xref: /freebsd/libexec/rtld-elf/rtld.c (revision 451dc2b7cc0c845a3f76f9ee670f16699c49b491)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void errmsg_restore(struct dlerror_save *);
108 static struct dlerror_save *errmsg_save(void);
109 static void *fill_search_info(const char *, size_t, void *);
110 static char *find_library(const char *, const Obj_Entry *, int *);
111 static const char *gethints(bool);
112 static void hold_object(Obj_Entry *);
113 static void unhold_object(Obj_Entry *);
114 static void init_dag(Obj_Entry *);
115 static void init_marker(Obj_Entry *);
116 static void init_pagesizes(Elf_Auxinfo **aux_info);
117 static void init_rtld(caddr_t, Elf_Auxinfo **);
118 static void initlist_add_neededs(Needed_Entry *, Objlist *);
119 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
120 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
121 static void linkmap_add(Obj_Entry *);
122 static void linkmap_delete(Obj_Entry *);
123 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
124 static void unload_filtees(Obj_Entry *, RtldLockState *);
125 static int load_needed_objects(Obj_Entry *, int);
126 static int load_preload_objects(char *, bool);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static char *ld_bind_now;	/* Environment variable for immediate binding */
211 static char *ld_debug;		/* Environment variable for debugging */
212 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
213 				       weak definition */
214 static char *ld_library_path;	/* Environment variable for search path */
215 static char *ld_library_dirs;	/* Environment variable for library descriptors */
216 static char *ld_preload;	/* Environment variable for libraries to
217 				   load first */
218 static char *ld_preload_fds;	/* Environment variable for libraries represented by
219 				   descriptors */
220 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
221 static const char *ld_tracing;	/* Called from ldd to print libs */
222 static char *ld_utrace;		/* Use utrace() to log events. */
223 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	/* The main program shared object */
225 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
226 static unsigned int obj_count;	/* Number of objects in obj_list */
227 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
228 
229 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
230   STAILQ_HEAD_INITIALIZER(list_global);
231 static Objlist list_main =	/* Objects loaded at program startup */
232   STAILQ_HEAD_INITIALIZER(list_main);
233 static Objlist list_fini =	/* Objects needing fini() calls */
234   STAILQ_HEAD_INITIALIZER(list_fini);
235 
236 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
237 
238 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
239 
240 extern Elf_Dyn _DYNAMIC;
241 #pragma weak _DYNAMIC
242 
243 int dlclose(void *) __exported;
244 char *dlerror(void) __exported;
245 void *dlopen(const char *, int) __exported;
246 void *fdlopen(int, int) __exported;
247 void *dlsym(void *, const char *) __exported;
248 dlfunc_t dlfunc(void *, const char *) __exported;
249 void *dlvsym(void *, const char *, const char *) __exported;
250 int dladdr(const void *, Dl_info *) __exported;
251 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
252     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
253 int dlinfo(void *, int , void *) __exported;
254 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
255 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
256 int _rtld_get_stack_prot(void) __exported;
257 int _rtld_is_dlopened(void *) __exported;
258 void _rtld_error(const char *, ...) __exported;
259 
260 /* Only here to fix -Wmissing-prototypes warnings */
261 int __getosreldate(void);
262 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
263 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
264 
265 
266 int npagesizes;
267 static int osreldate;
268 size_t *pagesizes;
269 
270 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
271 static int max_stack_flags;
272 
273 /*
274  * Global declarations normally provided by crt1.  The dynamic linker is
275  * not built with crt1, so we have to provide them ourselves.
276  */
277 char *__progname;
278 char **environ;
279 
280 /*
281  * Used to pass argc, argv to init functions.
282  */
283 int main_argc;
284 char **main_argv;
285 
286 /*
287  * Globals to control TLS allocation.
288  */
289 size_t tls_last_offset;		/* Static TLS offset of last module */
290 size_t tls_last_size;		/* Static TLS size of last module */
291 size_t tls_static_space;	/* Static TLS space allocated */
292 static size_t tls_static_max_align;
293 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
294 int tls_max_index = 1;		/* Largest module index allocated */
295 
296 static bool ld_library_path_rpath = false;
297 bool ld_fast_sigblock = false;
298 
299 /*
300  * Globals for path names, and such
301  */
302 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
303 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
304 const char *ld_path_rtld = _PATH_RTLD;
305 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
306 const char *ld_env_prefix = LD_;
307 
308 static void (*rtld_exit_ptr)(void);
309 
310 /*
311  * Fill in a DoneList with an allocation large enough to hold all of
312  * the currently-loaded objects.  Keep this as a macro since it calls
313  * alloca and we want that to occur within the scope of the caller.
314  */
315 #define donelist_init(dlp)					\
316     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
317     assert((dlp)->objs != NULL),				\
318     (dlp)->num_alloc = obj_count,				\
319     (dlp)->num_used = 0)
320 
321 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
322 	if (ld_utrace != NULL)					\
323 		ld_utrace_log(e, h, mb, ms, r, n);		\
324 } while (0)
325 
326 static void
327 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
328     int refcnt, const char *name)
329 {
330 	struct utrace_rtld ut;
331 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
332 
333 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
334 	ut.event = event;
335 	ut.handle = handle;
336 	ut.mapbase = mapbase;
337 	ut.mapsize = mapsize;
338 	ut.refcnt = refcnt;
339 	bzero(ut.name, sizeof(ut.name));
340 	if (name)
341 		strlcpy(ut.name, name, sizeof(ut.name));
342 	utrace(&ut, sizeof(ut));
343 }
344 
345 enum {
346 	LD_BIND_NOW = 0,
347 	LD_PRELOAD,
348 	LD_LIBMAP,
349 	LD_LIBRARY_PATH,
350 	LD_LIBRARY_PATH_FDS,
351 	LD_LIBMAP_DISABLE,
352 	LD_BIND_NOT,
353 	LD_DEBUG,
354 	LD_ELF_HINTS_PATH,
355 	LD_LOADFLTR,
356 	LD_LIBRARY_PATH_RPATH,
357 	LD_PRELOAD_FDS,
358 	LD_DYNAMIC_WEAK,
359 	LD_TRACE_LOADED_OBJECTS,
360 	LD_UTRACE,
361 	LD_DUMP_REL_PRE,
362 	LD_DUMP_REL_POST,
363 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
364 	LD_TRACE_LOADED_OBJECTS_FMT1,
365 	LD_TRACE_LOADED_OBJECTS_FMT2,
366 	LD_TRACE_LOADED_OBJECTS_ALL,
367 };
368 
369 struct ld_env_var_desc {
370 	char n[64];
371 	bool unsecure;
372 };
373 
374 static struct ld_env_var_desc ld_env_vars[] = {
375 	[LD_BIND_NOW] =
376 	    { .n = "BIND_NOW", .unsecure = false },
377 	[LD_PRELOAD] =
378 	    { .n = "PRELOAD", .unsecure = true },
379 	[LD_LIBMAP] =
380 	    { .n = "LIBMAP", .unsecure = true },
381 	[LD_LIBRARY_PATH] =
382 	    { .n = "LIBRARY_PATH", .unsecure = true },
383 	[LD_LIBRARY_PATH_FDS] =
384 	    { .n = "LIBRARY_PATH_FDS", .unsecure = true },
385 	[LD_LIBMAP_DISABLE] =
386 	    { .n = "LIBMAP_DISABLE", .unsecure = true },
387 	[LD_BIND_NOT] =
388 	    { .n = "BIND_NOT", .unsecure = true },
389 	[LD_DEBUG] =
390 	    { .n = "DEBUG", .unsecure = true },
391 	[LD_ELF_HINTS_PATH] =
392 	    { .n = "ELF_HINTS_PATH", .unsecure = true },
393 	[LD_LOADFLTR] =
394 	    { .n = "LOADFLTR", .unsecure = true },
395 	[LD_LIBRARY_PATH_RPATH] =
396 	    { .n = "LIBRARY_PATH_RPATH", .unsecure = true },
397 	[LD_PRELOAD_FDS] =
398 	    { .n = "PRELOAD_FDS", .unsecure = true },
399 	[LD_DYNAMIC_WEAK] =
400 	    { .n = "DYNAMIC_WEAK", .unsecure = true },
401 	[LD_TRACE_LOADED_OBJECTS] =
402 	    { .n = "TRACE_LOADED_OBJECTS", .unsecure = false },
403 	[LD_UTRACE] =
404 	    { .n = "UTRACE", .unsecure = false },
405 	[LD_DUMP_REL_PRE] =
406 	    { .n = "DUMP_REL_PRE", .unsecure = false },
407 	[LD_DUMP_REL_POST] =
408 	    { .n = "DUMP_REL_POST", .unsecure = false },
409 	[LD_TRACE_LOADED_OBJECTS_PROGNAME] =
410 	    { .n = "TRACE_LOADED_OBJECTS_PROGNAME", .unsecure = false},
411 	[LD_TRACE_LOADED_OBJECTS_FMT1] =
412 	    { .n = "TRACE_LOADED_OBJECTS_FMT1", .unsecure = false},
413 	[LD_TRACE_LOADED_OBJECTS_FMT2] =
414 	    { .n = "TRACE_LOADED_OBJECTS_FMT2", .unsecure = false},
415 	[LD_TRACE_LOADED_OBJECTS_ALL] =
416 	    { .n = "TRACE_LOADED_OBJECTS_ALL", .unsecure = false},
417 };
418 
419 static const char *
420 ld_var(int idx)
421 {
422 	return (ld_env_vars[idx].n);
423 }
424 
425 static char *
426 ld_get_env_var(int idx)
427 {
428 	return (getenv(ld_var(idx)));
429 }
430 
431 static void
432 rtld_init_env_vars(void)
433 {
434 	struct ld_env_var_desc *lvd;
435 	size_t sz;
436 	int i;
437 
438 	sz = strlen(ld_env_prefix);
439 	for (i = 0; i < (int)nitems(ld_env_vars); i++) {
440 		lvd = &ld_env_vars[i];
441 		memmove(lvd->n + sz, lvd->n, strlen(lvd->n) + 1);
442 		memcpy(lvd->n, ld_env_prefix, sz);
443 	}
444 }
445 
446 /*
447  * Main entry point for dynamic linking.  The first argument is the
448  * stack pointer.  The stack is expected to be laid out as described
449  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
450  * Specifically, the stack pointer points to a word containing
451  * ARGC.  Following that in the stack is a null-terminated sequence
452  * of pointers to argument strings.  Then comes a null-terminated
453  * sequence of pointers to environment strings.  Finally, there is a
454  * sequence of "auxiliary vector" entries.
455  *
456  * The second argument points to a place to store the dynamic linker's
457  * exit procedure pointer and the third to a place to store the main
458  * program's object.
459  *
460  * The return value is the main program's entry point.
461  */
462 func_ptr_type
463 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
464 {
465     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
466     Objlist_Entry *entry;
467     Obj_Entry *last_interposer, *obj, *preload_tail;
468     const Elf_Phdr *phdr;
469     Objlist initlist;
470     RtldLockState lockstate;
471     struct stat st;
472     Elf_Addr *argcp;
473     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
474     const char *argv0, *binpath;
475     struct ld_env_var_desc *lvd;
476     caddr_t imgentry;
477     char buf[MAXPATHLEN];
478     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
479     size_t sz;
480 #ifdef __powerpc__
481     int old_auxv_format = 1;
482 #endif
483     bool dir_enable, direct_exec, explicit_fd, search_in_path;
484 
485     /*
486      * On entry, the dynamic linker itself has not been relocated yet.
487      * Be very careful not to reference any global data until after
488      * init_rtld has returned.  It is OK to reference file-scope statics
489      * and string constants, and to call static and global functions.
490      */
491 
492     /* Find the auxiliary vector on the stack. */
493     argcp = sp;
494     argc = *sp++;
495     argv = (char **) sp;
496     sp += argc + 1;	/* Skip over arguments and NULL terminator */
497     env = (char **) sp;
498     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
499 	;
500     aux = (Elf_Auxinfo *) sp;
501 
502     /* Digest the auxiliary vector. */
503     for (i = 0;  i < AT_COUNT;  i++)
504 	aux_info[i] = NULL;
505     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
506 	if (auxp->a_type < AT_COUNT)
507 	    aux_info[auxp->a_type] = auxp;
508 #ifdef __powerpc__
509 	if (auxp->a_type == 23) /* AT_STACKPROT */
510 	    old_auxv_format = 0;
511 #endif
512     }
513 
514 #ifdef __powerpc__
515     if (old_auxv_format) {
516 	/* Remap from old-style auxv numbers. */
517 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
518 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
519 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
520 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
521 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
522 	aux_info[13] = NULL;		/* AT_GID */
523 
524 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
525 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
526 	aux_info[16] = aux_info[14];	/* AT_CANARY */
527 	aux_info[14] = NULL;		/* AT_EGID */
528     }
529 #endif
530 
531     /* Initialize and relocate ourselves. */
532     assert(aux_info[AT_BASE] != NULL);
533     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
534 
535     dlerror_dflt_init();
536 
537     __progname = obj_rtld.path;
538     argv0 = argv[0] != NULL ? argv[0] : "(null)";
539     environ = env;
540     main_argc = argc;
541     main_argv = argv;
542 
543     if (aux_info[AT_BSDFLAGS] != NULL &&
544 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
545 	    ld_fast_sigblock = true;
546 
547     trust = !issetugid();
548     direct_exec = false;
549 
550     md_abi_variant_hook(aux_info);
551     rtld_init_env_vars();
552 
553     fd = -1;
554     if (aux_info[AT_EXECFD] != NULL) {
555 	fd = aux_info[AT_EXECFD]->a_un.a_val;
556     } else {
557 	assert(aux_info[AT_PHDR] != NULL);
558 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
559 	if (phdr == obj_rtld.phdr) {
560 	    if (!trust) {
561 		_rtld_error("Tainted process refusing to run binary %s",
562 		    argv0);
563 		rtld_die();
564 	    }
565 	    direct_exec = true;
566 
567 	    dbg("opening main program in direct exec mode");
568 	    if (argc >= 2) {
569 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
570 		explicit_fd = (fd != -1);
571 		binpath = NULL;
572 		if (!explicit_fd)
573 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
574 		if (fstat(fd, &st) == -1) {
575 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
576 		      explicit_fd ? "user-provided descriptor" : argv0,
577 		      rtld_strerror(errno));
578 		    rtld_die();
579 		}
580 
581 		/*
582 		 * Rough emulation of the permission checks done by
583 		 * execve(2), only Unix DACs are checked, ACLs are
584 		 * ignored.  Preserve the semantic of disabling owner
585 		 * to execute if owner x bit is cleared, even if
586 		 * others x bit is enabled.
587 		 * mmap(2) does not allow to mmap with PROT_EXEC if
588 		 * binary' file comes from noexec mount.  We cannot
589 		 * set a text reference on the binary.
590 		 */
591 		dir_enable = false;
592 		if (st.st_uid == geteuid()) {
593 		    if ((st.st_mode & S_IXUSR) != 0)
594 			dir_enable = true;
595 		} else if (st.st_gid == getegid()) {
596 		    if ((st.st_mode & S_IXGRP) != 0)
597 			dir_enable = true;
598 		} else if ((st.st_mode & S_IXOTH) != 0) {
599 		    dir_enable = true;
600 		}
601 		if (!dir_enable) {
602 		    _rtld_error("No execute permission for binary %s",
603 		        argv0);
604 		    rtld_die();
605 		}
606 
607 		/*
608 		 * For direct exec mode, argv[0] is the interpreter
609 		 * name, we must remove it and shift arguments left
610 		 * before invoking binary main.  Since stack layout
611 		 * places environment pointers and aux vectors right
612 		 * after the terminating NULL, we must shift
613 		 * environment and aux as well.
614 		 */
615 		main_argc = argc - rtld_argc;
616 		for (i = 0; i <= main_argc; i++)
617 		    argv[i] = argv[i + rtld_argc];
618 		*argcp -= rtld_argc;
619 		environ = env = envp = argv + main_argc + 1;
620 		dbg("move env from %p to %p", envp + rtld_argc, envp);
621 		do {
622 		    *envp = *(envp + rtld_argc);
623 		}  while (*envp++ != NULL);
624 		aux = auxp = (Elf_Auxinfo *)envp;
625 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
626 		dbg("move aux from %p to %p", auxpf, aux);
627 		/* XXXKIB insert place for AT_EXECPATH if not present */
628 		for (;; auxp++, auxpf++) {
629 		    *auxp = *auxpf;
630 		    if (auxp->a_type == AT_NULL)
631 			    break;
632 		}
633 		/* Since the auxiliary vector has moved, redigest it. */
634 		for (i = 0;  i < AT_COUNT;  i++)
635 		    aux_info[i] = NULL;
636 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
637 		    if (auxp->a_type < AT_COUNT)
638 			aux_info[auxp->a_type] = auxp;
639 		}
640 
641 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
642 		if (binpath == NULL) {
643 		    aux_info[AT_EXECPATH] = NULL;
644 		} else {
645 		    if (aux_info[AT_EXECPATH] == NULL) {
646 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
647 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
648 		    }
649 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
650 		      binpath);
651 		}
652 	    } else {
653 		_rtld_error("No binary");
654 		rtld_die();
655 	    }
656 	}
657     }
658 
659     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
660 
661     /*
662      * If the process is tainted, then we un-set the dangerous environment
663      * variables.  The process will be marked as tainted until setuid(2)
664      * is called.  If any child process calls setuid(2) we do not want any
665      * future processes to honor the potentially un-safe variables.
666      */
667     if (!trust) {
668 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
669 		    lvd = &ld_env_vars[i];
670 		    if (lvd->unsecure && unsetenv(lvd->n)) {
671 			    _rtld_error("environment corrupt; aborting");
672 			    rtld_die();
673 		    }
674 	    }
675     }
676     ld_debug = ld_get_env_var(LD_DEBUG);
677     if (ld_bind_now == NULL)
678 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
679     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
680     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
681     libmap_override = ld_get_env_var(LD_LIBMAP);
682     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
683     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
684     ld_preload = ld_get_env_var(LD_PRELOAD);
685     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
686     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
687     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
688     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
689     if (library_path_rpath != NULL) {
690 	    if (library_path_rpath[0] == 'y' ||
691 		library_path_rpath[0] == 'Y' ||
692 		library_path_rpath[0] == '1')
693 		    ld_library_path_rpath = true;
694 	    else
695 		    ld_library_path_rpath = false;
696     }
697     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
698 	ld_library_path != NULL || ld_preload != NULL ||
699 	ld_elf_hints_path != NULL || ld_loadfltr || ld_dynamic_weak;
700     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
701     ld_utrace = ld_get_env_var(LD_UTRACE);
702 
703     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
704 	ld_elf_hints_path = ld_elf_hints_default;
705 
706     if (ld_debug != NULL && *ld_debug != '\0')
707 	debug = 1;
708     dbg("%s is initialized, base address = %p", __progname,
709 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
710     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
711     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
712 
713     dbg("initializing thread locks");
714     lockdflt_init();
715 
716     /*
717      * Load the main program, or process its program header if it is
718      * already loaded.
719      */
720     if (fd != -1) {	/* Load the main program. */
721 	dbg("loading main program");
722 	obj_main = map_object(fd, argv0, NULL);
723 	close(fd);
724 	if (obj_main == NULL)
725 	    rtld_die();
726 	max_stack_flags = obj_main->stack_flags;
727     } else {				/* Main program already loaded. */
728 	dbg("processing main program's program header");
729 	assert(aux_info[AT_PHDR] != NULL);
730 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
731 	assert(aux_info[AT_PHNUM] != NULL);
732 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
733 	assert(aux_info[AT_PHENT] != NULL);
734 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
735 	assert(aux_info[AT_ENTRY] != NULL);
736 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
737 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
738 	    rtld_die();
739     }
740 
741     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
742 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
743 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
744 	    if (kexecpath[0] == '/')
745 		    obj_main->path = kexecpath;
746 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
747 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
748 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
749 		    obj_main->path = xstrdup(argv0);
750 	    else
751 		    obj_main->path = xstrdup(buf);
752     } else {
753 	    dbg("No AT_EXECPATH or direct exec");
754 	    obj_main->path = xstrdup(argv0);
755     }
756     dbg("obj_main path %s", obj_main->path);
757     obj_main->mainprog = true;
758 
759     if (aux_info[AT_STACKPROT] != NULL &&
760       aux_info[AT_STACKPROT]->a_un.a_val != 0)
761 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
762 
763 #ifndef COMPAT_32BIT
764     /*
765      * Get the actual dynamic linker pathname from the executable if
766      * possible.  (It should always be possible.)  That ensures that
767      * gdb will find the right dynamic linker even if a non-standard
768      * one is being used.
769      */
770     if (obj_main->interp != NULL &&
771       strcmp(obj_main->interp, obj_rtld.path) != 0) {
772 	free(obj_rtld.path);
773 	obj_rtld.path = xstrdup(obj_main->interp);
774         __progname = obj_rtld.path;
775     }
776 #endif
777 
778     if (!digest_dynamic(obj_main, 0))
779 	rtld_die();
780     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
781 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
782 	obj_main->dynsymcount);
783 
784     linkmap_add(obj_main);
785     linkmap_add(&obj_rtld);
786 
787     /* Link the main program into the list of objects. */
788     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
789     obj_count++;
790     obj_loads++;
791 
792     /* Initialize a fake symbol for resolving undefined weak references. */
793     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
794     sym_zero.st_shndx = SHN_UNDEF;
795     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
796 
797     if (!libmap_disable)
798         libmap_disable = (bool)lm_init(libmap_override);
799 
800     dbg("loading LD_PRELOAD_FDS libraries");
801     if (load_preload_objects(ld_preload_fds, true) == -1)
802 	rtld_die();
803 
804     dbg("loading LD_PRELOAD libraries");
805     if (load_preload_objects(ld_preload, false) == -1)
806 	rtld_die();
807     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
808 
809     dbg("loading needed objects");
810     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
811       0) == -1)
812 	rtld_die();
813 
814     /* Make a list of all objects loaded at startup. */
815     last_interposer = obj_main;
816     TAILQ_FOREACH(obj, &obj_list, next) {
817 	if (obj->marker)
818 	    continue;
819 	if (obj->z_interpose && obj != obj_main) {
820 	    objlist_put_after(&list_main, last_interposer, obj);
821 	    last_interposer = obj;
822 	} else {
823 	    objlist_push_tail(&list_main, obj);
824 	}
825     	obj->refcount++;
826     }
827 
828     dbg("checking for required versions");
829     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
830 	rtld_die();
831 
832     if (ld_tracing) {		/* We're done */
833 	trace_loaded_objects(obj_main);
834 	exit(0);
835     }
836 
837     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
838        dump_relocations(obj_main);
839        exit (0);
840     }
841 
842     /*
843      * Processing tls relocations requires having the tls offsets
844      * initialized.  Prepare offsets before starting initial
845      * relocation processing.
