1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 /* 29 * Dynamic linker for ELF. 30 * 31 * John Polstra <jdp@polstra.com>. 32 */ 33 34 #ifndef __GNUC__ 35 #error "GCC is needed to compile this file" 36 #endif 37 38 #include <sys/param.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 42 #include <dlfcn.h> 43 #include <err.h> 44 #include <errno.h> 45 #include <fcntl.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <unistd.h> 51 52 #include "debug.h" 53 #include "rtld.h" 54 55 #define END_SYM "_end" 56 #define PATH_RTLD "/usr/libexec/ld-elf.so.1" 57 58 /* Types. */ 59 typedef void (*func_ptr_type)(); 60 61 /* 62 * This structure provides a reentrant way to keep a list of objects and 63 * check which ones have already been processed in some way. 64 */ 65 typedef struct Struct_DoneList { 66 const Obj_Entry **objs; /* Array of object pointers */ 67 unsigned int num_alloc; /* Allocated size of the array */ 68 unsigned int num_used; /* Number of array slots used */ 69 } DoneList; 70 71 /* 72 * Function declarations. 73 */ 74 static const char *basename(const char *); 75 static void die(void); 76 static void digest_dynamic(Obj_Entry *); 77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 78 static Obj_Entry *dlcheck(void *); 79 static bool donelist_check(DoneList *, const Obj_Entry *); 80 static void errmsg_restore(char *); 81 static char *errmsg_save(void); 82 static char *find_library(const char *, const Obj_Entry *); 83 static const char *gethints(void); 84 static void init_dag(Obj_Entry *); 85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *); 86 static void init_rtld(caddr_t); 87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list); 88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, 89 Objlist *list); 90 static bool is_exported(const Elf_Sym *); 91 static void linkmap_add(Obj_Entry *); 92 static void linkmap_delete(Obj_Entry *); 93 static int load_needed_objects(Obj_Entry *); 94 static int load_preload_objects(void); 95 static Obj_Entry *load_object(char *); 96 static void lock_check(void); 97 static Obj_Entry *obj_from_addr(const void *); 98 static void objlist_call_fini(Objlist *); 99 static void objlist_call_init(Objlist *); 100 static void objlist_clear(Objlist *); 101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 102 static void objlist_init(Objlist *); 103 static void objlist_push_head(Objlist *, Obj_Entry *); 104 static void objlist_push_tail(Objlist *, Obj_Entry *); 105 static void objlist_remove(Objlist *, Obj_Entry *); 106 static void objlist_remove_unref(Objlist *); 107 static int relocate_objects(Obj_Entry *, bool); 108 static void rtld_exit(void); 109 static char *search_library_path(const char *, const char *); 110 static void set_program_var(const char *, const void *); 111 static const Elf_Sym *symlook_default(const char *, unsigned long hash, 112 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt); 113 static const Elf_Sym *symlook_list(const char *, unsigned long, 114 Objlist *, const Obj_Entry **, bool in_plt, DoneList *); 115 static void trace_loaded_objects(Obj_Entry *obj); 116 static void unload_object(Obj_Entry *); 117 static void unref_dag(Obj_Entry *); 118 119 void r_debug_state(struct r_debug*, struct link_map*); 120 void xprintf(const char *, ...); 121 122 /* 123 * Data declarations. 124 */ 125 static char *error_message; /* Message for dlerror(), or NULL */ 126 struct r_debug r_debug; /* for GDB; */ 127 static bool trust; /* False for setuid and setgid programs */ 128 static char *ld_bind_now; /* Environment variable for immediate binding */ 129 static char *ld_debug; /* Environment variable for debugging */ 130 static char *ld_library_path; /* Environment variable for search path */ 131 static char *ld_preload; /* Environment variable for libraries to 132 load first */ 133 static char *ld_tracing; /* Called from ldd to print libs */ 134 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 135 static Obj_Entry **obj_tail; /* Link field of last object in list */ 136 static Obj_Entry *obj_main; /* The main program shared object */ 137 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 138 static unsigned int obj_count; /* Number of objects in obj_list */ 139 140 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 141 STAILQ_HEAD_INITIALIZER(list_global); 142 static Objlist list_main = /* Objects loaded at program startup */ 143 STAILQ_HEAD_INITIALIZER(list_main); 144 static Objlist list_fini = /* Objects needing fini() calls */ 145 STAILQ_HEAD_INITIALIZER(list_fini); 146 147 static LockInfo lockinfo; 148 149 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 150 151 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 152 153 extern Elf_Dyn _DYNAMIC; 154 #pragma weak _DYNAMIC 155 156 /* 157 * These are the functions the dynamic linker exports to application 158 * programs. They are the only symbols the dynamic linker is willing 159 * to export from itself. 160 */ 161 static func_ptr_type exports[] = { 162 (func_ptr_type) &_rtld_error, 163 (func_ptr_type) &dlclose, 164 (func_ptr_type) &dlerror, 165 (func_ptr_type) &dlopen, 166 (func_ptr_type) &dlsym, 167 (func_ptr_type) &dladdr, 168 (func_ptr_type) &dllockinit, 169 NULL 170 }; 171 172 /* 173 * Global declarations normally provided by crt1. The dynamic linker is 174 * not built with crt1, so we have to provide them ourselves. 175 */ 176 char *__progname; 177 char **environ; 178 179 /* 180 * Fill in a DoneList with an allocation large enough to hold all of 181 * the currently-loaded objects. Keep this as a macro since it calls 182 * alloca and we want that to occur within the scope of the caller. 183 */ 184 #define donelist_init(dlp) \ 185 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 186 assert((dlp)->objs != NULL), \ 187 (dlp)->num_alloc = obj_count, \ 188 (dlp)->num_used = 0) 189 190 static __inline void 191 rlock_acquire(void) 192 { 193 lockinfo.rlock_acquire(lockinfo.thelock); 194 atomic_incr_int(&lockinfo.rcount); 195 lock_check(); 196 } 197 198 static __inline void 199 wlock_acquire(void) 200 { 201 lockinfo.wlock_acquire(lockinfo.thelock); 202 atomic_incr_int(&lockinfo.wcount); 203 lock_check(); 204 } 205 206 static __inline void 207 rlock_release(void) 208 { 209 atomic_decr_int(&lockinfo.rcount); 210 lockinfo.rlock_release(lockinfo.thelock); 211 } 212 213 static __inline void 214 wlock_release(void) 215 { 216 atomic_decr_int(&lockinfo.wcount); 217 lockinfo.wlock_release(lockinfo.thelock); 218 } 219 220 /* 221 * Main entry point for dynamic linking. The first argument is the 222 * stack pointer. The stack is expected to be laid out as described 223 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 224 * Specifically, the stack pointer points to a word containing 225 * ARGC. Following that in the stack is a null-terminated sequence 226 * of pointers to argument strings. Then comes a null-terminated 227 * sequence of pointers to environment strings. Finally, there is a 228 * sequence of "auxiliary vector" entries. 229 * 230 * The second argument points to a place to store the dynamic linker's 231 * exit procedure pointer and the third to a place to store the main 232 * program's object. 233 * 234 * The return value is the main program's entry point. 