xref: /freebsd/libexec/rtld-elf/rtld.c (revision 4f1f4356f3012928b463f9ef1710fb908e48b1e2)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/sysctl.h>
44 #include <sys/uio.h>
45 #include <sys/utsname.h>
46 #include <sys/ktrace.h>
47 
48 #include <dlfcn.h>
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <stdarg.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <unistd.h>
57 
58 #include "debug.h"
59 #include "rtld.h"
60 #include "libmap.h"
61 #include "rtld_tls.h"
62 
63 #ifndef COMPAT_32BIT
64 #define PATH_RTLD	"/libexec/ld-elf.so.1"
65 #else
66 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
67 #endif
68 
69 /* Types. */
70 typedef void (*func_ptr_type)();
71 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72 
73 /*
74  * This structure provides a reentrant way to keep a list of objects and
75  * check which ones have already been processed in some way.
76  */
77 typedef struct Struct_DoneList {
78     const Obj_Entry **objs;		/* Array of object pointers */
79     unsigned int num_alloc;		/* Allocated size of the array */
80     unsigned int num_used;		/* Number of array slots used */
81 } DoneList;
82 
83 /*
84  * Function declarations.
85  */
86 static const char *basename(const char *);
87 static void die(void) __dead2;
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
91 static void digest_dynamic(Obj_Entry *, int);
92 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
93 static Obj_Entry *dlcheck(void *);
94 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
95 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
96 static bool donelist_check(DoneList *, const Obj_Entry *);
97 static void errmsg_restore(char *);
98 static char *errmsg_save(void);
99 static void *fill_search_info(const char *, size_t, void *);
100 static char *find_library(const char *, const Obj_Entry *);
101 static const char *gethints(void);
102 static void init_dag(Obj_Entry *);
103 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
104 static void init_rtld(caddr_t, Elf_Auxinfo **);
105 static void initlist_add_neededs(Needed_Entry *, Objlist *);
106 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
107 static void linkmap_add(Obj_Entry *);
108 static void linkmap_delete(Obj_Entry *);
109 static int load_needed_objects(Obj_Entry *, int);
110 static int load_preload_objects(void);
111 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, bool, int *);
114 static void objlist_call_init(Objlist *, int *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
123 static int rtld_dirname(const char *, char *);
124 static int rtld_dirname_abs(const char *, char *);
125 static void rtld_exit(void);
126 static char *search_library_path(const char *, const char *);
127 static const void **get_program_var_addr(const char *);
128 static void set_program_var(const char *, const void *);
129 static const Elf_Sym *symlook_default(const char *, unsigned long,
130   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
131 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
132   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
133 static const Elf_Sym *symlook_needed(const char *, unsigned long,
134   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
135   int, DoneList *);
136 static void trace_loaded_objects(Obj_Entry *);
137 static void unlink_object(Obj_Entry *);
138 static void unload_object(Obj_Entry *);
139 static void unref_dag(Obj_Entry *);
140 static void ref_dag(Obj_Entry *);
141 static int origin_subst_one(char **, const char *, const char *,
142   const char *, char *);
143 static char *origin_subst(const char *, const char *);
144 static int  rtld_verify_versions(const Objlist *);
145 static int  rtld_verify_object_versions(Obj_Entry *);
146 static void object_add_name(Obj_Entry *, const char *);
147 static int  object_match_name(const Obj_Entry *, const char *);
148 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
149 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
150     struct dl_phdr_info *phdr_info);
151 
152 void r_debug_state(struct r_debug *, struct link_map *);
153 
154 /*
155  * Data declarations.
156  */
157 static char *error_message;	/* Message for dlerror(), or NULL */
158 struct r_debug r_debug;		/* for GDB; */
159 static bool libmap_disable;	/* Disable libmap */
160 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
161 static bool trust;		/* False for setuid and setgid programs */
162 static bool dangerous_ld_env;	/* True if environment variables have been
163 				   used to affect the libraries loaded */
164 static char *ld_bind_now;	/* Environment variable for immediate binding */
165 static char *ld_debug;		/* Environment variable for debugging */
166 static char *ld_library_path;	/* Environment variable for search path */
167 static char *ld_preload;	/* Environment variable for libraries to
168 				   load first */
169 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
170 static char *ld_tracing;	/* Called from ldd to print libs */
171 static char *ld_utrace;		/* Use utrace() to log events. */
172 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
173 static Obj_Entry **obj_tail;	/* Link field of last object in list */
174 static Obj_Entry *obj_main;	/* The main program shared object */
175 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
176 static unsigned int obj_count;	/* Number of objects in obj_list */
177 static unsigned int obj_loads;	/* Number of objects in obj_list */
178 
179 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
180   STAILQ_HEAD_INITIALIZER(list_global);
181 static Objlist list_main =	/* Objects loaded at program startup */
182   STAILQ_HEAD_INITIALIZER(list_main);
183 static Objlist list_fini =	/* Objects needing fini() calls */
184   STAILQ_HEAD_INITIALIZER(list_fini);
185 
186 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
187 
188 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
189 
190 extern Elf_Dyn _DYNAMIC;
191 #pragma weak _DYNAMIC
192 #ifndef RTLD_IS_DYNAMIC
193 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
194 #endif
195 
196 int osreldate, pagesize;
197 
198 /*
199  * Global declarations normally provided by crt1.  The dynamic linker is
200  * not built with crt1, so we have to provide them ourselves.
201  */
202 char *__progname;
203 char **environ;
204 
205 /*
206  * Globals to control TLS allocation.
207  */
208 size_t tls_last_offset;		/* Static TLS offset of last module */
209 size_t tls_last_size;		/* Static TLS size of last module */
210 size_t tls_static_space;	/* Static TLS space allocated */
211 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
212 int tls_max_index = 1;		/* Largest module index allocated */
213 
214 /*
215  * Fill in a DoneList with an allocation large enough to hold all of
216  * the currently-loaded objects.  Keep this as a macro since it calls
217  * alloca and we want that to occur within the scope of the caller.
218  */
219 #define donelist_init(dlp)					\
220     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
221     assert((dlp)->objs != NULL),				\
222     (dlp)->num_alloc = obj_count,				\
223     (dlp)->num_used = 0)
224 
225 #define	UTRACE_DLOPEN_START		1
226 #define	UTRACE_DLOPEN_STOP		2
227 #define	UTRACE_DLCLOSE_START		3
228 #define	UTRACE_DLCLOSE_STOP		4
229 #define	UTRACE_LOAD_OBJECT		5
230 #define	UTRACE_UNLOAD_OBJECT		6
231 #define	UTRACE_ADD_RUNDEP		7
232 #define	UTRACE_PRELOAD_FINISHED		8
233 #define	UTRACE_INIT_CALL		9
234 #define	UTRACE_FINI_CALL		10
235 
236 struct utrace_rtld {
237 	char sig[4];			/* 'RTLD' */
238 	int event;
239 	void *handle;
240 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
241 	size_t mapsize;
242 	int refcnt;			/* Used for 'mode' */
243 	char name[MAXPATHLEN];
244 };
245 
246 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
247 	if (ld_utrace != NULL)					\
248 		ld_utrace_log(e, h, mb, ms, r, n);		\
249 } while (0)
250 
251 static void
252 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
253     int refcnt, const char *name)
254 {
255 	struct utrace_rtld ut;
256 
257 	ut.sig[0] = 'R';
258 	ut.sig[1] = 'T';
259 	ut.sig[2] = 'L';
260 	ut.sig[3] = 'D';
261 	ut.event = event;
262 	ut.handle = handle;
263 	ut.mapbase = mapbase;
264 	ut.mapsize = mapsize;
265 	ut.refcnt = refcnt;
266 	bzero(ut.name, sizeof(ut.name));
267 	if (name)
268 		strlcpy(ut.name, name, sizeof(ut.name));
269 	utrace(&ut, sizeof(ut));
270 }
271 
272 /*
273  * Main entry point for dynamic linking.  The first argument is the
274  * stack pointer.  The stack is expected to be laid out as described
275  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
276  * Specifically, the stack pointer points to a word containing
277  * ARGC.  Following that in the stack is a null-terminated sequence
278  * of pointers to argument strings.  Then comes a null-terminated
279  * sequence of pointers to environment strings.  Finally, there is a
280  * sequence of "auxiliary vector" entries.
281  *
282  * The second argument points to a place to store the dynamic linker's
283  * exit procedure pointer and the third to a place to store the main
284  * program's object.
285  *
286  * The return value is the main program's entry point.
287  */
288 func_ptr_type
289 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
290 {
291     Elf_Auxinfo *aux_info[AT_COUNT];
292     int i;
293     int argc;
294     char **argv;
295     char **env;
296     Elf_Auxinfo *aux;
297     Elf_Auxinfo *auxp;
298     const char *argv0;
299     Objlist_Entry *entry;
300     Obj_Entry *obj;
301     Obj_Entry **preload_tail;
302     Objlist initlist;
303     int lockstate;
304 
305     /*
306      * On entry, the dynamic linker itself has not been relocated yet.
307      * Be very careful not to reference any global data until after
308      * init_rtld has returned.  It is OK to reference file-scope statics
309      * and string constants, and to call static and global functions.
310      */
311 
312     /* Find the auxiliary vector on the stack. */
313     argc = *sp++;
314     argv = (char **) sp;
315     sp += argc + 1;	/* Skip over arguments and NULL terminator */
316     env = (char **) sp;
317     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
318 	;
319     aux = (Elf_Auxinfo *) sp;
320 
321     /* Digest the auxiliary vector. */
322     for (i = 0;  i < AT_COUNT;  i++)
323 	aux_info[i] = NULL;
324     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
325 	if (auxp->a_type < AT_COUNT)
326 	    aux_info[auxp->a_type] = auxp;
327     }
328 
329     /* Initialize and relocate ourselves. */
330     assert(aux_info[AT_BASE] != NULL);
331     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
332 
333     __progname = obj_rtld.path;
334     argv0 = argv[0] != NULL ? argv[0] : "(null)";
335     environ = env;
336 
337     trust = !issetugid();
338 
339     ld_bind_now = getenv(LD_ "BIND_NOW");
340     /*
341      * If the process is tainted, then we un-set the dangerous environment
342      * variables.  The process will be marked as tainted until setuid(2)
343      * is called.  If any child process calls setuid(2) we do not want any
344      * future processes to honor the potentially un-safe variables.
345      */
346     if (!trust) {
347         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
348 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
349 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH")) {
350 		_rtld_error("environment corrupt; aborting");
351 		die();
352 	}
353     }
354     ld_debug = getenv(LD_ "DEBUG");
355     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
356     libmap_override = getenv(LD_ "LIBMAP");
357     ld_library_path = getenv(LD_ "LIBRARY_PATH");
358     ld_preload = getenv(LD_ "PRELOAD");
359     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
360     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
361 	(ld_library_path != NULL) || (ld_preload != NULL) ||
362 	(ld_elf_hints_path != NULL);
363     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
364     ld_utrace = getenv(LD_ "UTRACE");
365 
366     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
367 	ld_elf_hints_path = _PATH_ELF_HINTS;
368 
369     if (ld_debug != NULL && *ld_debug != '\0')
370 	debug = 1;
371     dbg("%s is initialized, base address = %p", __progname,
372 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
373     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
374     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
375 
376     /*
377      * Load the main program, or process its program header if it is
378      * already loaded.
379      */
380     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
381 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
382 	dbg("loading main program");
383 	obj_main = map_object(fd, argv0, NULL);
384 	close(fd);
385 	if (obj_main == NULL)
386 	    die();
387     } else {				/* Main program already loaded. */
388 	const Elf_Phdr *phdr;
389 	int phnum;
390 	caddr_t entry;
391 
392 	dbg("processing main program's program header");
393 	assert(aux_info[AT_PHDR] != NULL);
394 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
395 	assert(aux_info[AT_PHNUM] != NULL);
396 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
397 	assert(aux_info[AT_PHENT] != NULL);
398 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
399 	assert(aux_info[AT_ENTRY] != NULL);
400 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
401 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
402 	    die();
403     }
404 
405     if (aux_info[AT_EXECPATH] != 0) {
406 	    char *kexecpath;
407 	    char buf[MAXPATHLEN];
408 
409 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
410 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
411 	    if (kexecpath[0] == '/')
412 		    obj_main->path = kexecpath;
413 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
414 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
415 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
416 		    obj_main->path = xstrdup(argv0);
417 	    else
418 		    obj_main->path = xstrdup(buf);
419     } else {
420 	    dbg("No AT_EXECPATH");
421 	    obj_main->path = xstrdup(argv0);
422     }
423     dbg("obj_main path %s", obj_main->path);
424     obj_main->mainprog = true;
425 
426     /*
427      * Get the actual dynamic linker pathname from the executable if
428      * possible.  (It should always be possible.)  That ensures that
429      * gdb will find the right dynamic linker even if a non-standard
430      * one is being used.
