xref: /freebsd/libexec/rtld-elf/rtld.c (revision 3f05af05ace08ae28892ecfd28b000822a5d7ae0)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint32_t gnu_hash(const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
167 void _r_debug_postinit(struct link_map *) __noinline __exported;
168 
169 int __sys_openat(int, const char *, int, ...);
170 
171 /*
172  * Data declarations.
173  */
174 static char *error_message;	/* Message for dlerror(), or NULL */
175 struct r_debug r_debug __exported;	/* for GDB; */
176 static bool libmap_disable;	/* Disable libmap */
177 static bool ld_loadfltr;	/* Immediate filters processing */
178 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
179 static bool trust;		/* False for setuid and setgid programs */
180 static bool dangerous_ld_env;	/* True if environment variables have been
181 				   used to affect the libraries loaded */
182 static char *ld_bind_now;	/* Environment variable for immediate binding */
183 static char *ld_debug;		/* Environment variable for debugging */
184 static char *ld_library_path;	/* Environment variable for search path */
185 static char *ld_library_dirs;	/* Environment variable for library descriptors */
186 static char *ld_preload;	/* Environment variable for libraries to
187 				   load first */
188 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
189 static char *ld_tracing;	/* Called from ldd to print libs */
190 static char *ld_utrace;		/* Use utrace() to log events. */
191 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
192 static Obj_Entry **obj_tail;	/* Link field of last object in list */
193 static Obj_Entry *obj_main;	/* The main program shared object */
194 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
195 static unsigned int obj_count;	/* Number of objects in obj_list */
196 static unsigned int obj_loads;	/* Number of objects in obj_list */
197 
198 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
199   STAILQ_HEAD_INITIALIZER(list_global);
200 static Objlist list_main =	/* Objects loaded at program startup */
201   STAILQ_HEAD_INITIALIZER(list_main);
202 static Objlist list_fini =	/* Objects needing fini() calls */
203   STAILQ_HEAD_INITIALIZER(list_fini);
204 
205 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
206 
207 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
208 
209 extern Elf_Dyn _DYNAMIC;
210 #pragma weak _DYNAMIC
211 #ifndef RTLD_IS_DYNAMIC
212 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
213 #endif
214 
215 int dlclose(void *) __exported;
216 char *dlerror(void) __exported;
217 void *dlopen(const char *, int) __exported;
218 void *fdlopen(int, int) __exported;
219 void *dlsym(void *, const char *) __exported;
220 dlfunc_t dlfunc(void *, const char *) __exported;
221 void *dlvsym(void *, const char *, const char *) __exported;
222 int dladdr(const void *, Dl_info *) __exported;
223 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
224     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
225 int dlinfo(void *, int , void *) __exported;
226 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
227 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
228 int _rtld_get_stack_prot(void) __exported;
229 int _rtld_is_dlopened(void *) __exported;
230 void _rtld_error(const char *, ...) __exported;
231 
232 int npagesizes, osreldate;
233 size_t *pagesizes;
234 
235 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
236 
237 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
238 static int max_stack_flags;
239 
240 /*
241  * Global declarations normally provided by crt1.  The dynamic linker is
242  * not built with crt1, so we have to provide them ourselves.
243  */
244 char *__progname;
245 char **environ;
246 
247 /*
248  * Used to pass argc, argv to init functions.
249  */
250 int main_argc;
251 char **main_argv;
252 
253 /*
254  * Globals to control TLS allocation.
255  */
256 size_t tls_last_offset;		/* Static TLS offset of last module */
257 size_t tls_last_size;		/* Static TLS size of last module */
258 size_t tls_static_space;	/* Static TLS space allocated */
259 size_t tls_static_max_align;
260 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
261 int tls_max_index = 1;		/* Largest module index allocated */
262 
263 bool ld_library_path_rpath = false;
264 
265 /*
266  * Fill in a DoneList with an allocation large enough to hold all of
267  * the currently-loaded objects.  Keep this as a macro since it calls
268  * alloca and we want that to occur within the scope of the caller.
269  */
270 #define donelist_init(dlp)					\
271     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
272     assert((dlp)->objs != NULL),				\
273     (dlp)->num_alloc = obj_count,				\
274     (dlp)->num_used = 0)
275 
276 #define	UTRACE_DLOPEN_START		1
277 #define	UTRACE_DLOPEN_STOP		2
278 #define	UTRACE_DLCLOSE_START		3
279 #define	UTRACE_DLCLOSE_STOP		4
280 #define	UTRACE_LOAD_OBJECT		5
281 #define	UTRACE_UNLOAD_OBJECT		6
282 #define	UTRACE_ADD_RUNDEP		7
283 #define	UTRACE_PRELOAD_FINISHED		8
284 #define	UTRACE_INIT_CALL		9
285 #define	UTRACE_FINI_CALL		10
286 #define	UTRACE_DLSYM_START		11
287 #define	UTRACE_DLSYM_STOP		12
288 
289 struct utrace_rtld {
290 	char sig[4];			/* 'RTLD' */
291 	int event;
292 	void *handle;
293 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
294 	size_t mapsize;
295 	int refcnt;			/* Used for 'mode' */
296 	char name[MAXPATHLEN];
297 };
298 
299 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
300 	if (ld_utrace != NULL)					\
301 		ld_utrace_log(e, h, mb, ms, r, n);		\
302 } while (0)
303 
304 static void
305 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
306     int refcnt, const char *name)
307 {
308 	struct utrace_rtld ut;
309 
310 	ut.sig[0] = 'R';
311 	ut.sig[1] = 'T';
312 	ut.sig[2] = 'L';
313 	ut.sig[3] = 'D';
314 	ut.event = event;
315 	ut.handle = handle;
316 	ut.mapbase = mapbase;
317 	ut.mapsize = mapsize;
318 	ut.refcnt = refcnt;
319 	bzero(ut.name, sizeof(ut.name));
320 	if (name)
321 		strlcpy(ut.name, name, sizeof(ut.name));
322 	utrace(&ut, sizeof(ut));
323 }
324 
325 /*
326  * Main entry point for dynamic linking.  The first argument is the
327  * stack pointer.  The stack is expected to be laid out as described
328  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
329  * Specifically, the stack pointer points to a word containing
330  * ARGC.  Following that in the stack is a null-terminated sequence
331  * of pointers to argument strings.  Then comes a null-terminated
332  * sequence of pointers to environment strings.  Finally, there is a
333  * sequence of "auxiliary vector" entries.
334  *
335  * The second argument points to a place to store the dynamic linker's
336  * exit procedure pointer and the third to a place to store the main
337  * program's object.
338  *
339  * The return value is the main program's entry point.
340  */
341 func_ptr_type
342 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
343 {
344     Elf_Auxinfo *aux_info[AT_COUNT];
345     int i;
346     int argc;
347     char **argv;
348     char **env;
349     Elf_Auxinfo *aux;
350     Elf_Auxinfo *auxp;
351     const char *argv0;
352     Objlist_Entry *entry;
353     Obj_Entry *obj;
354     Obj_Entry **preload_tail;
355     Obj_Entry *last_interposer;
356     Objlist initlist;
357     RtldLockState lockstate;
358     char *library_path_rpath;
359     int mib[2];
360     size_t len;
361 
362     /*
363      * On entry, the dynamic linker itself has not been relocated yet.
364      * Be very careful not to reference any global data until after
365      * init_rtld has returned.  It is OK to reference file-scope statics
366      * and string constants, and to call static and global functions.
367      */
368 
369     /* Find the auxiliary vector on the stack. */
370     argc = *sp++;
371     argv = (char **) sp;
372     sp += argc + 1;	/* Skip over arguments and NULL terminator */
373     env = (char **) sp;
374     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
375 	;
376     aux = (Elf_Auxinfo *) sp;
377 
378     /* Digest the auxiliary vector. */
379     for (i = 0;  i < AT_COUNT;  i++)
380 	aux_info[i] = NULL;
381     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
382 	if (auxp->a_type < AT_COUNT)
383 	    aux_info[auxp->a_type] = auxp;
384     }
385 
386     /* Initialize and relocate ourselves. */
387     assert(aux_info[AT_BASE] != NULL);
388     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
389 
390     __progname = obj_rtld.path;
391     argv0 = argv[0] != NULL ? argv[0] : "(null)";
392     environ = env;
393     main_argc = argc;
394     main_argv = argv;
395 
396     if (aux_info[AT_CANARY] != NULL &&
397 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
398 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
399 	    if (i > sizeof(__stack_chk_guard))
400 		    i = sizeof(__stack_chk_guard);
401 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
402     } else {
403 	mib[0] = CTL_KERN;
404 	mib[1] = KERN_ARND;
405 
406 	len = sizeof(__stack_chk_guard);
407 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
408 	    len != sizeof(__stack_chk_guard)) {
409 		/* If sysctl was unsuccessful, use the "terminator canary". */
410 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
411 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
412 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
413 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
414 	}
415     }
416 
417     trust = !issetugid();
418 
419     ld_bind_now = getenv(LD_ "BIND_NOW");
420     /*
421      * If the process is tainted, then we un-set the dangerous environment
422      * variables.  The process will be marked as tainted until setuid(2)
423      * is called.  If any child process calls setuid(2) we do not want any
424      * future processes to honor the potentially un-safe variables.
425      */
426     if (!trust) {
427         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
428 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
429 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
430 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
431 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
432 		_rtld_error("environment corrupt; aborting");
433 		die();
434 	}
435     }
436     ld_debug = getenv(LD_ "DEBUG");
437     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
438     libmap_override = getenv(LD_ "LIBMAP");
439     ld_library_path = getenv(LD_ "LIBRARY_PATH");
440     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
441     ld_preload = getenv(LD_ "PRELOAD");
442     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
443     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
444     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
445     if (library_path_rpath != NULL) {
446 	    if (library_path_rpath[0] == 'y' ||
447 		library_path_rpath[0] == 'Y' ||
448 		library_path_rpath[0] == '1')
449 		    ld_library_path_rpath = true;
450 	    else
451 		    ld_library_path_rpath = false;
452     }
453     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
454 	(ld_library_path != NULL) || (ld_preload != NULL) ||
455 	(ld_elf_hints_path != NULL) || ld_loadfltr;
456     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
457     ld_utrace = getenv(LD_ "UTRACE");
458 
459     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
460 	ld_elf_hints_path = _PATH_ELF_HINTS;
461 
462     if (ld_debug != NULL && *ld_debug != '\0')
463 	debug = 1;
464     dbg("%s is initialized, base address = %p", __progname,
465 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
466     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
467     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
468 
469     dbg("initializing thread locks");
470     lockdflt_init();
471 
472     /*
473      * Load the main program, or process its program header if it is
474      * already loaded.
475      */
476     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
477 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
478 	dbg("loading main program");
479 	obj_main = map_object(fd, argv0, NULL);
480 	close(fd);
481 	if (obj_main == NULL)
482 	    die();
483 	max_stack_flags = obj->stack_flags;
484     } else {				/* Main program already loaded. */
485 	const Elf_Phdr *phdr;
486 	int phnum;
487 	caddr_t entry;
488 
489 	dbg("processing main program's program header");
490 	assert(aux_info[AT_PHDR] != NULL);
491 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
492 	assert(aux_info[AT_PHNUM] != NULL);
493 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
494 	assert(aux_info[AT_PHENT] != NULL);
495 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
496 	assert(aux_info[AT_ENTRY] != NULL);
497 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
498 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
499 	    die();
500     }
501 
502     if (aux_info[AT_EXECPATH] != 0) {
503 	    char *kexecpath;
504 	    char buf[MAXPATHLEN];
505 
506 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
507 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
508 	    if (kexecpath[0] == '/')
509 		    obj_main->path = kexecpath;
510 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
511 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
512 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
513 		    obj_main->path = xstrdup(argv0);
514 	    else
515 		    obj_main->path = xstrdup(buf);
516     } else {
517 	    dbg("No AT_EXECPATH");
518 	    obj_main->path = xstrdup(argv0);
519     }
520     dbg("obj_main path %s", obj_main->path);
521     obj_main->mainprog = true;
522 
523     if (aux_info[AT_STACKPROT] != NULL &&
524       aux_info[AT_STACKPROT]->a_un.a_val != 0)
525 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
526 
527 #ifndef COMPAT_32BIT
528     /*
529      * Get the actual dynamic linker pathname from the executable if
530      * possible.  (It should always be possible.)  That ensures that
531      * gdb will find the right dynamic linker even if a non-standard
532      * one is being used.
