1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 /* 29 * Dynamic linker for ELF. 30 * 31 * John Polstra <jdp@polstra.com>. 32 */ 33 34 #ifndef __GNUC__ 35 #error "GCC is needed to compile this file" 36 #endif 37 38 #include <sys/param.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 42 #include <dlfcn.h> 43 #include <err.h> 44 #include <errno.h> 45 #include <fcntl.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <unistd.h> 51 52 #include "debug.h" 53 #include "rtld.h" 54 55 #define END_SYM "_end" 56 #define PATH_RTLD "/usr/libexec/ld-elf.so.1" 57 58 /* Types. */ 59 typedef void (*func_ptr_type)(); 60 61 /* 62 * This structure provides a reentrant way to keep a list of objects and 63 * check which ones have already been processed in some way. 64 */ 65 typedef struct Struct_DoneList { 66 const Obj_Entry **objs; /* Array of object pointers */ 67 unsigned int num_alloc; /* Allocated size of the array */ 68 unsigned int num_used; /* Number of array slots used */ 69 } DoneList; 70 71 /* 72 * Function declarations. 73 */ 74 static const char *basename(const char *); 75 static void die(void); 76 static void digest_dynamic(Obj_Entry *, int); 77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 78 static Obj_Entry *dlcheck(void *); 79 static bool donelist_check(DoneList *, const Obj_Entry *); 80 static void errmsg_restore(char *); 81 static char *errmsg_save(void); 82 static char *find_library(const char *, const Obj_Entry *); 83 static const char *gethints(void); 84 static void init_dag(Obj_Entry *); 85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *); 86 static void init_rtld(caddr_t); 87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list); 88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, 89 Objlist *list); 90 static bool is_exported(const Elf_Sym *); 91 static void linkmap_add(Obj_Entry *); 92 static void linkmap_delete(Obj_Entry *); 93 static int load_needed_objects(Obj_Entry *); 94 static int load_preload_objects(void); 95 static Obj_Entry *load_object(char *); 96 static void lock_check(void); 97 static Obj_Entry *obj_from_addr(const void *); 98 static void objlist_call_fini(Objlist *); 99 static void objlist_call_init(Objlist *); 100 static void objlist_clear(Objlist *); 101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 102 static void objlist_init(Objlist *); 103 static void objlist_push_head(Objlist *, Obj_Entry *); 104 static void objlist_push_tail(Objlist *, Obj_Entry *); 105 static void objlist_remove(Objlist *, Obj_Entry *); 106 static void objlist_remove_unref(Objlist *); 107 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *); 108 static void rtld_exit(void); 109 static char *search_library_path(const char *, const char *); 110 static const void **get_program_var_addr(const char *name); 111 static void set_program_var(const char *, const void *); 112 static const Elf_Sym *symlook_default(const char *, unsigned long hash, 113 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt); 114 static const Elf_Sym *symlook_list(const char *, unsigned long, 115 Objlist *, const Obj_Entry **, bool in_plt, DoneList *); 116 static void trace_loaded_objects(Obj_Entry *obj); 117 static void unload_object(Obj_Entry *); 118 static void unref_dag(Obj_Entry *); 119 120 void r_debug_state(struct r_debug*, struct link_map*); 121 void xprintf(const char *, ...) __printflike(1, 2); 122 123 /* 124 * Data declarations. 125 */ 126 static char *error_message; /* Message for dlerror(), or NULL */ 127 struct r_debug r_debug; /* for GDB; */ 128 static bool trust; /* False for setuid and setgid programs */ 129 static char *ld_bind_now; /* Environment variable for immediate binding */ 130 static char *ld_debug; /* Environment variable for debugging */ 131 static char *ld_library_path; /* Environment variable for search path */ 132 static char *ld_preload; /* Environment variable for libraries to 133 load first */ 134 static char *ld_tracing; /* Called from ldd to print libs */ 135 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 136 static Obj_Entry **obj_tail; /* Link field of last object in list */ 137 static Obj_Entry *obj_main; /* The main program shared object */ 138 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 139 static unsigned int obj_count; /* Number of objects in obj_list */ 140 141 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 142 STAILQ_HEAD_INITIALIZER(list_global); 143 static Objlist list_main = /* Objects loaded at program startup */ 144 STAILQ_HEAD_INITIALIZER(list_main); 145 static Objlist list_fini = /* Objects needing fini() calls */ 146 STAILQ_HEAD_INITIALIZER(list_fini); 147 148 static LockInfo lockinfo; 149 150 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 151 152 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 153 154 extern Elf_Dyn _DYNAMIC; 155 #pragma weak _DYNAMIC 156 157 /* 158 * These are the functions the dynamic linker exports to application 159 * programs. They are the only symbols the dynamic linker is willing 160 * to export from itself. 161 */ 162 static func_ptr_type exports[] = { 163 (func_ptr_type) &_rtld_error, 164 (func_ptr_type) &dlclose, 165 (func_ptr_type) &dlerror, 166 (func_ptr_type) &dlopen, 167 (func_ptr_type) &dlsym, 168 (func_ptr_type) &dladdr, 169 (func_ptr_type) &dllockinit, 170 NULL 171 }; 172 173 /* 174 * Global declarations normally provided by crt1. The dynamic linker is 175 * not built with crt1, so we have to provide them ourselves. 176 */ 177 char *__progname; 178 char **environ; 179 180 /* 181 * Fill in a DoneList with an allocation large enough to hold all of 182 * the currently-loaded objects. Keep this as a macro since it calls 183 * alloca and we want that to occur within the scope of the caller. 184 */ 185 #define donelist_init(dlp) \ 186 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 187 assert((dlp)->objs != NULL), \ 188 (dlp)->num_alloc = obj_count, \ 189 (dlp)->num_used = 0) 190 191 static __inline void 192 rlock_acquire(void) 193 { 194 lockinfo.rlock_acquire(lockinfo.thelock); 195 atomic_incr_int(&lockinfo.rcount); 196 lock_check(); 197 } 198 199 static __inline void 200 wlock_acquire(void) 201 { 202 lockinfo.wlock_acquire(lockinfo.thelock); 203 atomic_incr_int(&lockinfo.wcount); 204 lock_check(); 205 } 206 207 static __inline void 208 rlock_release(void) 209 { 210 atomic_decr_int(&lockinfo.rcount); 211 lockinfo.rlock_release(lockinfo.thelock); 212 } 213 214 static __inline void 215 wlock_release(void) 216 { 217 atomic_decr_int(&lockinfo.wcount); 218 lockinfo.wlock_release(lockinfo.thelock); 219 } 220 221 /* 222 * Main entry point for dynamic linking. The first argument is the 223 * stack pointer. The stack is expected to be laid out as described 224 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 225 * Specifically, the stack pointer points to a word containing 226 * ARGC. Following that in the stack is a null-terminated sequence 227 * of pointers to argument strings. Then comes a null-terminated 228 * sequence of pointers to environment strings. Finally, there is a 229 * sequence of "auxiliary vector" entries. 230 * 231 * The second argument points to a place to store the dynamic linker's 232 * exit procedure pointer and the third to a place to store the main 233 * program's object. 234 * 235 * The return value is the main program's entry point. 