431      */
432     if (obj_main->interp != NULL &&
433       strcmp(obj_main->interp, obj_rtld.path) != 0) {
434 	free(obj_rtld.path);
435 	obj_rtld.path = xstrdup(obj_main->interp);
436         __progname = obj_rtld.path;
437     }
438 
439     digest_dynamic(obj_main, 0);
440 
441     linkmap_add(obj_main);
442     linkmap_add(&obj_rtld);
443 
444     /* Link the main program into the list of objects. */
445     *obj_tail = obj_main;
446     obj_tail = &obj_main->next;
447     obj_count++;
448     obj_loads++;
449     /* Make sure we don't call the main program's init and fini functions. */
450     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
451 
452     /* Initialize a fake symbol for resolving undefined weak references. */
453     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
454     sym_zero.st_shndx = SHN_UNDEF;
455     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
456 
457     if (!libmap_disable)
458         libmap_disable = (bool)lm_init(libmap_override);
459 
460     dbg("loading LD_PRELOAD libraries");
461     if (load_preload_objects() == -1)
462 	die();
463     preload_tail = obj_tail;
464 
465     dbg("loading needed objects");
466     if (load_needed_objects(obj_main, 0) == -1)
467 	die();
468 
469     /* Make a list of all objects loaded at startup. */
470     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
471 	objlist_push_tail(&list_main, obj);
472     	obj->refcount++;
473     }
474 
475     dbg("checking for required versions");
476     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
477 	die();
478 
479     if (ld_tracing) {		/* We're done */
480 	trace_loaded_objects(obj_main);
481 	exit(0);
482     }
483 
484     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
485        dump_relocations(obj_main);
486        exit (0);
487     }
488 
489     /* setup TLS for main thread */
490     dbg("initializing initial thread local storage");
491     STAILQ_FOREACH(entry, &list_main, link) {
492 	/*
493 	 * Allocate all the initial objects out of the static TLS
494 	 * block even if they didn't ask for it.
495 	 */
496 	allocate_tls_offset(entry->obj);
497     }
498     allocate_initial_tls(obj_list);
499 
500     if (relocate_objects(obj_main,
501 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
502 	die();
503 
504     dbg("doing copy relocations");
505     if (do_copy_relocations(obj_main) == -1)
506 	die();
507 
508     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
509        dump_relocations(obj_main);
510        exit (0);
511     }
512 
513     dbg("initializing key program variables");
514     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
515     set_program_var("environ", env);
516     set_program_var("__elf_aux_vector", aux);
517 
518     dbg("initializing thread locks");
519     lockdflt_init();
520 
521     /* Make a list of init functions to call. */
522     objlist_init(&initlist);
523     initlist_add_objects(obj_list, preload_tail, &initlist);
524 
525     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
526 
527     lockstate = wlock_acquire(rtld_bind_lock);
528     objlist_call_init(&initlist, &lockstate);
529     objlist_clear(&initlist);
530     wlock_release(rtld_bind_lock, lockstate);
531 
532     dbg("transferring control to program entry point = %p", obj_main->entry);
533 
534     /* Return the exit procedure and the program entry point. */
535     *exit_proc = rtld_exit;
536     *objp = obj_main;
537     return (func_ptr_type) obj_main->entry;
538 }
539 
540 Elf_Addr
541 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
542 {
543     const Elf_Rel *rel;
544     const Elf_Sym *def;
545     const Obj_Entry *defobj;
546     Elf_Addr *where;
547     Elf_Addr target;
548     int lockstate;
549 
550     lockstate = rlock_acquire(rtld_bind_lock);
551     if (obj->pltrel)
552 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
553     else
554 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
555 
556     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
557     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
558     if (def == NULL)
559 	die();
560 
561     target = (Elf_Addr)(defobj->relocbase + def->st_value);
562 
563     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
564       defobj->strtab + def->st_name, basename(obj->path),
565       (void *)target, basename(defobj->path));
566 
567     /*
568      * Write the new contents for the jmpslot. Note that depending on
569      * architecture, the value which we need to return back to the
570      * lazy binding trampoline may or may not be the target
571      * address. The value returned from reloc_jmpslot() is the value
572      * that the trampoline needs.
573      */
574     target = reloc_jmpslot(where, target, defobj, obj, rel);
575     rlock_release(rtld_bind_lock, lockstate);
576     return target;
577 }
578 
579 /*
580  * Error reporting function.  Use it like printf.  If formats the message
581  * into a buffer, and sets things up so that the next call to dlerror()
582  * will return the message.
583  */
584 void
585 _rtld_error(const char *fmt, ...)
586 {
587     static char buf[512];
588     va_list ap;
589 
590     va_start(ap, fmt);
591     vsnprintf(buf, sizeof buf, fmt, ap);
592     error_message = buf;
593     va_end(ap);
594 }
595 
596 /*
597  * Return a dynamically-allocated copy of the current error message, if any.
598  */
599 static char *
600 errmsg_save(void)
601 {
602     return error_message == NULL ? NULL : xstrdup(error_message);
603 }
604 
605 /*
606  * Restore the current error message from a copy which was previously saved
607  * by errmsg_save().  The copy is freed.
608  */
609 static void
610 errmsg_restore(char *saved_msg)
611 {
612     if (saved_msg == NULL)
613 	error_message = NULL;
614     else {
615 	_rtld_error("%s", saved_msg);
616 	free(saved_msg);
617     }
618 }
619 
620 static const char *
621 basename(const char *name)
622 {
623     const char *p = strrchr(name, '/');
624     return p != NULL ? p + 1 : name;
625 }
626 
627 static struct utsname uts;
628 
629 static int
630 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
631     char *may_free)
632 {
633     const char *p, *p1;
634     char *res1;
635     int subst_len;
636     int kw_len;
637 
638     res1 = *res = NULL;
639     p = real;
640     subst_len = kw_len = 0;
641     for (;;) {
642 	 p1 = strstr(p, kw);
643 	 if (p1 != NULL) {
644 	     if (subst_len == 0) {
645 		 subst_len = strlen(subst);
646 		 kw_len = strlen(kw);
647 	     }
648 	     if (*res == NULL) {
649 		 *res = xmalloc(PATH_MAX);
650 		 res1 = *res;
651 	     }
652 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
653 		 _rtld_error("Substitution of %s in %s cannot be performed",
654 		     kw, real);
655 		 if (may_free != NULL)
656 		     free(may_free);
657 		 free(res);
658 		 return (false);
659 	     }
660 	     memcpy(res1, p, p1 - p);
661 	     res1 += p1 - p;
662 	     memcpy(res1, subst, subst_len);
663 	     res1 += subst_len;
664 	     p = p1 + kw_len;
665 	 } else {
666 	    if (*res == NULL) {
667 		if (may_free != NULL)
668 		    *res = may_free;
669 		else
670 		    *res = xstrdup(real);
671 		return (true);
672 	    }
673 	    *res1 = '\0';
674 	    if (may_free != NULL)
675 		free(may_free);
676 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
677 		free(res);
678 		return (false);
679 	    }
680 	    return (true);
681 	 }
682     }
683 }
684 
685 static char *
686 origin_subst(const char *real, const char *origin_path)
687 {
688     char *res1, *res2, *res3, *res4;
689 
690     if (uts.sysname[0] == '\0') {
691 	if (uname(&uts) != 0) {
692 	    _rtld_error("utsname failed: %d", errno);
693 	    return (NULL);
694 	}
695     }
696     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
697 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
698 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
699 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
700 	    return (NULL);
701     return (res4);
702 }
703 
704 static void
705 die(void)
706 {
707     const char *msg = dlerror();
708 
709     if (msg == NULL)
710 	msg = "Fatal error";
711     errx(1, "%s", msg);
712 }
713 
714 /*
715  * Process a shared object's DYNAMIC section, and save the important
716  * information in its Obj_Entry structure.
717  */
718 static void
719 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
720     const Elf_Dyn **dyn_soname)
721 {
722     const Elf_Dyn *dynp;
723     Needed_Entry **needed_tail = &obj->needed;
724     int plttype = DT_REL;
725 
726     *dyn_rpath = NULL;
727     *dyn_soname = NULL;
728 
729     obj->bind_now = false;
730     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
731 	switch (dynp->d_tag) {
732 
733 	case DT_REL:
734 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
735 	    break;
736 
737 	case DT_RELSZ:
738 	    obj->relsize = dynp->d_un.d_val;
739 	    break;
740 
741 	case DT_RELENT:
742 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
743 	    break;
744 
745 	case DT_JMPREL:
746 	    obj->pltrel = (const Elf_Rel *)
747 	      (obj->relocbase + dynp->d_un.d_ptr);
748 	    break;
749 
750 	case DT_PLTRELSZ:
751 	    obj->pltrelsize = dynp->d_un.d_val;
752 	    break;
753 
754 	case DT_RELA:
755 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
756 	    break;
757 
758 	case DT_RELASZ:
759 	    obj->relasize = dynp->d_un.d_val;
760 	    break;
761 
762 	case DT_RELAENT:
763 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
764 	    break;
765 
766 	case DT_PLTREL:
767 	    plttype = dynp->d_un.d_val;
768 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
769 	    break;
770 
771 	case DT_SYMTAB:
772 	    obj->symtab = (const Elf_Sym *)
773 	      (obj->relocbase + dynp->d_un.d_ptr);
774 	    break;
775 
776 	case DT_SYMENT:
777 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
778 	    break;
779 
780 	case DT_STRTAB:
781 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
782 	    break;
783 
784 	case DT_STRSZ:
785 	    obj->strsize = dynp->d_un.d_val;
786 	    break;
787 
788 	case DT_VERNEED:
789 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
790 		dynp->d_un.d_val);
791 	    break;
792 
793 	case DT_VERNEEDNUM:
794 	    obj->verneednum = dynp->d_un.d_val;
795 	    break;
796 
797 	case DT_VERDEF:
798 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
799 		dynp->d_un.d_val);
800 	    break;
801 
802 	case DT_VERDEFNUM:
803 	    obj->verdefnum = dynp->d_un.d_val;
804 	    break;
805 
806 	case DT_VERSYM:
807 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
808 		dynp->d_un.d_val);
809 	    break;
810 
811 	case DT_HASH:
812 	    {
813 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
814 		  (obj->relocbase + dynp->d_un.d_ptr);
815 		obj->nbuckets = hashtab[0];
816 		obj->nchains = hashtab[1];
817 		obj->buckets = hashtab + 2;
818 		obj->chains = obj->buckets + obj->nbuckets;
819 	    }
820 	    break;
821 
822 	case DT_NEEDED:
823 	    if (!obj->rtld) {
824 		Needed_Entry *nep = NEW(Needed_Entry);
825 		nep->name = dynp->d_un.d_val;
826 		nep->obj = NULL;
827 		nep->next = NULL;
828 
829 		*needed_tail = nep;
830 		needed_tail = &nep->next;
831 	    }
832 	    break;
833 
834 	case DT_PLTGOT:
835 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
836 	    break;
837 
838 	case DT_TEXTREL:
839 	    obj->textrel = true;
840 	    break;
841 
842 	case DT_SYMBOLIC:
843 	    obj->symbolic = true;
844 	    break;
845 
846 	case DT_RPATH:
847 	case DT_RUNPATH:	/* XXX: process separately */
848 	    /*
849 	     * We have to wait until later to process this, because we
850 	     * might not have gotten the address of the string table yet.
851 	     */
852 	    *dyn_rpath = dynp;
853 	    break;
854 
855 	case DT_SONAME:
856 	    *dyn_soname = dynp;
857 	    break;
858 
859 	case DT_INIT:
860 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
861 	    break;
862 
863 	case DT_FINI:
864 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
865 	    break;
866 
867 	/*
868 	 * Don't process DT_DEBUG on MIPS as the dynamic section
869 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
870 	 */
871 
872 #ifndef __mips__
873 	case DT_DEBUG:
874 	    /* XXX - not implemented yet */
875 	    if (!early)
876 		dbg("Filling in DT_DEBUG entry");
877 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
878 	    break;
879 #endif
880 
881 	case DT_FLAGS:
882 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
883 		    obj->z_origin = true;
884 		if (dynp->d_un.d_val & DF_SYMBOLIC)
885 		    obj->symbolic = true;
886 		if (dynp->d_un.d_val & DF_TEXTREL)
887 		    obj->textrel = true;
888 		if (dynp->d_un.d_val & DF_BIND_NOW)
889 		    obj->bind_now = true;
890 		if (dynp->d_un.d_val & DF_STATIC_TLS)
891 		    ;
892 	    break;
893 #ifdef __mips__
894 	case DT_MIPS_LOCAL_GOTNO:
895 		obj->local_gotno = dynp->d_un.d_val;
896 	    break;
897 
898 	case DT_MIPS_SYMTABNO:
899 		obj->symtabno = dynp->d_un.d_val;
900 		break;
901 
902 	case DT_MIPS_GOTSYM:
903 		obj->gotsym = dynp->d_un.d_val;
904 		break;
905 
906 	case DT_MIPS_RLD_MAP:
907 #ifdef notyet
908 		if (!early)
909 			dbg("Filling in DT_DEBUG entry");
910 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
911 #endif
912 		break;
913 #endif
914 
915 	case DT_FLAGS_1:
916 		if (dynp->d_un.d_val & DF_1_NOOPEN)
917 		    obj->z_noopen = true;
918 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
919 		    obj->z_origin = true;
920 		if (dynp->d_un.d_val & DF_1_GLOBAL)
921 			/* XXX */;
922 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
923 		    obj->bind_now = true;
924 		if (dynp->d_un.d_val & DF_1_NODELETE)
925 		    obj->z_nodelete = true;
926 	    break;
927 
928 	default:
929 	    if (!early) {
930 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
931 		    (long)dynp->d_tag);
932 	    }
933 	    break;
934 	}
935     }
936 
937     obj->traced = false;
938 
939     if (plttype == DT_RELA) {
940 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
941 	obj->pltrel = NULL;
942 	obj->pltrelasize = obj->pltrelsize;
943 	obj->pltrelsize = 0;
944     }
945 }
946 
947 static void
948 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
949     const Elf_Dyn *dyn_soname)
950 {
951 
952     if (obj->z_origin && obj->origin_path == NULL) {
953 	obj->origin_path = xmalloc(PATH_MAX);
954 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
955 	    die();
956     }
957 
958     if (dyn_rpath != NULL) {
959 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
960 	if (obj->z_origin)
961 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
962     }
963 
964     if (dyn_soname != NULL)
965 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
966 }
967 
968 static void
969 digest_dynamic(Obj_Entry *obj, int early)
970 {
971 	const Elf_Dyn *dyn_rpath;
972 	const Elf_Dyn *dyn_soname;
973 
974 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
975 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
976 }
977 
978 /*
979  * Process a shared object's program header.  This is used only for the
980  * main program, when the kernel has already loaded the main program
981  * into memory before calling the dynamic linker.  It creates and
982  * returns an Obj_Entry structure.