533      */
534     if (obj_main->interp != NULL &&
535       strcmp(obj_main->interp, obj_rtld.path) != 0) {
536 	free(obj_rtld.path);
537 	obj_rtld.path = xstrdup(obj_main->interp);
538         __progname = obj_rtld.path;
539     }
540 #endif
541 
542     digest_dynamic(obj_main, 0);
543     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
544 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
545 	obj_main->dynsymcount);
546 
547     linkmap_add(obj_main);
548     linkmap_add(&obj_rtld);
549 
550     /* Link the main program into the list of objects. */
551     *obj_tail = obj_main;
552     obj_tail = &obj_main->next;
553     obj_count++;
554     obj_loads++;
555 
556     /* Initialize a fake symbol for resolving undefined weak references. */
557     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
558     sym_zero.st_shndx = SHN_UNDEF;
559     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
560 
561     if (!libmap_disable)
562         libmap_disable = (bool)lm_init(libmap_override);
563 
564     dbg("loading LD_PRELOAD libraries");
565     if (load_preload_objects() == -1)
566 	die();
567     preload_tail = obj_tail;
568 
569     dbg("loading needed objects");
570     if (load_needed_objects(obj_main, 0) == -1)
571 	die();
572 
573     /* Make a list of all objects loaded at startup. */
574     last_interposer = obj_main;
575     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
576 	if (obj->z_interpose && obj != obj_main) {
577 	    objlist_put_after(&list_main, last_interposer, obj);
578 	    last_interposer = obj;
579 	} else {
580 	    objlist_push_tail(&list_main, obj);
581 	}
582     	obj->refcount++;
583     }
584 
585     dbg("checking for required versions");
586     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
587 	die();
588 
589     if (ld_tracing) {		/* We're done */
590 	trace_loaded_objects(obj_main);
591 	exit(0);
592     }
593 
594     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
595        dump_relocations(obj_main);
596        exit (0);
597     }
598 
599     /*
600      * Processing tls relocations requires having the tls offsets
601      * initialized.  Prepare offsets before starting initial
602      * relocation processing.
603      */
604     dbg("initializing initial thread local storage offsets");
605     STAILQ_FOREACH(entry, &list_main, link) {
606 	/*
607 	 * Allocate all the initial objects out of the static TLS
608 	 * block even if they didn't ask for it.
609 	 */
610 	allocate_tls_offset(entry->obj);
611     }
612 
613     if (relocate_objects(obj_main,
614       ld_bind_now != NULL && *ld_bind_now != '\0',
615       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
616 	die();
617 
618     dbg("doing copy relocations");
619     if (do_copy_relocations(obj_main) == -1)
620 	die();
621 
622     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
623        dump_relocations(obj_main);
624        exit (0);
625     }
626 
627     /*
628      * Setup TLS for main thread.  This must be done after the
629      * relocations are processed, since tls initialization section
630      * might be the subject for relocations.
631      */
632     dbg("initializing initial thread local storage");
633     allocate_initial_tls(obj_list);
634 
635     dbg("initializing key program variables");
636     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
637     set_program_var("environ", env);
638     set_program_var("__elf_aux_vector", aux);
639 
640     /* Make a list of init functions to call. */
641     objlist_init(&initlist);
642     initlist_add_objects(obj_list, preload_tail, &initlist);
643 
644     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
645 
646     map_stacks_exec(NULL);
647 
648     dbg("resolving ifuncs");
649     if (resolve_objects_ifunc(obj_main,
650       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
651       NULL) == -1)
652 	die();
653 
654     if (!obj_main->crt_no_init) {
655 	/*
656 	 * Make sure we don't call the main program's init and fini
657 	 * functions for binaries linked with old crt1 which calls
658 	 * _init itself.
659 	 */
660 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
661 	obj_main->preinit_array = obj_main->init_array =
662 	    obj_main->fini_array = (Elf_Addr)NULL;
663     }
664 
665     wlock_acquire(rtld_bind_lock, &lockstate);
666     if (obj_main->crt_no_init)
667 	preinit_main();
668     objlist_call_init(&initlist, &lockstate);
669     _r_debug_postinit(&obj_main->linkmap);
670     objlist_clear(&initlist);
671     dbg("loading filtees");
672     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
673 	if (ld_loadfltr || obj->z_loadfltr)
674 	    load_filtees(obj, 0, &lockstate);
675     }
676     lock_release(rtld_bind_lock, &lockstate);
677 
678     dbg("transferring control to program entry point = %p", obj_main->entry);
679 
680     /* Return the exit procedure and the program entry point. */
681     *exit_proc = rtld_exit;
682     *objp = obj_main;
683     return (func_ptr_type) obj_main->entry;
684 }
685 
686 void *
687 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
688 {
689 	void *ptr;
690 	Elf_Addr target;
691 
692 	ptr = (void *)make_function_pointer(def, obj);
693 	target = ((Elf_Addr (*)(void))ptr)();
694 	return ((void *)target);
695 }
696 
697 Elf_Addr
698 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
699 {
700     const Elf_Rel *rel;
701     const Elf_Sym *def;
702     const Obj_Entry *defobj;
703     Elf_Addr *where;
704     Elf_Addr target;
705     RtldLockState lockstate;
706 
707     rlock_acquire(rtld_bind_lock, &lockstate);
708     if (sigsetjmp(lockstate.env, 0) != 0)
709 	    lock_upgrade(rtld_bind_lock, &lockstate);
710     if (obj->pltrel)
711 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
712     else
713 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
714 
715     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
716     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
717 	&lockstate);
718     if (def == NULL)
719 	die();
720     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
721 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
722     else
723 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
724 
725     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
726       defobj->strtab + def->st_name, basename(obj->path),
727       (void *)target, basename(defobj->path));
728 
729     /*
730      * Write the new contents for the jmpslot. Note that depending on
731      * architecture, the value which we need to return back to the
732      * lazy binding trampoline may or may not be the target
733      * address. The value returned from reloc_jmpslot() is the value
734      * that the trampoline needs.
735      */
736     target = reloc_jmpslot(where, target, defobj, obj, rel);
737     lock_release(rtld_bind_lock, &lockstate);
738     return target;
739 }
740 
741 /*
742  * Error reporting function.  Use it like printf.  If formats the message
743  * into a buffer, and sets things up so that the next call to dlerror()
744  * will return the message.
745  */
746 void
747 _rtld_error(const char *fmt, ...)
748 {
749     static char buf[512];
750     va_list ap;
751 
752     va_start(ap, fmt);
753     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
754     error_message = buf;
755     va_end(ap);
756 }
757 
758 /*
759  * Return a dynamically-allocated copy of the current error message, if any.
760  */
761 static char *
762 errmsg_save(void)
763 {
764     return error_message == NULL ? NULL : xstrdup(error_message);
765 }
766 
767 /*
768  * Restore the current error message from a copy which was previously saved
769  * by errmsg_save().  The copy is freed.
770  */
771 static void
772 errmsg_restore(char *saved_msg)
773 {
774     if (saved_msg == NULL)
775 	error_message = NULL;
776     else {
777 	_rtld_error("%s", saved_msg);
778 	free(saved_msg);
779     }
780 }
781 
782 static const char *
783 basename(const char *name)
784 {
785     const char *p = strrchr(name, '/');
786     return p != NULL ? p + 1 : name;
787 }
788 
789 static struct utsname uts;
790 
791 static char *
792 origin_subst_one(char *real, const char *kw, const char *subst,
793     bool may_free)
794 {
795 	char *p, *p1, *res, *resp;
796 	int subst_len, kw_len, subst_count, old_len, new_len;
797 
798 	kw_len = strlen(kw);
799 
800 	/*
801 	 * First, count the number of the keyword occurences, to
802 	 * preallocate the final string.
803 	 */
804 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
805 		p1 = strstr(p, kw);
806 		if (p1 == NULL)
807 			break;
808 	}
809 
810 	/*
811 	 * If the keyword is not found, just return.
812 	 */
813 	if (subst_count == 0)
814 		return (may_free ? real : xstrdup(real));
815 
816 	/*
817 	 * There is indeed something to substitute.  Calculate the
818 	 * length of the resulting string, and allocate it.
819 	 */
820 	subst_len = strlen(subst);
821 	old_len = strlen(real);
822 	new_len = old_len + (subst_len - kw_len) * subst_count;
823 	res = xmalloc(new_len + 1);
824 
825 	/*
826 	 * Now, execute the substitution loop.
827 	 */
828 	for (p = real, resp = res, *resp = '\0';;) {
829 		p1 = strstr(p, kw);
830 		if (p1 != NULL) {
831 			/* Copy the prefix before keyword. */
832 			memcpy(resp, p, p1 - p);
833 			resp += p1 - p;
834 			/* Keyword replacement. */
835 			memcpy(resp, subst, subst_len);
836 			resp += subst_len;
837 			*resp = '\0';
838 			p = p1 + kw_len;
839 		} else
840 			break;
841 	}
842 
843 	/* Copy to the end of string and finish. */
844 	strcat(resp, p);
845 	if (may_free)
846 		free(real);
847 	return (res);
848 }
849 
850 static char *
851 origin_subst(char *real, const char *origin_path)
852 {
853 	char *res1, *res2, *res3, *res4;
854 
855 	if (uts.sysname[0] == '\0') {
856 		if (uname(&uts) != 0) {
857 			_rtld_error("utsname failed: %d", errno);
858 			return (NULL);
859 		}
860 	}
861 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
862 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
863 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
864 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
865 	return (res4);
866 }
867 
868 static void
869 die(void)
870 {
871     const char *msg = dlerror();
872 
873     if (msg == NULL)
874 	msg = "Fatal error";
875     rtld_fdputstr(STDERR_FILENO, msg);
876     rtld_fdputchar(STDERR_FILENO, '\n');
877     _exit(1);
878 }
879 
880 /*
881  * Process a shared object's DYNAMIC section, and save the important
882  * information in its Obj_Entry structure.
