xref: /freebsd/libexec/rtld-elf/rtld.c (revision 522126fea72419fae344fbcb897b41588909308a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 #include <sys/param.h>
43 #include <sys/mount.h>
44 #include <sys/mman.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 #include <sys/ktrace.h>
50 
51 #include <dlfcn.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "debug.h"
62 #include "rtld.h"
63 #include "libmap.h"
64 #include "rtld_paths.h"
65 #include "rtld_tls.h"
66 #include "rtld_printf.h"
67 #include "rtld_malloc.h"
68 #include "rtld_utrace.h"
69 #include "notes.h"
70 #include "rtld_libc.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern void (*__cleanup)(void);
81 
82 struct dlerror_save {
83 	int seen;
84 	char *msg;
85 };
86 
87 /*
88  * Function declarations.
89  */
90 static const char *basename(const char *);
91 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
92     const Elf_Dyn **, const Elf_Dyn **);
93 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
94     const Elf_Dyn *);
95 static bool digest_dynamic(Obj_Entry *, int);
96 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
97 static void distribute_static_tls(Objlist *, RtldLockState *);
98 static Obj_Entry *dlcheck(void *);
99 static int dlclose_locked(void *, RtldLockState *);
100 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
101     int lo_flags, int mode, RtldLockState *lockstate);
102 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
103 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
104 static bool donelist_check(DoneList *, const Obj_Entry *);
105 static void dump_auxv(Elf_Auxinfo **aux_info);
106 static void errmsg_restore(struct dlerror_save *);
107 static struct dlerror_save *errmsg_save(void);
108 static void *fill_search_info(const char *, size_t, void *);
109 static char *find_library(const char *, const Obj_Entry *, int *);
110 static const char *gethints(bool);
111 static void hold_object(Obj_Entry *);
112 static void unhold_object(Obj_Entry *);
113 static void init_dag(Obj_Entry *);
114 static void init_marker(Obj_Entry *);
115 static void init_pagesizes(Elf_Auxinfo **aux_info);
116 static void init_rtld(caddr_t, Elf_Auxinfo **);
117 static void initlist_add_neededs(Needed_Entry *, Objlist *);
118 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
119 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
120 static void linkmap_add(Obj_Entry *);
121 static void linkmap_delete(Obj_Entry *);
122 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
123 static void unload_filtees(Obj_Entry *, RtldLockState *);
124 static int load_needed_objects(Obj_Entry *, int);
125 static int load_preload_objects(const char *, bool);
126 static int load_kpreload(const void *addr);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0, bool *dir_ignore);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *, bool);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static const char *ld_bind_now;	/* Environment variable for immediate binding */
211 static const char *ld_debug;	/* Environment variable for debugging */
212 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
213 				       weak definition */
214 static const char *ld_library_path;/* Environment variable for search path */
215 static const char *ld_library_dirs;/* Environment variable for library descriptors */
216 static const char *ld_preload;	/* Environment variable for libraries to
217 				   load first */
218 static const char *ld_preload_fds;/* Environment variable for libraries represented by
219 				   descriptors */
220 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
221 static const char *ld_tracing;	/* Called from ldd to print libs */
222 static const char *ld_utrace;	/* Use utrace() to log events. */
223 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	/* The main program shared object */
225 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
226 static unsigned int obj_count;	/* Number of objects in obj_list */
227 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
228 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
229   RTLD_STATIC_TLS_EXTRA;
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 int npagesizes;
268 static int osreldate;
269 size_t *pagesizes;
270 size_t page_size;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 enum {
348 	LD_BIND_NOW = 0,
349 	LD_PRELOAD,
350 	LD_LIBMAP,
351 	LD_LIBRARY_PATH,
352 	LD_LIBRARY_PATH_FDS,
353 	LD_LIBMAP_DISABLE,
354 	LD_BIND_NOT,
355 	LD_DEBUG,
356 	LD_ELF_HINTS_PATH,
357 	LD_LOADFLTR,
358 	LD_LIBRARY_PATH_RPATH,
359 	LD_PRELOAD_FDS,
360 	LD_DYNAMIC_WEAK,
361 	LD_TRACE_LOADED_OBJECTS,
362 	LD_UTRACE,
363 	LD_DUMP_REL_PRE,
364 	LD_DUMP_REL_POST,
365 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 	LD_TRACE_LOADED_OBJECTS_FMT1,
367 	LD_TRACE_LOADED_OBJECTS_FMT2,
368 	LD_TRACE_LOADED_OBJECTS_ALL,
369 	LD_SHOW_AUXV,
370 	LD_STATIC_TLS_EXTRA,
371 };
372 
373 struct ld_env_var_desc {
374 	const char * const n;
375 	const char *val;
376 	const bool unsecure;
377 };
378 #define LD_ENV_DESC(var, unsec) \
379     [LD_##var] = { .n = #var, .unsecure = unsec }
380 
381 static struct ld_env_var_desc ld_env_vars[] = {
382 	LD_ENV_DESC(BIND_NOW, false),
383 	LD_ENV_DESC(PRELOAD, true),
384 	LD_ENV_DESC(LIBMAP, true),
385 	LD_ENV_DESC(LIBRARY_PATH, true),
386 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
387 	LD_ENV_DESC(LIBMAP_DISABLE, true),
388 	LD_ENV_DESC(BIND_NOT, true),
389 	LD_ENV_DESC(DEBUG, true),
390 	LD_ENV_DESC(ELF_HINTS_PATH, true),
391 	LD_ENV_DESC(LOADFLTR, true),
392 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
393 	LD_ENV_DESC(PRELOAD_FDS, true),
394 	LD_ENV_DESC(DYNAMIC_WEAK, true),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
396 	LD_ENV_DESC(UTRACE, false),
397 	LD_ENV_DESC(DUMP_REL_PRE, false),
398 	LD_ENV_DESC(DUMP_REL_POST, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
402 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
403 	LD_ENV_DESC(SHOW_AUXV, false),
404 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
405 };
406 
407 static const char *
408 ld_get_env_var(int idx)
409 {
410 	return (ld_env_vars[idx].val);
411 }
412 
413 static const char *
414 rtld_get_env_val(char **env, const char *name, size_t name_len)
415 {
416 	char **m, *n, *v;
417 
418 	for (m = env; *m != NULL; m++) {
419 		n = *m;
420 		v = strchr(n, '=');
421 		if (v == NULL) {
422 			/* corrupt environment? */
423 			continue;
424 		}
425 		if (v - n == (ptrdiff_t)name_len &&
426 		    strncmp(name, n, name_len) == 0)
427 			return (v + 1);
428 	}
429 	return (NULL);
430 }
431 
432 static void
433 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
434 {
435 	struct ld_env_var_desc *lvd;
436 	size_t prefix_len, nlen;
437 	char **m, *n, *v;
438 	int i;
439 
440 	prefix_len = strlen(env_prefix);
441 	for (m = env; *m != NULL; m++) {
442 		n = *m;
443 		if (strncmp(env_prefix, n, prefix_len) != 0) {
444 			/* Not a rtld environment variable. */
445 			continue;
446 		}
447 		n += prefix_len;
448 		v = strchr(n, '=');
449 		if (v == NULL) {
450 			/* corrupt environment? */
451 			continue;
452 		}
453 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
454 			lvd = &ld_env_vars[i];
455 			if (lvd->val != NULL) {
456 				/* Saw higher-priority variable name already. */
457 				continue;
458 			}
459 			nlen = strlen(lvd->n);
460 			if (v - n == (ptrdiff_t)nlen &&
461 			    strncmp(lvd->n, n, nlen) == 0) {
462 				lvd->val = v + 1;
463 				break;
464 			}
465 		}
466 	}
467 }
468 
469 static void
470 rtld_init_env_vars(char **env)
471 {
472 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
473 }
474 
475 static void
476 set_ld_elf_hints_path(void)
477 {
478 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
479 		ld_elf_hints_path = ld_elf_hints_default;
480 }
481 
482 uintptr_t
483 rtld_round_page(uintptr_t x)
484 {
485 	return (roundup2(x, page_size));
486 }
487 
488 uintptr_t
489 rtld_trunc_page(uintptr_t x)
490 {
491 	return (rounddown2(x, page_size));
492 }
493 
494 /*
495  * Main entry point for dynamic linking.  The first argument is the
496  * stack pointer.  The stack is expected to be laid out as described
497  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
498  * Specifically, the stack pointer points to a word containing
499  * ARGC.  Following that in the stack is a null-terminated sequence
500  * of pointers to argument strings.  Then comes a null-terminated
501  * sequence of pointers to environment strings.  Finally, there is a
502  * sequence of "auxiliary vector" entries.
503  *
504  * The second argument points to a place to store the dynamic linker's
505  * exit procedure pointer and the third to a place to store the main
506  * program's object.
507  *
508  * The return value is the main program's entry point.
509  */
510 func_ptr_type
511 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
512 {
513     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
514     Objlist_Entry *entry;
515     Obj_Entry *last_interposer, *obj, *preload_tail;
516     const Elf_Phdr *phdr;
517     Objlist initlist;
518     RtldLockState lockstate;
519     struct stat st;
520     Elf_Addr *argcp;
521     char **argv, **env, **envp, *kexecpath;
522     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
523     struct ld_env_var_desc *lvd;
524     caddr_t imgentry;
525     char buf[MAXPATHLEN];
526     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
527     size_t sz;
528 #ifdef __powerpc__
529     int old_auxv_format = 1;
530 #endif
531     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
532 
533     /*
534      * On entry, the dynamic linker itself has not been relocated yet.
535      * Be very careful not to reference any global data until after
536      * init_rtld has returned.  It is OK to reference file-scope statics
537      * and string constants, and to call static and global functions.
538      */
539 
540     /* Find the auxiliary vector on the stack. */
541     argcp = sp;
542     argc = *sp++;
543     argv = (char **) sp;
544     sp += argc + 1;	/* Skip over arguments and NULL terminator */
545     env = (char **) sp;
546     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
547 	;
548     aux = (Elf_Auxinfo *) sp;
549 
550     /* Digest the auxiliary vector. */
551     for (i = 0;  i < AT_COUNT;  i++)
552 	aux_info[i] = NULL;
553     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
554 	if (auxp->a_type < AT_COUNT)
555 	    aux_info[auxp->a_type] = auxp;
556 #ifdef __powerpc__
557 	if (auxp->a_type == 23) /* AT_STACKPROT */
558 	    old_auxv_format = 0;
559 #endif
560     }
561 
562 #ifdef __powerpc__
563     if (old_auxv_format) {
564 	/* Remap from old-style auxv numbers. */
565 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
566 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
567 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
568 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
569 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
570 	aux_info[13] = NULL;		/* AT_GID */
571 
572 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
573 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
574 	aux_info[16] = aux_info[14];	/* AT_CANARY */
575 	aux_info[14] = NULL;		/* AT_EGID */
576     }
577 #endif
578 
579     /* Initialize and relocate ourselves. */
580     assert(aux_info[AT_BASE] != NULL);
581     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
582 
583     dlerror_dflt_init();
584 
585     __progname = obj_rtld.path;
586     argv0 = argv[0] != NULL ? argv[0] : "(null)";
587     environ = env;
588     main_argc = argc;
589     main_argv = argv;
590 
591     if (aux_info[AT_BSDFLAGS] != NULL &&
592 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
593 	    ld_fast_sigblock = true;
594 
595     trust = !issetugid();
596     direct_exec = false;
597 
598     md_abi_variant_hook(aux_info);
599     rtld_init_env_vars(env);
600 
601     fd = -1;
602     if (aux_info[AT_EXECFD] != NULL) {
603 	fd = aux_info[AT_EXECFD]->a_un.a_val;
604     } else {
605 	assert(aux_info[AT_PHDR] != NULL);
606 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
607 	if (phdr == obj_rtld.phdr) {
608 	    if (!trust) {
609 		_rtld_error("Tainted process refusing to run binary %s",
610 		    argv0);
611 		rtld_die();
612 	    }
613 	    direct_exec = true;
614 
615 	    dbg("opening main program in direct exec mode");
616 	    if (argc >= 2) {
617 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
618 		  &argv0, &dir_ignore);
619 		explicit_fd = (fd != -1);
620 		binpath = NULL;
621 		if (!explicit_fd)
622 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
623 		if (fstat(fd, &st) == -1) {
624 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
625 		      explicit_fd ? "user-provided descriptor" : argv0,
626 		      rtld_strerror(errno));
627 		    rtld_die();
628 		}
629 
630 		/*
631 		 * Rough emulation of the permission checks done by
632 		 * execve(2), only Unix DACs are checked, ACLs are
633 		 * ignored.  Preserve the semantic of disabling owner
634 		 * to execute if owner x bit is cleared, even if
635 		 * others x bit is enabled.
636 		 * mmap(2) does not allow to mmap with PROT_EXEC if
637 		 * binary' file comes from noexec mount.  We cannot
638 		 * set a text reference on the binary.
639 		 */
640 		dir_enable = false;
641 		if (st.st_uid == geteuid()) {
642 		    if ((st.st_mode & S_IXUSR) != 0)
643 			dir_enable = true;
644 		} else if (st.st_gid == getegid()) {
645 		    if ((st.st_mode & S_IXGRP) != 0)
646 			dir_enable = true;
647 		} else if ((st.st_mode & S_IXOTH) != 0) {
648 		    dir_enable = true;
649 		}
650 		if (!dir_enable && !dir_ignore) {
651 		    _rtld_error("No execute permission for binary %s",
652 		        argv0);
653 		    rtld_die();
654 		}
655 
656 		/*
657 		 * For direct exec mode, argv[0] is the interpreter
658 		 * name, we must remove it and shift arguments left
659 		 * before invoking binary main.  Since stack layout
660 		 * places environment pointers and aux vectors right
661 		 * after the terminating NULL, we must shift
662 		 * environment and aux as well.
663 		 */
664 		main_argc = argc - rtld_argc;
665 		for (i = 0; i <= main_argc; i++)
666 		    argv[i] = argv[i + rtld_argc];
667 		*argcp -= rtld_argc;
668 		environ = env = envp = argv + main_argc + 1;
669 		dbg("move env from %p to %p", envp + rtld_argc, envp);
670 		do {
671 		    *envp = *(envp + rtld_argc);
672 		}  while (*envp++ != NULL);
673 		aux = auxp = (Elf_Auxinfo *)envp;
674 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
675 		dbg("move aux from %p to %p", auxpf, aux);
676 		/* XXXKIB insert place for AT_EXECPATH if not present */
677 		for (;; auxp++, auxpf++) {
678 		    *auxp = *auxpf;
679 		    if (auxp->a_type == AT_NULL)
680 			    break;
681 		}
682 		/* Since the auxiliary vector has moved, redigest it. */
683 		for (i = 0;  i < AT_COUNT;  i++)
684 		    aux_info[i] = NULL;
685 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
686 		    if (auxp->a_type < AT_COUNT)
687 			aux_info[auxp->a_type] = auxp;
688 		}
689 
690 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
691 		if (binpath == NULL) {
692 		    aux_info[AT_EXECPATH] = NULL;
693 		} else {
694 		    if (aux_info[AT_EXECPATH] == NULL) {
695 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
696 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
697 		    }
698 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
699 		      binpath);
700 		}
701 	    } else {
702 		_rtld_error("No binary");
703 		rtld_die();
704 	    }
705 	}
706     }
707 
708     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
709 
710     /*
711      * If the process is tainted, then we un-set the dangerous environment
712      * variables.  The process will be marked as tainted until setuid(2)
713      * is called.  If any child process calls setuid(2) we do not want any
714      * future processes to honor the potentially un-safe variables.
715      */
716     if (!trust) {
717 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
718 		    lvd = &ld_env_vars[i];
719 		    if (lvd->unsecure)
720 			    lvd->val = NULL;
721 	    }
722     }
723 
724     ld_debug = ld_get_env_var(LD_DEBUG);
725     if (ld_bind_now == NULL)
726 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
727     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
728     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
729     libmap_override = ld_get_env_var(LD_LIBMAP);
730     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
731     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
732     ld_preload = ld_get_env_var(LD_PRELOAD);
733     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
734     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
735     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
736     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
737     if (library_path_rpath != NULL) {
738 	    if (library_path_rpath[0] == 'y' ||
739 		library_path_rpath[0] == 'Y' ||
740 		library_path_rpath[0] == '1')
741 		    ld_library_path_rpath = true;
742 	    else
743 		    ld_library_path_rpath = false;
744     }
745     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
746     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
747 	sz = parse_integer(static_tls_extra);
748 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
749 	    ld_static_tls_extra = sz;
750     }
751     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
752 	ld_library_path != NULL || ld_preload != NULL ||
753 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
754 	static_tls_extra != NULL;
755     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
756     ld_utrace = ld_get_env_var(LD_UTRACE);
757 
758     set_ld_elf_hints_path();
759     if (ld_debug != NULL && *ld_debug != '\0')
760 	debug = 1;
761     dbg("%s is initialized, base address = %p", __progname,
762 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
763     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
764     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
765 
766     dbg("initializing thread locks");
767     lockdflt_init();
768 
769     /*
770      * Load the main program, or process its program header if it is
771      * already loaded.
772      */
773     if (fd != -1) {	/* Load the main program. */
774 	dbg("loading main program");
775 	obj_main = map_object(fd, argv0, NULL);
776 	close(fd);
777 	if (obj_main == NULL)
778 	    rtld_die();
779 	max_stack_flags = obj_main->stack_flags;
780     } else {				/* Main program already loaded. */
781 	dbg("processing main program's program header");
782 	assert(aux_info[AT_PHDR] != NULL);
783 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
784 	assert(aux_info[AT_PHNUM] != NULL);
785 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
786 	assert(aux_info[AT_PHENT] != NULL);
787 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
788 	assert(aux_info[AT_ENTRY] != NULL);
789 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
790 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
791 	    rtld_die();
792     }
793 
794     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
795 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
796 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
797 	    if (kexecpath[0] == '/')
798 		    obj_main->path = kexecpath;
799 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
800 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
801 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
802 		    obj_main->path = xstrdup(argv0);
803 	    else
804 		    obj_main->path = xstrdup(buf);
805     } else {
806 	    dbg("No AT_EXECPATH or direct exec");
807 	    obj_main->path = xstrdup(argv0);
808     }
809     dbg("obj_main path %s", obj_main->path);
810     obj_main->mainprog = true;
811 
812     if (aux_info[AT_STACKPROT] != NULL &&
813       aux_info[AT_STACKPROT]->a_un.a_val != 0)
814 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
815 
816 #ifndef COMPAT_libcompat
817     /*
818      * Get the actual dynamic linker pathname from the executable if
819      * possible.  (It should always be possible.)  That ensures that
820      * gdb will find the right dynamic linker even if a non-standard
821      * one is being used.
822      */
823     if (obj_main->interp != NULL &&
824       strcmp(obj_main->interp, obj_rtld.path) != 0) {
825 	free(obj_rtld.path);
826 	obj_rtld.path = xstrdup(obj_main->interp);
827         __progname = obj_rtld.path;
828     }
829 #endif
830 
831     if (!digest_dynamic(obj_main, 0))
832 	rtld_die();
833     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
834 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
835 	obj_main->dynsymcount);
836 
837     linkmap_add(obj_main);
838     linkmap_add(&obj_rtld);
839 
840     /* Link the main program into the list of objects. */
841     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
842     obj_count++;
843     obj_loads++;
844 
845     /* Initialize a fake symbol for resolving undefined weak references. */
846     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
847     sym_zero.st_shndx = SHN_UNDEF;
848     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
849 
850     if (!libmap_disable)
851         libmap_disable = (bool)lm_init(libmap_override);
852 
853     if (aux_info[AT_KPRELOAD] != NULL &&
854       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
855 	dbg("loading kernel vdso");
856 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
857 	    rtld_die();
858     }
859 
860     dbg("loading LD_PRELOAD_FDS libraries");
861     if (load_preload_objects(ld_preload_fds, true) == -1)
862 	rtld_die();
863 
864     dbg("loading LD_PRELOAD libraries");
865     if (load_preload_objects(ld_preload, false) == -1)
866 	rtld_die();
867     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
868 
869     dbg("loading needed objects");
870     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
871       0) == -1)
872 	rtld_die();
873 
874     /* Make a list of all objects loaded at startup. */
875     last_interposer = obj_main;
876     TAILQ_FOREACH(obj, &obj_list, next) {
877 	if (obj->marker)
878 	    continue;
879 	if (obj->z_interpose && obj != obj_main) {
880 	    objlist_put_after(&list_main, last_interposer, obj);
881 	    last_interposer = obj;
882 	} else {
883 	    objlist_push_tail(&list_main, obj);
884 	}
885     	obj->refcount++;
886     }
887 
888     dbg("checking for required versions");
889     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
890 	rtld_die();
891 
892     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
893        dump_auxv(aux_info);
894 
895     if (ld_tracing) {		/* We're done */
896 	trace_loaded_objects(obj_main, true);
897 	exit(0);
898     }
899 
900     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
901        dump_relocations(obj_main);
902        exit (0);
903     }
904 
905     /*
906      * Processing tls relocations requires having the tls offsets
907      * initialized.  Prepare offsets before starting initial
908      * relocation processing.
909      */
910     dbg("initializing initial thread local storage offsets");
911     STAILQ_FOREACH(entry, &list_main, link) {
912 	/*
913 	 * Allocate all the initial objects out of the static TLS
914 	 * block even if they didn't ask for it.
915 	 */
916 	allocate_tls_offset(entry->obj);
917     }
918 
919     if (relocate_objects(obj_main,
920       ld_bind_now != NULL && *ld_bind_now != '\0',
921       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
922 	rtld_die();
923 
924     dbg("doing copy relocations");
925     if (do_copy_relocations(obj_main) == -1)
926 	rtld_die();
927 
928     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
929        dump_relocations(obj_main);
930        exit (0);
931     }
932 
933     ifunc_init(aux);
934 
935     /*
936      * Setup TLS for main thread.  This must be done after the
937      * relocations are processed, since tls initialization section
938      * might be the subject for relocations.
939      */
940     dbg("initializing initial thread local storage");
941     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
942 
943     dbg("initializing key program variables");
944     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
945     set_program_var("environ", env);
946     set_program_var("__elf_aux_vector", aux);
947 
948     /* Make a list of init functions to call. */
949     objlist_init(&initlist);
950     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
951       preload_tail, &initlist);
952 
953     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
954 
955     map_stacks_exec(NULL);
956 
957     if (!obj_main->crt_no_init) {
958 	/*
959 	 * Make sure we don't call the main program's init and fini
960 	 * functions for binaries linked with old crt1 which calls
961 	 * _init itself.
