  * loaded shared object, whose library search path will be searched.
1688  *
1689  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1690  * descriptor (which is close-on-exec) will be passed out via the third
1691  * argument.
1692  *
1693  * The search order is:
1694  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1695  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1696  *   LD_LIBRARY_PATH
1697  *   DT_RUNPATH in the referencing file
1698  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1699  *	 from list)
1700  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1701  *
1702  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1703  */
1704 static char *
1705 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1706 {
1707 	char *pathname, *refobj_path;
1708 	const char *name;
1709 	bool nodeflib, objgiven;
1710 
1711 	objgiven = refobj != NULL;
1712 
1713 	if (libmap_disable || !objgiven ||
1714 	    (name = lm_find(refobj->path, xname)) == NULL)
1715 		name = xname;
1716 
1717 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1718 		if (name[0] != '/' && !trust) {
1719 			_rtld_error("Absolute pathname required "
1720 			    "for shared object \"%s\"", name);
1721 			return (NULL);
1722 		}
1723 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1724 		    __DECONST(char *, name)));
1725 	}
1726 
1727 	dbg(" Searching for \"%s\"", name);
1728 	refobj_path = objgiven ? refobj->path : NULL;
1729 
1730 	/*
1731 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1732 	 * back to pre-conforming behaviour if user requested so with
1733 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1734 	 * nodeflib.
1735 	 */
1736 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1737 		pathname = search_library_path(name, ld_library_path,
1738 		    refobj_path, fdp);
1739 		if (pathname != NULL)
1740 			return (pathname);
1741 		if (refobj != NULL) {
1742 			pathname = search_library_path(name, refobj->rpath,
1743 			    refobj_path, fdp);
1744 			if (pathname != NULL)
1745 				return (pathname);
1746 		}
1747 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1748 		if (pathname != NULL)
1749 			return (pathname);
1750 		pathname = search_library_path(name, gethints(false),
1751 		    refobj_path, fdp);
1752 		if (pathname != NULL)
1753 			return (pathname);
1754 		pathname = search_library_path(name, ld_standard_library_path,
1755 		    refobj_path, fdp);
1756 		if (pathname != NULL)
1757 			return (pathname);
1758 	} else {
1759 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1760 		if (objgiven) {
1761 			pathname = search_library_path(name, refobj->rpath,
1762 			    refobj->path, fdp);
1763 			if (pathname != NULL)
1764 				return (pathname);
1765 		}
1766 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1767 			pathname = search_library_path(name, obj_main->rpath,
1768 			    refobj_path, fdp);
1769 			if (pathname != NULL)
1770 				return (pathname);
1771 		}
1772 		pathname = search_library_path(name, ld_library_path,
1773 		    refobj_path, fdp);
1774 		if (pathname != NULL)
1775 			return (pathname);
1776 		if (objgiven) {
1777 			pathname = search_library_path(name, refobj->runpath,
1778 			    refobj_path, fdp);
1779 			if (pathname != NULL)
1780 				return (pathname);
1781 		}
1782 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1783 		if (pathname != NULL)
1784 			return (pathname);
1785 		pathname = search_library_path(name, gethints(nodeflib),
1786 		    refobj_path, fdp);
1787 		if (pathname != NULL)
1788 			return (pathname);
1789 		if (objgiven && !nodeflib) {
1790 			pathname = search_library_path(name,
1791 			    ld_standard_library_path, refobj_path, fdp);
1792 			if (pathname != NULL)
1793 				return (pathname);
1794 		}
1795 	}
1796 
1797 	if (objgiven && refobj->path != NULL) {
1798 		_rtld_error("Shared object \"%s\" not found, "
1799 		    "required by \"%s\"", name, basename(refobj->path));
1800 	} else {
1801 		_rtld_error("Shared object \"%s\" not found", name);
1802 	}
1803 	return (NULL);
1804 }
1805 
1806 /*
1807  * Given a symbol number in a referencing object, find the corresponding
1808  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1809  * no definition was found.  Returns a pointer to the Obj_Entry of the
1810  * defining object via the reference parameter DEFOBJ_OUT.
1811  */
1812 const Elf_Sym *
1813 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1814     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1815     RtldLockState *lockstate)
1816 {
1817     const Elf_Sym *ref;
1818     const Elf_Sym *def;
1819     const Obj_Entry *defobj;
1820     const Ver_Entry *ve;
1821     SymLook req;
1822     const char *name;
1823     int res;
1824 
1825     /*
1826      * If we have already found this symbol, get the information from
1827      * the cache.
1828      */
1829     if (symnum >= refobj->dynsymcount)
1830 	return NULL;	/* Bad object */
1831     if (cache != NULL && cache[symnum].sym != NULL) {
1832 	*defobj_out = cache[symnum].obj;
1833 	return cache[symnum].sym;
1834     }
1835 
1836     ref = refobj->symtab + symnum;
1837     name = refobj->strtab + ref->st_name;
1838     def = NULL;
1839     defobj = NULL;
1840     ve = NULL;
1841 
1842     /*
1843      * We don't have to do a full scale lookup if the symbol is local.
1844      * We know it will bind to the instance in this load module; to
1845      * which we already have a pointer (ie ref). By not doing a lookup,
1846      * we not only improve performance, but it also avoids unresolvable
1847      * symbols when local symbols are not in the hash table. This has
1848      * been seen with the ia64 toolchain.
1849      */
1850     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1851 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1852 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1853 		symnum);
1854 	}
1855 	symlook_init(&req, name);
1856 	req.flags = flags;
1857 	ve = req.ventry = fetch_ventry(refobj, symnum);
1858 	req.lockstate = lockstate;
1859 	res = symlook_default(&req, refobj);
1860 	if (res == 0) {
1861 	    def = req.sym_out;
1862 	    defobj = req.defobj_out;
1863 	}
1864     } else {
1865 	def = ref;
1866 	defobj = refobj;
1867     }
1868 
1869     /*
1870      * If we found no definition and the reference is weak, treat the
1871      * symbol as having the value zero.
1872      */
1873     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1874 	def = &sym_zero;
1875 	defobj = obj_main;
1876     }
1877 
1878     if (def != NULL) {
1879 	*defobj_out = defobj;
1880 	/* Record the information in the cache to avoid subsequent lookups. */
1881 	if (cache != NULL) {
1882 	    cache[symnum].sym = def;
1883 	    cache[symnum].obj = defobj;
1884 	}
1885     } else {
1886 	if (refobj != &obj_rtld)
1887 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1888 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1889     }
1890     return def;
1891 }
1892 
1893 /*
1894  * Return the search path from the ldconfig hints file, reading it if
1895  * necessary.  If nostdlib is true, then the default search paths are
1896  * not added to result.
1897  *
1898  * Returns NULL if there are problems with the hints file,
1899  * or if the search path there is empty.
1900  */
1901 static const char *
1902 gethints(bool nostdlib)
1903 {
1904 	static char *filtered_path;
1905 	static const char *hints;
1906 	static struct elfhints_hdr hdr;
1907 	struct fill_search_info_args sargs, hargs;
1908 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1909 	struct dl_serpath *SLPpath, *hintpath;
1910 	char *p;
1911 	struct stat hint_stat;
1912 	unsigned int SLPndx, hintndx, fndx, fcount;
1913 	int fd;
1914 	size_t flen;
1915 	uint32_t dl;
1916 	bool skip;
1917 
1918 	/* First call, read the hints file */
1919 	if (hints == NULL) {
1920 		/* Keep from trying again in case the hints file is bad. */
1921 		hints = "";
1922 
1923 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1924 			return (NULL);
1925 
1926 		/*
1927 		 * Check of hdr.dirlistlen value against type limit
1928 		 * intends to pacify static analyzers.  Further
1929 		 * paranoia leads to checks that dirlist is fully
1930 		 * contained in the file range.
1931 		 */
1932 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1933 		    hdr.magic != ELFHINTS_MAGIC ||
1934 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1935 		    fstat(fd, &hint_stat) == -1) {
1936 cleanup1:
1937 			close(fd);
1938 			hdr.dirlistlen = 0;
1939 			return (NULL);
1940 		}
1941 		dl = hdr.strtab;
1942 		if (dl + hdr.dirlist < dl)
1943 			goto cleanup1;
1944 		dl += hdr.dirlist;
1945 		if (dl + hdr.dirlistlen < dl)
1946 			goto cleanup1;
1947 		dl += hdr.dirlistlen;
1948 		if (dl > hint_stat.st_size)
1949 			goto cleanup1;
1950 		p = xmalloc(hdr.dirlistlen + 1);
1951 		if (pread(fd, p, hdr.dirlistlen + 1,
1952 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1953 		    p[hdr.dirlistlen] != '\0') {
1954 			free(p);
1955 			goto cleanup1;
1956 		}
1957 		hints = p;
1958 		close(fd);
1959 	}
1960 
1961 	/*
1962 	 * If caller agreed to receive list which includes the default
1963 	 * paths, we are done. Otherwise, if we still did not
1964 	 * calculated filtered result, do it now.
1965 	 */
1966 	if (!nostdlib)
1967 		return (hints[0] != '\0' ? hints : NULL);
1968 	if (filtered_path != NULL)
1969 		goto filt_ret;
1970 
1971 	/*
1972 	 * Obtain the list of all configured search paths, and the
1973 	 * list of the default paths.
1974 	 *
1975 	 * First estimate the size of the results.
1976 	 */
1977 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1978 	smeta.dls_cnt = 0;
1979 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1980 	hmeta.dls_cnt = 0;
1981 
1982 	sargs.request = RTLD_DI_SERINFOSIZE;
1983 	sargs.serinfo = &smeta;
1984 	hargs.request = RTLD_DI_SERINFOSIZE;
1985 	hargs.serinfo = &hmeta;
1986 
1987 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1988 	    &sargs);
1989 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1990 
1991 	SLPinfo = xmalloc(smeta.dls_size);
1992 	hintinfo = xmalloc(hmeta.dls_size);
1993 
1994 	/*
1995 	 * Next fetch both sets of paths.
1996 	 */
1997 	sargs.request = RTLD_DI_SERINFO;
1998 	sargs.serinfo = SLPinfo;
1999 	sargs.serpath = &SLPinfo->dls_serpath[0];
2000 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2001 
2002 	hargs.request = RTLD_DI_SERINFO;
2003 	hargs.serinfo = hintinfo;
2004 	hargs.serpath = &hintinfo->dls_serpath[0];
2005 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2006 
2007 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2008 	    &sargs);
2009 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2010 
2011 	/*
2012 	 * Now calculate the difference between two sets, by excluding
2013 	 * standard paths from the full set.
2014 	 */
2015 	fndx = 0;
2016 	fcount = 0;
2017 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2018 	hintpath = &hintinfo->dls_serpath[0];
2019 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2020 		skip = false;
2021 		SLPpath = &SLPinfo->dls_serpath[0];
2022 		/*
2023 		 * Check each standard path against current.
2024 		 */
2025 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2026 			/* matched, skip the path */
2027 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2028 				skip = true;
2029 				break;
2030 			}
2031 		}
2032 		if (skip)
2033 			continue;
2034 		/*
2035 		 * Not matched against any standard path, add the path
2036 		 * to result. Separate consequtive paths with ':'.
2037 		 */
2038 		if (fcount > 0) {
2039 			filtered_path[fndx] = ':';
2040 			fndx++;
2041 		}
2042 		fcount++;
2043 		flen = strlen(hintpath->dls_name);
2044 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2045 		fndx += flen;
2046 	}
2047 	filtered_path[fndx] = '\0';
2048 
2049 	free(SLPinfo);
2050 	free(hintinfo);
2051 
2052 filt_ret:
2053 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2054 }
2055 
2056 static void
2057 init_dag(Obj_Entry *root)
2058 {
2059     const Needed_Entry *needed;
2060     const Objlist_Entry *elm;
2061     DoneList donelist;
2062 
2063     if (root->dag_inited)
2064 	return;
2065     donelist_init(&donelist);
2066 
2067     /* Root object belongs to own DAG. */
2068     objlist_push_tail(&root->dldags, root);
2069     objlist_push_tail(&root->dagmembers, root);
2070     donelist_check(&donelist, root);
2071 
2072     /*
2073      * Add dependencies of root object to DAG in breadth order
2074      * by exploiting the fact that each new object get added
2075      * to the tail of the dagmembers list.
2076      */
2077     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2078 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2079 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2080 		continue;
2081 	    objlist_push_tail(&needed->obj->dldags, root);
2082 	    objlist_push_tail(&root->dagmembers, needed->obj);
2083 	}
2084     }
2085     root->dag_inited = true;
2086 }
2087 
2088 static void
2089 init_marker(Obj_Entry *marker)
2090 {
2091 
2092 	bzero(marker, sizeof(*marker));
2093 	marker->marker = true;
2094 }
2095 
2096 Obj_Entry *
2097 globallist_curr(const Obj_Entry *obj)
2098 {
2099 
2100 	for (;;) {
2101 		if (obj == NULL)
2102 			return (NULL);
2103 		if (!obj->marker)
2104 			return (__DECONST(Obj_Entry *, obj));
2105 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2106 	}
2107 }
2108 
2109 Obj_Entry *
2110 globallist_next(const Obj_Entry *obj)
2111 {
2112 
2113 	for (;;) {
2114 		obj = TAILQ_NEXT(obj, next);
2115 		if (obj == NULL)
2116 			return (NULL);
2117 		if (!obj->marker)
2118 			return (__DECONST(Obj_Entry *, obj));
2119 	}
2120 }
2121 
2122 /* Prevent the object from being unmapped while the bind lock is dropped. */
2123 static void
2124 hold_object(Obj_Entry *obj)
2125 {
2126 
2127 	obj->holdcount++;
2128 }
2129 
2130 static void
2131 unhold_object(Obj_Entry *obj)
2132 {
2133 
2134 	assert(obj->holdcount > 0);
2135 	if (--obj->holdcount == 0 && obj->unholdfree)
2136 		release_object(obj);
2137 }
2138 
2139 static void
2140 process_z(Obj_Entry *root)
2141 {
2142 	const Objlist_Entry *elm;
2143 	Obj_Entry *obj;
2144 
2145 	/*
2146 	 * Walk over object DAG and process every dependent object
2147 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2148 	 * to grow their own DAG.
2149 	 *
2150 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2151 	 * symlook_global() to work.
2152 	 *
2153 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2154 	 */
2155 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2156 		obj = elm->obj;
2157 		if (obj == NULL)
2158 			continue;
2159 		if (obj->z_nodelete && !obj->ref_nodel) {
2160 			dbg("obj %s -z nodelete", obj->path);
2161 			init_dag(obj);
2162 			ref_dag(obj);
2163 			obj->ref_nodel = true;
2164 		}
2165 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2166 			dbg("obj %s -z global", obj->path);
2167 			objlist_push_tail(&list_global, obj);
2168 			init_dag(obj);
2169 		}
2170 	}
2171 }
2172 
2173 static void
2174 parse_rtld_phdr(Obj_Entry *obj)
2175 {
2176 	const Elf_Phdr *ph;
2177 	Elf_Addr note_start, note_end;
2178 
2179 	obj->stack_flags = PF_X | PF_R | PF_W;
2180 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2181 	    obj->phsize; ph++) {
2182 		switch (ph->p_type) {
2183 		case PT_GNU_STACK:
2184 			obj->stack_flags = ph->p_flags;
2185 			break;
2186 		case PT_GNU_RELRO:
2187 			obj->relro_page = obj->relocbase +
2188 			    trunc_page(ph->p_vaddr);
2189 			obj->relro_size = round_page(ph->p_memsz);
2190 			break;
2191 		case PT_NOTE:
2192 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2193 			note_end = note_start + ph->p_filesz;
2194 			digest_notes(obj, note_start, note_end);
2195 			break;
2196 		}
2197 	}
2198 }
2199 
2200 /*
2201  * Initialize the dynamic linker.  The argument is the address at which
2202  * the dynamic linker has been mapped into memory.  The primary task of
2203  * this function is to relocate the dynamic linker.