883  */
884 static void
885 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
886     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
887 {
888     const Elf_Dyn *dynp;
889     Needed_Entry **needed_tail = &obj->needed;
890     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
891     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
892     const Elf_Hashelt *hashtab;
893     const Elf32_Word *hashval;
894     Elf32_Word bkt, nmaskwords;
895     int bloom_size32;
896     int plttype = DT_REL;
897 
898     *dyn_rpath = NULL;
899     *dyn_soname = NULL;
900     *dyn_runpath = NULL;
901 
902     obj->bind_now = false;
903     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
904 	switch (dynp->d_tag) {
905 
906 	case DT_REL:
907 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
908 	    break;
909 
910 	case DT_RELSZ:
911 	    obj->relsize = dynp->d_un.d_val;
912 	    break;
913 
914 	case DT_RELENT:
915 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
916 	    break;
917 
918 	case DT_JMPREL:
919 	    obj->pltrel = (const Elf_Rel *)
920 	      (obj->relocbase + dynp->d_un.d_ptr);
921 	    break;
922 
923 	case DT_PLTRELSZ:
924 	    obj->pltrelsize = dynp->d_un.d_val;
925 	    break;
926 
927 	case DT_RELA:
928 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
929 	    break;
930 
931 	case DT_RELASZ:
932 	    obj->relasize = dynp->d_un.d_val;
933 	    break;
934 
935 	case DT_RELAENT:
936 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
937 	    break;
938 
939 	case DT_PLTREL:
940 	    plttype = dynp->d_un.d_val;
941 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
942 	    break;
943 
944 	case DT_SYMTAB:
945 	    obj->symtab = (const Elf_Sym *)
946 	      (obj->relocbase + dynp->d_un.d_ptr);
947 	    break;
948 
949 	case DT_SYMENT:
950 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
951 	    break;
952 
953 	case DT_STRTAB:
954 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
955 	    break;
956 
957 	case DT_STRSZ:
958 	    obj->strsize = dynp->d_un.d_val;
959 	    break;
960 
961 	case DT_VERNEED:
962 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
963 		dynp->d_un.d_val);
964 	    break;
965 
966 	case DT_VERNEEDNUM:
967 	    obj->verneednum = dynp->d_un.d_val;
968 	    break;
969 
970 	case DT_VERDEF:
971 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
972 		dynp->d_un.d_val);
973 	    break;
974 
975 	case DT_VERDEFNUM:
976 	    obj->verdefnum = dynp->d_un.d_val;
977 	    break;
978 
979 	case DT_VERSYM:
980 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
981 		dynp->d_un.d_val);
982 	    break;
983 
984 	case DT_HASH:
985 	    {
986 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
987 		    dynp->d_un.d_ptr);
988 		obj->nbuckets = hashtab[0];
989 		obj->nchains = hashtab[1];
990 		obj->buckets = hashtab + 2;
991 		obj->chains = obj->buckets + obj->nbuckets;
992 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
993 		  obj->buckets != NULL;
994 	    }
995 	    break;
996 
997 	case DT_GNU_HASH:
998 	    {
999 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1000 		    dynp->d_un.d_ptr);
1001 		obj->nbuckets_gnu = hashtab[0];
1002 		obj->symndx_gnu = hashtab[1];
1003 		nmaskwords = hashtab[2];
1004 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1005 		obj->maskwords_bm_gnu = nmaskwords - 1;
1006 		obj->shift2_gnu = hashtab[3];
1007 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1008 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1009 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1010 		  obj->symndx_gnu;
1011 		/* Number of bitmask words is required to be power of 2 */
1012 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1013 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1014 	    }
1015 	    break;
1016 
1017 	case DT_NEEDED:
1018 	    if (!obj->rtld) {
1019 		Needed_Entry *nep = NEW(Needed_Entry);
1020 		nep->name = dynp->d_un.d_val;
1021 		nep->obj = NULL;
1022 		nep->next = NULL;
1023 
1024 		*needed_tail = nep;
1025 		needed_tail = &nep->next;
1026 	    }
1027 	    break;
1028 
1029 	case DT_FILTER:
1030 	    if (!obj->rtld) {
1031 		Needed_Entry *nep = NEW(Needed_Entry);
1032 		nep->name = dynp->d_un.d_val;
1033 		nep->obj = NULL;
1034 		nep->next = NULL;
1035 
1036 		*needed_filtees_tail = nep;
1037 		needed_filtees_tail = &nep->next;
1038 	    }
1039 	    break;
1040 
1041 	case DT_AUXILIARY:
1042 	    if (!obj->rtld) {
1043 		Needed_Entry *nep = NEW(Needed_Entry);
1044 		nep->name = dynp->d_un.d_val;
1045 		nep->obj = NULL;
1046 		nep->next = NULL;
1047 
1048 		*needed_aux_filtees_tail = nep;
1049 		needed_aux_filtees_tail = &nep->next;
1050 	    }
1051 	    break;
1052 
1053 	case DT_PLTGOT:
1054 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1055 	    break;
1056 
1057 	case DT_TEXTREL:
1058 	    obj->textrel = true;
1059 	    break;
1060 
1061 	case DT_SYMBOLIC:
1062 	    obj->symbolic = true;
1063 	    break;
1064 
1065 	case DT_RPATH:
1066 	    /*
1067 	     * We have to wait until later to process this, because we
1068 	     * might not have gotten the address of the string table yet.
1069 	     */
1070 	    *dyn_rpath = dynp;
1071 	    break;
1072 
1073 	case DT_SONAME:
1074 	    *dyn_soname = dynp;
1075 	    break;
1076 
1077 	case DT_RUNPATH:
1078 	    *dyn_runpath = dynp;
1079 	    break;
1080 
1081 	case DT_INIT:
1082 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1083 	    break;
1084 
1085 	case DT_PREINIT_ARRAY:
1086 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1087 	    break;
1088 
1089 	case DT_PREINIT_ARRAYSZ:
1090 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1091 	    break;
1092 
1093 	case DT_INIT_ARRAY:
1094 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1095 	    break;
1096 
1097 	case DT_INIT_ARRAYSZ:
1098 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1099 	    break;
1100 
1101 	case DT_FINI:
1102 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1103 	    break;
1104 
1105 	case DT_FINI_ARRAY:
1106 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1107 	    break;
1108 
1109 	case DT_FINI_ARRAYSZ:
1110 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1111 	    break;
1112 
1113 	/*
1114 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1115 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1116 	 */
1117 
1118 #ifndef __mips__
1119 	case DT_DEBUG:
1120 	    /* XXX - not implemented yet */
1121 	    if (!early)
1122 		dbg("Filling in DT_DEBUG entry");
1123 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1124 	    break;
1125 #endif
1126 
1127 	case DT_FLAGS:
1128 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1129 		    obj->z_origin = true;
1130 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1131 		    obj->symbolic = true;
1132 		if (dynp->d_un.d_val & DF_TEXTREL)
1133 		    obj->textrel = true;
1134 		if (dynp->d_un.d_val & DF_BIND_NOW)
1135 		    obj->bind_now = true;
1136 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1137 		    ;*/
1138 	    break;
1139 #ifdef __mips__
1140 	case DT_MIPS_LOCAL_GOTNO:
1141 		obj->local_gotno = dynp->d_un.d_val;
1142 	    break;
1143 
1144 	case DT_MIPS_SYMTABNO:
1145 		obj->symtabno = dynp->d_un.d_val;
1146 		break;
1147 
1148 	case DT_MIPS_GOTSYM:
1149 		obj->gotsym = dynp->d_un.d_val;
1150 		break;
1151 
1152 	case DT_MIPS_RLD_MAP:
1153 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1154 		break;
1155 #endif
1156 
1157 	case DT_FLAGS_1:
1158 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1159 		    obj->z_noopen = true;
1160 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1161 		    obj->z_origin = true;
1162 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1163 		    XXX ;*/
1164 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1165 		    obj->bind_now = true;
1166 		if (dynp->d_un.d_val & DF_1_NODELETE)
1167 		    obj->z_nodelete = true;
1168 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1169 		    obj->z_loadfltr = true;
1170 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1171 		    obj->z_interpose = true;
1172 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1173 		    obj->z_nodeflib = true;
1174 	    break;
1175 
1176 	default:
1177 	    if (!early) {
1178 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1179 		    (long)dynp->d_tag);
1180 	    }
1181 	    break;
1182 	}
1183     }
1184 
1185     obj->traced = false;
1186 
1187     if (plttype == DT_RELA) {
1188 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1189 	obj->pltrel = NULL;
1190 	obj->pltrelasize = obj->pltrelsize;
1191 	obj->pltrelsize = 0;
1192     }
1193 
1194     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1195     if (obj->valid_hash_sysv)
1196 	obj->dynsymcount = obj->nchains;
1197     else if (obj->valid_hash_gnu) {
1198 	obj->dynsymcount = 0;
1199 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1200 	    if (obj->buckets_gnu[bkt] == 0)
1201 		continue;
1202 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1203 	    do
1204 		obj->dynsymcount++;
1205 	    while ((*hashval++ & 1u) == 0);
1206 	}
1207 	obj->dynsymcount += obj->symndx_gnu;
1208     }
1209 }
1210 
1211 static void
1212 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1213     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1214 {
1215 
1216     if (obj->z_origin && obj->origin_path == NULL) {
1217 	obj->origin_path = xmalloc(PATH_MAX);
1218 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1219 	    die();
1220     }
1221 
1222     if (dyn_runpath != NULL) {
1223 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1224 	if (obj->z_origin)
1225 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1226     }
1227     else if (dyn_rpath != NULL) {
1228 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1229 	if (obj->z_origin)
1230 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1231     }
1232 
1233     if (dyn_soname != NULL)
1234 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1235 }
1236 
1237 static void
1238 digest_dynamic(Obj_Entry *obj, int early)
1239 {
1240 	const Elf_Dyn *dyn_rpath;
1241 	const Elf_Dyn *dyn_soname;
1242 	const Elf_Dyn *dyn_runpath;
1243 
1244 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1245 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1246 }
1247 
1248 /*
1249  * Process a shared object's program header.  This is used only for the
1250  * main program, when the kernel has already loaded the main program
1251  * into memory before calling the dynamic linker.  It creates and
1252  * returns an Obj_Entry structure.
1253  */
1254 static Obj_Entry *
1255 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1256 {
1257     Obj_Entry *obj;
1258     const Elf_Phdr *phlimit = phdr + phnum;
1259     const Elf_Phdr *ph;
1260     Elf_Addr note_start, note_end;
1261     int nsegs = 0;
1262 
1263     obj = obj_new();
1264     for (ph = phdr;  ph < phlimit;  ph++) {
1265 	if (ph->p_type != PT_PHDR)
1266 	    continue;
1267 
1268 	obj->phdr = phdr;
1269 	obj->phsize = ph->p_memsz;
1270 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1271 	break;
1272     }
1273 
1274     obj->stack_flags = PF_X | PF_R | PF_W;
1275 
1276     for (ph = phdr;  ph < phlimit;  ph++) {
1277 	switch (ph->p_type) {
1278 
1279 	case PT_INTERP:
1280 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1281 	    break;
1282 
1283 	case PT_LOAD:
1284 	    if (nsegs == 0) {	/* First load segment */
1285 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1286 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1287 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1288 		  obj->vaddrbase;
1289 	    } else {		/* Last load segment */
1290 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1291 		  obj->vaddrbase;
1292 	    }
1293 	    nsegs++;
1294 	    break;
1295 
1296 	case PT_DYNAMIC:
1297 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1298 	    break;
1299 
1300 	case PT_TLS:
1301 	    obj->tlsindex = 1;
1302 	    obj->tlssize = ph->p_memsz;
1303 	    obj->tlsalign = ph->p_align;
1304 	    obj->tlsinitsize = ph->p_filesz;
1305 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1306 	    break;
1307 
1308 	case PT_GNU_STACK:
1309 	    obj->stack_flags = ph->p_flags;
1310 	    break;
1311 
1312 	case PT_GNU_RELRO:
1313 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1314 	    obj->relro_size = round_page(ph->p_memsz);
1315 	    break;
1316 
1317 	case PT_NOTE:
1318 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1319 	    note_end = note_start + ph->p_filesz;
1320 	    digest_notes(obj, note_start, note_end);
1321 	    break;
1322 	}
1323     }
1324     if (nsegs < 1) {
1325 	_rtld_error("%s: too few PT_LOAD segments", path);
1326 	return NULL;
1327     }
1328 
1329     obj->entry = entry;
1330     return obj;
1331 }
1332 
1333 void
1334 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1335 {
1336 	const Elf_Note *note;
1337 	const char *note_name;
1338 	uintptr_t p;
1339 
1340 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1341 	    note = (const Elf_Note *)((const char *)(note + 1) +
1342 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1343 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1344 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1345 		    note->n_descsz != sizeof(int32_t))
1346 			continue;
1347 		if (note->n_type != ABI_NOTETYPE &&
1348 		    note->n_type != CRT_NOINIT_NOTETYPE)
1349 			continue;
1350 		note_name = (const char *)(note + 1);
1351 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1352 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1353 			continue;
1354 		switch (note->n_type) {
1355 		case ABI_NOTETYPE:
1356 			/* FreeBSD osrel note */
1357 			p = (uintptr_t)(note + 1);
1358 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1359 			obj->osrel = *(const int32_t *)(p);
1360 			dbg("note osrel %d", obj->osrel);
1361 			break;
1362 		case CRT_NOINIT_NOTETYPE:
1363 			/* FreeBSD 'crt does not call init' note */
1364 			obj->crt_no_init = true;
1365 			dbg("note crt_no_init");
1366 			break;
1367 		}
1368 	}
1369 }
1370 
1371 static Obj_Entry *
1372 dlcheck(void *handle)
1373 {
1374     Obj_Entry *obj;
1375 
1376     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1377 	if (obj == (Obj_Entry *) handle)
1378 	    break;
1379 
1380     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1381 	_rtld_error("Invalid shared object handle %p", handle);
1382 	return NULL;
1383     }
1384     return obj;
1385 }
1386 
1387 /*
1388  * If the given object is already in the donelist, return true.  Otherwise
1389  * add the object to the list and return false.