236 */ 237 func_ptr_type 238 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 239 { 240 Elf_Auxinfo *aux_info[AT_COUNT]; 241 int i; 242 int argc; 243 char **argv; 244 char **env; 245 Elf_Auxinfo *aux; 246 Elf_Auxinfo *auxp; 247 const char *argv0; 248 Obj_Entry *obj; 249 Obj_Entry **preload_tail; 250 Objlist initlist; 251 252 /* 253 * On entry, the dynamic linker itself has not been relocated yet. 254 * Be very careful not to reference any global data until after 255 * init_rtld has returned. It is OK to reference file-scope statics 256 * and string constants, and to call static and global functions. 257 */ 258 259 /* Find the auxiliary vector on the stack. */ 260 argc = *sp++; 261 argv = (char **) sp; 262 sp += argc + 1; /* Skip over arguments and NULL terminator */ 263 env = (char **) sp; 264 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 265 ; 266 aux = (Elf_Auxinfo *) sp; 267 268 /* Digest the auxiliary vector. */ 269 for (i = 0; i < AT_COUNT; i++) 270 aux_info[i] = NULL; 271 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 272 if (auxp->a_type < AT_COUNT) 273 aux_info[auxp->a_type] = auxp; 274 } 275 276 /* Initialize and relocate ourselves. */ 277 assert(aux_info[AT_BASE] != NULL); 278 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 279 280 __progname = obj_rtld.path; 281 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 282 environ = env; 283 284 trust = geteuid() == getuid() && getegid() == getgid(); 285 286 ld_bind_now = getenv("LD_BIND_NOW"); 287 if (trust) { 288 ld_debug = getenv("LD_DEBUG"); 289 ld_library_path = getenv("LD_LIBRARY_PATH"); 290 ld_preload = getenv("LD_PRELOAD"); 291 } 292 ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS"); 293 294 if (ld_debug != NULL && *ld_debug != '\0') 295 debug = 1; 296 dbg("%s is initialized, base address = %p", __progname, 297 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 298 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 299 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 300 301 /* 302 * Load the main program, or process its program header if it is 303 * already loaded. 304 */ 305 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 306 int fd = aux_info[AT_EXECFD]->a_un.a_val; 307 dbg("loading main program"); 308 obj_main = map_object(fd, argv0, NULL); 309 close(fd); 310 if (obj_main == NULL) 311 die(); 312 } else { /* Main program already loaded. */ 313 const Elf_Phdr *phdr; 314 int phnum; 315 caddr_t entry; 316 317 dbg("processing main program's program header"); 318 assert(aux_info[AT_PHDR] != NULL); 319 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 320 assert(aux_info[AT_PHNUM] != NULL); 321 phnum = aux_info[AT_PHNUM]->a_un.a_val; 322 assert(aux_info[AT_PHENT] != NULL); 323 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 324 assert(aux_info[AT_ENTRY] != NULL); 325 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 326 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 327 die(); 328 } 329 330 obj_main->path = xstrdup(argv0); 331 obj_main->mainprog = true; 332 333 /* 334 * Get the actual dynamic linker pathname from the executable if 335 * possible. (It should always be possible.) That ensures that 336 * gdb will find the right dynamic linker even if a non-standard 337 * one is being used. 338 */ 339 if (obj_main->interp != NULL && 340 strcmp(obj_main->interp, obj_rtld.path) != 0) { 341 free(obj_rtld.path); 342 obj_rtld.path = xstrdup(obj_main->interp); 343 } 344 345 digest_dynamic(obj_main, 0); 346 347 linkmap_add(obj_main); 348 linkmap_add(&obj_rtld); 349 350 /* Link the main program into the list of objects. */ 351 *obj_tail = obj_main; 352 obj_tail = &obj_main->next; 353 obj_count++; 354 obj_main->refcount++; 355 /* Make sure we don't call the main program's init and fini functions. */ 356 obj_main->init = obj_main->fini = NULL; 357 358 /* Initialize a fake symbol for resolving undefined weak references. */ 359 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 360 sym_zero.st_shndx = SHN_UNDEF; 361 362 dbg("loading LD_PRELOAD libraries"); 363 if (load_preload_objects() == -1) 364 die(); 365 preload_tail = obj_tail; 366 367 dbg("loading needed objects"); 368 if (load_needed_objects(obj_main) == -1) 369 die(); 370 371 /* Make a list of all objects loaded at startup. */ 372 for (obj = obj_list; obj != NULL; obj = obj->next) 373 objlist_push_tail(&list_main, obj); 374 375 if (ld_tracing) { /* We're done */ 376 trace_loaded_objects(obj_main); 377 exit(0); 378 } 379 380 if (relocate_objects(obj_main, 381 ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1) 382 die(); 383 384 dbg("doing copy relocations"); 385 if (do_copy_relocations(obj_main) == -1) 386 die(); 387 388 dbg("initializing key program variables"); 389 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 390 set_program_var("environ", env); 391 392 dbg("initializing thread locks"); 393 lockdflt_init(&lockinfo); 394 lockinfo.thelock = lockinfo.lock_create(lockinfo.context); 395 396 /* Make a list of init functions to call. */ 397 objlist_init(&initlist); 398 initlist_add_objects(obj_list, preload_tail, &initlist); 399 400 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 401 402 objlist_call_init(&initlist); 403 wlock_acquire(); 404 objlist_clear(&initlist); 405 wlock_release(); 406 407 dbg("transferring control to program entry point = %p", obj_main->entry); 408 409 /* Return the exit procedure and the program entry point. */ 410 *exit_proc = rtld_exit; 411 *objp = obj_main; 412 return (func_ptr_type) obj_main->entry; 413 } 414 415 Elf_Addr 416 _rtld_bind(Obj_Entry *obj, Elf_Word reloff) 417 { 418 const Elf_Rel *rel; 419 const Elf_Sym *def; 420 const Obj_Entry *defobj; 421 Elf_Addr *where; 422 Elf_Addr target; 423 424 rlock_acquire(); 425 if (obj->pltrel) 426 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 427 else 428 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 429 430 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 431 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL); 432 if (def == NULL) 433 die(); 434 435 target = (Elf_Addr)(defobj->relocbase + def->st_value); 436 437 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 438 defobj->strtab + def->st_name, basename(obj->path), 439 (void *)target, basename(defobj->path)); 440 441 /* 442 * Write the new contents for the jmpslot. Note that depending on 443 * architecture, the value which we need to return back to the 444 * lazy binding trampoline may or may not be the target 445 * address. The value returned from reloc_jmpslot() is the value 446 * that the trampoline needs. 447 */ 448 target = reloc_jmpslot(where, target, defobj, obj, rel); 449 rlock_release(); 450 return target; 451 } 452 453 /* 454 * Error reporting function. Use it like printf. If formats the message 455 * into a buffer, and sets things up so that the next call to dlerror() 456 * will return the message. 457 */ 458 void 459 _rtld_error(const char *fmt, ...) 460 { 461 static char buf[512]; 462 va_list ap; 463 464 va_start(ap, fmt); 465 vsnprintf(buf, sizeof buf, fmt, ap); 466 error_message = buf; 467 va_end(ap); 468 } 469 470 /* 471 * Return a dynamically-allocated copy of the current error message, if any. 472 */ 473 static char * 474 errmsg_save(void) 475 { 476 return error_message == NULL ? NULL : xstrdup(error_message); 477 } 478 479 /* 480 * Restore the current error message from a copy which was previously saved 481 * by errmsg_save(). The copy is freed. 