235 */ 236 func_ptr_type 237 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 238 { 239 Elf_Auxinfo *aux_info[AT_COUNT]; 240 int i; 241 int argc; 242 char **argv; 243 char **env; 244 Elf_Auxinfo *aux; 245 Elf_Auxinfo *auxp; 246 const char *argv0; 247 Obj_Entry *obj; 248 Obj_Entry **preload_tail; 249 Objlist initlist; 250 251 /* 252 * On entry, the dynamic linker itself has not been relocated yet. 253 * Be very careful not to reference any global data until after 254 * init_rtld has returned. It is OK to reference file-scope statics 255 * and string constants, and to call static and global functions. 256 */ 257 258 /* Find the auxiliary vector on the stack. */ 259 argc = *sp++; 260 argv = (char **) sp; 261 sp += argc + 1; /* Skip over arguments and NULL terminator */ 262 env = (char **) sp; 263 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 264 ; 265 aux = (Elf_Auxinfo *) sp; 266 267 /* Digest the auxiliary vector. */ 268 for (i = 0; i < AT_COUNT; i++) 269 aux_info[i] = NULL; 270 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 271 if (auxp->a_type < AT_COUNT) 272 aux_info[auxp->a_type] = auxp; 273 } 274 275 /* Initialize and relocate ourselves. */ 276 assert(aux_info[AT_BASE] != NULL); 277 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 278 279 __progname = obj_rtld.path; 280 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 281 environ = env; 282 283 trust = geteuid() == getuid() && getegid() == getgid(); 284 285 ld_bind_now = getenv("LD_BIND_NOW"); 286 if (trust) { 287 ld_debug = getenv("LD_DEBUG"); 288 ld_library_path = getenv("LD_LIBRARY_PATH"); 289 ld_preload = getenv("LD_PRELOAD"); 290 } 291 ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS"); 292 293 if (ld_debug != NULL && *ld_debug != '\0') 294 debug = 1; 295 dbg("%s is initialized, base address = %p", __progname, 296 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 297 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 298 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 299 300 /* 301 * Load the main program, or process its program header if it is 302 * already loaded. 303 */ 304 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 305 int fd = aux_info[AT_EXECFD]->a_un.a_val; 306 dbg("loading main program"); 307 obj_main = map_object(fd, argv0, NULL); 308 close(fd); 309 if (obj_main == NULL) 310 die(); 311 } else { /* Main program already loaded. */ 312 const Elf_Phdr *phdr; 313 int phnum; 314 caddr_t entry; 315 316 dbg("processing main program's program header"); 317 assert(aux_info[AT_PHDR] != NULL); 318 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 319 assert(aux_info[AT_PHNUM] != NULL); 320 phnum = aux_info[AT_PHNUM]->a_un.a_val; 321 assert(aux_info[AT_PHENT] != NULL); 322 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 323 assert(aux_info[AT_ENTRY] != NULL); 324 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 325 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 326 die(); 327 } 328 329 obj_main->path = xstrdup(argv0); 330 obj_main->mainprog = true; 331 332 /* 333 * Get the actual dynamic linker pathname from the executable if 334 * possible. (It should always be possible.) That ensures that 335 * gdb will find the right dynamic linker even if a non-standard 336 * one is being used. 337 */ 338 if (obj_main->interp != NULL && 339 strcmp(obj_main->interp, obj_rtld.path) != 0) { 340 free(obj_rtld.path); 341 obj_rtld.path = xstrdup(obj_main->interp); 342 } 343 344 digest_dynamic(obj_main); 345 346 linkmap_add(obj_main); 347 linkmap_add(&obj_rtld); 348 349 /* Link the main program into the list of objects. */ 350 *obj_tail = obj_main; 351 obj_tail = &obj_main->next; 352 obj_count++; 353 obj_main->refcount++; 354 /* Make sure we don't call the main program's init and fini functions. */ 355 obj_main->init = obj_main->fini = NULL; 356 357 /* Initialize a fake symbol for resolving undefined weak references. */ 358 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 359 sym_zero.st_shndx = SHN_ABS; 360 361 dbg("loading LD_PRELOAD libraries"); 362 if (load_preload_objects() == -1) 363 die(); 364 preload_tail = obj_tail; 365 366 dbg("loading needed objects"); 367 if (load_needed_objects(obj_main) == -1) 368 die(); 369 370 /* Make a list of all objects loaded at startup. */ 371 for (obj = obj_list; obj != NULL; obj = obj->next) 372 objlist_push_tail(&list_main, obj); 373 374 if (ld_tracing) { /* We're done */ 375 trace_loaded_objects(obj_main); 376 exit(0); 377 } 378 379 if (relocate_objects(obj_main, 380 ld_bind_now != NULL && *ld_bind_now != '\0') == -1) 381 die(); 382 383 dbg("doing copy relocations"); 384 if (do_copy_relocations(obj_main) == -1) 385 die(); 386 387 dbg("initializing key program variables"); 388 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 389 set_program_var("environ", env); 390 391 dbg("initializing thread locks"); 392 lockdflt_init(&lockinfo); 393 lockinfo.thelock = lockinfo.lock_create(lockinfo.context); 394 395 /* Make a list of init functions to call. */ 396 objlist_init(&initlist); 397 initlist_add_objects(obj_list, preload_tail, &initlist); 398 399 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 400 401 objlist_call_init(&initlist); 402 wlock_acquire(); 403 objlist_clear(&initlist); 404 wlock_release(); 405 406 dbg("transferring control to program entry point = %p", obj_main->entry); 407 408 /* Return the exit procedure and the program entry point. */ 409 *exit_proc = rtld_exit; 410 *objp = obj_main; 411 return (func_ptr_type) obj_main->entry; 412 } 413 414 Elf_Addr 415 _rtld_bind(Obj_Entry *obj, Elf_Word reloff) 416 { 417 const Elf_Rel *rel; 418 const Elf_Sym *def; 419 const Obj_Entry *defobj; 420 Elf_Addr *where; 421 Elf_Addr target; 422 423 rlock_acquire(); 424 if (obj->pltrel) 425 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 426 else 427 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 428 429 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 430 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL); 431 if (def == NULL) 432 die(); 433 434 target = (Elf_Addr)(defobj->relocbase + def->st_value); 435 436 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 437 defobj->strtab + def->st_name, basename(obj->path), 438 (void *)target, basename(defobj->path)); 439 440 /* 441 * Write the new contents for the jmpslot. Note that depending on 442 * architecture, the value which we need to return back to the 443 * lazy binding trampoline may or may not be the target 444 * address. The value returned from reloc_jmpslot() is the value 445 * that the trampoline needs. 446 */ 447 target = reloc_jmpslot(where, target, defobj); 448 rlock_release(); 449 return target; 450 } 451 452 /* 453 * Error reporting function. Use it like printf. If formats the message 454 * into a buffer, and sets things up so that the next call to dlerror() 455 * will return the message. 456 */ 457 void 458 _rtld_error(const char *fmt, ...) 459 { 460 static char buf[512]; 461 va_list ap; 462 463 va_start(ap, fmt); 464 vsnprintf(buf, sizeof buf, fmt, ap); 465 error_message = buf; 466 va_end(ap); 467 } 468 469 /* 470 * Return a dynamically-allocated copy of the current error message, if any. 471 */ 472 static char * 473 errmsg_save(void) 474 { 475 return error_message == NULL ? NULL : xstrdup(error_message); 476 } 477 478 /* 479 * Restore the current error message from a copy which was previously saved 480 * by errmsg_save(). The copy is freed. 