962 	 */
963 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
964 	obj_main->preinit_array = obj_main->init_array =
965 	    obj_main->fini_array = (Elf_Addr)NULL;
966     }
967 
968     if (direct_exec) {
969 	/* Set osrel for direct-execed binary */
970 	mib[0] = CTL_KERN;
971 	mib[1] = KERN_PROC;
972 	mib[2] = KERN_PROC_OSREL;
973 	mib[3] = getpid();
974 	osrel = obj_main->osrel;
975 	sz = sizeof(old_osrel);
976 	dbg("setting osrel to %d", osrel);
977 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
978     }
979 
980     wlock_acquire(rtld_bind_lock, &lockstate);
981 
982     dbg("resolving ifuncs");
983     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
984       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
985 	rtld_die();
986 
987     rtld_exit_ptr = rtld_exit;
988     if (obj_main->crt_no_init)
989 	preinit_main();
990     objlist_call_init(&initlist, &lockstate);
991     _r_debug_postinit(&obj_main->linkmap);
992     objlist_clear(&initlist);
993     dbg("loading filtees");
994     TAILQ_FOREACH(obj, &obj_list, next) {
995 	if (obj->marker)
996 	    continue;
997 	if (ld_loadfltr || obj->z_loadfltr)
998 	    load_filtees(obj, 0, &lockstate);
999     }
1000 
1001     dbg("enforcing main obj relro");
1002     if (obj_enforce_relro(obj_main) == -1)
1003 	rtld_die();
1004 
1005     lock_release(rtld_bind_lock, &lockstate);
1006 
1007     dbg("transferring control to program entry point = %p", obj_main->entry);
1008 
1009     /* Return the exit procedure and the program entry point. */
1010     *exit_proc = rtld_exit_ptr;
1011     *objp = obj_main;
1012     return ((func_ptr_type)obj_main->entry);
1013 }
1014 
1015 void *
1016 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1017 {
1018 	void *ptr;
1019 	Elf_Addr target;
1020 
1021 	ptr = (void *)make_function_pointer(def, obj);
1022 	target = call_ifunc_resolver(ptr);
1023 	return ((void *)target);
1024 }
1025 
1026 Elf_Addr
1027 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1028 {
1029     const Elf_Rel *rel;
1030     const Elf_Sym *def;
1031     const Obj_Entry *defobj;
1032     Elf_Addr *where;
1033     Elf_Addr target;
1034     RtldLockState lockstate;
1035 
1036     rlock_acquire(rtld_bind_lock, &lockstate);
1037     if (sigsetjmp(lockstate.env, 0) != 0)
1038 	    lock_upgrade(rtld_bind_lock, &lockstate);
1039     if (obj->pltrel)
1040 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1041     else
1042 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1043 
1044     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1045     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1046 	NULL, &lockstate);
1047     if (def == NULL)
1048 	rtld_die();
1049     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1050 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1051     else
1052 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1053 
1054     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1055       defobj->strtab + def->st_name,
1056       obj->path == NULL ? NULL : basename(obj->path),
1057       (void *)target,
1058       defobj->path == NULL ? NULL : basename(defobj->path));
1059 
1060     /*
1061      * Write the new contents for the jmpslot. Note that depending on
1062      * architecture, the value which we need to return back to the
1063      * lazy binding trampoline may or may not be the target
1064      * address. The value returned from reloc_jmpslot() is the value
1065      * that the trampoline needs.
1066      */
1067     target = reloc_jmpslot(where, target, defobj, obj, rel);
1068     lock_release(rtld_bind_lock, &lockstate);
1069     return (target);
1070 }
1071 
1072 /*
1073  * Error reporting function.  Use it like printf.  If formats the message
1074  * into a buffer, and sets things up so that the next call to dlerror()
1075  * will return the message.
1076  */
1077 void
1078 _rtld_error(const char *fmt, ...)
1079 {
1080 	va_list ap;
1081 
1082 	va_start(ap, fmt);
1083 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1084 	    fmt, ap);
1085 	va_end(ap);
1086 	*lockinfo.dlerror_seen() = 0;
1087 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1088 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1089 }
1090 
1091 /*
1092  * Return a dynamically-allocated copy of the current error message, if any.
1093  */
1094 static struct dlerror_save *
1095 errmsg_save(void)
1096 {
1097 	struct dlerror_save *res;
1098 
1099 	res = xmalloc(sizeof(*res));
1100 	res->seen = *lockinfo.dlerror_seen();
1101 	if (res->seen == 0)
1102 		res->msg = xstrdup(lockinfo.dlerror_loc());
1103 	return (res);
1104 }
1105 
1106 /*
1107  * Restore the current error message from a copy which was previously saved
1108  * by errmsg_save().  The copy is freed.
1109  */
1110 static void
1111 errmsg_restore(struct dlerror_save *saved_msg)
1112 {
1113 	if (saved_msg == NULL || saved_msg->seen == 1) {
1114 		*lockinfo.dlerror_seen() = 1;
1115 	} else {
1116 		*lockinfo.dlerror_seen() = 0;
1117 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1118 		    lockinfo.dlerror_loc_sz);
1119 		free(saved_msg->msg);
1120 	}
1121 	free(saved_msg);
1122 }
1123 
1124 static const char *
1125 basename(const char *name)
1126 {
1127 	const char *p;
1128 
1129 	p = strrchr(name, '/');
1130 	return (p != NULL ? p + 1 : name);
1131 }
1132 
1133 static struct utsname uts;
1134 
1135 static char *
1136 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1137     const char *subst, bool may_free)
1138 {
1139 	char *p, *p1, *res, *resp;
1140 	int subst_len, kw_len, subst_count, old_len, new_len;
1141 
1142 	kw_len = strlen(kw);
1143 
1144 	/*
1145 	 * First, count the number of the keyword occurrences, to
1146 	 * preallocate the final string.
1147 	 */
1148 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1149 		p1 = strstr(p, kw);
1150 		if (p1 == NULL)
1151 			break;
1152 	}
1153 
1154 	/*
1155 	 * If the keyword is not found, just return.
1156 	 *
1157 	 * Return non-substituted string if resolution failed.  We
1158 	 * cannot do anything more reasonable, the failure mode of the
1159 	 * caller is unresolved library anyway.
1160 	 */
1161 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1162 		return (may_free ? real : xstrdup(real));
1163 	if (obj != NULL)
1164 		subst = obj->origin_path;
1165 
1166 	/*
1167 	 * There is indeed something to substitute.  Calculate the
1168 	 * length of the resulting string, and allocate it.
1169 	 */
1170 	subst_len = strlen(subst);
1171 	old_len = strlen(real);
1172 	new_len = old_len + (subst_len - kw_len) * subst_count;
1173 	res = xmalloc(new_len + 1);
1174 
1175 	/*
1176 	 * Now, execute the substitution loop.
1177 	 */
1178 	for (p = real, resp = res, *resp = '\0';;) {
1179 		p1 = strstr(p, kw);
1180 		if (p1 != NULL) {
1181 			/* Copy the prefix before keyword. */
1182 			memcpy(resp, p, p1 - p);
1183 			resp += p1 - p;
1184 			/* Keyword replacement. */
1185 			memcpy(resp, subst, subst_len);
1186 			resp += subst_len;
1187 			*resp = '\0';
1188 			p = p1 + kw_len;
1189 		} else
1190 			break;
1191 	}
1192 
1193 	/* Copy to the end of string and finish. */
1194 	strcat(resp, p);
1195 	if (may_free)
1196 		free(real);
1197 	return (res);
1198 }
1199 
1200 static const struct {
1201 	const char *kw;
1202 	bool pass_obj;
1203 	const char *subst;
1204 } tokens[] = {
1205 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1206 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1207 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1208 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1209 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1210 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1211 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1212 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1213 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1214 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1215 };
1216 
1217 static char *
1218 origin_subst(Obj_Entry *obj, const char *real)
1219 {
1220 	char *res;
1221 	int i;
1222 
1223 	if (obj == NULL || !trust)
1224 		return (xstrdup(real));
1225 	if (uts.sysname[0] == '\0') {
1226 		if (uname(&uts) != 0) {
1227 			_rtld_error("utsname failed: %d", errno);
1228 			return (NULL);
1229 		}
1230 	}
1231 
1232 	/* __DECONST is safe here since without may_free real is unchanged */
1233 	res = __DECONST(char *, real);
1234 	for (i = 0; i < (int)nitems(tokens); i++) {
1235 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1236 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1237 	}
1238 	return (res);
1239 }
1240 
1241 void
1242 rtld_die(void)
1243 {
1244     const char *msg = dlerror();
1245 
1246     if (msg == NULL)
1247 	msg = "Fatal error";
1248     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1249     rtld_fdputstr(STDERR_FILENO, msg);
1250     rtld_fdputchar(STDERR_FILENO, '\n');
1251     _exit(1);
1252 }
1253 
1254 /*
1255  * Process a shared object's DYNAMIC section, and save the important
1256  * information in its Obj_Entry structure.
1257  */
1258 static void
1259 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1260     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1261 {
1262     const Elf_Dyn *dynp;
1263     Needed_Entry **needed_tail = &obj->needed;
1264     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1265     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1266     const Elf_Hashelt *hashtab;
1267     const Elf32_Word *hashval;
1268     Elf32_Word bkt, nmaskwords;
1269     int bloom_size32;
1270     int plttype = DT_REL;
1271 
1272     *dyn_rpath = NULL;
1273     *dyn_soname = NULL;
1274     *dyn_runpath = NULL;
1275 
1276     obj->bind_now = false;
1277     dynp = obj->dynamic;
1278     if (dynp == NULL)
1279 	return;
1280     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1281 	switch (dynp->d_tag) {
1282 
1283 	case DT_REL:
1284 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1285 	    break;
1286 
1287 	case DT_RELSZ:
1288 	    obj->relsize = dynp->d_un.d_val;
1289 	    break;
1290 
1291 	case DT_RELENT:
1292 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1293 	    break;
1294 
1295 	case DT_JMPREL:
1296 	    obj->pltrel = (const Elf_Rel *)
1297 	      (obj->relocbase + dynp->d_un.d_ptr);
1298 	    break;
1299 
1300 	case DT_PLTRELSZ:
1301 	    obj->pltrelsize = dynp->d_un.d_val;
1302 	    break;
1303 
1304 	case DT_RELA:
1305 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1306 	    break;
1307 
1308 	case DT_RELASZ:
1309 	    obj->relasize = dynp->d_un.d_val;
1310 	    break;
1311 
1312 	case DT_RELAENT:
1313 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1314 	    break;
1315 
1316 	case DT_RELR:
1317 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1318 	    break;
1319 
1320 	case DT_RELRSZ:
1321 	    obj->relrsize = dynp->d_un.d_val;
1322 	    break;
1323 
1324 	case DT_RELRENT:
1325 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1326 	    break;
1327 
1328 	case DT_PLTREL:
1329 	    plttype = dynp->d_un.d_val;
1330 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1331 	    break;
1332 
1333 	case DT_SYMTAB:
1334 	    obj->symtab = (const Elf_Sym *)
1335 	      (obj->relocbase + dynp->d_un.d_ptr);
1336 	    break;
1337 
1338 	case DT_SYMENT:
1339 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1340 	    break;
1341 
1342 	case DT_STRTAB:
1343 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1344 	    break;
1345 
1346 	case DT_STRSZ:
1347 	    obj->strsize = dynp->d_un.d_val;
1348 	    break;
1349 
1350 	case DT_VERNEED:
1351 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1352 		dynp->d_un.d_val);
1353 	    break;
1354 
1355 	case DT_VERNEEDNUM:
1356 	    obj->verneednum = dynp->d_un.d_val;
1357 	    break;
1358 
1359 	case DT_VERDEF:
1360 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1361 		dynp->d_un.d_val);
1362 	    break;
1363 
1364 	case DT_VERDEFNUM:
1365 	    obj->verdefnum = dynp->d_un.d_val;
1366 	    break;
1367 
1368 	case DT_VERSYM:
1369 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1370 		dynp->d_un.d_val);
1371 	    break;
1372 
1373 	case DT_HASH:
1374 	    {
1375 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1376 		    dynp->d_un.d_ptr);
1377 		obj->nbuckets = hashtab[0];
1378 		obj->nchains = hashtab[1];
1379 		obj->buckets = hashtab + 2;
1380 		obj->chains = obj->buckets + obj->nbuckets;
1381 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1382 		  obj->buckets != NULL;
1383 	    }
1384 	    break;
1385 
1386 	case DT_GNU_HASH:
1387 	    {
1388 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1389 		    dynp->d_un.d_ptr);
1390 		obj->nbuckets_gnu = hashtab[0];
1391 		obj->symndx_gnu = hashtab[1];
1392 		nmaskwords = hashtab[2];
1393 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1394 		obj->maskwords_bm_gnu = nmaskwords - 1;
1395 		obj->shift2_gnu = hashtab[3];
1396 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1397 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1398 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1399 		  obj->symndx_gnu;
1400 		/* Number of bitmask words is required to be power of 2 */
1401 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1402 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1403 	    }
1404 	    break;
1405 
1406 	case DT_NEEDED:
1407 	    if (!obj->rtld) {
1408 		Needed_Entry *nep = NEW(Needed_Entry);
1409 		nep->name = dynp->d_un.d_val;
1410 		nep->obj = NULL;
1411 		nep->next = NULL;
1412 
1413 		*needed_tail = nep;
1414 		needed_tail = &nep->next;
1415 	    }
1416 	    break;
1417 
1418 	case DT_FILTER:
1419 	    if (!obj->rtld) {
1420 		Needed_Entry *nep = NEW(Needed_Entry);
1421 		nep->name = dynp->d_un.d_val;
1422 		nep->obj = NULL;
1423 		nep->next = NULL;
1424 
1425 		*needed_filtees_tail = nep;
1426 		needed_filtees_tail = &nep->next;
1427 
1428 		if (obj->linkmap.l_refname == NULL)
1429 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1430 	    }
1431 	    break;
1432 
1433 	case DT_AUXILIARY:
1434 	    if (!obj->rtld) {
1435 		Needed_Entry *nep = NEW(Needed_Entry);
1436 		nep->name = dynp->d_un.d_val;
1437 		nep->obj = NULL;
1438 		nep->next = NULL;
1439 
1440 		*needed_aux_filtees_tail = nep;
1441 		needed_aux_filtees_tail = &nep->next;
1442 	    }
1443 	    break;
1444 
1445 	case DT_PLTGOT:
1446 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1447 	    break;
1448 
1449 	case DT_TEXTREL:
1450 	    obj->textrel = true;
1451 	    break;
1452 
1453 	case DT_SYMBOLIC:
1454 	    obj->symbolic = true;
1455 	    break;
1456 
1457 	case DT_RPATH:
1458 	    /*
1459 	     * We have to wait until later to process this, because we
1460 	     * might not have gotten the address of the string table yet.
1461 	     */
1462 	    *dyn_rpath = dynp;
1463 	    break;
1464 
1465 	case DT_SONAME:
1466 	    *dyn_soname = dynp;
1467 	    break;
1468 
1469 	case DT_RUNPATH:
1470 	    *dyn_runpath = dynp;
1471 	    break;
1472 
1473 	case DT_INIT:
1474 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1475 	    break;
1476 
1477 	case DT_PREINIT_ARRAY:
1478 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1479 	    break;
1480 
1481 	case DT_PREINIT_ARRAYSZ:
1482 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1483 	    break;
1484 
1485 	case DT_INIT_ARRAY:
1486 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1487 	    break;
1488 
1489 	case DT_INIT_ARRAYSZ:
1490 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1491 	    break;
1492 
1493 	case DT_FINI:
1494 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1495 	    break;
1496 
1497 	case DT_FINI_ARRAY:
1498 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1499 	    break;
1500 
1501 	case DT_FINI_ARRAYSZ:
1502 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1503 	    break;
1504 
1505 	case DT_DEBUG:
1506 	    if (!early)
1507 		dbg("Filling in DT_DEBUG entry");
1508 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1509 	    break;
1510 
1511 	case DT_FLAGS:
1512 		if (dynp->d_un.d_val & DF_ORIGIN)
1513 		    obj->z_origin = true;
1514 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1515 		    obj->symbolic = true;
1516 		if (dynp->d_un.d_val & DF_TEXTREL)
1517 		    obj->textrel = true;
1518 		if (dynp->d_un.d_val & DF_BIND_NOW)
1519 		    obj->bind_now = true;
1520 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1521 		    obj->static_tls = true;
1522 	    break;
1523 
1524 #ifdef __powerpc__
1525 #ifdef __powerpc64__
1526 	case DT_PPC64_GLINK:
1527 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1528 		break;
1529 #else
1530 	case DT_PPC_GOT:
1531 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1532 		break;
1533 #endif
1534 #endif
1535 
1536 	case DT_FLAGS_1:
1537 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1538 		    obj->z_noopen = true;
1539 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1540 		    obj->z_origin = true;
1541 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1542 		    obj->z_global = true;
1543 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1544 		    obj->bind_now = true;
1545 		if (dynp->d_un.d_val & DF_1_NODELETE)
1546 		    obj->z_nodelete = true;
1547 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1548 		    obj->z_loadfltr = true;
1549 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1550 		    obj->z_interpose = true;
1551 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1552 		    obj->z_nodeflib = true;
1553 		if (dynp->d_un.d_val & DF_1_PIE)
1554 		    obj->z_pie = true;
1555 	    break;
1556 
1557 	default:
1558 	    if (!early) {
1559 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1560 		    (long)dynp->d_tag);
1561 	    }
1562 	    break;
1563 	}
1564     }
1565 
1566     obj->traced = false;
1567 
1568     if (plttype == DT_RELA) {
1569 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1570 	obj->pltrel = NULL;
1571 	obj->pltrelasize = obj->pltrelsize;
1572 	obj->pltrelsize = 0;
1573     }
1574 
1575     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1576     if (obj->valid_hash_sysv)
1577 	obj->dynsymcount = obj->nchains;
1578     else if (obj->valid_hash_gnu) {
1579 	obj->dynsymcount = 0;
1580 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1581 	    if (obj->buckets_gnu[bkt] == 0)
1582 		continue;
1583 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1584 	    do
1585 		obj->dynsymcount++;
1586 	    while ((*hashval++ & 1u) == 0);
1587 	}
1588 	obj->dynsymcount += obj->symndx_gnu;
1589     }
1590 
1591     if (obj->linkmap.l_refname != NULL)
1592 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1593 	  linkmap.l_refname;
1594 }
1595 
1596 static bool
1597 obj_resolve_origin(Obj_Entry *obj)
1598 {
1599 
1600 	if (obj->origin_path != NULL)
1601 		return (true);
1602 	obj->origin_path = xmalloc(PATH_MAX);
1603 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1604 }
1605 
1606 static bool
1607 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1608     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1609 {
1610 
1611 	if (obj->z_origin && !obj_resolve_origin(obj))
1612 		return (false);
1613 
1614 	if (dyn_runpath != NULL) {
1615 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1616 		obj->runpath = origin_subst(obj, obj->runpath);
1617 	} else if (dyn_rpath != NULL) {
1618 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1619 		obj->rpath = origin_subst(obj, obj->rpath);
1620 	}
1621 	if (dyn_soname != NULL)
1622 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1623 	return (true);
1624 }
1625 
1626 static bool
1627 digest_dynamic(Obj_Entry *obj, int early)
1628 {
1629 	const Elf_Dyn *dyn_rpath;
1630 	const Elf_Dyn *dyn_soname;
1631 	const Elf_Dyn *dyn_runpath;
1632 
1633 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1634 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1635 }
1636 
1637 /*
1638  * Process a shared object's program header.  This is used only for the
1639  * main program, when the kernel has already loaded the main program
1640  * into memory before calling the dynamic linker.  It creates and
1641  * returns an Obj_Entry structure.
1642  */
1643 static Obj_Entry *
1644 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1645 {
1646     Obj_Entry *obj;
1647     const Elf_Phdr *phlimit = phdr + phnum;
1648     const Elf_Phdr *ph;
1649     Elf_Addr note_start, note_end;
1650     int nsegs = 0;
1651 
1652     obj = obj_new();
1653     for (ph = phdr;  ph < phlimit;  ph++) {
1654 	if (ph->p_type != PT_PHDR)
1655 	    continue;
1656 
1657 	obj->phdr = phdr;
1658 	obj->phsize = ph->p_memsz;
1659 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1660 	break;
1661     }
1662 
1663     obj->stack_flags = PF_X | PF_R | PF_W;
1664 
1665     for (ph = phdr;  ph < phlimit;  ph++) {
1666 	switch (ph->p_type) {
1667 
1668 	case PT_INTERP:
1669 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1670 	    break;
1671 
1672 	case PT_LOAD:
1673 	    if (nsegs == 0) {	/* First load segment */
1674 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1675 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1676 	    } else {		/* Last load segment */
1677 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1678 		  obj->vaddrbase;
1679 	    }
1680 	    nsegs++;
1681 	    break;
1682 
1683 	case PT_DYNAMIC:
1684 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1685 	    break;
1686 
1687 	case PT_TLS:
1688 	    obj->tlsindex = 1;
1689 	    obj->tlssize = ph->p_memsz;
1690 	    obj->tlsalign = ph->p_align;
1691 	    obj->tlsinitsize = ph->p_filesz;
1692 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1693 	    obj->tlspoffset = ph->p_offset;
1694 	    break;
1695 
1696 	case PT_GNU_STACK:
1697 	    obj->stack_flags = ph->p_flags;
1698 	    break;
1699 
1700 	case PT_GNU_RELRO:
1701 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1702 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1703 	      rtld_trunc_page(ph->p_vaddr);
1704 	    break;
1705 
1706 	case PT_NOTE:
1707 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1708 	    note_end = note_start + ph->p_filesz;
1709 	    digest_notes(obj, note_start, note_end);
1710 	    break;
1711 	}
1712     }
1713     if (nsegs < 1) {
1714 	_rtld_error("%s: too few PT_LOAD segments", path);
1715 	return (NULL);
1716     }
1717 
1718     obj->entry = entry;
1719     return (obj);
1720 }
1721 
1722 void
1723 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1724 {
1725 	const Elf_Note *note;
1726 	const char *note_name;
1727 	uintptr_t p;
1728 
1729 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1730 	    note = (const Elf_Note *)((const char *)(note + 1) +
1731 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1732 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1733 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1734 		    note->n_descsz != sizeof(int32_t))
1735 			continue;
1736 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1737 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1738 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1739 			continue;
1740 		note_name = (const char *)(note + 1);
1741 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1742 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1743 			continue;
1744 		switch (note->n_type) {
1745 		case NT_FREEBSD_ABI_TAG:
1746 			/* FreeBSD osrel note */
1747 			p = (uintptr_t)(note + 1);
1748 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1749 			obj->osrel = *(const int32_t *)(p);
1750 			dbg("note osrel %d", obj->osrel);
1751 			break;
1752 		case NT_FREEBSD_FEATURE_CTL:
1753 			/* FreeBSD ABI feature control note */
1754 			p = (uintptr_t)(note + 1);
1755 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1756 			obj->fctl0 = *(const uint32_t *)(p);
1757 			dbg("note fctl0 %#x", obj->fctl0);
1758 			break;
1759 		case NT_FREEBSD_NOINIT_TAG:
1760 			/* FreeBSD 'crt does not call init' note */
1761 			obj->crt_no_init = true;
1762 			dbg("note crt_no_init");
1763 			break;
1764 		}
1765 	}
1766 }
1767 
1768 static Obj_Entry *
1769 dlcheck(void *handle)
1770 {
1771     Obj_Entry *obj;
1772 
1773     TAILQ_FOREACH(obj, &obj_list, next) {
1774 	if (obj == (Obj_Entry *) handle)
1775 	    break;
1776     }
1777 
1778     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1779 	_rtld_error("Invalid shared object handle %p", handle);
1780 	return (NULL);
1781     }
1782     return (obj);
1783 }
1784 
1785 /*
1786  * If the given object is already in the donelist, return true.  Otherwise
1787  * add the object to the list and return false.