482 */ 483 static void 484 errmsg_restore(char *saved_msg) 485 { 486 if (saved_msg == NULL) 487 error_message = NULL; 488 else { 489 _rtld_error("%s", saved_msg); 490 free(saved_msg); 491 } 492 } 493 494 static const char * 495 basename(const char *name) 496 { 497 const char *p = strrchr(name, '/'); 498 return p != NULL ? p + 1 : name; 499 } 500 501 static void 502 die(void) 503 { 504 const char *msg = dlerror(); 505 506 if (msg == NULL) 507 msg = "Fatal error"; 508 errx(1, "%s", msg); 509 } 510 511 /* 512 * Process a shared object's DYNAMIC section, and save the important 513 * information in its Obj_Entry structure. 514 */ 515 static void 516 digest_dynamic(Obj_Entry *obj, int early) 517 { 518 const Elf_Dyn *dynp; 519 Needed_Entry **needed_tail = &obj->needed; 520 const Elf_Dyn *dyn_rpath = NULL; 521 int plttype = DT_REL; 522 523 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 524 switch (dynp->d_tag) { 525 526 case DT_REL: 527 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 528 break; 529 530 case DT_RELSZ: 531 obj->relsize = dynp->d_un.d_val; 532 break; 533 534 case DT_RELENT: 535 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 536 break; 537 538 case DT_JMPREL: 539 obj->pltrel = (const Elf_Rel *) 540 (obj->relocbase + dynp->d_un.d_ptr); 541 break; 542 543 case DT_PLTRELSZ: 544 obj->pltrelsize = dynp->d_un.d_val; 545 break; 546 547 case DT_RELA: 548 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 549 break; 550 551 case DT_RELASZ: 552 obj->relasize = dynp->d_un.d_val; 553 break; 554 555 case DT_RELAENT: 556 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 557 break; 558 559 case DT_PLTREL: 560 plttype = dynp->d_un.d_val; 561 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 562 break; 563 564 case DT_SYMTAB: 565 obj->symtab = (const Elf_Sym *) 566 (obj->relocbase + dynp->d_un.d_ptr); 567 break; 568 569 case DT_SYMENT: 570 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 571 break; 572 573 case DT_STRTAB: 574 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 575 break; 576 577 case DT_STRSZ: 578 obj->strsize = dynp->d_un.d_val; 579 break; 580 581 case DT_HASH: 582 { 583 const Elf_Hashelt *hashtab = (const Elf_Hashelt *) 584 (obj->relocbase + dynp->d_un.d_ptr); 585 obj->nbuckets = hashtab[0]; 586 obj->nchains = hashtab[1]; 587 obj->buckets = hashtab + 2; 588 obj->chains = obj->buckets + obj->nbuckets; 589 } 590 break; 591 592 case DT_NEEDED: 593 if (!obj->rtld) { 594 Needed_Entry *nep = NEW(Needed_Entry); 595 nep->name = dynp->d_un.d_val; 596 nep->obj = NULL; 597 nep->next = NULL; 598 599 *needed_tail = nep; 600 needed_tail = &nep->next; 601 } 602 break; 603 604 case DT_PLTGOT: 605 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 606 break; 607 608 case DT_TEXTREL: 609 obj->textrel = true; 610 break; 611 612 case DT_SYMBOLIC: 613 obj->symbolic = true; 614 break; 615 616 case DT_RPATH: 617 /* 618 * We have to wait until later to process this, because we 619 * might not have gotten the address of the string table yet. 620 */ 621 dyn_rpath = dynp; 622 break; 623 624 case DT_SONAME: 625 /* Not used by the dynamic linker. */ 626 break; 627 628 case DT_INIT: 629 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 630 break; 631 632 case DT_FINI: 633 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 634 break; 635 636 case DT_DEBUG: 637 /* XXX - not implemented yet */ 638 if (!early) 639 dbg("Filling in DT_DEBUG entry"); 640 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 641 break; 642 643 default: 644 if (!early) { 645 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 646 (long)dynp->d_tag); 647 } 648 break; 649 } 650 } 651 652 obj->traced = false; 653 654 if (plttype == DT_RELA) { 655 obj->pltrela = (const Elf_Rela *) obj->pltrel; 656 obj->pltrel = NULL; 657 obj->pltrelasize = obj->pltrelsize; 658 obj->pltrelsize = 0; 659 } 660 661 if (dyn_rpath != NULL) 662 obj->rpath = obj->strtab + dyn_rpath->d_un.d_val; 663 } 664 665 /* 666 * Process a shared object's program header. This is used only for the 667 * main program, when the kernel has already loaded the main program 668 * into memory before calling the dynamic linker. It creates and 669 * returns an Obj_Entry structure. 670 */ 671 static Obj_Entry * 672 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 673 { 674 Obj_Entry *obj; 675 const Elf_Phdr *phlimit = phdr + phnum; 676 const Elf_Phdr *ph; 677 int nsegs = 0; 678 679 obj = obj_new(); 680 for (ph = phdr; ph < phlimit; ph++) { 681 switch (ph->p_type) { 682 683 case PT_PHDR: 684 if ((const Elf_Phdr *)ph->p_vaddr != phdr) { 685 _rtld_error("%s: invalid PT_PHDR", path); 686 return NULL; 687 } 688 obj->phdr = (const Elf_Phdr *) ph->p_vaddr; 689 obj->phsize = ph->p_memsz; 690 break; 691 692 case PT_INTERP: 693 obj->interp = (const char *) ph->p_vaddr; 694 break; 695 696 case PT_LOAD: 697 if (nsegs == 0) { /* First load segment */ 698 obj->vaddrbase = trunc_page(ph->p_vaddr); 699 obj->mapbase = (caddr_t) obj->vaddrbase; 700 obj->relocbase = obj->mapbase - obj->vaddrbase; 701 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 702 obj->vaddrbase; 703 } else { /* Last load segment */ 704 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 705 obj->vaddrbase; 706 } 707 nsegs++; 708 break; 709 710 case PT_DYNAMIC: 711 obj->dynamic = (const Elf_Dyn *) ph->p_vaddr; 712 break; 713 } 714 } 715 if (nsegs < 1) { 716 _rtld_error("%s: too few PT_LOAD segments", path); 717 return NULL; 718 } 719 720 obj->entry = entry; 721 return obj; 722 } 723 724 static Obj_Entry * 725 dlcheck(void *handle) 726 { 727 Obj_Entry *obj; 728 729 for (obj = obj_list; obj != NULL; obj = obj->next) 730 if (obj == (Obj_Entry *) handle) 731 break; 732 733 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 734 _rtld_error("Invalid shared object handle %p", handle); 735 return NULL; 736 } 737 return obj; 738 } 739 740 /* 741 * If the given object is already in the donelist, return true. Otherwise 742 * add the object to the list and return false. 743 */ 744 static bool 745 donelist_check(DoneList *dlp, const Obj_Entry *obj) 746 { 747 unsigned int i; 748 749 for (i = 0; i < dlp->num_used; i++) 750 if (dlp->objs[i] == obj) 751 return true; 752 /* 753 * Our donelist allocation should always be sufficient. But if 754 * our threads locking isn't working properly, more shared objects 755 * could have been loaded since we allocated the list. That should 756 * never happen, but we'll handle it properly just in case it does. 757 */ 758 if (dlp->num_used < dlp->num_alloc) 759 dlp->objs[dlp->num_used++] = obj; 760 return false; 761 } 762 763 /* 764 * Hash function for symbol table lookup. Don't even think about changing 765 * this. It is specified by the System V ABI. 766 */ 767 unsigned long 768 elf_hash(const char *name) 769 { 770 const unsigned char *p = (const unsigned char *) name; 771 unsigned long h = 0; 772 unsigned long g; 773 774 while (*p != '\0') { 775 h = (h << 4) + *p++; 776 if ((g = h & 0xf0000000) != 0) 777 h ^= g >> 24; 778 h &= ~g; 779 } 780 return h; 781 } 782 783 /* 784 * Find the library with the given name, and return its full pathname. 785 * The returned string is dynamically allocated. Generates an error 786 * message and returns NULL if the library cannot be found. 787 * 788 * If the second argument is non-NULL, then it refers to an already- 789 * loaded shared object, whose library search path will be searched. 