481 */ 482 static void 483 errmsg_restore(char *saved_msg) 484 { 485 if (saved_msg == NULL) 486 error_message = NULL; 487 else { 488 _rtld_error("%s", saved_msg); 489 free(saved_msg); 490 } 491 } 492 493 static const char * 494 basename(const char *name) 495 { 496 const char *p = strrchr(name, '/'); 497 return p != NULL ? p + 1 : name; 498 } 499 500 static void 501 die(void) 502 { 503 const char *msg = dlerror(); 504 505 if (msg == NULL) 506 msg = "Fatal error"; 507 errx(1, "%s", msg); 508 } 509 510 /* 511 * Process a shared object's DYNAMIC section, and save the important 512 * information in its Obj_Entry structure. 513 */ 514 static void 515 digest_dynamic(Obj_Entry *obj) 516 { 517 const Elf_Dyn *dynp; 518 Needed_Entry **needed_tail = &obj->needed; 519 const Elf_Dyn *dyn_rpath = NULL; 520 int plttype = DT_REL; 521 522 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 523 switch (dynp->d_tag) { 524 525 case DT_REL: 526 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 527 break; 528 529 case DT_RELSZ: 530 obj->relsize = dynp->d_un.d_val; 531 break; 532 533 case DT_RELENT: 534 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 535 break; 536 537 case DT_JMPREL: 538 obj->pltrel = (const Elf_Rel *) 539 (obj->relocbase + dynp->d_un.d_ptr); 540 break; 541 542 case DT_PLTRELSZ: 543 obj->pltrelsize = dynp->d_un.d_val; 544 break; 545 546 case DT_RELA: 547 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 548 break; 549 550 case DT_RELASZ: 551 obj->relasize = dynp->d_un.d_val; 552 break; 553 554 case DT_RELAENT: 555 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 556 break; 557 558 case DT_PLTREL: 559 plttype = dynp->d_un.d_val; 560 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 561 break; 562 563 case DT_SYMTAB: 564 obj->symtab = (const Elf_Sym *) 565 (obj->relocbase + dynp->d_un.d_ptr); 566 break; 567 568 case DT_SYMENT: 569 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 570 break; 571 572 case DT_STRTAB: 573 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 574 break; 575 576 case DT_STRSZ: 577 obj->strsize = dynp->d_un.d_val; 578 break; 579 580 case DT_HASH: 581 { 582 const Elf_Hashelt *hashtab = (const Elf_Hashelt *) 583 (obj->relocbase + dynp->d_un.d_ptr); 584 obj->nbuckets = hashtab[0]; 585 obj->nchains = hashtab[1]; 586 obj->buckets = hashtab + 2; 587 obj->chains = obj->buckets + obj->nbuckets; 588 } 589 break; 590 591 case DT_NEEDED: 592 if (!obj->rtld) { 593 Needed_Entry *nep = NEW(Needed_Entry); 594 nep->name = dynp->d_un.d_val; 595 nep->obj = NULL; 596 nep->next = NULL; 597 598 *needed_tail = nep; 599 needed_tail = &nep->next; 600 } 601 break; 602 603 case DT_PLTGOT: 604 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 605 break; 606 607 case DT_TEXTREL: 608 obj->textrel = true; 609 break; 610 611 case DT_SYMBOLIC: 612 obj->symbolic = true; 613 break; 614 615 case DT_RPATH: 616 /* 617 * We have to wait until later to process this, because we 618 * might not have gotten the address of the string table yet. 619 */ 620 dyn_rpath = dynp; 621 break; 622 623 case DT_SONAME: 624 /* Not used by the dynamic linker. */ 625 break; 626 627 case DT_INIT: 628 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 629 break; 630 631 case DT_FINI: 632 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 633 break; 634 635 case DT_DEBUG: 636 /* XXX - not implemented yet */ 637 dbg("Filling in DT_DEBUG entry"); 638 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 639 break; 640 641 default: 642 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 643 (long)dynp->d_tag); 644 break; 645 } 646 } 647 648 obj->traced = false; 649 650 if (plttype == DT_RELA) { 651 obj->pltrela = (const Elf_Rela *) obj->pltrel; 652 obj->pltrel = NULL; 653 obj->pltrelasize = obj->pltrelsize; 654 obj->pltrelsize = 0; 655 } 656 657 if (dyn_rpath != NULL) 658 obj->rpath = obj->strtab + dyn_rpath->d_un.d_val; 659 } 660 661 /* 662 * Process a shared object's program header. This is used only for the 663 * main program, when the kernel has already loaded the main program 664 * into memory before calling the dynamic linker. It creates and 665 * returns an Obj_Entry structure. 666 */ 667 static Obj_Entry * 668 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 669 { 670 Obj_Entry *obj; 671 const Elf_Phdr *phlimit = phdr + phnum; 672 const Elf_Phdr *ph; 673 int nsegs = 0; 674 675 obj = obj_new(); 676 for (ph = phdr; ph < phlimit; ph++) { 677 switch (ph->p_type) { 678 679 case PT_PHDR: 680 if ((const Elf_Phdr *)ph->p_vaddr != phdr) { 681 _rtld_error("%s: invalid PT_PHDR", path); 682 return NULL; 683 } 684 obj->phdr = (const Elf_Phdr *) ph->p_vaddr; 685 obj->phsize = ph->p_memsz; 686 break; 687 688 case PT_INTERP: 689 obj->interp = (const char *) ph->p_vaddr; 690 break; 691 692 case PT_LOAD: 693 if (nsegs >= 2) { 694 _rtld_error("%s: too many PT_LOAD segments", path); 695 return NULL; 696 } 697 if (nsegs == 0) { /* First load segment */ 698 obj->vaddrbase = trunc_page(ph->p_vaddr); 699 obj->mapbase = (caddr_t) obj->vaddrbase; 700 obj->relocbase = obj->mapbase - obj->vaddrbase; 701 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 702 obj->vaddrbase; 703 } else { /* Last load segment */ 704 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 705 obj->vaddrbase; 706 } 707 nsegs++; 708 break; 709 710 case PT_DYNAMIC: 711 obj->dynamic = (const Elf_Dyn *) ph->p_vaddr; 712 break; 713 } 714 } 715 if (nsegs < 2) { 716 _rtld_error("%s: too few PT_LOAD segments", path); 717 return NULL; 718 } 719 720 obj->entry = entry; 721 return obj; 722 } 723 724 static Obj_Entry * 725 dlcheck(void *handle) 726 { 727 Obj_Entry *obj; 728 729 for (obj = obj_list; obj != NULL; obj = obj->next) 730 if (obj == (Obj_Entry *) handle) 731 break; 732 733 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 734 _rtld_error("Invalid shared object handle %p", handle); 735 return NULL; 736 } 737 return obj; 738 } 739 740 /* 741 * If the given object is already in the donelist, return true. Otherwise 742 * add the object to the list and return false. 743 */ 744 static bool 745 donelist_check(DoneList *dlp, const Obj_Entry *obj) 746 { 747 unsigned int i; 748 749 for (i = 0; i < dlp->num_used; i++) 750 if (dlp->objs[i] == obj) 751 return true; 752 /* 753 * Our donelist allocation should always be sufficient. But if 754 * our threads locking isn't working properly, more shared objects 755 * could have been loaded since we allocated the list. That should 756 * never happen, but we'll handle it properly just in case it does. 757 */ 758 if (dlp->num_used < dlp->num_alloc) 759 dlp->objs[dlp->num_used++] = obj; 760 return false; 761 } 762 763 /* 764 * Hash function for symbol table lookup. Don't even think about changing 765 * this. It is specified by the System V ABI. 766 */ 767 unsigned long 768 elf_hash(const char *name) 769 { 770 const unsigned char *p = (const unsigned char *) name; 771 unsigned long h = 0; 772 unsigned long g; 773 774 while (*p != '\0') { 775 h = (h << 4) + *p++; 776 if ((g = h & 0xf0000000) != 0) 777 h ^= g >> 24; 778 h &= ~g; 779 } 780 return h; 781 } 782 783 /* 784 * Find the library with the given name, and return its full pathname. 