1788  */
1789 static bool
1790 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1791 {
1792     unsigned int i;
1793 
1794     for (i = 0;  i < dlp->num_used;  i++)
1795 	if (dlp->objs[i] == obj)
1796 	    return (true);
1797     /*
1798      * Our donelist allocation should always be sufficient.  But if
1799      * our threads locking isn't working properly, more shared objects
1800      * could have been loaded since we allocated the list.  That should
1801      * never happen, but we'll handle it properly just in case it does.
1802      */
1803     if (dlp->num_used < dlp->num_alloc)
1804 	dlp->objs[dlp->num_used++] = obj;
1805     return (false);
1806 }
1807 
1808 /*
1809  * SysV hash function for symbol table lookup.  It is a slightly optimized
1810  * version of the hash specified by the System V ABI.
1811  */
1812 Elf32_Word
1813 elf_hash(const char *name)
1814 {
1815 	const unsigned char *p = (const unsigned char *)name;
1816 	Elf32_Word h = 0;
1817 
1818 	while (*p != '\0') {
1819 		h = (h << 4) + *p++;
1820 		h ^= (h >> 24) & 0xf0;
1821 	}
1822 	return (h & 0x0fffffff);
1823 }
1824 
1825 /*
1826  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1827  * unsigned in case it's implemented with a wider type.
1828  */
1829 static uint32_t
1830 gnu_hash(const char *s)
1831 {
1832 	uint32_t h;
1833 	unsigned char c;
1834 
1835 	h = 5381;
1836 	for (c = *s; c != '\0'; c = *++s)
1837 		h = h * 33 + c;
1838 	return (h & 0xffffffff);
1839 }
1840 
1841 
1842 /*
1843  * Find the library with the given name, and return its full pathname.
1844  * The returned string is dynamically allocated.  Generates an error
1845  * message and returns NULL if the library cannot be found.
1846  *
1847  * If the second argument is non-NULL, then it refers to an already-
1848  * loaded shared object, whose library search path will be searched.
1849  *
1850  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1851  * descriptor (which is close-on-exec) will be passed out via the third
1852  * argument.
1853  *
1854  * The search order is:
1855  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1856  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1857  *   LD_LIBRARY_PATH
1858  *   DT_RUNPATH in the referencing file
1859  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1860  *	 from list)
1861  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1862  *
1863  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1864  */
1865 static char *
1866 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1867 {
1868 	char *pathname, *refobj_path;
1869 	const char *name;
1870 	bool nodeflib, objgiven;
1871 
1872 	objgiven = refobj != NULL;
1873 
1874 	if (libmap_disable || !objgiven ||
1875 	    (name = lm_find(refobj->path, xname)) == NULL)
1876 		name = xname;
1877 
1878 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1879 		if (name[0] != '/' && !trust) {
1880 			_rtld_error("Absolute pathname required "
1881 			    "for shared object \"%s\"", name);
1882 			return (NULL);
1883 		}
1884 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1885 		    __DECONST(char *, name)));
1886 	}
1887 
1888 	dbg(" Searching for \"%s\"", name);
1889 	refobj_path = objgiven ? refobj->path : NULL;
1890 
1891 	/*
1892 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1893 	 * back to pre-conforming behaviour if user requested so with
1894 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1895 	 * nodeflib.
1896 	 */
1897 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1898 		pathname = search_library_path(name, ld_library_path,
1899 		    refobj_path, fdp);
1900 		if (pathname != NULL)
1901 			return (pathname);
1902 		if (refobj != NULL) {
1903 			pathname = search_library_path(name, refobj->rpath,
1904 			    refobj_path, fdp);
1905 			if (pathname != NULL)
1906 				return (pathname);
1907 		}
1908 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1909 		if (pathname != NULL)
1910 			return (pathname);
1911 		pathname = search_library_path(name, gethints(false),
1912 		    refobj_path, fdp);
1913 		if (pathname != NULL)
1914 			return (pathname);
1915 		pathname = search_library_path(name, ld_standard_library_path,
1916 		    refobj_path, fdp);
1917 		if (pathname != NULL)
1918 			return (pathname);
1919 	} else {
1920 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1921 		if (objgiven) {
1922 			pathname = search_library_path(name, refobj->rpath,
1923 			    refobj->path, fdp);
1924 			if (pathname != NULL)
1925 				return (pathname);
1926 		}
1927 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1928 			pathname = search_library_path(name, obj_main->rpath,
1929 			    refobj_path, fdp);
1930 			if (pathname != NULL)
1931 				return (pathname);
1932 		}
1933 		pathname = search_library_path(name, ld_library_path,
1934 		    refobj_path, fdp);
1935 		if (pathname != NULL)
1936 			return (pathname);
1937 		if (objgiven) {
1938 			pathname = search_library_path(name, refobj->runpath,
1939 			    refobj_path, fdp);
1940 			if (pathname != NULL)
1941 				return (pathname);
1942 		}
1943 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1944 		if (pathname != NULL)
1945 			return (pathname);
1946 		pathname = search_library_path(name, gethints(nodeflib),
1947 		    refobj_path, fdp);
1948 		if (pathname != NULL)
1949 			return (pathname);
1950 		if (objgiven && !nodeflib) {
1951 			pathname = search_library_path(name,
1952 			    ld_standard_library_path, refobj_path, fdp);
1953 			if (pathname != NULL)
1954 				return (pathname);
1955 		}
1956 	}
1957 
1958 	if (objgiven && refobj->path != NULL) {
1959 		_rtld_error("Shared object \"%s\" not found, "
1960 		    "required by \"%s\"", name, basename(refobj->path));
1961 	} else {
1962 		_rtld_error("Shared object \"%s\" not found", name);
1963 	}
1964 	return (NULL);
1965 }
1966 
1967 /*
1968  * Given a symbol number in a referencing object, find the corresponding
1969  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1970  * no definition was found.  Returns a pointer to the Obj_Entry of the
1971  * defining object via the reference parameter DEFOBJ_OUT.
1972  */
1973 const Elf_Sym *
1974 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1975     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1976     RtldLockState *lockstate)
1977 {
1978     const Elf_Sym *ref;
1979     const Elf_Sym *def;
1980     const Obj_Entry *defobj;
1981     const Ver_Entry *ve;
1982     SymLook req;
1983     const char *name;
1984     int res;
1985 
1986     /*
1987      * If we have already found this symbol, get the information from
1988      * the cache.
1989      */
1990     if (symnum >= refobj->dynsymcount)
1991 	return (NULL);	/* Bad object */
1992     if (cache != NULL && cache[symnum].sym != NULL) {
1993 	*defobj_out = cache[symnum].obj;
1994 	return (cache[symnum].sym);
1995     }
1996 
1997     ref = refobj->symtab + symnum;
1998     name = refobj->strtab + ref->st_name;
1999     def = NULL;
2000     defobj = NULL;
2001     ve = NULL;
2002 
2003     /*
2004      * We don't have to do a full scale lookup if the symbol is local.
2005      * We know it will bind to the instance in this load module; to
2006      * which we already have a pointer (ie ref). By not doing a lookup,
2007      * we not only improve performance, but it also avoids unresolvable
2008      * symbols when local symbols are not in the hash table. This has
2009      * been seen with the ia64 toolchain.
2010      */
2011     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2012 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2013 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2014 		symnum);
2015 	}
2016 	symlook_init(&req, name);
2017 	req.flags = flags;
2018 	ve = req.ventry = fetch_ventry(refobj, symnum);
2019 	req.lockstate = lockstate;
2020 	res = symlook_default(&req, refobj);
2021 	if (res == 0) {
2022 	    def = req.sym_out;
2023 	    defobj = req.defobj_out;
2024 	}
2025     } else {
2026 	def = ref;
2027 	defobj = refobj;
2028     }
2029 
2030     /*
2031      * If we found no definition and the reference is weak, treat the
2032      * symbol as having the value zero.
2033      */
2034     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2035 	def = &sym_zero;
2036 	defobj = obj_main;
2037     }
2038 
2039     if (def != NULL) {
2040 	*defobj_out = defobj;
2041 	/* Record the information in the cache to avoid subsequent lookups. */
2042 	if (cache != NULL) {
2043 	    cache[symnum].sym = def;
2044 	    cache[symnum].obj = defobj;
2045 	}
2046     } else {
2047 	if (refobj != &obj_rtld)
2048 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2049 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2050     }
2051     return (def);
2052 }
2053 
2054 /*
2055  * Return the search path from the ldconfig hints file, reading it if
2056  * necessary.  If nostdlib is true, then the default search paths are
2057  * not added to result.
2058  *
2059  * Returns NULL if there are problems with the hints file,
2060  * or if the search path there is empty.
2061  */
2062 static const char *
2063 gethints(bool nostdlib)
2064 {
2065 	static char *filtered_path;
2066 	static const char *hints;
2067 	static struct elfhints_hdr hdr;
2068 	struct fill_search_info_args sargs, hargs;
2069 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2070 	struct dl_serpath *SLPpath, *hintpath;
2071 	char *p;
2072 	struct stat hint_stat;
2073 	unsigned int SLPndx, hintndx, fndx, fcount;
2074 	int fd;
2075 	size_t flen;
2076 	uint32_t dl;
2077 	bool skip;
2078 
2079 	/* First call, read the hints file */
2080 	if (hints == NULL) {
2081 		/* Keep from trying again in case the hints file is bad. */
2082 		hints = "";
2083 
2084 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2085 			return (NULL);
2086 
2087 		/*
2088 		 * Check of hdr.dirlistlen value against type limit
2089 		 * intends to pacify static analyzers.  Further
2090 		 * paranoia leads to checks that dirlist is fully
2091 		 * contained in the file range.
2092 		 */
2093 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2094 		    hdr.magic != ELFHINTS_MAGIC ||
2095 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2096 		    fstat(fd, &hint_stat) == -1) {
2097 cleanup1:
2098 			close(fd);
2099 			hdr.dirlistlen = 0;
2100 			return (NULL);
2101 		}
2102 		dl = hdr.strtab;
2103 		if (dl + hdr.dirlist < dl)
2104 			goto cleanup1;
2105 		dl += hdr.dirlist;
2106 		if (dl + hdr.dirlistlen < dl)
2107 			goto cleanup1;
2108 		dl += hdr.dirlistlen;
2109 		if (dl > hint_stat.st_size)
2110 			goto cleanup1;
2111 		p = xmalloc(hdr.dirlistlen + 1);
2112 		if (pread(fd, p, hdr.dirlistlen + 1,
2113 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2114 		    p[hdr.dirlistlen] != '\0') {
2115 			free(p);
2116 			goto cleanup1;
2117 		}
2118 		hints = p;
2119 		close(fd);
2120 	}
2121 
2122 	/*
2123 	 * If caller agreed to receive list which includes the default
2124 	 * paths, we are done. Otherwise, if we still did not
2125 	 * calculated filtered result, do it now.
2126 	 */
2127 	if (!nostdlib)
2128 		return (hints[0] != '\0' ? hints : NULL);
2129 	if (filtered_path != NULL)
2130 		goto filt_ret;
2131 
2132 	/*
2133 	 * Obtain the list of all configured search paths, and the
2134 	 * list of the default paths.
2135 	 *
2136 	 * First estimate the size of the results.
2137 	 */
2138 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2139 	smeta.dls_cnt = 0;
2140 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2141 	hmeta.dls_cnt = 0;
2142 
2143 	sargs.request = RTLD_DI_SERINFOSIZE;
2144 	sargs.serinfo = &smeta;
2145 	hargs.request = RTLD_DI_SERINFOSIZE;
2146 	hargs.serinfo = &hmeta;
2147 
2148 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2149 	    &sargs);
2150 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2151 
2152 	SLPinfo = xmalloc(smeta.dls_size);
2153 	hintinfo = xmalloc(hmeta.dls_size);
2154 
2155 	/*
2156 	 * Next fetch both sets of paths.
2157 	 */
2158 	sargs.request = RTLD_DI_SERINFO;
2159 	sargs.serinfo = SLPinfo;
2160 	sargs.serpath = &SLPinfo->dls_serpath[0];
2161 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2162 
2163 	hargs.request = RTLD_DI_SERINFO;
2164 	hargs.serinfo = hintinfo;
2165 	hargs.serpath = &hintinfo->dls_serpath[0];
2166 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2167 
2168 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2169 	    &sargs);
2170 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2171 
2172 	/*
2173 	 * Now calculate the difference between two sets, by excluding
2174 	 * standard paths from the full set.
2175 	 */
2176 	fndx = 0;
2177 	fcount = 0;
2178 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2179 	hintpath = &hintinfo->dls_serpath[0];
2180 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2181 		skip = false;
2182 		SLPpath = &SLPinfo->dls_serpath[0];
2183 		/*
2184 		 * Check each standard path against current.
2185 		 */
2186 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2187 			/* matched, skip the path */
2188 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2189 				skip = true;
2190 				break;
2191 			}
2192 		}
2193 		if (skip)
2194 			continue;
2195 		/*
2196 		 * Not matched against any standard path, add the path
2197 		 * to result. Separate consequtive paths with ':'.
2198 		 */
2199 		if (fcount > 0) {
2200 			filtered_path[fndx] = ':';
2201 			fndx++;
2202 		}
2203 		fcount++;
2204 		flen = strlen(hintpath->dls_name);
2205 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2206 		fndx += flen;
2207 	}
2208 	filtered_path[fndx] = '\0';
2209 
2210 	free(SLPinfo);
2211 	free(hintinfo);
2212 
2213 filt_ret:
2214 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2215 }
2216 
2217 static void
2218 init_dag(Obj_Entry *root)
2219 {
2220     const Needed_Entry *needed;
2221     const Objlist_Entry *elm;
2222     DoneList donelist;
2223 
2224     if (root->dag_inited)
2225 	return;
2226     donelist_init(&donelist);
2227 
2228     /* Root object belongs to own DAG. */
2229     objlist_push_tail(&root->dldags, root);
2230     objlist_push_tail(&root->dagmembers, root);
2231     donelist_check(&donelist, root);
2232 
2233     /*
2234      * Add dependencies of root object to DAG in breadth order
2235      * by exploiting the fact that each new object get added
2236      * to the tail of the dagmembers list.
2237      */
2238     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2239 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2240 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2241 		continue;
2242 	    objlist_push_tail(&needed->obj->dldags, root);
2243 	    objlist_push_tail(&root->dagmembers, needed->obj);
2244 	}
2245     }
2246     root->dag_inited = true;
2247 }
2248 
2249 static void
2250 init_marker(Obj_Entry *marker)
2251 {
2252 
2253 	bzero(marker, sizeof(*marker));
2254 	marker->marker = true;
2255 }
2256 
2257 Obj_Entry *
2258 globallist_curr(const Obj_Entry *obj)
2259 {
2260 
2261 	for (;;) {
2262 		if (obj == NULL)
2263 			return (NULL);
2264 		if (!obj->marker)
2265 			return (__DECONST(Obj_Entry *, obj));
2266 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2267 	}
2268 }
2269 
2270 Obj_Entry *
2271 globallist_next(const Obj_Entry *obj)
2272 {
2273 
2274 	for (;;) {
2275 		obj = TAILQ_NEXT(obj, next);
2276 		if (obj == NULL)
2277 			return (NULL);
2278 		if (!obj->marker)
2279 			return (__DECONST(Obj_Entry *, obj));
2280 	}
2281 }
2282 
2283 /* Prevent the object from being unmapped while the bind lock is dropped. */
2284 static void
2285 hold_object(Obj_Entry *obj)
2286 {
2287 
2288 	obj->holdcount++;
2289 }
2290 
2291 static void
2292 unhold_object(Obj_Entry *obj)
2293 {
2294 
2295 	assert(obj->holdcount > 0);
2296 	if (--obj->holdcount == 0 && obj->unholdfree)
2297 		release_object(obj);
2298 }
2299 
2300 static void
2301 process_z(Obj_Entry *root)
2302 {
2303 	const Objlist_Entry *elm;
2304 	Obj_Entry *obj;
2305 
2306 	/*
2307 	 * Walk over object DAG and process every dependent object
2308 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2309 	 * to grow their own DAG.
2310 	 *
2311 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2312 	 * symlook_global() to work.
2313 	 *
2314 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2315 	 */
2316 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2317 		obj = elm->obj;
2318 		if (obj == NULL)
2319 			continue;
2320 		if (obj->z_nodelete && !obj->ref_nodel) {
2321 			dbg("obj %s -z nodelete", obj->path);
2322 			init_dag(obj);
2323 			ref_dag(obj);
2324 			obj->ref_nodel = true;
2325 		}
2326 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2327 			dbg("obj %s -z global", obj->path);
2328 			objlist_push_tail(&list_global, obj);
2329 			init_dag(obj);
2330 		}
2331 	}
2332 }
2333 
2334 static void
2335 parse_rtld_phdr(Obj_Entry *obj)
2336 {
2337 	const Elf_Phdr *ph;
2338 	Elf_Addr note_start, note_end;
2339 
2340 	obj->stack_flags = PF_X | PF_R | PF_W;
2341 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2342 	    obj->phsize; ph++) {
2343 		switch (ph->p_type) {
2344 		case PT_GNU_STACK:
2345 			obj->stack_flags = ph->p_flags;
2346 			break;
2347 		case PT_GNU_RELRO:
2348 			obj->relro_page = obj->relocbase +
2349 			    rtld_trunc_page(ph->p_vaddr);
2350 			obj->relro_size = rtld_round_page(ph->p_memsz);
2351 			break;
2352 		case PT_NOTE:
2353 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2354 			note_end = note_start + ph->p_filesz;
2355 			digest_notes(obj, note_start, note_end);
2356 			break;
2357 		}
2358 	}
2359 }
2360 
2361 /*
2362  * Initialize the dynamic linker.  The argument is the address at which
2363  * the dynamic linker has been mapped into memory.  The primary task of
2364  * this function is to relocate the dynamic linker.
2365  */
2366 static void
2367 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2368 {
2369     Obj_Entry objtmp;	/* Temporary rtld object */
2370     const Elf_Ehdr *ehdr;
2371     const Elf_Dyn *dyn_rpath;
2372     const Elf_Dyn *dyn_soname;
2373     const Elf_Dyn *dyn_runpath;
2374 
2375 #ifdef RTLD_INIT_PAGESIZES_EARLY
2376     /* The page size is required by the dynamic memory allocator. */
2377     init_pagesizes(aux_info);
2378 #endif
2379 
2380     /*
2381      * Conjure up an Obj_Entry structure for the dynamic linker.
2382      *
2383      * The "path" member can't be initialized yet because string constants
2384      * cannot yet be accessed. Below we will set it correctly.
2385      */
2386     memset(&objtmp, 0, sizeof(objtmp));
2387     objtmp.path = NULL;
2388     objtmp.rtld = true;
2389     objtmp.mapbase = mapbase;
2390 #ifdef PIC
2391     objtmp.relocbase = mapbase;
2392 #endif
2393 
2394     objtmp.dynamic = rtld_dynamic(&objtmp);
2395     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2396     assert(objtmp.needed == NULL);
2397     assert(!objtmp.textrel);
2398     /*
2399      * Temporarily put the dynamic linker entry into the object list, so
2400      * that symbols can be found.
2401      */
2402     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2403 
2404     ehdr = (Elf_Ehdr *)mapbase;
2405     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2406     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2407 
2408     /* Initialize the object list. */
2409     TAILQ_INIT(&obj_list);
2410 
2411     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2412     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2413 
2414 #ifndef RTLD_INIT_PAGESIZES_EARLY
2415     /* The page size is required by the dynamic memory allocator. */
2416     init_pagesizes(aux_info);
2417 #endif
2418 
2419     if (aux_info[AT_OSRELDATE] != NULL)
2420 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2421 
2422     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2423 
2424     /* Replace the path with a dynamically allocated copy. */
2425     obj_rtld.path = xstrdup(ld_path_rtld);
2426 
2427     parse_rtld_phdr(&obj_rtld);
2428     if (obj_enforce_relro(&obj_rtld) == -1)
2429 	rtld_die();
2430 
2431     r_debug.r_version = R_DEBUG_VERSION;
2432     r_debug.r_brk = r_debug_state;
2433     r_debug.r_state = RT_CONSISTENT;
2434     r_debug.r_ldbase = obj_rtld.relocbase;
2435 }
2436 
2437 /*
2438  * Retrieve the array of supported page sizes.  The kernel provides the page
2439  * sizes in increasing order.
2440  */
2441 static void
2442 init_pagesizes(Elf_Auxinfo **aux_info)
2443 {
2444 	static size_t psa[MAXPAGESIZES];
2445 	int mib[2];
2446 	size_t len, size;
2447 
2448 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2449 	    NULL) {
2450 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2451 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2452 	} else {
2453 		len = 2;
2454 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2455 			size = sizeof(psa);
2456 		else {
2457 			/* As a fallback, retrieve the base page size. */
2458 			size = sizeof(psa[0]);
2459 			if (aux_info[AT_PAGESZ] != NULL) {
2460 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2461 				goto psa_filled;
2462 			} else {
2463 				mib[0] = CTL_HW;
2464 				mib[1] = HW_PAGESIZE;
2465 				len = 2;
2466 			}
2467 		}
2468 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2469 			_rtld_error("sysctl for hw.pagesize(s) failed");
2470 			rtld_die();
2471 		}
2472 psa_filled:
2473 		pagesizes = psa;
2474 	}
2475 	npagesizes = size / sizeof(pagesizes[0]);
2476 	/* Discard any invalid entries at the end of the array. */
2477 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2478 		npagesizes--;
2479 
2480 	page_size = pagesizes[0];
2481 }
2482 
2483 /*
2484  * Add the init functions from a needed object list (and its recursive
2485  * needed objects) to "list".  This is not used directly; it is a helper
2486  * function for initlist_add_objects().  The write lock must be held
2487  * when this function is called.
2488  */
2489 static void
2490 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2491 {
2492     /* Recursively process the successor needed objects. */
2493     if (needed->next != NULL)
2494 	initlist_add_neededs(needed->next, list);
2495 
2496     /* Process the current needed object. */
2497     if (needed->obj != NULL)
2498 	initlist_add_objects(needed->obj, needed->obj, list);
2499 }
2500 
2501 /*
2502  * Scan all of the DAGs rooted in the range of objects from "obj" to
2503  * "tail" and add their init functions to "list".  This recurses over
2504  * the DAGs and ensure the proper init ordering such that each object's
2505  * needed libraries are initialized before the object itself.  At the
2506  * same time, this function adds the objects to the global finalization
2507  * list "list_fini" in the opposite order.  The write lock must be
2508  * held when this function is called.