790 * 791 * The search order is: 792 * rpath in the referencing file 793 * LD_LIBRARY_PATH 794 * ldconfig hints 795 * /usr/lib 796 */ 797 static char * 798 find_library(const char *name, const Obj_Entry *refobj) 799 { 800 char *pathname; 801 802 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 803 if (name[0] != '/' && !trust) { 804 _rtld_error("Absolute pathname required for shared object \"%s\"", 805 name); 806 return NULL; 807 } 808 return xstrdup(name); 809 } 810 811 dbg(" Searching for \"%s\"", name); 812 813 if ((pathname = search_library_path(name, ld_library_path)) != NULL || 814 (refobj != NULL && 815 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 816 (pathname = search_library_path(name, gethints())) != NULL || 817 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) 818 return pathname; 819 820 _rtld_error("Shared object \"%s\" not found", name); 821 return NULL; 822 } 823 824 /* 825 * Given a symbol number in a referencing object, find the corresponding 826 * definition of the symbol. Returns a pointer to the symbol, or NULL if 827 * no definition was found. Returns a pointer to the Obj_Entry of the 828 * defining object via the reference parameter DEFOBJ_OUT. 829 */ 830 const Elf_Sym * 831 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 832 const Obj_Entry **defobj_out, bool in_plt, SymCache *cache) 833 { 834 const Elf_Sym *ref; 835 const Elf_Sym *def; 836 const Obj_Entry *defobj; 837 const char *name; 838 unsigned long hash; 839 840 /* 841 * If we have already found this symbol, get the information from 842 * the cache. 843 */ 844 if (symnum >= refobj->nchains) 845 return NULL; /* Bad object */ 846 if (cache != NULL && cache[symnum].sym != NULL) { 847 *defobj_out = cache[symnum].obj; 848 return cache[symnum].sym; 849 } 850 851 ref = refobj->symtab + symnum; 852 name = refobj->strtab + ref->st_name; 853 defobj = NULL; 854 855 /* 856 * We don't have to do a full scale lookup if the symbol is local. 857 * We know it will bind to the instance in this load module; to 858 * which we already have a pointer (ie ref). By not doing a lookup, 859 * we not only improve performance, but it also avoids unresolvable 860 * symbols when local symbols are not in the hash table. This has 861 * been seen with the ia64 toolchain. 862 */ 863 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 864 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 865 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 866 symnum); 867 } 868 hash = elf_hash(name); 869 def = symlook_default(name, hash, refobj, &defobj, in_plt); 870 } else { 871 def = ref; 872 defobj = refobj; 873 } 874 875 /* 876 * If we found no definition and the reference is weak, treat the 877 * symbol as having the value zero. 878 */ 879 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 880 def = &sym_zero; 881 defobj = obj_main; 882 } 883 884 if (def != NULL) { 885 *defobj_out = defobj; 886 /* Record the information in the cache to avoid subsequent lookups. */ 887 if (cache != NULL) { 888 cache[symnum].sym = def; 889 cache[symnum].obj = defobj; 890 } 891 } else { 892 if (refobj != &obj_rtld) 893 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 894 } 895 return def; 896 } 897 898 /* 899 * Return the search path from the ldconfig hints file, reading it if 900 * necessary. Returns NULL if there are problems with the hints file, 901 * or if the search path there is empty. 902 */ 903 static const char * 904 gethints(void) 905 { 906 static char *hints; 907 908 if (hints == NULL) { 909 int fd; 910 struct elfhints_hdr hdr; 911 char *p; 912 913 /* Keep from trying again in case the hints file is bad. */ 914 hints = ""; 915 916 if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1) 917 return NULL; 918 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 919 hdr.magic != ELFHINTS_MAGIC || 920 hdr.version != 1) { 921 close(fd); 922 return NULL; 923 } 924 p = xmalloc(hdr.dirlistlen + 1); 925 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 926 read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) { 927 free(p); 928 close(fd); 929 return NULL; 930 } 931 hints = p; 932 close(fd); 933 } 934 return hints[0] != '\0' ? hints : NULL; 935 } 936 937 static void 938 init_dag(Obj_Entry *root) 939 { 940 DoneList donelist; 941 942 donelist_init(&donelist); 943 init_dag1(root, root, &donelist); 944 } 945 946 static void 947 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp) 948 { 949 const Needed_Entry *needed; 950 951 if (donelist_check(dlp, obj)) 952 return; 953 objlist_push_tail(&obj->dldags, root); 954 objlist_push_tail(&root->dagmembers, obj); 955 for (needed = obj->needed; needed != NULL; needed = needed->next) 956 if (needed->obj != NULL) 957 init_dag1(root, needed->obj, dlp); 958 } 959 960 /* 961 * Initialize the dynamic linker. The argument is the address at which 962 * the dynamic linker has been mapped into memory. The primary task of 963 * this function is to relocate the dynamic linker. 964 */ 965 static void 966 init_rtld(caddr_t mapbase) 967 { 968 Obj_Entry objtmp; /* Temporary rtld object */ 969 970 /* 971 * Conjure up an Obj_Entry structure for the dynamic linker. 972 * 973 * The "path" member can't be initialized yet because string constatns 974 * cannot yet be acessed. Below we will set it correctly. 975 */ 976 objtmp.path = NULL; 977 objtmp.rtld = true; 978 objtmp.mapbase = mapbase; 979 #ifdef PIC 980 objtmp.relocbase = mapbase; 981 #endif 982 if (&_DYNAMIC != 0) { 983 objtmp.dynamic = rtld_dynamic(&objtmp); 984 digest_dynamic(&objtmp, 1); 985 assert(objtmp.needed == NULL); 986 assert(!objtmp.textrel); 987 988 /* 989 * Temporarily put the dynamic linker entry into the object list, so 990 * that symbols can be found. 991 */ 992 993 relocate_objects(&objtmp, true, &objtmp); 994 } 995 996 /* Initialize the object list. */ 997 obj_tail = &obj_list; 998 999 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 1000 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 1001 1002 /* Replace the path with a dynamically allocated copy. */ 1003 obj_rtld.path = xstrdup(PATH_RTLD); 1004 1005 r_debug.r_brk = r_debug_state; 1006 r_debug.r_state = RT_CONSISTENT; 1007 } 1008 1009 /* 1010 * Add the init functions from a needed object list (and its recursive 1011 * needed objects) to "list". This is not used directly; it is a helper 1012 * function for initlist_add_objects(). The write lock must be held 1013 * when this function is called. 1014 */ 1015 static void 1016 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1017 { 1018 /* Recursively process the successor needed objects. */ 1019 if (needed->next != NULL) 1020 initlist_add_neededs(needed->next, list); 1021 1022 /* Process the current needed object. */ 1023 if (needed->obj != NULL) 1024 initlist_add_objects(needed->obj, &needed->obj->next, list); 1025 } 1026 1027 /* 1028 * Scan all of the DAGs rooted in the range of objects from "obj" to 1029 * "tail" and add their init functions to "list". This recurses over 1030 * the DAGs and ensure the proper init ordering such that each object's 1031 * needed libraries are initialized before the object itself. At the 1032 * same time, this function adds the objects to the global finalization 1033 * list "list_fini" in the opposite order. The write lock must be 1034 * held when this function is called. 