983  */
984 static Obj_Entry *
985 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
986 {
987     Obj_Entry *obj;
988     const Elf_Phdr *phlimit = phdr + phnum;
989     const Elf_Phdr *ph;
990     int nsegs = 0;
991 
992     obj = obj_new();
993     for (ph = phdr;  ph < phlimit;  ph++) {
994 	if (ph->p_type != PT_PHDR)
995 	    continue;
996 
997 	obj->phdr = phdr;
998 	obj->phsize = ph->p_memsz;
999 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1000 	break;
1001     }
1002 
1003     for (ph = phdr;  ph < phlimit;  ph++) {
1004 	switch (ph->p_type) {
1005 
1006 	case PT_INTERP:
1007 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1008 	    break;
1009 
1010 	case PT_LOAD:
1011 	    if (nsegs == 0) {	/* First load segment */
1012 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1013 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1014 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1015 		  obj->vaddrbase;
1016 	    } else {		/* Last load segment */
1017 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1018 		  obj->vaddrbase;
1019 	    }
1020 	    nsegs++;
1021 	    break;
1022 
1023 	case PT_DYNAMIC:
1024 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1025 	    break;
1026 
1027 	case PT_TLS:
1028 	    obj->tlsindex = 1;
1029 	    obj->tlssize = ph->p_memsz;
1030 	    obj->tlsalign = ph->p_align;
1031 	    obj->tlsinitsize = ph->p_filesz;
1032 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1033 	    break;
1034 	}
1035     }
1036     if (nsegs < 1) {
1037 	_rtld_error("%s: too few PT_LOAD segments", path);
1038 	return NULL;
1039     }
1040 
1041     obj->entry = entry;
1042     return obj;
1043 }
1044 
1045 static Obj_Entry *
1046 dlcheck(void *handle)
1047 {
1048     Obj_Entry *obj;
1049 
1050     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1051 	if (obj == (Obj_Entry *) handle)
1052 	    break;
1053 
1054     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1055 	_rtld_error("Invalid shared object handle %p", handle);
1056 	return NULL;
1057     }
1058     return obj;
1059 }
1060 
1061 /*
1062  * If the given object is already in the donelist, return true.  Otherwise
1063  * add the object to the list and return false.
1064  */
1065 static bool
1066 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1067 {
1068     unsigned int i;
1069 
1070     for (i = 0;  i < dlp->num_used;  i++)
1071 	if (dlp->objs[i] == obj)
1072 	    return true;
1073     /*
1074      * Our donelist allocation should always be sufficient.  But if
1075      * our threads locking isn't working properly, more shared objects
1076      * could have been loaded since we allocated the list.  That should
1077      * never happen, but we'll handle it properly just in case it does.
1078      */
1079     if (dlp->num_used < dlp->num_alloc)
1080 	dlp->objs[dlp->num_used++] = obj;
1081     return false;
1082 }
1083 
1084 /*
1085  * Hash function for symbol table lookup.  Don't even think about changing
1086  * this.  It is specified by the System V ABI.
1087  */
1088 unsigned long
1089 elf_hash(const char *name)
1090 {
1091     const unsigned char *p = (const unsigned char *) name;
1092     unsigned long h = 0;
1093     unsigned long g;
1094 
1095     while (*p != '\0') {
1096 	h = (h << 4) + *p++;
1097 	if ((g = h & 0xf0000000) != 0)
1098 	    h ^= g >> 24;
1099 	h &= ~g;
1100     }
1101     return h;
1102 }
1103 
1104 /*
1105  * Find the library with the given name, and return its full pathname.
1106  * The returned string is dynamically allocated.  Generates an error
1107  * message and returns NULL if the library cannot be found.
1108  *
1109  * If the second argument is non-NULL, then it refers to an already-
1110  * loaded shared object, whose library search path will be searched.
1111  *
1112  * The search order is:
1113  *   LD_LIBRARY_PATH
1114  *   rpath in the referencing file
1115  *   ldconfig hints
1116  *   /lib:/usr/lib
1117  */
1118 static char *
1119 find_library(const char *xname, const Obj_Entry *refobj)
1120 {
1121     char *pathname;
1122     char *name;
1123 
1124     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1125 	if (xname[0] != '/' && !trust) {
1126 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1127 	      xname);
1128 	    return NULL;
1129 	}
1130 	if (refobj != NULL && refobj->z_origin)
1131 	    return origin_subst(xname, refobj->origin_path);
1132 	else
1133 	    return xstrdup(xname);
1134     }
1135 
1136     if (libmap_disable || (refobj == NULL) ||
1137 	(name = lm_find(refobj->path, xname)) == NULL)
1138 	name = (char *)xname;
1139 
1140     dbg(" Searching for \"%s\"", name);
1141 
1142     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1143       (refobj != NULL &&
1144       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1145       (pathname = search_library_path(name, gethints())) != NULL ||
1146       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1147 	return pathname;
1148 
1149     if(refobj != NULL && refobj->path != NULL) {
1150 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1151 	  name, basename(refobj->path));
1152     } else {
1153 	_rtld_error("Shared object \"%s\" not found", name);
1154     }
1155     return NULL;
1156 }
1157 
1158 /*
1159  * Given a symbol number in a referencing object, find the corresponding
1160  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1161  * no definition was found.  Returns a pointer to the Obj_Entry of the
1162  * defining object via the reference parameter DEFOBJ_OUT.
1163  */
1164 const Elf_Sym *
1165 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1166     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1167 {
1168     const Elf_Sym *ref;
1169     const Elf_Sym *def;
1170     const Obj_Entry *defobj;
1171     const Ver_Entry *ventry;
1172     const char *name;
1173     unsigned long hash;
1174 
1175     /*
1176      * If we have already found this symbol, get the information from
1177      * the cache.
1178      */
1179     if (symnum >= refobj->nchains)
1180 	return NULL;	/* Bad object */
1181     if (cache != NULL && cache[symnum].sym != NULL) {
1182 	*defobj_out = cache[symnum].obj;
1183 	return cache[symnum].sym;
1184     }
1185 
1186     ref = refobj->symtab + symnum;
1187     name = refobj->strtab + ref->st_name;
1188     defobj = NULL;
1189 
1190     /*
1191      * We don't have to do a full scale lookup if the symbol is local.
1192      * We know it will bind to the instance in this load module; to
1193      * which we already have a pointer (ie ref). By not doing a lookup,
1194      * we not only improve performance, but it also avoids unresolvable
1195      * symbols when local symbols are not in the hash table. This has
1196      * been seen with the ia64 toolchain.
1197      */
1198     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1199 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1200 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1201 		symnum);
1202 	}
1203 	ventry = fetch_ventry(refobj, symnum);
1204 	hash = elf_hash(name);
1205 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1206     } else {
1207 	def = ref;
1208 	defobj = refobj;
1209     }
1210 
1211     /*
1212      * If we found no definition and the reference is weak, treat the
1213      * symbol as having the value zero.
1214      */
1215     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1216 	def = &sym_zero;
1217 	defobj = obj_main;
1218     }
1219 
1220     if (def != NULL) {
1221 	*defobj_out = defobj;
1222 	/* Record the information in the cache to avoid subsequent lookups. */
1223 	if (cache != NULL) {
1224 	    cache[symnum].sym = def;
1225 	    cache[symnum].obj = defobj;
1226 	}
1227     } else {
1228 	if (refobj != &obj_rtld)
1229 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1230     }
1231     return def;
1232 }
1233 
1234 /*
1235  * Return the search path from the ldconfig hints file, reading it if
1236  * necessary.  Returns NULL if there are problems with the hints file,
1237  * or if the search path there is empty.
1238  */
1239 static const char *
1240 gethints(void)
1241 {
1242     static char *hints;
1243 
1244     if (hints == NULL) {
1245 	int fd;
1246 	struct elfhints_hdr hdr;
1247 	char *p;
1248 
1249 	/* Keep from trying again in case the hints file is bad. */
1250 	hints = "";
1251 
1252 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1253 	    return NULL;
1254 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1255 	  hdr.magic != ELFHINTS_MAGIC ||
1256 	  hdr.version != 1) {
1257 	    close(fd);
1258 	    return NULL;
1259 	}
1260 	p = xmalloc(hdr.dirlistlen + 1);
1261 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1262 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1263 	    free(p);
1264 	    close(fd);
1265 	    return NULL;
1266 	}
1267 	hints = p;
1268 	close(fd);
1269     }
1270     return hints[0] != '\0' ? hints : NULL;
1271 }
1272 
1273 static void
1274 init_dag(Obj_Entry *root)
1275 {
1276     DoneList donelist;
1277 
1278     donelist_init(&donelist);
1279     init_dag1(root, root, &donelist);
1280 }
1281 
1282 static void
1283 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1284 {
1285     const Needed_Entry *needed;
1286 
1287     if (donelist_check(dlp, obj))
1288 	return;
1289 
1290     obj->refcount++;
1291     objlist_push_tail(&obj->dldags, root);
1292     objlist_push_tail(&root->dagmembers, obj);
1293     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1294 	if (needed->obj != NULL)
1295 	    init_dag1(root, needed->obj, dlp);
1296 }
1297 
1298 /*
1299  * Initialize the dynamic linker.  The argument is the address at which
1300  * the dynamic linker has been mapped into memory.  The primary task of
1301  * this function is to relocate the dynamic linker.
1302  */
1303 static void
1304 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1305 {
1306     Obj_Entry objtmp;	/* Temporary rtld object */
1307     const Elf_Dyn *dyn_rpath;
1308     const Elf_Dyn *dyn_soname;
1309 
1310     /*
1311      * Conjure up an Obj_Entry structure for the dynamic linker.
1312      *
1313      * The "path" member can't be initialized yet because string constants
1314      * cannot yet be accessed. Below we will set it correctly.
1315      */
1316     memset(&objtmp, 0, sizeof(objtmp));
1317     objtmp.path = NULL;
1318     objtmp.rtld = true;
1319     objtmp.mapbase = mapbase;
1320 #ifdef PIC
1321     objtmp.relocbase = mapbase;
1322 #endif
1323     if (RTLD_IS_DYNAMIC()) {
1324 	objtmp.dynamic = rtld_dynamic(&objtmp);
1325 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1326 	assert(objtmp.needed == NULL);
1327 #if !defined(__mips__)
1328 	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1329 	assert(!objtmp.textrel);
1330 #endif
1331 
1332 	/*
1333 	 * Temporarily put the dynamic linker entry into the object list, so
1334 	 * that symbols can be found.
1335 	 */
1336 
1337 	relocate_objects(&objtmp, true, &objtmp);
1338     }
1339 
1340     /* Initialize the object list. */
1341     obj_tail = &obj_list;
1342 
1343     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1344     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1345 
1346     if (aux_info[AT_PAGESZ] != NULL)
1347 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1348     if (aux_info[AT_OSRELDATE] != NULL)
1349 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1350 
1351     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1352 
1353     /* Replace the path with a dynamically allocated copy. */
1354     obj_rtld.path = xstrdup(PATH_RTLD);
1355 
1356     r_debug.r_brk = r_debug_state;
1357     r_debug.r_state = RT_CONSISTENT;
1358 }
1359 
1360 /*
1361  * Add the init functions from a needed object list (and its recursive
1362  * needed objects) to "list".  This is not used directly; it is a helper
1363  * function for initlist_add_objects().  The write lock must be held
1364  * when this function is called.
1365  */
1366 static void
1367 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1368 {
1369     /* Recursively process the successor needed objects. */
1370     if (needed->next != NULL)
1371 	initlist_add_neededs(needed->next, list);
1372 
1373     /* Process the current needed object. */
1374     if (needed->obj != NULL)
1375 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1376 }
1377 
1378 /*
1379  * Scan all of the DAGs rooted in the range of objects from "obj" to
1380  * "tail" and add their init functions to "list".  This recurses over
1381  * the DAGs and ensure the proper init ordering such that each object's
1382  * needed libraries are initialized before the object itself.  At the
1383  * same time, this function adds the objects to the global finalization
1384  * list "list_fini" in the opposite order.  The write lock must be
1385  * held when this function is called.
1386  */
1387 static void
1388 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1389 {
1390     if (obj->init_scanned || obj->init_done)
1391 	return;
1392     obj->init_scanned = true;
1393 
1394     /* Recursively process the successor objects. */
1395     if (&obj->next != tail)
1396 	initlist_add_objects(obj->next, tail, list);
1397 
1398     /* Recursively process the needed objects. */
1399     if (obj->needed != NULL)
1400 	initlist_add_neededs(obj->needed, list);
1401 
1402     /* Add the object to the init list. */
1403     if (obj->init != (Elf_Addr)NULL)
1404 	objlist_push_tail(list, obj);
1405 
1406     /* Add the object to the global fini list in the reverse order. */
1407     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1408 	objlist_push_head(&list_fini, obj);
1409 	obj->on_fini_list = true;
1410     }
1411 }
1412 
1413 #ifndef FPTR_TARGET
1414 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1415 #endif
1416 
1417 /*
1418  * Given a shared object, traverse its list of needed objects, and load
1419  * each of them.  Returns 0 on success.  Generates an error message and
1420  * returns -1 on failure.