2509  */
2510 static void
2511 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2512 {
2513     Obj_Entry *nobj;
2514 
2515     if (obj->init_scanned || obj->init_done)
2516 	return;
2517     obj->init_scanned = true;
2518 
2519     /* Recursively process the successor objects. */
2520     nobj = globallist_next(obj);
2521     if (nobj != NULL && obj != tail)
2522 	initlist_add_objects(nobj, tail, list);
2523 
2524     /* Recursively process the needed objects. */
2525     if (obj->needed != NULL)
2526 	initlist_add_neededs(obj->needed, list);
2527     if (obj->needed_filtees != NULL)
2528 	initlist_add_neededs(obj->needed_filtees, list);
2529     if (obj->needed_aux_filtees != NULL)
2530 	initlist_add_neededs(obj->needed_aux_filtees, list);
2531 
2532     /* Add the object to the init list. */
2533     objlist_push_tail(list, obj);
2534 
2535     /* Add the object to the global fini list in the reverse order. */
2536     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2537       && !obj->on_fini_list) {
2538 	objlist_push_head(&list_fini, obj);
2539 	obj->on_fini_list = true;
2540     }
2541 }
2542 
2543 static void
2544 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2545 {
2546     Needed_Entry *needed, *needed1;
2547 
2548     for (needed = n; needed != NULL; needed = needed->next) {
2549 	if (needed->obj != NULL) {
2550 	    dlclose_locked(needed->obj, lockstate);
2551 	    needed->obj = NULL;
2552 	}
2553     }
2554     for (needed = n; needed != NULL; needed = needed1) {
2555 	needed1 = needed->next;
2556 	free(needed);
2557     }
2558 }
2559 
2560 static void
2561 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2562 {
2563 
2564 	free_needed_filtees(obj->needed_filtees, lockstate);
2565 	obj->needed_filtees = NULL;
2566 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2567 	obj->needed_aux_filtees = NULL;
2568 	obj->filtees_loaded = false;
2569 }
2570 
2571 static void
2572 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2573     RtldLockState *lockstate)
2574 {
2575 
2576     for (; needed != NULL; needed = needed->next) {
2577 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2578 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2579 	  RTLD_LOCAL, lockstate);
2580     }
2581 }
2582 
2583 static void
2584 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2585 {
2586 
2587     lock_restart_for_upgrade(lockstate);
2588     if (!obj->filtees_loaded) {
2589 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2590 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2591 	obj->filtees_loaded = true;
2592     }
2593 }
2594 
2595 static int
2596 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2597 {
2598     Obj_Entry *obj1;
2599 
2600     for (; needed != NULL; needed = needed->next) {
2601 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2602 	  flags & ~RTLD_LO_NOLOAD);
2603 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2604 	    return (-1);
2605     }
2606     return (0);
2607 }
2608 
2609 /*
2610  * Given a shared object, traverse its list of needed objects, and load
2611  * each of them.  Returns 0 on success.  Generates an error message and
2612  * returns -1 on failure.
2613  */
2614 static int
2615 load_needed_objects(Obj_Entry *first, int flags)
2616 {
2617     Obj_Entry *obj;
2618 
2619     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2620 	if (obj->marker)
2621 	    continue;
2622 	if (process_needed(obj, obj->needed, flags) == -1)
2623 	    return (-1);
2624     }
2625     return (0);
2626 }
2627 
2628 static int
2629 load_preload_objects(const char *penv, bool isfd)
2630 {
2631 	Obj_Entry *obj;
2632 	const char *name;
2633 	size_t len;
2634 	char savech, *p, *psave;
2635 	int fd;
2636 	static const char delim[] = " \t:;";
2637 
2638 	if (penv == NULL)
2639 		return (0);
2640 
2641 	p = psave = xstrdup(penv);
2642 	p += strspn(p, delim);
2643 	while (*p != '\0') {
2644 		len = strcspn(p, delim);
2645 
2646 		savech = p[len];
2647 		p[len] = '\0';
2648 		if (isfd) {
2649 			name = NULL;
2650 			fd = parse_integer(p);
2651 			if (fd == -1) {
2652 				free(psave);
2653 				return (-1);
2654 			}
2655 		} else {
2656 			name = p;
2657 			fd = -1;
2658 		}
2659 
2660 		obj = load_object(name, fd, NULL, 0);
2661 		if (obj == NULL) {
2662 			free(psave);
2663 			return (-1);	/* XXX - cleanup */
2664 		}
2665 		obj->z_interpose = true;
2666 		p[len] = savech;
2667 		p += len;
2668 		p += strspn(p, delim);
2669 	}
2670 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2671 
2672 	free(psave);
2673 	return (0);
2674 }
2675 
2676 static const char *
2677 printable_path(const char *path)
2678 {
2679 
2680 	return (path == NULL ? "<unknown>" : path);
2681 }
2682 
2683 /*
2684  * Load a shared object into memory, if it is not already loaded.  The
2685  * object may be specified by name or by user-supplied file descriptor
2686  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2687  * duplicate is.
2688  *
2689  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2690  * on failure.
2691  */
2692 static Obj_Entry *
2693 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2694 {
2695     Obj_Entry *obj;
2696     int fd;
2697     struct stat sb;
2698     char *path;
2699 
2700     fd = -1;
2701     if (name != NULL) {
2702 	TAILQ_FOREACH(obj, &obj_list, next) {
2703 	    if (obj->marker || obj->doomed)
2704 		continue;
2705 	    if (object_match_name(obj, name))
2706 		return (obj);
2707 	}
2708 
2709 	path = find_library(name, refobj, &fd);
2710 	if (path == NULL)
2711 	    return (NULL);
2712     } else
2713 	path = NULL;
2714 
2715     if (fd >= 0) {
2716 	/*
2717 	 * search_library_pathfds() opens a fresh file descriptor for the
2718 	 * library, so there is no need to dup().
2719 	 */
2720     } else if (fd_u == -1) {
2721 	/*
2722 	 * If we didn't find a match by pathname, or the name is not
2723 	 * supplied, open the file and check again by device and inode.
2724 	 * This avoids false mismatches caused by multiple links or ".."
2725 	 * in pathnames.
2726 	 *
2727 	 * To avoid a race, we open the file and use fstat() rather than
2728 	 * using stat().
2729 	 */
2730 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2731 	    _rtld_error("Cannot open \"%s\"", path);
2732 	    free(path);
2733 	    return (NULL);
2734 	}
2735     } else {
2736 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2737 	if (fd == -1) {
2738 	    _rtld_error("Cannot dup fd");
2739 	    free(path);
2740 	    return (NULL);
2741 	}
2742     }
2743     if (fstat(fd, &sb) == -1) {
2744 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2745 	close(fd);
2746 	free(path);
2747 	return (NULL);
2748     }
2749     TAILQ_FOREACH(obj, &obj_list, next) {
2750 	if (obj->marker || obj->doomed)
2751 	    continue;
2752 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2753 	    break;
2754     }
2755     if (obj != NULL && name != NULL) {
2756 	object_add_name(obj, name);
2757 	free(path);
2758 	close(fd);
2759 	return (obj);
2760     }
2761     if (flags & RTLD_LO_NOLOAD) {
2762 	free(path);
2763 	close(fd);
2764 	return (NULL);
2765     }
2766 
2767     /* First use of this object, so we must map it in */
2768     obj = do_load_object(fd, name, path, &sb, flags);
2769     if (obj == NULL)
2770 	free(path);
2771     close(fd);
2772 
2773     return (obj);
2774 }
2775 
2776 static Obj_Entry *
2777 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2778   int flags)
2779 {
2780     Obj_Entry *obj;
2781     struct statfs fs;
2782 
2783     /*
2784      * First, make sure that environment variables haven't been
2785      * used to circumvent the noexec flag on a filesystem.
2786      * We ignore fstatfs(2) failures, since fd might reference
2787      * not a file, e.g. shmfd.
2788      */
2789     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2790 	(fs.f_flags & MNT_NOEXEC) != 0) {
2791 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2792 	    return (NULL);
2793     }
2794 
2795     dbg("loading \"%s\"", printable_path(path));
2796     obj = map_object(fd, printable_path(path), sbp);
2797     if (obj == NULL)
2798         return (NULL);
2799 
2800     /*
2801      * If DT_SONAME is present in the object, digest_dynamic2 already
2802      * added it to the object names.
2803      */
2804     if (name != NULL)
2805 	object_add_name(obj, name);
2806     obj->path = path;
2807     if (!digest_dynamic(obj, 0))
2808 	goto errp;
2809     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2810 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2811     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2812 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2813 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2814 	goto errp;
2815     }
2816     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2817       RTLD_LO_DLOPEN) {
2818 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2819 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2820 	goto errp;
2821     }
2822 
2823     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2824     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2825     obj_count++;
2826     obj_loads++;
2827     linkmap_add(obj);	/* for GDB & dlinfo() */
2828     max_stack_flags |= obj->stack_flags;
2829 
2830     dbg("  %p .. %p: %s", obj->mapbase,
2831          obj->mapbase + obj->mapsize - 1, obj->path);
2832     if (obj->textrel)
2833 	dbg("  WARNING: %s has impure text", obj->path);
2834     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2835 	obj->path);
2836 
2837     return (obj);
2838 
2839 errp:
2840     munmap(obj->mapbase, obj->mapsize);
2841     obj_free(obj);
2842     return (NULL);
2843 }
2844 
2845 static int
2846 load_kpreload(const void *addr)
2847 {
2848 	Obj_Entry *obj;
2849 	const Elf_Ehdr *ehdr;
2850 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2851 	static const char kname[] = "[vdso]";
2852 
2853 	ehdr = addr;
2854 	if (!check_elf_headers(ehdr, "kpreload"))
2855 		return (-1);
2856 	obj = obj_new();
2857 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2858 	obj->phdr = phdr;
2859 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2860 	phlimit = phdr + ehdr->e_phnum;
2861 	seg0 = segn = NULL;
2862 
2863 	for (; phdr < phlimit; phdr++) {
2864 		switch (phdr->p_type) {
2865 		case PT_DYNAMIC:
2866 			phdyn = phdr;
2867 			break;
2868 		case PT_GNU_STACK:
2869 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2870 			obj->stack_flags = phdr->p_flags;
2871 			break;
2872 		case PT_LOAD:
2873 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2874 				seg0 = phdr;
2875 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2876 			    phdr->p_vaddr + phdr->p_memsz)
2877 				segn = phdr;
2878 			break;
2879 		}
2880 	}
2881 
2882 	obj->mapbase = __DECONST(caddr_t, addr);
2883 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2884 	obj->vaddrbase = 0;
2885 	obj->relocbase = obj->mapbase;
2886 
2887 	object_add_name(obj, kname);
2888 	obj->path = xstrdup(kname);
2889 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2890 
2891 	if (!digest_dynamic(obj, 0)) {
2892 		obj_free(obj);
2893 		return (-1);
2894 	}
2895 
2896 	/*
2897 	 * We assume that kernel-preloaded object does not need
2898 	 * relocation.  It is currently written into read-only page,
2899 	 * handling relocations would mean we need to allocate at
2900 	 * least one additional page per AS.
2901 	 */
2902 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2903 	    obj->path, obj->mapbase, obj->phdr, seg0,
2904 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2905 
2906 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2907 	obj_count++;
2908 	obj_loads++;
2909 	linkmap_add(obj);	/* for GDB & dlinfo() */
2910 	max_stack_flags |= obj->stack_flags;
2911 
2912 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2913 	return (0);
2914 }
2915 
2916 Obj_Entry *
2917 obj_from_addr(const void *addr)
2918 {
2919     Obj_Entry *obj;
2920 
2921     TAILQ_FOREACH(obj, &obj_list, next) {
2922 	if (obj->marker)
2923 	    continue;
2924 	if (addr < (void *) obj->mapbase)
2925 	    continue;
2926 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2927 	    return obj;
2928     }
2929     return (NULL);
2930 }
2931 
2932 static void
2933 preinit_main(void)
2934 {
2935     Elf_Addr *preinit_addr;
2936     int index;
2937 
2938     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2939     if (preinit_addr == NULL)
2940 	return;
2941 
2942     for (index = 0; index < obj_main->preinit_array_num; index++) {
2943 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2944 	    dbg("calling preinit function for %s at %p", obj_main->path,
2945 	      (void *)preinit_addr[index]);
2946 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2947 	      0, 0, obj_main->path);
2948 	    call_init_pointer(obj_main, preinit_addr[index]);
2949 	}
2950     }
2951 }
2952 
2953 /*
2954  * Call the finalization functions for each of the objects in "list"
2955  * belonging to the DAG of "root" and referenced once. If NULL "root"
2956  * is specified, every finalization function will be called regardless
2957  * of the reference count and the list elements won't be freed. All of
2958  * the objects are expected to have non-NULL fini functions.
2959  */
2960 static void
2961 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2962 {
2963     Objlist_Entry *elm;
2964     struct dlerror_save *saved_msg;
2965     Elf_Addr *fini_addr;
2966     int index;
2967 
2968     assert(root == NULL || root->refcount == 1);
2969 
2970     if (root != NULL)
2971 	root->doomed = true;
2972 
2973     /*
2974      * Preserve the current error message since a fini function might
2975      * call into the dynamic linker and overwrite it.
2976      */
2977     saved_msg = errmsg_save();
2978     do {
2979 	STAILQ_FOREACH(elm, list, link) {
2980 	    if (root != NULL && (elm->obj->refcount != 1 ||
2981 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2982 		continue;
2983 	    /* Remove object from fini list to prevent recursive invocation. */
2984 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2985 	    /* Ensure that new references cannot be acquired. */
2986 	    elm->obj->doomed = true;
2987 
2988 	    hold_object(elm->obj);
2989 	    lock_release(rtld_bind_lock, lockstate);
2990 	    /*
2991 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2992 	     * When this happens, DT_FINI_ARRAY is processed first.
2993 	     */
2994 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2995 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2996 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2997 		  index--) {
2998 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2999 			dbg("calling fini function for %s at %p",
3000 			    elm->obj->path, (void *)fini_addr[index]);
3001 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3002 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3003 			call_initfini_pointer(elm->obj, fini_addr[index]);
3004 		    }
3005 		}
3006 	    }
3007 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3008 		dbg("calling fini function for %s at %p", elm->obj->path,
3009 		    (void *)elm->obj->fini);
3010 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3011 		    0, 0, elm->obj->path);
3012 		call_initfini_pointer(elm->obj, elm->obj->fini);
3013 	    }
3014 	    wlock_acquire(rtld_bind_lock, lockstate);
3015 	    unhold_object(elm->obj);
3016 	    /* No need to free anything if process is going down. */
3017 	    if (root != NULL)
3018 	    	free(elm);
3019 	    /*
3020 	     * We must restart the list traversal after every fini call
3021 	     * because a dlclose() call from the fini function or from
3022 	     * another thread might have modified the reference counts.
3023 	     */
3024 	    break;
3025 	}
3026     } while (elm != NULL);
3027     errmsg_restore(saved_msg);
3028 }
3029 
3030 /*
3031  * Call the initialization functions for each of the objects in
3032  * "list".  All of the objects are expected to have non-NULL init
3033  * functions.
3034  */
3035 static void
3036 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3037 {
3038     Objlist_Entry *elm;
3039     Obj_Entry *obj;
3040     struct dlerror_save *saved_msg;
3041     Elf_Addr *init_addr;
3042     void (*reg)(void (*)(void));
3043     int index;
3044 
3045     /*
3046      * Clean init_scanned flag so that objects can be rechecked and
3047      * possibly initialized earlier if any of vectors called below
3048      * cause the change by using dlopen.
3049      */
3050     TAILQ_FOREACH(obj, &obj_list, next) {
3051 	if (obj->marker)
3052 	    continue;
3053 	obj->init_scanned = false;
3054     }
3055 
3056     /*
3057      * Preserve the current error message since an init function might
3058      * call into the dynamic linker and overwrite it.
3059      */
3060     saved_msg = errmsg_save();
3061     STAILQ_FOREACH(elm, list, link) {
3062 	if (elm->obj->init_done) /* Initialized early. */
3063 	    continue;
3064 	/*
3065 	 * Race: other thread might try to use this object before current
3066 	 * one completes the initialization. Not much can be done here
3067 	 * without better locking.
3068 	 */
3069 	elm->obj->init_done = true;
3070 	hold_object(elm->obj);
3071 	reg = NULL;
3072 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3073 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3074 		    "__libc_atexit", lockstate);
3075 	}
3076 	lock_release(rtld_bind_lock, lockstate);
3077 	if (reg != NULL) {
3078 		reg(rtld_exit);
3079 		rtld_exit_ptr = rtld_nop_exit;
3080 	}
3081 
3082         /*
3083          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3084          * When this happens, DT_INIT is processed first.
3085          */
3086 	if (elm->obj->init != (Elf_Addr)NULL) {
3087 	    dbg("calling init function for %s at %p", elm->obj->path,
3088 	        (void *)elm->obj->init);
3089 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3090 	        0, 0, elm->obj->path);
3091 	    call_init_pointer(elm->obj, elm->obj->init);
3092 	}
3093 	init_addr = (Elf_Addr *)elm->obj->init_array;
3094 	if (init_addr != NULL) {
3095 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3096 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3097 		    dbg("calling init function for %s at %p", elm->obj->path,
3098 			(void *)init_addr[index]);
3099 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3100 			(void *)init_addr[index], 0, 0, elm->obj->path);
3101 		    call_init_pointer(elm->obj, init_addr[index]);
3102 		}
3103 	    }
3104 	}
3105 	wlock_acquire(rtld_bind_lock, lockstate);
3106 	unhold_object(elm->obj);
3107     }
3108     errmsg_restore(saved_msg);
3109 }
3110 
3111 static void
3112 objlist_clear(Objlist *list)
3113 {
3114     Objlist_Entry *elm;
3115 
3116     while (!STAILQ_EMPTY(list)) {
3117 	elm = STAILQ_FIRST(list);
3118 	STAILQ_REMOVE_HEAD(list, link);
3119 	free(elm);
3120     }
3121 }
3122 
3123 static Objlist_Entry *
3124 objlist_find(Objlist *list, const Obj_Entry *obj)
3125 {
3126     Objlist_Entry *elm;
3127 
3128     STAILQ_FOREACH(elm, list, link)
3129 	if (elm->obj == obj)
3130 	    return elm;
3131     return (NULL);
3132 }
3133 
3134 static void
3135 objlist_init(Objlist *list)
3136 {
3137     STAILQ_INIT(list);
3138 }
3139 
3140 static void
3141 objlist_push_head(Objlist *list, Obj_Entry *obj)
3142 {
3143     Objlist_Entry *elm;
3144 
3145     elm = NEW(Objlist_Entry);
3146     elm->obj = obj;
3147     STAILQ_INSERT_HEAD(list, elm, link);
3148 }
3149 
3150 static void
3151 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3152 {
3153     Objlist_Entry *elm;
3154 
3155     elm = NEW(Objlist_Entry);
3156     elm->obj = obj;
3157     STAILQ_INSERT_TAIL(list, elm, link);
3158 }
3159 
3160 static void
3161 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3162 {
3163 	Objlist_Entry *elm, *listelm;
3164 
3165 	STAILQ_FOREACH(listelm, list, link) {
3166 		if (listelm->obj == listobj)
3167 			break;
3168 	}
3169 	elm = NEW(Objlist_Entry);
3170 	elm->obj = obj;
3171 	if (listelm != NULL)
3172 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3173 	else
3174 		STAILQ_INSERT_TAIL(list, elm, link);
3175 }
3176 
3177 static void
3178 objlist_remove(Objlist *list, Obj_Entry *obj)
3179 {
3180     Objlist_Entry *elm;
3181 
3182     if ((elm = objlist_find(list, obj)) != NULL) {
3183 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3184 	free(elm);
3185     }
3186 }
3187 
3188 /*
3189  * Relocate dag rooted in the specified object.
3190  * Returns 0 on success, or -1 on failure.
3191  */
3192 
3193 static int
3194 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3195     int flags, RtldLockState *lockstate)
3196 {
3197 	Objlist_Entry *elm;
3198 	int error;
3199 
3200 	error = 0;
3201 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3202 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3203 		    lockstate);
3204 		if (error == -1)
3205 			break;
3206 	}
3207 	return (error);
3208 }
3209 
3210 /*
3211  * Prepare for, or clean after, relocating an object marked with
3212  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3213  * segments are remapped read-write.  After relocations are done, the
3214  * segment's permissions are returned back to the modes specified in
3215  * the phdrs.  If any relocation happened, or always for wired
3216  * program, COW is triggered.
3217  */
3218 static int
3219 reloc_textrel_prot(Obj_Entry *obj, bool before)
3220 {
3221 	const Elf_Phdr *ph;
3222 	void *base;
3223 	size_t l, sz;
3224 	int prot;
3225 
3226 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3227 	    l--, ph++) {
3228 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3229 			continue;
3230 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3231 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3232 		    rtld_trunc_page(ph->p_vaddr);
3233 		prot = before ? (PROT_READ | PROT_WRITE) :
3234 		    convert_prot(ph->p_flags);
3235 		if (mprotect(base, sz, prot) == -1) {
3236 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3237 			    obj->path, before ? "en" : "dis",
3238 			    rtld_strerror(errno));
3239 			return (-1);
3240 		}
3241 	}
3242 	return (0);
3243 }
3244 
3245 /* Process RELR relative relocations. */
3246 static void
3247 reloc_relr(Obj_Entry *obj)
3248 {
3249 	const Elf_Relr *relr, *relrlim;
3250 	Elf_Addr *where;
3251 
3252 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3253 	for (relr = obj->relr; relr < relrlim; relr++) {
3254 	    Elf_Relr entry = *relr;
3255 
3256 	    if ((entry & 1) == 0) {
3257 		where = (Elf_Addr *)(obj->relocbase + entry);
3258 		*where++ += (Elf_Addr)obj->relocbase;
3259 	    } else {
3260 		for (long i = 0; (entry >>= 1) != 0; i++)
3261 		    if ((entry & 1) != 0)
3262 			where[i] += (Elf_Addr)obj->relocbase;
3263 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3264 	    }
3265 	}
3266 }
3267 
3268 /*
3269  * Relocate single object.
3270  * Returns 0 on success, or -1 on failure.