1035 */ 1036 static void 1037 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1038 { 1039 if (obj->init_done) 1040 return; 1041 obj->init_done = true; 1042 1043 /* Recursively process the successor objects. */ 1044 if (&obj->next != tail) 1045 initlist_add_objects(obj->next, tail, list); 1046 1047 /* Recursively process the needed objects. */ 1048 if (obj->needed != NULL) 1049 initlist_add_neededs(obj->needed, list); 1050 1051 /* Add the object to the init list. */ 1052 if (obj->init != NULL) 1053 objlist_push_tail(list, obj); 1054 1055 /* Add the object to the global fini list in the reverse order. */ 1056 if (obj->fini != NULL) 1057 objlist_push_head(&list_fini, obj); 1058 } 1059 1060 #ifndef FPTR_TARGET 1061 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 1062 #endif 1063 1064 static bool 1065 is_exported(const Elf_Sym *def) 1066 { 1067 Elf_Addr value; 1068 const func_ptr_type *p; 1069 1070 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value); 1071 for (p = exports; *p != NULL; p++) 1072 if (FPTR_TARGET(*p) == value) 1073 return true; 1074 return false; 1075 } 1076 1077 /* 1078 * Given a shared object, traverse its list of needed objects, and load 1079 * each of them. Returns 0 on success. Generates an error message and 1080 * returns -1 on failure. 1081 */ 1082 static int 1083 load_needed_objects(Obj_Entry *first) 1084 { 1085 Obj_Entry *obj; 1086 1087 for (obj = first; obj != NULL; obj = obj->next) { 1088 Needed_Entry *needed; 1089 1090 for (needed = obj->needed; needed != NULL; needed = needed->next) { 1091 const char *name = obj->strtab + needed->name; 1092 char *path = find_library(name, obj); 1093 1094 needed->obj = NULL; 1095 if (path == NULL && !ld_tracing) 1096 return -1; 1097 1098 if (path) { 1099 needed->obj = load_object(path); 1100 if (needed->obj == NULL && !ld_tracing) 1101 return -1; /* XXX - cleanup */ 1102 } 1103 } 1104 } 1105 1106 return 0; 1107 } 1108 1109 static int 1110 load_preload_objects(void) 1111 { 1112 char *p = ld_preload; 1113 static const char delim[] = " \t:;"; 1114 1115 if (p == NULL) 1116 return NULL; 1117 1118 p += strspn(p, delim); 1119 while (*p != '\0') { 1120 size_t len = strcspn(p, delim); 1121 char *path; 1122 char savech; 1123 1124 savech = p[len]; 1125 p[len] = '\0'; 1126 if ((path = find_library(p, NULL)) == NULL) 1127 return -1; 1128 if (load_object(path) == NULL) 1129 return -1; /* XXX - cleanup */ 1130 p[len] = savech; 1131 p += len; 1132 p += strspn(p, delim); 1133 } 1134 return 0; 1135 } 1136 1137 /* 1138 * Load a shared object into memory, if it is not already loaded. The 1139 * argument must be a string allocated on the heap. This function assumes 1140 * responsibility for freeing it when necessary. 1141 * 1142 * Returns a pointer to the Obj_Entry for the object. Returns NULL 1143 * on failure. 1144 */ 1145 static Obj_Entry * 1146 load_object(char *path) 1147 { 1148 Obj_Entry *obj; 1149 int fd = -1; 1150 struct stat sb; 1151 1152 for (obj = obj_list->next; obj != NULL; obj = obj->next) 1153 if (strcmp(obj->path, path) == 0) 1154 break; 1155 1156 /* 1157 * If we didn't find a match by pathname, open the file and check 1158 * again by device and inode. This avoids false mismatches caused 1159 * by multiple links or ".." in pathnames. 1160 * 1161 * To avoid a race, we open the file and use fstat() rather than 1162 * using stat(). 1163 */ 1164 if (obj == NULL) { 1165 if ((fd = open(path, O_RDONLY)) == -1) { 1166 _rtld_error("Cannot open \"%s\"", path); 1167 return NULL; 1168 } 1169 if (fstat(fd, &sb) == -1) { 1170 _rtld_error("Cannot fstat \"%s\"", path); 1171 close(fd); 1172 return NULL; 1173 } 1174 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 1175 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) { 1176 close(fd); 1177 break; 1178 } 1179 } 1180 } 1181 1182 if (obj == NULL) { /* First use of this object, so we must map it in */ 1183 dbg("loading \"%s\"", path); 1184 obj = map_object(fd, path, &sb); 1185 close(fd); 1186 if (obj == NULL) { 1187 free(path); 1188 return NULL; 1189 } 1190 1191 obj->path = path; 1192 digest_dynamic(obj, 0); 1193 1194 *obj_tail = obj; 1195 obj_tail = &obj->next; 1196 obj_count++; 1197 linkmap_add(obj); /* for GDB */ 1198 1199 dbg(" %p .. %p: %s", obj->mapbase, 1200 obj->mapbase + obj->mapsize - 1, obj->path); 1201 if (obj->textrel) 1202 dbg(" WARNING: %s has impure text", obj->path); 1203 } else 1204 free(path); 1205 1206 obj->refcount++; 1207 return obj; 1208 } 1209 1210 /* 1211 * Check for locking violations and die if one is found. 1212 */ 1213 static void 1214 lock_check(void) 1215 { 1216 int rcount, wcount; 1217 1218 rcount = lockinfo.rcount; 1219 wcount = lockinfo.wcount; 1220 assert(rcount >= 0); 1221 assert(wcount >= 0); 1222 if (wcount > 1 || (wcount != 0 && rcount != 0)) { 1223 _rtld_error("Application locking error: %d readers and %d writers" 1224 " in dynamic linker. See DLLOCKINIT(3) in manual pages.", 1225 rcount, wcount); 1226 die(); 1227 } 1228 } 1229 1230 static Obj_Entry * 1231 obj_from_addr(const void *addr) 1232 { 1233 unsigned long endhash; 1234 Obj_Entry *obj; 1235 1236 endhash = elf_hash(END_SYM); 1237 for (obj = obj_list; obj != NULL; obj = obj->next) { 1238 const Elf_Sym *endsym; 1239 1240 if (addr < (void *) obj->mapbase) 1241 continue; 1242 if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL) 1243 continue; /* No "end" symbol?! */ 1244 if (addr < (void *) (obj->relocbase + endsym->st_value)) 1245 return obj; 1246 } 1247 return NULL; 1248 } 1249 1250 /* 1251 * Call the finalization functions for each of the objects in "list" 1252 * which are unreferenced. All of the objects are expected to have 1253 * non-NULL fini functions. 1254 */ 1255 static void 1256 objlist_call_fini(Objlist *list) 1257 { 1258 Objlist_Entry *elm; 1259 char *saved_msg; 1260 1261 /* 1262 * Preserve the current error message since a fini function might 1263 * call into the dynamic linker and overwrite it. 1264 */ 1265 saved_msg = errmsg_save(); 1266 STAILQ_FOREACH(elm, list, link) { 1267 if (elm->obj->refcount == 0) { 1268 dbg("calling fini function for %s at %p", elm->obj->path, 1269 (void *)elm->obj->fini); 1270 call_initfini_pointer(elm->obj, elm->obj->fini); 1271 } 1272 } 1273 errmsg_restore(saved_msg); 1274 } 1275 1276 /* 1277 * Call the initialization functions for each of the objects in 1278 * "list". All of the objects are expected to have non-NULL init 1279 * functions. 1280 */ 1281 static void 1282 objlist_call_init(Objlist *list) 1283 { 1284 Objlist_Entry *elm; 1285 char *saved_msg; 1286 1287 /* 1288 * Preserve the current error message since an init function might 1289 * call into the dynamic linker and overwrite it. 1290 */ 1291 saved_msg = errmsg_save(); 1292 STAILQ_FOREACH(elm, list, link) { 1293 dbg("calling init function for %s at %p", elm->obj->path, 1294 (void *)elm->obj->init); 1295 call_initfini_pointer(elm->obj, elm->obj->init); 1296 } 1297 errmsg_restore(saved_msg); 1298 } 1299 1300 static void 1301 objlist_clear(Objlist *list) 1302 { 1303 Objlist_Entry *elm; 1304 1305 while (!STAILQ_EMPTY(list)) { 1306 elm = STAILQ_FIRST(list); 1307 STAILQ_REMOVE_HEAD(list, link); 1308 free(elm); 1309 } 1310 } 1311 1312 static Objlist_Entry * 1313 objlist_find(Objlist *list, const Obj_Entry *obj) 1314 { 1315 Objlist_Entry *elm; 1316 1317 STAILQ_FOREACH(elm, list, link) 1318 if (elm->obj == obj) 1319 return elm; 1320 return NULL; 1321 } 1322 1323 static void 1324 objlist_init(Objlist *list) 1325 { 1326 STAILQ_INIT(list); 1327 } 1328 1329 static void 1330 objlist_push_head(Objlist *list, Obj_Entry *obj) 1331 { 1332 Objlist_Entry *elm; 1333 1334 elm = NEW(Objlist_Entry); 1335 elm->obj = obj; 1336 STAILQ_INSERT_HEAD(list, elm, link); 1337 } 1338 1339 static void 1340 objlist_push_tail(Objlist *list, Obj_Entry *obj) 1341 { 1342 Objlist_Entry *elm; 1343 1344 elm = NEW(Objlist_Entry); 1345 elm->obj = obj; 1346 STAILQ_INSERT_TAIL(list, elm, link); 1347 } 1348 1349 static void 1350 objlist_remove(Objlist *list, Obj_Entry *obj) 1351 { 1352 Objlist_Entry *elm; 1353 1354 if ((elm = objlist_find(list, obj)) != NULL) { 1355 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 1356 free(elm); 1357 } 1358 } 1359 1360 /* 1361 * Remove all of the unreferenced objects from "list". 