2204  */
2205 static void
2206 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2207 {
2208     Obj_Entry objtmp;	/* Temporary rtld object */
2209     const Elf_Ehdr *ehdr;
2210     const Elf_Dyn *dyn_rpath;
2211     const Elf_Dyn *dyn_soname;
2212     const Elf_Dyn *dyn_runpath;
2213 
2214 #ifdef RTLD_INIT_PAGESIZES_EARLY
2215     /* The page size is required by the dynamic memory allocator. */
2216     init_pagesizes(aux_info);
2217 #endif
2218 
2219     /*
2220      * Conjure up an Obj_Entry structure for the dynamic linker.
2221      *
2222      * The "path" member can't be initialized yet because string constants
2223      * cannot yet be accessed. Below we will set it correctly.
2224      */
2225     memset(&objtmp, 0, sizeof(objtmp));
2226     objtmp.path = NULL;
2227     objtmp.rtld = true;
2228     objtmp.mapbase = mapbase;
2229 #ifdef PIC
2230     objtmp.relocbase = mapbase;
2231 #endif
2232 
2233     objtmp.dynamic = rtld_dynamic(&objtmp);
2234     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2235     assert(objtmp.needed == NULL);
2236 #if !defined(__mips__)
2237     /* MIPS has a bogus DT_TEXTREL. */
2238     assert(!objtmp.textrel);
2239 #endif
2240     /*
2241      * Temporarily put the dynamic linker entry into the object list, so
2242      * that symbols can be found.
2243      */
2244     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2245 
2246     ehdr = (Elf_Ehdr *)mapbase;
2247     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2248     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2249 
2250     /* Initialize the object list. */
2251     TAILQ_INIT(&obj_list);
2252 
2253     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2254     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2255 
2256 #ifndef RTLD_INIT_PAGESIZES_EARLY
2257     /* The page size is required by the dynamic memory allocator. */
2258     init_pagesizes(aux_info);
2259 #endif
2260 
2261     if (aux_info[AT_OSRELDATE] != NULL)
2262 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2263 
2264     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2265 
2266     /* Replace the path with a dynamically allocated copy. */
2267     obj_rtld.path = xstrdup(ld_path_rtld);
2268 
2269     parse_rtld_phdr(&obj_rtld);
2270     obj_enforce_relro(&obj_rtld);
2271 
2272     r_debug.r_brk = r_debug_state;
2273     r_debug.r_state = RT_CONSISTENT;
2274 }
2275 
2276 /*
2277  * Retrieve the array of supported page sizes.  The kernel provides the page
2278  * sizes in increasing order.
2279  */
2280 static void
2281 init_pagesizes(Elf_Auxinfo **aux_info)
2282 {
2283 	static size_t psa[MAXPAGESIZES];
2284 	int mib[2];
2285 	size_t len, size;
2286 
2287 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2288 	    NULL) {
2289 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2290 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2291 	} else {
2292 		len = 2;
2293 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2294 			size = sizeof(psa);
2295 		else {
2296 			/* As a fallback, retrieve the base page size. */
2297 			size = sizeof(psa[0]);
2298 			if (aux_info[AT_PAGESZ] != NULL) {
2299 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2300 				goto psa_filled;
2301 			} else {
2302 				mib[0] = CTL_HW;
2303 				mib[1] = HW_PAGESIZE;
2304 				len = 2;
2305 			}
2306 		}
2307 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2308 			_rtld_error("sysctl for hw.pagesize(s) failed");
2309 			rtld_die();
2310 		}
2311 psa_filled:
2312 		pagesizes = psa;
2313 	}
2314 	npagesizes = size / sizeof(pagesizes[0]);
2315 	/* Discard any invalid entries at the end of the array. */
2316 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2317 		npagesizes--;
2318 }
2319 
2320 /*
2321  * Add the init functions from a needed object list (and its recursive
2322  * needed objects) to "list".  This is not used directly; it is a helper
2323  * function for initlist_add_objects().  The write lock must be held
2324  * when this function is called.
2325  */
2326 static void
2327 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2328 {
2329     /* Recursively process the successor needed objects. */
2330     if (needed->next != NULL)
2331 	initlist_add_neededs(needed->next, list);
2332 
2333     /* Process the current needed object. */
2334     if (needed->obj != NULL)
2335 	initlist_add_objects(needed->obj, needed->obj, list);
2336 }
2337 
2338 /*
2339  * Scan all of the DAGs rooted in the range of objects from "obj" to
2340  * "tail" and add their init functions to "list".  This recurses over
2341  * the DAGs and ensure the proper init ordering such that each object's
2342  * needed libraries are initialized before the object itself.  At the
2343  * same time, this function adds the objects to the global finalization
2344  * list "list_fini" in the opposite order.  The write lock must be
2345  * held when this function is called.
2346  */
2347 static void
2348 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2349 {
2350     Obj_Entry *nobj;
2351 
2352     if (obj->init_scanned || obj->init_done)
2353 	return;
2354     obj->init_scanned = true;
2355 
2356     /* Recursively process the successor objects. */
2357     nobj = globallist_next(obj);
2358     if (nobj != NULL && obj != tail)
2359 	initlist_add_objects(nobj, tail, list);
2360 
2361     /* Recursively process the needed objects. */
2362     if (obj->needed != NULL)
2363 	initlist_add_neededs(obj->needed, list);
2364     if (obj->needed_filtees != NULL)
2365 	initlist_add_neededs(obj->needed_filtees, list);
2366     if (obj->needed_aux_filtees != NULL)
2367 	initlist_add_neededs(obj->needed_aux_filtees, list);
2368 
2369     /* Add the object to the init list. */
2370     objlist_push_tail(list, obj);
2371 
2372     /* Add the object to the global fini list in the reverse order. */
2373     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2374       && !obj->on_fini_list) {
2375 	objlist_push_head(&list_fini, obj);
2376 	obj->on_fini_list = true;
2377     }
2378 }
2379 
2380 #ifndef FPTR_TARGET
2381 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2382 #endif
2383 
2384 static void
2385 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2386 {
2387     Needed_Entry *needed, *needed1;
2388 
2389     for (needed = n; needed != NULL; needed = needed->next) {
2390 	if (needed->obj != NULL) {
2391 	    dlclose_locked(needed->obj, lockstate);
2392 	    needed->obj = NULL;
2393 	}
2394     }
2395     for (needed = n; needed != NULL; needed = needed1) {
2396 	needed1 = needed->next;
2397 	free(needed);
2398     }
2399 }
2400 
2401 static void
2402 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2403 {
2404 
2405 	free_needed_filtees(obj->needed_filtees, lockstate);
2406 	obj->needed_filtees = NULL;
2407 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2408 	obj->needed_aux_filtees = NULL;
2409 	obj->filtees_loaded = false;
2410 }
2411 
2412 static void
2413 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2414     RtldLockState *lockstate)
2415 {
2416 
2417     for (; needed != NULL; needed = needed->next) {
2418 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2419 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2420 	  RTLD_LOCAL, lockstate);
2421     }
2422 }
2423 
2424 static void
2425 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2426 {
2427 
2428     lock_restart_for_upgrade(lockstate);
2429     if (!obj->filtees_loaded) {
2430 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2431 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2432 	obj->filtees_loaded = true;
2433     }
2434 }
2435 
2436 static int
2437 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2438 {
2439     Obj_Entry *obj1;
2440 
2441     for (; needed != NULL; needed = needed->next) {
2442 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2443 	  flags & ~RTLD_LO_NOLOAD);
2444 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2445 	    return (-1);
2446     }
2447     return (0);
2448 }
2449 
2450 /*
2451  * Given a shared object, traverse its list of needed objects, and load
2452  * each of them.  Returns 0 on success.  Generates an error message and
2453  * returns -1 on failure.
2454  */
2455 static int
2456 load_needed_objects(Obj_Entry *first, int flags)
2457 {
2458     Obj_Entry *obj;
2459 
2460     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2461 	if (obj->marker)
2462 	    continue;
2463 	if (process_needed(obj, obj->needed, flags) == -1)
2464 	    return (-1);
2465     }
2466     return (0);
2467 }
2468 
2469 static int
2470 load_preload_objects(void)
2471 {
2472     char *p = ld_preload;
2473     Obj_Entry *obj;
2474     static const char delim[] = " \t:;";
2475 
2476     if (p == NULL)
2477 	return 0;
2478 
2479     p += strspn(p, delim);
2480     while (*p != '\0') {
2481 	size_t len = strcspn(p, delim);
2482 	char savech;
2483 
2484 	savech = p[len];
2485 	p[len] = '\0';
2486 	obj = load_object(p, -1, NULL, 0);
2487 	if (obj == NULL)
2488 	    return -1;	/* XXX - cleanup */
2489 	obj->z_interpose = true;
2490 	p[len] = savech;
2491 	p += len;
2492 	p += strspn(p, delim);
2493     }
2494     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2495     return 0;
2496 }
2497 
2498 static const char *
2499 printable_path(const char *path)
2500 {
2501 
2502 	return (path == NULL ? "<unknown>" : path);
2503 }
2504 
2505 /*
2506  * Load a shared object into memory, if it is not already loaded.  The
2507  * object may be specified by name or by user-supplied file descriptor
2508  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2509  * duplicate is.
2510  *
2511  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2512  * on failure.
2513  */
2514 static Obj_Entry *
2515 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2516 {
2517     Obj_Entry *obj;
2518     int fd;
2519     struct stat sb;
2520     char *path;
2521 
2522     fd = -1;
2523     if (name != NULL) {
2524 	TAILQ_FOREACH(obj, &obj_list, next) {
2525 	    if (obj->marker || obj->doomed)
2526 		continue;
2527 	    if (object_match_name(obj, name))
2528 		return (obj);
2529 	}
2530 
2531 	path = find_library(name, refobj, &fd);
2532 	if (path == NULL)
2533 	    return (NULL);
2534     } else
2535 	path = NULL;
2536 
2537     if (fd >= 0) {
2538 	/*
2539 	 * search_library_pathfds() opens a fresh file descriptor for the
2540 	 * library, so there is no need to dup().
2541 	 */
2542     } else if (fd_u == -1) {
2543 	/*
2544 	 * If we didn't find a match by pathname, or the name is not
2545 	 * supplied, open the file and check again by device and inode.
2546 	 * This avoids false mismatches caused by multiple links or ".."
2547 	 * in pathnames.
2548 	 *
2549 	 * To avoid a race, we open the file and use fstat() rather than
2550 	 * using stat().
2551 	 */
2552 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2553 	    _rtld_error("Cannot open \"%s\"", path);
2554 	    free(path);
2555 	    return (NULL);
2556 	}
2557     } else {
2558 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2559 	if (fd == -1) {
2560 	    _rtld_error("Cannot dup fd");
2561 	    free(path);
2562 	    return (NULL);
2563 	}
2564     }
2565     if (fstat(fd, &sb) == -1) {
2566 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2567 	close(fd);
2568 	free(path);
2569 	return NULL;
2570     }
2571     TAILQ_FOREACH(obj, &obj_list, next) {
2572 	if (obj->marker || obj->doomed)
2573 	    continue;
2574 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2575 	    break;
2576     }
2577     if (obj != NULL && name != NULL) {
2578 	object_add_name(obj, name);
2579 	free(path);
2580 	close(fd);
2581 	return obj;
2582     }
2583     if (flags & RTLD_LO_NOLOAD) {
2584 	free(path);
2585 	close(fd);
2586 	return (NULL);
2587     }
2588 
2589     /* First use of this object, so we must map it in */
2590     obj = do_load_object(fd, name, path, &sb, flags);
2591     if (obj == NULL)
2592 	free(path);
2593     close(fd);
2594 
2595     return obj;
2596 }
2597 
2598 static Obj_Entry *
2599 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2600   int flags)
2601 {
2602     Obj_Entry *obj;
2603     struct statfs fs;
2604 
2605     /*
2606      * but first, make sure that environment variables haven't been
2607      * used to circumvent the noexec flag on a filesystem.
2608      */
2609     if (dangerous_ld_env) {
2610 	if (fstatfs(fd, &fs) != 0) {
2611 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2612 	    return NULL;
2613 	}
2614 	if (fs.f_flags & MNT_NOEXEC) {
2615 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2616 	    return NULL;
2617 	}
2618     }
2619     dbg("loading \"%s\"", printable_path(path));
2620     obj = map_object(fd, printable_path(path), sbp);
2621     if (obj == NULL)
2622         return NULL;
2623 
2624     /*
2625      * If DT_SONAME is present in the object, digest_dynamic2 already
2626      * added it to the object names.
2627      */
2628     if (name != NULL)
2629 	object_add_name(obj, name);
2630     obj->path = path;
2631     if (!digest_dynamic(obj, 0))
2632 	goto errp;
2633     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2634 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2635     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2636 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2637 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2638 	goto errp;
2639     }
2640     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2641       RTLD_LO_DLOPEN) {
2642 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2643 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2644 	goto errp;
2645     }
2646 
2647     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2648     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2649     obj_count++;
2650     obj_loads++;
2651     linkmap_add(obj);	/* for GDB & dlinfo() */
2652     max_stack_flags |= obj->stack_flags;
2653 
2654     dbg("  %p .. %p: %s", obj->mapbase,
2655          obj->mapbase + obj->mapsize - 1, obj->path);
2656     if (obj->textrel)
2657 	dbg("  WARNING: %s has impure text", obj->path);
2658     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2659 	obj->path);
2660 
2661     return (obj);
2662 
2663 errp:
2664     munmap(obj->mapbase, obj->mapsize);
2665     obj_free(obj);
2666     return (NULL);
2667 }
2668 
2669 static Obj_Entry *
2670 obj_from_addr(const void *addr)
2671 {
2672     Obj_Entry *obj;
2673 
2674     TAILQ_FOREACH(obj, &obj_list, next) {
2675 	if (obj->marker)
2676 	    continue;
2677 	if (addr < (void *) obj->mapbase)
2678 	    continue;
2679 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2680 	    return obj;
2681     }
2682     return NULL;
2683 }
2684 
2685 static void
2686 preinit_main(void)
2687 {
2688     Elf_Addr *preinit_addr;
2689     int index;
2690 
2691     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2692     if (preinit_addr == NULL)
2693 	return;
2694 
2695     for (index = 0; index < obj_main->preinit_array_num; index++) {
2696 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2697 	    dbg("calling preinit function for %s at %p", obj_main->path,
2698 	      (void *)preinit_addr[index]);
2699 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2700 	      0, 0, obj_main->path);
2701 	    call_init_pointer(obj_main, preinit_addr[index]);
2702 	}
2703     }
2704 }
2705 
2706 /*
2707  * Call the finalization functions for each of the objects in "list"
2708  * belonging to the DAG of "root" and referenced once. If NULL "root"
2709  * is specified, every finalization function will be called regardless
2710  * of the reference count and the list elements won't be freed. All of
2711  * the objects are expected to have non-NULL fini functions.
2712  */
2713 static void
2714 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2715 {
2716     Objlist_Entry *elm;
2717     char *saved_msg;
2718     Elf_Addr *fini_addr;
2719     int index;
2720 
2721     assert(root == NULL || root->refcount == 1);
2722 
2723     if (root != NULL)
2724 	root->doomed = true;
2725 
2726     /*
2727      * Preserve the current error message since a fini function might
2728      * call into the dynamic linker and overwrite it.