846      */
847     dbg("initializing initial thread local storage offsets");
848     STAILQ_FOREACH(entry, &list_main, link) {
849 	/*
850 	 * Allocate all the initial objects out of the static TLS
851 	 * block even if they didn't ask for it.
852 	 */
853 	allocate_tls_offset(entry->obj);
854     }
855 
856     if (relocate_objects(obj_main,
857       ld_bind_now != NULL && *ld_bind_now != '\0',
858       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
859 	rtld_die();
860 
861     dbg("doing copy relocations");
862     if (do_copy_relocations(obj_main) == -1)
863 	rtld_die();
864 
865     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
866        dump_relocations(obj_main);
867        exit (0);
868     }
869 
870     ifunc_init(aux);
871 
872     /*
873      * Setup TLS for main thread.  This must be done after the
874      * relocations are processed, since tls initialization section
875      * might be the subject for relocations.
876      */
877     dbg("initializing initial thread local storage");
878     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
879 
880     dbg("initializing key program variables");
881     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
882     set_program_var("environ", env);
883     set_program_var("__elf_aux_vector", aux);
884 
885     /* Make a list of init functions to call. */
886     objlist_init(&initlist);
887     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
888       preload_tail, &initlist);
889 
890     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
891 
892     map_stacks_exec(NULL);
893 
894     if (!obj_main->crt_no_init) {
895 	/*
896 	 * Make sure we don't call the main program's init and fini
897 	 * functions for binaries linked with old crt1 which calls
898 	 * _init itself.
899 	 */
900 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
901 	obj_main->preinit_array = obj_main->init_array =
902 	    obj_main->fini_array = (Elf_Addr)NULL;
903     }
904 
905     if (direct_exec) {
906 	/* Set osrel for direct-execed binary */
907 	mib[0] = CTL_KERN;
908 	mib[1] = KERN_PROC;
909 	mib[2] = KERN_PROC_OSREL;
910 	mib[3] = getpid();
911 	osrel = obj_main->osrel;
912 	sz = sizeof(old_osrel);
913 	dbg("setting osrel to %d", osrel);
914 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
915     }
916 
917     wlock_acquire(rtld_bind_lock, &lockstate);
918 
919     dbg("resolving ifuncs");
920     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
921       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
922 	rtld_die();
923 
924     rtld_exit_ptr = rtld_exit;
925     if (obj_main->crt_no_init)
926 	preinit_main();
927     objlist_call_init(&initlist, &lockstate);
928     _r_debug_postinit(&obj_main->linkmap);
929     objlist_clear(&initlist);
930     dbg("loading filtees");
931     TAILQ_FOREACH(obj, &obj_list, next) {
932 	if (obj->marker)
933 	    continue;
934 	if (ld_loadfltr || obj->z_loadfltr)
935 	    load_filtees(obj, 0, &lockstate);
936     }
937 
938     dbg("enforcing main obj relro");
939     if (obj_enforce_relro(obj_main) == -1)
940 	rtld_die();
941 
942     lock_release(rtld_bind_lock, &lockstate);
943 
944     dbg("transferring control to program entry point = %p", obj_main->entry);
945 
946     /* Return the exit procedure and the program entry point. */
947     *exit_proc = rtld_exit_ptr;
948     *objp = obj_main;
949     return (func_ptr_type) obj_main->entry;
950 }
951 
952 void *
953 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
954 {
955 	void *ptr;
956 	Elf_Addr target;
957 
958 	ptr = (void *)make_function_pointer(def, obj);
959 	target = call_ifunc_resolver(ptr);
960 	return ((void *)target);
961 }
962 
963 /*
964  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
965  * Changes to this function should be applied there as well.
966  */
967 Elf_Addr
968 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
969 {
970     const Elf_Rel *rel;
971     const Elf_Sym *def;
972     const Obj_Entry *defobj;
973     Elf_Addr *where;
974     Elf_Addr target;
975     RtldLockState lockstate;
976 
977     rlock_acquire(rtld_bind_lock, &lockstate);
978     if (sigsetjmp(lockstate.env, 0) != 0)
979 	    lock_upgrade(rtld_bind_lock, &lockstate);
980     if (obj->pltrel)
981 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
982     else
983 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
984 
985     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
986     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
987 	NULL, &lockstate);
988     if (def == NULL)
989 	rtld_die();
990     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
991 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
992     else
993 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
994 
995     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
996       defobj->strtab + def->st_name,
997       obj->path == NULL ? NULL : basename(obj->path),
998       (void *)target,
999       defobj->path == NULL ? NULL : basename(defobj->path));
1000 
1001     /*
1002      * Write the new contents for the jmpslot. Note that depending on
1003      * architecture, the value which we need to return back to the
1004      * lazy binding trampoline may or may not be the target
1005      * address. The value returned from reloc_jmpslot() is the value
1006      * that the trampoline needs.
1007      */
1008     target = reloc_jmpslot(where, target, defobj, obj, rel);
1009     lock_release(rtld_bind_lock, &lockstate);
1010     return target;
1011 }
1012 
1013 /*
1014  * Error reporting function.  Use it like printf.  If formats the message
1015  * into a buffer, and sets things up so that the next call to dlerror()
1016  * will return the message.
1017  */
1018 void
1019 _rtld_error(const char *fmt, ...)
1020 {
1021 	va_list ap;
1022 
1023 	va_start(ap, fmt);
1024 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1025 	    fmt, ap);
1026 	va_end(ap);
1027 	*lockinfo.dlerror_seen() = 0;
1028 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1029 }
1030 
1031 /*
1032  * Return a dynamically-allocated copy of the current error message, if any.
1033  */
1034 static struct dlerror_save *
1035 errmsg_save(void)
1036 {
1037 	struct dlerror_save *res;
1038 
1039 	res = xmalloc(sizeof(*res));
1040 	res->seen = *lockinfo.dlerror_seen();
1041 	if (res->seen == 0)
1042 		res->msg = xstrdup(lockinfo.dlerror_loc());
1043 	return (res);
1044 }
1045 
1046 /*
1047  * Restore the current error message from a copy which was previously saved
1048  * by errmsg_save().  The copy is freed.
1049  */
1050 static void
1051 errmsg_restore(struct dlerror_save *saved_msg)
1052 {
1053 	if (saved_msg == NULL || saved_msg->seen == 1) {
1054 		*lockinfo.dlerror_seen() = 1;
1055 	} else {
1056 		*lockinfo.dlerror_seen() = 0;
1057 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1058 		    lockinfo.dlerror_loc_sz);
1059 		free(saved_msg->msg);
1060 	}
1061 	free(saved_msg);
1062 }
1063 
1064 static const char *
1065 basename(const char *name)
1066 {
1067     const char *p = strrchr(name, '/');
1068     return p != NULL ? p + 1 : name;
1069 }
1070 
1071 static struct utsname uts;
1072 
1073 static char *
1074 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1075     const char *subst, bool may_free)
1076 {
1077 	char *p, *p1, *res, *resp;
1078 	int subst_len, kw_len, subst_count, old_len, new_len;
1079 
1080 	kw_len = strlen(kw);
1081 
1082 	/*
1083 	 * First, count the number of the keyword occurrences, to
1084 	 * preallocate the final string.
1085 	 */
1086 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1087 		p1 = strstr(p, kw);
1088 		if (p1 == NULL)
1089 			break;
1090 	}
1091 
1092 	/*
1093 	 * If the keyword is not found, just return.
1094 	 *
1095 	 * Return non-substituted string if resolution failed.  We
1096 	 * cannot do anything more reasonable, the failure mode of the
1097 	 * caller is unresolved library anyway.
1098 	 */
1099 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1100 		return (may_free ? real : xstrdup(real));
1101 	if (obj != NULL)
1102 		subst = obj->origin_path;
1103 
1104 	/*
1105 	 * There is indeed something to substitute.  Calculate the
1106 	 * length of the resulting string, and allocate it.
1107 	 */
1108 	subst_len = strlen(subst);
1109 	old_len = strlen(real);
1110 	new_len = old_len + (subst_len - kw_len) * subst_count;
1111 	res = xmalloc(new_len + 1);
1112 
1113 	/*
1114 	 * Now, execute the substitution loop.
1115 	 */
1116 	for (p = real, resp = res, *resp = '\0';;) {
1117 		p1 = strstr(p, kw);
1118 		if (p1 != NULL) {
1119 			/* Copy the prefix before keyword. */
1120 			memcpy(resp, p, p1 - p);
1121 			resp += p1 - p;
1122 			/* Keyword replacement. */
1123 			memcpy(resp, subst, subst_len);
1124 			resp += subst_len;
1125 			*resp = '\0';
1126 			p = p1 + kw_len;
1127 		} else
1128 			break;
1129 	}
1130 
1131 	/* Copy to the end of string and finish. */
1132 	strcat(resp, p);
1133 	if (may_free)
1134 		free(real);
1135 	return (res);
1136 }
1137 
1138 static char *
1139 origin_subst(Obj_Entry *obj, const char *real)
1140 {
1141 	char *res1, *res2, *res3, *res4;
1142 
1143 	if (obj == NULL || !trust)
1144 		return (xstrdup(real));
1145 	if (uts.sysname[0] == '\0') {
1146 		if (uname(&uts) != 0) {
1147 			_rtld_error("utsname failed: %d", errno);
1148 			return (NULL);
1149 		}
1150 	}
1151 	/* __DECONST is safe here since without may_free real is unchanged */
1152 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1153 	    false);
1154 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1155 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1156 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1157 	return (res4);
1158 }
1159 
1160 void
1161 rtld_die(void)
1162 {
1163     const char *msg = dlerror();
1164 
1165     if (msg == NULL)
1166 	msg = "Fatal error";
1167     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1168     rtld_fdputstr(STDERR_FILENO, msg);
1169     rtld_fdputchar(STDERR_FILENO, '\n');
1170     _exit(1);
1171 }
1172 
1173 /*
1174  * Process a shared object's DYNAMIC section, and save the important
1175  * information in its Obj_Entry structure.
1176  */
1177 static void
1178 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1179     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1180 {
1181     const Elf_Dyn *dynp;
1182     Needed_Entry **needed_tail = &obj->needed;
1183     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1184     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1185     const Elf_Hashelt *hashtab;
1186     const Elf32_Word *hashval;
1187     Elf32_Word bkt, nmaskwords;
1188     int bloom_size32;
1189     int plttype = DT_REL;
1190 
1191     *dyn_rpath = NULL;
1192     *dyn_soname = NULL;
1193     *dyn_runpath = NULL;
1194 
1195     obj->bind_now = false;
1196     dynp = obj->dynamic;
1197     if (dynp == NULL)
1198 	return;
1199     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1200 	switch (dynp->d_tag) {
1201 
1202 	case DT_REL:
1203 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1204 	    break;
1205 
1206 	case DT_RELSZ:
1207 	    obj->relsize = dynp->d_un.d_val;
1208 	    break;
1209 
1210 	case DT_RELENT:
1211 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1212 	    break;
1213 
1214 	case DT_JMPREL:
1215 	    obj->pltrel = (const Elf_Rel *)
1216 	      (obj->relocbase + dynp->d_un.d_ptr);
1217 	    break;
1218 
1219 	case DT_PLTRELSZ:
1220 	    obj->pltrelsize = dynp->d_un.d_val;
1221 	    break;
1222 
1223 	case DT_RELA:
1224 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1225 	    break;
1226 
1227 	case DT_RELASZ:
1228 	    obj->relasize = dynp->d_un.d_val;
1229 	    break;
1230 
1231 	case DT_RELAENT:
1232 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1233 	    break;
1234 
1235 	case DT_PLTREL:
1236 	    plttype = dynp->d_un.d_val;
1237 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1238 	    break;
1239 
1240 	case DT_SYMTAB:
1241 	    obj->symtab = (const Elf_Sym *)
1242 	      (obj->relocbase + dynp->d_un.d_ptr);
1243 	    break;
1244 
1245 	case DT_SYMENT:
1246 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1247 	    break;
1248 
1249 	case DT_STRTAB:
1250 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1251 	    break;
1252 
1253 	case DT_STRSZ:
1254 	    obj->strsize = dynp->d_un.d_val;
1255 	    break;
1256 
1257 	case DT_VERNEED:
1258 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1259 		dynp->d_un.d_val);
1260 	    break;
1261 
1262 	case DT_VERNEEDNUM:
1263 	    obj->verneednum = dynp->d_un.d_val;
1264 	    break;
1265 
1266 	case DT_VERDEF:
1267 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1268 		dynp->d_un.d_val);
1269 	    break;
1270 
1271 	case DT_VERDEFNUM:
1272 	    obj->verdefnum = dynp->d_un.d_val;
1273 	    break;
1274 
1275 	case DT_VERSYM:
1276 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1277 		dynp->d_un.d_val);
1278 	    break;
1279 
1280 	case DT_HASH:
1281 	    {
1282 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1283 		    dynp->d_un.d_ptr);
1284 		obj->nbuckets = hashtab[0];
1285 		obj->nchains = hashtab[1];
1286 		obj->buckets = hashtab + 2;
1287 		obj->chains = obj->buckets + obj->nbuckets;
1288 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1289 		  obj->buckets != NULL;
1290 	    }
1291 	    break;
1292 
1293 	case DT_GNU_HASH:
1294 	    {
1295 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1296 		    dynp->d_un.d_ptr);
1297 		obj->nbuckets_gnu = hashtab[0];
1298 		obj->symndx_gnu = hashtab[1];
1299 		nmaskwords = hashtab[2];
1300 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1301 		obj->maskwords_bm_gnu = nmaskwords - 1;
1302 		obj->shift2_gnu = hashtab[3];
1303 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1304 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1305 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1306 		  obj->symndx_gnu;
1307 		/* Number of bitmask words is required to be power of 2 */
1308 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1309 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1310 	    }
1311 	    break;
1312 
1313 	case DT_NEEDED:
1314 	    if (!obj->rtld) {
1315 		Needed_Entry *nep = NEW(Needed_Entry);
1316 		nep->name = dynp->d_un.d_val;
1317 		nep->obj = NULL;
1318 		nep->next = NULL;
1319 
1320 		*needed_tail = nep;
1321 		needed_tail = &nep->next;
1322 	    }
1323 	    break;
1324 
1325 	case DT_FILTER:
1326 	    if (!obj->rtld) {
1327 		Needed_Entry *nep = NEW(Needed_Entry);
1328 		nep->name = dynp->d_un.d_val;
1329 		nep->obj = NULL;
1330 		nep->next = NULL;
1331 
1332 		*needed_filtees_tail = nep;
1333 		needed_filtees_tail = &nep->next;
1334 
1335 		if (obj->linkmap.l_refname == NULL)
1336 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1337 	    }
1338 	    break;
1339 
1340 	case DT_AUXILIARY:
1341 	    if (!obj->rtld) {
1342 		Needed_Entry *nep = NEW(Needed_Entry);
1343 		nep->name = dynp->d_un.d_val;
1344 		nep->obj = NULL;
1345 		nep->next = NULL;
1346 
1347 		*needed_aux_filtees_tail = nep;
1348 		needed_aux_filtees_tail = &nep->next;
1349 	    }
1350 	    break;
1351 
1352 	case DT_PLTGOT:
1353 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1354 	    break;
1355 
1356 	case DT_TEXTREL:
1357 	    obj->textrel = true;
1358 	    break;
1359 
1360 	case DT_SYMBOLIC:
1361 	    obj->symbolic = true;
1362 	    break;
1363 
1364 	case DT_RPATH:
1365 	    /*
1366 	     * We have to wait until later to process this, because we
1367 	     * might not have gotten the address of the string table yet.
1368 	     */
1369 	    *dyn_rpath = dynp;
1370 	    break;
1371 
1372 	case DT_SONAME:
1373 	    *dyn_soname = dynp;
1374 	    break;
1375 
1376 	case DT_RUNPATH:
1377 	    *dyn_runpath = dynp;
1378 	    break;
1379 
1380 	case DT_INIT:
1381 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1382 	    break;
1383 
1384 	case DT_PREINIT_ARRAY:
1385 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1386 	    break;
1387 
1388 	case DT_PREINIT_ARRAYSZ:
1389 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1390 	    break;
1391 
1392 	case DT_INIT_ARRAY:
1393 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1394 	    break;
1395 
1396 	case DT_INIT_ARRAYSZ:
1397 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1398 	    break;
1399 
1400 	case DT_FINI:
1401 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1402 	    break;
1403 
1404 	case DT_FINI_ARRAY:
1405 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1406 	    break;
1407 
1408 	case DT_FINI_ARRAYSZ:
1409 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1410 	    break;
1411 
1412 	/*
1413 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1414 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1415 	 */
1416 
1417 #ifndef __mips__
1418 	case DT_DEBUG:
1419 	    if (!early)
1420 		dbg("Filling in DT_DEBUG entry");
1421 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1422 	    break;
1423 #endif
1424 
1425 	case DT_FLAGS:
1426 		if (dynp->d_un.d_val & DF_ORIGIN)
1427 		    obj->z_origin = true;
1428 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1429 		    obj->symbolic = true;
1430 		if (dynp->d_un.d_val & DF_TEXTREL)
1431 		    obj->textrel = true;
1432 		if (dynp->d_un.d_val & DF_BIND_NOW)
1433 		    obj->bind_now = true;
1434 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1435 		    obj->static_tls = true;
1436 	    break;
1437 #ifdef __mips__
1438 	case DT_MIPS_LOCAL_GOTNO:
1439 		obj->local_gotno = dynp->d_un.d_val;
1440 		break;
1441 
1442 	case DT_MIPS_SYMTABNO:
1443 		obj->symtabno = dynp->d_un.d_val;
1444 		break;
1445 
1446 	case DT_MIPS_GOTSYM:
1447 		obj->gotsym = dynp->d_un.d_val;
1448 		break;
1449 
1450 	case DT_MIPS_RLD_MAP:
1451 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1452 		break;
1453 
1454 	case DT_MIPS_RLD_MAP_REL:
1455 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1456 		// section relative to the address of the tag itself.
1457 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1458 		    (Elf_Addr) &r_debug;
1459 		break;
1460 
1461 	case DT_MIPS_PLTGOT:
1462 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1463 		    dynp->d_un.d_ptr);
1464 		break;
1465 
1466 #endif
1467 
1468 #ifdef __powerpc__
1469 #ifdef __powerpc64__
1470 	case DT_PPC64_GLINK:
1471 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1472 		break;
1473 #else
1474 	case DT_PPC_GOT:
1475 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1476 		break;
1477 #endif
1478 #endif
1479 
1480 	case DT_FLAGS_1:
1481 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1482 		    obj->z_noopen = true;
1483 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1484 		    obj->z_origin = true;
1485 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1486 		    obj->z_global = true;
1487 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1488 		    obj->bind_now = true;
1489 		if (dynp->d_un.d_val & DF_1_NODELETE)
1490 		    obj->z_nodelete = true;
1491 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1492 		    obj->z_loadfltr = true;
1493 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1494 		    obj->z_interpose = true;
1495 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1496 		    obj->z_nodeflib = true;
1497 		if (dynp->d_un.d_val & DF_1_PIE)
1498 		    obj->z_pie = true;
1499 	    break;
1500 
1501 	default:
1502 	    if (!early) {
1503 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1504 		    (long)dynp->d_tag);
1505 	    }
1506 	    break;
1507 	}
1508     }
1509 
1510     obj->traced = false;
1511 
1512     if (plttype == DT_RELA) {
1513 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1514 	obj->pltrel = NULL;
1515 	obj->pltrelasize = obj->pltrelsize;
1516 	obj->pltrelsize = 0;
1517     }
1518 
1519     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1520     if (obj->valid_hash_sysv)
1521 	obj->dynsymcount = obj->nchains;
1522     else if (obj->valid_hash_gnu) {
1523 	obj->dynsymcount = 0;
1524 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1525 	    if (obj->buckets_gnu[bkt] == 0)
1526 		continue;
1527 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1528 	    do
1529 		obj->dynsymcount++;
1530 	    while ((*hashval++ & 1u) == 0);
1531 	}
1532 	obj->dynsymcount += obj->symndx_gnu;
1533     }
1534 
1535     if (obj->linkmap.l_refname != NULL)
1536 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1537 	  linkmap.l_refname;
1538 }
1539 
1540 static bool
1541 obj_resolve_origin(Obj_Entry *obj)
1542 {
1543 
1544 	if (obj->origin_path != NULL)
1545 		return (true);
1546 	obj->origin_path = xmalloc(PATH_MAX);
1547 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1548 }
1549 
1550 static bool
1551 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1552     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1553 {
1554 
1555 	if (obj->z_origin && !obj_resolve_origin(obj))
1556 		return (false);
1557 
1558 	if (dyn_runpath != NULL) {
1559 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1560 		obj->runpath = origin_subst(obj, obj->runpath);
1561 	} else if (dyn_rpath != NULL) {
1562 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1563 		obj->rpath = origin_subst(obj, obj->rpath);
1564 	}
1565 	if (dyn_soname != NULL)
1566 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1567 	return (true);
1568 }
1569 
1570 static bool
1571 digest_dynamic(Obj_Entry *obj, int early)
1572 {
1573 	const Elf_Dyn *dyn_rpath;
1574 	const Elf_Dyn *dyn_soname;
1575 	const Elf_Dyn *dyn_runpath;
1576 
1577 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1578 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1579 }
1580 
1581 /*
1582  * Process a shared object's program header.  This is used only for the
1583  * main program, when the kernel has already loaded the main program
1584  * into memory before calling the dynamic linker.  It creates and
1585  * returns an Obj_Entry structure.