1362 */ 1363 static void 1364 objlist_remove_unref(Objlist *list) 1365 { 1366 Objlist newlist; 1367 Objlist_Entry *elm; 1368 1369 STAILQ_INIT(&newlist); 1370 while (!STAILQ_EMPTY(list)) { 1371 elm = STAILQ_FIRST(list); 1372 STAILQ_REMOVE_HEAD(list, link); 1373 if (elm->obj->refcount == 0) 1374 free(elm); 1375 else 1376 STAILQ_INSERT_TAIL(&newlist, elm, link); 1377 } 1378 *list = newlist; 1379 } 1380 1381 /* 1382 * Relocate newly-loaded shared objects. The argument is a pointer to 1383 * the Obj_Entry for the first such object. All objects from the first 1384 * to the end of the list of objects are relocated. Returns 0 on success, 1385 * or -1 on failure. 1386 */ 1387 static int 1388 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj) 1389 { 1390 Obj_Entry *obj; 1391 1392 for (obj = first; obj != NULL; obj = obj->next) { 1393 if (obj != rtldobj) 1394 dbg("relocating \"%s\"", obj->path); 1395 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL || 1396 obj->symtab == NULL || obj->strtab == NULL) { 1397 _rtld_error("%s: Shared object has no run-time symbol table", 1398 obj->path); 1399 return -1; 1400 } 1401 1402 if (obj->textrel) { 1403 /* There are relocations to the write-protected text segment. */ 1404 if (mprotect(obj->mapbase, obj->textsize, 1405 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 1406 _rtld_error("%s: Cannot write-enable text segment: %s", 1407 obj->path, strerror(errno)); 1408 return -1; 1409 } 1410 } 1411 1412 /* Process the non-PLT relocations. */ 1413 if (reloc_non_plt(obj, rtldobj)) 1414 return -1; 1415 1416 if (obj->textrel) { /* Re-protected the text segment. */ 1417 if (mprotect(obj->mapbase, obj->textsize, 1418 PROT_READ|PROT_EXEC) == -1) { 1419 _rtld_error("%s: Cannot write-protect text segment: %s", 1420 obj->path, strerror(errno)); 1421 return -1; 1422 } 1423 } 1424 1425 /* Process the PLT relocations. */ 1426 if (reloc_plt(obj) == -1) 1427 return -1; 1428 /* Relocate the jump slots if we are doing immediate binding. */ 1429 if (bind_now) 1430 if (reloc_jmpslots(obj) == -1) 1431 return -1; 1432 1433 1434 /* 1435 * Set up the magic number and version in the Obj_Entry. These 1436 * were checked in the crt1.o from the original ElfKit, so we 1437 * set them for backward compatibility. 1438 */ 1439 obj->magic = RTLD_MAGIC; 1440 obj->version = RTLD_VERSION; 1441 1442 /* Set the special PLT or GOT entries. */ 1443 init_pltgot(obj); 1444 } 1445 1446 return 0; 1447 } 1448 1449 /* 1450 * Cleanup procedure. It will be called (by the atexit mechanism) just 1451 * before the process exits. 1452 */ 1453 static void 1454 rtld_exit(void) 1455 { 1456 Obj_Entry *obj; 1457 1458 dbg("rtld_exit()"); 1459 /* Clear all the reference counts so the fini functions will be called. */ 1460 for (obj = obj_list; obj != NULL; obj = obj->next) 1461 obj->refcount = 0; 1462 objlist_call_fini(&list_fini); 1463 /* No need to remove the items from the list, since we are exiting. */ 1464 } 1465 1466 static char * 1467 search_library_path(const char *name, const char *path) 1468 { 1469 size_t namelen = strlen(name); 1470 const char *p = path; 1471 1472 if (p == NULL) 1473 return NULL; 1474 1475 p += strspn(p, ":;"); 1476 while (*p != '\0') { 1477 size_t len = strcspn(p, ":;"); 1478 1479 if (*p == '/' || trust) { 1480 char *pathname; 1481 const char *dir = p; 1482 size_t dirlen = len; 1483 1484 pathname = xmalloc(dirlen + 1 + namelen + 1); 1485 strncpy(pathname, dir, dirlen); 1486 pathname[dirlen] = '/'; 1487 strcpy(pathname + dirlen + 1, name); 1488 1489 dbg(" Trying \"%s\"", pathname); 1490 if (access(pathname, F_OK) == 0) /* We found it */ 1491 return pathname; 1492 1493 free(pathname); 1494 } 1495 p += len; 1496 p += strspn(p, ":;"); 1497 } 1498 1499 return NULL; 1500 } 1501 1502 int 1503 dlclose(void *handle) 1504 { 1505 Obj_Entry *root; 1506 1507 wlock_acquire(); 1508 root = dlcheck(handle); 1509 if (root == NULL) { 1510 wlock_release(); 1511 return -1; 1512 } 1513 1514 /* Unreference the object and its dependencies. */ 1515 root->dl_refcount--; 1516 unref_dag(root); 1517 1518 if (root->refcount == 0) { 1519 /* 1520 * The object is no longer referenced, so we must unload it. 1521 * First, call the fini functions with no locks held. 1522 */ 1523 wlock_release(); 1524 objlist_call_fini(&list_fini); 1525 wlock_acquire(); 1526 objlist_remove_unref(&list_fini); 1527 1528 /* Finish cleaning up the newly-unreferenced objects. */ 1529 GDB_STATE(RT_DELETE,&root->linkmap); 1530 unload_object(root); 1531 GDB_STATE(RT_CONSISTENT,NULL); 1532 } 1533 wlock_release(); 1534 return 0; 1535 } 1536 1537 const char * 1538 dlerror(void) 1539 { 1540 char *msg = error_message; 1541 error_message = NULL; 1542 return msg; 1543 } 1544 1545 /* 1546 * This function is deprecated and has no effect. 1547 */ 1548 void 1549 dllockinit(void *context, 1550 void *(*lock_create)(void *context), 1551 void (*rlock_acquire)(void *lock), 1552 void (*wlock_acquire)(void *lock), 1553 void (*lock_release)(void *lock), 1554 void (*lock_destroy)(void *lock), 1555 void (*context_destroy)(void *context)) 1556 { 1557 static void *cur_context; 1558 static void (*cur_context_destroy)(void *); 1559 1560 /* Just destroy the context from the previous call, if necessary. */ 1561 if (cur_context_destroy != NULL) 1562 cur_context_destroy(cur_context); 1563 cur_context = context; 1564 cur_context_destroy = context_destroy; 1565 } 1566 1567 void * 1568 dlopen(const char *name, int mode) 1569 { 1570 Obj_Entry **old_obj_tail; 1571 Obj_Entry *obj; 1572 Objlist initlist; 1573 int result; 1574 1575 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 1576 if (ld_tracing != NULL) 1577 environ = (char **)*get_program_var_addr("environ"); 1578 1579 objlist_init(&initlist); 1580 1581 wlock_acquire(); 1582 GDB_STATE(RT_ADD,NULL); 1583 1584 old_obj_tail = obj_tail; 1585 obj = NULL; 1586 if (name == NULL) { 1587 obj = obj_main; 1588 obj->refcount++; 1589 } else { 1590 char *path = find_library(name, obj_main); 1591 if (path != NULL) 1592 obj = load_object(path); 1593 } 1594 1595 if (obj) { 1596 obj->dl_refcount++; 1597 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 1598 objlist_push_tail(&list_global, obj); 1599 mode &= RTLD_MODEMASK; 1600 if (*old_obj_tail != NULL) { /* We loaded something new. */ 1601 assert(*old_obj_tail == obj); 1602 1603 result = load_needed_objects(obj); 1604 if (result != -1 && ld_tracing) 1605 goto trace; 1606 1607 if (result == -1 || 1608 (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW, 1609 &obj_rtld)) == -1) { 1610 obj->dl_refcount--; 1611 unref_dag(obj); 1612 if (obj->refcount == 0) 1613 unload_object(obj); 1614 obj = NULL; 1615 } else { 1616 /* Make list of init functions to call. */ 1617 initlist_add_objects(obj, &obj->next, &initlist); 1618 } 1619 } else if (ld_tracing) 1620 goto trace; 1621 } 1622 1623 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 1624 1625 /* Call the init functions with no locks held. */ 1626 wlock_release(); 1627 objlist_call_init(&initlist); 1628 wlock_acquire(); 1629 objlist_clear(&initlist); 1630 wlock_release(); 1631 return obj; 1632 trace: 1633 