1390  */
1391 static bool
1392 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1393 {
1394     unsigned int i;
1395 
1396     for (i = 0;  i < dlp->num_used;  i++)
1397 	if (dlp->objs[i] == obj)
1398 	    return true;
1399     /*
1400      * Our donelist allocation should always be sufficient.  But if
1401      * our threads locking isn't working properly, more shared objects
1402      * could have been loaded since we allocated the list.  That should
1403      * never happen, but we'll handle it properly just in case it does.
1404      */
1405     if (dlp->num_used < dlp->num_alloc)
1406 	dlp->objs[dlp->num_used++] = obj;
1407     return false;
1408 }
1409 
1410 /*
1411  * Hash function for symbol table lookup.  Don't even think about changing
1412  * this.  It is specified by the System V ABI.
1413  */
1414 unsigned long
1415 elf_hash(const char *name)
1416 {
1417     const unsigned char *p = (const unsigned char *) name;
1418     unsigned long h = 0;
1419     unsigned long g;
1420 
1421     while (*p != '\0') {
1422 	h = (h << 4) + *p++;
1423 	if ((g = h & 0xf0000000) != 0)
1424 	    h ^= g >> 24;
1425 	h &= ~g;
1426     }
1427     return h;
1428 }
1429 
1430 /*
1431  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1432  * unsigned in case it's implemented with a wider type.
1433  */
1434 static uint32_t
1435 gnu_hash(const char *s)
1436 {
1437 	uint32_t h;
1438 	unsigned char c;
1439 
1440 	h = 5381;
1441 	for (c = *s; c != '\0'; c = *++s)
1442 		h = h * 33 + c;
1443 	return (h & 0xffffffff);
1444 }
1445 
1446 
1447 /*
1448  * Find the library with the given name, and return its full pathname.
1449  * The returned string is dynamically allocated.  Generates an error
1450  * message and returns NULL if the library cannot be found.
1451  *
1452  * If the second argument is non-NULL, then it refers to an already-
1453  * loaded shared object, whose library search path will be searched.
1454  *
1455  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1456  * descriptor (which is close-on-exec) will be passed out via the third
1457  * argument.
1458  *
1459  * The search order is:
1460  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1461  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1462  *   LD_LIBRARY_PATH
1463  *   DT_RUNPATH in the referencing file
1464  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1465  *	 from list)
1466  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1467  *
1468  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1469  */
1470 static char *
1471 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1472 {
1473     char *pathname;
1474     char *name;
1475     bool nodeflib, objgiven;
1476 
1477     objgiven = refobj != NULL;
1478     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1479 	if (xname[0] != '/' && !trust) {
1480 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1481 	      xname);
1482 	    return NULL;
1483 	}
1484 	if (objgiven && refobj->z_origin) {
1485 		return (origin_subst(__DECONST(char *, xname),
1486 		    refobj->origin_path));
1487 	} else {
1488 		return (xstrdup(xname));
1489 	}
1490     }
1491 
1492     if (libmap_disable || !objgiven ||
1493 	(name = lm_find(refobj->path, xname)) == NULL)
1494 	name = (char *)xname;
1495 
1496     dbg(" Searching for \"%s\"", name);
1497 
1498     /*
1499      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1500      * back to pre-conforming behaviour if user requested so with
1501      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1502      * nodeflib.
1503      */
1504     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1505 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1506 	  (refobj != NULL &&
1507 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1508 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1509           (pathname = search_library_path(name, gethints(false))) != NULL ||
1510 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1511 	    return (pathname);
1512     } else {
1513 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1514 	if ((objgiven &&
1515 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1516 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1517 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1518 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1519 	  (objgiven &&
1520 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1521 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1522 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1523 	  (objgiven && !nodeflib &&
1524 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1525 	    return (pathname);
1526     }
1527 
1528     if (objgiven && refobj->path != NULL) {
1529 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1530 	  name, basename(refobj->path));
1531     } else {
1532 	_rtld_error("Shared object \"%s\" not found", name);
1533     }
1534     return NULL;
1535 }
1536 
1537 /*
1538  * Given a symbol number in a referencing object, find the corresponding
1539  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1540  * no definition was found.  Returns a pointer to the Obj_Entry of the
1541  * defining object via the reference parameter DEFOBJ_OUT.
1542  */
1543 const Elf_Sym *
1544 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1545     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1546     RtldLockState *lockstate)
1547 {
1548     const Elf_Sym *ref;
1549     const Elf_Sym *def;
1550     const Obj_Entry *defobj;
1551     SymLook req;
1552     const char *name;
1553     int res;
1554 
1555     /*
1556      * If we have already found this symbol, get the information from
1557      * the cache.
1558      */
1559     if (symnum >= refobj->dynsymcount)
1560 	return NULL;	/* Bad object */
1561     if (cache != NULL && cache[symnum].sym != NULL) {
1562 	*defobj_out = cache[symnum].obj;
1563 	return cache[symnum].sym;
1564     }
1565 
1566     ref = refobj->symtab + symnum;
1567     name = refobj->strtab + ref->st_name;
1568     def = NULL;
1569     defobj = NULL;
1570 
1571     /*
1572      * We don't have to do a full scale lookup if the symbol is local.
1573      * We know it will bind to the instance in this load module; to
1574      * which we already have a pointer (ie ref). By not doing a lookup,
1575      * we not only improve performance, but it also avoids unresolvable
1576      * symbols when local symbols are not in the hash table. This has
1577      * been seen with the ia64 toolchain.
1578      */
1579     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1580 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1581 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1582 		symnum);
1583 	}
1584 	symlook_init(&req, name);
1585 	req.flags = flags;
1586 	req.ventry = fetch_ventry(refobj, symnum);
1587 	req.lockstate = lockstate;
1588 	res = symlook_default(&req, refobj);
1589 	if (res == 0) {
1590 	    def = req.sym_out;
1591 	    defobj = req.defobj_out;
1592 	}
1593     } else {
1594 	def = ref;
1595 	defobj = refobj;
1596     }
1597 
1598     /*
1599      * If we found no definition and the reference is weak, treat the
1600      * symbol as having the value zero.
1601      */
1602     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1603 	def = &sym_zero;
1604 	defobj = obj_main;
1605     }
1606 
1607     if (def != NULL) {
1608 	*defobj_out = defobj;
1609 	/* Record the information in the cache to avoid subsequent lookups. */
1610 	if (cache != NULL) {
1611 	    cache[symnum].sym = def;
1612 	    cache[symnum].obj = defobj;
1613 	}
1614     } else {
1615 	if (refobj != &obj_rtld)
1616 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1617     }
1618     return def;
1619 }
1620 
1621 /*
1622  * Return the search path from the ldconfig hints file, reading it if
1623  * necessary.  If nostdlib is true, then the default search paths are
1624  * not added to result.
1625  *
1626  * Returns NULL if there are problems with the hints file,
1627  * or if the search path there is empty.
1628  */
1629 static const char *
1630 gethints(bool nostdlib)
1631 {
1632 	static char *hints, *filtered_path;
1633 	struct elfhints_hdr hdr;
1634 	struct fill_search_info_args sargs, hargs;
1635 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1636 	struct dl_serpath *SLPpath, *hintpath;
1637 	char *p;
1638 	unsigned int SLPndx, hintndx, fndx, fcount;
1639 	int fd;
1640 	size_t flen;
1641 	bool skip;
1642 
1643 	/* First call, read the hints file */
1644 	if (hints == NULL) {
1645 		/* Keep from trying again in case the hints file is bad. */
1646 		hints = "";
1647 
1648 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1649 			return (NULL);
1650 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1651 		    hdr.magic != ELFHINTS_MAGIC ||
1652 		    hdr.version != 1) {
1653 			close(fd);
1654 			return (NULL);
1655 		}
1656 		p = xmalloc(hdr.dirlistlen + 1);
1657 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1658 		    read(fd, p, hdr.dirlistlen + 1) !=
1659 		    (ssize_t)hdr.dirlistlen + 1) {
1660 			free(p);
1661 			close(fd);
1662 			return (NULL);
1663 		}
1664 		hints = p;
1665 		close(fd);
1666 	}
1667 
1668 	/*
1669 	 * If caller agreed to receive list which includes the default
1670 	 * paths, we are done. Otherwise, if we still did not
1671 	 * calculated filtered result, do it now.
1672 	 */
1673 	if (!nostdlib)
1674 		return (hints[0] != '\0' ? hints : NULL);
1675 	if (filtered_path != NULL)
1676 		goto filt_ret;
1677 
1678 	/*
1679 	 * Obtain the list of all configured search paths, and the
1680 	 * list of the default paths.
1681 	 *
1682 	 * First estimate the size of the results.
1683 	 */
1684 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1685 	smeta.dls_cnt = 0;
1686 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1687 	hmeta.dls_cnt = 0;
1688 
1689 	sargs.request = RTLD_DI_SERINFOSIZE;
1690 	sargs.serinfo = &smeta;
1691 	hargs.request = RTLD_DI_SERINFOSIZE;
1692 	hargs.serinfo = &hmeta;
1693 
1694 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1695 	path_enumerate(p, fill_search_info, &hargs);
1696 
1697 	SLPinfo = xmalloc(smeta.dls_size);
1698 	hintinfo = xmalloc(hmeta.dls_size);
1699 
1700 	/*
1701 	 * Next fetch both sets of paths.
1702 	 */
1703 	sargs.request = RTLD_DI_SERINFO;
1704 	sargs.serinfo = SLPinfo;
1705 	sargs.serpath = &SLPinfo->dls_serpath[0];
1706 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1707 
1708 	hargs.request = RTLD_DI_SERINFO;
1709 	hargs.serinfo = hintinfo;
1710 	hargs.serpath = &hintinfo->dls_serpath[0];
1711 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1712 
1713 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1714 	path_enumerate(p, fill_search_info, &hargs);
1715 
1716 	/*
1717 	 * Now calculate the difference between two sets, by excluding
1718 	 * standard paths from the full set.