1586  */
1587 static Obj_Entry *
1588 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1589 {
1590     Obj_Entry *obj;
1591     const Elf_Phdr *phlimit = phdr + phnum;
1592     const Elf_Phdr *ph;
1593     Elf_Addr note_start, note_end;
1594     int nsegs = 0;
1595 
1596     obj = obj_new();
1597     for (ph = phdr;  ph < phlimit;  ph++) {
1598 	if (ph->p_type != PT_PHDR)
1599 	    continue;
1600 
1601 	obj->phdr = phdr;
1602 	obj->phsize = ph->p_memsz;
1603 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1604 	break;
1605     }
1606 
1607     obj->stack_flags = PF_X | PF_R | PF_W;
1608 
1609     for (ph = phdr;  ph < phlimit;  ph++) {
1610 	switch (ph->p_type) {
1611 
1612 	case PT_INTERP:
1613 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1614 	    break;
1615 
1616 	case PT_LOAD:
1617 	    if (nsegs == 0) {	/* First load segment */
1618 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1619 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1620 	    } else {		/* Last load segment */
1621 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1622 		  obj->vaddrbase;
1623 	    }
1624 	    nsegs++;
1625 	    break;
1626 
1627 	case PT_DYNAMIC:
1628 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1629 	    break;
1630 
1631 	case PT_TLS:
1632 	    obj->tlsindex = 1;
1633 	    obj->tlssize = ph->p_memsz;
1634 	    obj->tlsalign = ph->p_align;
1635 	    obj->tlsinitsize = ph->p_filesz;
1636 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1637 	    obj->tlspoffset = ph->p_offset;
1638 	    break;
1639 
1640 	case PT_GNU_STACK:
1641 	    obj->stack_flags = ph->p_flags;
1642 	    break;
1643 
1644 	case PT_GNU_RELRO:
1645 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1646 	    obj->relro_size = trunc_page(ph->p_vaddr + ph->p_memsz) -
1647 	      trunc_page(ph->p_vaddr);
1648 	    break;
1649 
1650 	case PT_NOTE:
1651 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1652 	    note_end = note_start + ph->p_filesz;
1653 	    digest_notes(obj, note_start, note_end);
1654 	    break;
1655 	}
1656     }
1657     if (nsegs < 1) {
1658 	_rtld_error("%s: too few PT_LOAD segments", path);
1659 	return NULL;
1660     }
1661 
1662     obj->entry = entry;
1663     return obj;
1664 }
1665 
1666 void
1667 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1668 {
1669 	const Elf_Note *note;
1670 	const char *note_name;
1671 	uintptr_t p;
1672 
1673 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1674 	    note = (const Elf_Note *)((const char *)(note + 1) +
1675 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1676 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1677 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1678 		    note->n_descsz != sizeof(int32_t))
1679 			continue;
1680 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1681 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1682 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1683 			continue;
1684 		note_name = (const char *)(note + 1);
1685 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1686 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1687 			continue;
1688 		switch (note->n_type) {
1689 		case NT_FREEBSD_ABI_TAG:
1690 			/* FreeBSD osrel note */
1691 			p = (uintptr_t)(note + 1);
1692 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1693 			obj->osrel = *(const int32_t *)(p);
1694 			dbg("note osrel %d", obj->osrel);
1695 			break;
1696 		case NT_FREEBSD_FEATURE_CTL:
1697 			/* FreeBSD ABI feature control note */
1698 			p = (uintptr_t)(note + 1);
1699 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1700 			obj->fctl0 = *(const uint32_t *)(p);
1701 			dbg("note fctl0 %#x", obj->fctl0);
1702 			break;
1703 		case NT_FREEBSD_NOINIT_TAG:
1704 			/* FreeBSD 'crt does not call init' note */
1705 			obj->crt_no_init = true;
1706 			dbg("note crt_no_init");
1707 			break;
1708 		}
1709 	}
1710 }
1711 
1712 static Obj_Entry *
1713 dlcheck(void *handle)
1714 {
1715     Obj_Entry *obj;
1716 
1717     TAILQ_FOREACH(obj, &obj_list, next) {
1718 	if (obj == (Obj_Entry *) handle)
1719 	    break;
1720     }
1721 
1722     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1723 	_rtld_error("Invalid shared object handle %p", handle);
1724 	return NULL;
1725     }
1726     return obj;
1727 }
1728 
1729 /*
1730  * If the given object is already in the donelist, return true.  Otherwise
1731  * add the object to the list and return false.
1732  */
1733 static bool
1734 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1735 {
1736     unsigned int i;
1737 
1738     for (i = 0;  i < dlp->num_used;  i++)
1739 	if (dlp->objs[i] == obj)
1740 	    return true;
1741     /*
1742      * Our donelist allocation should always be sufficient.  But if
1743      * our threads locking isn't working properly, more shared objects
1744      * could have been loaded since we allocated the list.  That should
1745      * never happen, but we'll handle it properly just in case it does.
1746      */
1747     if (dlp->num_used < dlp->num_alloc)
1748 	dlp->objs[dlp->num_used++] = obj;
1749     return false;
1750 }
1751 
1752 /*
1753  * Hash function for symbol table lookup.  Don't even think about changing
1754  * this.  It is specified by the System V ABI.
1755  */
1756 unsigned long
1757 elf_hash(const char *name)
1758 {
1759     const unsigned char *p = (const unsigned char *) name;
1760     unsigned long h = 0;
1761     unsigned long g;
1762 
1763     while (*p != '\0') {
1764 	h = (h << 4) + *p++;
1765 	if ((g = h & 0xf0000000) != 0)
1766 	    h ^= g >> 24;
1767 	h &= ~g;
1768     }
1769     return h;
1770 }
1771 
1772 /*
1773  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1774  * unsigned in case it's implemented with a wider type.
1775  */
1776 static uint32_t
1777 gnu_hash(const char *s)
1778 {
1779 	uint32_t h;
1780 	unsigned char c;
1781 
1782 	h = 5381;
1783 	for (c = *s; c != '\0'; c = *++s)
1784 		h = h * 33 + c;
1785 	return (h & 0xffffffff);
1786 }
1787 
1788 
1789 /*
1790  * Find the library with the given name, and return its full pathname.
1791  * The returned string is dynamically allocated.  Generates an error
1792  * message and returns NULL if the library cannot be found.
1793  *
1794  * If the second argument is non-NULL, then it refers to an already-
1795  * loaded shared object, whose library search path will be searched.
1796  *
1797  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1798  * descriptor (which is close-on-exec) will be passed out via the third
1799  * argument.
1800  *
1801  * The search order is:
1802  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1803  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1804  *   LD_LIBRARY_PATH
1805  *   DT_RUNPATH in the referencing file
1806  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1807  *	 from list)
1808  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1809  *
1810  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1811  */
1812 static char *
1813 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1814 {
1815 	char *pathname, *refobj_path;
1816 	const char *name;
1817 	bool nodeflib, objgiven;
1818 
1819 	objgiven = refobj != NULL;
1820 
1821 	if (libmap_disable || !objgiven ||
1822 	    (name = lm_find(refobj->path, xname)) == NULL)
1823 		name = xname;
1824 
1825 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1826 		if (name[0] != '/' && !trust) {
1827 			_rtld_error("Absolute pathname required "
1828 			    "for shared object \"%s\"", name);
1829 			return (NULL);
1830 		}
1831 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1832 		    __DECONST(char *, name)));
1833 	}
1834 
1835 	dbg(" Searching for \"%s\"", name);
1836 	refobj_path = objgiven ? refobj->path : NULL;
1837 
1838 	/*
1839 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1840 	 * back to pre-conforming behaviour if user requested so with
1841 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1842 	 * nodeflib.
1843 	 */
1844 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1845 		pathname = search_library_path(name, ld_library_path,
1846 		    refobj_path, fdp);
1847 		if (pathname != NULL)
1848 			return (pathname);
1849 		if (refobj != NULL) {
1850 			pathname = search_library_path(name, refobj->rpath,
1851 			    refobj_path, fdp);
1852 			if (pathname != NULL)
1853 				return (pathname);
1854 		}
1855 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1856 		if (pathname != NULL)
1857 			return (pathname);
1858 		pathname = search_library_path(name, gethints(false),
1859 		    refobj_path, fdp);
1860 		if (pathname != NULL)
1861 			return (pathname);
1862 		pathname = search_library_path(name, ld_standard_library_path,
1863 		    refobj_path, fdp);
1864 		if (pathname != NULL)
1865 			return (pathname);
1866 	} else {
1867 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1868 		if (objgiven) {
1869 			pathname = search_library_path(name, refobj->rpath,
1870 			    refobj->path, fdp);
1871 			if (pathname != NULL)
1872 				return (pathname);
1873 		}
1874 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1875 			pathname = search_library_path(name, obj_main->rpath,
1876 			    refobj_path, fdp);
1877 			if (pathname != NULL)
1878 				return (pathname);
1879 		}
1880 		pathname = search_library_path(name, ld_library_path,
1881 		    refobj_path, fdp);
1882 		if (pathname != NULL)
1883 			return (pathname);
1884 		if (objgiven) {
1885 			pathname = search_library_path(name, refobj->runpath,
1886 			    refobj_path, fdp);
1887 			if (pathname != NULL)
1888 				return (pathname);
1889 		}
1890 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1891 		if (pathname != NULL)
1892 			return (pathname);
1893 		pathname = search_library_path(name, gethints(nodeflib),
1894 		    refobj_path, fdp);
1895 		if (pathname != NULL)
1896 			return (pathname);
1897 		if (objgiven && !nodeflib) {
1898 			pathname = search_library_path(name,
1899 			    ld_standard_library_path, refobj_path, fdp);
1900 			if (pathname != NULL)
1901 				return (pathname);
1902 		}
1903 	}
1904 
1905 	if (objgiven && refobj->path != NULL) {
1906 		_rtld_error("Shared object \"%s\" not found, "
1907 		    "required by \"%s\"", name, basename(refobj->path));
1908 	} else {
1909 		_rtld_error("Shared object \"%s\" not found", name);
1910 	}
1911 	return (NULL);
1912 }
1913 
1914 /*
1915  * Given a symbol number in a referencing object, find the corresponding
1916  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1917  * no definition was found.  Returns a pointer to the Obj_Entry of the
1918  * defining object via the reference parameter DEFOBJ_OUT.
1919  */
1920 const Elf_Sym *
1921 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1922     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1923     RtldLockState *lockstate)
1924 {
1925     const Elf_Sym *ref;
1926     const Elf_Sym *def;
1927     const Obj_Entry *defobj;
1928     const Ver_Entry *ve;
1929     SymLook req;
1930     const char *name;
1931     int res;
1932 
1933     /*
1934      * If we have already found this symbol, get the information from
1935      * the cache.
1936      */
1937     if (symnum >= refobj->dynsymcount)
1938 	return NULL;	/* Bad object */
1939     if (cache != NULL && cache[symnum].sym != NULL) {
1940 	*defobj_out = cache[symnum].obj;
1941 	return cache[symnum].sym;
1942     }
1943 
1944     ref = refobj->symtab + symnum;
1945     name = refobj->strtab + ref->st_name;
1946     def = NULL;
1947     defobj = NULL;
1948     ve = NULL;
1949 
1950     /*
1951      * We don't have to do a full scale lookup if the symbol is local.
1952      * We know it will bind to the instance in this load module; to
1953      * which we already have a pointer (ie ref). By not doing a lookup,
1954      * we not only improve performance, but it also avoids unresolvable
1955      * symbols when local symbols are not in the hash table. This has
1956      * been seen with the ia64 toolchain.
1957      */
1958     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1959 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1960 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1961 		symnum);
1962 	}
1963 	symlook_init(&req, name);
1964 	req.flags = flags;
1965 	ve = req.ventry = fetch_ventry(refobj, symnum);
1966 	req.lockstate = lockstate;
1967 	res = symlook_default(&req, refobj);
1968 	if (res == 0) {
1969 	    def = req.sym_out;
1970 	    defobj = req.defobj_out;
1971 	}
1972     } else {
1973 	def = ref;
1974 	defobj = refobj;
1975     }
1976 
1977     /*
1978      * If we found no definition and the reference is weak, treat the
1979      * symbol as having the value zero.
1980      */
1981     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1982 	def = &sym_zero;
1983 	defobj = obj_main;
1984     }
1985 
1986     if (def != NULL) {
1987 	*defobj_out = defobj;
1988 	/* Record the information in the cache to avoid subsequent lookups. */
1989 	if (cache != NULL) {
1990 	    cache[symnum].sym = def;
1991 	    cache[symnum].obj = defobj;
1992 	}
1993     } else {
1994 	if (refobj != &obj_rtld)
1995 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1996 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1997     }
1998     return def;
1999 }
2000 
2001 /*
2002  * Return the search path from the ldconfig hints file, reading it if
2003  * necessary.  If nostdlib is true, then the default search paths are
2004  * not added to result.
2005  *
2006  * Returns NULL if there are problems with the hints file,
2007  * or if the search path there is empty.
2008  */
2009 static const char *
2010 gethints(bool nostdlib)
2011 {
2012 	static char *filtered_path;
2013 	static const char *hints;
2014 	static struct elfhints_hdr hdr;
2015 	struct fill_search_info_args sargs, hargs;
2016 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2017 	struct dl_serpath *SLPpath, *hintpath;
2018 	char *p;
2019 	struct stat hint_stat;
2020 	unsigned int SLPndx, hintndx, fndx, fcount;
2021 	int fd;
2022 	size_t flen;
2023 	uint32_t dl;
2024 	bool skip;
2025 
2026 	/* First call, read the hints file */
2027 	if (hints == NULL) {
2028 		/* Keep from trying again in case the hints file is bad. */
2029 		hints = "";
2030 
2031 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2032 			return (NULL);
2033 
2034 		/*
2035 		 * Check of hdr.dirlistlen value against type limit
2036 		 * intends to pacify static analyzers.  Further
2037 		 * paranoia leads to checks that dirlist is fully
2038 		 * contained in the file range.
2039 		 */
2040 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2041 		    hdr.magic != ELFHINTS_MAGIC ||
2042 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2043 		    fstat(fd, &hint_stat) == -1) {
2044 cleanup1:
2045 			close(fd);
2046 			hdr.dirlistlen = 0;
2047 			return (NULL);
2048 		}
2049 		dl = hdr.strtab;
2050 		if (dl + hdr.dirlist < dl)
2051 			goto cleanup1;
2052 		dl += hdr.dirlist;
2053 		if (dl + hdr.dirlistlen < dl)
2054 			goto cleanup1;
2055 		dl += hdr.dirlistlen;
2056 		if (dl > hint_stat.st_size)
2057 			goto cleanup1;
2058 		p = xmalloc(hdr.dirlistlen + 1);
2059 		if (pread(fd, p, hdr.dirlistlen + 1,
2060 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2061 		    p[hdr.dirlistlen] != '\0') {
2062 			free(p);
2063 			goto cleanup1;
2064 		}
2065 		hints = p;
2066 		close(fd);
2067 	}
2068 
2069 	/*
2070 	 * If caller agreed to receive list which includes the default
2071 	 * paths, we are done. Otherwise, if we still did not
2072 	 * calculated filtered result, do it now.
2073 	 */
2074 	if (!nostdlib)
2075 		return (hints[0] != '\0' ? hints : NULL);
2076 	if (filtered_path != NULL)
2077 		goto filt_ret;
2078 
2079 	/*
2080 	 * Obtain the list of all configured search paths, and the
2081 	 * list of the default paths.
2082 	 *
2083 	 * First estimate the size of the results.
2084 	 */
2085 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2086 	smeta.dls_cnt = 0;
2087 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2088 	hmeta.dls_cnt = 0;
2089 
2090 	sargs.request = RTLD_DI_SERINFOSIZE;
2091 	sargs.serinfo = &smeta;
2092 	hargs.request = RTLD_DI_SERINFOSIZE;
2093 	hargs.serinfo = &hmeta;
2094 
2095 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2096 	    &sargs);
2097 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2098 
2099 	SLPinfo = xmalloc(smeta.dls_size);
2100 	hintinfo = xmalloc(hmeta.dls_size);
2101 
2102 	/*
2103 	 * Next fetch both sets of paths.
2104 	 */
2105 	sargs.request = RTLD_DI_SERINFO;
2106 	sargs.serinfo = SLPinfo;
2107 	sargs.serpath = &SLPinfo->dls_serpath[0];
2108 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2109 
2110 	hargs.request = RTLD_DI_SERINFO;
2111 	hargs.serinfo = hintinfo;
2112 	hargs.serpath = &hintinfo->dls_serpath[0];
2113 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2114 
2115 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2116 	    &sargs);
2117 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2118 
2119 	/*
2120 	 * Now calculate the difference between two sets, by excluding
2121 	 * standard paths from the full set.
2122 	 */
2123 	fndx = 0;
2124 	fcount = 0;
2125 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2126 	hintpath = &hintinfo->dls_serpath[0];
2127 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2128 		skip = false;
2129 		SLPpath = &SLPinfo->dls_serpath[0];
2130 		/*
2131 		 * Check each standard path against current.
2132 		 */
2133 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2134 			/* matched, skip the path */
2135 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2136 				skip = true;
2137 				break;
2138 			}
2139 		}
2140 		if (skip)
2141 			continue;
2142 		/*
2143 		 * Not matched against any standard path, add the path
2144 		 * to result. Separate consequtive paths with ':'.
2145 		 */
2146 		if (fcount > 0) {
2147 			filtered_path[fndx] = ':';
2148 			fndx++;
2149 		}
2150 		fcount++;
2151 		flen = strlen(hintpath->dls_name);
2152 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2153 		fndx += flen;
2154 	}
2155 	filtered_path[fndx] = '\0';
2156 
2157 	free(SLPinfo);
2158 	free(hintinfo);
2159 
2160 filt_ret:
2161 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2162 }
2163 
2164 static void
2165 init_dag(Obj_Entry *root)
2166 {
2167     const Needed_Entry *needed;
2168     const Objlist_Entry *elm;
2169     DoneList donelist;
2170 
2171     if (root->dag_inited)
2172 	return;
2173     donelist_init(&donelist);
2174 
2175     /* Root object belongs to own DAG. */
2176     objlist_push_tail(&root->dldags, root);
2177     objlist_push_tail(&root->dagmembers, root);
2178     donelist_check(&donelist, root);
2179 
2180     /*
2181      * Add dependencies of root object to DAG in breadth order
2182      * by exploiting the fact that each new object get added
2183      * to the tail of the dagmembers list.
2184      */
2185     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2186 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2187 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2188 		continue;
2189 	    objlist_push_tail(&needed->obj->dldags, root);
2190 	    objlist_push_tail(&root->dagmembers, needed->obj);
2191 	}
2192     }
2193     root->dag_inited = true;
2194 }
2195 
2196 static void
2197 init_marker(Obj_Entry *marker)
2198 {
2199 
2200 	bzero(marker, sizeof(*marker));
2201 	marker->marker = true;
2202 }
2203 
2204 Obj_Entry *
2205 globallist_curr(const Obj_Entry *obj)
2206 {
2207 
2208 	for (;;) {
2209 		if (obj == NULL)
2210 			return (NULL);
2211 		if (!obj->marker)
2212 			return (__DECONST(Obj_Entry *, obj));
2213 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2214 	}
2215 }
2216 
2217 Obj_Entry *
2218 globallist_next(const Obj_Entry *obj)
2219 {
2220 
2221 	for (;;) {
2222 		obj = TAILQ_NEXT(obj, next);
2223 		if (obj == NULL)
2224 			return (NULL);
2225 		if (!obj->marker)
2226 			return (__DECONST(Obj_Entry *, obj));
2227 	}
2228 }
2229 
2230 /* Prevent the object from being unmapped while the bind lock is dropped. */
2231 static void
2232 hold_object(Obj_Entry *obj)
2233 {
2234 
2235 	obj->holdcount++;
2236 }
2237 
2238 static void
2239 unhold_object(Obj_Entry *obj)
2240 {
2241 
2242 	assert(obj->holdcount > 0);
2243 	if (--obj->holdcount == 0 && obj->unholdfree)
2244 		release_object(obj);
2245 }
2246 
2247 static void
2248 process_z(Obj_Entry *root)
2249 {
2250 	const Objlist_Entry *elm;
2251 	Obj_Entry *obj;
2252 
2253 	/*
2254 	 * Walk over object DAG and process every dependent object
2255 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2256 	 * to grow their own DAG.
2257 	 *
2258 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2259 	 * symlook_global() to work.
2260 	 *
2261 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2262 	 */
2263 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2264 		obj = elm->obj;
2265 		if (obj == NULL)
2266 			continue;
2267 		if (obj->z_nodelete && !obj->ref_nodel) {
2268 			dbg("obj %s -z nodelete", obj->path);
2269 			init_dag(obj);
2270 			ref_dag(obj);
2271 			obj->ref_nodel = true;
2272 		}
2273 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2274 			dbg("obj %s -z global", obj->path);
2275 			objlist_push_tail(&list_global, obj);
2276 			init_dag(obj);
2277 		}
2278 	}
2279 }
2280 
2281 static void
2282 parse_rtld_phdr(Obj_Entry *obj)
2283 {
2284 	const Elf_Phdr *ph;
2285 	Elf_Addr note_start, note_end;
2286 
2287 	obj->stack_flags = PF_X | PF_R | PF_W;
2288 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2289 	    obj->phsize; ph++) {
2290 		switch (ph->p_type) {
2291 		case PT_GNU_STACK:
2292 			obj->stack_flags = ph->p_flags;
2293 			break;
2294 		case PT_GNU_RELRO:
2295 			obj->relro_page = obj->relocbase +
2296 			    trunc_page(ph->p_vaddr);
2297 			obj->relro_size = round_page(ph->p_memsz);
2298 			break;
2299 		case PT_NOTE:
2300 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2301 			note_end = note_start + ph->p_filesz;
2302 			digest_notes(obj, note_start, note_end);
2303 			break;
2304 		}
2305 	}
2306 }
2307 
2308 /*
2309  * Initialize the dynamic linker.  The argument is the address at which
2310  * the dynamic linker has been mapped into memory.  The primary task of
2311  * this function is to relocate the dynamic linker.