2729      */
2730     saved_msg = errmsg_save();
2731     do {
2732 	STAILQ_FOREACH(elm, list, link) {
2733 	    if (root != NULL && (elm->obj->refcount != 1 ||
2734 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2735 		continue;
2736 	    /* Remove object from fini list to prevent recursive invocation. */
2737 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2738 	    /* Ensure that new references cannot be acquired. */
2739 	    elm->obj->doomed = true;
2740 
2741 	    hold_object(elm->obj);
2742 	    lock_release(rtld_bind_lock, lockstate);
2743 	    /*
2744 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2745 	     * When this happens, DT_FINI_ARRAY is processed first.
2746 	     */
2747 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2748 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2749 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2750 		  index--) {
2751 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2752 			dbg("calling fini function for %s at %p",
2753 			    elm->obj->path, (void *)fini_addr[index]);
2754 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2755 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2756 			call_initfini_pointer(elm->obj, fini_addr[index]);
2757 		    }
2758 		}
2759 	    }
2760 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2761 		dbg("calling fini function for %s at %p", elm->obj->path,
2762 		    (void *)elm->obj->fini);
2763 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2764 		    0, 0, elm->obj->path);
2765 		call_initfini_pointer(elm->obj, elm->obj->fini);
2766 	    }
2767 	    wlock_acquire(rtld_bind_lock, lockstate);
2768 	    unhold_object(elm->obj);
2769 	    /* No need to free anything if process is going down. */
2770 	    if (root != NULL)
2771 	    	free(elm);
2772 	    /*
2773 	     * We must restart the list traversal after every fini call
2774 	     * because a dlclose() call from the fini function or from
2775 	     * another thread might have modified the reference counts.
2776 	     */
2777 	    break;
2778 	}
2779     } while (elm != NULL);
2780     errmsg_restore(saved_msg);
2781 }
2782 
2783 /*
2784  * Call the initialization functions for each of the objects in
2785  * "list".  All of the objects are expected to have non-NULL init
2786  * functions.
2787  */
2788 static void
2789 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2790 {
2791     Objlist_Entry *elm;
2792     Obj_Entry *obj;
2793     char *saved_msg;
2794     Elf_Addr *init_addr;
2795     void (*reg)(void (*)(void));
2796     int index;
2797 
2798     /*
2799      * Clean init_scanned flag so that objects can be rechecked and
2800      * possibly initialized earlier if any of vectors called below
2801      * cause the change by using dlopen.
2802      */
2803     TAILQ_FOREACH(obj, &obj_list, next) {
2804 	if (obj->marker)
2805 	    continue;
2806 	obj->init_scanned = false;
2807     }
2808 
2809     /*
2810      * Preserve the current error message since an init function might
2811      * call into the dynamic linker and overwrite it.
2812      */
2813     saved_msg = errmsg_save();
2814     STAILQ_FOREACH(elm, list, link) {
2815 	if (elm->obj->init_done) /* Initialized early. */
2816 	    continue;
2817 	/*
2818 	 * Race: other thread might try to use this object before current
2819 	 * one completes the initialization. Not much can be done here
2820 	 * without better locking.
2821 	 */
2822 	elm->obj->init_done = true;
2823 	hold_object(elm->obj);
2824 	reg = NULL;
2825 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2826 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2827 		    "__libc_atexit", lockstate);
2828 	}
2829 	lock_release(rtld_bind_lock, lockstate);
2830 	if (reg != NULL) {
2831 		reg(rtld_exit);
2832 		rtld_exit_ptr = rtld_nop_exit;
2833 	}
2834 
2835         /*
2836          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2837          * When this happens, DT_INIT is processed first.
2838          */
2839 	if (elm->obj->init != (Elf_Addr)NULL) {
2840 	    dbg("calling init function for %s at %p", elm->obj->path,
2841 	        (void *)elm->obj->init);
2842 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2843 	        0, 0, elm->obj->path);
2844 	    call_initfini_pointer(elm->obj, elm->obj->init);
2845 	}
2846 	init_addr = (Elf_Addr *)elm->obj->init_array;
2847 	if (init_addr != NULL) {
2848 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2849 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2850 		    dbg("calling init function for %s at %p", elm->obj->path,
2851 			(void *)init_addr[index]);
2852 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2853 			(void *)init_addr[index], 0, 0, elm->obj->path);
2854 		    call_init_pointer(elm->obj, init_addr[index]);
2855 		}
2856 	    }
2857 	}
2858 	wlock_acquire(rtld_bind_lock, lockstate);
2859 	unhold_object(elm->obj);
2860     }
2861     errmsg_restore(saved_msg);
2862 }
2863 
2864 static void
2865 objlist_clear(Objlist *list)
2866 {
2867     Objlist_Entry *elm;
2868 
2869     while (!STAILQ_EMPTY(list)) {
2870 	elm = STAILQ_FIRST(list);
2871 	STAILQ_REMOVE_HEAD(list, link);
2872 	free(elm);
2873     }
2874 }
2875 
2876 static Objlist_Entry *
2877 objlist_find(Objlist *list, const Obj_Entry *obj)
2878 {
2879     Objlist_Entry *elm;
2880 
2881     STAILQ_FOREACH(elm, list, link)
2882 	if (elm->obj == obj)
2883 	    return elm;
2884     return NULL;
2885 }
2886 
2887 static void
2888 objlist_init(Objlist *list)
2889 {
2890     STAILQ_INIT(list);
2891 }
2892 
2893 static void
2894 objlist_push_head(Objlist *list, Obj_Entry *obj)
2895 {
2896     Objlist_Entry *elm;
2897 
2898     elm = NEW(Objlist_Entry);
2899     elm->obj = obj;
2900     STAILQ_INSERT_HEAD(list, elm, link);
2901 }
2902 
2903 static void
2904 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2905 {
2906     Objlist_Entry *elm;
2907 
2908     elm = NEW(Objlist_Entry);
2909     elm->obj = obj;
2910     STAILQ_INSERT_TAIL(list, elm, link);
2911 }
2912 
2913 static void
2914 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2915 {
2916 	Objlist_Entry *elm, *listelm;
2917 
2918 	STAILQ_FOREACH(listelm, list, link) {
2919 		if (listelm->obj == listobj)
2920 			break;
2921 	}
2922 	elm = NEW(Objlist_Entry);
2923 	elm->obj = obj;
2924 	if (listelm != NULL)
2925 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2926 	else
2927 		STAILQ_INSERT_TAIL(list, elm, link);
2928 }
2929 
2930 static void
2931 objlist_remove(Objlist *list, Obj_Entry *obj)
2932 {
2933     Objlist_Entry *elm;
2934 
2935     if ((elm = objlist_find(list, obj)) != NULL) {
2936 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2937 	free(elm);
2938     }
2939 }
2940 
2941 /*
2942  * Relocate dag rooted in the specified object.
2943  * Returns 0 on success, or -1 on failure.
2944  */
2945 
2946 static int
2947 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2948     int flags, RtldLockState *lockstate)
2949 {
2950 	Objlist_Entry *elm;
2951 	int error;
2952 
2953 	error = 0;
2954 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2955 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2956 		    lockstate);
2957 		if (error == -1)
2958 			break;
2959 	}
2960 	return (error);
2961 }
2962 
2963 /*
2964  * Prepare for, or clean after, relocating an object marked with
2965  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2966  * segments are remapped read-write.  After relocations are done, the
2967  * segment's permissions are returned back to the modes specified in
2968  * the phdrs.  If any relocation happened, or always for wired
2969  * program, COW is triggered.
2970  */
2971 static int
2972 reloc_textrel_prot(Obj_Entry *obj, bool before)
2973 {
2974 	const Elf_Phdr *ph;
2975 	void *base;
2976 	size_t l, sz;
2977 	int prot;
2978 
2979 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2980 	    l--, ph++) {
2981 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2982 			continue;
2983 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2984 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2985 		    trunc_page(ph->p_vaddr);
2986 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2987 		if (mprotect(base, sz, prot) == -1) {
2988 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2989 			    obj->path, before ? "en" : "dis",
2990 			    rtld_strerror(errno));
2991 			return (-1);
2992 		}
2993 	}
2994 	return (0);
2995 }
2996 
2997 /*
2998  * Relocate single object.
2999  * Returns 0 on success, or -1 on failure.
3000  */
3001 static int
3002 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3003     int flags, RtldLockState *lockstate)
3004 {
3005 
3006 	if (obj->relocated)
3007 		return (0);
3008 	obj->relocated = true;
3009 	if (obj != rtldobj)
3010 		dbg("relocating \"%s\"", obj->path);
3011 
3012 	if (obj->symtab == NULL || obj->strtab == NULL ||
3013 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
3014 		_rtld_error("%s: Shared object has no run-time symbol table",
3015 			    obj->path);
3016 		return (-1);
3017 	}
3018 
3019 	/* There are relocations to the write-protected text segment. */
3020 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3021 		return (-1);
3022 
3023 	/* Process the non-PLT non-IFUNC relocations. */
3024 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3025 		return (-1);
3026 
3027 	/* Re-protected the text segment. */
3028 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3029 		return (-1);
3030 
3031 	/* Set the special PLT or GOT entries. */
3032 	init_pltgot(obj);
3033 
3034 	/* Process the PLT relocations. */
3035 	if (reloc_plt(obj, flags, lockstate) == -1)
3036 		return (-1);
3037 	/* Relocate the jump slots if we are doing immediate binding. */
3038 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3039 	    lockstate) == -1)
3040 		return (-1);
3041 
3042 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3043 		return (-1);
3044 
3045 	/*
3046 	 * Set up the magic number and version in the Obj_Entry.  These
3047 	 * were checked in the crt1.o from the original ElfKit, so we
3048 	 * set them for backward compatibility.
3049 	 */
3050 	obj->magic = RTLD_MAGIC;
3051 	obj->version = RTLD_VERSION;
3052 
3053 	return (0);
3054 }
3055 
3056 /*
3057  * Relocate newly-loaded shared objects.  The argument is a pointer to
3058  * the Obj_Entry for the first such object.  All objects from the first
3059  * to the end of the list of objects are relocated.  Returns 0 on success,
3060  * or -1 on failure.
3061  */
3062 static int
3063 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3064     int flags, RtldLockState *lockstate)
3065 {
3066 	Obj_Entry *obj;
3067 	int error;
3068 
3069 	for (error = 0, obj = first;  obj != NULL;
3070 	    obj = TAILQ_NEXT(obj, next)) {
3071 		if (obj->marker)
3072 			continue;
3073 		error = relocate_object(obj, bind_now, rtldobj, flags,
3074 		    lockstate);
3075 		if (error == -1)
3076 			break;
3077 	}
3078 	return (error);
3079 }
3080 
3081 /*
3082  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3083  * referencing STT_GNU_IFUNC symbols is postponed till the other
3084  * relocations are done.  The indirect functions specified as
3085  * ifunc are allowed to call other symbols, so we need to have
3086  * objects relocated before asking for resolution from indirects.
3087  *
3088  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3089  * instead of the usual lazy handling of PLT slots.  It is
3090  * consistent with how GNU does it.
3091  */
3092 static int
3093 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3094     RtldLockState *lockstate)
3095 {
3096 
3097 	if (obj->ifuncs_resolved)
3098 		return (0);
3099 	obj->ifuncs_resolved = true;
3100 	if (!obj->irelative && !obj->irelative_nonplt &&
3101 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3102 	    !obj->non_plt_gnu_ifunc)
3103 		return (0);
3104 	if (obj_disable_relro(obj) == -1 ||
3105 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3106 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3107 	    lockstate) == -1) ||
3108 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3109 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3110 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3111 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3112 	    obj_enforce_relro(obj) == -1)
3113 		return (-1);
3114 	return (0);
3115 }
3116 
3117 static int
3118 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3119     RtldLockState *lockstate)
3120 {
3121 	Objlist_Entry *elm;
3122 	Obj_Entry *obj;
3123 
3124 	STAILQ_FOREACH(elm, list, link) {
3125 		obj = elm->obj;
3126 		if (obj->marker)
3127 			continue;
3128 		if (resolve_object_ifunc(obj, bind_now, flags,
3129 		    lockstate) == -1)
3130 			return (-1);
3131 	}
3132 	return (0);
3133 }
3134 
3135 /*
3136  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3137  * before the process exits.
3138  */
3139 static void
3140 rtld_exit(void)
3141 {
3142     RtldLockState lockstate;
3143 
3144     wlock_acquire(rtld_bind_lock, &lockstate);
3145     dbg("rtld_exit()");
3146     objlist_call_fini(&list_fini, NULL, &lockstate);
3147     /* No need to remove the items from the list, since we are exiting. */
3148     if (!libmap_disable)
3149         lm_fini();
3150     lock_release(rtld_bind_lock, &lockstate);
3151 }
3152 
3153 static void
3154 rtld_nop_exit(void)
3155 {
3156 }
3157 
3158 /*
3159  * Iterate over a search path, translate each element, and invoke the
3160  * callback on the result.
3161  */
3162 static void *
3163 path_enumerate(const char *path, path_enum_proc callback,
3164     const char *refobj_path, void *arg)
3165 {
3166     const char *trans;
3167     if (path == NULL)
3168 	return (NULL);
3169 
3170     path += strspn(path, ":;");
3171     while (*path != '\0') {
3172 	size_t len;
3173 	char  *res;
3174 
3175 	len = strcspn(path, ":;");
3176 	trans = lm_findn(refobj_path, path, len);
3177 	if (trans)
3178 	    res = callback(trans, strlen(trans), arg);
3179 	else
3180 	    res = callback(path, len, arg);
3181 
3182 	if (res != NULL)
3183 	    return (res);
3184 
3185 	path += len;
3186 	path += strspn(path, ":;");
3187     }
3188 
3189     return (NULL);
3190 }
3191 
3192 struct try_library_args {
3193     const char	*name;
3194     size_t	 namelen;
3195     char	*buffer;
3196     size_t	 buflen;
3197     int		 fd;
3198 };
3199 
3200 static void *
3201 try_library_path(const char *dir, size_t dirlen, void *param)
3202 {
3203     struct try_library_args *arg;
3204     int fd;
3205 
3206     arg = param;
3207     if (*dir == '/' || trust) {
3208 	char *pathname;
3209 
3210 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3211 		return (NULL);
3212 
3213 	pathname = arg->buffer;
3214 	strncpy(pathname, dir, dirlen);
3215 	pathname[dirlen] = '/';
3216 	strcpy(pathname + dirlen + 1, arg->name);
3217 
3218 	dbg("  Trying \"%s\"", pathname);
3219 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3220 	if (fd >= 0) {
3221 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3222 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3223 	    strcpy(pathname, arg->buffer);
3224 	    arg->fd = fd;
3225 	    return (pathname);
3226 	} else {
3227 	    dbg("  Failed to open \"%s\": %s",
3228 		pathname, rtld_strerror(errno));
3229 	}
3230     }
3231     return (NULL);
3232 }
3233 
3234 static char *
3235 search_library_path(const char *name, const char *path,
3236     const char *refobj_path, int *fdp)
3237 {
3238     char *p;
3239     struct try_library_args arg;
3240 
3241     if (path == NULL)
3242 	return NULL;
3243 
3244     arg.name = name;
3245     arg.namelen = strlen(name);
3246     arg.buffer = xmalloc(PATH_MAX);
3247     arg.buflen = PATH_MAX;
3248     arg.fd = -1;
3249 
3250     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3251     *fdp = arg.fd;
3252 
3253     free(arg.buffer);
3254 
3255     return (p);
3256 }
3257 
3258 
3259 /*
3260  * Finds the library with the given name using the directory descriptors
3261  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3262  *
3263  * Returns a freshly-opened close-on-exec file descriptor for the library,
3264  * or -1 if the library cannot be found.