trace_loaded_objects(obj); 1634 wlock_release(); 1635 exit(0); 1636 } 1637 1638 void * 1639 dlsym(void *handle, const char *name) 1640 { 1641 const Obj_Entry *obj; 1642 unsigned long hash; 1643 const Elf_Sym *def; 1644 const Obj_Entry *defobj; 1645 1646 hash = elf_hash(name); 1647 def = NULL; 1648 defobj = NULL; 1649 1650 rlock_acquire(); 1651 if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) { 1652 void *retaddr; 1653 1654 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 1655 if ((obj = obj_from_addr(retaddr)) == NULL) { 1656 _rtld_error("Cannot determine caller's shared object"); 1657 rlock_release(); 1658 return NULL; 1659 } 1660 if (handle == NULL) { /* Just the caller's shared object. */ 1661 def = symlook_obj(name, hash, obj, true); 1662 defobj = obj; 1663 } else if (handle == RTLD_NEXT) { /* Objects after caller's */ 1664 while ((obj = obj->next) != NULL) { 1665 if ((def = symlook_obj(name, hash, obj, true)) != NULL) { 1666 defobj = obj; 1667 break; 1668 } 1669 } 1670 } else { 1671 assert(handle == RTLD_DEFAULT); 1672 def = symlook_default(name, hash, obj, &defobj, true); 1673 } 1674 } else { 1675 if ((obj = dlcheck(handle)) == NULL) { 1676 rlock_release(); 1677 return NULL; 1678 } 1679 1680 if (obj->mainprog) { 1681 DoneList donelist; 1682 1683 /* Search main program and all libraries loaded by it. */ 1684 donelist_init(&donelist); 1685 def = symlook_list(name, hash, &list_main, &defobj, true, 1686 &donelist); 1687 } else { 1688 /* 1689 * XXX - This isn't correct. The search should include the whole 1690 * DAG rooted at the given object. 1691 */ 1692 def = symlook_obj(name, hash, obj, true); 1693 defobj = obj; 1694 } 1695 } 1696 1697 if (def != NULL) { 1698 rlock_release(); 1699 1700 /* 1701 * The value required by the caller is derived from the value 1702 * of the symbol. For the ia64 architecture, we need to 1703 * construct a function descriptor which the caller can use to 1704 * call the function with the right 'gp' value. For other 1705 * architectures and for non-functions, the value is simply 1706 * the relocated value of the symbol. 1707 */ 1708 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 1709 return make_function_pointer(def, defobj); 1710 else 1711 return defobj->relocbase + def->st_value; 1712 } 1713 1714 _rtld_error("Undefined symbol \"%s\"", name); 1715 rlock_release(); 1716 return NULL; 1717 } 1718 1719 int 1720 dladdr(const void *addr, Dl_info *info) 1721 { 1722 const Obj_Entry *obj; 1723 const Elf_Sym *def; 1724 void *symbol_addr; 1725 unsigned long symoffset; 1726 1727 rlock_acquire(); 1728 obj = obj_from_addr(addr); 1729 if (obj == NULL) { 1730 _rtld_error("No shared object contains address"); 1731 rlock_release(); 1732 return 0; 1733 } 1734 info->dli_fname = obj->path; 1735 info->dli_fbase = obj->mapbase; 1736 info->dli_saddr = (void *)0; 1737 info->dli_sname = NULL; 1738 1739 /* 1740 * Walk the symbol list looking for the symbol whose address is 1741 * closest to the address sent in. 1742 */ 1743 for (symoffset = 0; symoffset < obj->nchains; symoffset++) { 1744 def = obj->symtab + symoffset; 1745 1746 /* 1747 * For skip the symbol if st_shndx is either SHN_UNDEF or 1748 * SHN_COMMON. 1749 */ 1750 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 1751 continue; 1752 1753 /* 1754 * If the symbol is greater than the specified address, or if it 1755 * is further away from addr than the current nearest symbol, 1756 * then reject it. 1757 */ 1758 symbol_addr = obj->relocbase + def->st_value; 1759 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 1760 continue; 1761 1762 /* Update our idea of the nearest symbol. */ 1763 info->dli_sname = obj->strtab + def->st_name; 1764 info->dli_saddr = symbol_addr; 1765 1766 /* Exact match? */ 1767 if (info->dli_saddr == addr) 1768 break; 1769 } 1770 rlock_release(); 1771 return 1; 1772 } 1773 1774 static void 1775 linkmap_add(Obj_Entry *obj) 1776 { 1777 struct link_map *l = &obj->linkmap; 1778 struct link_map *prev; 1779 1780 obj->linkmap.l_name = obj->path; 1781 obj->linkmap.l_addr = obj->mapbase; 1782 obj->linkmap.l_ld = obj->dynamic; 1783 #ifdef __mips__ 1784 /* GDB needs load offset on MIPS to use the symbols */ 1785 obj->linkmap.l_offs = obj->relocbase; 1786 #endif 1787 1788 if (r_debug.r_map == NULL) { 1789 r_debug.r_map = l; 1790 return; 1791 } 1792 1793 /* 1794 * Scan to the end of the list, but not past the entry for the 1795 * dynamic linker, which we want to keep at the very end. 1796 */ 1797 for (prev = r_debug.r_map; 1798 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 1799 prev = prev->l_next) 1800 ; 1801 1802 /* Link in the new entry. */ 1803 l->l_prev = prev; 1804 l->l_next = prev->l_next; 1805 if (l->l_next != NULL) 1806 l->l_next->l_prev = l; 1807 prev->l_next = l; 1808 } 1809 1810 static void 1811 linkmap_delete(Obj_Entry *obj) 1812 { 1813 struct link_map *l = &obj->linkmap; 1814 1815 if (l->l_prev == NULL) { 1816 if ((r_debug.r_map = l->l_next) != NULL) 1817 l->l_next->l_prev = NULL; 1818 return; 1819 } 1820 1821 if ((l->l_prev->l_next = l->l_next) != NULL) 1822 l->l_next->l_prev = l->l_prev; 1823 } 1824 1825 /* 1826 * Function for the debugger to set a breakpoint on to gain control. 1827 * 1828 * The two parameters allow the debugger to easily find and determine 1829 * what the runtime loader is doing and to whom it is doing it. 1830 * 1831 * When the loadhook trap is hit (r_debug_state, set at program 1832 * initialization), the arguments can be found on the stack: 1833 * 1834 * +8 struct link_map *m 1835 * +4 struct r_debug *rd 1836 * +0 RetAddr 1837 */ 1838 void 1839 r_debug_state(struct r_debug* rd, struct link_map *m) 1840 { 1841 } 1842 1843 /* 1844 * Get address of the pointer variable in the main program. 1845 */ 1846 static const void ** 1847 get_program_var_addr(const char *name) 1848 { 1849 const Obj_Entry *obj; 1850 unsigned long hash; 1851 1852 hash = elf_hash(name); 1853 for (obj = obj_main; obj != NULL; obj = obj->next) { 1854 const Elf_Sym *def; 1855 1856 if ((def = symlook_obj(name, hash, obj, false)) != NULL) { 1857 const void **addr; 1858 1859 addr = (const void **)(obj->relocbase + def->st_value); 1860 return addr; 1861 } 1862 } 1863 return NULL; 1864 } 1865 1866 /* 1867 * Set a pointer variable in the main program to the given value. This 1868 * is used to set key variables such as "environ" before any of the 1869 * init functions are called. 