1719 	 */
1720 	fndx = 0;
1721 	fcount = 0;
1722 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1723 	hintpath = &hintinfo->dls_serpath[0];
1724 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1725 		skip = false;
1726 		SLPpath = &SLPinfo->dls_serpath[0];
1727 		/*
1728 		 * Check each standard path against current.
1729 		 */
1730 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1731 			/* matched, skip the path */
1732 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1733 				skip = true;
1734 				break;
1735 			}
1736 		}
1737 		if (skip)
1738 			continue;
1739 		/*
1740 		 * Not matched against any standard path, add the path
1741 		 * to result. Separate consequtive paths with ':'.
1742 		 */
1743 		if (fcount > 0) {
1744 			filtered_path[fndx] = ':';
1745 			fndx++;
1746 		}
1747 		fcount++;
1748 		flen = strlen(hintpath->dls_name);
1749 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1750 		fndx += flen;
1751 	}
1752 	filtered_path[fndx] = '\0';
1753 
1754 	free(SLPinfo);
1755 	free(hintinfo);
1756 
1757 filt_ret:
1758 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1759 }
1760 
1761 static void
1762 init_dag(Obj_Entry *root)
1763 {
1764     const Needed_Entry *needed;
1765     const Objlist_Entry *elm;
1766     DoneList donelist;
1767 
1768     if (root->dag_inited)
1769 	return;
1770     donelist_init(&donelist);
1771 
1772     /* Root object belongs to own DAG. */
1773     objlist_push_tail(&root->dldags, root);
1774     objlist_push_tail(&root->dagmembers, root);
1775     donelist_check(&donelist, root);
1776 
1777     /*
1778      * Add dependencies of root object to DAG in breadth order
1779      * by exploiting the fact that each new object get added
1780      * to the tail of the dagmembers list.
1781      */
1782     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1783 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1784 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1785 		continue;
1786 	    objlist_push_tail(&needed->obj->dldags, root);
1787 	    objlist_push_tail(&root->dagmembers, needed->obj);
1788 	}
1789     }
1790     root->dag_inited = true;
1791 }
1792 
1793 static void
1794 process_nodelete(Obj_Entry *root)
1795 {
1796 	const Objlist_Entry *elm;
1797 
1798 	/*
1799 	 * Walk over object DAG and process every dependent object that
1800 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1801 	 * which then should have its reference upped separately.
1802 	 */
1803 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1804 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1805 		    !elm->obj->ref_nodel) {
1806 			dbg("obj %s nodelete", elm->obj->path);
1807 			init_dag(elm->obj);
1808 			ref_dag(elm->obj);
1809 			elm->obj->ref_nodel = true;
1810 		}
1811 	}
1812 }
1813 /*
1814  * Initialize the dynamic linker.  The argument is the address at which
1815  * the dynamic linker has been mapped into memory.  The primary task of
1816  * this function is to relocate the dynamic linker.
1817  */
1818 static void
1819 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1820 {
1821     Obj_Entry objtmp;	/* Temporary rtld object */
1822     const Elf_Dyn *dyn_rpath;
1823     const Elf_Dyn *dyn_soname;
1824     const Elf_Dyn *dyn_runpath;
1825 
1826 #ifdef RTLD_INIT_PAGESIZES_EARLY
1827     /* The page size is required by the dynamic memory allocator. */
1828     init_pagesizes(aux_info);
1829 #endif
1830 
1831     /*
1832      * Conjure up an Obj_Entry structure for the dynamic linker.
1833      *
1834      * The "path" member can't be initialized yet because string constants
1835      * cannot yet be accessed. Below we will set it correctly.
1836      */
1837     memset(&objtmp, 0, sizeof(objtmp));
1838     objtmp.path = NULL;
1839     objtmp.rtld = true;
1840     objtmp.mapbase = mapbase;
1841 #ifdef PIC
1842     objtmp.relocbase = mapbase;
1843 #endif
1844     if (RTLD_IS_DYNAMIC()) {
1845 	objtmp.dynamic = rtld_dynamic(&objtmp);
1846 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1847 	assert(objtmp.needed == NULL);
1848 #if !defined(__mips__)
1849 	/* MIPS has a bogus DT_TEXTREL. */
1850 	assert(!objtmp.textrel);
1851 #endif
1852 
1853 	/*
1854 	 * Temporarily put the dynamic linker entry into the object list, so
1855 	 * that symbols can be found.
1856 	 */
1857 
1858 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1859     }
1860 
1861     /* Initialize the object list. */
1862     obj_tail = &obj_list;
1863 
1864     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1865     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1866 
1867 #ifndef RTLD_INIT_PAGESIZES_EARLY
1868     /* The page size is required by the dynamic memory allocator. */
1869     init_pagesizes(aux_info);
1870 #endif
1871 
1872     if (aux_info[AT_OSRELDATE] != NULL)
1873 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1874 
1875     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1876 
1877     /* Replace the path with a dynamically allocated copy. */
1878     obj_rtld.path = xstrdup(PATH_RTLD);
1879 
1880     r_debug.r_brk = r_debug_state;
1881     r_debug.r_state = RT_CONSISTENT;
1882 }
1883 
1884 /*
1885  * Retrieve the array of supported page sizes.  The kernel provides the page
1886  * sizes in increasing order.
1887  */
1888 static void
1889 init_pagesizes(Elf_Auxinfo **aux_info)
1890 {
1891 	static size_t psa[MAXPAGESIZES];
1892 	int mib[2];
1893 	size_t len, size;
1894 
1895 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1896 	    NULL) {
1897 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1898 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1899 	} else {
1900 		len = 2;
1901 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1902 			size = sizeof(psa);
1903 		else {
1904 			/* As a fallback, retrieve the base page size. */
1905 			size = sizeof(psa[0]);
1906 			if (aux_info[AT_PAGESZ] != NULL) {
1907 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1908 				goto psa_filled;
1909 			} else {
1910 				mib[0] = CTL_HW;
1911 				mib[1] = HW_PAGESIZE;
1912 				len = 2;
1913 			}
1914 		}
1915 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1916 			_rtld_error("sysctl for hw.pagesize(s) failed");
1917 			die();
1918 		}
1919 psa_filled:
1920 		pagesizes = psa;
1921 	}
1922 	npagesizes = size / sizeof(pagesizes[0]);
1923 	/* Discard any invalid entries at the end of the array. */
1924 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1925 		npagesizes--;
1926 }
1927 
1928 /*
1929  * Add the init functions from a needed object list (and its recursive
1930  * needed objects) to "list".  This is not used directly; it is a helper
1931  * function for initlist_add_objects().  The write lock must be held
1932  * when this function is called.
1933  */
1934 static void
1935 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1936 {
1937     /* Recursively process the successor needed objects. */
1938     if (needed->next != NULL)
1939 	initlist_add_neededs(needed->next, list);
1940 
1941     /* Process the current needed object. */
1942     if (needed->obj != NULL)
1943 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1944 }
1945 
1946 /*
1947  * Scan all of the DAGs rooted in the range of objects from "obj" to
1948  * "tail" and add their init functions to "list".  This recurses over
1949  * the DAGs and ensure the proper init ordering such that each object's
1950  * needed libraries are initialized before the object itself.  At the
1951  * same time, this function adds the objects to the global finalization
1952  * list "list_fini" in the opposite order.  The write lock must be
1953  * held when this function is called.
1954  */
1955 static void
1956 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1957 {
1958 
1959     if (obj->init_scanned || obj->init_done)
1960 	return;
1961     obj->init_scanned = true;
1962 
1963     /* Recursively process the successor objects. */
1964     if (&obj->next != tail)
1965 	initlist_add_objects(obj->next, tail, list);
1966 
1967     /* Recursively process the needed objects. */
1968     if (obj->needed != NULL)
1969 	initlist_add_neededs(obj->needed, list);
1970     if (obj->needed_filtees != NULL)
1971 	initlist_add_neededs(obj->needed_filtees, list);
1972     if (obj->needed_aux_filtees != NULL)
1973 	initlist_add_neededs(obj->needed_aux_filtees, list);
1974 
1975     /* Add the object to the init list. */
1976     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1977       obj->init_array != (Elf_Addr)NULL)
1978 	objlist_push_tail(list, obj);
1979 
1980     /* Add the object to the global fini list in the reverse order. */
1981     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1982       && !obj->on_fini_list) {
1983 	objlist_push_head(&list_fini, obj);
1984 	obj->on_fini_list = true;
1985     }
1986 }
1987 
1988 #ifndef FPTR_TARGET
1989 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1990 #endif
1991 
1992 static void
1993 free_needed_filtees(Needed_Entry *n)
1994 {
1995     Needed_Entry *needed, *needed1;
1996 
1997     for (needed = n; needed != NULL; needed = needed->next) {
1998 	if (needed->obj != NULL) {
1999 	    dlclose(needed->obj);
2000 	    needed->obj = NULL;
2001 	}
2002     }
2003     for (needed = n; needed != NULL; needed = needed1) {
2004 	needed1 = needed->next;
2005 	free(needed);
2006     }
2007 }
2008 
2009 static void
2010 unload_filtees(Obj_Entry *obj)
2011 {
2012 
2013     free_needed_filtees(obj->needed_filtees);
2014     obj->needed_filtees = NULL;
2015     free_needed_filtees(obj->needed_aux_filtees);
2016     obj->needed_aux_filtees = NULL;
2017     obj->filtees_loaded = false;
2018 }
2019 
2020 static void
2021 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2022     RtldLockState *lockstate)
2023 {
2024 
2025     for (; needed != NULL; needed = needed->next) {
2026 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2027 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2028 	  RTLD_LOCAL, lockstate);
2029     }
2030 }
2031 
2032 static void
2033 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2034 {
2035 
2036     lock_restart_for_upgrade(lockstate);
2037     if (!obj->filtees_loaded) {
2038 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2039 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2040 	obj->filtees_loaded = true;
2041     }
2042 }
2043 
2044 static int
2045 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2046 {
2047     Obj_Entry *obj1;
2048 
2049     for (; needed != NULL; needed = needed->next) {
2050 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2051 	  flags & ~RTLD_LO_NOLOAD);
2052 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2053 	    return (-1);
2054     }
2055     return (0);
2056 }
2057 
2058 /*
2059  * Given a shared object, traverse its list of needed objects, and load
2060  * each of them.  Returns 0 on success.  Generates an error message and
2061  * returns -1 on failure.
2062  */
2063 static int
2064 load_needed_objects(Obj_Entry *first, int flags)
2065 {
2066     Obj_Entry *obj;
2067 
2068     for (obj = first;  obj != NULL;  obj = obj->next) {
2069 	if (process_needed(obj, obj->needed, flags) == -1)
2070 	    return (-1);
2071     }
2072     return (0);
2073 }
2074 
2075 static int
2076 load_preload_objects(void)
2077 {
2078     char *p = ld_preload;
2079     Obj_Entry *obj;
2080     static const char delim[] = " \t:;";
2081 
2082     if (p == NULL)
2083 	return 0;
2084 
2085     p += strspn(p, delim);
2086     while (*p != '\0') {
2087 	size_t len = strcspn(p, delim);
2088 	char savech;
2089 
2090 	savech = p[len];
2091 	p[len] = '\0';
2092 	obj = load_object(p, -1, NULL, 0);
2093 	if (obj == NULL)
2094 	    return -1;	/* XXX - cleanup */
2095 	obj->z_interpose = true;
2096 	p[len] = savech;
2097 	p += len;
2098 	p += strspn(p, delim);
2099     }
2100     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2101     return 0;
2102 }
2103 
2104 static const char *
2105 printable_path(const char *path)
2106 {
2107 
2108 	return (path == NULL ? "<unknown>" : path);
2109 }
2110 
2111 /*
2112  * Load a shared object into memory, if it is not already loaded.  The
2113  * object may be specified by name or by user-supplied file descriptor
2114  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2115  * duplicate is.