785 * The returned string is dynamically allocated. Generates an error 786 * message and returns NULL if the library cannot be found. 787 * 788 * If the second argument is non-NULL, then it refers to an already- 789 * loaded shared object, whose library search path will be searched. 790 * 791 * The search order is: 792 * rpath in the referencing file 793 * LD_LIBRARY_PATH 794 * ldconfig hints 795 * /usr/lib 796 */ 797 static char * 798 find_library(const char *name, const Obj_Entry *refobj) 799 { 800 char *pathname; 801 802 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 803 if (name[0] != '/' && !trust) { 804 _rtld_error("Absolute pathname required for shared object \"%s\"", 805 name); 806 return NULL; 807 } 808 return xstrdup(name); 809 } 810 811 dbg(" Searching for \"%s\"", name); 812 813 if ((refobj != NULL && 814 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 815 (pathname = search_library_path(name, ld_library_path)) != NULL || 816 (pathname = search_library_path(name, gethints())) != NULL || 817 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) 818 return pathname; 819 820 _rtld_error("Shared object \"%s\" not found", name); 821 return NULL; 822 } 823 824 /* 825 * Given a symbol number in a referencing object, find the corresponding 826 * definition of the symbol. Returns a pointer to the symbol, or NULL if 827 * no definition was found. Returns a pointer to the Obj_Entry of the 828 * defining object via the reference parameter DEFOBJ_OUT. 829 */ 830 const Elf_Sym * 831 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 832 const Obj_Entry **defobj_out, bool in_plt, SymCache *cache) 833 { 834 const Elf_Sym *ref; 835 const Elf_Sym *def; 836 const Obj_Entry *defobj; 837 const char *name; 838 unsigned long hash; 839 840 /* 841 * If we have already found this symbol, get the information from 842 * the cache. 843 */ 844 if (symnum >= refobj->nchains) 845 return NULL; /* Bad object */ 846 if (cache != NULL && cache[symnum].sym != NULL) { 847 *defobj_out = cache[symnum].obj; 848 return cache[symnum].sym; 849 } 850 851 ref = refobj->symtab + symnum; 852 name = refobj->strtab + ref->st_name; 853 hash = elf_hash(name); 854 defobj = NULL; 855 856 def = symlook_default(name, hash, refobj, &defobj, in_plt); 857 858 /* 859 * If we found no definition and the reference is weak, treat the 860 * symbol as having the value zero. 861 */ 862 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 863 def = &sym_zero; 864 defobj = obj_main; 865 } 866 867 if (def != NULL) { 868 *defobj_out = defobj; 869 /* Record the information in the cache to avoid subsequent lookups. */ 870 if (cache != NULL) { 871 cache[symnum].sym = def; 872 cache[symnum].obj = defobj; 873 } 874 } else { 875 if (refobj != &obj_rtld) 876 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 877 } 878 return def; 879 } 880 881 /* 882 * Return the search path from the ldconfig hints file, reading it if 883 * necessary. Returns NULL if there are problems with the hints file, 884 * or if the search path there is empty. 885 */ 886 static const char * 887 gethints(void) 888 { 889 static char *hints; 890 891 if (hints == NULL) { 892 int fd; 893 struct elfhints_hdr hdr; 894 char *p; 895 896 /* Keep from trying again in case the hints file is bad. */ 897 hints = ""; 898 899 if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1) 900 return NULL; 901 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 902 hdr.magic != ELFHINTS_MAGIC || 903 hdr.version != 1) { 904 close(fd); 905 return NULL; 906 } 907 p = xmalloc(hdr.dirlistlen + 1); 908 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 909 read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) { 910 free(p); 911 close(fd); 912 return NULL; 913 } 914 hints = p; 915 close(fd); 916 } 917 return hints[0] != '\0' ? hints : NULL; 918 } 919 920 static void 921 init_dag(Obj_Entry *root) 922 { 923 DoneList donelist; 924 925 donelist_init(&donelist); 926 init_dag1(root, root, &donelist); 927 } 928 929 static void 930 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp) 931 { 932 const Needed_Entry *needed; 933 934 if (donelist_check(dlp, obj)) 935 return; 936 objlist_push_tail(&obj->dldags, root); 937 objlist_push_tail(&root->dagmembers, obj); 938 for (needed = obj->needed; needed != NULL; needed = needed->next) 939 if (needed->obj != NULL) 940 init_dag1(root, needed->obj, dlp); 941 } 942 943 /* 944 * Initialize the dynamic linker. The argument is the address at which 945 * the dynamic linker has been mapped into memory. The primary task of 946 * this function is to relocate the dynamic linker. 947 */ 948 static void 949 init_rtld(caddr_t mapbase) 950 { 951 /* 952 * Conjure up an Obj_Entry structure for the dynamic linker. 953 * 954 * The "path" member is supposed to be dynamically-allocated, but we 955 * aren't yet initialized sufficiently to do that. Below we will 956 * replace the static version with a dynamically-allocated copy. 957 */ 958 obj_rtld.path = PATH_RTLD; 959 obj_rtld.rtld = true; 960 obj_rtld.mapbase = mapbase; 961 #ifdef PIC 962 obj_rtld.relocbase = mapbase; 963 #endif 964 if (&_DYNAMIC != 0) { 965 obj_rtld.dynamic = rtld_dynamic(&obj_rtld); 966 digest_dynamic(&obj_rtld); 967 assert(obj_rtld.needed == NULL); 968 assert(!obj_rtld.textrel); 969 970 /* 971 * Temporarily put the dynamic linker entry into the object list, so 972 * that symbols can be found. 973 */ 974 obj_list = &obj_rtld; 975 obj_tail = &obj_rtld.next; 976 obj_count = 1; 977 978 relocate_objects(&obj_rtld, true); 979 } 980 981 /* Make the object list empty again. */ 982 obj_list = NULL; 983 obj_tail = &obj_list; 984 obj_count = 0; 985 986 /* Replace the path with a dynamically allocated copy. */ 987 obj_rtld.path = xstrdup(obj_rtld.path); 988 989 r_debug.r_brk = r_debug_state; 990 r_debug.r_state = RT_CONSISTENT; 991 } 992 993 /* 994 * Add the init functions from a needed object list (and its recursive 995 * needed objects) to "list". This is not used directly; it is a helper 996 * function for initlist_add_objects(). The write lock must be held 997 * when this function is called. 998 */ 999 static void 1000 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1001 { 1002 /* Recursively process the successor needed objects. */ 1003 if (needed->next != NULL) 1004 initlist_add_neededs(needed->next, list); 1005 1006 /* Process the current needed object. */ 1007 if (needed->obj != NULL) 1008 initlist_add_objects(needed->obj, &needed->obj->next, list); 1009 } 1010 1011 /* 1012 * Scan all of the DAGs rooted in the range of objects from "obj" to 1013 * "tail" and add their init functions to "list". This recurses over 1014 * the DAGs and ensure the proper init ordering such that each object's 1015 * needed libraries are initialized before the object itself. At the 1016 * same time, this function adds the objects to the global finalization 1017 * list "list_fini" in the opposite order. The write lock must be 1018 * held when this function is called. 