3265  */
3266 static char *
3267 search_library_pathfds(const char *name, const char *path, int *fdp)
3268 {
3269 	char *envcopy, *fdstr, *found, *last_token;
3270 	size_t len;
3271 	int dirfd, fd;
3272 
3273 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3274 
3275 	/* Don't load from user-specified libdirs into setuid binaries. */
3276 	if (!trust)
3277 		return (NULL);
3278 
3279 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3280 	if (path == NULL)
3281 		return (NULL);
3282 
3283 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3284 	if (name[0] == '/') {
3285 		dbg("Absolute path (%s) passed to %s", name, __func__);
3286 		return (NULL);
3287 	}
3288 
3289 	/*
3290 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3291 	 * copy of the path, as strtok_r rewrites separator tokens
3292 	 * with '\0'.
3293 	 */
3294 	found = NULL;
3295 	envcopy = xstrdup(path);
3296 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3297 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3298 		dirfd = parse_integer(fdstr);
3299 		if (dirfd < 0) {
3300 			_rtld_error("failed to parse directory FD: '%s'",
3301 				fdstr);
3302 			break;
3303 		}
3304 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3305 		if (fd >= 0) {
3306 			*fdp = fd;
3307 			len = strlen(fdstr) + strlen(name) + 3;
3308 			found = xmalloc(len);
3309 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3310 				_rtld_error("error generating '%d/%s'",
3311 				    dirfd, name);
3312 				rtld_die();
3313 			}
3314 			dbg("open('%s') => %d", found, fd);
3315 			break;
3316 		}
3317 	}
3318 	free(envcopy);
3319 
3320 	return (found);
3321 }
3322 
3323 
3324 int
3325 dlclose(void *handle)
3326 {
3327 	RtldLockState lockstate;
3328 	int error;
3329 
3330 	wlock_acquire(rtld_bind_lock, &lockstate);
3331 	error = dlclose_locked(handle, &lockstate);
3332 	lock_release(rtld_bind_lock, &lockstate);
3333 	return (error);
3334 }
3335 
3336 static int
3337 dlclose_locked(void *handle, RtldLockState *lockstate)
3338 {
3339     Obj_Entry *root;
3340 
3341     root = dlcheck(handle);
3342     if (root == NULL)
3343 	return -1;
3344     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3345 	root->path);
3346 
3347     /* Unreference the object and its dependencies. */
3348     root->dl_refcount--;
3349 
3350     if (root->refcount == 1) {
3351 	/*
3352 	 * The object will be no longer referenced, so we must unload it.
3353 	 * First, call the fini functions.
3354 	 */
3355 	objlist_call_fini(&list_fini, root, lockstate);
3356 
3357 	unref_dag(root);
3358 
3359 	/* Finish cleaning up the newly-unreferenced objects. */
3360 	GDB_STATE(RT_DELETE,&root->linkmap);
3361 	unload_object(root, lockstate);
3362 	GDB_STATE(RT_CONSISTENT,NULL);
3363     } else
3364 	unref_dag(root);
3365 
3366     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3367     return 0;
3368 }
3369 
3370 char *
3371 dlerror(void)
3372 {
3373     char *msg = error_message;
3374     error_message = NULL;
3375     return msg;
3376 }
3377 
3378 /*
3379  * This function is deprecated and has no effect.
3380  */
3381 void
3382 dllockinit(void *context,
3383     void *(*_lock_create)(void *context) __unused,
3384     void (*_rlock_acquire)(void *lock) __unused,
3385     void (*_wlock_acquire)(void *lock)  __unused,
3386     void (*_lock_release)(void *lock) __unused,
3387     void (*_lock_destroy)(void *lock) __unused,
3388     void (*context_destroy)(void *context))
3389 {
3390     static void *cur_context;
3391     static void (*cur_context_destroy)(void *);
3392 
3393     /* Just destroy the context from the previous call, if necessary. */
3394     if (cur_context_destroy != NULL)
3395 	cur_context_destroy(cur_context);
3396     cur_context = context;
3397     cur_context_destroy = context_destroy;
3398 }
3399 
3400 void *
3401 dlopen(const char *name, int mode)
3402 {
3403 
3404 	return (rtld_dlopen(name, -1, mode));
3405 }
3406 
3407 void *
3408 fdlopen(int fd, int mode)
3409 {
3410 
3411 	return (rtld_dlopen(NULL, fd, mode));
3412 }
3413 
3414 static void *
3415 rtld_dlopen(const char *name, int fd, int mode)
3416 {
3417     RtldLockState lockstate;
3418     int lo_flags;
3419 
3420     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3421     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3422     if (ld_tracing != NULL) {
3423 	rlock_acquire(rtld_bind_lock, &lockstate);
3424 	if (sigsetjmp(lockstate.env, 0) != 0)
3425 	    lock_upgrade(rtld_bind_lock, &lockstate);
3426 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3427 	lock_release(rtld_bind_lock, &lockstate);
3428     }
3429     lo_flags = RTLD_LO_DLOPEN;
3430     if (mode & RTLD_NODELETE)
3431 	    lo_flags |= RTLD_LO_NODELETE;
3432     if (mode & RTLD_NOLOAD)
3433 	    lo_flags |= RTLD_LO_NOLOAD;
3434     if (mode & RTLD_DEEPBIND)
3435 	    lo_flags |= RTLD_LO_DEEPBIND;
3436     if (ld_tracing != NULL)
3437 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3438 
3439     return (dlopen_object(name, fd, obj_main, lo_flags,
3440       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3441 }
3442 
3443 static void
3444 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3445 {
3446 
3447 	obj->dl_refcount--;
3448 	unref_dag(obj);
3449 	if (obj->refcount == 0)
3450 		unload_object(obj, lockstate);
3451 }
3452 
3453 static Obj_Entry *
3454 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3455     int mode, RtldLockState *lockstate)
3456 {
3457     Obj_Entry *old_obj_tail;
3458     Obj_Entry *obj;
3459     Objlist initlist;
3460     RtldLockState mlockstate;
3461     int result;
3462 
3463     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3464       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3465       refobj->path, lo_flags, mode);
3466     objlist_init(&initlist);
3467 
3468     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3469 	wlock_acquire(rtld_bind_lock, &mlockstate);
3470 	lockstate = &mlockstate;
3471     }
3472     GDB_STATE(RT_ADD,NULL);
3473 
3474     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3475     obj = NULL;
3476     if (name == NULL && fd == -1) {
3477 	obj = obj_main;
3478 	obj->refcount++;
3479     } else {
3480 	obj = load_object(name, fd, refobj, lo_flags);
3481     }
3482 
3483     if (obj) {
3484 	obj->dl_refcount++;
3485 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3486 	    objlist_push_tail(&list_global, obj);
3487 	if (globallist_next(old_obj_tail) != NULL) {
3488 	    /* We loaded something new. */
3489 	    assert(globallist_next(old_obj_tail) == obj);
3490 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3491 		obj->symbolic = true;
3492 	    result = 0;
3493 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3494 	      obj->static_tls && !allocate_tls_offset(obj)) {
3495 		_rtld_error("%s: No space available "
3496 		  "for static Thread Local Storage", obj->path);
3497 		result = -1;
3498 	    }
3499 	    if (result != -1)
3500 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3501 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3502 	    init_dag(obj);
3503 	    ref_dag(obj);
3504 	    if (result != -1)
3505 		result = rtld_verify_versions(&obj->dagmembers);
3506 	    if (result != -1 && ld_tracing)
3507 		goto trace;
3508 	    if (result == -1 || relocate_object_dag(obj,
3509 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3510 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3511 	      lockstate) == -1) {
3512 		dlopen_cleanup(obj, lockstate);
3513 		obj = NULL;
3514 	    } else if (lo_flags & RTLD_LO_EARLY) {
3515 		/*
3516 		 * Do not call the init functions for early loaded
3517 		 * filtees.  The image is still not initialized enough
3518 		 * for them to work.
3519 		 *
3520 		 * Our object is found by the global object list and
3521 		 * will be ordered among all init calls done right
3522 		 * before transferring control to main.
3523 		 */
3524 	    } else {
3525 		/* Make list of init functions to call. */
3526 		initlist_add_objects(obj, obj, &initlist);
3527 	    }
3528 	    /*
3529 	     * Process all no_delete or global objects here, given
3530 	     * them own DAGs to prevent their dependencies from being
3531 	     * unloaded.  This has to be done after we have loaded all
3532 	     * of the dependencies, so that we do not miss any.
3533 	     */
3534 	    if (obj != NULL)
3535 		process_z(obj);
3536 	} else {
3537 	    /*
3538 	     * Bump the reference counts for objects on this DAG.  If
3539 	     * this is the first dlopen() call for the object that was
3540 	     * already loaded as a dependency, initialize the dag
3541 	     * starting at it.
3542 	     */
3543 	    init_dag(obj);
3544 	    ref_dag(obj);
3545 
3546 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3547 		goto trace;
3548 	}
3549 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3550 	  obj->z_nodelete) && !obj->ref_nodel) {
3551 	    dbg("obj %s nodelete", obj->path);
3552 	    ref_dag(obj);
3553 	    obj->z_nodelete = obj->ref_nodel = true;
3554 	}
3555     }
3556 
3557     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3558 	name);
3559     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3560 
3561     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3562 	map_stacks_exec(lockstate);
3563 	if (obj != NULL)
3564 	    distribute_static_tls(&initlist, lockstate);
3565     }
3566 
3567     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3568       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3569       lockstate) == -1) {
3570 	objlist_clear(&initlist);
3571 	dlopen_cleanup(obj, lockstate);
3572 	if (lockstate == &mlockstate)
3573 	    lock_release(rtld_bind_lock, lockstate);
3574 	return (NULL);
3575     }
3576 
3577     if (!(lo_flags & RTLD_LO_EARLY)) {
3578 	/* Call the init functions. */
3579 	objlist_call_init(&initlist, lockstate);
3580     }
3581     objlist_clear(&initlist);
3582     if (lockstate == &mlockstate)
3583 	lock_release(rtld_bind_lock, lockstate);
3584     return obj;
3585 trace:
3586     trace_loaded_objects(obj);
3587     if (lockstate == &mlockstate)
3588 	lock_release(rtld_bind_lock, lockstate);
3589     exit(0);
3590 }
3591 
3592 static void *
3593 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3594     int flags)
3595 {
3596     DoneList donelist;
3597     const Obj_Entry *obj, *defobj;
3598     const Elf_Sym *def;
3599     SymLook req;
3600     RtldLockState lockstate;
3601     tls_index ti;
3602     void *sym;
3603     int res;
3604 
3605     def = NULL;
3606     defobj = NULL;
3607     symlook_init(&req, name);
3608     req.ventry = ve;
3609     req.flags = flags | SYMLOOK_IN_PLT;
3610     req.lockstate = &lockstate;
3611 
3612     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3613     rlock_acquire(rtld_bind_lock, &lockstate);
3614     if (sigsetjmp(lockstate.env, 0) != 0)
3615 	    lock_upgrade(rtld_bind_lock, &lockstate);
3616     if (handle == NULL || handle == RTLD_NEXT ||
3617 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3618 
3619 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3620 	    _rtld_error("Cannot determine caller's shared object");
3621 	    lock_release(rtld_bind_lock, &lockstate);
3622 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3623 	    return NULL;
3624 	}
3625 	if (handle == NULL) {	/* Just the caller's shared object. */
3626 	    res = symlook_obj(&req, obj);
3627 	    if (res == 0) {
3628 		def = req.sym_out;
3629 		defobj = req.defobj_out;
3630 	    }
3631 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3632 		   handle == RTLD_SELF) { /* ... caller included */
3633 	    if (handle == RTLD_NEXT)
3634 		obj = globallist_next(obj);
3635 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3636 		if (obj->marker)
3637 		    continue;
3638 		res = symlook_obj(&req, obj);
3639 		if (res == 0) {
3640 		    if (def == NULL ||
3641 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3642 			def = req.sym_out;
3643 			defobj = req.defobj_out;
3644 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3645 			    break;
3646 		    }
3647 		}
3648 	    }
3649 	    /*
3650 	     * Search the dynamic linker itself, and possibly resolve the
3651 	     * symbol from there.  This is how the application links to
3652 	     * dynamic linker services such as dlopen.
3653 	     */
3654 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3655 		res = symlook_obj(&req, &obj_rtld);
3656 		if (res == 0) {
3657 		    def = req.sym_out;
3658 		    defobj = req.defobj_out;
3659 		}
3660 	    }
3661 	} else {
3662 	    assert(handle == RTLD_DEFAULT);
3663 	    res = symlook_default(&req, obj);
3664 	    if (res == 0) {
3665 		defobj = req.defobj_out;
3666 		def = req.sym_out;
3667 	    }
3668 	}
3669     } else {
3670 	if ((obj = dlcheck(handle)) == NULL) {
3671 	    lock_release(rtld_bind_lock, &lockstate);
3672 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3673 	    return NULL;
3674 	}
3675 
3676 	donelist_init(&donelist);
3677 	if (obj->mainprog) {
3678             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3679 	    res = symlook_global(&req, &donelist);
3680 	    if (res == 0) {
3681 		def = req.sym_out;
3682 		defobj = req.defobj_out;
3683 	    }
3684 	    /*
3685 	     * Search the dynamic linker itself, and possibly resolve the
3686 	     * symbol from there.  This is how the application links to
3687 	     * dynamic linker services such as dlopen.
3688 	     */
3689 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3690 		res = symlook_obj(&req, &obj_rtld);
3691 		if (res == 0) {
3692 		    def = req.sym_out;
3693 		    defobj = req.defobj_out;
3694 		}
3695 	    }
3696 	}
3697 	else {
3698 	    /* Search the whole DAG rooted at the given object. */
3699 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3700 	    if (res == 0) {
3701 		def = req.sym_out;
3702 		defobj = req.defobj_out;
3703 	    }
3704 	}
3705     }
3706 
3707     if (def != NULL) {
3708 	lock_release(rtld_bind_lock, &lockstate);
3709 
3710 	/*
3711 	 * The value required by the caller is derived from the value
3712 	 * of the symbol. this is simply the relocated value of the
3713 	 * symbol.
3714 	 */
3715 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3716 	    sym = make_function_pointer(def, defobj);
3717 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3718 	    sym = rtld_resolve_ifunc(defobj, def);
3719 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3720 	    ti.ti_module = defobj->tlsindex;
3721 	    ti.ti_offset = def->st_value;
3722 	    sym = __tls_get_addr(&ti);
3723 	} else
3724 	    sym = defobj->relocbase + def->st_value;
3725 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3726 	return (sym);
3727     }
3728 
3729     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3730       ve != NULL ? ve->name : "");
3731     lock_release(rtld_bind_lock, &lockstate);
3732     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3733     return NULL;
3734 }
3735 
3736 void *
3737 dlsym(void *handle, const char *name)
3738 {
3739 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3740 	    SYMLOOK_DLSYM);
3741 }
3742 
3743 dlfunc_t
3744 dlfunc(void *handle, const char *name)
3745 {
3746 	union {
3747 		void *d;
3748 		dlfunc_t f;
3749 	} rv;
3750 
3751 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3752 	    SYMLOOK_DLSYM);
3753 	return (rv.f);
3754 }
3755 
3756 void *
3757 dlvsym(void *handle, const char *name, const char *version)
3758 {
3759 	Ver_Entry ventry;
3760 
3761 	ventry.name = version;
3762 	ventry.file = NULL;
3763 	ventry.hash = elf_hash(version);
3764 	ventry.flags= 0;
3765 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3766 	    SYMLOOK_DLSYM);
3767 }
3768 
3769 int
3770 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3771 {
3772     const Obj_Entry *obj;
3773     RtldLockState lockstate;
3774 
3775     rlock_acquire(rtld_bind_lock, &lockstate);
3776     obj = obj_from_addr(addr);
3777     if (obj == NULL) {
3778         _rtld_error("No shared object contains address");
3779 	lock_release(rtld_bind_lock, &lockstate);
3780         return (0);
3781     }
3782     rtld_fill_dl_phdr_info(obj, phdr_info);
3783     lock_release(rtld_bind_lock, &lockstate);
3784     return (1);
3785 }
3786 
3787 int
3788 dladdr(const void *addr, Dl_info *info)
3789 {
3790     const Obj_Entry *obj;
3791     const Elf_Sym *def;
3792     void *symbol_addr;
3793     unsigned long symoffset;
3794     RtldLockState lockstate;
3795 
3796     rlock_acquire(rtld_bind_lock, &lockstate);
3797     obj = obj_from_addr(addr);
3798     if (obj == NULL) {
3799         _rtld_error("No shared object contains address");
3800 	lock_release(rtld_bind_lock, &lockstate);
3801         return 0;
3802     }
3803     info->dli_fname = obj->path;
3804     info->dli_fbase = obj->mapbase;
3805     info->dli_saddr = (void *)0;
3806     info->dli_sname = NULL;
3807 
3808     /*
3809      * Walk the symbol list looking for the symbol whose address is
3810      * closest to the address sent in.