1421  */
1422 static int
1423 load_needed_objects(Obj_Entry *first, int flags)
1424 {
1425     Obj_Entry *obj, *obj1;
1426 
1427     for (obj = first;  obj != NULL;  obj = obj->next) {
1428 	Needed_Entry *needed;
1429 
1430 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1431 	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1432 		flags & ~RTLD_LO_NOLOAD);
1433 	    if (obj1 == NULL && !ld_tracing)
1434 		return -1;
1435 	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1436 		dbg("obj %s nodelete", obj1->path);
1437 		init_dag(obj1);
1438 		ref_dag(obj1);
1439 		obj1->ref_nodel = true;
1440 	    }
1441 	}
1442     }
1443 
1444     return 0;
1445 }
1446 
1447 static int
1448 load_preload_objects(void)
1449 {
1450     char *p = ld_preload;
1451     static const char delim[] = " \t:;";
1452 
1453     if (p == NULL)
1454 	return 0;
1455 
1456     p += strspn(p, delim);
1457     while (*p != '\0') {
1458 	size_t len = strcspn(p, delim);
1459 	char savech;
1460 
1461 	savech = p[len];
1462 	p[len] = '\0';
1463 	if (load_object(p, NULL, 0) == NULL)
1464 	    return -1;	/* XXX - cleanup */
1465 	p[len] = savech;
1466 	p += len;
1467 	p += strspn(p, delim);
1468     }
1469     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1470     return 0;
1471 }
1472 
1473 /*
1474  * Load a shared object into memory, if it is not already loaded.
1475  *
1476  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1477  * on failure.
1478  */
1479 static Obj_Entry *
1480 load_object(const char *name, const Obj_Entry *refobj, int flags)
1481 {
1482     Obj_Entry *obj;
1483     int fd = -1;
1484     struct stat sb;
1485     char *path;
1486 
1487     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1488 	if (object_match_name(obj, name))
1489 	    return obj;
1490 
1491     path = find_library(name, refobj);
1492     if (path == NULL)
1493 	return NULL;
1494 
1495     /*
1496      * If we didn't find a match by pathname, open the file and check
1497      * again by device and inode.  This avoids false mismatches caused
1498      * by multiple links or ".." in pathnames.
1499      *
1500      * To avoid a race, we open the file and use fstat() rather than
1501      * using stat().
1502      */
1503     if ((fd = open(path, O_RDONLY)) == -1) {
1504 	_rtld_error("Cannot open \"%s\"", path);
1505 	free(path);
1506 	return NULL;
1507     }
1508     if (fstat(fd, &sb) == -1) {
1509 	_rtld_error("Cannot fstat \"%s\"", path);
1510 	close(fd);
1511 	free(path);
1512 	return NULL;
1513     }
1514     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1515 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1516 	    close(fd);
1517 	    break;
1518 	}
1519     }
1520     if (obj != NULL) {
1521 	object_add_name(obj, name);
1522 	free(path);
1523 	close(fd);
1524 	return obj;
1525     }
1526     if (flags & RTLD_LO_NOLOAD) {
1527 	free(path);
1528 	return (NULL);
1529     }
1530 
1531     /* First use of this object, so we must map it in */
1532     obj = do_load_object(fd, name, path, &sb, flags);
1533     if (obj == NULL)
1534 	free(path);
1535     close(fd);
1536 
1537     return obj;
1538 }
1539 
1540 static Obj_Entry *
1541 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1542   int flags)
1543 {
1544     Obj_Entry *obj;
1545     struct statfs fs;
1546 
1547     /*
1548      * but first, make sure that environment variables haven't been
1549      * used to circumvent the noexec flag on a filesystem.
1550      */
1551     if (dangerous_ld_env) {
1552 	if (fstatfs(fd, &fs) != 0) {
1553 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1554 		return NULL;
1555 	}
1556 	if (fs.f_flags & MNT_NOEXEC) {
1557 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1558 	    return NULL;
1559 	}
1560     }
1561     dbg("loading \"%s\"", path);
1562     obj = map_object(fd, path, sbp);
1563     if (obj == NULL)
1564         return NULL;
1565 
1566     object_add_name(obj, name);
1567     obj->path = path;
1568     digest_dynamic(obj, 0);
1569     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1570       RTLD_LO_DLOPEN) {
1571 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1572 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1573 	munmap(obj->mapbase, obj->mapsize);
1574 	obj_free(obj);
1575 	return (NULL);
1576     }
1577 
1578     *obj_tail = obj;
1579     obj_tail = &obj->next;
1580     obj_count++;
1581     obj_loads++;
1582     linkmap_add(obj);	/* for GDB & dlinfo() */
1583 
1584     dbg("  %p .. %p: %s", obj->mapbase,
1585          obj->mapbase + obj->mapsize - 1, obj->path);
1586     if (obj->textrel)
1587 	dbg("  WARNING: %s has impure text", obj->path);
1588     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1589 	obj->path);
1590 
1591     return obj;
1592 }
1593 
1594 static Obj_Entry *
1595 obj_from_addr(const void *addr)
1596 {
1597     Obj_Entry *obj;
1598 
1599     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1600 	if (addr < (void *) obj->mapbase)
1601 	    continue;
1602 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1603 	    return obj;
1604     }
1605     return NULL;
1606 }
1607 
1608 /*
1609  * Call the finalization functions for each of the objects in "list"
1610  * which are unreferenced.  All of the objects are expected to have
1611  * non-NULL fini functions.
1612  */
1613 static void
1614 objlist_call_fini(Objlist *list, bool force, int *lockstate)
1615 {
1616     Objlist_Entry *elm, *elm_tmp;
1617     char *saved_msg;
1618 
1619     /*
1620      * Preserve the current error message since a fini function might
1621      * call into the dynamic linker and overwrite it.
1622      */
1623     saved_msg = errmsg_save();
1624     STAILQ_FOREACH_SAFE(elm, list, link, elm_tmp) {
1625 	if (elm->obj->refcount == 0 || force) {
1626 	    dbg("calling fini function for %s at %p", elm->obj->path,
1627 	        (void *)elm->obj->fini);
1628 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1629 		elm->obj->path);
1630 	    /* Remove object from fini list to prevent recursive invocation. */
1631 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1632 	    wlock_release(rtld_bind_lock, *lockstate);
1633 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1634 	    *lockstate = wlock_acquire(rtld_bind_lock);
1635 	    /* No need to free anything if process is going down. */
1636 	    if (!force)
1637 	    	free(elm);
1638 	}
1639     }
1640     errmsg_restore(saved_msg);
1641 }
1642 
1643 /*
1644  * Call the initialization functions for each of the objects in
1645  * "list".  All of the objects are expected to have non-NULL init
1646  * functions.
1647  */
1648 static void
1649 objlist_call_init(Objlist *list, int *lockstate)
1650 {
1651     Objlist_Entry *elm;
1652     Obj_Entry *obj;
1653     char *saved_msg;
1654 
1655     /*
1656      * Clean init_scanned flag so that objects can be rechecked and
1657      * possibly initialized earlier if any of vectors called below
1658      * cause the change by using dlopen.
1659      */
1660     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1661 	obj->init_scanned = false;
1662 
1663     /*
1664      * Preserve the current error message since an init function might
1665      * call into the dynamic linker and overwrite it.
1666      */
1667     saved_msg = errmsg_save();
1668     STAILQ_FOREACH(elm, list, link) {
1669 	if (elm->obj->init_done) /* Initialized early. */
1670 	    continue;
1671 	dbg("calling init function for %s at %p", elm->obj->path,
1672 	    (void *)elm->obj->init);
1673 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1674 	    elm->obj->path);
1675 	/*
1676 	 * Race: other thread might try to use this object before current
1677 	 * one completes the initilization. Not much can be done here
1678 	 * without better locking.
1679 	 */
1680 	elm->obj->init_done = true;
1681     	wlock_release(rtld_bind_lock, *lockstate);
1682 	call_initfini_pointer(elm->obj, elm->obj->init);
1683 	*lockstate = wlock_acquire(rtld_bind_lock);
1684     }
1685     errmsg_restore(saved_msg);
1686 }
1687 
1688 static void
1689 objlist_clear(Objlist *list)
1690 {
1691     Objlist_Entry *elm;
1692 
1693     while (!STAILQ_EMPTY(list)) {
1694 	elm = STAILQ_FIRST(list);
1695 	STAILQ_REMOVE_HEAD(list, link);
1696 	free(elm);
1697     }
1698 }
1699 
1700 static Objlist_Entry *
1701 objlist_find(Objlist *list, const Obj_Entry *obj)
1702 {
1703     Objlist_Entry *elm;
1704 
1705     STAILQ_FOREACH(elm, list, link)
1706 	if (elm->obj == obj)
1707 	    return elm;
1708     return NULL;
1709 }
1710 
1711 static void
1712 objlist_init(Objlist *list)
1713 {
1714     STAILQ_INIT(list);
1715 }
1716 
1717 static void
1718 objlist_push_head(Objlist *list, Obj_Entry *obj)
1719 {
1720     Objlist_Entry *elm;
1721 
1722     elm = NEW(Objlist_Entry);
1723     elm->obj = obj;
1724     STAILQ_INSERT_HEAD(list, elm, link);
1725 }
1726 
1727 static void
1728 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1729 {
1730     Objlist_Entry *elm;
1731 
1732     elm = NEW(Objlist_Entry);
1733     elm->obj = obj;
1734     STAILQ_INSERT_TAIL(list, elm, link);
1735 }
1736 
1737 static void
1738 objlist_remove(Objlist *list, Obj_Entry *obj)
1739 {
1740     Objlist_Entry *elm;
1741 
1742     if ((elm = objlist_find(list, obj)) != NULL) {
1743 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1744 	free(elm);
1745     }
1746 }
1747 
1748 /*
1749  * Relocate newly-loaded shared objects.  The argument is a pointer to
1750  * the Obj_Entry for the first such object.  All objects from the first
1751  * to the end of the list of objects are relocated.  Returns 0 on success,
1752  * or -1 on failure.
1753  */
1754 static int
1755 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1756 {
1757     Obj_Entry *obj;
1758 
1759     for (obj = first;  obj != NULL;  obj = obj->next) {
1760 	if (obj != rtldobj)
1761 	    dbg("relocating \"%s\"", obj->path);
1762 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1763 	    obj->symtab == NULL || obj->strtab == NULL) {
1764 	    _rtld_error("%s: Shared object has no run-time symbol table",
1765 	      obj->path);
1766 	    return -1;
1767 	}
1768 
1769 	if (obj->textrel) {
1770 	    /* There are relocations to the write-protected text segment. */
1771 	    if (mprotect(obj->mapbase, obj->textsize,
1772 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1773 		_rtld_error("%s: Cannot write-enable text segment: %s",
1774 		  obj->path, strerror(errno));
1775 		return -1;
1776 	    }
1777 	}
1778 
1779 	/* Process the non-PLT relocations. */
1780 	if (reloc_non_plt(obj, rtldobj))
1781 		return -1;
1782 
1783 	if (obj->textrel) {	/* Re-protected the text segment. */
1784 	    if (mprotect(obj->mapbase, obj->textsize,
1785 	      PROT_READ|PROT_EXEC) == -1) {
1786 		_rtld_error("%s: Cannot write-protect text segment: %s",
1787 		  obj->path, strerror(errno));
1788 		return -1;
1789 	    }
1790 	}
1791 
1792 	/* Process the PLT relocations. */
1793 	if (reloc_plt(obj) == -1)
1794 	    return -1;
1795 	/* Relocate the jump slots if we are doing immediate binding. */
1796 	if (obj->bind_now || bind_now)
1797 	    if (reloc_jmpslots(obj) == -1)
1798 		return -1;
1799 
1800 
1801 	/*
1802 	 * Set up the magic number and version in the Obj_Entry.  These
1803 	 * were checked in the crt1.o from the original ElfKit, so we
1804 	 * set them for backward compatibility.
1805 	 */
1806 	obj->magic = RTLD_MAGIC;
1807 	obj->version = RTLD_VERSION;
1808 
1809 	/* Set the special PLT or GOT entries. */
1810 	init_pltgot(obj);
1811     }
1812 
1813     return 0;
1814 }
1815 
1816 /*
1817  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1818  * before the process exits.