2312  */
2313 static void
2314 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2315 {
2316     Obj_Entry objtmp;	/* Temporary rtld object */
2317     const Elf_Ehdr *ehdr;
2318     const Elf_Dyn *dyn_rpath;
2319     const Elf_Dyn *dyn_soname;
2320     const Elf_Dyn *dyn_runpath;
2321 
2322 #ifdef RTLD_INIT_PAGESIZES_EARLY
2323     /* The page size is required by the dynamic memory allocator. */
2324     init_pagesizes(aux_info);
2325 #endif
2326 
2327     /*
2328      * Conjure up an Obj_Entry structure for the dynamic linker.
2329      *
2330      * The "path" member can't be initialized yet because string constants
2331      * cannot yet be accessed. Below we will set it correctly.
2332      */
2333     memset(&objtmp, 0, sizeof(objtmp));
2334     objtmp.path = NULL;
2335     objtmp.rtld = true;
2336     objtmp.mapbase = mapbase;
2337 #ifdef PIC
2338     objtmp.relocbase = mapbase;
2339 #endif
2340 
2341     objtmp.dynamic = rtld_dynamic(&objtmp);
2342     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2343     assert(objtmp.needed == NULL);
2344 #if !defined(__mips__)
2345     /* MIPS has a bogus DT_TEXTREL. */
2346     assert(!objtmp.textrel);
2347 #endif
2348     /*
2349      * Temporarily put the dynamic linker entry into the object list, so
2350      * that symbols can be found.
2351      */
2352     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2353 
2354     ehdr = (Elf_Ehdr *)mapbase;
2355     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2356     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2357 
2358     /* Initialize the object list. */
2359     TAILQ_INIT(&obj_list);
2360 
2361     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2362     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2363 
2364 #ifndef RTLD_INIT_PAGESIZES_EARLY
2365     /* The page size is required by the dynamic memory allocator. */
2366     init_pagesizes(aux_info);
2367 #endif
2368 
2369     if (aux_info[AT_OSRELDATE] != NULL)
2370 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2371 
2372     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2373 
2374     /* Replace the path with a dynamically allocated copy. */
2375     obj_rtld.path = xstrdup(ld_path_rtld);
2376 
2377     parse_rtld_phdr(&obj_rtld);
2378     if (obj_enforce_relro(&obj_rtld) == -1)
2379 	rtld_die();
2380 
2381     r_debug.r_version = R_DEBUG_VERSION;
2382     r_debug.r_brk = r_debug_state;
2383     r_debug.r_state = RT_CONSISTENT;
2384     r_debug.r_ldbase = obj_rtld.relocbase;
2385 }
2386 
2387 /*
2388  * Retrieve the array of supported page sizes.  The kernel provides the page
2389  * sizes in increasing order.
2390  */
2391 static void
2392 init_pagesizes(Elf_Auxinfo **aux_info)
2393 {
2394 	static size_t psa[MAXPAGESIZES];
2395 	int mib[2];
2396 	size_t len, size;
2397 
2398 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2399 	    NULL) {
2400 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2401 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2402 	} else {
2403 		len = 2;
2404 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2405 			size = sizeof(psa);
2406 		else {
2407 			/* As a fallback, retrieve the base page size. */
2408 			size = sizeof(psa[0]);
2409 			if (aux_info[AT_PAGESZ] != NULL) {
2410 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2411 				goto psa_filled;
2412 			} else {
2413 				mib[0] = CTL_HW;
2414 				mib[1] = HW_PAGESIZE;
2415 				len = 2;
2416 			}
2417 		}
2418 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2419 			_rtld_error("sysctl for hw.pagesize(s) failed");
2420 			rtld_die();
2421 		}
2422 psa_filled:
2423 		pagesizes = psa;
2424 	}
2425 	npagesizes = size / sizeof(pagesizes[0]);
2426 	/* Discard any invalid entries at the end of the array. */
2427 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2428 		npagesizes--;
2429 }
2430 
2431 /*
2432  * Add the init functions from a needed object list (and its recursive
2433  * needed objects) to "list".  This is not used directly; it is a helper
2434  * function for initlist_add_objects().  The write lock must be held
2435  * when this function is called.
2436  */
2437 static void
2438 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2439 {
2440     /* Recursively process the successor needed objects. */
2441     if (needed->next != NULL)
2442 	initlist_add_neededs(needed->next, list);
2443 
2444     /* Process the current needed object. */
2445     if (needed->obj != NULL)
2446 	initlist_add_objects(needed->obj, needed->obj, list);
2447 }
2448 
2449 /*
2450  * Scan all of the DAGs rooted in the range of objects from "obj" to
2451  * "tail" and add their init functions to "list".  This recurses over
2452  * the DAGs and ensure the proper init ordering such that each object's
2453  * needed libraries are initialized before the object itself.  At the
2454  * same time, this function adds the objects to the global finalization
2455  * list "list_fini" in the opposite order.  The write lock must be
2456  * held when this function is called.
2457  */
2458 static void
2459 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2460 {
2461     Obj_Entry *nobj;
2462 
2463     if (obj->init_scanned || obj->init_done)
2464 	return;
2465     obj->init_scanned = true;
2466 
2467     /* Recursively process the successor objects. */
2468     nobj = globallist_next(obj);
2469     if (nobj != NULL && obj != tail)
2470 	initlist_add_objects(nobj, tail, list);
2471 
2472     /* Recursively process the needed objects. */
2473     if (obj->needed != NULL)
2474 	initlist_add_neededs(obj->needed, list);
2475     if (obj->needed_filtees != NULL)
2476 	initlist_add_neededs(obj->needed_filtees, list);
2477     if (obj->needed_aux_filtees != NULL)
2478 	initlist_add_neededs(obj->needed_aux_filtees, list);
2479 
2480     /* Add the object to the init list. */
2481     objlist_push_tail(list, obj);
2482 
2483     /* Add the object to the global fini list in the reverse order. */
2484     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2485       && !obj->on_fini_list) {
2486 	objlist_push_head(&list_fini, obj);
2487 	obj->on_fini_list = true;
2488     }
2489 }
2490 
2491 #ifndef FPTR_TARGET
2492 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2493 #endif
2494 
2495 static void
2496 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2497 {
2498     Needed_Entry *needed, *needed1;
2499 
2500     for (needed = n; needed != NULL; needed = needed->next) {
2501 	if (needed->obj != NULL) {
2502 	    dlclose_locked(needed->obj, lockstate);
2503 	    needed->obj = NULL;
2504 	}
2505     }
2506     for (needed = n; needed != NULL; needed = needed1) {
2507 	needed1 = needed->next;
2508 	free(needed);
2509     }
2510 }
2511 
2512 static void
2513 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2514 {
2515 
2516 	free_needed_filtees(obj->needed_filtees, lockstate);
2517 	obj->needed_filtees = NULL;
2518 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2519 	obj->needed_aux_filtees = NULL;
2520 	obj->filtees_loaded = false;
2521 }
2522 
2523 static void
2524 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2525     RtldLockState *lockstate)
2526 {
2527 
2528     for (; needed != NULL; needed = needed->next) {
2529 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2530 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2531 	  RTLD_LOCAL, lockstate);
2532     }
2533 }
2534 
2535 static void
2536 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2537 {
2538 
2539     lock_restart_for_upgrade(lockstate);
2540     if (!obj->filtees_loaded) {
2541 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2542 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2543 	obj->filtees_loaded = true;
2544     }
2545 }
2546 
2547 static int
2548 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2549 {
2550     Obj_Entry *obj1;
2551 
2552     for (; needed != NULL; needed = needed->next) {
2553 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2554 	  flags & ~RTLD_LO_NOLOAD);
2555 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2556 	    return (-1);
2557     }
2558     return (0);
2559 }
2560 
2561 /*
2562  * Given a shared object, traverse its list of needed objects, and load
2563  * each of them.  Returns 0 on success.  Generates an error message and
2564  * returns -1 on failure.
2565  */
2566 static int
2567 load_needed_objects(Obj_Entry *first, int flags)
2568 {
2569     Obj_Entry *obj;
2570 
2571     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2572 	if (obj->marker)
2573 	    continue;
2574 	if (process_needed(obj, obj->needed, flags) == -1)
2575 	    return (-1);
2576     }
2577     return (0);
2578 }
2579 
2580 static int
2581 load_preload_objects(char *p, bool isfd)
2582 {
2583 	Obj_Entry *obj;
2584 	static const char delim[] = " \t:;";
2585 
2586 	if (p == NULL)
2587 		return (0);
2588 
2589 	p += strspn(p, delim);
2590 	while (*p != '\0') {
2591 		const char *name;
2592 		size_t len = strcspn(p, delim);
2593 		char savech;
2594 		int fd;
2595 
2596 		savech = p[len];
2597 		p[len] = '\0';
2598 		if (isfd) {
2599 			name = NULL;
2600 			fd = parse_integer(p);
2601 			if (fd == -1)
2602 				return (-1);
2603 		} else {
2604 			name = p;
2605 			fd = -1;
2606 		}
2607 
2608 		obj = load_object(name, fd, NULL, 0);
2609 		if (obj == NULL)
2610 			return (-1);	/* XXX - cleanup */
2611 		obj->z_interpose = true;
2612 		p[len] = savech;
2613 		p += len;
2614 		p += strspn(p, delim);
2615 	}
2616 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2617 
2618 	return (0);
2619 }
2620 
2621 static const char *
2622 printable_path(const char *path)
2623 {
2624 
2625 	return (path == NULL ? "<unknown>" : path);
2626 }
2627 
2628 /*
2629  * Load a shared object into memory, if it is not already loaded.  The
2630  * object may be specified by name or by user-supplied file descriptor
2631  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2632  * duplicate is.
2633  *
2634  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2635  * on failure.
2636  */
2637 static Obj_Entry *
2638 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2639 {
2640     Obj_Entry *obj;
2641     int fd;
2642     struct stat sb;
2643     char *path;
2644 
2645     fd = -1;
2646     if (name != NULL) {
2647 	TAILQ_FOREACH(obj, &obj_list, next) {
2648 	    if (obj->marker || obj->doomed)
2649 		continue;
2650 	    if (object_match_name(obj, name))
2651 		return (obj);
2652 	}
2653 
2654 	path = find_library(name, refobj, &fd);
2655 	if (path == NULL)
2656 	    return (NULL);
2657     } else
2658 	path = NULL;
2659 
2660     if (fd >= 0) {
2661 	/*
2662 	 * search_library_pathfds() opens a fresh file descriptor for the
2663 	 * library, so there is no need to dup().
2664 	 */
2665     } else if (fd_u == -1) {
2666 	/*
2667 	 * If we didn't find a match by pathname, or the name is not
2668 	 * supplied, open the file and check again by device and inode.
2669 	 * This avoids false mismatches caused by multiple links or ".."
2670 	 * in pathnames.
2671 	 *
2672 	 * To avoid a race, we open the file and use fstat() rather than
2673 	 * using stat().
2674 	 */
2675 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2676 	    _rtld_error("Cannot open \"%s\"", path);
2677 	    free(path);
2678 	    return (NULL);
2679 	}
2680     } else {
2681 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2682 	if (fd == -1) {
2683 	    _rtld_error("Cannot dup fd");
2684 	    free(path);
2685 	    return (NULL);
2686 	}
2687     }
2688     if (fstat(fd, &sb) == -1) {
2689 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2690 	close(fd);
2691 	free(path);
2692 	return NULL;
2693     }
2694     TAILQ_FOREACH(obj, &obj_list, next) {
2695 	if (obj->marker || obj->doomed)
2696 	    continue;
2697 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2698 	    break;
2699     }
2700     if (obj != NULL && name != NULL) {
2701 	object_add_name(obj, name);
2702 	free(path);
2703 	close(fd);
2704 	return obj;
2705     }
2706     if (flags & RTLD_LO_NOLOAD) {
2707 	free(path);
2708 	close(fd);
2709 	return (NULL);
2710     }
2711 
2712     /* First use of this object, so we must map it in */
2713     obj = do_load_object(fd, name, path, &sb, flags);
2714     if (obj == NULL)
2715 	free(path);
2716     close(fd);
2717 
2718     return obj;
2719 }
2720 
2721 static Obj_Entry *
2722 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2723   int flags)
2724 {
2725     Obj_Entry *obj;
2726     struct statfs fs;
2727 
2728     /*
2729      * but first, make sure that environment variables haven't been
2730      * used to circumvent the noexec flag on a filesystem.
2731      */
2732     if (dangerous_ld_env) {
2733 	if (fstatfs(fd, &fs) != 0) {
2734 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2735 	    return NULL;
2736 	}
2737 	if (fs.f_flags & MNT_NOEXEC) {
2738 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2739 	    return NULL;
2740 	}
2741     }
2742     dbg("loading \"%s\"", printable_path(path));
2743     obj = map_object(fd, printable_path(path), sbp);
2744     if (obj == NULL)
2745         return NULL;
2746 
2747     /*
2748      * If DT_SONAME is present in the object, digest_dynamic2 already
2749      * added it to the object names.
2750      */
2751     if (name != NULL)
2752 	object_add_name(obj, name);
2753     obj->path = path;
2754     if (!digest_dynamic(obj, 0))
2755 	goto errp;
2756     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2757 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2758     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2759 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2760 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2761 	goto errp;
2762     }
2763     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2764       RTLD_LO_DLOPEN) {
2765 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2766 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2767 	goto errp;
2768     }
2769 
2770     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2771     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2772     obj_count++;
2773     obj_loads++;
2774     linkmap_add(obj);	/* for GDB & dlinfo() */
2775     max_stack_flags |= obj->stack_flags;
2776 
2777     dbg("  %p .. %p: %s", obj->mapbase,
2778          obj->mapbase + obj->mapsize - 1, obj->path);
2779     if (obj->textrel)
2780 	dbg("  WARNING: %s has impure text", obj->path);
2781     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2782 	obj->path);
2783 
2784     return (obj);
2785 
2786 errp:
2787     munmap(obj->mapbase, obj->mapsize);
2788     obj_free(obj);
2789     return (NULL);
2790 }
2791 
2792 Obj_Entry *
2793 obj_from_addr(const void *addr)
2794 {
2795     Obj_Entry *obj;
2796 
2797     TAILQ_FOREACH(obj, &obj_list, next) {
2798 	if (obj->marker)
2799 	    continue;
2800 	if (addr < (void *) obj->mapbase)
2801 	    continue;
2802 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2803 	    return obj;
2804     }
2805     return NULL;
2806 }
2807 
2808 static void
2809 preinit_main(void)
2810 {
2811     Elf_Addr *preinit_addr;
2812     int index;
2813 
2814     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2815     if (preinit_addr == NULL)
2816 	return;
2817 
2818     for (index = 0; index < obj_main->preinit_array_num; index++) {
2819 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2820 	    dbg("calling preinit function for %s at %p", obj_main->path,
2821 	      (void *)preinit_addr[index]);
2822 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2823 	      0, 0, obj_main->path);
2824 	    call_init_pointer(obj_main, preinit_addr[index]);
2825 	}
2826     }
2827 }
2828 
2829 /*
2830  * Call the finalization functions for each of the objects in "list"
2831  * belonging to the DAG of "root" and referenced once. If NULL "root"
2832  * is specified, every finalization function will be called regardless
2833  * of the reference count and the list elements won't be freed. All of
2834  * the objects are expected to have non-NULL fini functions.
2835  */
2836 static void
2837 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2838 {
2839     Objlist_Entry *elm;
2840     struct dlerror_save *saved_msg;
2841     Elf_Addr *fini_addr;
2842     int index;
2843 
2844     assert(root == NULL || root->refcount == 1);
2845 
2846     if (root != NULL)
2847 	root->doomed = true;
2848 
2849     /*
2850      * Preserve the current error message since a fini function might
2851      * call into the dynamic linker and overwrite it.
2852      */
2853     saved_msg = errmsg_save();
2854     do {
2855 	STAILQ_FOREACH(elm, list, link) {
2856 	    if (root != NULL && (elm->obj->refcount != 1 ||
2857 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2858 		continue;
2859 	    /* Remove object from fini list to prevent recursive invocation. */
2860 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2861 	    /* Ensure that new references cannot be acquired. */
2862 	    elm->obj->doomed = true;
2863 
2864 	    hold_object(elm->obj);
2865 	    lock_release(rtld_bind_lock, lockstate);
2866 	    /*
2867 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2868 	     * When this happens, DT_FINI_ARRAY is processed first.
2869 	     */
2870 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2871 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2872 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2873 		  index--) {
2874 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2875 			dbg("calling fini function for %s at %p",
2876 			    elm->obj->path, (void *)fini_addr[index]);
2877 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2878 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2879 			call_initfini_pointer(elm->obj, fini_addr[index]);
2880 		    }
2881 		}
2882 	    }
2883 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2884 		dbg("calling fini function for %s at %p", elm->obj->path,
2885 		    (void *)elm->obj->fini);
2886 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2887 		    0, 0, elm->obj->path);
2888 		call_initfini_pointer(elm->obj, elm->obj->fini);
2889 	    }
2890 	    wlock_acquire(rtld_bind_lock, lockstate);
2891 	    unhold_object(elm->obj);
2892 	    /* No need to free anything if process is going down. */
2893 	    if (root != NULL)
2894 	    	free(elm);
2895 	    /*
2896 	     * We must restart the list traversal after every fini call
2897 	     * because a dlclose() call from the fini function or from
2898 	     * another thread might have modified the reference counts.
2899 	     */
2900 	    break;
2901 	}
2902     } while (elm != NULL);
2903     errmsg_restore(saved_msg);
2904 }
2905 
2906 /*
2907  * Call the initialization functions for each of the objects in
2908  * "list".  All of the objects are expected to have non-NULL init
2909  * functions.
2910  */
2911 static void
2912 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2913 {
2914     Objlist_Entry *elm;
2915     Obj_Entry *obj;
2916     struct dlerror_save *saved_msg;
2917     Elf_Addr *init_addr;
2918     void (*reg)(void (*)(void));
2919     int index;
2920 
2921     /*
2922      * Clean init_scanned flag so that objects can be rechecked and
2923      * possibly initialized earlier if any of vectors called below
2924      * cause the change by using dlopen.
2925      */
2926     TAILQ_FOREACH(obj, &obj_list, next) {
2927 	if (obj->marker)
2928 	    continue;
2929 	obj->init_scanned = false;
2930     }
2931 
2932     /*
2933      * Preserve the current error message since an init function might
2934      * call into the dynamic linker and overwrite it.
2935      */
2936     saved_msg = errmsg_save();
2937     STAILQ_FOREACH(elm, list, link) {
2938 	if (elm->obj->init_done) /* Initialized early. */
2939 	    continue;
2940 	/*
2941 	 * Race: other thread might try to use this object before current
2942 	 * one completes the initialization. Not much can be done here
2943 	 * without better locking.
2944 	 */
2945 	elm->obj->init_done = true;
2946 	hold_object(elm->obj);
2947 	reg = NULL;
2948 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2949 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2950 		    "__libc_atexit", lockstate);
2951 	}
2952 	lock_release(rtld_bind_lock, lockstate);
2953 	if (reg != NULL) {
2954 		reg(rtld_exit);
2955 		rtld_exit_ptr = rtld_nop_exit;
2956 	}
2957 
2958         /*
2959          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2960          * When this happens, DT_INIT is processed first.
2961          */
2962 	if (elm->obj->init != (Elf_Addr)NULL) {
2963 	    dbg("calling init function for %s at %p", elm->obj->path,
2964 	        (void *)elm->obj->init);
2965 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2966 	        0, 0, elm->obj->path);
2967 	    call_init_pointer(elm->obj, elm->obj->init);
2968 	}
2969 	init_addr = (Elf_Addr *)elm->obj->init_array;
2970 	if (init_addr != NULL) {
2971 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2972 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2973 		    dbg("calling init function for %s at %p", elm->obj->path,
2974 			(void *)init_addr[index]);
2975 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2976 			(void *)init_addr[index], 0, 0, elm->obj->path);
2977 		    call_init_pointer(elm->obj, init_addr[index]);
2978 		}
2979 	    }
2980 	}
2981 	wlock_acquire(rtld_bind_lock, lockstate);
2982 	unhold_object(elm->obj);
2983     }
2984     errmsg_restore(saved_msg);
2985 }
2986 
2987 static void
2988 objlist_clear(Objlist *list)
2989 {
2990     Objlist_Entry *elm;
2991 
2992     while (!STAILQ_EMPTY(list)) {
2993 	elm = STAILQ_FIRST(list);
2994 	STAILQ_REMOVE_HEAD(list, link);
2995 	free(elm);
2996     }
2997 }
2998 
2999 static Objlist_Entry *
3000 objlist_find(Objlist *list, const Obj_Entry *obj)
3001 {
3002     Objlist_Entry *elm;
3003 
3004     STAILQ_FOREACH(elm, list, link)
3005 	if (elm->obj == obj)
3006 	    return elm;
3007     return NULL;
3008 }
3009 
3010 static void
3011 objlist_init(Objlist *list)
3012 {
3013     STAILQ_INIT(list);
3014 }
3015 
3016 static void
3017 objlist_push_head(Objlist *list, Obj_Entry *obj)
3018 {
3019     Objlist_Entry *elm;
3020 
3021     elm = NEW(Objlist_Entry);
3022     elm->obj = obj;
3023     STAILQ_INSERT_HEAD(list, elm, link);
3024 }
3025 
3026 static void
3027 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3028 {
3029     Objlist_Entry *elm;
3030 
3031     elm = NEW(Objlist_Entry);
3032     elm->obj = obj;
3033     STAILQ_INSERT_TAIL(list, elm, link);
3034 }
3035 
3036 static void
3037 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3038 {
3039 	Objlist_Entry *elm, *listelm;
3040 
3041 	STAILQ_FOREACH(listelm, list, link) {
3042 		if (listelm->obj == listobj)
3043 			break;
3044 	}
3045 	elm = NEW(Objlist_Entry);
3046 	elm->obj = obj;
3047 	if (listelm != NULL)
3048 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3049 	else
3050 		STAILQ_INSERT_TAIL(list, elm, link);
3051 }
3052 
3053 static void
3054 objlist_remove(Objlist *list, Obj_Entry *obj)
3055 {
3056     Objlist_Entry *elm;
3057 
3058     if ((elm = objlist_find(list, obj)) != NULL) {
3059 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3060 	free(elm);
3061     }
3062 }
3063 
3064 /*
3065  * Relocate dag rooted in the specified object.