3811      */
3812     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3813         def = obj->symtab + symoffset;
3814 
3815         /*
3816          * For skip the symbol if st_shndx is either SHN_UNDEF or
3817          * SHN_COMMON.
3818          */
3819         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3820             continue;
3821 
3822         /*
3823          * If the symbol is greater than the specified address, or if it
3824          * is further away from addr than the current nearest symbol,
3825          * then reject it.
3826          */
3827         symbol_addr = obj->relocbase + def->st_value;
3828         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3829             continue;
3830 
3831         /* Update our idea of the nearest symbol. */
3832         info->dli_sname = obj->strtab + def->st_name;
3833         info->dli_saddr = symbol_addr;
3834 
3835         /* Exact match? */
3836         if (info->dli_saddr == addr)
3837             break;
3838     }
3839     lock_release(rtld_bind_lock, &lockstate);
3840     return 1;
3841 }
3842 
3843 int
3844 dlinfo(void *handle, int request, void *p)
3845 {
3846     const Obj_Entry *obj;
3847     RtldLockState lockstate;
3848     int error;
3849 
3850     rlock_acquire(rtld_bind_lock, &lockstate);
3851 
3852     if (handle == NULL || handle == RTLD_SELF) {
3853 	void *retaddr;
3854 
3855 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3856 	if ((obj = obj_from_addr(retaddr)) == NULL)
3857 	    _rtld_error("Cannot determine caller's shared object");
3858     } else
3859 	obj = dlcheck(handle);
3860 
3861     if (obj == NULL) {
3862 	lock_release(rtld_bind_lock, &lockstate);
3863 	return (-1);
3864     }
3865 
3866     error = 0;
3867     switch (request) {
3868     case RTLD_DI_LINKMAP:
3869 	*((struct link_map const **)p) = &obj->linkmap;
3870 	break;
3871     case RTLD_DI_ORIGIN:
3872 	error = rtld_dirname(obj->path, p);
3873 	break;
3874 
3875     case RTLD_DI_SERINFOSIZE:
3876     case RTLD_DI_SERINFO:
3877 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3878 	break;
3879 
3880     default:
3881 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3882 	error = -1;
3883     }
3884 
3885     lock_release(rtld_bind_lock, &lockstate);
3886 
3887     return (error);
3888 }
3889 
3890 static void
3891 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3892 {
3893 
3894 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3895 	phdr_info->dlpi_name = obj->path;
3896 	phdr_info->dlpi_phdr = obj->phdr;
3897 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3898 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3899 	phdr_info->dlpi_tls_data = obj->tlsinit;
3900 	phdr_info->dlpi_adds = obj_loads;
3901 	phdr_info->dlpi_subs = obj_loads - obj_count;
3902 }
3903 
3904 int
3905 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3906 {
3907 	struct dl_phdr_info phdr_info;
3908 	Obj_Entry *obj, marker;
3909 	RtldLockState bind_lockstate, phdr_lockstate;
3910 	int error;
3911 
3912 	init_marker(&marker);
3913 	error = 0;
3914 
3915 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3916 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3917 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3918 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3919 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3920 		hold_object(obj);
3921 		lock_release(rtld_bind_lock, &bind_lockstate);
3922 
3923 		error = callback(&phdr_info, sizeof phdr_info, param);
3924 
3925 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3926 		unhold_object(obj);
3927 		obj = globallist_next(&marker);
3928 		TAILQ_REMOVE(&obj_list, &marker, next);
3929 		if (error != 0) {
3930 			lock_release(rtld_bind_lock, &bind_lockstate);
3931 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3932 			return (error);
3933 		}
3934 	}
3935 
3936 	if (error == 0) {
3937 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3938 		lock_release(rtld_bind_lock, &bind_lockstate);
3939 		error = callback(&phdr_info, sizeof(phdr_info), param);
3940 	}
3941 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3942 	return (error);
3943 }
3944 
3945 static void *
3946 fill_search_info(const char *dir, size_t dirlen, void *param)
3947 {
3948     struct fill_search_info_args *arg;
3949 
3950     arg = param;
3951 
3952     if (arg->request == RTLD_DI_SERINFOSIZE) {
3953 	arg->serinfo->dls_cnt ++;
3954 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3955     } else {
3956 	struct dl_serpath *s_entry;
3957 
3958 	s_entry = arg->serpath;
3959 	s_entry->dls_name  = arg->strspace;
3960 	s_entry->dls_flags = arg->flags;
3961 
3962 	strncpy(arg->strspace, dir, dirlen);
3963 	arg->strspace[dirlen] = '\0';
3964 
3965 	arg->strspace += dirlen + 1;
3966 	arg->serpath++;
3967     }
3968 
3969     return (NULL);
3970 }
3971 
3972 static int
3973 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3974 {
3975     struct dl_serinfo _info;
3976     struct fill_search_info_args args;
3977 
3978     args.request = RTLD_DI_SERINFOSIZE;
3979     args.serinfo = &_info;
3980 
3981     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3982     _info.dls_cnt  = 0;
3983 
3984     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3985     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3986     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3987     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3988     if (!obj->z_nodeflib)
3989       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3990 
3991 
3992     if (request == RTLD_DI_SERINFOSIZE) {
3993 	info->dls_size = _info.dls_size;
3994 	info->dls_cnt = _info.dls_cnt;
3995 	return (0);
3996     }
3997 
3998     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3999 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4000 	return (-1);
4001     }
4002 
4003     args.request  = RTLD_DI_SERINFO;
4004     args.serinfo  = info;
4005     args.serpath  = &info->dls_serpath[0];
4006     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4007 
4008     args.flags = LA_SER_RUNPATH;
4009     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4010 	return (-1);
4011 
4012     args.flags = LA_SER_LIBPATH;
4013     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4014 	return (-1);
4015 
4016     args.flags = LA_SER_RUNPATH;
4017     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4018 	return (-1);
4019 
4020     args.flags = LA_SER_CONFIG;
4021     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4022       != NULL)
4023 	return (-1);
4024 
4025     args.flags = LA_SER_DEFAULT;
4026     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4027       fill_search_info, NULL, &args) != NULL)
4028 	return (-1);
4029     return (0);
4030 }
4031 
4032 static int
4033 rtld_dirname(const char *path, char *bname)
4034 {
4035     const char *endp;
4036 
4037     /* Empty or NULL string gets treated as "." */
4038     if (path == NULL || *path == '\0') {
4039 	bname[0] = '.';
4040 	bname[1] = '\0';
4041 	return (0);
4042     }
4043 
4044     /* Strip trailing slashes */
4045     endp = path + strlen(path) - 1;
4046     while (endp > path && *endp == '/')
4047 	endp--;
4048 
4049     /* Find the start of the dir */
4050     while (endp > path && *endp != '/')
4051 	endp--;
4052 
4053     /* Either the dir is "/" or there are no slashes */
4054     if (endp == path) {
4055 	bname[0] = *endp == '/' ? '/' : '.';
4056 	bname[1] = '\0';
4057 	return (0);
4058     } else {
4059 	do {
4060 	    endp--;
4061 	} while (endp > path && *endp == '/');
4062     }
4063 
4064     if (endp - path + 2 > PATH_MAX)
4065     {
4066 	_rtld_error("Filename is too long: %s", path);
4067 	return(-1);
4068     }
4069 
4070     strncpy(bname, path, endp - path + 1);
4071     bname[endp - path + 1] = '\0';
4072     return (0);
4073 }
4074 
4075 static int
4076 rtld_dirname_abs(const char *path, char *base)
4077 {
4078 	char *last;
4079 
4080 	if (realpath(path, base) == NULL) {
4081 		_rtld_error("realpath \"%s\" failed (%s)", path,
4082 		    rtld_strerror(errno));
4083 		return (-1);
4084 	}
4085 	dbg("%s -> %s", path, base);
4086 	last = strrchr(base, '/');
4087 	if (last == NULL) {
4088 		_rtld_error("non-abs result from realpath \"%s\"", path);
4089 		return (-1);
4090 	}
4091 	if (last != base)
4092 		*last = '\0';
4093 	return (0);
4094 }
4095 
4096 static void
4097 linkmap_add(Obj_Entry *obj)
4098 {
4099 	struct link_map *l, *prev;
4100 
4101 	l = &obj->linkmap;
4102 	l->l_name = obj->path;
4103 	l->l_base = obj->mapbase;
4104 	l->l_ld = obj->dynamic;
4105 	l->l_addr = obj->relocbase;
4106 
4107 	if (r_debug.r_map == NULL) {
4108 		r_debug.r_map = l;
4109 		return;
4110 	}
4111 
4112 	/*
4113 	 * Scan to the end of the list, but not past the entry for the
4114 	 * dynamic linker, which we want to keep at the very end.
4115 	 */
4116 	for (prev = r_debug.r_map;
4117 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4118 	     prev = prev->l_next)
4119 		;
4120 
4121 	/* Link in the new entry. */
4122 	l->l_prev = prev;
4123 	l->l_next = prev->l_next;
4124 	if (l->l_next != NULL)
4125 		l->l_next->l_prev = l;
4126 	prev->l_next = l;
4127 }
4128 
4129 static void
4130 linkmap_delete(Obj_Entry *obj)
4131 {
4132 	struct link_map *l;
4133 
4134 	l = &obj->linkmap;
4135 	if (l->l_prev == NULL) {
4136 		if ((r_debug.r_map = l->l_next) != NULL)
4137 			l->l_next->l_prev = NULL;
4138 		return;
4139 	}
4140 
4141 	if ((l->l_prev->l_next = l->l_next) != NULL)
4142 		l->l_next->l_prev = l->l_prev;
4143 }
4144 
4145 /*
4146  * Function for the debugger to set a breakpoint on to gain control.
4147  *
4148  * The two parameters allow the debugger to easily find and determine
4149  * what the runtime loader is doing and to whom it is doing it.
4150  *
4151  * When the loadhook trap is hit (r_debug_state, set at program
4152  * initialization), the arguments can be found on the stack:
4153  *
4154  *  +8   struct link_map *m
4155  *  +4   struct r_debug  *rd
4156  *  +0   RetAddr
4157  */
4158 void
4159 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4160 {
4161     /*
4162      * The following is a hack to force the compiler to emit calls to
4163      * this function, even when optimizing.  If the function is empty,
4164      * the compiler is not obliged to emit any code for calls to it,
4165      * even when marked __noinline.  However, gdb depends on those
4166      * calls being made.
4167      */
4168     __compiler_membar();
4169 }
4170 
4171 /*
4172  * A function called after init routines have completed. This can be used to
4173  * break before a program's entry routine is called, and can be used when
4174  * main is not available in the symbol table.
4175  */
4176 void
4177 _r_debug_postinit(struct link_map *m __unused)
4178 {
4179 
4180 	/* See r_debug_state(). */
4181 	__compiler_membar();
4182 }
4183 
4184 static void
4185 release_object(Obj_Entry *obj)
4186 {
4187 
4188 	if (obj->holdcount > 0) {
4189 		obj->unholdfree = true;
4190 		return;
4191 	}
4192 	munmap(obj->mapbase, obj->mapsize);
4193 	linkmap_delete(obj);
4194 	obj_free(obj);
4195 }
4196 
4197 /*
4198  * Get address of the pointer variable in the main program.
4199  * Prefer non-weak symbol over the weak one.
4200  */
4201 static const void **
4202 get_program_var_addr(const char *name, RtldLockState *lockstate)
4203 {
4204     SymLook req;
4205     DoneList donelist;
4206 
4207     symlook_init(&req, name);
4208     req.lockstate = lockstate;
4209     donelist_init(&donelist);
4210     if (symlook_global(&req, &donelist) != 0)
4211 	return (NULL);
4212     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4213 	return ((const void **)make_function_pointer(req.sym_out,
4214 	  req.defobj_out));
4215     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4216 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4217     else
4218 	return ((const void **)(req.defobj_out->relocbase +
4219 	  req.sym_out->st_value));
4220 }
4221 
4222 /*
4223  * Set a pointer variable in the main program to the given value.  This
4224  * is used to set key variables such as "environ" before any of the
4225  * init functions are called.
4226  */
4227 static void
4228 set_program_var(const char *name, const void *value)
4229 {
4230     const void **addr;
4231 
4232     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4233 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4234 	*addr = value;
4235     }
4236 }
4237 
4238 /*
4239  * Search the global objects, including dependencies and main object,
4240  * for the given symbol.
4241  */
4242 static int
4243 symlook_global(SymLook *req, DoneList *donelist)
4244 {
4245     SymLook req1;
4246     const Objlist_Entry *elm;
4247     int res;
4248 
4249     symlook_init_from_req(&req1, req);
4250 
4251     /* Search all objects loaded at program start up. */
4252     if (req->defobj_out == NULL ||
4253       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4254 	res = symlook_list(&req1, &list_main, donelist);
4255 	if (res == 0 && (req->defobj_out == NULL ||
4256 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4257 	    req->sym_out = req1.sym_out;
4258 	    req->defobj_out = req1.defobj_out;
4259 	    assert(req->defobj_out != NULL);
4260 	}
4261     }
4262 
4263     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4264     STAILQ_FOREACH(elm, &list_global, link) {
4265 	if (req->defobj_out != NULL &&
4266 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4267 	    break;
4268 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4269 	if (res == 0 && (req->defobj_out == NULL ||
4270 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4271 	    req->sym_out = req1.sym_out;
4272 	    req->defobj_out = req1.defobj_out;
4273 	    assert(req->defobj_out != NULL);
4274 	}
4275     }
4276 
4277     return (req->sym_out != NULL ? 0 : ESRCH);
4278 }
4279 
4280 /*
4281  * Given a symbol name in a referencing object, find the corresponding
4282  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4283  * no definition was found.  Returns a pointer to the Obj_Entry of the
4284  * defining object via the reference parameter DEFOBJ_OUT.
4285  */
4286 static int
4287 symlook_default(SymLook *req, const Obj_Entry *refobj)
4288 {
4289     DoneList donelist;
4290     const Objlist_Entry *elm;
4291     SymLook req1;
4292     int res;
4293 
4294     donelist_init(&donelist);
4295     symlook_init_from_req(&req1, req);
4296 
4297     /*
4298      * Look first in the referencing object if linked symbolically,
4299      * and similarly handle protected symbols.