1019 */ 1020 static void 1021 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1022 { 1023 if (obj->init_done) 1024 return; 1025 obj->init_done = true; 1026 1027 /* Recursively process the successor objects. */ 1028 if (&obj->next != tail) 1029 initlist_add_objects(obj->next, tail, list); 1030 1031 /* Recursively process the needed objects. */ 1032 if (obj->needed != NULL) 1033 initlist_add_neededs(obj->needed, list); 1034 1035 /* Add the object to the init list. */ 1036 if (obj->init != NULL) 1037 objlist_push_tail(list, obj); 1038 1039 /* Add the object to the global fini list in the reverse order. */ 1040 if (obj->fini != NULL) 1041 objlist_push_head(&list_fini, obj); 1042 } 1043 1044 #ifndef FPTR_TARGET 1045 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 1046 #endif 1047 1048 static bool 1049 is_exported(const Elf_Sym *def) 1050 { 1051 Elf_Addr value; 1052 const func_ptr_type *p; 1053 1054 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value); 1055 for (p = exports; *p != NULL; p++) 1056 if (FPTR_TARGET(*p) == value) 1057 return true; 1058 return false; 1059 } 1060 1061 /* 1062 * Given a shared object, traverse its list of needed objects, and load 1063 * each of them. Returns 0 on success. Generates an error message and 1064 * returns -1 on failure. 1065 */ 1066 static int 1067 load_needed_objects(Obj_Entry *first) 1068 { 1069 Obj_Entry *obj; 1070 1071 for (obj = first; obj != NULL; obj = obj->next) { 1072 Needed_Entry *needed; 1073 1074 for (needed = obj->needed; needed != NULL; needed = needed->next) { 1075 const char *name = obj->strtab + needed->name; 1076 char *path = find_library(name, obj); 1077 1078 needed->obj = NULL; 1079 if (path == NULL && !ld_tracing) 1080 return -1; 1081 1082 if (path) { 1083 needed->obj = load_object(path); 1084 if (needed->obj == NULL && !ld_tracing) 1085 return -1; /* XXX - cleanup */ 1086 } 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 static int 1094 load_preload_objects(void) 1095 { 1096 char *p = ld_preload; 1097 static const char delim[] = " \t:;"; 1098 1099 if (p == NULL) 1100 return NULL; 1101 1102 p += strspn(p, delim); 1103 while (*p != '\0') { 1104 size_t len = strcspn(p, delim); 1105 char *path; 1106 char savech; 1107 1108 savech = p[len]; 1109 p[len] = '\0'; 1110 if ((path = find_library(p, NULL)) == NULL) 1111 return -1; 1112 if (load_object(path) == NULL) 1113 return -1; /* XXX - cleanup */ 1114 p[len] = savech; 1115 p += len; 1116 p += strspn(p, delim); 1117 } 1118 return 0; 1119 } 1120 1121 /* 1122 * Load a shared object into memory, if it is not already loaded. The 1123 * argument must be a string allocated on the heap. This function assumes 1124 * responsibility for freeing it when necessary. 1125 * 1126 * Returns a pointer to the Obj_Entry for the object. Returns NULL 1127 * on failure. 1128 */ 1129 static Obj_Entry * 1130 load_object(char *path) 1131 { 1132 Obj_Entry *obj; 1133 int fd = -1; 1134 struct stat sb; 1135 1136 for (obj = obj_list->next; obj != NULL; obj = obj->next) 1137 if (strcmp(obj->path, path) == 0) 1138 break; 1139 1140 /* 1141 * If we didn't find a match by pathname, open the file and check 1142 * again by device and inode. This avoids false mismatches caused 1143 * by multiple links or ".." in pathnames. 1144 * 1145 * To avoid a race, we open the file and use fstat() rather than 1146 * using stat(). 1147 */ 1148 if (obj == NULL) { 1149 if ((fd = open(path, O_RDONLY)) == -1) { 1150 _rtld_error("Cannot open \"%s\"", path); 1151 return NULL; 1152 } 1153 if (fstat(fd, &sb) == -1) { 1154 _rtld_error("Cannot fstat \"%s\"", path); 1155 close(fd); 1156 return NULL; 1157 } 1158 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 1159 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) { 1160 close(fd); 1161 break; 1162 } 1163 } 1164 } 1165 1166 if (obj == NULL) { /* First use of this object, so we must map it in */ 1167 dbg("loading \"%s\"", path); 1168 obj = map_object(fd, path, &sb); 1169 close(fd); 1170 if (obj == NULL) { 1171 free(path); 1172 return NULL; 1173 } 1174 1175 obj->path = path; 1176 digest_dynamic(obj); 1177 1178 *obj_tail = obj; 1179 obj_tail = &obj->next; 1180 obj_count++; 1181 linkmap_add(obj); /* for GDB */ 1182 1183 dbg(" %p .. %p: %s", obj->mapbase, 1184 obj->mapbase + obj->mapsize - 1, obj->path); 1185 if (obj->textrel) 1186 dbg(" WARNING: %s has impure text", obj->path); 1187 } else 1188 free(path); 1189 1190 obj->refcount++; 1191 return obj; 1192 } 1193 1194 /* 1195 * Check for locking violations and die if one is found. 1196 */ 1197 static void 1198 lock_check(void) 1199 { 1200 int rcount, wcount; 1201 1202 rcount = lockinfo.rcount; 1203 wcount = lockinfo.wcount; 1204 assert(rcount >= 0); 1205 assert(wcount >= 0); 1206 if (wcount > 1 || (wcount != 0 && rcount != 0)) { 1207 _rtld_error("Application locking error: %d readers and %d writers" 1208 " in dynamic linker. See DLLOCKINIT(3) in manual pages.", 1209 rcount, wcount); 1210 die(); 1211 } 1212 } 1213 1214 static Obj_Entry * 1215 obj_from_addr(const void *addr) 1216 { 1217 unsigned long endhash; 1218 Obj_Entry *obj; 1219 1220 endhash = elf_hash(END_SYM); 1221 for (obj = obj_list; obj != NULL; obj = obj->next) { 1222 const Elf_Sym *endsym; 1223 1224 if (addr < (void *) obj->mapbase) 1225 continue; 1226 if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL) 1227 continue; /* No "end" symbol?! */ 1228 if (addr < (void *) (obj->relocbase + endsym->st_value)) 1229 return obj; 1230 } 1231 return NULL; 1232 } 1233 1234 /* 1235 * Call the finalization functions for each of the objects in "list" 1236 * which are unreferenced. All of the objects are expected to have 1237 * non-NULL fini functions. 1238 */ 1239 static void 1240 objlist_call_fini(Objlist *list) 1241 { 1242 Objlist_Entry *elm; 1243 char *saved_msg; 1244 1245 /* 1246 * Preserve the current error message since a fini function might 1247 * call into the dynamic linker and overwrite it. 1248 */ 1249 saved_msg = errmsg_save(); 1250 STAILQ_FOREACH(elm, list, link) { 1251 if (elm->obj->refcount == 0) { 1252 dbg("calling fini function for %s at %p", elm->obj->path, 1253 (void *)elm->obj->fini); 1254 call_initfini_pointer(elm->obj, elm->obj->fini); 1255 } 1256 } 1257 errmsg_restore(saved_msg); 1258 } 1259 1260 /* 1261 * Call the initialization functions for each of the objects in 1262 * "list". All of the objects are expected to have non-NULL init 1263 * functions. 1264 */ 1265 static void 1266 objlist_call_init(Objlist *list) 1267 { 1268 Objlist_Entry *elm; 1269 char *saved_msg; 1270 1271 /* 1272 * Preserve the current error message since an init function might 1273 * call into the dynamic linker and overwrite it. 1274 */ 1275 saved_msg = errmsg_save(); 1276 STAILQ_FOREACH(elm, list, link) { 1277 dbg("calling init function for %s at %p", elm->obj->path, 1278 (void *)elm->obj->init); 1279 call_initfini_pointer(elm->obj, elm->obj->init); 1280 } 1281 errmsg_restore(saved_msg); 1282 } 1283 1284 static void 1285 objlist_clear(Objlist *list) 1286 { 1287 Objlist_Entry *elm; 1288 1289 while (!STAILQ_EMPTY(list)) { 1290 elm = STAILQ_FIRST(list); 1291 STAILQ_REMOVE_HEAD(list, link); 1292 free(elm); 1293 } 1294 } 1295 1296 static Objlist_Entry * 1297 objlist_find(Objlist *list, const Obj_Entry *obj) 1298 { 1299 Objlist_Entry *elm; 1300 1301 STAILQ_FOREACH(elm, list, link) 1302 if (elm->obj == obj) 1303 return elm; 1304 return NULL; 1305 } 1306 1307 static void 1308 objlist_init(Objlist *list) 1309 { 1310 STAILQ_INIT(list); 1311 } 1312 1313 static void 1314 objlist_push_head(Objlist *list, Obj_Entry *obj) 1315 { 1316 Objlist_Entry *elm; 1317 1318 elm = NEW(Objlist_Entry); 1319 elm->obj = obj; 1320 STAILQ_INSERT_HEAD(list, elm, link); 1321 } 1322 1323 static void 1324 objlist_push_tail(Objlist *list, Obj_Entry *obj) 1325 { 1326 Objlist_Entry *elm; 1327 1328 elm = NEW(Objlist_Entry); 1329 elm->obj = obj; 1330 STAILQ_INSERT_TAIL(list, elm, link); 1331 } 1332 1333 static void 1334 objlist_remove(Objlist *list, Obj_Entry *obj) 1335 { 1336 Objlist_Entry *elm; 1337 1338 if ((elm = objlist_find(list, obj)) != NULL) { 1339 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 1340 free(elm); 1341 } 1342 } 1343 1344 /* 1345 * Remove all of the unreferenced objects from "list". 