1870 */ 1871 static void 1872 set_program_var(const char *name, const void *value) 1873 { 1874 const void **addr; 1875 1876 if ((addr = get_program_var_addr(name)) != NULL) { 1877 dbg("\"%s\": *%p <-- %p", name, addr, value); 1878 *addr = value; 1879 } 1880 } 1881 1882 /* 1883 * Given a symbol name in a referencing object, find the corresponding 1884 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1885 * no definition was found. Returns a pointer to the Obj_Entry of the 1886 * defining object via the reference parameter DEFOBJ_OUT. 1887 */ 1888 static const Elf_Sym * 1889 symlook_default(const char *name, unsigned long hash, 1890 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt) 1891 { 1892 DoneList donelist; 1893 const Elf_Sym *def; 1894 const Elf_Sym *symp; 1895 const Obj_Entry *obj; 1896 const Obj_Entry *defobj; 1897 const Objlist_Entry *elm; 1898 def = NULL; 1899 defobj = NULL; 1900 donelist_init(&donelist); 1901 1902 /* Look first in the referencing object if linked symbolically. */ 1903 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 1904 symp = symlook_obj(name, hash, refobj, in_plt); 1905 if (symp != NULL) { 1906 def = symp; 1907 defobj = refobj; 1908 } 1909 } 1910 1911 /* Search all objects loaded at program start up. */ 1912 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1913 symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist); 1914 if (symp != NULL && 1915 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1916 def = symp; 1917 defobj = obj; 1918 } 1919 } 1920 1921 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 1922 STAILQ_FOREACH(elm, &list_global, link) { 1923 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1924 break; 1925 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1926 &donelist); 1927 if (symp != NULL && 1928 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1929 def = symp; 1930 defobj = obj; 1931 } 1932 } 1933 1934 /* Search all dlopened DAGs containing the referencing object. */ 1935 STAILQ_FOREACH(elm, &refobj->dldags, link) { 1936 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1937 break; 1938 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1939 &donelist); 1940 if (symp != NULL && 1941 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1942 def = symp; 1943 defobj = obj; 1944 } 1945 } 1946 1947 /* 1948 * Search the dynamic linker itself, and possibly resolve the 1949 * symbol from there. This is how the application links to 1950 * dynamic linker services such as dlopen. Only the values listed 1951 * in the "exports" array can be resolved from the dynamic linker. 1952 */ 1953 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1954 symp = symlook_obj(name, hash, &obj_rtld, in_plt); 1955 if (symp != NULL && is_exported(symp)) { 1956 def = symp; 1957 defobj = &obj_rtld; 1958 } 1959 } 1960 1961 if (def != NULL) 1962 *defobj_out = defobj; 1963 return def; 1964 } 1965 1966 static const Elf_Sym * 1967 symlook_list(const char *name, unsigned long hash, Objlist *objlist, 1968 const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp) 1969 { 1970 const Elf_Sym *symp; 1971 const Elf_Sym *def; 1972 const Obj_Entry *defobj; 1973 const Objlist_Entry *elm; 1974 1975 def = NULL; 1976 defobj = NULL; 1977 STAILQ_FOREACH(elm, objlist, link) { 1978 if (donelist_check(dlp, elm->obj)) 1979 continue; 1980 if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) { 1981 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) { 1982 def = symp; 1983 defobj = elm->obj; 1984 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 1985 break; 1986 } 1987 } 1988 } 1989 if (def != NULL) 1990 *defobj_out = defobj; 1991 return def; 1992 } 1993 1994 /* 1995 * Search the symbol table of a single shared object for a symbol of 1996 * the given name. Returns a pointer to the symbol, or NULL if no 1997 * definition was found. 1998 * 1999 * The symbol's hash value is passed in for efficiency reasons; that 2000 * eliminates many recomputations of the hash value. 2001 */ 2002 const Elf_Sym * 2003 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj, 2004 bool in_plt) 2005 { 2006 if (obj->buckets != NULL) { 2007 unsigned long symnum = obj->buckets[hash % obj->nbuckets]; 2008 2009 while (symnum != STN_UNDEF) { 2010 const Elf_Sym *symp; 2011 const char *strp; 2012 2013 if (symnum >= obj->nchains) 2014 return NULL; /* Bad object */ 2015 symp = obj->symtab + symnum; 2016 strp = obj->strtab + symp->st_name; 2017 2018 if (name[0] == strp[0] && strcmp(name, strp) == 0) 2019 return symp->st_shndx != SHN_UNDEF || 2020 (!in_plt && symp->st_value != 0 && 2021 ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL; 2022 2023 symnum = obj->chains[symnum]; 2024 } 2025 } 2026 return NULL; 2027 } 2028 2029 static void 2030 trace_loaded_objects(Obj_Entry *obj) 2031 { 2032 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 2033 int c; 2034 2035 if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 2036 main_local = ""; 2037 2038 if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL) 2039 fmt1 = "\t%o => %p (%x)\n"; 2040 2041 if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL) 2042 fmt2 = "\t%o (%x)\n"; 2043 2044 list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL"); 2045 2046 for (; obj; obj = obj->next) { 2047 Needed_Entry *needed; 2048 char *name, *path; 2049 bool is_lib; 2050 2051 if (list_containers && obj->needed != NULL) 2052 printf("%s:\n", obj->path); 2053 for (needed = obj->needed; needed; needed = needed->next) { 2054 if (needed->obj != NULL) { 2055 if (needed->obj->traced && !list_containers) 2056 continue; 2057 needed->obj->traced = true; 2058 path = needed->obj->path; 2059 } else 2060 path = "not found"; 2061 2062 name = (char *)obj->strtab + needed->name; 2063 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 2064 2065 fmt = is_lib ? fmt1 : fmt2; 2066 while ((c = *fmt++) != '\0') { 2067 switch (c) { 2068 default: 2069 putchar(c); 2070 continue; 2071 case '\\': 2072 switch (c = *fmt) { 2073 case '\0': 2074 continue; 2075 case 'n': 2076 putchar('\n'); 2077 break; 2078 case 't': 2079 putchar('\t'); 2080 break; 2081 } 2082 break; 2083 case '%': 2084 switch (c = *fmt) { 2085 case '\0': 2086 continue; 2087 case '%': 2088 default: 2089 putchar(c); 2090 break; 2091 case 'A': 2092 printf("%s", main_local); 2093 break; 2094 case 'a': 2095 printf("%s", obj_main->path); 2096 break; 2097 case 'o': 2098 printf("%s", name); 2099 break; 2100 #if 0 2101 case 'm': 2102 printf("%d", sodp->sod_major); 2103 break; 2104 case 'n': 2105 printf("%d", sodp->sod_minor); 2106 break; 2107 #endif 2108 case 'p': 2109 printf("%s", path); 2110 break; 2111 case 'x': 2112 printf("%p", needed->obj ? needed->obj->mapbase : 0); 2113 break; 2114 } 2115 break; 2116 } 2117 ++fmt; 2118 } 2119 } 2120 } 2121 } 2122 2123 /* 2124 * Unload a dlopened object and its dependencies from memory and from 2125 * our data structures. It is assumed that the DAG rooted in the 2126 * object has already been unreferenced, and that the object has a 2127 * reference count of 0. 2128 */ 2129 static void 2130 unload_object(Obj_Entry *root) 2131 { 2132 Obj_Entry *obj; 2133 Obj_Entry **linkp; 2134 Objlist_Entry *elm; 2135 2136 assert(root->refcount == 0); 2137 2138 /* Remove the DAG from all objects' DAG lists. */ 2139 STAILQ_FOREACH(elm, &root->dagmembers , link) 2140 objlist_remove(&elm->obj->dldags, root); 2141 2142 /* Remove the DAG from the RTLD_GLOBAL list. */ 2143 objlist_remove(&list_global, root); 2144 2145 /* Unmap all objects that are no longer referenced. */ 2146 linkp = &obj_list->next; 2147 while ((obj = *linkp) != NULL) { 2148 if (obj->refcount == 0) { 2149 dbg("unloading \"%s\"", obj->path); 2150 munmap(obj->mapbase, obj->mapsize); 2151 linkmap_delete(obj); 2152 *linkp = obj->next; 2153 obj_count--; 2154 obj_free(obj); 2155 } else 2156 linkp = &obj->next; 2157 } 2158 obj_tail = linkp; 2159 } 2160 2161 static void 2162 unref_dag(Obj_Entry *root) 2163 { 2164 const Needed_Entry *needed; 2165 2166 if (root->refcount == 0) 2167 return; 2168 root->refcount--; 2169 if (root->refcount == 0) 2170 for (needed = root->needed; needed != NULL; needed = needed->next) 2171 if (needed->obj != NULL) 2172 unref_dag(needed->obj); 2173 } 2174 2175 /* 2176 * Non-mallocing printf, for use by malloc itself. 2177 * XXX - This doesn't belong in this module. 2178 */ 2179 void 2180 xprintf(const char *fmt, ...) 2181 { 2182 char buf[256]; 2183 va_list ap; 2184 2185 va_start(ap, fmt); 2186 vsprintf(buf, fmt, ap); 2187 (void)write(STDOUT_FILENO, buf, strlen(buf)); 2188 va_end(ap); 2189 } 2190