1819  */
1820 static void
1821 rtld_exit(void)
1822 {
1823     int	lockstate;
1824 
1825     lockstate = wlock_acquire(rtld_bind_lock);
1826     dbg("rtld_exit()");
1827     objlist_call_fini(&list_fini, true, &lockstate);
1828     /* No need to remove the items from the list, since we are exiting. */
1829     if (!libmap_disable)
1830         lm_fini();
1831     wlock_release(rtld_bind_lock, lockstate);
1832 }
1833 
1834 static void *
1835 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1836 {
1837 #ifdef COMPAT_32BIT
1838     const char *trans;
1839 #endif
1840     if (path == NULL)
1841 	return (NULL);
1842 
1843     path += strspn(path, ":;");
1844     while (*path != '\0') {
1845 	size_t len;
1846 	char  *res;
1847 
1848 	len = strcspn(path, ":;");
1849 #ifdef COMPAT_32BIT
1850 	trans = lm_findn(NULL, path, len);
1851 	if (trans)
1852 	    res = callback(trans, strlen(trans), arg);
1853 	else
1854 #endif
1855 	res = callback(path, len, arg);
1856 
1857 	if (res != NULL)
1858 	    return (res);
1859 
1860 	path += len;
1861 	path += strspn(path, ":;");
1862     }
1863 
1864     return (NULL);
1865 }
1866 
1867 struct try_library_args {
1868     const char	*name;
1869     size_t	 namelen;
1870     char	*buffer;
1871     size_t	 buflen;
1872 };
1873 
1874 static void *
1875 try_library_path(const char *dir, size_t dirlen, void *param)
1876 {
1877     struct try_library_args *arg;
1878 
1879     arg = param;
1880     if (*dir == '/' || trust) {
1881 	char *pathname;
1882 
1883 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1884 		return (NULL);
1885 
1886 	pathname = arg->buffer;
1887 	strncpy(pathname, dir, dirlen);
1888 	pathname[dirlen] = '/';
1889 	strcpy(pathname + dirlen + 1, arg->name);
1890 
1891 	dbg("  Trying \"%s\"", pathname);
1892 	if (access(pathname, F_OK) == 0) {		/* We found it */
1893 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1894 	    strcpy(pathname, arg->buffer);
1895 	    return (pathname);
1896 	}
1897     }
1898     return (NULL);
1899 }
1900 
1901 static char *
1902 search_library_path(const char *name, const char *path)
1903 {
1904     char *p;
1905     struct try_library_args arg;
1906 
1907     if (path == NULL)
1908 	return NULL;
1909 
1910     arg.name = name;
1911     arg.namelen = strlen(name);
1912     arg.buffer = xmalloc(PATH_MAX);
1913     arg.buflen = PATH_MAX;
1914 
1915     p = path_enumerate(path, try_library_path, &arg);
1916 
1917     free(arg.buffer);
1918 
1919     return (p);
1920 }
1921 
1922 int
1923 dlclose(void *handle)
1924 {
1925     Obj_Entry *root;
1926     int lockstate;
1927 
1928     lockstate = wlock_acquire(rtld_bind_lock);
1929     root = dlcheck(handle);
1930     if (root == NULL) {
1931 	wlock_release(rtld_bind_lock, lockstate);
1932 	return -1;
1933     }
1934     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1935 	root->path);
1936 
1937     /* Unreference the object and its dependencies. */
1938     root->dl_refcount--;
1939 
1940     unref_dag(root);
1941 
1942     if (root->refcount == 0) {
1943 	/*
1944 	 * The object is no longer referenced, so we must unload it.
1945 	 * First, call the fini functions.
1946 	 */
1947 	objlist_call_fini(&list_fini, false, &lockstate);
1948 
1949 	/* Finish cleaning up the newly-unreferenced objects. */
1950 	GDB_STATE(RT_DELETE,&root->linkmap);
1951 	unload_object(root);
1952 	GDB_STATE(RT_CONSISTENT,NULL);
1953     }
1954     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1955     wlock_release(rtld_bind_lock, lockstate);
1956     return 0;
1957 }
1958 
1959 char *
1960 dlerror(void)
1961 {
1962     char *msg = error_message;
1963     error_message = NULL;
1964     return msg;
1965 }
1966 
1967 /*
1968  * This function is deprecated and has no effect.
1969  */
1970 void
1971 dllockinit(void *context,
1972 	   void *(*lock_create)(void *context),
1973            void (*rlock_acquire)(void *lock),
1974            void (*wlock_acquire)(void *lock),
1975            void (*lock_release)(void *lock),
1976            void (*lock_destroy)(void *lock),
1977 	   void (*context_destroy)(void *context))
1978 {
1979     static void *cur_context;
1980     static void (*cur_context_destroy)(void *);
1981 
1982     /* Just destroy the context from the previous call, if necessary. */
1983     if (cur_context_destroy != NULL)
1984 	cur_context_destroy(cur_context);
1985     cur_context = context;
1986     cur_context_destroy = context_destroy;
1987 }
1988 
1989 void *
1990 dlopen(const char *name, int mode)
1991 {
1992     Obj_Entry **old_obj_tail;
1993     Obj_Entry *obj;
1994     Objlist initlist;
1995     int result, lockstate, nodelete, lo_flags;
1996 
1997     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1998     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1999     if (ld_tracing != NULL)
2000 	environ = (char **)*get_program_var_addr("environ");
2001     nodelete = mode & RTLD_NODELETE;
2002     lo_flags = RTLD_LO_DLOPEN;
2003     if (mode & RTLD_NOLOAD)
2004 	    lo_flags |= RTLD_LO_NOLOAD;
2005     if (ld_tracing != NULL)
2006 	    lo_flags |= RTLD_LO_TRACE;
2007 
2008     objlist_init(&initlist);
2009 
2010     lockstate = wlock_acquire(rtld_bind_lock);
2011     GDB_STATE(RT_ADD,NULL);
2012 
2013     old_obj_tail = obj_tail;
2014     obj = NULL;
2015     if (name == NULL) {
2016 	obj = obj_main;
2017 	obj->refcount++;
2018     } else {
2019 	obj = load_object(name, obj_main, lo_flags);
2020     }
2021 
2022     if (obj) {
2023 	obj->dl_refcount++;
2024 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2025 	    objlist_push_tail(&list_global, obj);
2026 	mode &= RTLD_MODEMASK;
2027 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2028 	    assert(*old_obj_tail == obj);
2029 	    result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2030 	    init_dag(obj);
2031 	    if (result != -1)
2032 		result = rtld_verify_versions(&obj->dagmembers);
2033 	    if (result != -1 && ld_tracing)
2034 		goto trace;
2035 	    if (result == -1 ||
2036 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2037 		obj->dl_refcount--;
2038 		unref_dag(obj);
2039 		if (obj->refcount == 0)
2040 		    unload_object(obj);
2041 		obj = NULL;
2042 	    } else {
2043 		/* Make list of init functions to call. */
2044 		initlist_add_objects(obj, &obj->next, &initlist);
2045 	    }
2046 	} else {
2047 
2048 	    /* Bump the reference counts for objects on this DAG. */
2049 	    ref_dag(obj);
2050 
2051 	    if (ld_tracing)
2052 		goto trace;
2053 	}
2054 	if (obj != NULL && (nodelete || obj->z_nodelete) && !obj->ref_nodel) {
2055 	    dbg("obj %s nodelete", obj->path);
2056 	    ref_dag(obj);
2057 	    obj->z_nodelete = obj->ref_nodel = true;
2058 	}
2059     }
2060 
2061     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2062 	name);
2063     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2064 
2065     /* Call the init functions. */
2066     objlist_call_init(&initlist, &lockstate);
2067     objlist_clear(&initlist);
2068     wlock_release(rtld_bind_lock, lockstate);
2069     return obj;
2070 trace:
2071     trace_loaded_objects(obj);
2072     wlock_release(rtld_bind_lock, lockstate);
2073     exit(0);
2074 }
2075 
2076 static void *
2077 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2078     int flags)
2079 {
2080     DoneList donelist;
2081     const Obj_Entry *obj, *defobj;
2082     const Elf_Sym *def, *symp;
2083     unsigned long hash;
2084     int lockstate;
2085 
2086     hash = elf_hash(name);
2087     def = NULL;
2088     defobj = NULL;
2089     flags |= SYMLOOK_IN_PLT;
2090 
2091     lockstate = rlock_acquire(rtld_bind_lock);
2092     if (handle == NULL || handle == RTLD_NEXT ||
2093 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2094 
2095 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2096 	    _rtld_error("Cannot determine caller's shared object");
2097 	    rlock_release(rtld_bind_lock, lockstate);
2098 	    return NULL;
2099 	}
2100 	if (handle == NULL) {	/* Just the caller's shared object. */
2101 	    def = symlook_obj(name, hash, obj, ve, flags);
2102 	    defobj = obj;
2103 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2104 		   handle == RTLD_SELF) { /* ... caller included */
2105 	    if (handle == RTLD_NEXT)
2106 		obj = obj->next;
2107 	    for (; obj != NULL; obj = obj->next) {
2108 	    	if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2109 		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2110 			def = symp;
2111 			defobj = obj;
2112 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2113 			    break;
2114 		    }
2115 		}
2116 	    }
2117 	    /*
2118 	     * Search the dynamic linker itself, and possibly resolve the
2119 	     * symbol from there.  This is how the application links to
2120 	     * dynamic linker services such as dlopen.
2121 	     */
2122 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2123 		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2124 		if (symp != NULL) {
2125 		    def = symp;
2126 		    defobj = &obj_rtld;
2127 		}
2128 	    }
2129 	} else {
2130 	    assert(handle == RTLD_DEFAULT);
2131 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2132 	}
2133     } else {
2134 	if ((obj = dlcheck(handle)) == NULL) {
2135 	    rlock_release(rtld_bind_lock, lockstate);
2136 	    return NULL;
2137 	}
2138 
2139 	donelist_init(&donelist);
2140 	if (obj->mainprog) {
2141 	    /* Search main program and all libraries loaded by it. */
2142 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2143 			       &donelist);
2144 
2145 	    /*
2146 	     * We do not distinguish between 'main' object and global scope.
2147 	     * If symbol is not defined by objects loaded at startup, continue
2148 	     * search among dynamically loaded objects with RTLD_GLOBAL
2149 	     * scope.
2150 	     */
2151 	    if (def == NULL)
2152 		def = symlook_list(name, hash, &list_global, &defobj, ve,
2153 		    		    flags, &donelist);
2154 	} else {
2155 	    Needed_Entry fake;
2156 
2157 	    /* Search the whole DAG rooted at the given object. */
2158 	    fake.next = NULL;
2159 	    fake.obj = (Obj_Entry *)obj;
2160 	    fake.name = 0;
2161 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2162 				 &donelist);
2163 	}
2164     }
2165 
2166     if (def != NULL) {
2167 	rlock_release(rtld_bind_lock, lockstate);
2168 
2169 	/*
2170 	 * The value required by the caller is derived from the value
2171 	 * of the symbol. For the ia64 architecture, we need to
2172 	 * construct a function descriptor which the caller can use to
2173 	 * call the function with the right 'gp' value. For other
2174 	 * architectures and for non-functions, the value is simply
2175 	 * the relocated value of the symbol.
2176 	 */
2177 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2178 	    return make_function_pointer(def, defobj);
2179 	else
2180 	    return defobj->relocbase + def->st_value;
2181     }
2182 
2183     _rtld_error("Undefined symbol \"%s\"", name);
2184     rlock_release(rtld_bind_lock, lockstate);
2185     return NULL;
2186 }
2187 
2188 void *
2189 dlsym(void *handle, const char *name)
2190 {
2191 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2192 	    SYMLOOK_DLSYM);
2193 }
2194 
2195 dlfunc_t
2196 dlfunc(void *handle, const char *name)
2197 {
2198 	union {
2199 		void *d;
2200 		dlfunc_t f;
2201 	} rv;
2202 
2203 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2204 	    SYMLOOK_DLSYM);
2205 	return (rv.f);
2206 }
2207 
2208 void *
2209 dlvsym(void *handle, const char *name, const char *version)
2210 {
2211 	Ver_Entry ventry;
2212 
2213 	ventry.name = version;
2214 	ventry.file = NULL;
2215 	ventry.hash = elf_hash(version);
2216 	ventry.flags= 0;
2217 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2218 	    SYMLOOK_DLSYM);
2219 }
2220 
2221 int
2222 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2223 {
2224     const Obj_Entry *obj;
2225     int lockstate;
2226 
2227     lockstate = rlock_acquire(rtld_bind_lock);
2228     obj = obj_from_addr(addr);
2229     if (obj == NULL) {
2230         _rtld_error("No shared object contains address");
2231 	rlock_release(rtld_bind_lock, lockstate);
2232         return (0);
2233     }
2234     rtld_fill_dl_phdr_info(obj, phdr_info);
2235     rlock_release(rtld_bind_lock, lockstate);
2236     return (1);
2237 }
2238 
2239 int
2240 dladdr(const void *addr, Dl_info *info)
2241 {
2242     const Obj_Entry *obj;
2243     const Elf_Sym *def;
2244     void *symbol_addr;
2245     unsigned long symoffset;
2246     int lockstate;
2247 
2248     lockstate = rlock_acquire(rtld_bind_lock);
2249     obj = obj_from_addr(addr);
2250     if (obj == NULL) {
2251         _rtld_error("No shared object contains address");
2252 	rlock_release(rtld_bind_lock, lockstate);
2253         return 0;
2254     }
2255     info->dli_fname = obj->path;
2256     info->dli_fbase = obj->mapbase;
2257     info->dli_saddr = (void *)0;
2258     info->dli_sname = NULL;
2259 
2260     /*
2261      * Walk the symbol list looking for the symbol whose address is
2262      * closest to the address sent in.
2263      */
2264     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2265         def = obj->symtab + symoffset;
2266 
2267         /*
2268          * For skip the symbol if st_shndx is either SHN_UNDEF or
2269          * SHN_COMMON.
2270          */
2271         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2272             continue;
2273 
2274         /*
2275          * If the symbol is greater than the specified address, or if it
2276          * is further away from addr than the current nearest symbol,
2277          * then reject it.