4300      */
4301     res = symlook_obj(&req1, refobj);
4302     if (res == 0 && (refobj->symbolic ||
4303       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4304 	req->sym_out = req1.sym_out;
4305 	req->defobj_out = req1.defobj_out;
4306 	assert(req->defobj_out != NULL);
4307     }
4308     if (refobj->symbolic || req->defobj_out != NULL)
4309 	donelist_check(&donelist, refobj);
4310 
4311     symlook_global(req, &donelist);
4312 
4313     /* Search all dlopened DAGs containing the referencing object. */
4314     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4315 	if (req->sym_out != NULL &&
4316 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4317 	    break;
4318 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4319 	if (res == 0 && (req->sym_out == NULL ||
4320 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4321 	    req->sym_out = req1.sym_out;
4322 	    req->defobj_out = req1.defobj_out;
4323 	    assert(req->defobj_out != NULL);
4324 	}
4325     }
4326 
4327     /*
4328      * Search the dynamic linker itself, and possibly resolve the
4329      * symbol from there.  This is how the application links to
4330      * dynamic linker services such as dlopen.
4331      */
4332     if (req->sym_out == NULL ||
4333       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4334 	res = symlook_obj(&req1, &obj_rtld);
4335 	if (res == 0) {
4336 	    req->sym_out = req1.sym_out;
4337 	    req->defobj_out = req1.defobj_out;
4338 	    assert(req->defobj_out != NULL);
4339 	}
4340     }
4341 
4342     return (req->sym_out != NULL ? 0 : ESRCH);
4343 }
4344 
4345 static int
4346 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4347 {
4348     const Elf_Sym *def;
4349     const Obj_Entry *defobj;
4350     const Objlist_Entry *elm;
4351     SymLook req1;
4352     int res;
4353 
4354     def = NULL;
4355     defobj = NULL;
4356     STAILQ_FOREACH(elm, objlist, link) {
4357 	if (donelist_check(dlp, elm->obj))
4358 	    continue;
4359 	symlook_init_from_req(&req1, req);
4360 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4361 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4362 		def = req1.sym_out;
4363 		defobj = req1.defobj_out;
4364 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4365 		    break;
4366 	    }
4367 	}
4368     }
4369     if (def != NULL) {
4370 	req->sym_out = def;
4371 	req->defobj_out = defobj;
4372 	return (0);
4373     }
4374     return (ESRCH);
4375 }
4376 
4377 /*
4378  * Search the chain of DAGS cointed to by the given Needed_Entry
4379  * for a symbol of the given name.  Each DAG is scanned completely
4380  * before advancing to the next one.  Returns a pointer to the symbol,
4381  * or NULL if no definition was found.
4382  */
4383 static int
4384 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4385 {
4386     const Elf_Sym *def;
4387     const Needed_Entry *n;
4388     const Obj_Entry *defobj;
4389     SymLook req1;
4390     int res;
4391 
4392     def = NULL;
4393     defobj = NULL;
4394     symlook_init_from_req(&req1, req);
4395     for (n = needed; n != NULL; n = n->next) {
4396 	if (n->obj == NULL ||
4397 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4398 	    continue;
4399 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4400 	    def = req1.sym_out;
4401 	    defobj = req1.defobj_out;
4402 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4403 		break;
4404 	}
4405     }
4406     if (def != NULL) {
4407 	req->sym_out = def;
4408 	req->defobj_out = defobj;
4409 	return (0);
4410     }
4411     return (ESRCH);
4412 }
4413 
4414 /*
4415  * Search the symbol table of a single shared object for a symbol of
4416  * the given name and version, if requested.  Returns a pointer to the
4417  * symbol, or NULL if no definition was found.  If the object is
4418  * filter, return filtered symbol from filtee.
4419  *
4420  * The symbol's hash value is passed in for efficiency reasons; that
4421  * eliminates many recomputations of the hash value.
4422  */
4423 int
4424 symlook_obj(SymLook *req, const Obj_Entry *obj)
4425 {
4426     DoneList donelist;
4427     SymLook req1;
4428     int flags, res, mres;
4429 
4430     /*
4431      * If there is at least one valid hash at this point, we prefer to
4432      * use the faster GNU version if available.
4433      */
4434     if (obj->valid_hash_gnu)
4435 	mres = symlook_obj1_gnu(req, obj);
4436     else if (obj->valid_hash_sysv)
4437 	mres = symlook_obj1_sysv(req, obj);
4438     else
4439 	return (EINVAL);
4440 
4441     if (mres == 0) {
4442 	if (obj->needed_filtees != NULL) {
4443 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4444 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4445 	    donelist_init(&donelist);
4446 	    symlook_init_from_req(&req1, req);
4447 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4448 	    if (res == 0) {
4449 		req->sym_out = req1.sym_out;
4450 		req->defobj_out = req1.defobj_out;
4451 	    }
4452 	    return (res);
4453 	}
4454 	if (obj->needed_aux_filtees != NULL) {
4455 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4456 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4457 	    donelist_init(&donelist);
4458 	    symlook_init_from_req(&req1, req);
4459 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4460 	    if (res == 0) {
4461 		req->sym_out = req1.sym_out;
4462 		req->defobj_out = req1.defobj_out;
4463 		return (res);
4464 	    }
4465 	}
4466     }
4467     return (mres);
4468 }
4469 
4470 /* Symbol match routine common to both hash functions */
4471 static bool
4472 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4473     const unsigned long symnum)
4474 {
4475 	Elf_Versym verndx;
4476 	const Elf_Sym *symp;
4477 	const char *strp;
4478 
4479 	symp = obj->symtab + symnum;
4480 	strp = obj->strtab + symp->st_name;
4481 
4482 	switch (ELF_ST_TYPE(symp->st_info)) {
4483 	case STT_FUNC:
4484 	case STT_NOTYPE:
4485 	case STT_OBJECT:
4486 	case STT_COMMON:
4487 	case STT_GNU_IFUNC:
4488 		if (symp->st_value == 0)
4489 			return (false);
4490 		/* fallthrough */
4491 	case STT_TLS:
4492 		if (symp->st_shndx != SHN_UNDEF)
4493 			break;
4494 #ifndef __mips__
4495 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4496 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4497 			break;
4498 #endif
4499 		/* fallthrough */
4500 	default:
4501 		return (false);
4502 	}
4503 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4504 		return (false);
4505 
4506 	if (req->ventry == NULL) {
4507 		if (obj->versyms != NULL) {
4508 			verndx = VER_NDX(obj->versyms[symnum]);
4509 			if (verndx > obj->vernum) {
4510 				_rtld_error(
4511 				    "%s: symbol %s references wrong version %d",
4512 				    obj->path, obj->strtab + symnum, verndx);
4513 				return (false);
4514 			}
4515 			/*
4516 			 * If we are not called from dlsym (i.e. this
4517 			 * is a normal relocation from unversioned
4518 			 * binary), accept the symbol immediately if
4519 			 * it happens to have first version after this
4520 			 * shared object became versioned.  Otherwise,
4521 			 * if symbol is versioned and not hidden,
4522 			 * remember it. If it is the only symbol with
4523 			 * this name exported by the shared object, it
4524 			 * will be returned as a match by the calling
4525 			 * function. If symbol is global (verndx < 2)
4526 			 * accept it unconditionally.
4527 			 */
4528 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4529 			    verndx == VER_NDX_GIVEN) {
4530 				result->sym_out = symp;
4531 				return (true);
4532 			}
4533 			else if (verndx >= VER_NDX_GIVEN) {
4534 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4535 				    == 0) {
4536 					if (result->vsymp == NULL)
4537 						result->vsymp = symp;
4538 					result->vcount++;
4539 				}
4540 				return (false);
4541 			}
4542 		}
4543 		result->sym_out = symp;
4544 		return (true);
4545 	}
4546 	if (obj->versyms == NULL) {
4547 		if (object_match_name(obj, req->ventry->name)) {
4548 			_rtld_error("%s: object %s should provide version %s "
4549 			    "for symbol %s", obj_rtld.path, obj->path,
4550 			    req->ventry->name, obj->strtab + symnum);
4551 			return (false);
4552 		}
4553 	} else {
4554 		verndx = VER_NDX(obj->versyms[symnum]);
4555 		if (verndx > obj->vernum) {
4556 			_rtld_error("%s: symbol %s references wrong version %d",
4557 			    obj->path, obj->strtab + symnum, verndx);
4558 			return (false);
4559 		}
4560 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4561 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4562 			/*
4563 			 * Version does not match. Look if this is a
4564 			 * global symbol and if it is not hidden. If
4565 			 * global symbol (verndx < 2) is available,
4566 			 * use it. Do not return symbol if we are
4567 			 * called by dlvsym, because dlvsym looks for
4568 			 * a specific version and default one is not
4569 			 * what dlvsym wants.
4570 			 */
4571 			if ((req->flags & SYMLOOK_DLSYM) ||
4572 			    (verndx >= VER_NDX_GIVEN) ||
4573 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4574 				return (false);
4575 		}
4576 	}
4577 	result->sym_out = symp;
4578 	return (true);
4579 }
4580 
4581 /*
4582  * Search for symbol using SysV hash function.
4583  * obj->buckets is known not to be NULL at this point; the test for this was
4584  * performed with the obj->valid_hash_sysv assignment.
4585  */
4586 static int
4587 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4588 {
4589 	unsigned long symnum;
4590 	Sym_Match_Result matchres;
4591 
4592 	matchres.sym_out = NULL;
4593 	matchres.vsymp = NULL;
4594 	matchres.vcount = 0;
4595 
4596 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4597 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4598 		if (symnum >= obj->nchains)
4599 			return (ESRCH);	/* Bad object */
4600 
4601 		if (matched_symbol(req, obj, &matchres, symnum)) {
4602 			req->sym_out = matchres.sym_out;
4603 			req->defobj_out = obj;
4604 			return (0);
4605 		}
4606 	}
4607 	if (matchres.vcount == 1) {
4608 		req->sym_out = matchres.vsymp;
4609 		req->defobj_out = obj;
4610 		return (0);
4611 	}
4612 	return (ESRCH);
4613 }
4614 
4615 /* Search for symbol using GNU hash function */
4616 static int
4617 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4618 {
4619 	Elf_Addr bloom_word;
4620 	const Elf32_Word *hashval;
4621 	Elf32_Word bucket;
4622 	Sym_Match_Result matchres;
4623 	unsigned int h1, h2;
4624 	unsigned long symnum;
4625 
4626 	matchres.sym_out = NULL;
4627 	matchres.vsymp = NULL;
4628 	matchres.vcount = 0;
4629 
4630 	/* Pick right bitmask word from Bloom filter array */
4631 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4632 	    obj->maskwords_bm_gnu];
4633 
4634 	/* Calculate modulus word size of gnu hash and its derivative */
4635 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4636 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4637 
4638 	/* Filter out the "definitely not in set" queries */
4639 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4640 		return (ESRCH);
4641 
4642 	/* Locate hash chain and corresponding value element*/
4643 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4644 	if (bucket == 0)
4645 		return (ESRCH);
4646 	hashval = &obj->chain_zero_gnu[bucket];
4647 	do {
4648 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4649 			symnum = hashval - obj->chain_zero_gnu;
4650 			if (matched_symbol(req, obj, &matchres, symnum)) {
4651 				req->sym_out = matchres.sym_out;
4652 				req->defobj_out = obj;
4653 				return (0);
4654 			}
4655 		}
4656 	} while ((*hashval++ & 1) == 0);
4657 	if (matchres.vcount == 1) {
4658 		req->sym_out = matchres.vsymp;
4659 		req->defobj_out = obj;
4660 		return (0);
4661 	}
4662 	return (ESRCH);
4663 }
4664 
4665 static void
4666 trace_loaded_objects(Obj_Entry *obj)
4667 {
4668     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4669     int c;
4670 
4671     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4672 	main_local = "";
4673 
4674     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4675 	fmt1 = "\t%o => %p (%x)\n";
4676 
4677     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4678 	fmt2 = "\t%o (%x)\n";
4679 
4680     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4681 
4682     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4683 	Needed_Entry *needed;
4684 	const char *name, *path;
4685 	bool is_lib;
4686 
4687 	if (obj->marker)
4688 	    continue;
4689 	if (list_containers && obj->needed != NULL)
4690 	    rtld_printf("%s:\n", obj->path);
4691 	for (needed = obj->needed; needed; needed = needed->next) {
4692 	    if (needed->obj != NULL) {
4693 		if (needed->obj->traced && !list_containers)
4694 		    continue;
4695 		needed->obj->traced = true;
4696 		path = needed->obj->path;
4697 	    } else
4698 		path = "not found";
4699 
4700 	    name = obj->strtab + needed->name;
4701 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4702 
4703 	    fmt = is_lib ? fmt1 : fmt2;
4704 	    while ((c = *fmt++) != '\0') {
4705 		switch (c) {
4706 		default:
4707 		    rtld_putchar(c);
4708 		    continue;
4709 		case '\\':
4710 		    switch (c = *fmt) {
4711 		    case '\0':
4712 			continue;
4713 		    case 'n':
4714 			rtld_putchar('\n');
4715 			break;
4716 		    case 't':
4717 			rtld_putchar('\t');
4718 			break;
4719 		    }
4720 		    break;
4721 		case '%':
4722 		    switch (c = *fmt) {
4723 		    case '\0':
4724 			continue;
4725 		    case '%':
4726 		    default:
4727 			rtld_putchar(c);
4728 			break;
4729 		    case 'A':
4730 			rtld_putstr(main_local);
4731 			break;
4732 		    case 'a':
4733 			rtld_putstr(obj_main->path);
4734 			break;
4735 		    case 'o':
4736 			rtld_putstr(name);
4737 			break;
4738 #if 0
4739 		    case 'm':
4740 			rtld_printf("%d", sodp->sod_major);
4741 			break;
4742 		    case 'n':
4743 			rtld_printf("%d", sodp->sod_minor);
4744 			break;
4745 #endif
4746 		    case 'p':
4747 			rtld_putstr(path);
4748 			break;
4749 		    case 'x':
4750 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4751 			  0);
4752 			break;
4753 		    }
4754 		    break;
4755 		}
4756 		++fmt;
4757 	    }
4758 	}
4759     }
4760 }
4761 
4762 /*
4763  * Unload a dlopened object and its dependencies from memory and from
4764  * our data structures.  It is assumed that the DAG rooted in the
4765  * object has already been unreferenced, and that the object has a
4766  * reference count of 0.
4767  */
4768 static void
4769 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4770 {
4771 	Obj_Entry marker, *obj, *next;
4772 
4773 	assert(root->refcount == 0);
4774 
4775 	/*
4776 	 * Pass over the DAG removing unreferenced objects from
4777 	 * appropriate lists.
4778 	 */
4779 	unlink_object(root);
4780 
4781 	/* Unmap all objects that are no longer referenced. */
4782 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4783 		next = TAILQ_NEXT(obj, next);
4784 		if (obj->marker || obj->refcount != 0)
4785 			continue;
4786 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4787 		    obj->mapsize, 0, obj->path);
4788 		dbg("unloading \"%s\"", obj->path);
4789 		/*
4790 		 * Unlink the object now to prevent new references from
4791 		 * being acquired while the bind lock is dropped in
4792 		 * recursive dlclose() invocations.