3271  */
3272 static int
3273 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3274     int flags, RtldLockState *lockstate)
3275 {
3276 
3277 	if (obj->relocated)
3278 		return (0);
3279 	obj->relocated = true;
3280 	if (obj != rtldobj)
3281 		dbg("relocating \"%s\"", obj->path);
3282 
3283 	if (obj->symtab == NULL || obj->strtab == NULL ||
3284 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3285 		dbg("object %s has no run-time symbol table", obj->path);
3286 
3287 	/* There are relocations to the write-protected text segment. */
3288 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3289 		return (-1);
3290 
3291 	/* Process the non-PLT non-IFUNC relocations. */
3292 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3293 		return (-1);
3294 	reloc_relr(obj);
3295 
3296 	/* Re-protected the text segment. */
3297 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3298 		return (-1);
3299 
3300 	/* Set the special PLT or GOT entries. */
3301 	init_pltgot(obj);
3302 
3303 	/* Process the PLT relocations. */
3304 	if (reloc_plt(obj, flags, lockstate) == -1)
3305 		return (-1);
3306 	/* Relocate the jump slots if we are doing immediate binding. */
3307 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3308 	    lockstate) == -1)
3309 		return (-1);
3310 
3311 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3312 		return (-1);
3313 
3314 	/*
3315 	 * Set up the magic number and version in the Obj_Entry.  These
3316 	 * were checked in the crt1.o from the original ElfKit, so we
3317 	 * set them for backward compatibility.
3318 	 */
3319 	obj->magic = RTLD_MAGIC;
3320 	obj->version = RTLD_VERSION;
3321 
3322 	return (0);
3323 }
3324 
3325 /*
3326  * Relocate newly-loaded shared objects.  The argument is a pointer to
3327  * the Obj_Entry for the first such object.  All objects from the first
3328  * to the end of the list of objects are relocated.  Returns 0 on success,
3329  * or -1 on failure.
3330  */
3331 static int
3332 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3333     int flags, RtldLockState *lockstate)
3334 {
3335 	Obj_Entry *obj;
3336 	int error;
3337 
3338 	for (error = 0, obj = first;  obj != NULL;
3339 	    obj = TAILQ_NEXT(obj, next)) {
3340 		if (obj->marker)
3341 			continue;
3342 		error = relocate_object(obj, bind_now, rtldobj, flags,
3343 		    lockstate);
3344 		if (error == -1)
3345 			break;
3346 	}
3347 	return (error);
3348 }
3349 
3350 /*
3351  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3352  * referencing STT_GNU_IFUNC symbols is postponed till the other
3353  * relocations are done.  The indirect functions specified as
3354  * ifunc are allowed to call other symbols, so we need to have
3355  * objects relocated before asking for resolution from indirects.
3356  *
3357  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3358  * instead of the usual lazy handling of PLT slots.  It is
3359  * consistent with how GNU does it.
3360  */
3361 static int
3362 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3363     RtldLockState *lockstate)
3364 {
3365 
3366 	if (obj->ifuncs_resolved)
3367 		return (0);
3368 	obj->ifuncs_resolved = true;
3369 	if (!obj->irelative && !obj->irelative_nonplt &&
3370 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3371 	    !obj->non_plt_gnu_ifunc)
3372 		return (0);
3373 	if (obj_disable_relro(obj) == -1 ||
3374 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3375 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3376 	    lockstate) == -1) ||
3377 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3378 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3379 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3380 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3381 	    obj_enforce_relro(obj) == -1)
3382 		return (-1);
3383 	return (0);
3384 }
3385 
3386 static int
3387 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3388     RtldLockState *lockstate)
3389 {
3390 	Objlist_Entry *elm;
3391 	Obj_Entry *obj;
3392 
3393 	STAILQ_FOREACH(elm, list, link) {
3394 		obj = elm->obj;
3395 		if (obj->marker)
3396 			continue;
3397 		if (resolve_object_ifunc(obj, bind_now, flags,
3398 		    lockstate) == -1)
3399 			return (-1);
3400 	}
3401 	return (0);
3402 }
3403 
3404 /*
3405  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3406  * before the process exits.
3407  */
3408 static void
3409 rtld_exit(void)
3410 {
3411     RtldLockState lockstate;
3412 
3413     wlock_acquire(rtld_bind_lock, &lockstate);
3414     dbg("rtld_exit()");
3415     objlist_call_fini(&list_fini, NULL, &lockstate);
3416     /* No need to remove the items from the list, since we are exiting. */
3417     if (!libmap_disable)
3418         lm_fini();
3419     lock_release(rtld_bind_lock, &lockstate);
3420 }
3421 
3422 static void
3423 rtld_nop_exit(void)
3424 {
3425 }
3426 
3427 /*
3428  * Iterate over a search path, translate each element, and invoke the
3429  * callback on the result.
3430  */
3431 static void *
3432 path_enumerate(const char *path, path_enum_proc callback,
3433     const char *refobj_path, void *arg)
3434 {
3435     const char *trans;
3436     if (path == NULL)
3437 	return (NULL);
3438 
3439     path += strspn(path, ":;");
3440     while (*path != '\0') {
3441 	size_t len;
3442 	char  *res;
3443 
3444 	len = strcspn(path, ":;");
3445 	trans = lm_findn(refobj_path, path, len);
3446 	if (trans)
3447 	    res = callback(trans, strlen(trans), arg);
3448 	else
3449 	    res = callback(path, len, arg);
3450 
3451 	if (res != NULL)
3452 	    return (res);
3453 
3454 	path += len;
3455 	path += strspn(path, ":;");
3456     }
3457 
3458     return (NULL);
3459 }
3460 
3461 struct try_library_args {
3462     const char	*name;
3463     size_t	 namelen;
3464     char	*buffer;
3465     size_t	 buflen;
3466     int		 fd;
3467 };
3468 
3469 static void *
3470 try_library_path(const char *dir, size_t dirlen, void *param)
3471 {
3472     struct try_library_args *arg;
3473     int fd;
3474 
3475     arg = param;
3476     if (*dir == '/' || trust) {
3477 	char *pathname;
3478 
3479 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3480 		return (NULL);
3481 
3482 	pathname = arg->buffer;
3483 	strncpy(pathname, dir, dirlen);
3484 	pathname[dirlen] = '/';
3485 	strcpy(pathname + dirlen + 1, arg->name);
3486 
3487 	dbg("  Trying \"%s\"", pathname);
3488 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3489 	if (fd >= 0) {
3490 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3491 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3492 	    strcpy(pathname, arg->buffer);
3493 	    arg->fd = fd;
3494 	    return (pathname);
3495 	} else {
3496 	    dbg("  Failed to open \"%s\": %s",
3497 		pathname, rtld_strerror(errno));
3498 	}
3499     }
3500     return (NULL);
3501 }
3502 
3503 static char *
3504 search_library_path(const char *name, const char *path,
3505     const char *refobj_path, int *fdp)
3506 {
3507     char *p;
3508     struct try_library_args arg;
3509 
3510     if (path == NULL)
3511 	return (NULL);
3512 
3513     arg.name = name;
3514     arg.namelen = strlen(name);
3515     arg.buffer = xmalloc(PATH_MAX);
3516     arg.buflen = PATH_MAX;
3517     arg.fd = -1;
3518 
3519     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3520     *fdp = arg.fd;
3521 
3522     free(arg.buffer);
3523 
3524     return (p);
3525 }
3526 
3527 
3528 /*
3529  * Finds the library with the given name using the directory descriptors
3530  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3531  *
3532  * Returns a freshly-opened close-on-exec file descriptor for the library,
3533  * or -1 if the library cannot be found.
3534  */
3535 static char *
3536 search_library_pathfds(const char *name, const char *path, int *fdp)
3537 {
3538 	char *envcopy, *fdstr, *found, *last_token;
3539 	size_t len;
3540 	int dirfd, fd;
3541 
3542 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3543 
3544 	/* Don't load from user-specified libdirs into setuid binaries. */
3545 	if (!trust)
3546 		return (NULL);
3547 
3548 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3549 	if (path == NULL)
3550 		return (NULL);
3551 
3552 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3553 	if (name[0] == '/') {
3554 		dbg("Absolute path (%s) passed to %s", name, __func__);
3555 		return (NULL);
3556 	}
3557 
3558 	/*
3559 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3560 	 * copy of the path, as strtok_r rewrites separator tokens
3561 	 * with '\0'.
3562 	 */
3563 	found = NULL;
3564 	envcopy = xstrdup(path);
3565 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3566 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3567 		dirfd = parse_integer(fdstr);
3568 		if (dirfd < 0) {
3569 			_rtld_error("failed to parse directory FD: '%s'",
3570 				fdstr);
3571 			break;
3572 		}
3573 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3574 		if (fd >= 0) {
3575 			*fdp = fd;
3576 			len = strlen(fdstr) + strlen(name) + 3;
3577 			found = xmalloc(len);
3578 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3579 				_rtld_error("error generating '%d/%s'",
3580 				    dirfd, name);
3581 				rtld_die();
3582 			}
3583 			dbg("open('%s') => %d", found, fd);
3584 			break;
3585 		}
3586 	}
3587 	free(envcopy);
3588 
3589 	return (found);
3590 }
3591 
3592 
3593 int
3594 dlclose(void *handle)
3595 {
3596 	RtldLockState lockstate;
3597 	int error;
3598 
3599 	wlock_acquire(rtld_bind_lock, &lockstate);
3600 	error = dlclose_locked(handle, &lockstate);
3601 	lock_release(rtld_bind_lock, &lockstate);
3602 	return (error);
3603 }
3604 
3605 static int
3606 dlclose_locked(void *handle, RtldLockState *lockstate)
3607 {
3608     Obj_Entry *root;
3609 
3610     root = dlcheck(handle);
3611     if (root == NULL)
3612 	return (-1);
3613     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3614 	root->path);
3615 
3616     /* Unreference the object and its dependencies. */
3617     root->dl_refcount--;
3618 
3619     if (root->refcount == 1) {
3620 	/*
3621 	 * The object will be no longer referenced, so we must unload it.
3622 	 * First, call the fini functions.
3623 	 */
3624 	objlist_call_fini(&list_fini, root, lockstate);
3625 
3626 	unref_dag(root);
3627 
3628 	/* Finish cleaning up the newly-unreferenced objects. */
3629 	GDB_STATE(RT_DELETE,&root->linkmap);
3630 	unload_object(root, lockstate);
3631 	GDB_STATE(RT_CONSISTENT,NULL);
3632     } else
3633 	unref_dag(root);
3634 
3635     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3636     return (0);
3637 }
3638 
3639 char *
3640 dlerror(void)
3641 {
3642 	if (*(lockinfo.dlerror_seen()) != 0)
3643 		return (NULL);
3644 	*lockinfo.dlerror_seen() = 1;
3645 	return (lockinfo.dlerror_loc());
3646 }
3647 
3648 /*
3649  * This function is deprecated and has no effect.
3650  */
3651 void
3652 dllockinit(void *context,
3653     void *(*_lock_create)(void *context) __unused,
3654     void (*_rlock_acquire)(void *lock) __unused,
3655     void (*_wlock_acquire)(void *lock)  __unused,
3656     void (*_lock_release)(void *lock) __unused,
3657     void (*_lock_destroy)(void *lock) __unused,
3658     void (*context_destroy)(void *context))
3659 {
3660     static void *cur_context;
3661     static void (*cur_context_destroy)(void *);
3662 
3663     /* Just destroy the context from the previous call, if necessary. */
3664     if (cur_context_destroy != NULL)
3665 	cur_context_destroy(cur_context);
3666     cur_context = context;
3667     cur_context_destroy = context_destroy;
3668 }
3669 
3670 void *
3671 dlopen(const char *name, int mode)
3672 {
3673 
3674 	return (rtld_dlopen(name, -1, mode));
3675 }
3676 
3677 void *
3678 fdlopen(int fd, int mode)
3679 {
3680 
3681 	return (rtld_dlopen(NULL, fd, mode));
3682 }
3683 
3684 static void *
3685 rtld_dlopen(const char *name, int fd, int mode)
3686 {
3687     RtldLockState lockstate;
3688     int lo_flags;
3689 
3690     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3691     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3692     if (ld_tracing != NULL) {
3693 	rlock_acquire(rtld_bind_lock, &lockstate);
3694 	if (sigsetjmp(lockstate.env, 0) != 0)
3695 	    lock_upgrade(rtld_bind_lock, &lockstate);
3696 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3697 	lock_release(rtld_bind_lock, &lockstate);
3698     }
3699     lo_flags = RTLD_LO_DLOPEN;
3700     if (mode & RTLD_NODELETE)
3701 	    lo_flags |= RTLD_LO_NODELETE;
3702     if (mode & RTLD_NOLOAD)
3703 	    lo_flags |= RTLD_LO_NOLOAD;
3704     if (mode & RTLD_DEEPBIND)
3705 	    lo_flags |= RTLD_LO_DEEPBIND;
3706     if (ld_tracing != NULL)
3707 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3708 
3709     return (dlopen_object(name, fd, obj_main, lo_flags,
3710       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3711 }
3712 
3713 static void
3714 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3715 {
3716 
3717 	obj->dl_refcount--;
3718 	unref_dag(obj);
3719 	if (obj->refcount == 0)
3720 		unload_object(obj, lockstate);
3721 }
3722 
3723 static Obj_Entry *
3724 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3725     int mode, RtldLockState *lockstate)
3726 {
3727     Obj_Entry *obj;
3728     Objlist initlist;
3729     RtldLockState mlockstate;
3730     int result;
3731 
3732     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3733       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3734       refobj->path, lo_flags, mode);
3735     objlist_init(&initlist);
3736 
3737     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3738 	wlock_acquire(rtld_bind_lock, &mlockstate);
3739 	lockstate = &mlockstate;
3740     }
3741     GDB_STATE(RT_ADD,NULL);
3742 
3743     obj = NULL;
3744     if (name == NULL && fd == -1) {
3745 	obj = obj_main;
3746 	obj->refcount++;
3747     } else {
3748 	obj = load_object(name, fd, refobj, lo_flags);
3749     }
3750 
3751     if (obj) {
3752 	obj->dl_refcount++;
3753 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3754 	    objlist_push_tail(&list_global, obj);
3755 
3756 	if (!obj->init_done) {
3757 	    /* We loaded something new and have to init something. */
3758 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3759 		obj->symbolic = true;
3760 	    result = 0;
3761 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3762 	      obj->static_tls && !allocate_tls_offset(obj)) {
3763 		_rtld_error("%s: No space available "
3764 		  "for static Thread Local Storage", obj->path);
3765 		result = -1;
3766 	    }
3767 	    if (result != -1)
3768 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3769 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3770 	    init_dag(obj);
3771 	    ref_dag(obj);
3772 	    if (result != -1)
3773 		result = rtld_verify_versions(&obj->dagmembers);
3774 	    if (result != -1 && ld_tracing)
3775 		goto trace;
3776 	    if (result == -1 || relocate_object_dag(obj,
3777 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3778 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3779 	      lockstate) == -1) {
3780 		dlopen_cleanup(obj, lockstate);
3781 		obj = NULL;
3782 	    } else if (lo_flags & RTLD_LO_EARLY) {
3783 		/*
3784 		 * Do not call the init functions for early loaded
3785 		 * filtees.  The image is still not initialized enough
3786 		 * for them to work.
3787 		 *
3788 		 * Our object is found by the global object list and
3789 		 * will be ordered among all init calls done right
3790 		 * before transferring control to main.
3791 		 */
3792 	    } else {
3793 		/* Make list of init functions to call. */
3794 		initlist_add_objects(obj, obj, &initlist);
3795 	    }
3796 	    /*
3797 	     * Process all no_delete or global objects here, given
3798 	     * them own DAGs to prevent their dependencies from being
3799 	     * unloaded.  This has to be done after we have loaded all
3800 	     * of the dependencies, so that we do not miss any.
3801 	     */
3802 	    if (obj != NULL)
3803 		process_z(obj);
3804 	} else {
3805 	    /*
3806 	     * Bump the reference counts for objects on this DAG.  If
3807 	     * this is the first dlopen() call for the object that was
3808 	     * already loaded as a dependency, initialize the dag
3809 	     * starting at it.
3810 	     */
3811 	    init_dag(obj);
3812 	    ref_dag(obj);
3813 
3814 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3815 		goto trace;
3816 	}
3817 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3818 	  obj->z_nodelete) && !obj->ref_nodel) {
3819 	    dbg("obj %s nodelete", obj->path);
3820 	    ref_dag(obj);
3821 	    obj->z_nodelete = obj->ref_nodel = true;
3822 	}
3823     }
3824 
3825     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3826 	name);
3827     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3828 
3829     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3830 	map_stacks_exec(lockstate);
3831 	if (obj != NULL)
3832 	    distribute_static_tls(&initlist, lockstate);
3833     }
3834 
3835     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3836       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3837       lockstate) == -1) {
3838 	objlist_clear(&initlist);
3839 	dlopen_cleanup(obj, lockstate);
3840 	if (lockstate == &mlockstate)
3841 	    lock_release(rtld_bind_lock, lockstate);
3842 	return (NULL);
3843     }
3844 
3845     if (!(lo_flags & RTLD_LO_EARLY)) {
3846 	/* Call the init functions. */
3847 	objlist_call_init(&initlist, lockstate);
3848     }
3849     objlist_clear(&initlist);
3850     if (lockstate == &mlockstate)
3851 	lock_release(rtld_bind_lock, lockstate);
3852     return (obj);
3853 trace:
3854     trace_loaded_objects(obj, false);
3855     if (lockstate == &mlockstate)
3856 	lock_release(rtld_bind_lock, lockstate);
3857     exit(0);
3858 }
3859 
3860 static void *
3861 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3862     int flags)
3863 {
3864     DoneList donelist;
3865     const Obj_Entry *obj, *defobj;
3866     const Elf_Sym *def;
3867     SymLook req;
3868     RtldLockState lockstate;
3869     tls_index ti;
3870     void *sym;
3871     int res;
3872 
3873     def = NULL;
3874     defobj = NULL;
3875     symlook_init(&req, name);
3876     req.ventry = ve;
3877     req.flags = flags | SYMLOOK_IN_PLT;
3878     req.lockstate = &lockstate;
3879 
3880     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3881     rlock_acquire(rtld_bind_lock, &lockstate);
3882     if (sigsetjmp(lockstate.env, 0) != 0)
3883 	    lock_upgrade(rtld_bind_lock, &lockstate);
3884     if (handle == NULL || handle == RTLD_NEXT ||
3885 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3886 
3887 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3888 	    _rtld_error("Cannot determine caller's shared object");
3889 	    lock_release(rtld_bind_lock, &lockstate);
3890 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3891 	    return (NULL);
3892 	}
3893 	if (handle == NULL) {	/* Just the caller's shared object. */
3894 	    res = symlook_obj(&req, obj);
3895 	    if (res == 0) {
3896 		def = req.sym_out;
3897 		defobj = req.defobj_out;
3898 	    }
3899 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3900 		   handle == RTLD_SELF) { /* ... caller included */
3901 	    if (handle == RTLD_NEXT)
3902 		obj = globallist_next(obj);
3903 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3904 		if (obj->marker)
3905 		    continue;
3906 		res = symlook_obj(&req, obj);
3907 		if (res == 0) {
3908 		    if (def == NULL || (ld_dynamic_weak &&
3909                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3910 			def = req.sym_out;
3911 			defobj = req.defobj_out;
3912 			if (!ld_dynamic_weak ||
3913 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3914 			    break;
3915 		    }
3916 		}
3917 	    }
3918 	    /*
3919 	     * Search the dynamic linker itself, and possibly resolve the
3920 	     * symbol from there.  This is how the application links to
3921 	     * dynamic linker services such as dlopen.
3922 	     * Note that we ignore ld_dynamic_weak == false case,
3923 	     * always overriding weak symbols by rtld definitions.
3924 	     */
3925 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3926 		res = symlook_obj(&req, &obj_rtld);
3927 		if (res == 0) {
3928 		    def = req.sym_out;
3929 		    defobj = req.defobj_out;
3930 		}
3931 	    }
3932 	} else {
3933 	    assert(handle == RTLD_DEFAULT);
3934 	    res = symlook_default(&req, obj);
3935 	    if (res == 0) {
3936 		defobj = req.defobj_out;
3937 		def = req.sym_out;
3938 	    }
3939 	}
3940     } else {
3941 	if ((obj = dlcheck(handle)) == NULL) {
3942 	    lock_release(rtld_bind_lock, &lockstate);
3943 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3944 	    return (NULL);
3945 	}
3946 
3947 	donelist_init(&donelist);
3948 	if (obj->mainprog) {
3949             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3950 	    res = symlook_global(&req, &donelist);
3951 	    if (res == 0) {
3952 		def = req.sym_out;
3953 		defobj = req.defobj_out;
3954 	    }
3955 	    /*
3956 	     * Search the dynamic linker itself, and possibly resolve the
3957 	     * symbol from there.  This is how the application links to
3958 	     * dynamic linker services such as dlopen.
3959 	     */
3960 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3961 		res = symlook_obj(&req, &obj_rtld);
3962 		if (res == 0) {
3963 		    def = req.sym_out;
3964 		    defobj = req.defobj_out;
3965 		}
3966 	    }
3967 	}
3968 	else {
3969 	    /* Search the whole DAG rooted at the given object. */
3970 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3971 	    if (res == 0) {
3972 		def = req.sym_out;
3973 		defobj = req.defobj_out;
3974 	    }
3975 	}
3976     }
3977 
3978     if (def != NULL) {
3979 	lock_release(rtld_bind_lock, &lockstate);
3980 
3981 	/*
3982 	 * The value required by the caller is derived from the value
3983 	 * of the symbol. this is simply the relocated value of the
3984 	 * symbol.
3985 	 */
3986 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3987 	    sym = make_function_pointer(def, defobj);
3988 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3989 	    sym = rtld_resolve_ifunc(defobj, def);
3990 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3991 	    ti.ti_module = defobj->tlsindex;
3992 	    ti.ti_offset = def->st_value;
3993 	    sym = __tls_get_addr(&ti);
3994 	} else
3995 	    sym = defobj->relocbase + def->st_value;
3996 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3997 	return (sym);
3998     }
3999 
4000     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4001       ve != NULL ? ve->name : "");
4002     lock_release(rtld_bind_lock, &lockstate);
4003     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4004     return (NULL);
4005 }
4006 
4007 void *
4008 dlsym(void *handle, const char *name)
4009 {
4010 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4011 	    SYMLOOK_DLSYM));
4012 }
4013 
4014 dlfunc_t
4015 dlfunc(void *handle, const char *name)
4016 {
4017 	union {
4018 		void *d;
4019 		dlfunc_t f;
4020 	} rv;
4021 
4022 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4023 	    SYMLOOK_DLSYM);
4024 	return (rv.f);
4025 }
4026 
4027 void *
4028 dlvsym(void *handle, const char *name, const char *version)
4029 {
4030 	Ver_Entry ventry;
4031 
4032 	ventry.name = version;
4033 	ventry.file = NULL;
4034 	ventry.hash = elf_hash(version);
4035 	ventry.flags= 0;
4036 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4037 	    SYMLOOK_DLSYM));
4038 }
4039 
4040 int
4041 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4042 {
4043     const Obj_Entry *obj;
4044     RtldLockState lockstate;
4045 
4046     rlock_acquire(rtld_bind_lock, &lockstate);
4047     obj = obj_from_addr(addr);
4048     if (obj == NULL) {
4049         _rtld_error("No shared object contains address");
4050 	lock_release(rtld_bind_lock, &lockstate);
4051         return (0);
4052     }
4053     rtld_fill_dl_phdr_info(obj, phdr_info);
4054     lock_release(rtld_bind_lock, &lockstate);
4055     return (1);
4056 }
4057 
4058 int
4059 dladdr(const void *addr, Dl_info *info)
4060 {
4061     const Obj_Entry *obj;
4062     const Elf_Sym *def;
4063     void *symbol_addr;
4064     unsigned long symoffset;
4065     RtldLockState lockstate;
4066 
4067     rlock_acquire(rtld_bind_lock, &lockstate);
4068     obj = obj_from_addr(addr);
4069     if (obj == NULL) {
4070         _rtld_error("No shared object contains address");
4071 	lock_release(rtld_bind_lock, &lockstate);
4072         return (0);
4073     }
4074     info->dli_fname = obj->path;
4075     info->dli_fbase = obj->mapbase;
4076     info->dli_saddr = (void *)0;
4077     info->dli_sname = NULL;
4078 
4079     /*
4080      * Walk the symbol list looking for the symbol whose address is
4081      * closest to the address sent in.