2278          */
2279         symbol_addr = obj->relocbase + def->st_value;
2280         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2281             continue;
2282 
2283         /* Update our idea of the nearest symbol. */
2284         info->dli_sname = obj->strtab + def->st_name;
2285         info->dli_saddr = symbol_addr;
2286 
2287         /* Exact match? */
2288         if (info->dli_saddr == addr)
2289             break;
2290     }
2291     rlock_release(rtld_bind_lock, lockstate);
2292     return 1;
2293 }
2294 
2295 int
2296 dlinfo(void *handle, int request, void *p)
2297 {
2298     const Obj_Entry *obj;
2299     int error, lockstate;
2300 
2301     lockstate = rlock_acquire(rtld_bind_lock);
2302 
2303     if (handle == NULL || handle == RTLD_SELF) {
2304 	void *retaddr;
2305 
2306 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2307 	if ((obj = obj_from_addr(retaddr)) == NULL)
2308 	    _rtld_error("Cannot determine caller's shared object");
2309     } else
2310 	obj = dlcheck(handle);
2311 
2312     if (obj == NULL) {
2313 	rlock_release(rtld_bind_lock, lockstate);
2314 	return (-1);
2315     }
2316 
2317     error = 0;
2318     switch (request) {
2319     case RTLD_DI_LINKMAP:
2320 	*((struct link_map const **)p) = &obj->linkmap;
2321 	break;
2322     case RTLD_DI_ORIGIN:
2323 	error = rtld_dirname(obj->path, p);
2324 	break;
2325 
2326     case RTLD_DI_SERINFOSIZE:
2327     case RTLD_DI_SERINFO:
2328 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2329 	break;
2330 
2331     default:
2332 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2333 	error = -1;
2334     }
2335 
2336     rlock_release(rtld_bind_lock, lockstate);
2337 
2338     return (error);
2339 }
2340 
2341 static void
2342 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2343 {
2344 
2345 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2346 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2347 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2348 	phdr_info->dlpi_phdr = obj->phdr;
2349 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2350 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2351 	phdr_info->dlpi_tls_data = obj->tlsinit;
2352 	phdr_info->dlpi_adds = obj_loads;
2353 	phdr_info->dlpi_subs = obj_loads - obj_count;
2354 }
2355 
2356 int
2357 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2358 {
2359     struct dl_phdr_info phdr_info;
2360     const Obj_Entry *obj;
2361     int error, bind_lockstate, phdr_lockstate;
2362 
2363     phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2364     bind_lockstate = rlock_acquire(rtld_bind_lock);
2365 
2366     error = 0;
2367 
2368     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2369 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2370 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2371 		break;
2372 
2373     }
2374     rlock_release(rtld_bind_lock, bind_lockstate);
2375     wlock_release(rtld_phdr_lock, phdr_lockstate);
2376 
2377     return (error);
2378 }
2379 
2380 struct fill_search_info_args {
2381     int		 request;
2382     unsigned int flags;
2383     Dl_serinfo  *serinfo;
2384     Dl_serpath  *serpath;
2385     char	*strspace;
2386 };
2387 
2388 static void *
2389 fill_search_info(const char *dir, size_t dirlen, void *param)
2390 {
2391     struct fill_search_info_args *arg;
2392 
2393     arg = param;
2394 
2395     if (arg->request == RTLD_DI_SERINFOSIZE) {
2396 	arg->serinfo->dls_cnt ++;
2397 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2398     } else {
2399 	struct dl_serpath *s_entry;
2400 
2401 	s_entry = arg->serpath;
2402 	s_entry->dls_name  = arg->strspace;
2403 	s_entry->dls_flags = arg->flags;
2404 
2405 	strncpy(arg->strspace, dir, dirlen);
2406 	arg->strspace[dirlen] = '\0';
2407 
2408 	arg->strspace += dirlen + 1;
2409 	arg->serpath++;
2410     }
2411 
2412     return (NULL);
2413 }
2414 
2415 static int
2416 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2417 {
2418     struct dl_serinfo _info;
2419     struct fill_search_info_args args;
2420 
2421     args.request = RTLD_DI_SERINFOSIZE;
2422     args.serinfo = &_info;
2423 
2424     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2425     _info.dls_cnt  = 0;
2426 
2427     path_enumerate(ld_library_path, fill_search_info, &args);
2428     path_enumerate(obj->rpath, fill_search_info, &args);
2429     path_enumerate(gethints(), fill_search_info, &args);
2430     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2431 
2432 
2433     if (request == RTLD_DI_SERINFOSIZE) {
2434 	info->dls_size = _info.dls_size;
2435 	info->dls_cnt = _info.dls_cnt;
2436 	return (0);
2437     }
2438 
2439     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2440 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2441 	return (-1);
2442     }
2443 
2444     args.request  = RTLD_DI_SERINFO;
2445     args.serinfo  = info;
2446     args.serpath  = &info->dls_serpath[0];
2447     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2448 
2449     args.flags = LA_SER_LIBPATH;
2450     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2451 	return (-1);
2452 
2453     args.flags = LA_SER_RUNPATH;
2454     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2455 	return (-1);
2456 
2457     args.flags = LA_SER_CONFIG;
2458     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2459 	return (-1);
2460 
2461     args.flags = LA_SER_DEFAULT;
2462     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2463 	return (-1);
2464     return (0);
2465 }
2466 
2467 static int
2468 rtld_dirname(const char *path, char *bname)
2469 {
2470     const char *endp;
2471 
2472     /* Empty or NULL string gets treated as "." */
2473     if (path == NULL || *path == '\0') {
2474 	bname[0] = '.';
2475 	bname[1] = '\0';
2476 	return (0);
2477     }
2478 
2479     /* Strip trailing slashes */
2480     endp = path + strlen(path) - 1;
2481     while (endp > path && *endp == '/')
2482 	endp--;
2483 
2484     /* Find the start of the dir */
2485     while (endp > path && *endp != '/')
2486 	endp--;
2487 
2488     /* Either the dir is "/" or there are no slashes */
2489     if (endp == path) {
2490 	bname[0] = *endp == '/' ? '/' : '.';
2491 	bname[1] = '\0';
2492 	return (0);
2493     } else {
2494 	do {
2495 	    endp--;
2496 	} while (endp > path && *endp == '/');
2497     }
2498 
2499     if (endp - path + 2 > PATH_MAX)
2500     {
2501 	_rtld_error("Filename is too long: %s", path);
2502 	return(-1);
2503     }
2504 
2505     strncpy(bname, path, endp - path + 1);
2506     bname[endp - path + 1] = '\0';
2507     return (0);
2508 }
2509 
2510 static int
2511 rtld_dirname_abs(const char *path, char *base)
2512 {
2513 	char base_rel[PATH_MAX];
2514 
2515 	if (rtld_dirname(path, base) == -1)
2516 		return (-1);
2517 	if (base[0] == '/')
2518 		return (0);
2519 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2520 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2521 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2522 		return (-1);
2523 	strcpy(base, base_rel);
2524 	return (0);
2525 }
2526 
2527 static void
2528 linkmap_add(Obj_Entry *obj)
2529 {
2530     struct link_map *l = &obj->linkmap;
2531     struct link_map *prev;
2532 
2533     obj->linkmap.l_name = obj->path;
2534     obj->linkmap.l_addr = obj->mapbase;
2535     obj->linkmap.l_ld = obj->dynamic;
2536 #ifdef __mips__
2537     /* GDB needs load offset on MIPS to use the symbols */
2538     obj->linkmap.l_offs = obj->relocbase;
2539 #endif
2540 
2541     if (r_debug.r_map == NULL) {
2542 	r_debug.r_map = l;
2543 	return;
2544     }
2545 
2546     /*
2547      * Scan to the end of the list, but not past the entry for the
2548      * dynamic linker, which we want to keep at the very end.
2549      */
2550     for (prev = r_debug.r_map;
2551       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2552       prev = prev->l_next)
2553 	;
2554 
2555     /* Link in the new entry. */
2556     l->l_prev = prev;
2557     l->l_next = prev->l_next;
2558     if (l->l_next != NULL)
2559 	l->l_next->l_prev = l;
2560     prev->l_next = l;
2561 }
2562 
2563 static void
2564 linkmap_delete(Obj_Entry *obj)
2565 {
2566     struct link_map *l = &obj->linkmap;
2567 
2568     if (l->l_prev == NULL) {
2569 	if ((r_debug.r_map = l->l_next) != NULL)
2570 	    l->l_next->l_prev = NULL;
2571 	return;
2572     }
2573 
2574     if ((l->l_prev->l_next = l->l_next) != NULL)
2575 	l->l_next->l_prev = l->l_prev;
2576 }
2577 
2578 /*
2579  * Function for the debugger to set a breakpoint on to gain control.
2580  *
2581  * The two parameters allow the debugger to easily find and determine
2582  * what the runtime loader is doing and to whom it is doing it.
2583  *
2584  * When the loadhook trap is hit (r_debug_state, set at program
2585  * initialization), the arguments can be found on the stack:
2586  *
2587  *  +8   struct link_map *m
2588  *  +4   struct r_debug  *rd
2589  *  +0   RetAddr
2590  */
2591 void
2592 r_debug_state(struct r_debug* rd, struct link_map *m)
2593 {
2594 }
2595 
2596 /*
2597  * Get address of the pointer variable in the main program.
2598  */
2599 static const void **
2600 get_program_var_addr(const char *name)
2601 {
2602     const Obj_Entry *obj;
2603     unsigned long hash;
2604 
2605     hash = elf_hash(name);
2606     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2607 	const Elf_Sym *def;
2608 
2609 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2610 	    const void **addr;
2611 
2612 	    addr = (const void **)(obj->relocbase + def->st_value);
2613 	    return addr;
2614 	}
2615     }
2616     return NULL;
2617 }
2618 
2619 /*
2620  * Set a pointer variable in the main program to the given value.  This
2621  * is used to set key variables such as "environ" before any of the
2622  * init functions are called.
2623  */
2624 static void
2625 set_program_var(const char *name, const void *value)
2626 {
2627     const void **addr;
2628 
2629     if ((addr = get_program_var_addr(name)) != NULL) {
2630 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2631 	*addr = value;
2632     }
2633 }
2634 
2635 /*
2636  * Given a symbol name in a referencing object, find the corresponding
2637  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2638  * no definition was found.  Returns a pointer to the Obj_Entry of the
2639  * defining object via the reference parameter DEFOBJ_OUT.
2640  */
2641 static const Elf_Sym *
2642 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2643     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2644 {
2645     DoneList donelist;
2646     const Elf_Sym *def;
2647     const Elf_Sym *symp;
2648     const Obj_Entry *obj;
2649     const Obj_Entry *defobj;
2650     const Objlist_Entry *elm;
2651     def = NULL;
2652     defobj = NULL;
2653     donelist_init(&donelist);
2654 
2655     /* Look first in the referencing object if linked symbolically. */
2656     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2657 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2658 	if (symp != NULL) {
2659 	    def = symp;
2660 	    defobj = refobj;
2661 	}
2662     }
2663 
2664     /* Search all objects loaded at program start up. */
2665     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2666 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2667 	    &donelist);
2668 	if (symp != NULL &&
2669 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2670 	    def = symp;
2671 	    defobj = obj;
2672 	}
2673     }
2674 
2675     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2676     STAILQ_FOREACH(elm, &list_global, link) {
2677        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2678            break;
2679        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2680 	   flags, &donelist);
2681 	if (symp != NULL &&
2682 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2683 	    def = symp;
2684 	    defobj = obj;
2685 	}
2686     }
2687 
2688     /* Search all dlopened DAGs containing the referencing object. */
2689     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2690 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2691 	    break;
2692 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2693 	    flags, &donelist);
2694 	if (symp != NULL &&
2695 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2696 	    def = symp;
2697 	    defobj = obj;
2698 	}
2699     }
2700 
2701     /*
2702      * Search the dynamic linker itself, and possibly resolve the
2703      * symbol from there.  This is how the application links to
2704      * dynamic linker services such as dlopen.
2705      */
2706     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2707 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2708 	if (symp != NULL) {
2709 	    def = symp;
2710 	    defobj = &obj_rtld;
2711 	}
2712     }
2713 
2714     if (def != NULL)
2715 	*defobj_out = defobj;
2716     return def;
2717 }
2718 
2719 static const Elf_Sym *
2720 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2721   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2722   DoneList *dlp)
2723 {
2724     const Elf_Sym *symp;
2725     const Elf_Sym *def;
2726     const Obj_Entry *defobj;
2727     const Objlist_Entry *elm;
2728 
2729     def = NULL;
2730     defobj = NULL;
2731     STAILQ_FOREACH(elm, objlist, link) {
2732 	if (donelist_check(dlp, elm->obj))
2733 	    continue;
2734 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2735 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2736 		def = symp;
2737 		defobj = elm->obj;
2738 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2739 		    break;
2740 	    }
2741 	}
2742     }
2743     if (def != NULL)
2744 	*defobj_out = defobj;
2745     return def;
2746 }
2747 
2748 /*
2749  * Search the symbol table of a shared object and all objects needed
2750  * by it for a symbol of the given name.  Search order is
2751  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2752  * definition was found.