1346 */ 1347 static void 1348 objlist_remove_unref(Objlist *list) 1349 { 1350 Objlist newlist; 1351 Objlist_Entry *elm; 1352 1353 STAILQ_INIT(&newlist); 1354 while (!STAILQ_EMPTY(list)) { 1355 elm = STAILQ_FIRST(list); 1356 STAILQ_REMOVE_HEAD(list, link); 1357 if (elm->obj->refcount == 0) 1358 free(elm); 1359 else 1360 STAILQ_INSERT_TAIL(&newlist, elm, link); 1361 } 1362 *list = newlist; 1363 } 1364 1365 /* 1366 * Relocate newly-loaded shared objects. The argument is a pointer to 1367 * the Obj_Entry for the first such object. All objects from the first 1368 * to the end of the list of objects are relocated. Returns 0 on success, 1369 * or -1 on failure. 1370 */ 1371 static int 1372 relocate_objects(Obj_Entry *first, bool bind_now) 1373 { 1374 Obj_Entry *obj; 1375 1376 for (obj = first; obj != NULL; obj = obj->next) { 1377 if (obj != &obj_rtld) 1378 dbg("relocating \"%s\"", obj->path); 1379 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL || 1380 obj->symtab == NULL || obj->strtab == NULL) { 1381 _rtld_error("%s: Shared object has no run-time symbol table", 1382 obj->path); 1383 return -1; 1384 } 1385 1386 if (obj->textrel) { 1387 /* There are relocations to the write-protected text segment. */ 1388 if (mprotect(obj->mapbase, obj->textsize, 1389 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 1390 _rtld_error("%s: Cannot write-enable text segment: %s", 1391 obj->path, strerror(errno)); 1392 return -1; 1393 } 1394 } 1395 1396 /* Process the non-PLT relocations. */ 1397 if (reloc_non_plt(obj, &obj_rtld)) 1398 return -1; 1399 1400 if (obj->textrel) { /* Re-protected the text segment. */ 1401 if (mprotect(obj->mapbase, obj->textsize, 1402 PROT_READ|PROT_EXEC) == -1) { 1403 _rtld_error("%s: Cannot write-protect text segment: %s", 1404 obj->path, strerror(errno)); 1405 return -1; 1406 } 1407 } 1408 1409 /* Process the PLT relocations. */ 1410 if (reloc_plt(obj) == -1) 1411 return -1; 1412 /* Relocate the jump slots if we are doing immediate binding. */ 1413 if (bind_now) 1414 if (reloc_jmpslots(obj) == -1) 1415 return -1; 1416 1417 1418 /* 1419 * Set up the magic number and version in the Obj_Entry. These 1420 * were checked in the crt1.o from the original ElfKit, so we 1421 * set them for backward compatibility. 1422 */ 1423 obj->magic = RTLD_MAGIC; 1424 obj->version = RTLD_VERSION; 1425 1426 /* Set the special PLT or GOT entries. */ 1427 init_pltgot(obj); 1428 } 1429 1430 return 0; 1431 } 1432 1433 /* 1434 * Cleanup procedure. It will be called (by the atexit mechanism) just 1435 * before the process exits. 1436 */ 1437 static void 1438 rtld_exit(void) 1439 { 1440 Obj_Entry *obj; 1441 1442 dbg("rtld_exit()"); 1443 wlock_acquire(); 1444 /* Clear all the reference counts so the fini functions will be called. */ 1445 for (obj = obj_list; obj != NULL; obj = obj->next) 1446 obj->refcount = 0; 1447 wlock_release(); 1448 objlist_call_fini(&list_fini); 1449 /* No need to remove the items from the list, since we are exiting. */ 1450 } 1451 1452 static char * 1453 search_library_path(const char *name, const char *path) 1454 { 1455 size_t namelen = strlen(name); 1456 const char *p = path; 1457 1458 if (p == NULL) 1459 return NULL; 1460 1461 p += strspn(p, ":;"); 1462 while (*p != '\0') { 1463 size_t len = strcspn(p, ":;"); 1464 1465 if (*p == '/' || trust) { 1466 char *pathname; 1467 const char *dir = p; 1468 size_t dirlen = len; 1469 1470 pathname = xmalloc(dirlen + 1 + namelen + 1); 1471 strncpy(pathname, dir, dirlen); 1472 pathname[dirlen] = '/'; 1473 strcpy(pathname + dirlen + 1, name); 1474 1475 dbg(" Trying \"%s\"", pathname); 1476 if (access(pathname, F_OK) == 0) /* We found it */ 1477 return pathname; 1478 1479 free(pathname); 1480 } 1481 p += len; 1482 p += strspn(p, ":;"); 1483 } 1484 1485 return NULL; 1486 } 1487 1488 int 1489 dlclose(void *handle) 1490 { 1491 Obj_Entry *root; 1492 1493 wlock_acquire(); 1494 root = dlcheck(handle); 1495 if (root == NULL) { 1496 wlock_release(); 1497 return -1; 1498 } 1499 1500 /* Unreference the object and its dependencies. */ 1501 root->dl_refcount--; 1502 unref_dag(root); 1503 1504 if (root->refcount == 0) { 1505 /* 1506 * The object is no longer referenced, so we must unload it. 1507 * First, call the fini functions with no locks held. 1508 */ 1509 wlock_release(); 1510 objlist_call_fini(&list_fini); 1511 wlock_acquire(); 1512 objlist_remove_unref(&list_fini); 1513 1514 /* Finish cleaning up the newly-unreferenced objects. */ 1515 GDB_STATE(RT_DELETE,&root->linkmap); 1516 unload_object(root); 1517 GDB_STATE(RT_CONSISTENT,NULL); 1518 } 1519 wlock_release(); 1520 return 0; 1521 } 1522 1523 const char * 1524 dlerror(void) 1525 { 1526 char *msg = error_message; 1527 error_message = NULL; 1528 return msg; 1529 } 1530 1531 /* 1532 * This function is deprecated and has no effect. 1533 */ 1534 void 1535 dllockinit(void *context, 1536 void *(*lock_create)(void *context), 1537 void (*rlock_acquire)(void *lock), 1538 void (*wlock_acquire)(void *lock), 1539 void (*lock_release)(void *lock), 1540 void (*lock_destroy)(void *lock), 1541 void (*context_destroy)(void *context)) 1542 { 1543 static void *cur_context; 1544 static void (*cur_context_destroy)(void *); 1545 1546 /* Just destroy the context from the previous call, if necessary. */ 1547 if (cur_context_destroy != NULL) 1548 cur_context_destroy(cur_context); 1549 cur_context = context; 1550 cur_context_destroy = context_destroy; 1551 } 1552 1553 void * 1554 dlopen(const char *name, int mode) 1555 { 1556 Obj_Entry **old_obj_tail; 1557 Obj_Entry *obj; 1558 Objlist initlist; 1559 1560 objlist_init(&initlist); 1561 1562 wlock_acquire(); 1563 GDB_STATE(RT_ADD,NULL); 1564 1565 old_obj_tail = obj_tail; 1566 obj = NULL; 1567 if (name == NULL) { 1568 obj = obj_main; 1569 obj->refcount++; 1570 } else { 1571 char *path = find_library(name, obj_main); 1572 if (path != NULL) 1573 obj = load_object(path); 1574 } 1575 1576 if (obj) { 1577 obj->dl_refcount++; 1578 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 1579 objlist_push_tail(&list_global, obj); 1580 mode &= RTLD_MODEMASK; 1581 if (*old_obj_tail != NULL) { /* We loaded something new. */ 1582 assert(*old_obj_tail == obj); 1583 1584 if (load_needed_objects(obj) == -1 || 1585 (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW)) == -1) { 1586 obj->dl_refcount--; 1587 unref_dag(obj); 1588 if (obj->refcount == 0) 1589 unload_object(obj); 1590 obj = NULL; 1591 } else { 1592 /* Make list of init functions to call. */ 1593 initlist_add_objects(obj, &obj->next, &initlist); 1594 } 1595 } 1596 } 1597 1598 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 