4082      */
4083     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4084         def = obj->symtab + symoffset;
4085 
4086         /*
4087          * For skip the symbol if st_shndx is either SHN_UNDEF or
4088          * SHN_COMMON.
4089          */
4090         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4091             continue;
4092 
4093         /*
4094          * If the symbol is greater than the specified address, or if it
4095          * is further away from addr than the current nearest symbol,
4096          * then reject it.
4097          */
4098         symbol_addr = obj->relocbase + def->st_value;
4099         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4100             continue;
4101 
4102         /* Update our idea of the nearest symbol. */
4103         info->dli_sname = obj->strtab + def->st_name;
4104         info->dli_saddr = symbol_addr;
4105 
4106         /* Exact match? */
4107         if (info->dli_saddr == addr)
4108             break;
4109     }
4110     lock_release(rtld_bind_lock, &lockstate);
4111     return (1);
4112 }
4113 
4114 int
4115 dlinfo(void *handle, int request, void *p)
4116 {
4117     const Obj_Entry *obj;
4118     RtldLockState lockstate;
4119     int error;
4120 
4121     rlock_acquire(rtld_bind_lock, &lockstate);
4122 
4123     if (handle == NULL || handle == RTLD_SELF) {
4124 	void *retaddr;
4125 
4126 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4127 	if ((obj = obj_from_addr(retaddr)) == NULL)
4128 	    _rtld_error("Cannot determine caller's shared object");
4129     } else
4130 	obj = dlcheck(handle);
4131 
4132     if (obj == NULL) {
4133 	lock_release(rtld_bind_lock, &lockstate);
4134 	return (-1);
4135     }
4136 
4137     error = 0;
4138     switch (request) {
4139     case RTLD_DI_LINKMAP:
4140 	*((struct link_map const **)p) = &obj->linkmap;
4141 	break;
4142     case RTLD_DI_ORIGIN:
4143 	error = rtld_dirname(obj->path, p);
4144 	break;
4145 
4146     case RTLD_DI_SERINFOSIZE:
4147     case RTLD_DI_SERINFO:
4148 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4149 	break;
4150 
4151     default:
4152 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4153 	error = -1;
4154     }
4155 
4156     lock_release(rtld_bind_lock, &lockstate);
4157 
4158     return (error);
4159 }
4160 
4161 static void
4162 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4163 {
4164 	uintptr_t **dtvp;
4165 
4166 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4167 	phdr_info->dlpi_name = obj->path;
4168 	phdr_info->dlpi_phdr = obj->phdr;
4169 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4170 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4171 	dtvp = &_tcb_get()->tcb_dtv;
4172 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4173 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4174 	phdr_info->dlpi_adds = obj_loads;
4175 	phdr_info->dlpi_subs = obj_loads - obj_count;
4176 }
4177 
4178 int
4179 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4180 {
4181 	struct dl_phdr_info phdr_info;
4182 	Obj_Entry *obj, marker;
4183 	RtldLockState bind_lockstate, phdr_lockstate;
4184 	int error;
4185 
4186 	init_marker(&marker);
4187 	error = 0;
4188 
4189 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4190 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4191 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4192 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4193 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4194 		hold_object(obj);
4195 		lock_release(rtld_bind_lock, &bind_lockstate);
4196 
4197 		error = callback(&phdr_info, sizeof phdr_info, param);
4198 
4199 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4200 		unhold_object(obj);
4201 		obj = globallist_next(&marker);
4202 		TAILQ_REMOVE(&obj_list, &marker, next);
4203 		if (error != 0) {
4204 			lock_release(rtld_bind_lock, &bind_lockstate);
4205 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4206 			return (error);
4207 		}
4208 	}
4209 
4210 	if (error == 0) {
4211 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4212 		lock_release(rtld_bind_lock, &bind_lockstate);
4213 		error = callback(&phdr_info, sizeof(phdr_info), param);
4214 	}
4215 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4216 	return (error);
4217 }
4218 
4219 static void *
4220 fill_search_info(const char *dir, size_t dirlen, void *param)
4221 {
4222     struct fill_search_info_args *arg;
4223 
4224     arg = param;
4225 
4226     if (arg->request == RTLD_DI_SERINFOSIZE) {
4227 	arg->serinfo->dls_cnt ++;
4228 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4229     } else {
4230 	struct dl_serpath *s_entry;
4231 
4232 	s_entry = arg->serpath;
4233 	s_entry->dls_name  = arg->strspace;
4234 	s_entry->dls_flags = arg->flags;
4235 
4236 	strncpy(arg->strspace, dir, dirlen);
4237 	arg->strspace[dirlen] = '\0';
4238 
4239 	arg->strspace += dirlen + 1;
4240 	arg->serpath++;
4241     }
4242 
4243     return (NULL);
4244 }
4245 
4246 static int
4247 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4248 {
4249     struct dl_serinfo _info;
4250     struct fill_search_info_args args;
4251 
4252     args.request = RTLD_DI_SERINFOSIZE;
4253     args.serinfo = &_info;
4254 
4255     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4256     _info.dls_cnt  = 0;
4257 
4258     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4259     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4260     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4261     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4262     if (!obj->z_nodeflib)
4263       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4264 
4265 
4266     if (request == RTLD_DI_SERINFOSIZE) {
4267 	info->dls_size = _info.dls_size;
4268 	info->dls_cnt = _info.dls_cnt;
4269 	return (0);
4270     }
4271 
4272     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4273 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4274 	return (-1);
4275     }
4276 
4277     args.request  = RTLD_DI_SERINFO;
4278     args.serinfo  = info;
4279     args.serpath  = &info->dls_serpath[0];
4280     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4281 
4282     args.flags = LA_SER_RUNPATH;
4283     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4284 	return (-1);
4285 
4286     args.flags = LA_SER_LIBPATH;
4287     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4288 	return (-1);
4289 
4290     args.flags = LA_SER_RUNPATH;
4291     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4292 	return (-1);
4293 
4294     args.flags = LA_SER_CONFIG;
4295     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4296       != NULL)
4297 	return (-1);
4298 
4299     args.flags = LA_SER_DEFAULT;
4300     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4301       fill_search_info, NULL, &args) != NULL)
4302 	return (-1);
4303     return (0);
4304 }
4305 
4306 static int
4307 rtld_dirname(const char *path, char *bname)
4308 {
4309     const char *endp;
4310 
4311     /* Empty or NULL string gets treated as "." */
4312     if (path == NULL || *path == '\0') {
4313 	bname[0] = '.';
4314 	bname[1] = '\0';
4315 	return (0);
4316     }
4317 
4318     /* Strip trailing slashes */
4319     endp = path + strlen(path) - 1;
4320     while (endp > path && *endp == '/')
4321 	endp--;
4322 
4323     /* Find the start of the dir */
4324     while (endp > path && *endp != '/')
4325 	endp--;
4326 
4327     /* Either the dir is "/" or there are no slashes */
4328     if (endp == path) {
4329 	bname[0] = *endp == '/' ? '/' : '.';
4330 	bname[1] = '\0';
4331 	return (0);
4332     } else {
4333 	do {
4334 	    endp--;
4335 	} while (endp > path && *endp == '/');
4336     }
4337 
4338     if (endp - path + 2 > PATH_MAX)
4339     {
4340 	_rtld_error("Filename is too long: %s", path);
4341 	return(-1);
4342     }
4343 
4344     strncpy(bname, path, endp - path + 1);
4345     bname[endp - path + 1] = '\0';
4346     return (0);
4347 }
4348 
4349 static int
4350 rtld_dirname_abs(const char *path, char *base)
4351 {
4352 	char *last;
4353 
4354 	if (realpath(path, base) == NULL) {
4355 		_rtld_error("realpath \"%s\" failed (%s)", path,
4356 		    rtld_strerror(errno));
4357 		return (-1);
4358 	}
4359 	dbg("%s -> %s", path, base);
4360 	last = strrchr(base, '/');
4361 	if (last == NULL) {
4362 		_rtld_error("non-abs result from realpath \"%s\"", path);
4363 		return (-1);
4364 	}
4365 	if (last != base)
4366 		*last = '\0';
4367 	return (0);
4368 }
4369 
4370 static void
4371 linkmap_add(Obj_Entry *obj)
4372 {
4373 	struct link_map *l, *prev;
4374 
4375 	l = &obj->linkmap;
4376 	l->l_name = obj->path;
4377 	l->l_base = obj->mapbase;
4378 	l->l_ld = obj->dynamic;
4379 	l->l_addr = obj->relocbase;
4380 
4381 	if (r_debug.r_map == NULL) {
4382 		r_debug.r_map = l;
4383 		return;
4384 	}
4385 
4386 	/*
4387 	 * Scan to the end of the list, but not past the entry for the
4388 	 * dynamic linker, which we want to keep at the very end.
4389 	 */
4390 	for (prev = r_debug.r_map;
4391 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4392 	     prev = prev->l_next)
4393 		;
4394 
4395 	/* Link in the new entry. */
4396 	l->l_prev = prev;
4397 	l->l_next = prev->l_next;
4398 	if (l->l_next != NULL)
4399 		l->l_next->l_prev = l;
4400 	prev->l_next = l;
4401 }
4402 
4403 static void
4404 linkmap_delete(Obj_Entry *obj)
4405 {
4406 	struct link_map *l;
4407 
4408 	l = &obj->linkmap;
4409 	if (l->l_prev == NULL) {
4410 		if ((r_debug.r_map = l->l_next) != NULL)
4411 			l->l_next->l_prev = NULL;
4412 		return;
4413 	}
4414 
4415 	if ((l->l_prev->l_next = l->l_next) != NULL)
4416 		l->l_next->l_prev = l->l_prev;
4417 }
4418 
4419 /*
4420  * Function for the debugger to set a breakpoint on to gain control.
4421  *
4422  * The two parameters allow the debugger to easily find and determine
4423  * what the runtime loader is doing and to whom it is doing it.
4424  *
4425  * When the loadhook trap is hit (r_debug_state, set at program
4426  * initialization), the arguments can be found on the stack:
4427  *
4428  *  +8   struct link_map *m
4429  *  +4   struct r_debug  *rd
4430  *  +0   RetAddr
4431  */
4432 void
4433 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4434 {
4435     /*
4436      * The following is a hack to force the compiler to emit calls to
4437      * this function, even when optimizing.  If the function is empty,
4438      * the compiler is not obliged to emit any code for calls to it,
4439      * even when marked __noinline.  However, gdb depends on those
4440      * calls being made.
4441      */
4442     __compiler_membar();
4443 }
4444 
4445 /*
4446  * A function called after init routines have completed. This can be used to
4447  * break before a program's entry routine is called, and can be used when
4448  * main is not available in the symbol table.
4449  */
4450 void
4451 _r_debug_postinit(struct link_map *m __unused)
4452 {
4453 
4454 	/* See r_debug_state(). */
4455 	__compiler_membar();
4456 }
4457 
4458 static void
4459 release_object(Obj_Entry *obj)
4460 {
4461 
4462 	if (obj->holdcount > 0) {
4463 		obj->unholdfree = true;
4464 		return;
4465 	}
4466 	munmap(obj->mapbase, obj->mapsize);
4467 	linkmap_delete(obj);
4468 	obj_free(obj);
4469 }
4470 
4471 /*
4472  * Get address of the pointer variable in the main program.
4473  * Prefer non-weak symbol over the weak one.
4474  */
4475 static const void **
4476 get_program_var_addr(const char *name, RtldLockState *lockstate)
4477 {
4478     SymLook req;
4479     DoneList donelist;
4480 
4481     symlook_init(&req, name);
4482     req.lockstate = lockstate;
4483     donelist_init(&donelist);
4484     if (symlook_global(&req, &donelist) != 0)
4485 	return (NULL);
4486     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4487 	return ((const void **)make_function_pointer(req.sym_out,
4488 	  req.defobj_out));
4489     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4490 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4491     else
4492 	return ((const void **)(req.defobj_out->relocbase +
4493 	  req.sym_out->st_value));
4494 }
4495 
4496 /*
4497  * Set a pointer variable in the main program to the given value.  This
4498  * is used to set key variables such as "environ" before any of the
4499  * init functions are called.
4500  */
4501 static void
4502 set_program_var(const char *name, const void *value)
4503 {
4504     const void **addr;
4505 
4506     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4507 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4508 	*addr = value;
4509     }
4510 }
4511 
4512 /*
4513  * Search the global objects, including dependencies and main object,
4514  * for the given symbol.
4515  */
4516 static int
4517 symlook_global(SymLook *req, DoneList *donelist)
4518 {
4519     SymLook req1;
4520     const Objlist_Entry *elm;
4521     int res;
4522 
4523     symlook_init_from_req(&req1, req);
4524 
4525     /* Search all objects loaded at program start up. */
4526     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4527       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4528 	res = symlook_list(&req1, &list_main, donelist);
4529 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4530 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4531 	    req->sym_out = req1.sym_out;
4532 	    req->defobj_out = req1.defobj_out;
4533 	    assert(req->defobj_out != NULL);
4534 	}
4535     }
4536 
4537     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4538     STAILQ_FOREACH(elm, &list_global, link) {
4539 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4540           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4541 	    break;
4542 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4543 	if (res == 0 && (req->defobj_out == NULL ||
4544 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4545 	    req->sym_out = req1.sym_out;
4546 	    req->defobj_out = req1.defobj_out;
4547 	    assert(req->defobj_out != NULL);
4548 	}
4549     }
4550 
4551     return (req->sym_out != NULL ? 0 : ESRCH);
4552 }
4553 
4554 /*
4555  * Given a symbol name in a referencing object, find the corresponding
4556  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4557  * no definition was found.  Returns a pointer to the Obj_Entry of the
4558  * defining object via the reference parameter DEFOBJ_OUT.
4559  */
4560 static int
4561 symlook_default(SymLook *req, const Obj_Entry *refobj)
4562 {
4563     DoneList donelist;
4564     const Objlist_Entry *elm;
4565     SymLook req1;
4566     int res;
4567 
4568     donelist_init(&donelist);
4569     symlook_init_from_req(&req1, req);
4570 
4571     /*
4572      * Look first in the referencing object if linked symbolically,
4573      * and similarly handle protected symbols.
4574      */
4575     res = symlook_obj(&req1, refobj);
4576     if (res == 0 && (refobj->symbolic ||
4577       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4578 	req->sym_out = req1.sym_out;
4579 	req->defobj_out = req1.defobj_out;
4580 	assert(req->defobj_out != NULL);
4581     }
4582     if (refobj->symbolic || req->defobj_out != NULL)
4583 	donelist_check(&donelist, refobj);
4584 
4585     symlook_global(req, &donelist);
4586 
4587     /* Search all dlopened DAGs containing the referencing object. */
4588     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4589 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4590           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4591 	    break;
4592 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4593 	if (res == 0 && (req->sym_out == NULL ||
4594 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4595 	    req->sym_out = req1.sym_out;
4596 	    req->defobj_out = req1.defobj_out;
4597 	    assert(req->defobj_out != NULL);
4598 	}
4599     }
4600 
4601     /*
4602      * Search the dynamic linker itself, and possibly resolve the
4603      * symbol from there.  This is how the application links to
4604      * dynamic linker services such as dlopen.
4605      */
4606     if (req->sym_out == NULL ||
4607       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4608 	res = symlook_obj(&req1, &obj_rtld);
4609 	if (res == 0) {
4610 	    req->sym_out = req1.sym_out;
4611 	    req->defobj_out = req1.defobj_out;
4612 	    assert(req->defobj_out != NULL);
4613 	}
4614     }
4615 
4616     return (req->sym_out != NULL ? 0 : ESRCH);
4617 }
4618 
4619 static int
4620 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4621 {
4622     const Elf_Sym *def;
4623     const Obj_Entry *defobj;
4624     const Objlist_Entry *elm;
4625     SymLook req1;
4626     int res;
4627 
4628     def = NULL;
4629     defobj = NULL;
4630     STAILQ_FOREACH(elm, objlist, link) {
4631 	if (donelist_check(dlp, elm->obj))
4632 	    continue;
4633 	symlook_init_from_req(&req1, req);
4634 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4635 	    if (def == NULL || (ld_dynamic_weak &&
4636               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4637 		def = req1.sym_out;
4638 		defobj = req1.defobj_out;
4639 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4640 		    break;
4641 	    }
4642 	}
4643     }
4644     if (def != NULL) {
4645 	req->sym_out = def;
4646 	req->defobj_out = defobj;
4647 	return (0);
4648     }
4649     return (ESRCH);
4650 }
4651 
4652 /*
4653  * Search the chain of DAGS cointed to by the given Needed_Entry
4654  * for a symbol of the given name.  Each DAG is scanned completely
4655  * before advancing to the next one.  Returns a pointer to the symbol,
4656  * or NULL if no definition was found.
4657  */
4658 static int
4659 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4660 {
4661     const Elf_Sym *def;
4662     const Needed_Entry *n;
4663     const Obj_Entry *defobj;
4664     SymLook req1;
4665     int res;
4666 
4667     def = NULL;
4668     defobj = NULL;
4669     symlook_init_from_req(&req1, req);
4670     for (n = needed; n != NULL; n = n->next) {
4671 	if (n->obj == NULL ||
4672 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4673 	    continue;
4674 	if (def == NULL || (ld_dynamic_weak &&
4675           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4676 	    def = req1.sym_out;
4677 	    defobj = req1.defobj_out;
4678 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4679 		break;
4680 	}
4681     }
4682     if (def != NULL) {
4683 	req->sym_out = def;
4684 	req->defobj_out = defobj;
4685 	return (0);
4686     }
4687     return (ESRCH);
4688 }
4689 
4690 /*
4691  * Search the symbol table of a single shared object for a symbol of
4692  * the given name and version, if requested.  Returns a pointer to the
4693  * symbol, or NULL if no definition was found.  If the object is
4694  * filter, return filtered symbol from filtee.
4695  *
4696  * The symbol's hash value is passed in for efficiency reasons; that
4697  * eliminates many recomputations of the hash value.
4698  */
4699 int
4700 symlook_obj(SymLook *req, const Obj_Entry *obj)
4701 {
4702     DoneList donelist;
4703     SymLook req1;
4704     int flags, res, mres;
4705 
4706     /*
4707      * If there is at least one valid hash at this point, we prefer to
4708      * use the faster GNU version if available.
4709      */
4710     if (obj->valid_hash_gnu)
4711 	mres = symlook_obj1_gnu(req, obj);
4712     else if (obj->valid_hash_sysv)
4713 	mres = symlook_obj1_sysv(req, obj);
4714     else
4715 	return (EINVAL);
4716 
4717     if (mres == 0) {
4718 	if (obj->needed_filtees != NULL) {
4719 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4720 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4721 	    donelist_init(&donelist);
4722 	    symlook_init_from_req(&req1, req);
4723 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4724 	    if (res == 0) {
4725 		req->sym_out = req1.sym_out;
4726 		req->defobj_out = req1.defobj_out;
4727 	    }
4728 	    return (res);
4729 	}
4730 	if (obj->needed_aux_filtees != NULL) {
4731 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4732 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4733 	    donelist_init(&donelist);
4734 	    symlook_init_from_req(&req1, req);
4735 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4736 	    if (res == 0) {
4737 		req->sym_out = req1.sym_out;
4738 		req->defobj_out = req1.defobj_out;
4739 		return (res);
4740 	    }
4741 	}
4742     }
4743     return (mres);
4744 }
4745 
4746 /* Symbol match routine common to both hash functions */
4747 static bool
4748 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4749     const unsigned long symnum)
4750 {
4751 	Elf_Versym verndx;
4752 	const Elf_Sym *symp;
4753 	const char *strp;
4754 
4755 	symp = obj->symtab + symnum;
4756 	strp = obj->strtab + symp->st_name;
4757 
4758 	switch (ELF_ST_TYPE(symp->st_info)) {
4759 	case STT_FUNC:
4760 	case STT_NOTYPE:
4761 	case STT_OBJECT:
4762 	case STT_COMMON:
4763 	case STT_GNU_IFUNC:
4764 		if (symp->st_value == 0)
4765 			return (false);
4766 		/* fallthrough */
4767 	case STT_TLS:
4768 		if (symp->st_shndx != SHN_UNDEF)
4769 			break;
4770 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4771 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4772 			break;
4773 		/* fallthrough */
4774 	default:
4775 		return (false);
4776 	}
4777 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4778 		return (false);
4779 
4780 	if (req->ventry == NULL) {
4781 		if (obj->versyms != NULL) {
4782 			verndx = VER_NDX(obj->versyms[symnum]);
4783 			if (verndx > obj->vernum) {
4784 				_rtld_error(
4785 				    "%s: symbol %s references wrong version %d",
4786 				    obj->path, obj->strtab + symnum, verndx);
4787 				return (false);
4788 			}
4789 			/*
4790 			 * If we are not called from dlsym (i.e. this
4791 			 * is a normal relocation from unversioned
4792 			 * binary), accept the symbol immediately if
4793 			 * it happens to have first version after this
4794 			 * shared object became versioned.  Otherwise,
4795 			 * if symbol is versioned and not hidden,
4796 			 * remember it. If it is the only symbol with
4797 			 * this name exported by the shared object, it
4798 			 * will be returned as a match by the calling
4799 			 * function. If symbol is global (verndx < 2)
4800 			 * accept it unconditionally.
4801 			 */
4802 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4803 			    verndx == VER_NDX_GIVEN) {
4804 				result->sym_out = symp;
4805 				return (true);
4806 			}
4807 			else if (verndx >= VER_NDX_GIVEN) {
4808 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4809 				    == 0) {
4810 					if (result->vsymp == NULL)
4811 						result->vsymp = symp;
4812 					result->vcount++;
4813 				}
4814 				return (false);
4815 			}
4816 		}
4817 		result->sym_out = symp;
4818 		return (true);
4819 	}
4820 	if (obj->versyms == NULL) {
4821 		if (object_match_name(obj, req->ventry->name)) {
4822 			_rtld_error("%s: object %s should provide version %s "
4823 			    "for symbol %s", obj_rtld.path, obj->path,
4824 			    req->ventry->name, obj->strtab + symnum);
4825 			return (false);
4826 		}
4827 	} else {
4828 		verndx = VER_NDX(obj->versyms[symnum]);
4829 		if (verndx > obj->vernum) {
4830 			_rtld_error("%s: symbol %s references wrong version %d",
4831 			    obj->path, obj->strtab + symnum, verndx);
4832 			return (false);
4833 		}
4834 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4835 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4836 			/*
4837 			 * Version does not match. Look if this is a
4838 			 * global symbol and if it is not hidden. If
4839 			 * global symbol (verndx < 2) is available,
4840 			 * use it. Do not return symbol if we are
4841 			 * called by dlvsym, because dlvsym looks for
4842 			 * a specific version and default one is not
4843 			 * what dlvsym wants.