2116  *
2117  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2118  * on failure.
2119  */
2120 static Obj_Entry *
2121 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2122 {
2123     Obj_Entry *obj;
2124     int fd;
2125     struct stat sb;
2126     char *path;
2127 
2128     fd = -1;
2129     if (name != NULL) {
2130 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2131 	    if (object_match_name(obj, name))
2132 		return (obj);
2133 	}
2134 
2135 	path = find_library(name, refobj, &fd);
2136 	if (path == NULL)
2137 	    return (NULL);
2138     } else
2139 	path = NULL;
2140 
2141     if (fd >= 0) {
2142 	/*
2143 	 * search_library_pathfds() opens a fresh file descriptor for the
2144 	 * library, so there is no need to dup().
2145 	 */
2146     } else if (fd_u == -1) {
2147 	/*
2148 	 * If we didn't find a match by pathname, or the name is not
2149 	 * supplied, open the file and check again by device and inode.
2150 	 * This avoids false mismatches caused by multiple links or ".."
2151 	 * in pathnames.
2152 	 *
2153 	 * To avoid a race, we open the file and use fstat() rather than
2154 	 * using stat().
2155 	 */
2156 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2157 	    _rtld_error("Cannot open \"%s\"", path);
2158 	    free(path);
2159 	    return (NULL);
2160 	}
2161     } else {
2162 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2163 	if (fd == -1) {
2164 	    _rtld_error("Cannot dup fd");
2165 	    free(path);
2166 	    return (NULL);
2167 	}
2168     }
2169     if (fstat(fd, &sb) == -1) {
2170 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2171 	close(fd);
2172 	free(path);
2173 	return NULL;
2174     }
2175     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2176 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2177 	    break;
2178     if (obj != NULL && name != NULL) {
2179 	object_add_name(obj, name);
2180 	free(path);
2181 	close(fd);
2182 	return obj;
2183     }
2184     if (flags & RTLD_LO_NOLOAD) {
2185 	free(path);
2186 	close(fd);
2187 	return (NULL);
2188     }
2189 
2190     /* First use of this object, so we must map it in */
2191     obj = do_load_object(fd, name, path, &sb, flags);
2192     if (obj == NULL)
2193 	free(path);
2194     close(fd);
2195 
2196     return obj;
2197 }
2198 
2199 static Obj_Entry *
2200 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2201   int flags)
2202 {
2203     Obj_Entry *obj;
2204     struct statfs fs;
2205 
2206     /*
2207      * but first, make sure that environment variables haven't been
2208      * used to circumvent the noexec flag on a filesystem.
2209      */
2210     if (dangerous_ld_env) {
2211 	if (fstatfs(fd, &fs) != 0) {
2212 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2213 	    return NULL;
2214 	}
2215 	if (fs.f_flags & MNT_NOEXEC) {
2216 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2217 	    return NULL;
2218 	}
2219     }
2220     dbg("loading \"%s\"", printable_path(path));
2221     obj = map_object(fd, printable_path(path), sbp);
2222     if (obj == NULL)
2223         return NULL;
2224 
2225     /*
2226      * If DT_SONAME is present in the object, digest_dynamic2 already
2227      * added it to the object names.
2228      */
2229     if (name != NULL)
2230 	object_add_name(obj, name);
2231     obj->path = path;
2232     digest_dynamic(obj, 0);
2233     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2234 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2235     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2236       RTLD_LO_DLOPEN) {
2237 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2238 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2239 	munmap(obj->mapbase, obj->mapsize);
2240 	obj_free(obj);
2241 	return (NULL);
2242     }
2243 
2244     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2245     *obj_tail = obj;
2246     obj_tail = &obj->next;
2247     obj_count++;
2248     obj_loads++;
2249     linkmap_add(obj);	/* for GDB & dlinfo() */
2250     max_stack_flags |= obj->stack_flags;
2251 
2252     dbg("  %p .. %p: %s", obj->mapbase,
2253          obj->mapbase + obj->mapsize - 1, obj->path);
2254     if (obj->textrel)
2255 	dbg("  WARNING: %s has impure text", obj->path);
2256     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2257 	obj->path);
2258 
2259     return obj;
2260 }
2261 
2262 static Obj_Entry *
2263 obj_from_addr(const void *addr)
2264 {
2265     Obj_Entry *obj;
2266 
2267     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2268 	if (addr < (void *) obj->mapbase)
2269 	    continue;
2270 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2271 	    return obj;
2272     }
2273     return NULL;
2274 }
2275 
2276 static void
2277 preinit_main(void)
2278 {
2279     Elf_Addr *preinit_addr;
2280     int index;
2281 
2282     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2283     if (preinit_addr == NULL)
2284 	return;
2285 
2286     for (index = 0; index < obj_main->preinit_array_num; index++) {
2287 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2288 	    dbg("calling preinit function for %s at %p", obj_main->path,
2289 	      (void *)preinit_addr[index]);
2290 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2291 	      0, 0, obj_main->path);
2292 	    call_init_pointer(obj_main, preinit_addr[index]);
2293 	}
2294     }
2295 }
2296 
2297 /*
2298  * Call the finalization functions for each of the objects in "list"
2299  * belonging to the DAG of "root" and referenced once. If NULL "root"
2300  * is specified, every finalization function will be called regardless
2301  * of the reference count and the list elements won't be freed. All of
2302  * the objects are expected to have non-NULL fini functions.
2303  */
2304 static void
2305 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2306 {
2307     Objlist_Entry *elm;
2308     char *saved_msg;
2309     Elf_Addr *fini_addr;
2310     int index;
2311 
2312     assert(root == NULL || root->refcount == 1);
2313 
2314     /*
2315      * Preserve the current error message since a fini function might
2316      * call into the dynamic linker and overwrite it.
2317      */
2318     saved_msg = errmsg_save();
2319     do {
2320 	STAILQ_FOREACH(elm, list, link) {
2321 	    if (root != NULL && (elm->obj->refcount != 1 ||
2322 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2323 		continue;
2324 	    /* Remove object from fini list to prevent recursive invocation. */
2325 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2326 	    /*
2327 	     * XXX: If a dlopen() call references an object while the
2328 	     * fini function is in progress, we might end up trying to
2329 	     * unload the referenced object in dlclose() or the object
2330 	     * won't be unloaded although its fini function has been
2331 	     * called.
2332 	     */
2333 	    lock_release(rtld_bind_lock, lockstate);
2334 
2335 	    /*
2336 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2337 	     * When this happens, DT_FINI_ARRAY is processed first.
2338 	     */
2339 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2340 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2341 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2342 		  index--) {
2343 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2344 			dbg("calling fini function for %s at %p",
2345 			    elm->obj->path, (void *)fini_addr[index]);
2346 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2347 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2348 			call_initfini_pointer(elm->obj, fini_addr[index]);
2349 		    }
2350 		}
2351 	    }
2352 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2353 		dbg("calling fini function for %s at %p", elm->obj->path,
2354 		    (void *)elm->obj->fini);
2355 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2356 		    0, 0, elm->obj->path);
2357 		call_initfini_pointer(elm->obj, elm->obj->fini);
2358 	    }
2359 	    wlock_acquire(rtld_bind_lock, lockstate);
2360 	    /* No need to free anything if process is going down. */
2361 	    if (root != NULL)
2362 	    	free(elm);
2363 	    /*
2364 	     * We must restart the list traversal after every fini call
2365 	     * because a dlclose() call from the fini function or from
2366 	     * another thread might have modified the reference counts.
2367 	     */
2368 	    break;
2369 	}
2370     } while (elm != NULL);
2371     errmsg_restore(saved_msg);
2372 }
2373 
2374 /*
2375  * Call the initialization functions for each of the objects in
2376  * "list".  All of the objects are expected to have non-NULL init
2377  * functions.
2378  */
2379 static void
2380 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2381 {
2382     Objlist_Entry *elm;
2383     Obj_Entry *obj;
2384     char *saved_msg;
2385     Elf_Addr *init_addr;
2386     int index;
2387 
2388     /*
2389      * Clean init_scanned flag so that objects can be rechecked and
2390      * possibly initialized earlier if any of vectors called below
2391      * cause the change by using dlopen.
2392      */
2393     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2394 	obj->init_scanned = false;
2395 
2396     /*
2397      * Preserve the current error message since an init function might
2398      * call into the dynamic linker and overwrite it.
2399      */
2400     saved_msg = errmsg_save();
2401     STAILQ_FOREACH(elm, list, link) {
2402 	if (elm->obj->init_done) /* Initialized early. */
2403 	    continue;
2404 	/*
2405 	 * Race: other thread might try to use this object before current
2406 	 * one completes the initilization. Not much can be done here
2407 	 * without better locking.
2408 	 */
2409 	elm->obj->init_done = true;
2410 	lock_release(rtld_bind_lock, lockstate);
2411 
2412         /*
2413          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2414          * When this happens, DT_INIT is processed first.
2415          */
2416 	if (elm->obj->init != (Elf_Addr)NULL) {
2417 	    dbg("calling init function for %s at %p", elm->obj->path,
2418 	        (void *)elm->obj->init);
2419 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2420 	        0, 0, elm->obj->path);
2421 	    call_initfini_pointer(elm->obj, elm->obj->init);
2422 	}
2423 	init_addr = (Elf_Addr *)elm->obj->init_array;
2424 	if (init_addr != NULL) {
2425 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2426 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2427 		    dbg("calling init function for %s at %p", elm->obj->path,
2428 			(void *)init_addr[index]);
2429 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2430 			(void *)init_addr[index], 0, 0, elm->obj->path);
2431 		    call_init_pointer(elm->obj, init_addr[index]);
2432 		}
2433 	    }
2434 	}
2435 	wlock_acquire(rtld_bind_lock, lockstate);
2436     }
2437     errmsg_restore(saved_msg);
2438 }
2439 
2440 static void
2441 objlist_clear(Objlist *list)
2442 {
2443     Objlist_Entry *elm;
2444 
2445     while (!STAILQ_EMPTY(list)) {
2446 	elm = STAILQ_FIRST(list);
2447 	STAILQ_REMOVE_HEAD(list, link);
2448 	free(elm);
2449     }
2450 }
2451 
2452 static Objlist_Entry *
2453 objlist_find(Objlist *list, const Obj_Entry *obj)
2454 {
2455     Objlist_Entry *elm;
2456 
2457     STAILQ_FOREACH(elm, list, link)
2458 	if (elm->obj == obj)
2459 	    return elm;
2460     return NULL;
2461 }
2462 
2463 static void
2464 objlist_init(Objlist *list)
2465 {
2466     STAILQ_INIT(list);
2467 }
2468 
2469 static void
2470 objlist_push_head(Objlist *list, Obj_Entry *obj)
2471 {
2472     Objlist_Entry *elm;
2473 
2474     elm = NEW(Objlist_Entry);
2475     elm->obj = obj;
2476     STAILQ_INSERT_HEAD(list, elm, link);
2477 }
2478 
2479 static void
2480 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2481 {
2482     Objlist_Entry *elm;
2483 
2484     elm = NEW(Objlist_Entry);
2485     elm->obj = obj;
2486     STAILQ_INSERT_TAIL(list, elm, link);
2487 }
2488 
2489 static void
2490 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2491 {
2492 	Objlist_Entry *elm, *listelm;
2493 
2494 	STAILQ_FOREACH(listelm, list, link) {
2495 		if (listelm->obj == listobj)
2496 			break;
2497 	}
2498 	elm = NEW(Objlist_Entry);
2499 	elm->obj = obj;
2500 	if (listelm != NULL)
2501 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2502 	else
2503 		STAILQ_INSERT_TAIL(list, elm, link);
2504 }
2505 
2506 static void
2507 objlist_remove(Objlist *list, Obj_Entry *obj)
2508 {
2509     Objlist_Entry *elm;
2510 
2511     if ((elm = objlist_find(list, obj)) != NULL) {
2512 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2513 	free(elm);
2514     }
2515 }
2516 
2517 /*
2518  * Relocate dag rooted in the specified object.