1599 1600 /* Call the init functions with no locks held. */ 1601 wlock_release(); 1602 objlist_call_init(&initlist); 1603 wlock_acquire(); 1604 objlist_clear(&initlist); 1605 wlock_release(); 1606 return obj; 1607 } 1608 1609 void * 1610 dlsym(void *handle, const char *name) 1611 { 1612 const Obj_Entry *obj; 1613 unsigned long hash; 1614 const Elf_Sym *def; 1615 const Obj_Entry *defobj; 1616 1617 hash = elf_hash(name); 1618 def = NULL; 1619 defobj = NULL; 1620 1621 rlock_acquire(); 1622 if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) { 1623 void *retaddr; 1624 1625 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 1626 if ((obj = obj_from_addr(retaddr)) == NULL) { 1627 _rtld_error("Cannot determine caller's shared object"); 1628 rlock_release(); 1629 return NULL; 1630 } 1631 if (handle == NULL) { /* Just the caller's shared object. */ 1632 def = symlook_obj(name, hash, obj, true); 1633 defobj = obj; 1634 } else if (handle == RTLD_NEXT) { /* Objects after caller's */ 1635 while ((obj = obj->next) != NULL) { 1636 if ((def = symlook_obj(name, hash, obj, true)) != NULL) { 1637 defobj = obj; 1638 break; 1639 } 1640 } 1641 } else { 1642 assert(handle == RTLD_DEFAULT); 1643 def = symlook_default(name, hash, obj, &defobj, true); 1644 } 1645 } else { 1646 if ((obj = dlcheck(handle)) == NULL) { 1647 rlock_release(); 1648 return NULL; 1649 } 1650 1651 if (obj->mainprog) { 1652 DoneList donelist; 1653 1654 /* Search main program and all libraries loaded by it. */ 1655 donelist_init(&donelist); 1656 def = symlook_list(name, hash, &list_main, &defobj, true, 1657 &donelist); 1658 } else { 1659 /* 1660 * XXX - This isn't correct. The search should include the whole 1661 * DAG rooted at the given object. 1662 */ 1663 def = symlook_obj(name, hash, obj, true); 1664 defobj = obj; 1665 } 1666 } 1667 1668 if (def != NULL) { 1669 rlock_release(); 1670 1671 /* 1672 * The value required by the caller is derived from the value 1673 * of the symbol. For the ia64 architecture, we need to 1674 * construct a function descriptor which the caller can use to 1675 * call the function with the right 'gp' value. For other 1676 * architectures and for non-functions, the value is simply 1677 * the relocated value of the symbol. 1678 */ 1679 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 1680 return make_function_pointer(def, defobj); 1681 else 1682 return defobj->relocbase + def->st_value; 1683 } 1684 1685 _rtld_error("Undefined symbol \"%s\"", name); 1686 rlock_release(); 1687 return NULL; 1688 } 1689 1690 int 1691 dladdr(const void *addr, Dl_info *info) 1692 { 1693 const Obj_Entry *obj; 1694 const Elf_Sym *def; 1695 void *symbol_addr; 1696 unsigned long symoffset; 1697 1698 rlock_acquire(); 1699 obj = obj_from_addr(addr); 1700 if (obj == NULL) { 1701 _rtld_error("No shared object contains address"); 1702 rlock_release(); 1703 return 0; 1704 } 1705 info->dli_fname = obj->path; 1706 info->dli_fbase = obj->mapbase; 1707 info->dli_saddr = (void *)0; 1708 info->dli_sname = NULL; 1709 1710 /* 1711 * Walk the symbol list looking for the symbol whose address is 1712 * closest to the address sent in. 1713 */ 1714 for (symoffset = 0; symoffset < obj->nchains; symoffset++) { 1715 def = obj->symtab + symoffset; 1716 1717 /* 1718 * For skip the symbol if st_shndx is either SHN_UNDEF or 1719 * SHN_COMMON. 1720 */ 1721 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 1722 continue; 1723 1724 /* 1725 * If the symbol is greater than the specified address, or if it 1726 * is further away from addr than the current nearest symbol, 1727 * then reject it. 1728 */ 1729 symbol_addr = obj->relocbase + def->st_value; 1730 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 1731 continue; 1732 1733 /* Update our idea of the nearest symbol. */ 1734 info->dli_sname = obj->strtab + def->st_name; 1735 info->dli_saddr = symbol_addr; 1736 1737 /* Exact match? */ 1738 if (info->dli_saddr == addr) 1739 break; 1740 } 1741 rlock_release(); 1742 return 1; 1743 } 1744 1745 static void 1746 linkmap_add(Obj_Entry *obj) 1747 { 1748 struct link_map *l = &obj->linkmap; 1749 struct link_map *prev; 1750 1751 obj->linkmap.l_name = obj->path; 1752 obj->linkmap.l_addr = obj->mapbase; 1753 obj->linkmap.l_ld = obj->dynamic; 1754 #ifdef __mips__ 1755 /* GDB needs load offset on MIPS to use the symbols */ 1756 obj->linkmap.l_offs = obj->relocbase; 1757 #endif 1758 1759 if (r_debug.r_map == NULL) { 1760 r_debug.r_map = l; 1761 return; 1762 } 1763 1764 /* 1765 * Scan to the end of the list, but not past the entry for the 1766 * dynamic linker, which we want to keep at the very end. 1767 */ 1768 for (prev = r_debug.r_map; 1769 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 1770 prev = prev->l_next) 1771 ; 1772 1773 /* Link in the new entry. */ 1774 l->l_prev = prev; 1775 l->l_next = prev->l_next; 1776 if (l->l_next != NULL) 1777 l->l_next->l_prev = l; 1778 prev->l_next = l; 1779 } 1780 1781 static void 1782 linkmap_delete(Obj_Entry *obj) 1783 { 1784 struct link_map *l = &obj->linkmap; 1785 1786 if (l->l_prev == NULL) { 1787 if ((r_debug.r_map = l->l_next) != NULL) 1788 l->l_next->l_prev = NULL; 1789 return; 1790 } 1791 1792 if ((l->l_prev->l_next = l->l_next) != NULL) 1793 l->l_next->l_prev = l->l_prev; 1794 } 1795 1796 /* 1797 * Function for the debugger to set a breakpoint on to gain control. 1798 * 1799 * The two parameters allow the debugger to easily find and determine 1800 * what the runtime loader is doing and to whom it is doing it. 1801 * 1802 * When the loadhook trap is hit (r_debug_state, set at program 1803 * initialization), the arguments can be found on the stack: 1804 * 1805 * +8 struct link_map *m 1806 * +4 struct r_debug *rd 1807 * +0 RetAddr 1808 */ 1809 void 1810 r_debug_state(struct r_debug* rd, struct link_map *m) 1811 { 1812 } 1813 1814 /* 1815 * Set a pointer variable in the main program to the given value. This 1816 * is used to set key variables such as "environ" before any of the 1817 * init functions are called. 1818 */ 1819 static void 1820 set_program_var(const char *name, const void *value) 1821 { 1822 const Obj_Entry *obj; 1823 unsigned long hash; 1824 1825 hash = elf_hash(name); 1826 for (obj = obj_main; obj != NULL; obj = obj->next) { 1827 const Elf_Sym *def; 1828 1829 if ((def = symlook_obj(name, hash, obj, false)) != NULL) { 1830 const void **addr; 1831 1832 addr = (const void **)(obj->relocbase + def->st_value); 1833 dbg("\"%s\": *%p <-- %p", name, addr, value); 1834 *addr = value; 1835 break; 1836 } 1837 } 1838 } 1839 1840 /* 1841 * Given a symbol name in a referencing object, find the corresponding 1842 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1843 * no definition was found. Returns a pointer to the Obj_Entry of the 1844 * defining object via the reference parameter DEFOBJ_OUT. 1845 */ 1846 static const Elf_Sym * 1847 symlook_default(const char *name, unsigned long hash, 1848 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt) 1849 { 1850 DoneList donelist; 1851 const Elf_Sym *def; 1852 const Elf_Sym *symp; 1853 const Obj_Entry *obj; 1854 const Obj_Entry *defobj; 1855 const Objlist_Entry *elm; 1856 def = NULL; 1857 defobj = NULL; 1858 donelist_init(&donelist); 1859 1860 /* Look first in the referencing object if linked symbolically. */ 