4844 			 */
4845 			if ((req->flags & SYMLOOK_DLSYM) ||
4846 			    (verndx >= VER_NDX_GIVEN) ||
4847 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4848 				return (false);
4849 		}
4850 	}
4851 	result->sym_out = symp;
4852 	return (true);
4853 }
4854 
4855 /*
4856  * Search for symbol using SysV hash function.
4857  * obj->buckets is known not to be NULL at this point; the test for this was
4858  * performed with the obj->valid_hash_sysv assignment.
4859  */
4860 static int
4861 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4862 {
4863 	unsigned long symnum;
4864 	Sym_Match_Result matchres;
4865 
4866 	matchres.sym_out = NULL;
4867 	matchres.vsymp = NULL;
4868 	matchres.vcount = 0;
4869 
4870 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4871 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4872 		if (symnum >= obj->nchains)
4873 			return (ESRCH);	/* Bad object */
4874 
4875 		if (matched_symbol(req, obj, &matchres, symnum)) {
4876 			req->sym_out = matchres.sym_out;
4877 			req->defobj_out = obj;
4878 			return (0);
4879 		}
4880 	}
4881 	if (matchres.vcount == 1) {
4882 		req->sym_out = matchres.vsymp;
4883 		req->defobj_out = obj;
4884 		return (0);
4885 	}
4886 	return (ESRCH);
4887 }
4888 
4889 /* Search for symbol using GNU hash function */
4890 static int
4891 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4892 {
4893 	Elf_Addr bloom_word;
4894 	const Elf32_Word *hashval;
4895 	Elf32_Word bucket;
4896 	Sym_Match_Result matchres;
4897 	unsigned int h1, h2;
4898 	unsigned long symnum;
4899 
4900 	matchres.sym_out = NULL;
4901 	matchres.vsymp = NULL;
4902 	matchres.vcount = 0;
4903 
4904 	/* Pick right bitmask word from Bloom filter array */
4905 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4906 	    obj->maskwords_bm_gnu];
4907 
4908 	/* Calculate modulus word size of gnu hash and its derivative */
4909 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4910 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4911 
4912 	/* Filter out the "definitely not in set" queries */
4913 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4914 		return (ESRCH);
4915 
4916 	/* Locate hash chain and corresponding value element*/
4917 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4918 	if (bucket == 0)
4919 		return (ESRCH);
4920 	hashval = &obj->chain_zero_gnu[bucket];
4921 	do {
4922 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4923 			symnum = hashval - obj->chain_zero_gnu;
4924 			if (matched_symbol(req, obj, &matchres, symnum)) {
4925 				req->sym_out = matchres.sym_out;
4926 				req->defobj_out = obj;
4927 				return (0);
4928 			}
4929 		}
4930 	} while ((*hashval++ & 1) == 0);
4931 	if (matchres.vcount == 1) {
4932 		req->sym_out = matchres.vsymp;
4933 		req->defobj_out = obj;
4934 		return (0);
4935 	}
4936 	return (ESRCH);
4937 }
4938 
4939 static void
4940 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4941 {
4942 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4943 	if (*main_local == NULL)
4944 		*main_local = "";
4945 
4946 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4947 	if (*fmt1 == NULL)
4948 		*fmt1 = "\t%o => %p (%x)\n";
4949 
4950 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4951 	if (*fmt2 == NULL)
4952 		*fmt2 = "\t%o (%x)\n";
4953 }
4954 
4955 static void
4956 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4957     const char *main_local, const char *fmt1, const char *fmt2)
4958 {
4959 	const char *fmt;
4960 	int c;
4961 
4962 	if (fmt1 == NULL)
4963 		fmt = fmt2;
4964 	else
4965 		/* XXX bogus */
4966 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
4967 
4968 	while ((c = *fmt++) != '\0') {
4969 		switch (c) {
4970 		default:
4971 			rtld_putchar(c);
4972 			continue;
4973 		case '\\':
4974 			switch (c = *fmt) {
4975 			case '\0':
4976 				continue;
4977 			case 'n':
4978 				rtld_putchar('\n');
4979 				break;
4980 			case 't':
4981 				rtld_putchar('\t');
4982 				break;
4983 			}
4984 			break;
4985 		case '%':
4986 			switch (c = *fmt) {
4987 			case '\0':
4988 				continue;
4989 			case '%':
4990 			default:
4991 				rtld_putchar(c);
4992 				break;
4993 			case 'A':
4994 				rtld_putstr(main_local);
4995 				break;
4996 			case 'a':
4997 				rtld_putstr(obj_main->path);
4998 				break;
4999 			case 'o':
5000 				rtld_putstr(name);
5001 				break;
5002 			case 'p':
5003 				rtld_putstr(path);
5004 				break;
5005 			case 'x':
5006 				rtld_printf("%p", obj != NULL ?
5007 				    obj->mapbase : NULL);
5008 				break;
5009 			}
5010 			break;
5011 		}
5012 		++fmt;
5013 	}
5014 }
5015 
5016 static void
5017 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5018 {
5019 	const char *fmt1, *fmt2, *main_local;
5020 	const char *name, *path;
5021 	bool first_spurious, list_containers;
5022 
5023 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5024 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5025 
5026 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5027 		Needed_Entry *needed;
5028 
5029 		if (obj->marker)
5030 			continue;
5031 		if (list_containers && obj->needed != NULL)
5032 			rtld_printf("%s:\n", obj->path);
5033 		for (needed = obj->needed; needed; needed = needed->next) {
5034 			if (needed->obj != NULL) {
5035 				if (needed->obj->traced && !list_containers)
5036 					continue;
5037 				needed->obj->traced = true;
5038 				path = needed->obj->path;
5039 			} else
5040 				path = "not found";
5041 
5042 			name = obj->strtab + needed->name;
5043 			trace_print_obj(needed->obj, name, path, main_local,
5044 			    fmt1, fmt2);
5045 		}
5046 	}
5047 
5048 	if (show_preload) {
5049 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5050 			fmt2 = "\t%p (%x)\n";
5051 		first_spurious = true;
5052 
5053 		TAILQ_FOREACH(obj, &obj_list, next) {
5054 			if (obj->marker || obj == obj_main || obj->traced)
5055 				continue;
5056 
5057 			if (list_containers && first_spurious) {
5058 				rtld_printf("[preloaded]\n");
5059 				first_spurious = false;
5060 			}
5061 
5062 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5063 			name = fname == NULL ? "<unknown>" : fname->name;
5064 			trace_print_obj(obj, name, obj->path, main_local,
5065 			    NULL, fmt2);
5066 		}
5067 	}
5068 }
5069 
5070 /*
5071  * Unload a dlopened object and its dependencies from memory and from
5072  * our data structures.  It is assumed that the DAG rooted in the
5073  * object has already been unreferenced, and that the object has a
5074  * reference count of 0.
5075  */
5076 static void
5077 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5078 {
5079 	Obj_Entry marker, *obj, *next;
5080 
5081 	assert(root->refcount == 0);
5082 
5083 	/*
5084 	 * Pass over the DAG removing unreferenced objects from
5085 	 * appropriate lists.
5086 	 */
5087 	unlink_object(root);
5088 
5089 	/* Unmap all objects that are no longer referenced. */
5090 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5091 		next = TAILQ_NEXT(obj, next);
5092 		if (obj->marker || obj->refcount != 0)
5093 			continue;
5094 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5095 		    obj->mapsize, 0, obj->path);
5096 		dbg("unloading \"%s\"", obj->path);
5097 		/*
5098 		 * Unlink the object now to prevent new references from
5099 		 * being acquired while the bind lock is dropped in
5100 		 * recursive dlclose() invocations.
5101 		 */
5102 		TAILQ_REMOVE(&obj_list, obj, next);
5103 		obj_count--;
5104 
5105 		if (obj->filtees_loaded) {
5106 			if (next != NULL) {
5107 				init_marker(&marker);
5108 				TAILQ_INSERT_BEFORE(next, &marker, next);
5109 				unload_filtees(obj, lockstate);
5110 				next = TAILQ_NEXT(&marker, next);
5111 				TAILQ_REMOVE(&obj_list, &marker, next);
5112 			} else
5113 				unload_filtees(obj, lockstate);
5114 		}
5115 		release_object(obj);
5116 	}
5117 }
5118 
5119 static void
5120 unlink_object(Obj_Entry *root)
5121 {
5122     Objlist_Entry *elm;
5123 
5124     if (root->refcount == 0) {
5125 	/* Remove the object from the RTLD_GLOBAL list. */
5126 	objlist_remove(&list_global, root);
5127 
5128     	/* Remove the object from all objects' DAG lists. */
5129     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5130 	    objlist_remove(&elm->obj->dldags, root);
5131 	    if (elm->obj != root)
5132 		unlink_object(elm->obj);
5133 	}
5134     }
5135 }
5136 
5137 static void
5138 ref_dag(Obj_Entry *root)
5139 {
5140     Objlist_Entry *elm;
5141 
5142     assert(root->dag_inited);
5143     STAILQ_FOREACH(elm, &root->dagmembers, link)
5144 	elm->obj->refcount++;
5145 }
5146 
5147 static void
5148 unref_dag(Obj_Entry *root)
5149 {
5150     Objlist_Entry *elm;
5151 
5152     assert(root->dag_inited);
5153     STAILQ_FOREACH(elm, &root->dagmembers, link)
5154 	elm->obj->refcount--;
5155 }
5156 
5157 /*
5158  * Common code for MD __tls_get_addr().
5159  */
5160 static void *
5161 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5162 {
5163 	Elf_Addr *newdtv, *dtv;
5164 	RtldLockState lockstate;
5165 	int to_copy;
5166 
5167 	dtv = *dtvp;
5168 	/* Check dtv generation in case new modules have arrived */
5169 	if (dtv[0] != tls_dtv_generation) {
5170 		if (!locked)
5171 			wlock_acquire(rtld_bind_lock, &lockstate);
5172 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5173 		to_copy = dtv[1];
5174 		if (to_copy > tls_max_index)
5175 			to_copy = tls_max_index;
5176 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5177 		newdtv[0] = tls_dtv_generation;
5178 		newdtv[1] = tls_max_index;
5179 		free(dtv);
5180 		if (!locked)
5181 			lock_release(rtld_bind_lock, &lockstate);
5182 		dtv = *dtvp = newdtv;
5183 	}
5184 
5185 	/* Dynamically allocate module TLS if necessary */
5186 	if (dtv[index + 1] == 0) {
5187 		/* Signal safe, wlock will block out signals. */
5188 		if (!locked)
5189 			wlock_acquire(rtld_bind_lock, &lockstate);
5190 		if (!dtv[index + 1])
5191 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5192 		if (!locked)
5193 			lock_release(rtld_bind_lock, &lockstate);
5194 	}
5195 	return ((void *)(dtv[index + 1] + offset));
5196 }
5197 
5198 void *
5199 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5200 {
5201 	uintptr_t *dtv;
5202 
5203 	dtv = *dtvp;
5204 	/* Check dtv generation in case new modules have arrived */
5205 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5206 	    dtv[index + 1] != 0))
5207 		return ((void *)(dtv[index + 1] + offset));
5208 	return (tls_get_addr_slow(dtvp, index, offset, false));
5209 }
5210 
5211 #ifdef TLS_VARIANT_I
5212 
5213 /*
5214  * Return pointer to allocated TLS block
5215  */
5216 static void *
5217 get_tls_block_ptr(void *tcb, size_t tcbsize)
5218 {
5219     size_t extra_size, post_size, pre_size, tls_block_size;
5220     size_t tls_init_align;
5221 
5222     tls_init_align = MAX(obj_main->tlsalign, 1);
5223 
5224     /* Compute fragments sizes. */
5225     extra_size = tcbsize - TLS_TCB_SIZE;
5226     post_size = calculate_tls_post_size(tls_init_align);
5227     tls_block_size = tcbsize + post_size;
5228     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5229 
5230     return ((char *)tcb - pre_size - extra_size);
5231 }
5232 
5233 /*
5234  * Allocate Static TLS using the Variant I method.
5235  *
5236  * For details on the layout, see lib/libc/gen/tls.c.
5237  *
5238  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5239  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5240  *     offsets, whereas libc's tls_static_space is just the executable's static
5241  *     TLS segment.
5242  */
5243 void *
5244 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5245 {
5246     Obj_Entry *obj;
5247     char *tls_block;
5248     Elf_Addr *dtv, **tcb;
5249     Elf_Addr addr;
5250     Elf_Addr i;
5251     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5252     size_t tls_init_align, tls_init_offset;
5253 
5254     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5255 	return (oldtcb);
5256 
5257     assert(tcbsize >= TLS_TCB_SIZE);
5258     maxalign = MAX(tcbalign, tls_static_max_align);
5259     tls_init_align = MAX(obj_main->tlsalign, 1);
5260 
5261     /* Compute fragmets sizes. */
5262     extra_size = tcbsize - TLS_TCB_SIZE;
5263     post_size = calculate_tls_post_size(tls_init_align);
5264     tls_block_size = tcbsize + post_size;
5265     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5266     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5267 
5268     /* Allocate whole TLS block */
5269     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5270     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5271 
5272     if (oldtcb != NULL) {
5273 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5274 	    tls_static_space);
5275 	free(get_tls_block_ptr(oldtcb, tcbsize));
5276 
5277 	/* Adjust the DTV. */
5278 	dtv = tcb[0];
5279 	for (i = 0; i < dtv[1]; i++) {
5280 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5281 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5282 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5283 	    }
5284 	}
5285     } else {
5286 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5287 	tcb[0] = dtv;
5288 	dtv[0] = tls_dtv_generation;
5289 	dtv[1] = tls_max_index;
5290 
5291 	for (obj = globallist_curr(objs); obj != NULL;
5292 	  obj = globallist_next(obj)) {
5293 	    if (obj->tlsoffset == 0)
5294 		continue;
5295 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5296 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5297 	    if (tls_init_offset > 0)
5298 		memset((void *)addr, 0, tls_init_offset);
5299 	    if (obj->tlsinitsize > 0) {
5300 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5301 		    obj->tlsinitsize);
5302 	    }
5303 	    if (obj->tlssize > obj->tlsinitsize) {
5304 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5305 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5306 	    }
5307 	    dtv[obj->tlsindex + 1] = addr;
5308 	}
5309     }
5310 
5311     return (tcb);
5312 }
5313 
5314 void
5315 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5316 {
5317     Elf_Addr *dtv;
5318     Elf_Addr tlsstart, tlsend;
5319     size_t post_size;
5320     size_t dtvsize, i, tls_init_align __unused;
5321 
5322     assert(tcbsize >= TLS_TCB_SIZE);
5323     tls_init_align = MAX(obj_main->tlsalign, 1);
5324 
5325     /* Compute fragments sizes. */
5326     post_size = calculate_tls_post_size(tls_init_align);
5327 
5328     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5329     tlsend = (Elf_Addr)tcb + tls_static_space;
5330 
5331     dtv = *(Elf_Addr **)tcb;
5332     dtvsize = dtv[1];
5333     for (i = 0; i < dtvsize; i++) {
5334 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5335 	    free((void*)dtv[i+2]);
5336 	}
5337     }
5338     free(dtv);
5339     free(get_tls_block_ptr(tcb, tcbsize));
5340 }
5341 
5342 #endif	/* TLS_VARIANT_I */
5343 
5344 #ifdef TLS_VARIANT_II
5345 
5346 /*
5347  * Allocate Static TLS using the Variant II method.
5348  */
5349 void *
5350 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5351 {
5352     Obj_Entry *obj;
5353     size_t size, ralign;
5354     char *tls;
5355     Elf_Addr *dtv, *olddtv;
5356     Elf_Addr segbase, oldsegbase, addr;
5357     size_t i;
5358 
5359     ralign = tcbalign;
5360     if (tls_static_max_align > ralign)
5361 	    ralign = tls_static_max_align;
5362     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5363 
5364     assert(tcbsize >= 2*sizeof(Elf_Addr));
5365     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5366     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5367 
5368     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5369     ((Elf_Addr *)segbase)[0] = segbase;
5370     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5371 
5372     dtv[0] = tls_dtv_generation;
5373     dtv[1] = tls_max_index;
5374 
5375     if (oldtls) {
5376 	/*
5377 	 * Copy the static TLS block over whole.
5378 	 */
5379 	oldsegbase = (Elf_Addr) oldtls;
5380 	memcpy((void *)(segbase - tls_static_space),
5381 	   (const void *)(oldsegbase - tls_static_space),
5382 	   tls_static_space);
5383 
5384 	/*
5385 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5386 	 * move them over.
5387 	 */
5388 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5389 	for (i = 0; i < olddtv[1]; i++) {
5390 	    if (olddtv[i + 2] < oldsegbase - size ||
5391 		olddtv[i + 2] > oldsegbase) {
5392 		    dtv[i + 2] = olddtv[i + 2];
5393 		    olddtv[i + 2] = 0;
5394 	    }
5395 	}
5396 
5397 	/*
5398 	 * We assume that this block was the one we created with
5399 	 * allocate_initial_tls().
5400 	 */
5401 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5402     } else {
5403 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5404 		if (obj->marker || obj->tlsoffset == 0)
5405 			continue;
5406 		addr = segbase - obj->tlsoffset;
5407 		memset((void *)(addr + obj->tlsinitsize),
5408 		    0, obj->tlssize - obj->tlsinitsize);
5409 		if (obj->tlsinit) {
5410 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5411 			obj->static_tls_copied = true;
5412 		}
5413 		dtv[obj->tlsindex + 1] = addr;
5414 	}
5415     }
5416 
5417     return ((void *)segbase);
5418 }
5419 
5420 void
5421 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5422 {
5423     Elf_Addr* dtv;
5424     size_t size, ralign;
5425     int dtvsize, i;
5426     Elf_Addr tlsstart, tlsend;
5427 
5428     /*
5429      * Figure out the size of the initial TLS block so that we can
5430      * find stuff which ___tls_get_addr() allocated dynamically.
5431      */
5432     ralign = tcbalign;
5433     if (tls_static_max_align > ralign)
5434 	    ralign = tls_static_max_align;
5435     size = roundup(tls_static_space, ralign);
5436 
5437     dtv = ((Elf_Addr **)tls)[1];
5438     dtvsize = dtv[1];
5439     tlsend = (Elf_Addr)tls;
5440     tlsstart = tlsend - size;
5441     for (i = 0; i < dtvsize; i++) {
5442 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5443 	        dtv[i + 2] > tlsend)) {
5444 		    free((void *)dtv[i + 2]);
5445 	}
5446     }
5447 
5448     free((void *)tlsstart);
5449     free((void *)dtv);
5450 }
5451 
5452 #endif	/* TLS_VARIANT_II */
5453 
5454 /*
5455  * Allocate TLS block for module with given index.
5456  */
5457 void *
5458 allocate_module_tls(int index)
5459 {
5460 	Obj_Entry *obj;
5461 	char *p;
5462 
5463 	TAILQ_FOREACH(obj, &obj_list, next) {
5464 		if (obj->marker)
5465 			continue;
5466 		if (obj->tlsindex == index)
5467 			break;
5468 	}
5469 	if (obj == NULL) {
5470 		_rtld_error("Can't find module with TLS index %d", index);
5471 		rtld_die();
5472 	}
5473 
5474 	if (obj->tls_static) {
5475 #ifdef TLS_VARIANT_I
5476 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5477 #else
5478 		p = (char *)_tcb_get() - obj->tlsoffset;
5479 #endif
5480 		return (p);
5481 	}
5482 
5483 	obj->tls_dynamic = true;
5484 
5485 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5486 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5487 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5488 	return (p);
5489 }
5490 
5491 bool
5492 allocate_tls_offset(Obj_Entry *obj)
5493 {
5494     size_t off;
5495 
5496     if (obj->tls_dynamic)
5497 	return (false);
5498 
5499     if (obj->tls_static)
5500 	return (true);
5501 
5502     if (obj->tlssize == 0) {
5503 	obj->tls_static = true;
5504 	return (true);
5505     }
5506 
5507     if (tls_last_offset == 0)
5508 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5509 	  obj->tlspoffset);
5510     else
5511 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5512 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5513 
5514     obj->tlsoffset = off;
5515 #ifdef TLS_VARIANT_I
5516     off += obj->tlssize;
5517 #endif
5518 
5519     /*
5520      * If we have already fixed the size of the static TLS block, we
5521      * must stay within that size. When allocating the static TLS, we
5522      * leave a small amount of space spare to be used for dynamically
5523      * loading modules which use static TLS.
5524      */
5525     if (tls_static_space != 0) {
5526 	if (off > tls_static_space)
5527 	    return (false);
5528     } else if (obj->tlsalign > tls_static_max_align) {
5529 	    tls_static_max_align = obj->tlsalign;
5530     }
5531 
5532     tls_last_offset = off;
5533     tls_last_size = obj->tlssize;
5534     obj->tls_static = true;
5535 
5536     return (true);
5537 }
5538 
5539 void
5540 free_tls_offset(Obj_Entry *obj)
5541 {
5542 
5543     /*
5544      * If we were the last thing to allocate out of the static TLS
5545      * block, we give our space back to the 'allocator'. This is a
5546      * simplistic workaround to allow libGL.so.1 to be loaded and
5547      * unloaded multiple times.