2753  */
2754 static const Elf_Sym *
2755 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2756   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2757   DoneList *dlp)
2758 {
2759     const Elf_Sym *def, *def_w;
2760     const Needed_Entry *n;
2761     const Obj_Entry *obj, *defobj, *defobj1;
2762 
2763     def = def_w = NULL;
2764     defobj = NULL;
2765     for (n = needed; n != NULL; n = n->next) {
2766 	if ((obj = n->obj) == NULL ||
2767 	    donelist_check(dlp, obj) ||
2768 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2769 	    continue;
2770 	defobj = obj;
2771 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2772 	    *defobj_out = defobj;
2773 	    return (def);
2774 	}
2775     }
2776     /*
2777      * There we come when either symbol definition is not found in
2778      * directly needed objects, or found symbol is weak.
2779      */
2780     for (n = needed; n != NULL; n = n->next) {
2781 	if ((obj = n->obj) == NULL)
2782 	    continue;
2783 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2784 			       ventry, flags, dlp);
2785 	if (def_w == NULL)
2786 	    continue;
2787 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2788 	    def = def_w;
2789 	    defobj = defobj1;
2790 	}
2791 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2792 	    break;
2793     }
2794     if (def != NULL)
2795 	*defobj_out = defobj;
2796     return (def);
2797 }
2798 
2799 /*
2800  * Search the symbol table of a single shared object for a symbol of
2801  * the given name and version, if requested.  Returns a pointer to the
2802  * symbol, or NULL if no definition was found.
2803  *
2804  * The symbol's hash value is passed in for efficiency reasons; that
2805  * eliminates many recomputations of the hash value.
2806  */
2807 const Elf_Sym *
2808 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2809     const Ver_Entry *ventry, int flags)
2810 {
2811     unsigned long symnum;
2812     const Elf_Sym *vsymp;
2813     Elf_Versym verndx;
2814     int vcount;
2815 
2816     if (obj->buckets == NULL)
2817 	return NULL;
2818 
2819     vsymp = NULL;
2820     vcount = 0;
2821     symnum = obj->buckets[hash % obj->nbuckets];
2822 
2823     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2824 	const Elf_Sym *symp;
2825 	const char *strp;
2826 
2827 	if (symnum >= obj->nchains)
2828 		return NULL;	/* Bad object */
2829 
2830 	symp = obj->symtab + symnum;
2831 	strp = obj->strtab + symp->st_name;
2832 
2833 	switch (ELF_ST_TYPE(symp->st_info)) {
2834 	case STT_FUNC:
2835 	case STT_NOTYPE:
2836 	case STT_OBJECT:
2837 	    if (symp->st_value == 0)
2838 		continue;
2839 		/* fallthrough */
2840 	case STT_TLS:
2841 	    if (symp->st_shndx != SHN_UNDEF)
2842 		break;
2843 #ifndef __mips__
2844 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2845 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2846 		break;
2847 		/* fallthrough */
2848 #endif
2849 	default:
2850 	    continue;
2851 	}
2852 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2853 	    continue;
2854 
2855 	if (ventry == NULL) {
2856 	    if (obj->versyms != NULL) {
2857 		verndx = VER_NDX(obj->versyms[symnum]);
2858 		if (verndx > obj->vernum) {
2859 		    _rtld_error("%s: symbol %s references wrong version %d",
2860 			obj->path, obj->strtab + symnum, verndx);
2861 		    continue;
2862 		}
2863 		/*
2864 		 * If we are not called from dlsym (i.e. this is a normal
2865 		 * relocation from unversioned binary, accept the symbol
2866 		 * immediately if it happens to have first version after
2867 		 * this shared object became versioned. Otherwise, if
2868 		 * symbol is versioned and not hidden, remember it. If it
2869 		 * is the only symbol with this name exported by the
2870 		 * shared object, it will be returned as a match at the
2871 		 * end of the function. If symbol is global (verndx < 2)
2872 		 * accept it unconditionally.
2873 		 */
2874 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2875 		    return symp;
2876 	        else if (verndx >= VER_NDX_GIVEN) {
2877 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2878 			if (vsymp == NULL)
2879 			    vsymp = symp;
2880 			vcount ++;
2881 		    }
2882 		    continue;
2883 		}
2884 	    }
2885 	    return symp;
2886 	} else {
2887 	    if (obj->versyms == NULL) {
2888 		if (object_match_name(obj, ventry->name)) {
2889 		    _rtld_error("%s: object %s should provide version %s for "
2890 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2891 			obj->strtab + symnum);
2892 		    continue;
2893 		}
2894 	    } else {
2895 		verndx = VER_NDX(obj->versyms[symnum]);
2896 		if (verndx > obj->vernum) {
2897 		    _rtld_error("%s: symbol %s references wrong version %d",
2898 			obj->path, obj->strtab + symnum, verndx);
2899 		    continue;
2900 		}
2901 		if (obj->vertab[verndx].hash != ventry->hash ||
2902 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2903 		    /*
2904 		     * Version does not match. Look if this is a global symbol
2905 		     * and if it is not hidden. If global symbol (verndx < 2)
2906 		     * is available, use it. Do not return symbol if we are
2907 		     * called by dlvsym, because dlvsym looks for a specific
2908 		     * version and default one is not what dlvsym wants.
2909 		     */
2910 		    if ((flags & SYMLOOK_DLSYM) ||
2911 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2912 			(verndx >= VER_NDX_GIVEN))
2913 			continue;
2914 		}
2915 	    }
2916 	    return symp;
2917 	}
2918     }
2919     return (vcount == 1) ? vsymp : NULL;
2920 }
2921 
2922 static void
2923 trace_loaded_objects(Obj_Entry *obj)
2924 {
2925     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2926     int		c;
2927 
2928     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2929 	main_local = "";
2930 
2931     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2932 	fmt1 = "\t%o => %p (%x)\n";
2933 
2934     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2935 	fmt2 = "\t%o (%x)\n";
2936 
2937     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2938 
2939     for (; obj; obj = obj->next) {
2940 	Needed_Entry		*needed;
2941 	char			*name, *path;
2942 	bool			is_lib;
2943 
2944 	if (list_containers && obj->needed != NULL)
2945 	    printf("%s:\n", obj->path);
2946 	for (needed = obj->needed; needed; needed = needed->next) {
2947 	    if (needed->obj != NULL) {
2948 		if (needed->obj->traced && !list_containers)
2949 		    continue;
2950 		needed->obj->traced = true;
2951 		path = needed->obj->path;
2952 	    } else
2953 		path = "not found";
2954 
2955 	    name = (char *)obj->strtab + needed->name;
2956 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2957 
2958 	    fmt = is_lib ? fmt1 : fmt2;
2959 	    while ((c = *fmt++) != '\0') {
2960 		switch (c) {
2961 		default:
2962 		    putchar(c);
2963 		    continue;
2964 		case '\\':
2965 		    switch (c = *fmt) {
2966 		    case '\0':
2967 			continue;
2968 		    case 'n':
2969 			putchar('\n');
2970 			break;
2971 		    case 't':
2972 			putchar('\t');
2973 			break;
2974 		    }
2975 		    break;
2976 		case '%':
2977 		    switch (c = *fmt) {
2978 		    case '\0':
2979 			continue;
2980 		    case '%':
2981 		    default:
2982 			putchar(c);
2983 			break;
2984 		    case 'A':
2985 			printf("%s", main_local);
2986 			break;
2987 		    case 'a':
2988 			printf("%s", obj_main->path);
2989 			break;
2990 		    case 'o':
2991 			printf("%s", name);
2992 			break;
2993 #if 0
2994 		    case 'm':
2995 			printf("%d", sodp->sod_major);
2996 			break;
2997 		    case 'n':
2998 			printf("%d", sodp->sod_minor);
2999 			break;
3000 #endif
3001 		    case 'p':
3002 			printf("%s", path);
3003 			break;
3004 		    case 'x':
3005 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
3006 			break;
3007 		    }
3008 		    break;
3009 		}
3010 		++fmt;
3011 	    }
3012 	}
3013     }
3014 }
3015 
3016 /*
3017  * Unload a dlopened object and its dependencies from memory and from
3018  * our data structures.  It is assumed that the DAG rooted in the
3019  * object has already been unreferenced, and that the object has a
3020  * reference count of 0.
3021  */
3022 static void
3023 unload_object(Obj_Entry *root)
3024 {
3025     Obj_Entry *obj;
3026     Obj_Entry **linkp;
3027 
3028     assert(root->refcount == 0);
3029 
3030     /*
3031      * Pass over the DAG removing unreferenced objects from
3032      * appropriate lists.
3033      */
3034     unlink_object(root);
3035 
3036     /* Unmap all objects that are no longer referenced. */
3037     linkp = &obj_list->next;
3038     while ((obj = *linkp) != NULL) {
3039 	if (obj->refcount == 0) {
3040 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3041 		obj->path);
3042 	    dbg("unloading \"%s\"", obj->path);
3043 	    munmap(obj->mapbase, obj->mapsize);
3044 	    linkmap_delete(obj);
3045 	    *linkp = obj->next;
3046 	    obj_count--;
3047 	    obj_free(obj);
3048 	} else
3049 	    linkp = &obj->next;
3050     }
3051     obj_tail = linkp;
3052 }
3053 
3054 static void
3055 unlink_object(Obj_Entry *root)
3056 {
3057     Objlist_Entry *elm;
3058 
3059     if (root->refcount == 0) {
3060 	/* Remove the object from the RTLD_GLOBAL list. */
3061 	objlist_remove(&list_global, root);
3062 
3063     	/* Remove the object from all objects' DAG lists. */
3064     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3065 	    objlist_remove(&elm->obj->dldags, root);
3066 	    if (elm->obj != root)
3067 		unlink_object(elm->obj);
3068 	}
3069     }
3070 }
3071 
3072 static void
3073 ref_dag(Obj_Entry *root)
3074 {
3075     Objlist_Entry *elm;
3076 
3077     STAILQ_FOREACH(elm, &root->dagmembers, link)
3078 	elm->obj->refcount++;
3079 }
3080 
3081 static void
3082 unref_dag(Obj_Entry *root)
3083 {
3084     Objlist_Entry *elm;
3085 
3086     STAILQ_FOREACH(elm, &root->dagmembers, link)
3087 	elm->obj->refcount--;
3088 }
3089 
3090 /*
3091  * Common code for MD __tls_get_addr().
3092  */
3093 void *
3094 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3095 {
3096     Elf_Addr* dtv = *dtvp;
3097     int lockstate;
3098 
3099     /* Check dtv generation in case new modules have arrived */
3100     if (dtv[0] != tls_dtv_generation) {
3101 	Elf_Addr* newdtv;
3102 	int to_copy;
3103 
3104 	lockstate = wlock_acquire(rtld_bind_lock);
3105 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3106 	to_copy = dtv[1];
3107 	if (to_copy > tls_max_index)
3108 	    to_copy = tls_max_index;
3109 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3110 	newdtv[0] = tls_dtv_generation;
3111 	newdtv[1] = tls_max_index;
3112 	free(dtv);
3113 	wlock_release(rtld_bind_lock, lockstate);
3114 	*dtvp = newdtv;
3115     }
3116 
3117     /* Dynamically allocate module TLS if necessary */
3118     if (!dtv[index + 1]) {
3119 	/* Signal safe, wlock will block out signals. */
3120 	lockstate = wlock_acquire(rtld_bind_lock);
3121 	if (!dtv[index + 1])
3122 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3123 	wlock_release(rtld_bind_lock, lockstate);
3124     }
3125     return (void*) (dtv[index + 1] + offset);
3126 }
3127 
3128 /* XXX not sure what variants to use for arm. */
3129 
3130 #if defined(__ia64__) || defined(__powerpc__)
3131 
3132 /*
3133  * Allocate Static TLS using the Variant I method.
3134  */
3135 void *
3136 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3137 {
3138     Obj_Entry *obj;
3139     char *tcb;
3140     Elf_Addr **tls;
3141     Elf_Addr *dtv;
3142     Elf_Addr addr;
3143     int i;
3144 
3145     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3146 	return (oldtcb);
3147 
3148     assert(tcbsize >= TLS_TCB_SIZE);
3149     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3150     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3151 
3152     if (oldtcb != NULL) {
3153 	memcpy(tls, oldtcb, tls_static_space);
3154 	free(oldtcb);
3155 
3156 	/* Adjust the DTV. */
3157 	dtv = tls[0];
3158 	for (i = 0; i < dtv[1]; i++) {
3159 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3160 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3161 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3162 	    }
3163 	}
3164     } else {
3165 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3166 	tls[0] = dtv;
3167 	dtv[0] = tls_dtv_generation;
3168 	dtv[1] = tls_max_index;
3169 
3170 	for (obj = objs; obj; obj = obj->next) {
3171 	    if (obj->tlsoffset > 0) {
3172 		addr = (Elf_Addr)tls + obj->tlsoffset;
3173 		if (obj->tlsinitsize > 0)
3174 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3175 		if (obj->tlssize > obj->tlsinitsize)
3176 		    memset((void*) (addr + obj->tlsinitsize), 0,
3177 			   obj->tlssize - obj->tlsinitsize);
3178 		dtv[obj->tlsindex + 1] = addr;
3179 	    }
3180 	}
3181     }
3182 
3183     return (tcb);
3184 }
3185 
3186 void
3187 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3188 {
3189     Elf_Addr *dtv;
3190     Elf_Addr tlsstart, tlsend;
3191     int dtvsize, i;
3192 
3193     assert(tcbsize >= TLS_TCB_SIZE);
3194 
3195     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3196     tlsend = tlsstart + tls_static_space;
3197 
3198     dtv = *(Elf_Addr **)tlsstart;
3199     dtvsize = dtv[1];
3200     for (i = 0; i < dtvsize; i++) {
3201 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3202 	    free((void*)dtv[i+2]);
3203 	}
3204     }
3205     free(dtv);
3206     free(tcb);
3207 }
3208 
3209 #endif
3210 
3211 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3212     defined(__arm__) || defined(__mips__)
3213 
3214 /*
3215  * Allocate Static TLS using the Variant II method.