4793 		 */
4794 		TAILQ_REMOVE(&obj_list, obj, next);
4795 		obj_count--;
4796 
4797 		if (obj->filtees_loaded) {
4798 			if (next != NULL) {
4799 				init_marker(&marker);
4800 				TAILQ_INSERT_BEFORE(next, &marker, next);
4801 				unload_filtees(obj, lockstate);
4802 				next = TAILQ_NEXT(&marker, next);
4803 				TAILQ_REMOVE(&obj_list, &marker, next);
4804 			} else
4805 				unload_filtees(obj, lockstate);
4806 		}
4807 		release_object(obj);
4808 	}
4809 }
4810 
4811 static void
4812 unlink_object(Obj_Entry *root)
4813 {
4814     Objlist_Entry *elm;
4815 
4816     if (root->refcount == 0) {
4817 	/* Remove the object from the RTLD_GLOBAL list. */
4818 	objlist_remove(&list_global, root);
4819 
4820     	/* Remove the object from all objects' DAG lists. */
4821     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4822 	    objlist_remove(&elm->obj->dldags, root);
4823 	    if (elm->obj != root)
4824 		unlink_object(elm->obj);
4825 	}
4826     }
4827 }
4828 
4829 static void
4830 ref_dag(Obj_Entry *root)
4831 {
4832     Objlist_Entry *elm;
4833 
4834     assert(root->dag_inited);
4835     STAILQ_FOREACH(elm, &root->dagmembers, link)
4836 	elm->obj->refcount++;
4837 }
4838 
4839 static void
4840 unref_dag(Obj_Entry *root)
4841 {
4842     Objlist_Entry *elm;
4843 
4844     assert(root->dag_inited);
4845     STAILQ_FOREACH(elm, &root->dagmembers, link)
4846 	elm->obj->refcount--;
4847 }
4848 
4849 /*
4850  * Common code for MD __tls_get_addr().
4851  */
4852 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4853 static void *
4854 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4855 {
4856     Elf_Addr *newdtv, *dtv;
4857     RtldLockState lockstate;
4858     int to_copy;
4859 
4860     dtv = *dtvp;
4861     /* Check dtv generation in case new modules have arrived */
4862     if (dtv[0] != tls_dtv_generation) {
4863 	wlock_acquire(rtld_bind_lock, &lockstate);
4864 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4865 	to_copy = dtv[1];
4866 	if (to_copy > tls_max_index)
4867 	    to_copy = tls_max_index;
4868 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4869 	newdtv[0] = tls_dtv_generation;
4870 	newdtv[1] = tls_max_index;
4871 	free(dtv);
4872 	lock_release(rtld_bind_lock, &lockstate);
4873 	dtv = *dtvp = newdtv;
4874     }
4875 
4876     /* Dynamically allocate module TLS if necessary */
4877     if (dtv[index + 1] == 0) {
4878 	/* Signal safe, wlock will block out signals. */
4879 	wlock_acquire(rtld_bind_lock, &lockstate);
4880 	if (!dtv[index + 1])
4881 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4882 	lock_release(rtld_bind_lock, &lockstate);
4883     }
4884     return ((void *)(dtv[index + 1] + offset));
4885 }
4886 
4887 void *
4888 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4889 {
4890 	Elf_Addr *dtv;
4891 
4892 	dtv = *dtvp;
4893 	/* Check dtv generation in case new modules have arrived */
4894 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4895 	    dtv[index + 1] != 0))
4896 		return ((void *)(dtv[index + 1] + offset));
4897 	return (tls_get_addr_slow(dtvp, index, offset));
4898 }
4899 
4900 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4901     defined(__powerpc__) || defined(__riscv)
4902 
4903 /*
4904  * Return pointer to allocated TLS block
4905  */
4906 static void *
4907 get_tls_block_ptr(void *tcb, size_t tcbsize)
4908 {
4909     size_t extra_size, post_size, pre_size, tls_block_size;
4910     size_t tls_init_align;
4911 
4912     tls_init_align = MAX(obj_main->tlsalign, 1);
4913 
4914     /* Compute fragments sizes. */
4915     extra_size = tcbsize - TLS_TCB_SIZE;
4916     post_size = calculate_tls_post_size(tls_init_align);
4917     tls_block_size = tcbsize + post_size;
4918     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4919 
4920     return ((char *)tcb - pre_size - extra_size);
4921 }
4922 
4923 /*
4924  * Allocate Static TLS using the Variant I method.
4925  *
4926  * For details on the layout, see lib/libc/gen/tls.c.
4927  *
4928  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4929  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4930  *     offsets, whereas libc's tls_static_space is just the executable's static
4931  *     TLS segment.
4932  */
4933 void *
4934 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4935 {
4936     Obj_Entry *obj;
4937     char *tls_block;
4938     Elf_Addr *dtv, **tcb;
4939     Elf_Addr addr;
4940     Elf_Addr i;
4941     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4942     size_t tls_init_align, tls_init_offset;
4943 
4944     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4945 	return (oldtcb);
4946 
4947     assert(tcbsize >= TLS_TCB_SIZE);
4948     maxalign = MAX(tcbalign, tls_static_max_align);
4949     tls_init_align = MAX(obj_main->tlsalign, 1);
4950 
4951     /* Compute fragmets sizes. */
4952     extra_size = tcbsize - TLS_TCB_SIZE;
4953     post_size = calculate_tls_post_size(tls_init_align);
4954     tls_block_size = tcbsize + post_size;
4955     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4956     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4957 
4958     /* Allocate whole TLS block */
4959     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4960     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4961 
4962     if (oldtcb != NULL) {
4963 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4964 	    tls_static_space);
4965 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4966 
4967 	/* Adjust the DTV. */
4968 	dtv = tcb[0];
4969 	for (i = 0; i < dtv[1]; i++) {
4970 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4971 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4972 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4973 	    }
4974 	}
4975     } else {
4976 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4977 	tcb[0] = dtv;
4978 	dtv[0] = tls_dtv_generation;
4979 	dtv[1] = tls_max_index;
4980 
4981 	for (obj = globallist_curr(objs); obj != NULL;
4982 	  obj = globallist_next(obj)) {
4983 	    if (obj->tlsoffset == 0)
4984 		continue;
4985 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4986 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4987 	    if (tls_init_offset > 0)
4988 		memset((void *)addr, 0, tls_init_offset);
4989 	    if (obj->tlsinitsize > 0) {
4990 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4991 		    obj->tlsinitsize);
4992 	    }
4993 	    if (obj->tlssize > obj->tlsinitsize) {
4994 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4995 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4996 	    }
4997 	    dtv[obj->tlsindex + 1] = addr;
4998 	}
4999     }
5000 
5001     return (tcb);
5002 }
5003 
5004 void
5005 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5006 {
5007     Elf_Addr *dtv;
5008     Elf_Addr tlsstart, tlsend;
5009     size_t post_size;
5010     size_t dtvsize, i, tls_init_align;
5011 
5012     assert(tcbsize >= TLS_TCB_SIZE);
5013     tls_init_align = MAX(obj_main->tlsalign, 1);
5014 
5015     /* Compute fragments sizes. */
5016     post_size = calculate_tls_post_size(tls_init_align);
5017 
5018     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5019     tlsend = (Elf_Addr)tcb + tls_static_space;
5020 
5021     dtv = *(Elf_Addr **)tcb;
5022     dtvsize = dtv[1];
5023     for (i = 0; i < dtvsize; i++) {
5024 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5025 	    free((void*)dtv[i+2]);
5026 	}
5027     }
5028     free(dtv);
5029     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5030 }
5031 
5032 #endif
5033 
5034 #if defined(__i386__) || defined(__amd64__)
5035 
5036 /*
5037  * Allocate Static TLS using the Variant II method.
5038  */
5039 void *
5040 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5041 {
5042     Obj_Entry *obj;
5043     size_t size, ralign;
5044     char *tls;
5045     Elf_Addr *dtv, *olddtv;
5046     Elf_Addr segbase, oldsegbase, addr;
5047     size_t i;
5048 
5049     ralign = tcbalign;
5050     if (tls_static_max_align > ralign)
5051 	    ralign = tls_static_max_align;
5052     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5053 
5054     assert(tcbsize >= 2*sizeof(Elf_Addr));
5055     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5056     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5057 
5058     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5059     ((Elf_Addr*)segbase)[0] = segbase;
5060     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5061 
5062     dtv[0] = tls_dtv_generation;
5063     dtv[1] = tls_max_index;
5064 
5065     if (oldtls) {
5066 	/*
5067 	 * Copy the static TLS block over whole.
5068 	 */
5069 	oldsegbase = (Elf_Addr) oldtls;
5070 	memcpy((void *)(segbase - tls_static_space),
5071 	       (const void *)(oldsegbase - tls_static_space),
5072 	       tls_static_space);
5073 
5074 	/*
5075 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5076 	 * move them over.
5077 	 */
5078 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5079 	for (i = 0; i < olddtv[1]; i++) {
5080 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5081 		dtv[i+2] = olddtv[i+2];
5082 		olddtv[i+2] = 0;
5083 	    }
5084 	}
5085 
5086 	/*
5087 	 * We assume that this block was the one we created with
5088 	 * allocate_initial_tls().
5089 	 */
5090 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5091     } else {
5092 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5093 		if (obj->marker || obj->tlsoffset == 0)
5094 			continue;
5095 		addr = segbase - obj->tlsoffset;
5096 		memset((void*)(addr + obj->tlsinitsize),
5097 		       0, obj->tlssize - obj->tlsinitsize);
5098 		if (obj->tlsinit) {
5099 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5100 		    obj->static_tls_copied = true;
5101 		}
5102 		dtv[obj->tlsindex + 1] = addr;
5103 	}
5104     }
5105 
5106     return (void*) segbase;
5107 }
5108 
5109 void
5110 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5111 {
5112     Elf_Addr* dtv;
5113     size_t size, ralign;
5114     int dtvsize, i;
5115     Elf_Addr tlsstart, tlsend;
5116 
5117     /*
5118      * Figure out the size of the initial TLS block so that we can
5119      * find stuff which ___tls_get_addr() allocated dynamically.
5120      */
5121     ralign = tcbalign;
5122     if (tls_static_max_align > ralign)
5123 	    ralign = tls_static_max_align;
5124     size = roundup(tls_static_space, ralign);
5125 
5126     dtv = ((Elf_Addr**)tls)[1];
5127     dtvsize = dtv[1];
5128     tlsend = (Elf_Addr) tls;
5129     tlsstart = tlsend - size;
5130     for (i = 0; i < dtvsize; i++) {
5131 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5132 		free_aligned((void *)dtv[i + 2]);
5133 	}
5134     }
5135 
5136     free_aligned((void *)tlsstart);
5137     free((void*) dtv);
5138 }
5139 
5140 #endif
5141 
5142 /*
5143  * Allocate TLS block for module with given index.
5144  */
5145 void *
5146 allocate_module_tls(int index)
5147 {
5148 	Obj_Entry *obj;
5149 	char *p;
5150 
5151 	TAILQ_FOREACH(obj, &obj_list, next) {
5152 		if (obj->marker)
5153 			continue;
5154 		if (obj->tlsindex == index)
5155 			break;
5156 	}
5157 	if (obj == NULL) {
5158 		_rtld_error("Can't find module with TLS index %d", index);
5159 		rtld_die();
5160 	}
5161 
5162 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5163 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5164 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5165 	return (p);
5166 }
5167 
5168 bool
5169 allocate_tls_offset(Obj_Entry *obj)
5170 {
5171     size_t off;
5172 
5173     if (obj->tls_done)
5174 	return true;
5175 
5176     if (obj->tlssize == 0) {
5177 	obj->tls_done = true;
5178 	return true;
5179     }
5180 
5181     if (tls_last_offset == 0)
5182 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5183 	  obj->tlspoffset);
5184     else
5185 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5186 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5187 
5188     /*
5189      * If we have already fixed the size of the static TLS block, we
5190      * must stay within that size. When allocating the static TLS, we
5191      * leave a small amount of space spare to be used for dynamically
5192      * loading modules which use static TLS.
5193      */
5194     if (tls_static_space != 0) {
5195 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5196 	    return false;
5197     } else if (obj->tlsalign > tls_static_max_align) {
5198 	    tls_static_max_align = obj->tlsalign;
5199     }
5200 
5201     tls_last_offset = obj->tlsoffset = off;
5202     tls_last_size = obj->tlssize;
5203     obj->tls_done = true;
5204 
5205     return true;
5206 }
5207 
5208 void
5209 free_tls_offset(Obj_Entry *obj)
5210 {
5211 
5212     /*
5213      * If we were the last thing to allocate out of the static TLS
5214      * block, we give our space back to the 'allocator'. This is a
5215      * simplistic workaround to allow libGL.so.1 to be loaded and
5216      * unloaded multiple times.
5217      */
5218     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5219 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5220 	tls_last_offset -= obj->tlssize;
5221 	tls_last_size = 0;
5222     }
5223 }
5224 
5225 void *
5226 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5227 {
5228     void *ret;
5229     RtldLockState lockstate;
5230 
5231     wlock_acquire(rtld_bind_lock, &lockstate);
5232     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5233       tcbsize, tcbalign);
5234     lock_release(rtld_bind_lock, &lockstate);
5235     return (ret);
5236 }
5237 
5238 void
5239 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5240 {
5241     RtldLockState lockstate;
5242 
5243     wlock_acquire(rtld_bind_lock, &lockstate);
5244     free_tls(tcb, tcbsize, tcbalign);
5245     lock_release(rtld_bind_lock, &lockstate);
5246 }
5247 
5248 static void
5249 object_add_name(Obj_Entry *obj, const char *name)
5250 {
5251     Name_Entry *entry;
5252     size_t len;
5253 
5254     len = strlen(name);
5255     entry = malloc(sizeof(Name_Entry) + len);
5256 
5257     if (entry != NULL) {
5258 	strcpy(entry->name, name);
5259 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5260     }
5261 }
5262 
5263 static int
5264 object_match_name(const Obj_Entry *obj, const char *name)
5265 {
5266     Name_Entry *entry;
5267 
5268     STAILQ_FOREACH(entry, &obj->names, link) {
5269 	if (strcmp(name, entry->name) == 0)
5270 	    return (1);
5271     }
5272     return (0);
5273 }
5274 
5275 static Obj_Entry *
5276 locate_dependency(const Obj_Entry *obj, const char *name)
5277 {
5278     const Objlist_Entry *entry;
5279     const Needed_Entry *needed;
5280 
5281     STAILQ_FOREACH(entry, &list_main, link) {
5282 	if (object_match_name(entry->obj, name))
5283 	    return entry->obj;
5284     }
5285 
5286     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5287 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5288 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5289 	    /*
5290 	     * If there is DT_NEEDED for the name we are looking for,
5291 	     * we are all set.  Note that object might not be found if
5292 	     * dependency was not loaded yet, so the function can
5293 	     * return NULL here.  This is expected and handled
5294 	     * properly by the caller.
5295 	     */
5296 	    return (needed->obj);
5297 	}
5298     }
5299     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5300 	obj->path, name);
5301     rtld_die();
5302 }
5303 
5304 static int
5305 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5306     const Elf_Vernaux *vna)
5307 {
5308     const Elf_Verdef *vd;
5309     const char *vername;
5310 
5311     vername = refobj->strtab + vna->vna_name;
5312     vd = depobj->verdef;
5313     if (vd == NULL) {
5314 	_rtld_error("%s: version %s required by %s not defined",
5315 	    depobj->path, vername, refobj->path);
5316 	return (-1);
5317     }
5318     for (;;) {
5319 	if (vd->vd_version != VER_DEF_CURRENT) {
5320 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5321 		depobj->path, vd->vd_version);
5322 	    return (-1);
5323 	}
5324 	if (vna->vna_hash == vd->vd_hash) {
5325 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5326 		((const char *)vd + vd->vd_aux);
5327 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5328 		return (0);
5329 	}
5330 	if (vd->vd_next == 0)
5331 	    break;
5332 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5333     }
5334     if (vna->vna_flags & VER_FLG_WEAK)
5335 	return (0);
5336     _rtld_error("%s: version %s required by %s not found",
5337 	depobj->path, vername, refobj->path);
5338     return (-1);
5339 }
5340 
5341 static int
5342 rtld_verify_object_versions(Obj_Entry *obj)
5343 {
5344     const Elf_Verneed *vn;
5345     const Elf_Verdef  *vd;
5346     const Elf_Verdaux *vda;
5347     const Elf_Vernaux *vna;
5348     const Obj_Entry *depobj;
5349     int maxvernum, vernum;
5350 
5351     if (obj->ver_checked)
5352 	return (0);
5353     obj->ver_checked = true;
5354 
5355     maxvernum = 0;
5356     /*
5357      * Walk over defined and required version records and figure out
5358      * max index used by any of them. Do very basic sanity checking
5359      * while there.