5548      */
5549     size_t off = obj->tlsoffset;
5550 #ifdef TLS_VARIANT_I
5551     off += obj->tlssize;
5552 #endif
5553     if (off == tls_last_offset) {
5554 	tls_last_offset -= obj->tlssize;
5555 	tls_last_size = 0;
5556     }
5557 }
5558 
5559 void *
5560 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5561 {
5562     void *ret;
5563     RtldLockState lockstate;
5564 
5565     wlock_acquire(rtld_bind_lock, &lockstate);
5566     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5567       tcbsize, tcbalign);
5568     lock_release(rtld_bind_lock, &lockstate);
5569     return (ret);
5570 }
5571 
5572 void
5573 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5574 {
5575     RtldLockState lockstate;
5576 
5577     wlock_acquire(rtld_bind_lock, &lockstate);
5578     free_tls(tcb, tcbsize, tcbalign);
5579     lock_release(rtld_bind_lock, &lockstate);
5580 }
5581 
5582 static void
5583 object_add_name(Obj_Entry *obj, const char *name)
5584 {
5585     Name_Entry *entry;
5586     size_t len;
5587 
5588     len = strlen(name);
5589     entry = malloc(sizeof(Name_Entry) + len);
5590 
5591     if (entry != NULL) {
5592 	strcpy(entry->name, name);
5593 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5594     }
5595 }
5596 
5597 static int
5598 object_match_name(const Obj_Entry *obj, const char *name)
5599 {
5600     Name_Entry *entry;
5601 
5602     STAILQ_FOREACH(entry, &obj->names, link) {
5603 	if (strcmp(name, entry->name) == 0)
5604 	    return (1);
5605     }
5606     return (0);
5607 }
5608 
5609 static Obj_Entry *
5610 locate_dependency(const Obj_Entry *obj, const char *name)
5611 {
5612     const Objlist_Entry *entry;
5613     const Needed_Entry *needed;
5614 
5615     STAILQ_FOREACH(entry, &list_main, link) {
5616 	if (object_match_name(entry->obj, name))
5617 	    return (entry->obj);
5618     }
5619 
5620     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5621 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5622 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5623 	    /*
5624 	     * If there is DT_NEEDED for the name we are looking for,
5625 	     * we are all set.  Note that object might not be found if
5626 	     * dependency was not loaded yet, so the function can
5627 	     * return NULL here.  This is expected and handled
5628 	     * properly by the caller.
5629 	     */
5630 	    return (needed->obj);
5631 	}
5632     }
5633     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5634 	obj->path, name);
5635     rtld_die();
5636 }
5637 
5638 static int
5639 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5640     const Elf_Vernaux *vna)
5641 {
5642     const Elf_Verdef *vd;
5643     const char *vername;
5644 
5645     vername = refobj->strtab + vna->vna_name;
5646     vd = depobj->verdef;
5647     if (vd == NULL) {
5648 	_rtld_error("%s: version %s required by %s not defined",
5649 	    depobj->path, vername, refobj->path);
5650 	return (-1);
5651     }
5652     for (;;) {
5653 	if (vd->vd_version != VER_DEF_CURRENT) {
5654 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5655 		depobj->path, vd->vd_version);
5656 	    return (-1);
5657 	}
5658 	if (vna->vna_hash == vd->vd_hash) {
5659 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5660 		((const char *)vd + vd->vd_aux);
5661 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5662 		return (0);
5663 	}
5664 	if (vd->vd_next == 0)
5665 	    break;
5666 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5667     }
5668     if (vna->vna_flags & VER_FLG_WEAK)
5669 	return (0);
5670     _rtld_error("%s: version %s required by %s not found",
5671 	depobj->path, vername, refobj->path);
5672     return (-1);
5673 }
5674 
5675 static int
5676 rtld_verify_object_versions(Obj_Entry *obj)
5677 {
5678     const Elf_Verneed *vn;
5679     const Elf_Verdef  *vd;
5680     const Elf_Verdaux *vda;
5681     const Elf_Vernaux *vna;
5682     const Obj_Entry *depobj;
5683     int maxvernum, vernum;
5684 
5685     if (obj->ver_checked)
5686 	return (0);
5687     obj->ver_checked = true;
5688 
5689     maxvernum = 0;
5690     /*
5691      * Walk over defined and required version records and figure out
5692      * max index used by any of them. Do very basic sanity checking
5693      * while there.
5694      */
5695     vn = obj->verneed;
5696     while (vn != NULL) {
5697 	if (vn->vn_version != VER_NEED_CURRENT) {
5698 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5699 		obj->path, vn->vn_version);
5700 	    return (-1);
5701 	}
5702 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5703 	for (;;) {
5704 	    vernum = VER_NEED_IDX(vna->vna_other);
5705 	    if (vernum > maxvernum)
5706 		maxvernum = vernum;
5707 	    if (vna->vna_next == 0)
5708 		 break;
5709 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5710 	}
5711 	if (vn->vn_next == 0)
5712 	    break;
5713 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5714     }
5715 
5716     vd = obj->verdef;
5717     while (vd != NULL) {
5718 	if (vd->vd_version != VER_DEF_CURRENT) {
5719 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5720 		obj->path, vd->vd_version);
5721 	    return (-1);
5722 	}
5723 	vernum = VER_DEF_IDX(vd->vd_ndx);
5724 	if (vernum > maxvernum)
5725 		maxvernum = vernum;
5726 	if (vd->vd_next == 0)
5727 	    break;
5728 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5729     }
5730 
5731     if (maxvernum == 0)
5732 	return (0);
5733 
5734     /*
5735      * Store version information in array indexable by version index.
5736      * Verify that object version requirements are satisfied along the
5737      * way.
5738      */
5739     obj->vernum = maxvernum + 1;
5740     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5741 
5742     vd = obj->verdef;
5743     while (vd != NULL) {
5744 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5745 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5746 	    assert(vernum <= maxvernum);
5747 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5748 	    obj->vertab[vernum].hash = vd->vd_hash;
5749 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5750 	    obj->vertab[vernum].file = NULL;
5751 	    obj->vertab[vernum].flags = 0;
5752 	}
5753 	if (vd->vd_next == 0)
5754 	    break;
5755 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5756     }
5757 
5758     vn = obj->verneed;
5759     while (vn != NULL) {
5760 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5761 	if (depobj == NULL)
5762 	    return (-1);
5763 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5764 	for (;;) {
5765 	    if (check_object_provided_version(obj, depobj, vna))
5766 		return (-1);
5767 	    vernum = VER_NEED_IDX(vna->vna_other);
5768 	    assert(vernum <= maxvernum);
5769 	    obj->vertab[vernum].hash = vna->vna_hash;
5770 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5771 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5772 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5773 		VER_INFO_HIDDEN : 0;
5774 	    if (vna->vna_next == 0)
5775 		 break;
5776 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5777 	}
5778 	if (vn->vn_next == 0)
5779 	    break;
5780 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5781     }
5782     return (0);
5783 }
5784 
5785 static int
5786 rtld_verify_versions(const Objlist *objlist)
5787 {
5788     Objlist_Entry *entry;
5789     int rc;
5790 
5791     rc = 0;
5792     STAILQ_FOREACH(entry, objlist, link) {
5793 	/*
5794 	 * Skip dummy objects or objects that have their version requirements
5795 	 * already checked.
5796 	 */
5797 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5798 	    continue;
5799 	if (rtld_verify_object_versions(entry->obj) == -1) {
5800 	    rc = -1;
5801 	    if (ld_tracing == NULL)
5802 		break;
5803 	}
5804     }
5805     if (rc == 0 || ld_tracing != NULL)
5806     	rc = rtld_verify_object_versions(&obj_rtld);
5807     return (rc);
5808 }
5809 
5810 const Ver_Entry *
5811 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5812 {
5813     Elf_Versym vernum;
5814 
5815     if (obj->vertab) {
5816 	vernum = VER_NDX(obj->versyms[symnum]);
5817 	if (vernum >= obj->vernum) {
5818 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5819 		obj->path, obj->strtab + symnum, vernum);
5820 	} else if (obj->vertab[vernum].hash != 0) {
5821 	    return (&obj->vertab[vernum]);
5822 	}
5823     }
5824     return (NULL);
5825 }
5826 
5827 int
5828 _rtld_get_stack_prot(void)
5829 {
5830 
5831 	return (stack_prot);
5832 }
5833 
5834 int
5835 _rtld_is_dlopened(void *arg)
5836 {
5837 	Obj_Entry *obj;
5838 	RtldLockState lockstate;
5839 	int res;
5840 
5841 	rlock_acquire(rtld_bind_lock, &lockstate);
5842 	obj = dlcheck(arg);
5843 	if (obj == NULL)
5844 		obj = obj_from_addr(arg);
5845 	if (obj == NULL) {
5846 		_rtld_error("No shared object contains address");
5847 		lock_release(rtld_bind_lock, &lockstate);
5848 		return (-1);
5849 	}
5850 	res = obj->dlopened ? 1 : 0;
5851 	lock_release(rtld_bind_lock, &lockstate);
5852 	return (res);
5853 }
5854 
5855 static int
5856 obj_remap_relro(Obj_Entry *obj, int prot)
5857 {
5858 
5859 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5860 	    prot) == -1) {
5861 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5862 		    obj->path, prot, rtld_strerror(errno));
5863 		return (-1);
5864 	}
5865 	return (0);
5866 }
5867 
5868 static int
5869 obj_disable_relro(Obj_Entry *obj)
5870 {
5871 
5872 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5873 }
5874 
5875 static int
5876 obj_enforce_relro(Obj_Entry *obj)
5877 {
5878 
5879 	return (obj_remap_relro(obj, PROT_READ));
5880 }
5881 
5882 static void
5883 map_stacks_exec(RtldLockState *lockstate)
5884 {
5885 	void (*thr_map_stacks_exec)(void);
5886 
5887 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5888 		return;
5889 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5890 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5891 	if (thr_map_stacks_exec != NULL) {
5892 		stack_prot |= PROT_EXEC;
5893 		thr_map_stacks_exec();
5894 	}
5895 }
5896 
5897 static void
5898 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5899 {
5900 	Objlist_Entry *elm;
5901 	Obj_Entry *obj;
5902 	void (*distrib)(size_t, void *, size_t, size_t);
5903 
5904 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5905 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5906 	if (distrib == NULL)
5907 		return;
5908 	STAILQ_FOREACH(elm, list, link) {
5909 		obj = elm->obj;
5910 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5911 			continue;
5912 		lock_release(rtld_bind_lock, lockstate);
5913 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5914 		    obj->tlssize);
5915 		wlock_acquire(rtld_bind_lock, lockstate);
5916 		obj->static_tls_copied = true;
5917 	}
5918 }
5919 
5920 void
5921 symlook_init(SymLook *dst, const char *name)
5922 {
5923 
5924 	bzero(dst, sizeof(*dst));
5925 	dst->name = name;
5926 	dst->hash = elf_hash(name);
5927 	dst->hash_gnu = gnu_hash(name);
5928 }
5929 
5930 static void
5931 symlook_init_from_req(SymLook *dst, const SymLook *src)
5932 {
5933 
5934 	dst->name = src->name;
5935 	dst->hash = src->hash;
5936 	dst->hash_gnu = src->hash_gnu;
5937 	dst->ventry = src->ventry;
5938 	dst->flags = src->flags;
5939 	dst->defobj_out = NULL;
5940 	dst->sym_out = NULL;
5941 	dst->lockstate = src->lockstate;
5942 }
5943 
5944 static int
5945 open_binary_fd(const char *argv0, bool search_in_path,
5946     const char **binpath_res)
5947 {
5948 	char *binpath, *pathenv, *pe, *res1;
5949 	const char *res;
5950 	int fd;
5951 
5952 	binpath = NULL;
5953 	res = NULL;
5954 	if (search_in_path && strchr(argv0, '/') == NULL) {
5955 		binpath = xmalloc(PATH_MAX);
5956 		pathenv = getenv("PATH");
5957 		if (pathenv == NULL) {
5958 			_rtld_error("-p and no PATH environment variable");
5959 			rtld_die();
5960 		}
5961 		pathenv = strdup(pathenv);
5962 		if (pathenv == NULL) {
5963 			_rtld_error("Cannot allocate memory");
5964 			rtld_die();
5965 		}
5966 		fd = -1;
5967 		errno = ENOENT;
5968 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5969 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5970 				continue;
5971 			if (binpath[0] != '\0' &&
5972 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5973 				continue;
5974 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5975 				continue;
5976 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5977 			if (fd != -1 || errno != ENOENT) {
5978 				res = binpath;
5979 				break;
5980 			}
5981 		}
5982 		free(pathenv);
5983 	} else {
5984 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5985 		res = argv0;
5986 	}
5987 
5988 	if (fd == -1) {
5989 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5990 		rtld_die();
5991 	}
5992 	if (res != NULL && res[0] != '/') {
5993 		res1 = xmalloc(PATH_MAX);
5994 		if (realpath(res, res1) != NULL) {
5995 			if (res != argv0)
5996 				free(__DECONST(char *, res));
5997 			res = res1;
5998 		} else {
5999 			free(res1);
6000 		}
6001 	}
6002 	*binpath_res = res;
6003 	return (fd);
6004 }
6005 
6006 /*
6007  * Parse a set of command-line arguments.
6008  */
6009 static int
6010 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6011     const char **argv0, bool *dir_ignore)
6012 {
6013 	const char *arg;
6014 	char machine[64];
6015 	size_t sz;
6016 	int arglen, fd, i, j, mib[2];
6017 	char opt;
6018 	bool seen_b, seen_f;
6019 
6020 	dbg("Parsing command-line arguments");
6021 	*use_pathp = false;
6022 	*fdp = -1;
6023 	*dir_ignore = false;
6024 	seen_b = seen_f = false;
6025 
6026 	for (i = 1; i < argc; i++ ) {
6027 		arg = argv[i];
6028 		dbg("argv[%d]: '%s'", i, arg);
6029 
6030 		/*
6031 		 * rtld arguments end with an explicit "--" or with the first
6032 		 * non-prefixed argument.
6033 		 */
6034 		if (strcmp(arg, "--") == 0) {
6035 			i++;
6036 			break;
6037 		}
6038 		if (arg[0] != '-')
6039 			break;
6040 
6041 		/*
6042 		 * All other arguments are single-character options that can
6043 		 * be combined, so we need to search through `arg` for them.
6044 		 */
6045 		arglen = strlen(arg);
6046 		for (j = 1; j < arglen; j++) {
6047 			opt = arg[j];
6048 			if (opt == 'h') {
6049 				print_usage(argv[0]);
6050 				_exit(0);
6051 			} else if (opt == 'b') {
6052 				if (seen_f) {
6053 					_rtld_error("Both -b and -f specified");
6054 					rtld_die();
6055 				}
6056 				if (j != arglen - 1) {
6057 					_rtld_error("Invalid options: %s", arg);
6058 					rtld_die();
6059 				}
6060 				i++;
6061 				*argv0 = argv[i];
6062 				seen_b = true;
6063 				break;
6064 			} else if (opt == 'd') {
6065 				*dir_ignore = true;
6066 			} else if (opt == 'f') {
6067 				if (seen_b) {
6068 					_rtld_error("Both -b and -f specified");
6069 					rtld_die();
6070 				}
6071 
6072 				/*
6073 				 * -f XX can be used to specify a
6074 				 * descriptor for the binary named at
6075 				 * the command line (i.e., the later
6076 				 * argument will specify the process
6077 				 * name but the descriptor is what
6078 				 * will actually be executed).
6079 				 *
6080 				 * -f must be the last option in the
6081 				 * group, e.g., -abcf <fd>.
6082 				 */
6083 				if (j != arglen - 1) {
6084 					_rtld_error("Invalid options: %s", arg);
6085 					rtld_die();
6086 				}
6087 				i++;
6088 				fd = parse_integer(argv[i]);
6089 				if (fd == -1) {
6090 					_rtld_error(
6091 					    "Invalid file descriptor: '%s'",
6092 					    argv[i]);
6093 					rtld_die();
6094 				}
6095 				*fdp = fd;
6096 				seen_f = true;
6097 				break;
6098 			} else if (opt == 'p') {
6099 				*use_pathp = true;
6100 			} else if (opt == 'u') {
6101 				trust = false;
6102 			} else if (opt == 'v') {
6103 				machine[0] = '\0';
6104 				mib[0] = CTL_HW;
6105 				mib[1] = HW_MACHINE;
6106 				sz = sizeof(machine);
6107 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6108 				ld_elf_hints_path = ld_get_env_var(
6109 				    LD_ELF_HINTS_PATH);
6110 				set_ld_elf_hints_path();
6111 				rtld_printf(
6112 				    "FreeBSD ld-elf.so.1 %s\n"
6113 				    "FreeBSD_version %d\n"
6114 				    "Default lib path %s\n"
6115 				    "Hints lib path %s\n"
6116 				    "Env prefix %s\n"
6117 				    "Default hint file %s\n"
6118 				    "Hint file %s\n"
6119 				    "libmap file %s\n"
6120 				    "Optional static TLS size %zd bytes\n",
6121 				    machine,
6122 				    __FreeBSD_version, ld_standard_library_path,
6123 				    gethints(false),
6124 				    ld_env_prefix, ld_elf_hints_default,
6125 				    ld_elf_hints_path,
6126 				    ld_path_libmap_conf,
6127 				    ld_static_tls_extra);
6128 				_exit(0);
6129 			} else {
6130 				_rtld_error("Invalid argument: '%s'", arg);
6131 				print_usage(argv[0]);
6132 				rtld_die();
6133 			}
6134 		}
6135 	}
6136 
6137 	if (!seen_b)
6138 		*argv0 = argv[i];
6139 	return (i);
6140 }
6141 
6142 /*
6143  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6144  */
6145 static int
6146 parse_integer(const char *str)
6147 {
6148 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6149 	const char *orig;
6150 	int n;
6151 	char c;
6152 
6153 	orig = str;
6154 	n = 0;
6155 	for (c = *str; c != '\0'; c = *++str) {
6156 		if (c < '0' || c > '9')
6157 			return (-1);
6158 
6159 		n *= RADIX;
6160 		n += c - '0';
6161 	}
6162 
6163 	/* Make sure we actually parsed something. */
6164 	if (str == orig)
6165 		return (-1);
6166 	return (n);
6167 }
6168 
6169 static void
6170 print_usage(const char *argv0)
6171 {
6172 
6173 	rtld_printf(
6174 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6175 	    "\n"
6176 	    "Options:\n"
6177 	    "  -h        Display this help message\n"
6178 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6179 	    "  -d        Ignore lack of exec permissions for the binary\n"
6180 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6181 	    "  -p        Search in PATH for named binary\n"
6182 	    "  -u        Ignore LD_ environment variables\n"
6183 	    "  -v        Display identification information\n"
6184 	    "  --        End of RTLD options\n"
6185 	    "  <binary>  Name of process to execute\n"
6186 	    "  <args>    Arguments to the executed process\n", argv0);
6187 }
6188 
6189 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6190 static const struct auxfmt {
6191 	const char *name;
6192 	const char *fmt;
6193 } auxfmts[] = {
6194 	AUXFMT(AT_NULL, NULL),
6195 	AUXFMT(AT_IGNORE, NULL),
6196 	AUXFMT(AT_EXECFD, "%ld"),
6197 	AUXFMT(AT_PHDR, "%p"),
6198 	AUXFMT(AT_PHENT, "%lu"),
6199 	AUXFMT(AT_PHNUM, "%lu"),
6200 	AUXFMT(AT_PAGESZ, "%lu"),
6201 	AUXFMT(AT_BASE, "%#lx"),
6202 	AUXFMT(AT_FLAGS, "%#lx"),
6203 	AUXFMT(AT_ENTRY, "%p"),
6204 	AUXFMT(AT_NOTELF, NULL),
6205 	AUXFMT(AT_UID, "%ld"),
6206 	AUXFMT(AT_EUID, "%ld"),
6207 	AUXFMT(AT_GID, "%ld"),
6208 	AUXFMT(AT_EGID, "%ld"),
6209 	AUXFMT(AT_EXECPATH, "%s"),
6210 	AUXFMT(AT_CANARY, "%p"),
6211 	AUXFMT(AT_CANARYLEN, "%lu"),
6212 	AUXFMT(AT_OSRELDATE, "%lu"),
6213 	AUXFMT(AT_NCPUS, "%lu"),
6214 	AUXFMT(AT_PAGESIZES, "%p"),
6215 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6216 	AUXFMT(AT_TIMEKEEP, "%p"),
6217 	AUXFMT(AT_STACKPROT, "%#lx"),
6218 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6219 	AUXFMT(AT_HWCAP, "%#lx"),
6220 	AUXFMT(AT_HWCAP2, "%#lx"),
6221 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6222 	AUXFMT(AT_ARGC, "%lu"),
6223 	AUXFMT(AT_ARGV, "%p"),
6224 	AUXFMT(AT_ENVC, "%p"),
6225 	AUXFMT(AT_ENVV, "%p"),
6226 	AUXFMT(AT_PS_STRINGS, "%p"),
6227 	AUXFMT(AT_FXRNG, "%p"),
6228 	AUXFMT(AT_KPRELOAD, "%p"),
6229 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6230 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6231 };
6232 
6233 static bool
6234 is_ptr_fmt(const char *fmt)
6235 {
6236 	char last;
6237 
6238 	last = fmt[strlen(fmt) - 1];
6239 	return (last == 'p' || last == 's');
6240 }
6241 
6242 static void
6243 dump_auxv(Elf_Auxinfo **aux_info)
6244 {
6245 	Elf_Auxinfo *auxp;
6246 	const struct auxfmt *fmt;
6247 	int i;
6248 
6249 	for (i = 0; i < AT_COUNT; i++) {
6250 		auxp = aux_info[i];
6251 		if (auxp == NULL)
6252 			continue;
6253 		fmt = &auxfmts[i];
6254 		if (fmt->fmt == NULL)
6255 			continue;
6256 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6257 		if (is_ptr_fmt(fmt->fmt)) {
6258 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6259 			    auxp->a_un.a_ptr);
6260 		} else {
6261 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6262 			    auxp->a_un.a_val);
6263 		}
6264 		rtld_fdprintf(STDOUT_FILENO, "\n");
6265 	}
6266 }
6267 
6268 /*
6269  * Overrides for libc_pic-provided functions.
6270  */
6271 
6272 int
6273 __getosreldate(void)
6274 {
6275 	size_t len;
6276 	int oid[2];
6277 	int error, osrel;
6278 
6279 	if (osreldate != 0)
6280 		return (osreldate);
6281 
6282 	oid[0] = CTL_KERN;
6283 	oid[1] = KERN_OSRELDATE;
6284 	osrel = 0;
6285 	len = sizeof(osrel);
6286 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6287 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6288 		osreldate = osrel;
6289 	return (osreldate);
6290 }
6291 const char *
6292 rtld_strerror(int errnum)
6293 {
6294 
6295 	if (errnum < 0 || errnum >= sys_nerr)
6296 		return ("Unknown error");
6297 	return (sys_errlist[errnum]);
6298 }
6299 
6300 char *
6301 getenv(const char *name)
6302 {
6303 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6304 	    strlen(name))));
6305 }
6306 
6307 /* malloc */
6308 void *
6309 malloc(size_t nbytes)
6310 {
6311 
6312 	return (__crt_malloc(nbytes));
6313 }
6314 
6315 void *
6316 calloc(size_t num, size_t size)
6317 {
6318 
6319 	return (__crt_calloc(num, size));
6320 }
6321 
6322 void
6323 free(void *cp)
6324 {
6325 
6326 	__crt_free(cp);
6327 }
6328 
6329 void *
6330 realloc(void *cp, size_t nbytes)
6331 {
6332 
6333 	return (__crt_realloc(cp, nbytes));
6334 }
6335 
6336 extern int _rtld_version__FreeBSD_version __exported;
6337 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6338 
6339 extern char _rtld_version_laddr_offset __exported;
6340 char _rtld_version_laddr_offset;
6341 
6342 extern char _rtld_version_dlpi_tls_data __exported;
6343 char _rtld_version_dlpi_tls_data;
6344