3066  * Returns 0 on success, or -1 on failure.
3067  */
3068 
3069 static int
3070 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3071     int flags, RtldLockState *lockstate)
3072 {
3073 	Objlist_Entry *elm;
3074 	int error;
3075 
3076 	error = 0;
3077 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3078 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3079 		    lockstate);
3080 		if (error == -1)
3081 			break;
3082 	}
3083 	return (error);
3084 }
3085 
3086 /*
3087  * Prepare for, or clean after, relocating an object marked with
3088  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3089  * segments are remapped read-write.  After relocations are done, the
3090  * segment's permissions are returned back to the modes specified in
3091  * the phdrs.  If any relocation happened, or always for wired
3092  * program, COW is triggered.
3093  */
3094 static int
3095 reloc_textrel_prot(Obj_Entry *obj, bool before)
3096 {
3097 	const Elf_Phdr *ph;
3098 	void *base;
3099 	size_t l, sz;
3100 	int prot;
3101 
3102 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3103 	    l--, ph++) {
3104 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3105 			continue;
3106 		base = obj->relocbase + trunc_page(ph->p_vaddr);
3107 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
3108 		    trunc_page(ph->p_vaddr);
3109 		prot = before ? (PROT_READ | PROT_WRITE) :
3110 		    convert_prot(ph->p_flags);
3111 		if (mprotect(base, sz, prot) == -1) {
3112 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3113 			    obj->path, before ? "en" : "dis",
3114 			    rtld_strerror(errno));
3115 			return (-1);
3116 		}
3117 	}
3118 	return (0);
3119 }
3120 
3121 /*
3122  * Relocate single object.
3123  * Returns 0 on success, or -1 on failure.
3124  */
3125 static int
3126 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3127     int flags, RtldLockState *lockstate)
3128 {
3129 
3130 	if (obj->relocated)
3131 		return (0);
3132 	obj->relocated = true;
3133 	if (obj != rtldobj)
3134 		dbg("relocating \"%s\"", obj->path);
3135 
3136 	if (obj->symtab == NULL || obj->strtab == NULL ||
3137 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3138 		dbg("object %s has no run-time symbol table", obj->path);
3139 
3140 	/* There are relocations to the write-protected text segment. */
3141 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3142 		return (-1);
3143 
3144 	/* Process the non-PLT non-IFUNC relocations. */
3145 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3146 		return (-1);
3147 
3148 	/* Re-protected the text segment. */
3149 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3150 		return (-1);
3151 
3152 	/* Set the special PLT or GOT entries. */
3153 	init_pltgot(obj);
3154 
3155 	/* Process the PLT relocations. */
3156 	if (reloc_plt(obj, flags, lockstate) == -1)
3157 		return (-1);
3158 	/* Relocate the jump slots if we are doing immediate binding. */
3159 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3160 	    lockstate) == -1)
3161 		return (-1);
3162 
3163 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3164 		return (-1);
3165 
3166 	/*
3167 	 * Set up the magic number and version in the Obj_Entry.  These
3168 	 * were checked in the crt1.o from the original ElfKit, so we
3169 	 * set them for backward compatibility.
3170 	 */
3171 	obj->magic = RTLD_MAGIC;
3172 	obj->version = RTLD_VERSION;
3173 
3174 	return (0);
3175 }
3176 
3177 /*
3178  * Relocate newly-loaded shared objects.  The argument is a pointer to
3179  * the Obj_Entry for the first such object.  All objects from the first
3180  * to the end of the list of objects are relocated.  Returns 0 on success,
3181  * or -1 on failure.
3182  */
3183 static int
3184 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3185     int flags, RtldLockState *lockstate)
3186 {
3187 	Obj_Entry *obj;
3188 	int error;
3189 
3190 	for (error = 0, obj = first;  obj != NULL;
3191 	    obj = TAILQ_NEXT(obj, next)) {
3192 		if (obj->marker)
3193 			continue;
3194 		error = relocate_object(obj, bind_now, rtldobj, flags,
3195 		    lockstate);
3196 		if (error == -1)
3197 			break;
3198 	}
3199 	return (error);
3200 }
3201 
3202 /*
3203  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3204  * referencing STT_GNU_IFUNC symbols is postponed till the other
3205  * relocations are done.  The indirect functions specified as
3206  * ifunc are allowed to call other symbols, so we need to have
3207  * objects relocated before asking for resolution from indirects.
3208  *
3209  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3210  * instead of the usual lazy handling of PLT slots.  It is
3211  * consistent with how GNU does it.
3212  */
3213 static int
3214 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3215     RtldLockState *lockstate)
3216 {
3217 
3218 	if (obj->ifuncs_resolved)
3219 		return (0);
3220 	obj->ifuncs_resolved = true;
3221 	if (!obj->irelative && !obj->irelative_nonplt &&
3222 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3223 	    !obj->non_plt_gnu_ifunc)
3224 		return (0);
3225 	if (obj_disable_relro(obj) == -1 ||
3226 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3227 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3228 	    lockstate) == -1) ||
3229 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3230 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3231 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3232 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3233 	    obj_enforce_relro(obj) == -1)
3234 		return (-1);
3235 	return (0);
3236 }
3237 
3238 static int
3239 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3240     RtldLockState *lockstate)
3241 {
3242 	Objlist_Entry *elm;
3243 	Obj_Entry *obj;
3244 
3245 	STAILQ_FOREACH(elm, list, link) {
3246 		obj = elm->obj;
3247 		if (obj->marker)
3248 			continue;
3249 		if (resolve_object_ifunc(obj, bind_now, flags,
3250 		    lockstate) == -1)
3251 			return (-1);
3252 	}
3253 	return (0);
3254 }
3255 
3256 /*
3257  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3258  * before the process exits.
3259  */
3260 static void
3261 rtld_exit(void)
3262 {
3263     RtldLockState lockstate;
3264 
3265     wlock_acquire(rtld_bind_lock, &lockstate);
3266     dbg("rtld_exit()");
3267     objlist_call_fini(&list_fini, NULL, &lockstate);
3268     /* No need to remove the items from the list, since we are exiting. */
3269     if (!libmap_disable)
3270         lm_fini();
3271     lock_release(rtld_bind_lock, &lockstate);
3272 }
3273 
3274 static void
3275 rtld_nop_exit(void)
3276 {
3277 }
3278 
3279 /*
3280  * Iterate over a search path, translate each element, and invoke the
3281  * callback on the result.
3282  */
3283 static void *
3284 path_enumerate(const char *path, path_enum_proc callback,
3285     const char *refobj_path, void *arg)
3286 {
3287     const char *trans;
3288     if (path == NULL)
3289 	return (NULL);
3290 
3291     path += strspn(path, ":;");
3292     while (*path != '\0') {
3293 	size_t len;
3294 	char  *res;
3295 
3296 	len = strcspn(path, ":;");
3297 	trans = lm_findn(refobj_path, path, len);
3298 	if (trans)
3299 	    res = callback(trans, strlen(trans), arg);
3300 	else
3301 	    res = callback(path, len, arg);
3302 
3303 	if (res != NULL)
3304 	    return (res);
3305 
3306 	path += len;
3307 	path += strspn(path, ":;");
3308     }
3309 
3310     return (NULL);
3311 }
3312 
3313 struct try_library_args {
3314     const char	*name;
3315     size_t	 namelen;
3316     char	*buffer;
3317     size_t	 buflen;
3318     int		 fd;
3319 };
3320 
3321 static void *
3322 try_library_path(const char *dir, size_t dirlen, void *param)
3323 {
3324     struct try_library_args *arg;
3325     int fd;
3326 
3327     arg = param;
3328     if (*dir == '/' || trust) {
3329 	char *pathname;
3330 
3331 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3332 		return (NULL);
3333 
3334 	pathname = arg->buffer;
3335 	strncpy(pathname, dir, dirlen);
3336 	pathname[dirlen] = '/';
3337 	strcpy(pathname + dirlen + 1, arg->name);
3338 
3339 	dbg("  Trying \"%s\"", pathname);
3340 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3341 	if (fd >= 0) {
3342 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3343 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3344 	    strcpy(pathname, arg->buffer);
3345 	    arg->fd = fd;
3346 	    return (pathname);
3347 	} else {
3348 	    dbg("  Failed to open \"%s\": %s",
3349 		pathname, rtld_strerror(errno));
3350 	}
3351     }
3352     return (NULL);
3353 }
3354 
3355 static char *
3356 search_library_path(const char *name, const char *path,
3357     const char *refobj_path, int *fdp)
3358 {
3359     char *p;
3360     struct try_library_args arg;
3361 
3362     if (path == NULL)
3363 	return NULL;
3364 
3365     arg.name = name;
3366     arg.namelen = strlen(name);
3367     arg.buffer = xmalloc(PATH_MAX);
3368     arg.buflen = PATH_MAX;
3369     arg.fd = -1;
3370 
3371     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3372     *fdp = arg.fd;
3373 
3374     free(arg.buffer);
3375 
3376     return (p);
3377 }
3378 
3379 
3380 /*
3381  * Finds the library with the given name using the directory descriptors
3382  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3383  *
3384  * Returns a freshly-opened close-on-exec file descriptor for the library,
3385  * or -1 if the library cannot be found.
3386  */
3387 static char *
3388 search_library_pathfds(const char *name, const char *path, int *fdp)
3389 {
3390 	char *envcopy, *fdstr, *found, *last_token;
3391 	size_t len;
3392 	int dirfd, fd;
3393 
3394 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3395 
3396 	/* Don't load from user-specified libdirs into setuid binaries. */
3397 	if (!trust)
3398 		return (NULL);
3399 
3400 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3401 	if (path == NULL)
3402 		return (NULL);
3403 
3404 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3405 	if (name[0] == '/') {
3406 		dbg("Absolute path (%s) passed to %s", name, __func__);
3407 		return (NULL);
3408 	}
3409 
3410 	/*
3411 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3412 	 * copy of the path, as strtok_r rewrites separator tokens
3413 	 * with '\0'.
3414 	 */
3415 	found = NULL;
3416 	envcopy = xstrdup(path);
3417 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3418 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3419 		dirfd = parse_integer(fdstr);
3420 		if (dirfd < 0) {
3421 			_rtld_error("failed to parse directory FD: '%s'",
3422 				fdstr);
3423 			break;
3424 		}
3425 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3426 		if (fd >= 0) {
3427 			*fdp = fd;
3428 			len = strlen(fdstr) + strlen(name) + 3;
3429 			found = xmalloc(len);
3430 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3431 				_rtld_error("error generating '%d/%s'",
3432 				    dirfd, name);
3433 				rtld_die();
3434 			}
3435 			dbg("open('%s') => %d", found, fd);
3436 			break;
3437 		}
3438 	}
3439 	free(envcopy);
3440 
3441 	return (found);
3442 }
3443 
3444 
3445 int
3446 dlclose(void *handle)
3447 {
3448 	RtldLockState lockstate;
3449 	int error;
3450 
3451 	wlock_acquire(rtld_bind_lock, &lockstate);
3452 	error = dlclose_locked(handle, &lockstate);
3453 	lock_release(rtld_bind_lock, &lockstate);
3454 	return (error);
3455 }
3456 
3457 static int
3458 dlclose_locked(void *handle, RtldLockState *lockstate)
3459 {
3460     Obj_Entry *root;
3461 
3462     root = dlcheck(handle);
3463     if (root == NULL)
3464 	return -1;
3465     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3466 	root->path);
3467 
3468     /* Unreference the object and its dependencies. */
3469     root->dl_refcount--;
3470 
3471     if (root->refcount == 1) {
3472 	/*
3473 	 * The object will be no longer referenced, so we must unload it.
3474 	 * First, call the fini functions.
3475 	 */
3476 	objlist_call_fini(&list_fini, root, lockstate);
3477 
3478 	unref_dag(root);
3479 
3480 	/* Finish cleaning up the newly-unreferenced objects. */
3481 	GDB_STATE(RT_DELETE,&root->linkmap);
3482 	unload_object(root, lockstate);
3483 	GDB_STATE(RT_CONSISTENT,NULL);
3484     } else
3485 	unref_dag(root);
3486 
3487     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3488     return 0;
3489 }
3490 
3491 char *
3492 dlerror(void)
3493 {
3494 	if (*(lockinfo.dlerror_seen()) != 0)
3495 		return (NULL);
3496 	*lockinfo.dlerror_seen() = 1;
3497 	return (lockinfo.dlerror_loc());
3498 }
3499 
3500 /*
3501  * This function is deprecated and has no effect.
3502  */
3503 void
3504 dllockinit(void *context,
3505     void *(*_lock_create)(void *context) __unused,
3506     void (*_rlock_acquire)(void *lock) __unused,
3507     void (*_wlock_acquire)(void *lock)  __unused,
3508     void (*_lock_release)(void *lock) __unused,
3509     void (*_lock_destroy)(void *lock) __unused,
3510     void (*context_destroy)(void *context))
3511 {
3512     static void *cur_context;
3513     static void (*cur_context_destroy)(void *);
3514 
3515     /* Just destroy the context from the previous call, if necessary. */
3516     if (cur_context_destroy != NULL)
3517 	cur_context_destroy(cur_context);
3518     cur_context = context;
3519     cur_context_destroy = context_destroy;
3520 }
3521 
3522 void *
3523 dlopen(const char *name, int mode)
3524 {
3525 
3526 	return (rtld_dlopen(name, -1, mode));
3527 }
3528 
3529 void *
3530 fdlopen(int fd, int mode)
3531 {
3532 
3533 	return (rtld_dlopen(NULL, fd, mode));
3534 }
3535 
3536 static void *
3537 rtld_dlopen(const char *name, int fd, int mode)
3538 {
3539     RtldLockState lockstate;
3540     int lo_flags;
3541 
3542     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3543     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3544     if (ld_tracing != NULL) {
3545 	rlock_acquire(rtld_bind_lock, &lockstate);
3546 	if (sigsetjmp(lockstate.env, 0) != 0)
3547 	    lock_upgrade(rtld_bind_lock, &lockstate);
3548 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3549 	lock_release(rtld_bind_lock, &lockstate);
3550     }
3551     lo_flags = RTLD_LO_DLOPEN;
3552     if (mode & RTLD_NODELETE)
3553 	    lo_flags |= RTLD_LO_NODELETE;
3554     if (mode & RTLD_NOLOAD)
3555 	    lo_flags |= RTLD_LO_NOLOAD;
3556     if (mode & RTLD_DEEPBIND)
3557 	    lo_flags |= RTLD_LO_DEEPBIND;
3558     if (ld_tracing != NULL)
3559 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3560 
3561     return (dlopen_object(name, fd, obj_main, lo_flags,
3562       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3563 }
3564 
3565 static void
3566 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3567 {
3568 
3569 	obj->dl_refcount--;
3570 	unref_dag(obj);
3571 	if (obj->refcount == 0)
3572 		unload_object(obj, lockstate);
3573 }
3574 
3575 static Obj_Entry *
3576 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3577     int mode, RtldLockState *lockstate)
3578 {
3579     Obj_Entry *old_obj_tail;
3580     Obj_Entry *obj;
3581     Objlist initlist;
3582     RtldLockState mlockstate;
3583     int result;
3584 
3585     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3586       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3587       refobj->path, lo_flags, mode);
3588     objlist_init(&initlist);
3589 
3590     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3591 	wlock_acquire(rtld_bind_lock, &mlockstate);
3592 	lockstate = &mlockstate;
3593     }
3594     GDB_STATE(RT_ADD,NULL);
3595 
3596     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3597     obj = NULL;
3598     if (name == NULL && fd == -1) {
3599 	obj = obj_main;
3600 	obj->refcount++;
3601     } else {
3602 	obj = load_object(name, fd, refobj, lo_flags);
3603     }
3604 
3605     if (obj) {
3606 	obj->dl_refcount++;
3607 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3608 	    objlist_push_tail(&list_global, obj);
3609 	if (globallist_next(old_obj_tail) != NULL) {
3610 	    /* We loaded something new. */
3611 	    assert(globallist_next(old_obj_tail) == obj);
3612 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3613 		obj->symbolic = true;
3614 	    result = 0;
3615 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3616 	      obj->static_tls && !allocate_tls_offset(obj)) {
3617 		_rtld_error("%s: No space available "
3618 		  "for static Thread Local Storage", obj->path);
3619 		result = -1;
3620 	    }
3621 	    if (result != -1)
3622 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3623 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3624 	    init_dag(obj);
3625 	    ref_dag(obj);
3626 	    if (result != -1)
3627 		result = rtld_verify_versions(&obj->dagmembers);
3628 	    if (result != -1 && ld_tracing)
3629 		goto trace;
3630 	    if (result == -1 || relocate_object_dag(obj,
3631 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3632 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3633 	      lockstate) == -1) {
3634 		dlopen_cleanup(obj, lockstate);
3635 		obj = NULL;
3636 	    } else if (lo_flags & RTLD_LO_EARLY) {
3637 		/*
3638 		 * Do not call the init functions for early loaded
3639 		 * filtees.  The image is still not initialized enough
3640 		 * for them to work.
3641 		 *
3642 		 * Our object is found by the global object list and
3643 		 * will be ordered among all init calls done right
3644 		 * before transferring control to main.
3645 		 */
3646 	    } else {
3647 		/* Make list of init functions to call. */
3648 		initlist_add_objects(obj, obj, &initlist);
3649 	    }
3650 	    /*
3651 	     * Process all no_delete or global objects here, given
3652 	     * them own DAGs to prevent their dependencies from being
3653 	     * unloaded.  This has to be done after we have loaded all
3654 	     * of the dependencies, so that we do not miss any.
3655 	     */
3656 	    if (obj != NULL)
3657 		process_z(obj);
3658 	} else {
3659 	    /*
3660 	     * Bump the reference counts for objects on this DAG.  If
3661 	     * this is the first dlopen() call for the object that was
3662 	     * already loaded as a dependency, initialize the dag
3663 	     * starting at it.
3664 	     */
3665 	    init_dag(obj);
3666 	    ref_dag(obj);
3667 
3668 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3669 		goto trace;
3670 	}
3671 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3672 	  obj->z_nodelete) && !obj->ref_nodel) {
3673 	    dbg("obj %s nodelete", obj->path);
3674 	    ref_dag(obj);
3675 	    obj->z_nodelete = obj->ref_nodel = true;
3676 	}
3677     }
3678 
3679     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3680 	name);
3681     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3682 
3683     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3684 	map_stacks_exec(lockstate);
3685 	if (obj != NULL)
3686 	    distribute_static_tls(&initlist, lockstate);
3687     }
3688 
3689     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3690       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3691       lockstate) == -1) {
3692 	objlist_clear(&initlist);
3693 	dlopen_cleanup(obj, lockstate);
3694 	if (lockstate == &mlockstate)
3695 	    lock_release(rtld_bind_lock, lockstate);
3696 	return (NULL);
3697     }
3698 
3699     if (!(lo_flags & RTLD_LO_EARLY)) {
3700 	/* Call the init functions. */
3701 	objlist_call_init(&initlist, lockstate);
3702     }
3703     objlist_clear(&initlist);
3704     if (lockstate == &mlockstate)
3705 	lock_release(rtld_bind_lock, lockstate);
3706     return obj;
3707 trace:
3708     trace_loaded_objects(obj);
3709     if (lockstate == &mlockstate)
3710 	lock_release(rtld_bind_lock, lockstate);
3711     exit(0);
3712 }
3713 
3714 static void *
3715 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3716     int flags)
3717 {
3718     DoneList donelist;
3719     const Obj_Entry *obj, *defobj;
3720     const Elf_Sym *def;
3721     SymLook req;
3722     RtldLockState lockstate;
3723     tls_index ti;
3724     void *sym;
3725     int res;
3726 
3727     def = NULL;
3728     defobj = NULL;
3729     symlook_init(&req, name);
3730     req.ventry = ve;
3731     req.flags = flags | SYMLOOK_IN_PLT;
3732     req.lockstate = &lockstate;
3733 
3734     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3735     rlock_acquire(rtld_bind_lock, &lockstate);
3736     if (sigsetjmp(lockstate.env, 0) != 0)
3737 	    lock_upgrade(rtld_bind_lock, &lockstate);
3738     if (handle == NULL || handle == RTLD_NEXT ||
3739 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3740 
3741 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3742 	    _rtld_error("Cannot determine caller's shared object");
3743 	    lock_release(rtld_bind_lock, &lockstate);
3744 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3745 	    return NULL;
3746 	}
3747 	if (handle == NULL) {	/* Just the caller's shared object. */
3748 	    res = symlook_obj(&req, obj);
3749 	    if (res == 0) {
3750 		def = req.sym_out;
3751 		defobj = req.defobj_out;
3752 	    }
3753 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3754 		   handle == RTLD_SELF) { /* ... caller included */
3755 	    if (handle == RTLD_NEXT)
3756 		obj = globallist_next(obj);
3757 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3758 		if (obj->marker)
3759 		    continue;
3760 		res = symlook_obj(&req, obj);
3761 		if (res == 0) {
3762 		    if (def == NULL || (ld_dynamic_weak &&
3763                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3764 			def = req.sym_out;
3765 			defobj = req.defobj_out;
3766 			if (!ld_dynamic_weak ||
3767 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3768 			    break;
3769 		    }
3770 		}
3771 	    }
3772 	    /*
3773 	     * Search the dynamic linker itself, and possibly resolve the
3774 	     * symbol from there.  This is how the application links to
3775 	     * dynamic linker services such as dlopen.
3776 	     * Note that we ignore ld_dynamic_weak == false case,
3777 	     * always overriding weak symbols by rtld definitions.