3216  */
3217 void *
3218 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3219 {
3220     Obj_Entry *obj;
3221     size_t size;
3222     char *tls;
3223     Elf_Addr *dtv, *olddtv;
3224     Elf_Addr segbase, oldsegbase, addr;
3225     int i;
3226 
3227     size = round(tls_static_space, tcbalign);
3228 
3229     assert(tcbsize >= 2*sizeof(Elf_Addr));
3230     tls = calloc(1, size + tcbsize);
3231     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3232 
3233     segbase = (Elf_Addr)(tls + size);
3234     ((Elf_Addr*)segbase)[0] = segbase;
3235     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3236 
3237     dtv[0] = tls_dtv_generation;
3238     dtv[1] = tls_max_index;
3239 
3240     if (oldtls) {
3241 	/*
3242 	 * Copy the static TLS block over whole.
3243 	 */
3244 	oldsegbase = (Elf_Addr) oldtls;
3245 	memcpy((void *)(segbase - tls_static_space),
3246 	       (const void *)(oldsegbase - tls_static_space),
3247 	       tls_static_space);
3248 
3249 	/*
3250 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3251 	 * move them over.
3252 	 */
3253 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3254 	for (i = 0; i < olddtv[1]; i++) {
3255 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3256 		dtv[i+2] = olddtv[i+2];
3257 		olddtv[i+2] = 0;
3258 	    }
3259 	}
3260 
3261 	/*
3262 	 * We assume that this block was the one we created with
3263 	 * allocate_initial_tls().
3264 	 */
3265 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3266     } else {
3267 	for (obj = objs; obj; obj = obj->next) {
3268 	    if (obj->tlsoffset) {
3269 		addr = segbase - obj->tlsoffset;
3270 		memset((void*) (addr + obj->tlsinitsize),
3271 		       0, obj->tlssize - obj->tlsinitsize);
3272 		if (obj->tlsinit)
3273 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3274 		dtv[obj->tlsindex + 1] = addr;
3275 	    }
3276 	}
3277     }
3278 
3279     return (void*) segbase;
3280 }
3281 
3282 void
3283 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3284 {
3285     size_t size;
3286     Elf_Addr* dtv;
3287     int dtvsize, i;
3288     Elf_Addr tlsstart, tlsend;
3289 
3290     /*
3291      * Figure out the size of the initial TLS block so that we can
3292      * find stuff which ___tls_get_addr() allocated dynamically.
3293      */
3294     size = round(tls_static_space, tcbalign);
3295 
3296     dtv = ((Elf_Addr**)tls)[1];
3297     dtvsize = dtv[1];
3298     tlsend = (Elf_Addr) tls;
3299     tlsstart = tlsend - size;
3300     for (i = 0; i < dtvsize; i++) {
3301 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3302 	    free((void*) dtv[i+2]);
3303 	}
3304     }
3305 
3306     free((void*) tlsstart);
3307     free((void*) dtv);
3308 }
3309 
3310 #endif
3311 
3312 /*
3313  * Allocate TLS block for module with given index.
3314  */
3315 void *
3316 allocate_module_tls(int index)
3317 {
3318     Obj_Entry* obj;
3319     char* p;
3320 
3321     for (obj = obj_list; obj; obj = obj->next) {
3322 	if (obj->tlsindex == index)
3323 	    break;
3324     }
3325     if (!obj) {
3326 	_rtld_error("Can't find module with TLS index %d", index);
3327 	die();
3328     }
3329 
3330     p = malloc(obj->tlssize);
3331     if (p == NULL) {
3332 	_rtld_error("Cannot allocate TLS block for index %d", index);
3333 	die();
3334     }
3335     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3336     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3337 
3338     return p;
3339 }
3340 
3341 bool
3342 allocate_tls_offset(Obj_Entry *obj)
3343 {
3344     size_t off;
3345 
3346     if (obj->tls_done)
3347 	return true;
3348 
3349     if (obj->tlssize == 0) {
3350 	obj->tls_done = true;
3351 	return true;
3352     }
3353 
3354     if (obj->tlsindex == 1)
3355 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3356     else
3357 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3358 				   obj->tlssize, obj->tlsalign);
3359 
3360     /*
3361      * If we have already fixed the size of the static TLS block, we
3362      * must stay within that size. When allocating the static TLS, we
3363      * leave a small amount of space spare to be used for dynamically
3364      * loading modules which use static TLS.
3365      */
3366     if (tls_static_space) {
3367 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3368 	    return false;
3369     }
3370 
3371     tls_last_offset = obj->tlsoffset = off;
3372     tls_last_size = obj->tlssize;
3373     obj->tls_done = true;
3374 
3375     return true;
3376 }
3377 
3378 void
3379 free_tls_offset(Obj_Entry *obj)
3380 {
3381 
3382     /*
3383      * If we were the last thing to allocate out of the static TLS
3384      * block, we give our space back to the 'allocator'. This is a
3385      * simplistic workaround to allow libGL.so.1 to be loaded and
3386      * unloaded multiple times.
3387      */
3388     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3389 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3390 	tls_last_offset -= obj->tlssize;
3391 	tls_last_size = 0;
3392     }
3393 }
3394 
3395 void *
3396 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3397 {
3398     void *ret;
3399     int lockstate;
3400 
3401     lockstate = wlock_acquire(rtld_bind_lock);
3402     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3403     wlock_release(rtld_bind_lock, lockstate);
3404     return (ret);
3405 }
3406 
3407 void
3408 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3409 {
3410     int lockstate;
3411 
3412     lockstate = wlock_acquire(rtld_bind_lock);
3413     free_tls(tcb, tcbsize, tcbalign);
3414     wlock_release(rtld_bind_lock, lockstate);
3415 }
3416 
3417 static void
3418 object_add_name(Obj_Entry *obj, const char *name)
3419 {
3420     Name_Entry *entry;
3421     size_t len;
3422 
3423     len = strlen(name);
3424     entry = malloc(sizeof(Name_Entry) + len);
3425 
3426     if (entry != NULL) {
3427 	strcpy(entry->name, name);
3428 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3429     }
3430 }
3431 
3432 static int
3433 object_match_name(const Obj_Entry *obj, const char *name)
3434 {
3435     Name_Entry *entry;
3436 
3437     STAILQ_FOREACH(entry, &obj->names, link) {
3438 	if (strcmp(name, entry->name) == 0)
3439 	    return (1);
3440     }
3441     return (0);
3442 }
3443 
3444 static Obj_Entry *
3445 locate_dependency(const Obj_Entry *obj, const char *name)
3446 {
3447     const Objlist_Entry *entry;
3448     const Needed_Entry *needed;
3449 
3450     STAILQ_FOREACH(entry, &list_main, link) {
3451 	if (object_match_name(entry->obj, name))
3452 	    return entry->obj;
3453     }
3454 
3455     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3456 	if (needed->obj == NULL)
3457 	    continue;
3458 	if (object_match_name(needed->obj, name))
3459 	    return needed->obj;
3460     }
3461     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3462 	obj->path, name);
3463     die();
3464 }
3465 
3466 static int
3467 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3468     const Elf_Vernaux *vna)
3469 {
3470     const Elf_Verdef *vd;
3471     const char *vername;
3472 
3473     vername = refobj->strtab + vna->vna_name;
3474     vd = depobj->verdef;
3475     if (vd == NULL) {
3476 	_rtld_error("%s: version %s required by %s not defined",
3477 	    depobj->path, vername, refobj->path);
3478 	return (-1);
3479     }
3480     for (;;) {
3481 	if (vd->vd_version != VER_DEF_CURRENT) {
3482 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3483 		depobj->path, vd->vd_version);
3484 	    return (-1);
3485 	}
3486 	if (vna->vna_hash == vd->vd_hash) {
3487 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3488 		((char *)vd + vd->vd_aux);
3489 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3490 		return (0);
3491 	}
3492 	if (vd->vd_next == 0)
3493 	    break;
3494 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3495     }
3496     if (vna->vna_flags & VER_FLG_WEAK)
3497 	return (0);
3498     _rtld_error("%s: version %s required by %s not found",
3499 	depobj->path, vername, refobj->path);
3500     return (-1);
3501 }
3502 
3503 static int
3504 rtld_verify_object_versions(Obj_Entry *obj)
3505 {
3506     const Elf_Verneed *vn;
3507     const Elf_Verdef  *vd;
3508     const Elf_Verdaux *vda;
3509     const Elf_Vernaux *vna;
3510     const Obj_Entry *depobj;
3511     int maxvernum, vernum;
3512 
3513     maxvernum = 0;
3514     /*
3515      * Walk over defined and required version records and figure out
3516      * max index used by any of them. Do very basic sanity checking
3517      * while there.
3518      */
3519     vn = obj->verneed;
3520     while (vn != NULL) {
3521 	if (vn->vn_version != VER_NEED_CURRENT) {
3522 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3523 		obj->path, vn->vn_version);
3524 	    return (-1);
3525 	}
3526 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3527 	for (;;) {
3528 	    vernum = VER_NEED_IDX(vna->vna_other);
3529 	    if (vernum > maxvernum)
3530 		maxvernum = vernum;
3531 	    if (vna->vna_next == 0)
3532 		 break;
3533 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3534 	}
3535 	if (vn->vn_next == 0)
3536 	    break;
3537 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3538     }
3539 
3540     vd = obj->verdef;
3541     while (vd != NULL) {
3542 	if (vd->vd_version != VER_DEF_CURRENT) {
3543 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3544 		obj->path, vd->vd_version);
3545 	    return (-1);
3546 	}
3547 	vernum = VER_DEF_IDX(vd->vd_ndx);
3548 	if (vernum > maxvernum)
3549 		maxvernum = vernum;
3550 	if (vd->vd_next == 0)
3551 	    break;
3552 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3553     }
3554 
3555     if (maxvernum == 0)
3556 	return (0);
3557 
3558     /*
3559      * Store version information in array indexable by version index.
3560      * Verify that object version requirements are satisfied along the
3561      * way.
3562      */
3563     obj->vernum = maxvernum + 1;
3564     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3565 
3566     vd = obj->verdef;
3567     while (vd != NULL) {
3568 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3569 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3570 	    assert(vernum <= maxvernum);
3571 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3572 	    obj->vertab[vernum].hash = vd->vd_hash;
3573 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3574 	    obj->vertab[vernum].file = NULL;
3575 	    obj->vertab[vernum].flags = 0;
3576 	}
3577 	if (vd->vd_next == 0)
3578 	    break;
3579 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3580     }
3581 
3582     vn = obj->verneed;
3583     while (vn != NULL) {
3584 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3585 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3586 	for (;;) {
3587 	    if (check_object_provided_version(obj, depobj, vna))
3588 		return (-1);
3589 	    vernum = VER_NEED_IDX(vna->vna_other);
3590 	    assert(vernum <= maxvernum);
3591 	    obj->vertab[vernum].hash = vna->vna_hash;
3592 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3593 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3594 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3595 		VER_INFO_HIDDEN : 0;
3596 	    if (vna->vna_next == 0)
3597 		 break;
3598 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3599 	}
3600 	if (vn->vn_next == 0)
3601 	    break;
3602 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3603     }
3604     return 0;
3605 }
3606 
3607 static int
3608 rtld_verify_versions(const Objlist *objlist)
3609 {
3610     Objlist_Entry *entry;
3611     int rc;
3612 
3613     rc = 0;
3614     STAILQ_FOREACH(entry, objlist, link) {
3615 	/*
3616 	 * Skip dummy objects or objects that have their version requirements
3617 	 * already checked.
3618 	 */
3619 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3620 	    continue;
3621 	if (rtld_verify_object_versions(entry->obj) == -1) {
3622 	    rc = -1;
3623 	    if (ld_tracing == NULL)
3624 		break;
3625 	}
3626     }
3627     if (rc == 0 || ld_tracing != NULL)
3628     	rc = rtld_verify_object_versions(&obj_rtld);
3629     return rc;
3630 }
3631 
3632 const Ver_Entry *
3633 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3634 {
3635     Elf_Versym vernum;
3636 
3637     if (obj->vertab) {
3638 	vernum = VER_NDX(obj->versyms[symnum]);
3639 	if (vernum >= obj->vernum) {
3640 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3641 		obj->path, obj->strtab + symnum, vernum);
3642 	} else if (obj->vertab[vernum].hash != 0) {
3643 	    return &obj->vertab[vernum];
3644 	}
3645     }
3646     return NULL;
3647 }
3648 
3649 /*
3650  * Overrides for libc_pic-provided functions.
3651  */
3652 
3653 int
3654 __getosreldate(void)
3655 {
3656 	size_t len;
3657 	int oid[2];
3658 	int error, osrel;
3659 
3660 	if (osreldate != 0)
3661 		return (osreldate);
3662 
3663 	oid[0] = CTL_KERN;
3664 	oid[1] = KERN_OSRELDATE;
3665 	osrel = 0;
3666 	len = sizeof(osrel);
3667 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
3668 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
3669 		osreldate = osrel;
3670 	return (osreldate);
3671 }
3672 
3673 /*
3674  * No unresolved symbols for rtld.
3675  */
3676 void
3677 __pthread_cxa_finalize(struct dl_phdr_info *a)
3678 {
3679 }
3680