5360      */
5361     vn = obj->verneed;
5362     while (vn != NULL) {
5363 	if (vn->vn_version != VER_NEED_CURRENT) {
5364 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5365 		obj->path, vn->vn_version);
5366 	    return (-1);
5367 	}
5368 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5369 	for (;;) {
5370 	    vernum = VER_NEED_IDX(vna->vna_other);
5371 	    if (vernum > maxvernum)
5372 		maxvernum = vernum;
5373 	    if (vna->vna_next == 0)
5374 		 break;
5375 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5376 	}
5377 	if (vn->vn_next == 0)
5378 	    break;
5379 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5380     }
5381 
5382     vd = obj->verdef;
5383     while (vd != NULL) {
5384 	if (vd->vd_version != VER_DEF_CURRENT) {
5385 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5386 		obj->path, vd->vd_version);
5387 	    return (-1);
5388 	}
5389 	vernum = VER_DEF_IDX(vd->vd_ndx);
5390 	if (vernum > maxvernum)
5391 		maxvernum = vernum;
5392 	if (vd->vd_next == 0)
5393 	    break;
5394 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5395     }
5396 
5397     if (maxvernum == 0)
5398 	return (0);
5399 
5400     /*
5401      * Store version information in array indexable by version index.
5402      * Verify that object version requirements are satisfied along the
5403      * way.
5404      */
5405     obj->vernum = maxvernum + 1;
5406     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5407 
5408     vd = obj->verdef;
5409     while (vd != NULL) {
5410 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5411 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5412 	    assert(vernum <= maxvernum);
5413 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5414 	    obj->vertab[vernum].hash = vd->vd_hash;
5415 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5416 	    obj->vertab[vernum].file = NULL;
5417 	    obj->vertab[vernum].flags = 0;
5418 	}
5419 	if (vd->vd_next == 0)
5420 	    break;
5421 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5422     }
5423 
5424     vn = obj->verneed;
5425     while (vn != NULL) {
5426 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5427 	if (depobj == NULL)
5428 	    return (-1);
5429 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5430 	for (;;) {
5431 	    if (check_object_provided_version(obj, depobj, vna))
5432 		return (-1);
5433 	    vernum = VER_NEED_IDX(vna->vna_other);
5434 	    assert(vernum <= maxvernum);
5435 	    obj->vertab[vernum].hash = vna->vna_hash;
5436 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5437 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5438 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5439 		VER_INFO_HIDDEN : 0;
5440 	    if (vna->vna_next == 0)
5441 		 break;
5442 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5443 	}
5444 	if (vn->vn_next == 0)
5445 	    break;
5446 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5447     }
5448     return 0;
5449 }
5450 
5451 static int
5452 rtld_verify_versions(const Objlist *objlist)
5453 {
5454     Objlist_Entry *entry;
5455     int rc;
5456 
5457     rc = 0;
5458     STAILQ_FOREACH(entry, objlist, link) {
5459 	/*
5460 	 * Skip dummy objects or objects that have their version requirements
5461 	 * already checked.
5462 	 */
5463 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5464 	    continue;
5465 	if (rtld_verify_object_versions(entry->obj) == -1) {
5466 	    rc = -1;
5467 	    if (ld_tracing == NULL)
5468 		break;
5469 	}
5470     }
5471     if (rc == 0 || ld_tracing != NULL)
5472     	rc = rtld_verify_object_versions(&obj_rtld);
5473     return rc;
5474 }
5475 
5476 const Ver_Entry *
5477 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5478 {
5479     Elf_Versym vernum;
5480 
5481     if (obj->vertab) {
5482 	vernum = VER_NDX(obj->versyms[symnum]);
5483 	if (vernum >= obj->vernum) {
5484 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5485 		obj->path, obj->strtab + symnum, vernum);
5486 	} else if (obj->vertab[vernum].hash != 0) {
5487 	    return &obj->vertab[vernum];
5488 	}
5489     }
5490     return NULL;
5491 }
5492 
5493 int
5494 _rtld_get_stack_prot(void)
5495 {
5496 
5497 	return (stack_prot);
5498 }
5499 
5500 int
5501 _rtld_is_dlopened(void *arg)
5502 {
5503 	Obj_Entry *obj;
5504 	RtldLockState lockstate;
5505 	int res;
5506 
5507 	rlock_acquire(rtld_bind_lock, &lockstate);
5508 	obj = dlcheck(arg);
5509 	if (obj == NULL)
5510 		obj = obj_from_addr(arg);
5511 	if (obj == NULL) {
5512 		_rtld_error("No shared object contains address");
5513 		lock_release(rtld_bind_lock, &lockstate);
5514 		return (-1);
5515 	}
5516 	res = obj->dlopened ? 1 : 0;
5517 	lock_release(rtld_bind_lock, &lockstate);
5518 	return (res);
5519 }
5520 
5521 static int
5522 obj_remap_relro(Obj_Entry *obj, int prot)
5523 {
5524 
5525 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5526 	    prot) == -1) {
5527 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5528 		    obj->path, prot, rtld_strerror(errno));
5529 		return (-1);
5530 	}
5531 	return (0);
5532 }
5533 
5534 static int
5535 obj_disable_relro(Obj_Entry *obj)
5536 {
5537 
5538 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5539 }
5540 
5541 static int
5542 obj_enforce_relro(Obj_Entry *obj)
5543 {
5544 
5545 	return (obj_remap_relro(obj, PROT_READ));
5546 }
5547 
5548 static void
5549 map_stacks_exec(RtldLockState *lockstate)
5550 {
5551 	void (*thr_map_stacks_exec)(void);
5552 
5553 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5554 		return;
5555 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5556 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5557 	if (thr_map_stacks_exec != NULL) {
5558 		stack_prot |= PROT_EXEC;
5559 		thr_map_stacks_exec();
5560 	}
5561 }
5562 
5563 static void
5564 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5565 {
5566 	Objlist_Entry *elm;
5567 	Obj_Entry *obj;
5568 	void (*distrib)(size_t, void *, size_t, size_t);
5569 
5570 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5571 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5572 	if (distrib == NULL)
5573 		return;
5574 	STAILQ_FOREACH(elm, list, link) {
5575 		obj = elm->obj;
5576 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5577 			continue;
5578 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5579 		    obj->tlssize);
5580 		obj->static_tls_copied = true;
5581 	}
5582 }
5583 
5584 void
5585 symlook_init(SymLook *dst, const char *name)
5586 {
5587 
5588 	bzero(dst, sizeof(*dst));
5589 	dst->name = name;
5590 	dst->hash = elf_hash(name);
5591 	dst->hash_gnu = gnu_hash(name);
5592 }
5593 
5594 static void
5595 symlook_init_from_req(SymLook *dst, const SymLook *src)
5596 {
5597 
5598 	dst->name = src->name;
5599 	dst->hash = src->hash;
5600 	dst->hash_gnu = src->hash_gnu;
5601 	dst->ventry = src->ventry;
5602 	dst->flags = src->flags;
5603 	dst->defobj_out = NULL;
5604 	dst->sym_out = NULL;
5605 	dst->lockstate = src->lockstate;
5606 }
5607 
5608 static int
5609 open_binary_fd(const char *argv0, bool search_in_path,
5610     const char **binpath_res)
5611 {
5612 	char *binpath, *pathenv, *pe, *res1;
5613 	const char *res;
5614 	int fd;
5615 
5616 	binpath = NULL;
5617 	res = NULL;
5618 	if (search_in_path && strchr(argv0, '/') == NULL) {
5619 		binpath = xmalloc(PATH_MAX);
5620 		pathenv = getenv("PATH");
5621 		if (pathenv == NULL) {
5622 			_rtld_error("-p and no PATH environment variable");
5623 			rtld_die();
5624 		}
5625 		pathenv = strdup(pathenv);
5626 		if (pathenv == NULL) {
5627 			_rtld_error("Cannot allocate memory");
5628 			rtld_die();
5629 		}
5630 		fd = -1;
5631 		errno = ENOENT;
5632 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5633 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5634 				continue;
5635 			if (binpath[0] != '\0' &&
5636 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5637 				continue;
5638 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5639 				continue;
5640 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5641 			if (fd != -1 || errno != ENOENT) {
5642 				res = binpath;
5643 				break;
5644 			}
5645 		}
5646 		free(pathenv);
5647 	} else {
5648 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5649 		res = argv0;
5650 	}
5651 
5652 	if (fd == -1) {
5653 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5654 		rtld_die();
5655 	}
5656 	if (res != NULL && res[0] != '/') {
5657 		res1 = xmalloc(PATH_MAX);
5658 		if (realpath(res, res1) != NULL) {
5659 			if (res != argv0)
5660 				free(__DECONST(char *, res));
5661 			res = res1;
5662 		} else {
5663 			free(res1);
5664 		}
5665 	}
5666 	*binpath_res = res;
5667 	return (fd);
5668 }
5669 
5670 /*
5671  * Parse a set of command-line arguments.
5672  */
5673 static int
5674 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5675     const char **argv0)
5676 {
5677 	const char *arg;
5678 	char machine[64];
5679 	size_t sz;
5680 	int arglen, fd, i, j, mib[2];
5681 	char opt;
5682 	bool seen_b, seen_f;
5683 
5684 	dbg("Parsing command-line arguments");
5685 	*use_pathp = false;
5686 	*fdp = -1;
5687 	seen_b = seen_f = false;
5688 
5689 	for (i = 1; i < argc; i++ ) {
5690 		arg = argv[i];
5691 		dbg("argv[%d]: '%s'", i, arg);
5692 
5693 		/*
5694 		 * rtld arguments end with an explicit "--" or with the first
5695 		 * non-prefixed argument.
5696 		 */
5697 		if (strcmp(arg, "--") == 0) {
5698 			i++;
5699 			break;
5700 		}
5701 		if (arg[0] != '-')
5702 			break;
5703 
5704 		/*
5705 		 * All other arguments are single-character options that can
5706 		 * be combined, so we need to search through `arg` for them.
5707 		 */
5708 		arglen = strlen(arg);
5709 		for (j = 1; j < arglen; j++) {
5710 			opt = arg[j];
5711 			if (opt == 'h') {
5712 				print_usage(argv[0]);
5713 				_exit(0);
5714 			} else if (opt == 'b') {
5715 				if (seen_f) {
5716 					_rtld_error("Both -b and -f specified");
5717 					rtld_die();
5718 				}
5719 				i++;
5720 				*argv0 = argv[i];
5721 				seen_b = true;
5722 				break;
5723 			} else if (opt == 'f') {
5724 				if (seen_b) {
5725 					_rtld_error("Both -b and -f specified");
5726 					rtld_die();
5727 				}
5728 
5729 				/*
5730 				 * -f XX can be used to specify a
5731 				 * descriptor for the binary named at
5732 				 * the command line (i.e., the later
5733 				 * argument will specify the process
5734 				 * name but the descriptor is what
5735 				 * will actually be executed).
5736 				 *
5737 				 * -f must be the last option in, e.g., -abcf.
5738 				 */
5739 				if (j != arglen - 1) {
5740 					_rtld_error("Invalid options: %s", arg);
5741 					rtld_die();
5742 				}
5743 				i++;
5744 				fd = parse_integer(argv[i]);
5745 				if (fd == -1) {
5746 					_rtld_error(
5747 					    "Invalid file descriptor: '%s'",
5748 					    argv[i]);
5749 					rtld_die();
5750 				}
5751 				*fdp = fd;
5752 				seen_f = true;
5753 				break;
5754 			} else if (opt == 'p') {
5755 				*use_pathp = true;
5756 			} else if (opt == 'v') {
5757 				machine[0] = '\0';
5758 				mib[0] = CTL_HW;
5759 				mib[1] = HW_MACHINE;
5760 				sz = sizeof(machine);
5761 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5762 				rtld_printf(
5763 				    "FreeBSD ld-elf.so.1 %s\n"
5764 				    "FreeBSD_version %d\n"
5765 				    "Default lib path %s\n"
5766 				    "Env prefix %s\n"
5767 				    "Hint file %s\n"
5768 				    "libmap file %s\n",
5769 				    machine,
5770 				    __FreeBSD_version, ld_standard_library_path,
5771 				    ld_env_prefix, ld_elf_hints_default,
5772 				    ld_path_libmap_conf);
5773 				_exit(0);
5774 			} else {
5775 				_rtld_error("Invalid argument: '%s'", arg);
5776 				print_usage(argv[0]);
5777 				rtld_die();
5778 			}
5779 		}
5780 	}
5781 
5782 	if (!seen_b)
5783 		*argv0 = argv[i];
5784 	return (i);
5785 }
5786 
5787 /*
5788  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5789  */
5790 static int
5791 parse_integer(const char *str)
5792 {
5793 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5794 	const char *orig;
5795 	int n;
5796 	char c;
5797 
5798 	orig = str;
5799 	n = 0;
5800 	for (c = *str; c != '\0'; c = *++str) {
5801 		if (c < '0' || c > '9')
5802 			return (-1);
5803 
5804 		n *= RADIX;
5805 		n += c - '0';
5806 	}
5807 
5808 	/* Make sure we actually parsed something. */
5809 	if (str == orig)
5810 		return (-1);
5811 	return (n);
5812 }
5813 
5814 static void
5815 print_usage(const char *argv0)
5816 {
5817 
5818 	rtld_printf(
5819 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5820 	    "\n"
5821 	    "Options:\n"
5822 	    "  -h        Display this help message\n"
5823 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5824 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5825 	    "  -p        Search in PATH for named binary\n"
5826 	    "  -v        Display identification information\n"
5827 	    "  --        End of RTLD options\n"
5828 	    "  <binary>  Name of process to execute\n"
5829 	    "  <args>    Arguments to the executed process\n", argv0);
5830 }
5831 
5832 /*
5833  * Overrides for libc_pic-provided functions.
5834  */
5835 
5836 int
5837 __getosreldate(void)
5838 {
5839 	size_t len;
5840 	int oid[2];
5841 	int error, osrel;
5842 
5843 	if (osreldate != 0)
5844 		return (osreldate);
5845 
5846 	oid[0] = CTL_KERN;
5847 	oid[1] = KERN_OSRELDATE;
5848 	osrel = 0;
5849 	len = sizeof(osrel);
5850 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5851 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5852 		osreldate = osrel;
5853 	return (osreldate);
5854 }
5855 const char *
5856 rtld_strerror(int errnum)
5857 {
5858 
5859 	if (errnum < 0 || errnum >= sys_nerr)
5860 		return ("Unknown error");
5861 	return (sys_errlist[errnum]);
5862 }
5863 
5864 /* malloc */
5865 void *
5866 malloc(size_t nbytes)
5867 {
5868 
5869 	return (__crt_malloc(nbytes));
5870 }
5871 
5872 void *
5873 calloc(size_t num, size_t size)
5874 {
5875 
5876 	return (__crt_calloc(num, size));
5877 }
5878 
5879 void
5880 free(void *cp)
5881 {
5882 
5883 	__crt_free(cp);
5884 }
5885 
5886 void *
5887 realloc(void *cp, size_t nbytes)
5888 {
5889 
5890 	return (__crt_realloc(cp, nbytes));
5891 }
5892 
5893 extern int _rtld_version__FreeBSD_version __exported;
5894 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5895 
5896 extern char _rtld_version_laddr_offset __exported;
5897 char _rtld_version_laddr_offset;
5898