3778 	     */
3779 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3780 		res = symlook_obj(&req, &obj_rtld);
3781 		if (res == 0) {
3782 		    def = req.sym_out;
3783 		    defobj = req.defobj_out;
3784 		}
3785 	    }
3786 	} else {
3787 	    assert(handle == RTLD_DEFAULT);
3788 	    res = symlook_default(&req, obj);
3789 	    if (res == 0) {
3790 		defobj = req.defobj_out;
3791 		def = req.sym_out;
3792 	    }
3793 	}
3794     } else {
3795 	if ((obj = dlcheck(handle)) == NULL) {
3796 	    lock_release(rtld_bind_lock, &lockstate);
3797 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3798 	    return NULL;
3799 	}
3800 
3801 	donelist_init(&donelist);
3802 	if (obj->mainprog) {
3803             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3804 	    res = symlook_global(&req, &donelist);
3805 	    if (res == 0) {
3806 		def = req.sym_out;
3807 		defobj = req.defobj_out;
3808 	    }
3809 	    /*
3810 	     * Search the dynamic linker itself, and possibly resolve the
3811 	     * symbol from there.  This is how the application links to
3812 	     * dynamic linker services such as dlopen.
3813 	     */
3814 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3815 		res = symlook_obj(&req, &obj_rtld);
3816 		if (res == 0) {
3817 		    def = req.sym_out;
3818 		    defobj = req.defobj_out;
3819 		}
3820 	    }
3821 	}
3822 	else {
3823 	    /* Search the whole DAG rooted at the given object. */
3824 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3825 	    if (res == 0) {
3826 		def = req.sym_out;
3827 		defobj = req.defobj_out;
3828 	    }
3829 	}
3830     }
3831 
3832     if (def != NULL) {
3833 	lock_release(rtld_bind_lock, &lockstate);
3834 
3835 	/*
3836 	 * The value required by the caller is derived from the value
3837 	 * of the symbol. this is simply the relocated value of the
3838 	 * symbol.
3839 	 */
3840 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3841 	    sym = make_function_pointer(def, defobj);
3842 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3843 	    sym = rtld_resolve_ifunc(defobj, def);
3844 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3845 	    ti.ti_module = defobj->tlsindex;
3846 	    ti.ti_offset = def->st_value;
3847 	    sym = __tls_get_addr(&ti);
3848 	} else
3849 	    sym = defobj->relocbase + def->st_value;
3850 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3851 	return (sym);
3852     }
3853 
3854     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3855       ve != NULL ? ve->name : "");
3856     lock_release(rtld_bind_lock, &lockstate);
3857     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3858     return NULL;
3859 }
3860 
3861 void *
3862 dlsym(void *handle, const char *name)
3863 {
3864 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3865 	    SYMLOOK_DLSYM);
3866 }
3867 
3868 dlfunc_t
3869 dlfunc(void *handle, const char *name)
3870 {
3871 	union {
3872 		void *d;
3873 		dlfunc_t f;
3874 	} rv;
3875 
3876 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3877 	    SYMLOOK_DLSYM);
3878 	return (rv.f);
3879 }
3880 
3881 void *
3882 dlvsym(void *handle, const char *name, const char *version)
3883 {
3884 	Ver_Entry ventry;
3885 
3886 	ventry.name = version;
3887 	ventry.file = NULL;
3888 	ventry.hash = elf_hash(version);
3889 	ventry.flags= 0;
3890 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3891 	    SYMLOOK_DLSYM);
3892 }
3893 
3894 int
3895 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3896 {
3897     const Obj_Entry *obj;
3898     RtldLockState lockstate;
3899 
3900     rlock_acquire(rtld_bind_lock, &lockstate);
3901     obj = obj_from_addr(addr);
3902     if (obj == NULL) {
3903         _rtld_error("No shared object contains address");
3904 	lock_release(rtld_bind_lock, &lockstate);
3905         return (0);
3906     }
3907     rtld_fill_dl_phdr_info(obj, phdr_info);
3908     lock_release(rtld_bind_lock, &lockstate);
3909     return (1);
3910 }
3911 
3912 int
3913 dladdr(const void *addr, Dl_info *info)
3914 {
3915     const Obj_Entry *obj;
3916     const Elf_Sym *def;
3917     void *symbol_addr;
3918     unsigned long symoffset;
3919     RtldLockState lockstate;
3920 
3921     rlock_acquire(rtld_bind_lock, &lockstate);
3922     obj = obj_from_addr(addr);
3923     if (obj == NULL) {
3924         _rtld_error("No shared object contains address");
3925 	lock_release(rtld_bind_lock, &lockstate);
3926         return 0;
3927     }
3928     info->dli_fname = obj->path;
3929     info->dli_fbase = obj->mapbase;
3930     info->dli_saddr = (void *)0;
3931     info->dli_sname = NULL;
3932 
3933     /*
3934      * Walk the symbol list looking for the symbol whose address is
3935      * closest to the address sent in.
3936      */
3937     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3938         def = obj->symtab + symoffset;
3939 
3940         /*
3941          * For skip the symbol if st_shndx is either SHN_UNDEF or
3942          * SHN_COMMON.
3943          */
3944         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3945             continue;
3946 
3947         /*
3948          * If the symbol is greater than the specified address, or if it
3949          * is further away from addr than the current nearest symbol,
3950          * then reject it.
3951          */
3952         symbol_addr = obj->relocbase + def->st_value;
3953         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3954             continue;
3955 
3956         /* Update our idea of the nearest symbol. */
3957         info->dli_sname = obj->strtab + def->st_name;
3958         info->dli_saddr = symbol_addr;
3959 
3960         /* Exact match? */
3961         if (info->dli_saddr == addr)
3962             break;
3963     }
3964     lock_release(rtld_bind_lock, &lockstate);
3965     return 1;
3966 }
3967 
3968 int
3969 dlinfo(void *handle, int request, void *p)
3970 {
3971     const Obj_Entry *obj;
3972     RtldLockState lockstate;
3973     int error;
3974 
3975     rlock_acquire(rtld_bind_lock, &lockstate);
3976 
3977     if (handle == NULL || handle == RTLD_SELF) {
3978 	void *retaddr;
3979 
3980 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3981 	if ((obj = obj_from_addr(retaddr)) == NULL)
3982 	    _rtld_error("Cannot determine caller's shared object");
3983     } else
3984 	obj = dlcheck(handle);
3985 
3986     if (obj == NULL) {
3987 	lock_release(rtld_bind_lock, &lockstate);
3988 	return (-1);
3989     }
3990 
3991     error = 0;
3992     switch (request) {
3993     case RTLD_DI_LINKMAP:
3994 	*((struct link_map const **)p) = &obj->linkmap;
3995 	break;
3996     case RTLD_DI_ORIGIN:
3997 	error = rtld_dirname(obj->path, p);
3998 	break;
3999 
4000     case RTLD_DI_SERINFOSIZE:
4001     case RTLD_DI_SERINFO:
4002 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4003 	break;
4004 
4005     default:
4006 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4007 	error = -1;
4008     }
4009 
4010     lock_release(rtld_bind_lock, &lockstate);
4011 
4012     return (error);
4013 }
4014 
4015 static void
4016 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4017 {
4018 	Elf_Addr **dtvp;
4019 
4020 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4021 	phdr_info->dlpi_name = obj->path;
4022 	phdr_info->dlpi_phdr = obj->phdr;
4023 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4024 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4025 	dtvp = _get_tp();
4026 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4027 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4028 	phdr_info->dlpi_adds = obj_loads;
4029 	phdr_info->dlpi_subs = obj_loads - obj_count;
4030 }
4031 
4032 int
4033 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4034 {
4035 	struct dl_phdr_info phdr_info;
4036 	Obj_Entry *obj, marker;
4037 	RtldLockState bind_lockstate, phdr_lockstate;
4038 	int error;
4039 
4040 	init_marker(&marker);
4041 	error = 0;
4042 
4043 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4044 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4045 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4046 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4047 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4048 		hold_object(obj);
4049 		lock_release(rtld_bind_lock, &bind_lockstate);
4050 
4051 		error = callback(&phdr_info, sizeof phdr_info, param);
4052 
4053 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4054 		unhold_object(obj);
4055 		obj = globallist_next(&marker);
4056 		TAILQ_REMOVE(&obj_list, &marker, next);
4057 		if (error != 0) {
4058 			lock_release(rtld_bind_lock, &bind_lockstate);
4059 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4060 			return (error);
4061 		}
4062 	}
4063 
4064 	if (error == 0) {
4065 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4066 		lock_release(rtld_bind_lock, &bind_lockstate);
4067 		error = callback(&phdr_info, sizeof(phdr_info), param);
4068 	}
4069 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4070 	return (error);
4071 }
4072 
4073 static void *
4074 fill_search_info(const char *dir, size_t dirlen, void *param)
4075 {
4076     struct fill_search_info_args *arg;
4077 
4078     arg = param;
4079 
4080     if (arg->request == RTLD_DI_SERINFOSIZE) {
4081 	arg->serinfo->dls_cnt ++;
4082 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4083     } else {
4084 	struct dl_serpath *s_entry;
4085 
4086 	s_entry = arg->serpath;
4087 	s_entry->dls_name  = arg->strspace;
4088 	s_entry->dls_flags = arg->flags;
4089 
4090 	strncpy(arg->strspace, dir, dirlen);
4091 	arg->strspace[dirlen] = '\0';
4092 
4093 	arg->strspace += dirlen + 1;
4094 	arg->serpath++;
4095     }
4096 
4097     return (NULL);
4098 }
4099 
4100 static int
4101 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4102 {
4103     struct dl_serinfo _info;
4104     struct fill_search_info_args args;
4105 
4106     args.request = RTLD_DI_SERINFOSIZE;
4107     args.serinfo = &_info;
4108 
4109     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4110     _info.dls_cnt  = 0;
4111 
4112     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4113     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4114     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4115     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4116     if (!obj->z_nodeflib)
4117       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4118 
4119 
4120     if (request == RTLD_DI_SERINFOSIZE) {
4121 	info->dls_size = _info.dls_size;
4122 	info->dls_cnt = _info.dls_cnt;
4123 	return (0);
4124     }
4125 
4126     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4127 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4128 	return (-1);
4129     }
4130 
4131     args.request  = RTLD_DI_SERINFO;
4132     args.serinfo  = info;
4133     args.serpath  = &info->dls_serpath[0];
4134     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4135 
4136     args.flags = LA_SER_RUNPATH;
4137     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4138 	return (-1);
4139 
4140     args.flags = LA_SER_LIBPATH;
4141     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4142 	return (-1);
4143 
4144     args.flags = LA_SER_RUNPATH;
4145     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4146 	return (-1);
4147 
4148     args.flags = LA_SER_CONFIG;
4149     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4150       != NULL)
4151 	return (-1);
4152 
4153     args.flags = LA_SER_DEFAULT;
4154     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4155       fill_search_info, NULL, &args) != NULL)
4156 	return (-1);
4157     return (0);
4158 }
4159 
4160 static int
4161 rtld_dirname(const char *path, char *bname)
4162 {
4163     const char *endp;
4164 
4165     /* Empty or NULL string gets treated as "." */
4166     if (path == NULL || *path == '\0') {
4167 	bname[0] = '.';
4168 	bname[1] = '\0';
4169 	return (0);
4170     }
4171 
4172     /* Strip trailing slashes */
4173     endp = path + strlen(path) - 1;
4174     while (endp > path && *endp == '/')
4175 	endp--;
4176 
4177     /* Find the start of the dir */
4178     while (endp > path && *endp != '/')
4179 	endp--;
4180 
4181     /* Either the dir is "/" or there are no slashes */
4182     if (endp == path) {
4183 	bname[0] = *endp == '/' ? '/' : '.';
4184 	bname[1] = '\0';
4185 	return (0);
4186     } else {
4187 	do {
4188 	    endp--;
4189 	} while (endp > path && *endp == '/');
4190     }
4191 
4192     if (endp - path + 2 > PATH_MAX)
4193     {
4194 	_rtld_error("Filename is too long: %s", path);
4195 	return(-1);
4196     }
4197 
4198     strncpy(bname, path, endp - path + 1);
4199     bname[endp - path + 1] = '\0';
4200     return (0);
4201 }
4202 
4203 static int
4204 rtld_dirname_abs(const char *path, char *base)
4205 {
4206 	char *last;
4207 
4208 	if (realpath(path, base) == NULL) {
4209 		_rtld_error("realpath \"%s\" failed (%s)", path,
4210 		    rtld_strerror(errno));
4211 		return (-1);
4212 	}
4213 	dbg("%s -> %s", path, base);
4214 	last = strrchr(base, '/');
4215 	if (last == NULL) {
4216 		_rtld_error("non-abs result from realpath \"%s\"", path);
4217 		return (-1);
4218 	}
4219 	if (last != base)
4220 		*last = '\0';
4221 	return (0);
4222 }
4223 
4224 static void
4225 linkmap_add(Obj_Entry *obj)
4226 {
4227 	struct link_map *l, *prev;
4228 
4229 	l = &obj->linkmap;
4230 	l->l_name = obj->path;
4231 	l->l_base = obj->mapbase;
4232 	l->l_ld = obj->dynamic;
4233 	l->l_addr = obj->relocbase;
4234 
4235 	if (r_debug.r_map == NULL) {
4236 		r_debug.r_map = l;
4237 		return;
4238 	}
4239 
4240 	/*
4241 	 * Scan to the end of the list, but not past the entry for the
4242 	 * dynamic linker, which we want to keep at the very end.
4243 	 */
4244 	for (prev = r_debug.r_map;
4245 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4246 	     prev = prev->l_next)
4247 		;
4248 
4249 	/* Link in the new entry. */
4250 	l->l_prev = prev;
4251 	l->l_next = prev->l_next;
4252 	if (l->l_next != NULL)
4253 		l->l_next->l_prev = l;
4254 	prev->l_next = l;
4255 }
4256 
4257 static void
4258 linkmap_delete(Obj_Entry *obj)
4259 {
4260 	struct link_map *l;
4261 
4262 	l = &obj->linkmap;
4263 	if (l->l_prev == NULL) {
4264 		if ((r_debug.r_map = l->l_next) != NULL)
4265 			l->l_next->l_prev = NULL;
4266 		return;
4267 	}
4268 
4269 	if ((l->l_prev->l_next = l->l_next) != NULL)
4270 		l->l_next->l_prev = l->l_prev;
4271 }
4272 
4273 /*
4274  * Function for the debugger to set a breakpoint on to gain control.
4275  *
4276  * The two parameters allow the debugger to easily find and determine
4277  * what the runtime loader is doing and to whom it is doing it.
4278  *
4279  * When the loadhook trap is hit (r_debug_state, set at program
4280  * initialization), the arguments can be found on the stack:
4281  *
4282  *  +8   struct link_map *m
4283  *  +4   struct r_debug  *rd
4284  *  +0   RetAddr
4285  */
4286 void
4287 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4288 {
4289     /*
4290      * The following is a hack to force the compiler to emit calls to
4291      * this function, even when optimizing.  If the function is empty,
4292      * the compiler is not obliged to emit any code for calls to it,
4293      * even when marked __noinline.  However, gdb depends on those
4294      * calls being made.
4295      */
4296     __compiler_membar();
4297 }
4298 
4299 /*
4300  * A function called after init routines have completed. This can be used to
4301  * break before a program's entry routine is called, and can be used when
4302  * main is not available in the symbol table.
4303  */
4304 void
4305 _r_debug_postinit(struct link_map *m __unused)
4306 {
4307 
4308 	/* See r_debug_state(). */
4309 	__compiler_membar();
4310 }
4311 
4312 static void
4313 release_object(Obj_Entry *obj)
4314 {
4315 
4316 	if (obj->holdcount > 0) {
4317 		obj->unholdfree = true;
4318 		return;
4319 	}
4320 	munmap(obj->mapbase, obj->mapsize);
4321 	linkmap_delete(obj);
4322 	obj_free(obj);
4323 }
4324 
4325 /*
4326  * Get address of the pointer variable in the main program.
4327  * Prefer non-weak symbol over the weak one.
4328  */
4329 static const void **
4330 get_program_var_addr(const char *name, RtldLockState *lockstate)
4331 {
4332     SymLook req;
4333     DoneList donelist;
4334 
4335     symlook_init(&req, name);
4336     req.lockstate = lockstate;
4337     donelist_init(&donelist);
4338     if (symlook_global(&req, &donelist) != 0)
4339 	return (NULL);
4340     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4341 	return ((const void **)make_function_pointer(req.sym_out,
4342 	  req.defobj_out));
4343     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4344 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4345     else
4346 	return ((const void **)(req.defobj_out->relocbase +
4347 	  req.sym_out->st_value));
4348 }
4349 
4350 /*
4351  * Set a pointer variable in the main program to the given value.  This
4352  * is used to set key variables such as "environ" before any of the
4353  * init functions are called.
4354  */
4355 static void
4356 set_program_var(const char *name, const void *value)
4357 {
4358     const void **addr;
4359 
4360     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4361 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4362 	*addr = value;
4363     }
4364 }
4365 
4366 /*
4367  * Search the global objects, including dependencies and main object,
4368  * for the given symbol.
4369  */
4370 static int
4371 symlook_global(SymLook *req, DoneList *donelist)
4372 {
4373     SymLook req1;
4374     const Objlist_Entry *elm;
4375     int res;
4376 
4377     symlook_init_from_req(&req1, req);
4378 
4379     /* Search all objects loaded at program start up. */
4380     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4381       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4382 	res = symlook_list(&req1, &list_main, donelist);
4383 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4384 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4385 	    req->sym_out = req1.sym_out;
4386 	    req->defobj_out = req1.defobj_out;
4387 	    assert(req->defobj_out != NULL);
4388 	}
4389     }
4390 
4391     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4392     STAILQ_FOREACH(elm, &list_global, link) {
4393 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4394           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4395 	    break;
4396 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4397 	if (res == 0 && (req->defobj_out == NULL ||
4398 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4399 	    req->sym_out = req1.sym_out;
4400 	    req->defobj_out = req1.defobj_out;
4401 	    assert(req->defobj_out != NULL);
4402 	}
4403     }
4404 
4405     return (req->sym_out != NULL ? 0 : ESRCH);
4406 }
4407 
4408 /*
4409  * Given a symbol name in a referencing object, find the corresponding
4410  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4411  * no definition was found.  Returns a pointer to the Obj_Entry of the
4412  * defining object via the reference parameter DEFOBJ_OUT.
4413  */
4414 static int
4415 symlook_default(SymLook *req, const Obj_Entry *refobj)
4416 {
4417     DoneList donelist;
4418     const Objlist_Entry *elm;
4419     SymLook req1;
4420     int res;
4421 
4422     donelist_init(&donelist);
4423     symlook_init_from_req(&req1, req);
4424 
4425     /*
4426      * Look first in the referencing object if linked symbolically,
4427      * and similarly handle protected symbols.
4428      */
4429     res = symlook_obj(&req1, refobj);
4430     if (res == 0 && (refobj->symbolic ||
4431       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4432 	req->sym_out = req1.sym_out;
4433 	req->defobj_out = req1.defobj_out;
4434 	assert(req->defobj_out != NULL);
4435     }
4436     if (refobj->symbolic || req->defobj_out != NULL)
4437 	donelist_check(&donelist, refobj);
4438 
4439     symlook_global(req, &donelist);
4440 
4441     /* Search all dlopened DAGs containing the referencing object. */
4442     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4443 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4444           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4445 	    break;
4446 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4447 	if (res == 0 && (req->sym_out == NULL ||
4448 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4449 	    req->sym_out = req1.sym_out;
4450 	    req->defobj_out = req1.defobj_out;
4451 	    assert(req->defobj_out != NULL);
4452 	}
4453     }
4454 
4455     /*
4456      * Search the dynamic linker itself, and possibly resolve the
4457      * symbol from there.  This is how the application links to
4458      * dynamic linker services such as dlopen.
4459      */
4460     if (req->sym_out == NULL ||
4461       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4462 	res = symlook_obj(&req1, &obj_rtld);
4463 	if (res == 0) {
4464 	    req->sym_out = req1.sym_out;
4465 	    req->defobj_out = req1.defobj_out;
4466 	    assert(req->defobj_out != NULL);
4467 	}
4468     }
4469 
4470     return (req->sym_out != NULL ? 0 : ESRCH);
4471 }
4472 
4473 static int
4474 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4475 {
4476     const Elf_Sym *def;
4477     const Obj_Entry *defobj;
4478     const Objlist_Entry *elm;
4479     SymLook req1;
4480     int res;
4481 
4482     def = NULL;
4483     defobj = NULL;
4484     STAILQ_FOREACH(elm, objlist, link) {
4485 	if (donelist_check(dlp, elm->obj))
4486 	    continue;
4487 	symlook_init_from_req(&req1, req);
4488 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4489 	    if (def == NULL || (ld_dynamic_weak &&
4490               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4491 		def = req1.sym_out;
4492 		defobj = req1.defobj_out;
4493 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4494 		    break;
4495 	    }
4496 	}
4497     }
4498     if (def != NULL) {
4499 	req->sym_out = def;
4500 	req->defobj_out = defobj;
4501 	return (0);
4502     }
4503     return (ESRCH);
4504 }
4505 
4506 /*
4507  * Search the chain of DAGS cointed to by the given Needed_Entry
4508  * for a symbol of the given name.  Each DAG is scanned completely
4509  * before advancing to the next one.  Returns a pointer to the symbol,
4510  * or NULL if no definition was found.
4511  */
4512 static int
4513 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4514 {
4515     const Elf_Sym *def;
4516     const Needed_Entry *n;
4517     const Obj_Entry *defobj;
4518     SymLook req1;
4519     int res;
4520 
4521     def = NULL;
4522     defobj = NULL;
4523     symlook_init_from_req(&req1, req);
4524     for (n = needed; n != NULL; n = n->next) {
4525 	if (n->obj == NULL ||
4526 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4527 	    continue;
4528 	if (def == NULL || (ld_dynamic_weak &&
4529           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4530 	    def = req1.sym_out;
4531 	    defobj = req1.defobj_out;
4532 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4533 		break;
4534 	}
4535     }
4536     if (def != NULL) {
4537 	req->sym_out = def;
4538 	req->defobj_out = defobj;
4539 	return (0);
4540     }
4541     return (ESRCH);
4542 }
4543 
4544 /*
4545  * Search the symbol table of a single shared object for a symbol of
4546  * the given name and version, if requested.  Returns a pointer to the
4547  * symbol, or NULL if no definition was found.  If the object is
4548  * filter, return filtered symbol from filtee.