2519  * Returns 0 on success, or -1 on failure.
2520  */
2521 
2522 static int
2523 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2524     int flags, RtldLockState *lockstate)
2525 {
2526 	Objlist_Entry *elm;
2527 	int error;
2528 
2529 	error = 0;
2530 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2531 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2532 		    lockstate);
2533 		if (error == -1)
2534 			break;
2535 	}
2536 	return (error);
2537 }
2538 
2539 /*
2540  * Relocate single object.
2541  * Returns 0 on success, or -1 on failure.
2542  */
2543 static int
2544 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2545     int flags, RtldLockState *lockstate)
2546 {
2547 
2548 	if (obj->relocated)
2549 		return (0);
2550 	obj->relocated = true;
2551 	if (obj != rtldobj)
2552 		dbg("relocating \"%s\"", obj->path);
2553 
2554 	if (obj->symtab == NULL || obj->strtab == NULL ||
2555 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2556 		_rtld_error("%s: Shared object has no run-time symbol table",
2557 			    obj->path);
2558 		return (-1);
2559 	}
2560 
2561 	if (obj->textrel) {
2562 		/* There are relocations to the write-protected text segment. */
2563 		if (mprotect(obj->mapbase, obj->textsize,
2564 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2565 			_rtld_error("%s: Cannot write-enable text segment: %s",
2566 			    obj->path, rtld_strerror(errno));
2567 			return (-1);
2568 		}
2569 	}
2570 
2571 	/* Process the non-PLT non-IFUNC relocations. */
2572 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2573 		return (-1);
2574 
2575 	if (obj->textrel) {	/* Re-protected the text segment. */
2576 		if (mprotect(obj->mapbase, obj->textsize,
2577 		    PROT_READ|PROT_EXEC) == -1) {
2578 			_rtld_error("%s: Cannot write-protect text segment: %s",
2579 			    obj->path, rtld_strerror(errno));
2580 			return (-1);
2581 		}
2582 	}
2583 
2584 	/* Set the special PLT or GOT entries. */
2585 	init_pltgot(obj);
2586 
2587 	/* Process the PLT relocations. */
2588 	if (reloc_plt(obj) == -1)
2589 		return (-1);
2590 	/* Relocate the jump slots if we are doing immediate binding. */
2591 	if (obj->bind_now || bind_now)
2592 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2593 			return (-1);
2594 
2595 	/*
2596 	 * Process the non-PLT IFUNC relocations.  The relocations are
2597 	 * processed in two phases, because IFUNC resolvers may
2598 	 * reference other symbols, which must be readily processed
2599 	 * before resolvers are called.
2600 	 */
2601 	if (obj->non_plt_gnu_ifunc &&
2602 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2603 		return (-1);
2604 
2605 	if (obj->relro_size > 0) {
2606 		if (mprotect(obj->relro_page, obj->relro_size,
2607 		    PROT_READ) == -1) {
2608 			_rtld_error("%s: Cannot enforce relro protection: %s",
2609 			    obj->path, rtld_strerror(errno));
2610 			return (-1);
2611 		}
2612 	}
2613 
2614 	/*
2615 	 * Set up the magic number and version in the Obj_Entry.  These
2616 	 * were checked in the crt1.o from the original ElfKit, so we
2617 	 * set them for backward compatibility.
2618 	 */
2619 	obj->magic = RTLD_MAGIC;
2620 	obj->version = RTLD_VERSION;
2621 
2622 	return (0);
2623 }
2624 
2625 /*
2626  * Relocate newly-loaded shared objects.  The argument is a pointer to
2627  * the Obj_Entry for the first such object.  All objects from the first
2628  * to the end of the list of objects are relocated.  Returns 0 on success,
2629  * or -1 on failure.
2630  */
2631 static int
2632 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2633     int flags, RtldLockState *lockstate)
2634 {
2635 	Obj_Entry *obj;
2636 	int error;
2637 
2638 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2639 		error = relocate_object(obj, bind_now, rtldobj, flags,
2640 		    lockstate);
2641 		if (error == -1)
2642 			break;
2643 	}
2644 	return (error);
2645 }
2646 
2647 /*
2648  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2649  * referencing STT_GNU_IFUNC symbols is postponed till the other
2650  * relocations are done.  The indirect functions specified as
2651  * ifunc are allowed to call other symbols, so we need to have
2652  * objects relocated before asking for resolution from indirects.
2653  *
2654  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2655  * instead of the usual lazy handling of PLT slots.  It is
2656  * consistent with how GNU does it.
2657  */
2658 static int
2659 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2660     RtldLockState *lockstate)
2661 {
2662 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2663 		return (-1);
2664 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2665 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2666 		return (-1);
2667 	return (0);
2668 }
2669 
2670 static int
2671 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2672     RtldLockState *lockstate)
2673 {
2674 	Obj_Entry *obj;
2675 
2676 	for (obj = first;  obj != NULL;  obj = obj->next) {
2677 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2678 			return (-1);
2679 	}
2680 	return (0);
2681 }
2682 
2683 static int
2684 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2685     RtldLockState *lockstate)
2686 {
2687 	Objlist_Entry *elm;
2688 
2689 	STAILQ_FOREACH(elm, list, link) {
2690 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2691 		    lockstate) == -1)
2692 			return (-1);
2693 	}
2694 	return (0);
2695 }
2696 
2697 /*
2698  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2699  * before the process exits.
2700  */
2701 static void
2702 rtld_exit(void)
2703 {
2704     RtldLockState lockstate;
2705 
2706     wlock_acquire(rtld_bind_lock, &lockstate);
2707     dbg("rtld_exit()");
2708     objlist_call_fini(&list_fini, NULL, &lockstate);
2709     /* No need to remove the items from the list, since we are exiting. */
2710     if (!libmap_disable)
2711         lm_fini();
2712     lock_release(rtld_bind_lock, &lockstate);
2713 }
2714 
2715 /*
2716  * Iterate over a search path, translate each element, and invoke the
2717  * callback on the result.
2718  */
2719 static void *
2720 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2721 {
2722     const char *trans;
2723     if (path == NULL)
2724 	return (NULL);
2725 
2726     path += strspn(path, ":;");
2727     while (*path != '\0') {
2728 	size_t len;
2729 	char  *res;
2730 
2731 	len = strcspn(path, ":;");
2732 	trans = lm_findn(NULL, path, len);
2733 	if (trans)
2734 	    res = callback(trans, strlen(trans), arg);
2735 	else
2736 	    res = callback(path, len, arg);
2737 
2738 	if (res != NULL)
2739 	    return (res);
2740 
2741 	path += len;
2742 	path += strspn(path, ":;");
2743     }
2744 
2745     return (NULL);
2746 }
2747 
2748 struct try_library_args {
2749     const char	*name;
2750     size_t	 namelen;
2751     char	*buffer;
2752     size_t	 buflen;
2753 };
2754 
2755 static void *
2756 try_library_path(const char *dir, size_t dirlen, void *param)
2757 {
2758     struct try_library_args *arg;
2759 
2760     arg = param;
2761     if (*dir == '/' || trust) {
2762 	char *pathname;
2763 
2764 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2765 		return (NULL);
2766 
2767 	pathname = arg->buffer;
2768 	strncpy(pathname, dir, dirlen);
2769 	pathname[dirlen] = '/';
2770 	strcpy(pathname + dirlen + 1, arg->name);
2771 
2772 	dbg("  Trying \"%s\"", pathname);
2773 	if (access(pathname, F_OK) == 0) {		/* We found it */
2774 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2775 	    strcpy(pathname, arg->buffer);
2776 	    return (pathname);
2777 	}
2778     }
2779     return (NULL);
2780 }
2781 
2782 static char *
2783 search_library_path(const char *name, const char *path)
2784 {
2785     char *p;
2786     struct try_library_args arg;
2787 
2788     if (path == NULL)
2789 	return NULL;
2790 
2791     arg.name = name;
2792     arg.namelen = strlen(name);
2793     arg.buffer = xmalloc(PATH_MAX);
2794     arg.buflen = PATH_MAX;
2795 
2796     p = path_enumerate(path, try_library_path, &arg);
2797 
2798     free(arg.buffer);
2799 
2800     return (p);
2801 }
2802 
2803 
2804 /*
2805  * Finds the library with the given name using the directory descriptors
2806  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2807  *
2808  * Returns a freshly-opened close-on-exec file descriptor for the library,
2809  * or -1 if the library cannot be found.
2810  */
2811 static char *
2812 search_library_pathfds(const char *name, const char *path, int *fdp)
2813 {
2814 	char *envcopy, *fdstr, *found, *last_token;
2815 	size_t len;
2816 	int dirfd, fd;
2817 
2818 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2819 
2820 	/* Don't load from user-specified libdirs into setuid binaries. */
2821 	if (!trust)
2822 		return (NULL);
2823 
2824 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2825 	if (path == NULL)
2826 		return (NULL);
2827 
2828 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2829 	if (name[0] == '/') {
2830 		dbg("Absolute path (%s) passed to %s", name, __func__);
2831 		return (NULL);
2832 	}
2833 
2834 	/*
2835 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2836 	 * copy of the path, as strtok_r rewrites separator tokens
2837 	 * with '\0'.
2838 	 */
2839 	found = NULL;
2840 	envcopy = xstrdup(path);
2841 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2842 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2843 		dirfd = parse_libdir(fdstr);
2844 		if (dirfd < 0)
2845 			break;
2846 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2847 		if (fd >= 0) {
2848 			*fdp = fd;
2849 			len = strlen(fdstr) + strlen(name) + 3;
2850 			found = xmalloc(len);
2851 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2852 				_rtld_error("error generating '%d/%s'",
2853 				    dirfd, name);
2854 				die();
2855 			}
2856 			dbg("open('%s') => %d", found, fd);
2857 			break;
2858 		}
2859 	}
2860 	free(envcopy);
2861 
2862 	return (found);
2863 }
2864 
2865 
2866 int
2867 dlclose(void *handle)
2868 {
2869     Obj_Entry *root;
2870     RtldLockState lockstate;
2871 
2872     wlock_acquire(rtld_bind_lock, &lockstate);
2873     root = dlcheck(handle);
2874     if (root == NULL) {
2875 	lock_release(rtld_bind_lock, &lockstate);
2876 	return -1;
2877     }
2878     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2879 	root->path);
2880 
2881     /* Unreference the object and its dependencies. */
2882     root->dl_refcount--;
2883 
2884     if (root->refcount == 1) {
2885 	/*
2886 	 * The object will be no longer referenced, so we must unload it.
2887 	 * First, call the fini functions.
2888 	 */
2889 	objlist_call_fini(&list_fini, root, &lockstate);
2890 
2891 	unref_dag(root);
2892 
2893 	/* Finish cleaning up the newly-unreferenced objects. */
2894 	GDB_STATE(RT_DELETE,&root->linkmap);
2895 	unload_object(root);
2896 	GDB_STATE(RT_CONSISTENT,NULL);
2897     } else
2898 	unref_dag(root);
2899 
2900     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2901     lock_release(rtld_bind_lock, &lockstate);
2902     return 0;
2903 }
2904 
2905 char *
2906 dlerror(void)
2907 {
2908     char *msg = error_message;
2909     error_message = NULL;
2910     return msg;
2911 }
2912 
2913 /*
2914  * This function is deprecated and has no effect.