1861 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 1862 symp = symlook_obj(name, hash, refobj, in_plt); 1863 if (symp != NULL) { 1864 def = symp; 1865 defobj = refobj; 1866 } 1867 } 1868 1869 /* Search all objects loaded at program start up. */ 1870 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1871 symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist); 1872 if (symp != NULL && 1873 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1874 def = symp; 1875 defobj = obj; 1876 } 1877 } 1878 1879 /* Search all dlopened DAGs containing the referencing object. */ 1880 STAILQ_FOREACH(elm, &refobj->dldags, link) { 1881 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1882 break; 1883 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1884 &donelist); 1885 if (symp != NULL && 1886 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1887 def = symp; 1888 defobj = obj; 1889 } 1890 } 1891 1892 /* Search all RTLD_GLOBAL objects. */ 1893 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1894 symp = symlook_list(name, hash, &list_global, &obj, in_plt, &donelist); 1895 if (symp != NULL && 1896 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1897 def = symp; 1898 defobj = obj; 1899 } 1900 } 1901 1902 /* 1903 * Search the dynamic linker itself, and possibly resolve the 1904 * symbol from there. This is how the application links to 1905 * dynamic linker services such as dlopen. Only the values listed 1906 * in the "exports" array can be resolved from the dynamic linker. 1907 */ 1908 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1909 symp = symlook_obj(name, hash, &obj_rtld, in_plt); 1910 if (symp != NULL && is_exported(symp)) { 1911 def = symp; 1912 defobj = &obj_rtld; 1913 } 1914 } 1915 1916 if (def != NULL) 1917 *defobj_out = defobj; 1918 return def; 1919 } 1920 1921 static const Elf_Sym * 1922 symlook_list(const char *name, unsigned long hash, Objlist *objlist, 1923 const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp) 1924 { 1925 const Elf_Sym *symp; 1926 const Elf_Sym *def; 1927 const Obj_Entry *defobj; 1928 const Objlist_Entry *elm; 1929 1930 def = NULL; 1931 defobj = NULL; 1932 STAILQ_FOREACH(elm, objlist, link) { 1933 if (donelist_check(dlp, elm->obj)) 1934 continue; 1935 if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) { 1936 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) { 1937 def = symp; 1938 defobj = elm->obj; 1939 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 1940 break; 1941 } 1942 } 1943 } 1944 if (def != NULL) 1945 *defobj_out = defobj; 1946 return def; 1947 } 1948 1949 /* 1950 * Search the symbol table of a single shared object for a symbol of 1951 * the given name. Returns a pointer to the symbol, or NULL if no 1952 * definition was found. 1953 * 1954 * The symbol's hash value is passed in for efficiency reasons; that 1955 * eliminates many recomputations of the hash value. 1956 */ 1957 const Elf_Sym * 1958 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj, 1959 bool in_plt) 1960 { 1961 if (obj->buckets != NULL) { 1962 unsigned long symnum = obj->buckets[hash % obj->nbuckets]; 1963 1964 while (symnum != STN_UNDEF) { 1965 const Elf_Sym *symp; 1966 const char *strp; 1967 1968 if (symnum >= obj->nchains) 1969 return NULL; /* Bad object */ 1970 symp = obj->symtab + symnum; 1971 strp = obj->strtab + symp->st_name; 1972 1973 if (name[0] == strp[0] && strcmp(name, strp) == 0) 1974 return symp->st_shndx != SHN_UNDEF || 1975 (!in_plt && symp->st_value != 0 && 1976 ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL; 1977 1978 symnum = obj->chains[symnum]; 1979 } 1980 } 1981 return NULL; 1982 } 1983 1984 static void 1985 trace_loaded_objects(Obj_Entry *obj) 1986 { 1987 char *fmt1, *fmt2, *fmt, *main_local; 1988 int c; 1989 1990 if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 1991 main_local = ""; 1992 1993 if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL) 1994 fmt1 = "\t%o => %p (%x)\n"; 1995 1996 if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL) 1997 fmt2 = "\t%o (%x)\n"; 1998 1999 for (; obj; obj = obj->next) { 2000 Needed_Entry *needed; 2001 char *name, *path; 2002 bool is_lib; 2003 2004 for (needed = obj->needed; needed; needed = needed->next) { 2005 if (needed->obj != NULL) { 2006 if (needed->obj->traced) 2007 continue; 2008 needed->obj->traced = true; 2009 path = needed->obj->path; 2010 } else 2011 path = "not found"; 2012 2013 name = (char *)obj->strtab + needed->name; 2014 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 2015 2016 fmt = is_lib ? fmt1 : fmt2; 2017 while ((c = *fmt++) != '\0') { 2018 switch (c) { 2019 default: 2020 putchar(c); 2021 continue; 2022 case '\\': 2023 switch (c = *fmt) { 2024 case '\0': 2025 continue; 2026 case 'n': 2027 putchar('\n'); 2028 break; 2029 case 't': 2030 putchar('\t'); 2031 break; 2032 } 2033 break; 2034 case '%': 2035 switch (c = *fmt) { 2036 case '\0': 2037 continue; 2038 case '%': 2039 default: 2040 putchar(c); 2041 break; 2042 case 'A': 2043 printf("%s", main_local); 2044 break; 2045 case 'a': 2046 printf("%s", obj_main->path); 2047 break; 2048 case 'o': 2049 printf("%s", name); 2050 break; 2051 #if 0 2052 case 'm': 2053 printf("%d", sodp->sod_major); 2054 break; 2055 case 'n': 2056 printf("%d", sodp->sod_minor); 2057 break; 2058 #endif 2059 case 'p': 2060 printf("%s", path); 2061 break; 2062 case 'x': 2063 printf("%p", needed->obj ? needed->obj->mapbase : 0); 2064 break; 2065 } 2066 break; 2067 } 2068 ++fmt; 2069 } 2070 } 2071 } 2072 } 2073 2074 /* 2075 * Unload a dlopened object and its dependencies from memory and from 2076 * our data structures. It is assumed that the DAG rooted in the 2077 * object has already been unreferenced, and that the object has a 2078 * reference count of 0. 2079 */ 2080 static void 2081 unload_object(Obj_Entry *root) 2082 { 2083 Obj_Entry *obj; 2084 Obj_Entry **linkp; 2085 Objlist_Entry *elm; 2086 2087 assert(root->refcount == 0); 2088 2089 /* Remove the DAG from all objects' DAG lists. */ 2090 STAILQ_FOREACH(elm, &root->dagmembers , link) 2091 objlist_remove(&elm->obj->dldags, root); 2092 2093 /* Remove the DAG from the RTLD_GLOBAL list. */ 2094 objlist_remove(&list_global, root); 2095 2096 /* Unmap all objects that are no longer referenced. */ 2097 linkp = &obj_list->next; 2098 while ((obj = *linkp) != NULL) { 2099 if (obj->refcount == 0) { 2100 dbg("unloading \"%s\"", obj->path); 2101 munmap(obj->mapbase, obj->mapsize); 2102 linkmap_delete(obj); 2103 *linkp = obj->next; 2104 obj_count--; 2105 obj_free(obj); 2106 } else 2107 linkp = &obj->next; 2108 } 2109 obj_tail = linkp; 2110 } 2111 2112 static void 2113 unref_dag(Obj_Entry *root) 2114 { 2115 const Needed_Entry *needed; 2116 2117 if (root->refcount == 0) 2118 return; 2119 root->refcount--; 2120 if (root->refcount == 0) 2121 for (needed = root->needed; needed != NULL; needed = needed->next) 2122 if (needed->obj != NULL) 2123 unref_dag(needed->obj); 2124 } 2125 2126 /* 2127 * Non-mallocing printf, for use by malloc itself. 2128 * XXX - This doesn't belong in this module. 2129 */ 2130 void 2131 xprintf(const char *fmt, ...) 2132 { 2133 char buf[256]; 2134 va_list ap; 2135 2136 va_start(ap, fmt); 2137 vsprintf(buf, fmt, ap); 2138 (void)write(STDOUT_FILENO, buf, strlen(buf)); 2139 va_end(ap); 2140 } 2141