4549  *
4550  * The symbol's hash value is passed in for efficiency reasons; that
4551  * eliminates many recomputations of the hash value.
4552  */
4553 int
4554 symlook_obj(SymLook *req, const Obj_Entry *obj)
4555 {
4556     DoneList donelist;
4557     SymLook req1;
4558     int flags, res, mres;
4559 
4560     /*
4561      * If there is at least one valid hash at this point, we prefer to
4562      * use the faster GNU version if available.
4563      */
4564     if (obj->valid_hash_gnu)
4565 	mres = symlook_obj1_gnu(req, obj);
4566     else if (obj->valid_hash_sysv)
4567 	mres = symlook_obj1_sysv(req, obj);
4568     else
4569 	return (EINVAL);
4570 
4571     if (mres == 0) {
4572 	if (obj->needed_filtees != NULL) {
4573 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4574 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4575 	    donelist_init(&donelist);
4576 	    symlook_init_from_req(&req1, req);
4577 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4578 	    if (res == 0) {
4579 		req->sym_out = req1.sym_out;
4580 		req->defobj_out = req1.defobj_out;
4581 	    }
4582 	    return (res);
4583 	}
4584 	if (obj->needed_aux_filtees != NULL) {
4585 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4586 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4587 	    donelist_init(&donelist);
4588 	    symlook_init_from_req(&req1, req);
4589 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4590 	    if (res == 0) {
4591 		req->sym_out = req1.sym_out;
4592 		req->defobj_out = req1.defobj_out;
4593 		return (res);
4594 	    }
4595 	}
4596     }
4597     return (mres);
4598 }
4599 
4600 /* Symbol match routine common to both hash functions */
4601 static bool
4602 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4603     const unsigned long symnum)
4604 {
4605 	Elf_Versym verndx;
4606 	const Elf_Sym *symp;
4607 	const char *strp;
4608 
4609 	symp = obj->symtab + symnum;
4610 	strp = obj->strtab + symp->st_name;
4611 
4612 	switch (ELF_ST_TYPE(symp->st_info)) {
4613 	case STT_FUNC:
4614 	case STT_NOTYPE:
4615 	case STT_OBJECT:
4616 	case STT_COMMON:
4617 	case STT_GNU_IFUNC:
4618 		if (symp->st_value == 0)
4619 			return (false);
4620 		/* fallthrough */
4621 	case STT_TLS:
4622 		if (symp->st_shndx != SHN_UNDEF)
4623 			break;
4624 #ifndef __mips__
4625 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4626 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4627 			break;
4628 #endif
4629 		/* fallthrough */
4630 	default:
4631 		return (false);
4632 	}
4633 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4634 		return (false);
4635 
4636 	if (req->ventry == NULL) {
4637 		if (obj->versyms != NULL) {
4638 			verndx = VER_NDX(obj->versyms[symnum]);
4639 			if (verndx > obj->vernum) {
4640 				_rtld_error(
4641 				    "%s: symbol %s references wrong version %d",
4642 				    obj->path, obj->strtab + symnum, verndx);
4643 				return (false);
4644 			}
4645 			/*
4646 			 * If we are not called from dlsym (i.e. this
4647 			 * is a normal relocation from unversioned
4648 			 * binary), accept the symbol immediately if
4649 			 * it happens to have first version after this
4650 			 * shared object became versioned.  Otherwise,
4651 			 * if symbol is versioned and not hidden,
4652 			 * remember it. If it is the only symbol with
4653 			 * this name exported by the shared object, it
4654 			 * will be returned as a match by the calling
4655 			 * function. If symbol is global (verndx < 2)
4656 			 * accept it unconditionally.
4657 			 */
4658 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4659 			    verndx == VER_NDX_GIVEN) {
4660 				result->sym_out = symp;
4661 				return (true);
4662 			}
4663 			else if (verndx >= VER_NDX_GIVEN) {
4664 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4665 				    == 0) {
4666 					if (result->vsymp == NULL)
4667 						result->vsymp = symp;
4668 					result->vcount++;
4669 				}
4670 				return (false);
4671 			}
4672 		}
4673 		result->sym_out = symp;
4674 		return (true);
4675 	}
4676 	if (obj->versyms == NULL) {
4677 		if (object_match_name(obj, req->ventry->name)) {
4678 			_rtld_error("%s: object %s should provide version %s "
4679 			    "for symbol %s", obj_rtld.path, obj->path,
4680 			    req->ventry->name, obj->strtab + symnum);
4681 			return (false);
4682 		}
4683 	} else {
4684 		verndx = VER_NDX(obj->versyms[symnum]);
4685 		if (verndx > obj->vernum) {
4686 			_rtld_error("%s: symbol %s references wrong version %d",
4687 			    obj->path, obj->strtab + symnum, verndx);
4688 			return (false);
4689 		}
4690 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4691 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4692 			/*
4693 			 * Version does not match. Look if this is a
4694 			 * global symbol and if it is not hidden. If
4695 			 * global symbol (verndx < 2) is available,
4696 			 * use it. Do not return symbol if we are
4697 			 * called by dlvsym, because dlvsym looks for
4698 			 * a specific version and default one is not
4699 			 * what dlvsym wants.
4700 			 */
4701 			if ((req->flags & SYMLOOK_DLSYM) ||
4702 			    (verndx >= VER_NDX_GIVEN) ||
4703 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4704 				return (false);
4705 		}
4706 	}
4707 	result->sym_out = symp;
4708 	return (true);
4709 }
4710 
4711 /*
4712  * Search for symbol using SysV hash function.
4713  * obj->buckets is known not to be NULL at this point; the test for this was
4714  * performed with the obj->valid_hash_sysv assignment.
4715  */
4716 static int
4717 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4718 {
4719 	unsigned long symnum;
4720 	Sym_Match_Result matchres;
4721 
4722 	matchres.sym_out = NULL;
4723 	matchres.vsymp = NULL;
4724 	matchres.vcount = 0;
4725 
4726 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4727 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4728 		if (symnum >= obj->nchains)
4729 			return (ESRCH);	/* Bad object */
4730 
4731 		if (matched_symbol(req, obj, &matchres, symnum)) {
4732 			req->sym_out = matchres.sym_out;
4733 			req->defobj_out = obj;
4734 			return (0);
4735 		}
4736 	}
4737 	if (matchres.vcount == 1) {
4738 		req->sym_out = matchres.vsymp;
4739 		req->defobj_out = obj;
4740 		return (0);
4741 	}
4742 	return (ESRCH);
4743 }
4744 
4745 /* Search for symbol using GNU hash function */
4746 static int
4747 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4748 {
4749 	Elf_Addr bloom_word;
4750 	const Elf32_Word *hashval;
4751 	Elf32_Word bucket;
4752 	Sym_Match_Result matchres;
4753 	unsigned int h1, h2;
4754 	unsigned long symnum;
4755 
4756 	matchres.sym_out = NULL;
4757 	matchres.vsymp = NULL;
4758 	matchres.vcount = 0;
4759 
4760 	/* Pick right bitmask word from Bloom filter array */
4761 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4762 	    obj->maskwords_bm_gnu];
4763 
4764 	/* Calculate modulus word size of gnu hash and its derivative */
4765 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4766 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4767 
4768 	/* Filter out the "definitely not in set" queries */
4769 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4770 		return (ESRCH);
4771 
4772 	/* Locate hash chain and corresponding value element*/
4773 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4774 	if (bucket == 0)
4775 		return (ESRCH);
4776 	hashval = &obj->chain_zero_gnu[bucket];
4777 	do {
4778 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4779 			symnum = hashval - obj->chain_zero_gnu;
4780 			if (matched_symbol(req, obj, &matchres, symnum)) {
4781 				req->sym_out = matchres.sym_out;
4782 				req->defobj_out = obj;
4783 				return (0);
4784 			}
4785 		}
4786 	} while ((*hashval++ & 1) == 0);
4787 	if (matchres.vcount == 1) {
4788 		req->sym_out = matchres.vsymp;
4789 		req->defobj_out = obj;
4790 		return (0);
4791 	}
4792 	return (ESRCH);
4793 }
4794 
4795 static void
4796 trace_loaded_objects(Obj_Entry *obj)
4797 {
4798     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4799     int c;
4800 
4801     if ((main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME)) ==
4802       NULL)
4803 	main_local = "";
4804 
4805     if ((fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1)) == NULL)
4806 	fmt1 = "\t%o => %p (%x)\n";
4807 
4808     if ((fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2)) == NULL)
4809 	fmt2 = "\t%o (%x)\n";
4810 
4811     list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL);
4812 
4813     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4814 	Needed_Entry *needed;
4815 	const char *name, *path;
4816 	bool is_lib;
4817 
4818 	if (obj->marker)
4819 	    continue;
4820 	if (list_containers && obj->needed != NULL)
4821 	    rtld_printf("%s:\n", obj->path);
4822 	for (needed = obj->needed; needed; needed = needed->next) {
4823 	    if (needed->obj != NULL) {
4824 		if (needed->obj->traced && !list_containers)
4825 		    continue;
4826 		needed->obj->traced = true;
4827 		path = needed->obj->path;
4828 	    } else
4829 		path = "not found";
4830 
4831 	    name = obj->strtab + needed->name;
4832 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4833 
4834 	    fmt = is_lib ? fmt1 : fmt2;
4835 	    while ((c = *fmt++) != '\0') {
4836 		switch (c) {
4837 		default:
4838 		    rtld_putchar(c);
4839 		    continue;
4840 		case '\\':
4841 		    switch (c = *fmt) {
4842 		    case '\0':
4843 			continue;
4844 		    case 'n':
4845 			rtld_putchar('\n');
4846 			break;
4847 		    case 't':
4848 			rtld_putchar('\t');
4849 			break;
4850 		    }
4851 		    break;
4852 		case '%':
4853 		    switch (c = *fmt) {
4854 		    case '\0':
4855 			continue;
4856 		    case '%':
4857 		    default:
4858 			rtld_putchar(c);
4859 			break;
4860 		    case 'A':
4861 			rtld_putstr(main_local);
4862 			break;
4863 		    case 'a':
4864 			rtld_putstr(obj_main->path);
4865 			break;
4866 		    case 'o':
4867 			rtld_putstr(name);
4868 			break;
4869 #if 0
4870 		    case 'm':
4871 			rtld_printf("%d", sodp->sod_major);
4872 			break;
4873 		    case 'n':
4874 			rtld_printf("%d", sodp->sod_minor);
4875 			break;
4876 #endif
4877 		    case 'p':
4878 			rtld_putstr(path);
4879 			break;
4880 		    case 'x':
4881 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4882 			  0);
4883 			break;
4884 		    }
4885 		    break;
4886 		}
4887 		++fmt;
4888 	    }
4889 	}
4890     }
4891 }
4892 
4893 /*
4894  * Unload a dlopened object and its dependencies from memory and from
4895  * our data structures.  It is assumed that the DAG rooted in the
4896  * object has already been unreferenced, and that the object has a
4897  * reference count of 0.
4898  */
4899 static void
4900 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4901 {
4902 	Obj_Entry marker, *obj, *next;
4903 
4904 	assert(root->refcount == 0);
4905 
4906 	/*
4907 	 * Pass over the DAG removing unreferenced objects from
4908 	 * appropriate lists.
4909 	 */
4910 	unlink_object(root);
4911 
4912 	/* Unmap all objects that are no longer referenced. */
4913 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4914 		next = TAILQ_NEXT(obj, next);
4915 		if (obj->marker || obj->refcount != 0)
4916 			continue;
4917 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4918 		    obj->mapsize, 0, obj->path);
4919 		dbg("unloading \"%s\"", obj->path);
4920 		/*
4921 		 * Unlink the object now to prevent new references from
4922 		 * being acquired while the bind lock is dropped in
4923 		 * recursive dlclose() invocations.
4924 		 */
4925 		TAILQ_REMOVE(&obj_list, obj, next);
4926 		obj_count--;
4927 
4928 		if (obj->filtees_loaded) {
4929 			if (next != NULL) {
4930 				init_marker(&marker);
4931 				TAILQ_INSERT_BEFORE(next, &marker, next);
4932 				unload_filtees(obj, lockstate);
4933 				next = TAILQ_NEXT(&marker, next);
4934 				TAILQ_REMOVE(&obj_list, &marker, next);
4935 			} else
4936 				unload_filtees(obj, lockstate);
4937 		}
4938 		release_object(obj);
4939 	}
4940 }
4941 
4942 static void
4943 unlink_object(Obj_Entry *root)
4944 {
4945     Objlist_Entry *elm;
4946 
4947     if (root->refcount == 0) {
4948 	/* Remove the object from the RTLD_GLOBAL list. */
4949 	objlist_remove(&list_global, root);
4950 
4951     	/* Remove the object from all objects' DAG lists. */
4952     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4953 	    objlist_remove(&elm->obj->dldags, root);
4954 	    if (elm->obj != root)
4955 		unlink_object(elm->obj);
4956 	}
4957     }
4958 }
4959 
4960 static void
4961 ref_dag(Obj_Entry *root)
4962 {
4963     Objlist_Entry *elm;
4964 
4965     assert(root->dag_inited);
4966     STAILQ_FOREACH(elm, &root->dagmembers, link)
4967 	elm->obj->refcount++;
4968 }
4969 
4970 static void
4971 unref_dag(Obj_Entry *root)
4972 {
4973     Objlist_Entry *elm;
4974 
4975     assert(root->dag_inited);
4976     STAILQ_FOREACH(elm, &root->dagmembers, link)
4977 	elm->obj->refcount--;
4978 }
4979 
4980 /*
4981  * Common code for MD __tls_get_addr().
4982  */
4983 static void *
4984 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
4985 {
4986 	Elf_Addr *newdtv, *dtv;
4987 	RtldLockState lockstate;
4988 	int to_copy;
4989 
4990 	dtv = *dtvp;
4991 	/* Check dtv generation in case new modules have arrived */
4992 	if (dtv[0] != tls_dtv_generation) {
4993 		if (!locked)
4994 			wlock_acquire(rtld_bind_lock, &lockstate);
4995 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4996 		to_copy = dtv[1];
4997 		if (to_copy > tls_max_index)
4998 			to_copy = tls_max_index;
4999 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5000 		newdtv[0] = tls_dtv_generation;
5001 		newdtv[1] = tls_max_index;
5002 		free(dtv);
5003 		if (!locked)
5004 			lock_release(rtld_bind_lock, &lockstate);
5005 		dtv = *dtvp = newdtv;
5006 	}
5007 
5008 	/* Dynamically allocate module TLS if necessary */
5009 	if (dtv[index + 1] == 0) {
5010 		/* Signal safe, wlock will block out signals. */
5011 		if (!locked)
5012 			wlock_acquire(rtld_bind_lock, &lockstate);
5013 		if (!dtv[index + 1])
5014 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5015 		if (!locked)
5016 			lock_release(rtld_bind_lock, &lockstate);
5017 	}
5018 	return ((void *)(dtv[index + 1] + offset));
5019 }
5020 
5021 void *
5022 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
5023 {
5024 	Elf_Addr *dtv;
5025 
5026 	dtv = *dtvp;
5027 	/* Check dtv generation in case new modules have arrived */
5028 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5029 	    dtv[index + 1] != 0))
5030 		return ((void *)(dtv[index + 1] + offset));
5031 	return (tls_get_addr_slow(dtvp, index, offset, false));
5032 }
5033 
5034 #ifdef TLS_VARIANT_I
5035 
5036 /*
5037  * Return pointer to allocated TLS block
5038  */
5039 static void *
5040 get_tls_block_ptr(void *tcb, size_t tcbsize)
5041 {
5042     size_t extra_size, post_size, pre_size, tls_block_size;
5043     size_t tls_init_align;
5044 
5045     tls_init_align = MAX(obj_main->tlsalign, 1);
5046 
5047     /* Compute fragments sizes. */
5048     extra_size = tcbsize - TLS_TCB_SIZE;
5049     post_size = calculate_tls_post_size(tls_init_align);
5050     tls_block_size = tcbsize + post_size;
5051     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5052 
5053     return ((char *)tcb - pre_size - extra_size);
5054 }
5055 
5056 /*
5057  * Allocate Static TLS using the Variant I method.
5058  *
5059  * For details on the layout, see lib/libc/gen/tls.c.
5060  *
5061  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5062  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5063  *     offsets, whereas libc's tls_static_space is just the executable's static
5064  *     TLS segment.
5065  */
5066 void *
5067 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5068 {
5069     Obj_Entry *obj;
5070     char *tls_block;
5071     Elf_Addr *dtv, **tcb;
5072     Elf_Addr addr;
5073     Elf_Addr i;
5074     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5075     size_t tls_init_align, tls_init_offset;
5076 
5077     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5078 	return (oldtcb);
5079 
5080     assert(tcbsize >= TLS_TCB_SIZE);
5081     maxalign = MAX(tcbalign, tls_static_max_align);
5082     tls_init_align = MAX(obj_main->tlsalign, 1);
5083 
5084     /* Compute fragmets sizes. */
5085     extra_size = tcbsize - TLS_TCB_SIZE;
5086     post_size = calculate_tls_post_size(tls_init_align);
5087     tls_block_size = tcbsize + post_size;
5088     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5089     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5090 
5091     /* Allocate whole TLS block */
5092     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5093     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5094 
5095     if (oldtcb != NULL) {
5096 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5097 	    tls_static_space);
5098 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5099 
5100 	/* Adjust the DTV. */
5101 	dtv = tcb[0];
5102 	for (i = 0; i < dtv[1]; i++) {
5103 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5104 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5105 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5106 	    }
5107 	}
5108     } else {
5109 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5110 	tcb[0] = dtv;
5111 	dtv[0] = tls_dtv_generation;
5112 	dtv[1] = tls_max_index;
5113 
5114 	for (obj = globallist_curr(objs); obj != NULL;
5115 	  obj = globallist_next(obj)) {
5116 	    if (obj->tlsoffset == 0)
5117 		continue;
5118 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5119 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5120 	    if (tls_init_offset > 0)
5121 		memset((void *)addr, 0, tls_init_offset);
5122 	    if (obj->tlsinitsize > 0) {
5123 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5124 		    obj->tlsinitsize);
5125 	    }
5126 	    if (obj->tlssize > obj->tlsinitsize) {
5127 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5128 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5129 	    }
5130 	    dtv[obj->tlsindex + 1] = addr;
5131 	}
5132     }
5133 
5134     return (tcb);
5135 }
5136 
5137 void
5138 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5139 {
5140     Elf_Addr *dtv;
5141     Elf_Addr tlsstart, tlsend;
5142     size_t post_size;
5143     size_t dtvsize, i, tls_init_align;
5144 
5145     assert(tcbsize >= TLS_TCB_SIZE);
5146     tls_init_align = MAX(obj_main->tlsalign, 1);
5147 
5148     /* Compute fragments sizes. */
5149     post_size = calculate_tls_post_size(tls_init_align);
5150 
5151     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5152     tlsend = (Elf_Addr)tcb + tls_static_space;
5153 
5154     dtv = *(Elf_Addr **)tcb;
5155     dtvsize = dtv[1];
5156     for (i = 0; i < dtvsize; i++) {
5157 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5158 	    free((void*)dtv[i+2]);
5159 	}
5160     }
5161     free(dtv);
5162     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5163 }
5164 
5165 #endif	/* TLS_VARIANT_I */
5166 
5167 #ifdef TLS_VARIANT_II
5168 
5169 /*
5170  * Allocate Static TLS using the Variant II method.
5171  */
5172 void *
5173 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5174 {
5175     Obj_Entry *obj;
5176     size_t size, ralign;
5177     char *tls;
5178     Elf_Addr *dtv, *olddtv;
5179     Elf_Addr segbase, oldsegbase, addr;
5180     size_t i;
5181 
5182     ralign = tcbalign;
5183     if (tls_static_max_align > ralign)
5184 	    ralign = tls_static_max_align;
5185     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5186 
5187     assert(tcbsize >= 2*sizeof(Elf_Addr));
5188     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5189     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5190 
5191     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5192     ((Elf_Addr*)segbase)[0] = segbase;
5193     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5194 
5195     dtv[0] = tls_dtv_generation;
5196     dtv[1] = tls_max_index;
5197 
5198     if (oldtls) {
5199 	/*
5200 	 * Copy the static TLS block over whole.
5201 	 */
5202 	oldsegbase = (Elf_Addr) oldtls;
5203 	memcpy((void *)(segbase - tls_static_space),
5204 	       (const void *)(oldsegbase - tls_static_space),
5205 	       tls_static_space);
5206 
5207 	/*
5208 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5209 	 * move them over.
5210 	 */
5211 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5212 	for (i = 0; i < olddtv[1]; i++) {
5213 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5214 		dtv[i+2] = olddtv[i+2];
5215 		olddtv[i+2] = 0;
5216 	    }
5217 	}
5218 
5219 	/*
5220 	 * We assume that this block was the one we created with
5221 	 * allocate_initial_tls().
5222 	 */
5223 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5224     } else {
5225 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5226 		if (obj->marker || obj->tlsoffset == 0)
5227 			continue;
5228 		addr = segbase - obj->tlsoffset;
5229 		memset((void*)(addr + obj->tlsinitsize),
5230 		       0, obj->tlssize - obj->tlsinitsize);
5231 		if (obj->tlsinit) {
5232 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5233 		    obj->static_tls_copied = true;
5234 		}
5235 		dtv[obj->tlsindex + 1] = addr;
5236 	}
5237     }
5238 
5239     return (void*) segbase;
5240 }
5241 
5242 void
5243 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5244 {
5245     Elf_Addr* dtv;
5246     size_t size, ralign;
5247     int dtvsize, i;
5248     Elf_Addr tlsstart, tlsend;
5249 
5250     /*
5251      * Figure out the size of the initial TLS block so that we can
5252      * find stuff which ___tls_get_addr() allocated dynamically.
5253      */
5254     ralign = tcbalign;
5255     if (tls_static_max_align > ralign)
5256 	    ralign = tls_static_max_align;
5257     size = roundup(tls_static_space, ralign);
5258 
5259     dtv = ((Elf_Addr**)tls)[1];
5260     dtvsize = dtv[1];
5261     tlsend = (Elf_Addr) tls;
5262     tlsstart = tlsend - size;
5263     for (i = 0; i < dtvsize; i++) {
5264 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5265 		free_aligned((void *)dtv[i + 2]);
5266 	}
5267     }
5268 
5269     free_aligned((void *)tlsstart);
5270     free((void*) dtv);
5271 }
5272 
5273 #endif	/* TLS_VARIANT_II */
5274 
5275 /*
5276  * Allocate TLS block for module with given index.
5277  */
5278 void *
5279 allocate_module_tls(int index)
5280 {
5281 	Obj_Entry *obj;
5282 	char *p;
5283 
5284 	TAILQ_FOREACH(obj, &obj_list, next) {
5285 		if (obj->marker)
5286 			continue;
5287 		if (obj->tlsindex == index)
5288 			break;
5289 	}
5290 	if (obj == NULL) {
5291 		_rtld_error("Can't find module with TLS index %d", index);
5292 		rtld_die();
5293 	}
5294 
5295 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5296 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5297 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5298 	return (p);
5299 }
5300 
5301 bool
5302 allocate_tls_offset(Obj_Entry *obj)
5303 {
5304     size_t off;
5305 
5306     if (obj->tls_done)
5307 	return true;
5308 
5309     if (obj->tlssize == 0) {
5310 	obj->tls_done = true;
5311 	return true;
5312     }
5313 
5314     if (tls_last_offset == 0)
5315 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5316 	  obj->tlspoffset);
5317     else
5318 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5319 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5320 
5321     obj->tlsoffset = off;
5322 #ifdef TLS_VARIANT_I
5323     off += obj->tlssize;
5324 #endif
5325 
5326     /*
5327      * If we have already fixed the size of the static TLS block, we
5328      * must stay within that size. When allocating the static TLS, we
5329      * leave a small amount of space spare to be used for dynamically
5330      * loading modules which use static TLS.
5331      */
5332     if (tls_static_space != 0) {
5333 	if (off > tls_static_space)
5334 	    return false;
5335     } else if (obj->tlsalign > tls_static_max_align) {
5336 	    tls_static_max_align = obj->tlsalign;
5337     }
5338 
5339     tls_last_offset = off;
5340     tls_last_size = obj->tlssize;
5341     obj->tls_done = true;
5342 
5343     return true;
5344 }
5345 
5346 void
5347 free_tls_offset(Obj_Entry *obj)
5348 {
5349 
5350     /*
5351      * If we were the last thing to allocate out of the static TLS
5352      * block, we give our space back to the 'allocator'. This is a
5353      * simplistic workaround to allow libGL.so.1 to be loaded and
5354      * unloaded multiple times.
5355      */
5356     size_t off = obj->tlsoffset;
5357 #ifdef TLS_VARIANT_I
5358     off += obj->tlssize;
5359 #endif
5360     if (off == tls_last_offset) {
5361 	tls_last_offset -= obj->tlssize;
5362 	tls_last_size = 0;
5363     }
5364 }
5365 
5366 void *
5367 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5368 {
5369     void *ret;
5370     RtldLockState lockstate;
5371 
5372     wlock_acquire(rtld_bind_lock, &lockstate);
5373     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5374       tcbsize, tcbalign);
5375     lock_release(rtld_bind_lock, &lockstate);
5376     return (ret);
5377 }
5378 
5379 void
5380 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5381 {
5382     RtldLockState lockstate;
5383 
5384     wlock_acquire(rtld_bind_lock, &lockstate);
5385     free_tls(tcb, tcbsize, tcbalign);
5386     lock_release(rtld_bind_lock, &lockstate);
5387 }
5388 
5389 static void
5390 object_add_name(Obj_Entry *obj, const char *name)
5391 {
5392     Name_Entry *entry;
5393     size_t len;
5394 
5395     len = strlen(name);
5396     entry = malloc(sizeof(Name_Entry) + len);
5397 
5398     if (entry != NULL) {
5399 	strcpy(entry->name, name);
5400 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5401     }
5402 }
5403 
5404 static int
5405 object_match_name(const Obj_Entry *obj, const char *name)
5406 {
5407     Name_Entry *entry;
5408 
5409     STAILQ_FOREACH(entry, &obj->names, link) {
5410 	if (strcmp(name, entry->name) == 0)
5411 	    return (1);
5412     }
5413     return (0);
5414 }
5415 
5416 static Obj_Entry *
5417 locate_dependency(const Obj_Entry *obj, const char *name)
5418 {
5419     const Objlist_Entry *entry;
5420     const Needed_Entry *needed;
5421 
5422     STAILQ_FOREACH(entry, &list_main, link) {
5423 	if (object_match_name(entry->obj, name))
5424 	    return entry->obj;
5425     }
5426 
5427     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5428 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5429 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5430 	    /*
5431 	     * If there is DT_NEEDED for the name we are looking for,
5432 	     * we are all set.  Note that object might not be found if
5433 	     * dependency was not loaded yet, so the function can
5434 	     * return NULL here.  This is expected and handled
5435 	     * properly by the caller.
5436 	     */
5437 	    return (needed->obj);
5438 	}
5439     }
5440     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5441 	obj->path, name);
5442     rtld_die();
5443 }
5444 
5445 static int
5446 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5447     const Elf_Vernaux *vna)
5448 {
5449     const Elf_Verdef *vd;
5450     const char *vername;
5451 
5452     vername = refobj->strtab + vna->vna_name;
5453     vd = depobj->verdef;
5454     if (vd == NULL) {
5455 	_rtld_error("%s: version %s required by %s not defined",
5456 	    depobj->path, vername, refobj->path);
5457 	return (-1);
5458     }
5459     for (;;) {
5460 	if (vd->vd_version != VER_DEF_CURRENT) {
5461 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5462 		depobj->path, vd->vd_version);
5463 	    return (-1);
5464 	}
5465 	if (vna->vna_hash == vd->vd_hash) {
5466 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5467 		((const char *)vd + vd->vd_aux);
5468 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5469 		return (0);
5470 	}
5471 	if (vd->vd_next == 0)
5472 	    break;
5473 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5474     }
5475     if (vna->vna_flags & VER_FLG_WEAK)
5476 	return (0);
5477     _rtld_error("%s: version %s required by %s not found",
5478 	depobj->path, vername, refobj->path);
5479     return (-1);
5480 }
5481 
5482 static int
5483 rtld_verify_object_versions(Obj_Entry *obj)
5484 {
5485     const Elf_Verneed *vn;
5486     const Elf_Verdef  *vd;
5487     const Elf_Verdaux *vda;
5488     const Elf_Vernaux *vna;
5489     const Obj_Entry *depobj;
5490     int maxvernum, vernum;
5491 
5492     if (obj->ver_checked)
5493 	return (0);
5494     obj->ver_checked = true;
5495 
5496     maxvernum = 0;
5497     /*
5498      * Walk over defined and required version records and figure out
5499      * max index used by any of them. Do very basic sanity checking
5500      * while there.
5501      */
5502     vn = obj->verneed;
5503     while (vn != NULL) {
5504 	if (vn->vn_version != VER_NEED_CURRENT) {
5505 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5506 		obj->path, vn->vn_version);
5507 	    return (-1);
5508 	}
5509 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5510 	for (;;) {
5511 	    vernum = VER_NEED_IDX(vna->vna_other);
5512 	    if (vernum > maxvernum)
5513 		maxvernum = vernum;
5514 	    if (vna->vna_next == 0)
5515 		 break;
5516 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5517 	}
5518 	if (vn->vn_next == 0)
5519 	    break;
5520 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5521     }
5522 
5523     vd = obj->verdef;
5524     while (vd != NULL) {
5525 	if (vd->vd_version != VER_DEF_CURRENT) {
5526 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5527 		obj->path, vd->vd_version);
5528 	    return (-1);
5529 	}
5530 	vernum = VER_DEF_IDX(vd->vd_ndx);
5531 	if (vernum > maxvernum)
5532 		maxvernum = vernum;
5533 	if (vd->vd_next == 0)
5534 	    break;
5535 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5536     }
5537 
5538     if (maxvernum == 0)
5539 	return (0);
5540 
5541     /*
5542      * Store version information in array indexable by version index.
5543      * Verify that object version requirements are satisfied along the
5544      * way.
5545      */
5546     obj->vernum = maxvernum + 1;
5547     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5548 
5549     vd = obj->verdef;
5550     while (vd != NULL) {
5551 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5552 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5553 	    assert(vernum <= maxvernum);
5554 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5555 	    obj->vertab[vernum].hash = vd->vd_hash;
5556 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5557 	    obj->vertab[vernum].file = NULL;
5558 	    obj->vertab[vernum].flags = 0;
5559 	}
5560 	if (vd->vd_next == 0)
5561 	    break;
5562 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5563     }
5564 
5565     vn = obj->verneed;
5566     while (vn != NULL) {
5567 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5568 	if (depobj == NULL)
5569 	    return (-1);
5570 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5571 	for (;;) {
5572 	    if (check_object_provided_version(obj, depobj, vna))
5573 		return (-1);
5574 	    vernum = VER_NEED_IDX(vna->vna_other);
5575 	    assert(vernum <= maxvernum);
5576 	    obj->vertab[vernum].hash = vna->vna_hash;
5577 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5578 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5579 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5580 		VER_INFO_HIDDEN : 0;
5581 	    if (vna->vna_next == 0)
5582 		 break;
5583 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5584 	}
5585 	if (vn->vn_next == 0)
5586 	    break;
5587 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5588     }
5589     return 0;
5590 }
5591 
5592 static int
5593 rtld_verify_versions(const Objlist *objlist)
5594 {
5595     Objlist_Entry *entry;
5596     int rc;
5597 
5598     rc = 0;
5599     STAILQ_FOREACH(entry, objlist, link) {
5600 	/*
5601 	 * Skip dummy objects or objects that have their version requirements
5602 	 * already checked.
5603 	 */
5604 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5605 	    continue;
5606 	if (rtld_verify_object_versions(entry->obj) == -1) {
5607 	    rc = -1;
5608 	    if (ld_tracing == NULL)
5609 		break;
5610 	}
5611     }
5612     if (rc == 0 || ld_tracing != NULL)
5613     	rc = rtld_verify_object_versions(&obj_rtld);
5614     return rc;
5615 }
5616 
5617 const Ver_Entry *
5618 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5619 {
5620     Elf_Versym vernum;
5621 
5622     if (obj->vertab) {
5623 	vernum = VER_NDX(obj->versyms[symnum]);
5624 	if (vernum >= obj->vernum) {
5625 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5626 		obj->path, obj->strtab + symnum, vernum);
5627 	} else if (obj->vertab[vernum].hash != 0) {
5628 	    return &obj->vertab[vernum];
5629 	}
5630     }
5631     return NULL;
5632 }
5633 
5634 int
5635 _rtld_get_stack_prot(void)
5636 {
5637 
5638 	return (stack_prot);
5639 }
5640 
5641 int
5642 _rtld_is_dlopened(void *arg)
5643 {
5644 	Obj_Entry *obj;
5645 	RtldLockState lockstate;
5646 	int res;
5647 
5648 	rlock_acquire(rtld_bind_lock, &lockstate);
5649 	obj = dlcheck(arg);
5650 	if (obj == NULL)
5651 		obj = obj_from_addr(arg);
5652 	if (obj == NULL) {
5653 		_rtld_error("No shared object contains address");
5654 		lock_release(rtld_bind_lock, &lockstate);
5655 		return (-1);
5656 	}
5657 	res = obj->dlopened ? 1 : 0;
5658 	lock_release(rtld_bind_lock, &lockstate);
5659 	return (res);
5660 }
5661 
5662 static int
5663 obj_remap_relro(Obj_Entry *obj, int prot)
5664 {
5665 
5666 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5667 	    prot) == -1) {
5668 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5669 		    obj->path, prot, rtld_strerror(errno));
5670 		return (-1);
5671 	}
5672 	return (0);
5673 }
5674 
5675 static int
5676 obj_disable_relro(Obj_Entry *obj)
5677 {
5678 
5679 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5680 }
5681 
5682 static int
5683 obj_enforce_relro(Obj_Entry *obj)
5684 {
5685 
5686 	return (obj_remap_relro(obj, PROT_READ));
5687 }
5688 
5689 static void
5690 map_stacks_exec(RtldLockState *lockstate)
5691 {
5692 	void (*thr_map_stacks_exec)(void);
5693 
5694 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5695 		return;
5696 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5697 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5698 	if (thr_map_stacks_exec != NULL) {
5699 		stack_prot |= PROT_EXEC;
5700 		thr_map_stacks_exec();
5701 	}
5702 }
5703 
5704 static void
5705 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5706 {
5707 	Objlist_Entry *elm;
5708 	Obj_Entry *obj;
5709 	void (*distrib)(size_t, void *, size_t, size_t);
5710 
5711 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5712 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5713 	if (distrib == NULL)
5714 		return;
5715 	STAILQ_FOREACH(elm, list, link) {
5716 		obj = elm->obj;
5717 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5718 			continue;
5719 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5720 		    obj->tlssize);
5721 		obj->static_tls_copied = true;
5722 	}
5723 }
5724 
5725 void
5726 symlook_init(SymLook *dst, const char *name)
5727 {
5728 
5729 	bzero(dst, sizeof(*dst));
5730 	dst->name = name;
5731 	dst->hash = elf_hash(name);
5732 	dst->hash_gnu = gnu_hash(name);
5733 }
5734 
5735 static void
5736 symlook_init_from_req(SymLook *dst, const SymLook *src)
5737 {
5738 
5739 	dst->name = src->name;
5740 	dst->hash = src->hash;
5741 	dst->hash_gnu = src->hash_gnu;
5742 	dst->ventry = src->ventry;
5743 	dst->flags = src->flags;
5744 	dst->defobj_out = NULL;
5745 	dst->sym_out = NULL;
5746 	dst->lockstate = src->lockstate;
5747 }
5748 
5749 static int
5750 open_binary_fd(const char *argv0, bool search_in_path,
5751     const char **binpath_res)
5752 {
5753 	char *binpath, *pathenv, *pe, *res1;
5754 	const char *res;
5755 	int fd;
5756 
5757 	binpath = NULL;
5758 	res = NULL;
5759 	if (search_in_path && strchr(argv0, '/') == NULL) {
5760 		binpath = xmalloc(PATH_MAX);
5761 		pathenv = getenv("PATH");
5762 		if (pathenv == NULL) {
5763 			_rtld_error("-p and no PATH environment variable");
5764 			rtld_die();
5765 		}
5766 		pathenv = strdup(pathenv);
5767 		if (pathenv == NULL) {
5768 			_rtld_error("Cannot allocate memory");
5769 			rtld_die();
5770 		}
5771 		fd = -1;
5772 		errno = ENOENT;
5773 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5774 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5775 				continue;
5776 			if (binpath[0] != '\0' &&
5777 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5778 				continue;
5779 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5780 				continue;
5781 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5782 			if (fd != -1 || errno != ENOENT) {
5783 				res = binpath;
5784 				break;
5785 			}
5786 		}
5787 		free(pathenv);
5788 	} else {
5789 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5790 		res = argv0;
5791 	}
5792 
5793 	if (fd == -1) {
5794 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5795 		rtld_die();
5796 	}
5797 	if (res != NULL && res[0] != '/') {
5798 		res1 = xmalloc(PATH_MAX);
5799 		if (realpath(res, res1) != NULL) {
5800 			if (res != argv0)
5801 				free(__DECONST(char *, res));
5802 			res = res1;
5803 		} else {
5804 			free(res1);
5805 		}
5806 	}
5807 	*binpath_res = res;
5808 	return (fd);
5809 }
5810 
5811 /*
5812  * Parse a set of command-line arguments.
5813  */
5814 static int
5815 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5816     const char **argv0)
5817 {
5818 	const char *arg;
5819 	char machine[64];
5820 	size_t sz;
5821 	int arglen, fd, i, j, mib[2];
5822 	char opt;
5823 	bool seen_b, seen_f;
5824 
5825 	dbg("Parsing command-line arguments");
5826 	*use_pathp = false;
5827 	*fdp = -1;
5828 	seen_b = seen_f = false;
5829 
5830 	for (i = 1; i < argc; i++ ) {
5831 		arg = argv[i];
5832 		dbg("argv[%d]: '%s'", i, arg);
5833 
5834 		/*
5835 		 * rtld arguments end with an explicit "--" or with the first
5836 		 * non-prefixed argument.
5837 		 */
5838 		if (strcmp(arg, "--") == 0) {
5839 			i++;
5840 			break;
5841 		}
5842 		if (arg[0] != '-')
5843 			break;
5844 
5845 		/*
5846 		 * All other arguments are single-character options that can
5847 		 * be combined, so we need to search through `arg` for them.
5848 		 */
5849 		arglen = strlen(arg);
5850 		for (j = 1; j < arglen; j++) {
5851 			opt = arg[j];
5852 			if (opt == 'h') {
5853 				print_usage(argv[0]);
5854 				_exit(0);
5855 			} else if (opt == 'b') {
5856 				if (seen_f) {
5857 					_rtld_error("Both -b and -f specified");
5858 					rtld_die();
5859 				}
5860 				i++;
5861 				*argv0 = argv[i];
5862 				seen_b = true;
5863 				break;
5864 			} else if (opt == 'f') {
5865 				if (seen_b) {
5866 					_rtld_error("Both -b and -f specified");
5867 					rtld_die();
5868 				}
5869 
5870 				/*
5871 				 * -f XX can be used to specify a
5872 				 * descriptor for the binary named at
5873 				 * the command line (i.e., the later
5874 				 * argument will specify the process
5875 				 * name but the descriptor is what
5876 				 * will actually be executed).
5877 				 *
5878 				 * -f must be the last option in, e.g., -abcf.
5879 				 */
5880 				if (j != arglen - 1) {
5881 					_rtld_error("Invalid options: %s", arg);
5882 					rtld_die();
5883 				}
5884 				i++;
5885 				fd = parse_integer(argv[i]);
5886 				if (fd == -1) {
5887 					_rtld_error(
5888 					    "Invalid file descriptor: '%s'",
5889 					    argv[i]);
5890 					rtld_die();
5891 				}
5892 				*fdp = fd;
5893 				seen_f = true;
5894 				break;
5895 			} else if (opt == 'p') {
5896 				*use_pathp = true;
5897 			} else if (opt == 'u') {
5898 				trust = false;
5899 			} else if (opt == 'v') {
5900 				machine[0] = '\0';
5901 				mib[0] = CTL_HW;
5902 				mib[1] = HW_MACHINE;
5903 				sz = sizeof(machine);
5904 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5905 				rtld_printf(
5906 				    "FreeBSD ld-elf.so.1 %s\n"
5907 				    "FreeBSD_version %d\n"
5908 				    "Default lib path %s\n"
5909 				    "Env prefix %s\n"
5910 				    "Hint file %s\n"
5911 				    "libmap file %s\n",
5912 				    machine,
5913 				    __FreeBSD_version, ld_standard_library_path,
5914 				    ld_env_prefix, ld_elf_hints_default,
5915 				    ld_path_libmap_conf);
5916 				_exit(0);
5917 			} else {
5918 				_rtld_error("Invalid argument: '%s'", arg);
5919 				print_usage(argv[0]);
5920 				rtld_die();
5921 			}
5922 		}
5923 	}
5924 
5925 	if (!seen_b)
5926 		*argv0 = argv[i];
5927 	return (i);
5928 }
5929 
5930 /*
5931  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5932  */
5933 static int
5934 parse_integer(const char *str)
5935 {
5936 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5937 	const char *orig;
5938 	int n;
5939 	char c;
5940 
5941 	orig = str;
5942 	n = 0;
5943 	for (c = *str; c != '\0'; c = *++str) {
5944 		if (c < '0' || c > '9')
5945 			return (-1);
5946 
5947 		n *= RADIX;
5948 		n += c - '0';
5949 	}
5950 
5951 	/* Make sure we actually parsed something. */
5952 	if (str == orig)
5953 		return (-1);
5954 	return (n);
5955 }
5956 
5957 static void
5958 print_usage(const char *argv0)
5959 {
5960 
5961 	rtld_printf(
5962 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5963 	    "\n"
5964 	    "Options:\n"
5965 	    "  -h        Display this help message\n"
5966 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5967 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5968 	    "  -p        Search in PATH for named binary\n"
5969 	    "  -u        Ignore LD_ environment variables\n"
5970 	    "  -v        Display identification information\n"
5971 	    "  --        End of RTLD options\n"
5972 	    "  <binary>  Name of process to execute\n"
5973 	    "  <args>    Arguments to the executed process\n", argv0);
5974 }
5975 
5976 /*
5977  * Overrides for libc_pic-provided functions.
5978  */
5979 
5980 int
5981 __getosreldate(void)
5982 {
5983 	size_t len;
5984 	int oid[2];
5985 	int error, osrel;
5986 
5987 	if (osreldate != 0)
5988 		return (osreldate);
5989 
5990 	oid[0] = CTL_KERN;
5991 	oid[1] = KERN_OSRELDATE;
5992 	osrel = 0;
5993 	len = sizeof(osrel);
5994 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5995 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5996 		osreldate = osrel;
5997 	return (osreldate);
5998 }
5999 const char *
6000 rtld_strerror(int errnum)
6001 {
6002 
6003 	if (errnum < 0 || errnum >= sys_nerr)
6004 		return ("Unknown error");
6005 	return (sys_errlist[errnum]);
6006 }
6007 
6008 /* malloc */
6009 void *
6010 malloc(size_t nbytes)
6011 {
6012 
6013 	return (__crt_malloc(nbytes));
6014 }
6015 
6016 void *
6017 calloc(size_t num, size_t size)
6018 {
6019 
6020 	return (__crt_calloc(num, size));
6021 }
6022 
6023 void
6024 free(void *cp)
6025 {
6026 
6027 	__crt_free(cp);
6028 }
6029 
6030 void *
6031 realloc(void *cp, size_t nbytes)
6032 {
6033 
6034 	return (__crt_realloc(cp, nbytes));
6035 }
6036 
6037 extern int _rtld_version__FreeBSD_version __exported;
6038 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6039 
6040 extern char _rtld_version_laddr_offset __exported;
6041 char _rtld_version_laddr_offset;
6042 
6043 extern char _rtld_version_dlpi_tls_data __exported;
6044 char _rtld_version_dlpi_tls_data;
6045