2915  */
2916 void
2917 dllockinit(void *context,
2918 	   void *(*lock_create)(void *context),
2919            void (*rlock_acquire)(void *lock),
2920            void (*wlock_acquire)(void *lock),
2921            void (*lock_release)(void *lock),
2922            void (*lock_destroy)(void *lock),
2923 	   void (*context_destroy)(void *context))
2924 {
2925     static void *cur_context;
2926     static void (*cur_context_destroy)(void *);
2927 
2928     /* Just destroy the context from the previous call, if necessary. */
2929     if (cur_context_destroy != NULL)
2930 	cur_context_destroy(cur_context);
2931     cur_context = context;
2932     cur_context_destroy = context_destroy;
2933 }
2934 
2935 void *
2936 dlopen(const char *name, int mode)
2937 {
2938 
2939 	return (rtld_dlopen(name, -1, mode));
2940 }
2941 
2942 void *
2943 fdlopen(int fd, int mode)
2944 {
2945 
2946 	return (rtld_dlopen(NULL, fd, mode));
2947 }
2948 
2949 static void *
2950 rtld_dlopen(const char *name, int fd, int mode)
2951 {
2952     RtldLockState lockstate;
2953     int lo_flags;
2954 
2955     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2956     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2957     if (ld_tracing != NULL) {
2958 	rlock_acquire(rtld_bind_lock, &lockstate);
2959 	if (sigsetjmp(lockstate.env, 0) != 0)
2960 	    lock_upgrade(rtld_bind_lock, &lockstate);
2961 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2962 	lock_release(rtld_bind_lock, &lockstate);
2963     }
2964     lo_flags = RTLD_LO_DLOPEN;
2965     if (mode & RTLD_NODELETE)
2966 	    lo_flags |= RTLD_LO_NODELETE;
2967     if (mode & RTLD_NOLOAD)
2968 	    lo_flags |= RTLD_LO_NOLOAD;
2969     if (ld_tracing != NULL)
2970 	    lo_flags |= RTLD_LO_TRACE;
2971 
2972     return (dlopen_object(name, fd, obj_main, lo_flags,
2973       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2974 }
2975 
2976 static void
2977 dlopen_cleanup(Obj_Entry *obj)
2978 {
2979 
2980 	obj->dl_refcount--;
2981 	unref_dag(obj);
2982 	if (obj->refcount == 0)
2983 		unload_object(obj);
2984 }
2985 
2986 static Obj_Entry *
2987 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2988     int mode, RtldLockState *lockstate)
2989 {
2990     Obj_Entry **old_obj_tail;
2991     Obj_Entry *obj;
2992     Objlist initlist;
2993     RtldLockState mlockstate;
2994     int result;
2995 
2996     objlist_init(&initlist);
2997 
2998     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2999 	wlock_acquire(rtld_bind_lock, &mlockstate);
3000 	lockstate = &mlockstate;
3001     }
3002     GDB_STATE(RT_ADD,NULL);
3003 
3004     old_obj_tail = obj_tail;
3005     obj = NULL;
3006     if (name == NULL && fd == -1) {
3007 	obj = obj_main;
3008 	obj->refcount++;
3009     } else {
3010 	obj = load_object(name, fd, refobj, lo_flags);
3011     }
3012 
3013     if (obj) {
3014 	obj->dl_refcount++;
3015 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3016 	    objlist_push_tail(&list_global, obj);
3017 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3018 	    assert(*old_obj_tail == obj);
3019 	    result = load_needed_objects(obj,
3020 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3021 	    init_dag(obj);
3022 	    ref_dag(obj);
3023 	    if (result != -1)
3024 		result = rtld_verify_versions(&obj->dagmembers);
3025 	    if (result != -1 && ld_tracing)
3026 		goto trace;
3027 	    if (result == -1 || relocate_object_dag(obj,
3028 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3029 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3030 	      lockstate) == -1) {
3031 		dlopen_cleanup(obj);
3032 		obj = NULL;
3033 	    } else if (lo_flags & RTLD_LO_EARLY) {
3034 		/*
3035 		 * Do not call the init functions for early loaded
3036 		 * filtees.  The image is still not initialized enough
3037 		 * for them to work.
3038 		 *
3039 		 * Our object is found by the global object list and
3040 		 * will be ordered among all init calls done right
3041 		 * before transferring control to main.
3042 		 */
3043 	    } else {
3044 		/* Make list of init functions to call. */
3045 		initlist_add_objects(obj, &obj->next, &initlist);
3046 	    }
3047 	    /*
3048 	     * Process all no_delete objects here, given them own
3049 	     * DAGs to prevent their dependencies from being unloaded.
3050 	     * This has to be done after we have loaded all of the
3051 	     * dependencies, so that we do not miss any.
3052 	     */
3053 	    if (obj != NULL)
3054 		process_nodelete(obj);
3055 	} else {
3056 	    /*
3057 	     * Bump the reference counts for objects on this DAG.  If
3058 	     * this is the first dlopen() call for the object that was
3059 	     * already loaded as a dependency, initialize the dag
3060 	     * starting at it.
3061 	     */
3062 	    init_dag(obj);
3063 	    ref_dag(obj);
3064 
3065 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3066 		goto trace;
3067 	}
3068 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3069 	  obj->z_nodelete) && !obj->ref_nodel) {
3070 	    dbg("obj %s nodelete", obj->path);
3071 	    ref_dag(obj);
3072 	    obj->z_nodelete = obj->ref_nodel = true;
3073 	}
3074     }
3075 
3076     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3077 	name);
3078     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3079 
3080     if (!(lo_flags & RTLD_LO_EARLY)) {
3081 	map_stacks_exec(lockstate);
3082     }
3083 
3084     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3085       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3086       lockstate) == -1) {
3087 	objlist_clear(&initlist);
3088 	dlopen_cleanup(obj);
3089 	if (lockstate == &mlockstate)
3090 	    lock_release(rtld_bind_lock, lockstate);
3091 	return (NULL);
3092     }
3093 
3094     if (!(lo_flags & RTLD_LO_EARLY)) {
3095 	/* Call the init functions. */
3096 	objlist_call_init(&initlist, lockstate);
3097     }
3098     objlist_clear(&initlist);
3099     if (lockstate == &mlockstate)
3100 	lock_release(rtld_bind_lock, lockstate);
3101     return obj;
3102 trace:
3103     trace_loaded_objects(obj);
3104     if (lockstate == &mlockstate)
3105 	lock_release(rtld_bind_lock, lockstate);
3106     exit(0);
3107 }
3108 
3109 static void *
3110 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3111     int flags)
3112 {
3113     DoneList donelist;
3114     const Obj_Entry *obj, *defobj;
3115     const Elf_Sym *def;
3116     SymLook req;
3117     RtldLockState lockstate;
3118     tls_index ti;
3119     void *sym;
3120     int res;
3121 
3122     def = NULL;
3123     defobj = NULL;
3124     symlook_init(&req, name);
3125     req.ventry = ve;
3126     req.flags = flags | SYMLOOK_IN_PLT;
3127     req.lockstate = &lockstate;
3128 
3129     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3130     rlock_acquire(rtld_bind_lock, &lockstate);
3131     if (sigsetjmp(lockstate.env, 0) != 0)
3132 	    lock_upgrade(rtld_bind_lock, &lockstate);
3133     if (handle == NULL || handle == RTLD_NEXT ||
3134 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3135 
3136 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3137 	    _rtld_error("Cannot determine caller's shared object");
3138 	    lock_release(rtld_bind_lock, &lockstate);
3139 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3140 	    return NULL;
3141 	}
3142 	if (handle == NULL) {	/* Just the caller's shared object. */
3143 	    res = symlook_obj(&req, obj);
3144 	    if (res == 0) {
3145 		def = req.sym_out;
3146 		defobj = req.defobj_out;
3147 	    }
3148 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3149 		   handle == RTLD_SELF) { /* ... caller included */
3150 	    if (handle == RTLD_NEXT)
3151 		obj = obj->next;
3152 	    for (; obj != NULL; obj = obj->next) {
3153 		res = symlook_obj(&req, obj);
3154 		if (res == 0) {
3155 		    if (def == NULL ||
3156 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3157 			def = req.sym_out;
3158 			defobj = req.defobj_out;
3159 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3160 			    break;
3161 		    }
3162 		}
3163 	    }
3164 	    /*
3165 	     * Search the dynamic linker itself, and possibly resolve the
3166 	     * symbol from there.  This is how the application links to
3167 	     * dynamic linker services such as dlopen.
3168 	     */
3169 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3170 		res = symlook_obj(&req, &obj_rtld);
3171 		if (res == 0) {
3172 		    def = req.sym_out;
3173 		    defobj = req.defobj_out;
3174 		}
3175 	    }
3176 	} else {
3177 	    assert(handle == RTLD_DEFAULT);
3178 	    res = symlook_default(&req, obj);
3179 	    if (res == 0) {
3180 		defobj = req.defobj_out;
3181 		def = req.sym_out;
3182 	    }
3183 	}
3184     } else {
3185 	if ((obj = dlcheck(handle)) == NULL) {
3186 	    lock_release(rtld_bind_lock, &lockstate);
3187 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3188 	    return NULL;
3189 	}
3190 
3191 	donelist_init(&donelist);
3192 	if (obj->mainprog) {
3193             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3194 	    res = symlook_global(&req, &donelist);
3195 	    if (res == 0) {
3196 		def = req.sym_out;
3197 		defobj = req.defobj_out;
3198 	    }
3199 	    /*
3200 	     * Search the dynamic linker itself, and possibly resolve the
3201 	     * symbol from there.  This is how the application links to
3202 	     * dynamic linker services such as dlopen.
3203 	     */
3204 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3205 		res = symlook_obj(&req, &obj_rtld);
3206 		if (res == 0) {
3207 		    def = req.sym_out;
3208 		    defobj = req.defobj_out;
3209 		}
3210 	    }
3211 	}
3212 	else {
3213 	    /* Search the whole DAG rooted at the given object. */
3214 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3215 	    if (res == 0) {
3216 		def = req.sym_out;
3217 		defobj = req.defobj_out;
3218 	    }
3219 	}
3220     }
3221 
3222     if (def != NULL) {
3223 	lock_release(rtld_bind_lock, &lockstate);
3224 
3225 	/*
3226 	 * The value required by the caller is derived from the value
3227 	 * of the symbol. this is simply the relocated value of the
3228 	 * symbol.
3229 	 */
3230 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3231 	    sym = make_function_pointer(def, defobj);
3232 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3233 	    sym = rtld_resolve_ifunc(defobj, def);
3234 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3235 	    ti.ti_module = defobj->tlsindex;
3236 	    ti.ti_offset = def->st_value;
3237 	    sym = __tls_get_addr(&ti);
3238 	} else
3239 	    sym = defobj->relocbase + def->st_value;
3240 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3241 	return (sym);
3242     }
3243 
3244     _rtld_error("Undefined symbol \"%s\"", name);
3245     lock_release(rtld_bind_lock, &lockstate);
3246     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3247     return NULL;
3248 }
3249 
3250 void *
3251 dlsym(void *handle, const char *name)
3252 {
3253 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3254 	    SYMLOOK_DLSYM);
3255 }
3256 
3257 dlfunc_t
3258 dlfunc(void *handle, const char *name)
3259 {
3260 	union {
3261 		void *d;
3262 		dlfunc_t f;
3263 	} rv;
3264 
3265 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3266 	    SYMLOOK_DLSYM);
3267 	return (rv.f);
3268 }
3269 
3270 void *
3271 dlvsym(void *handle, const char *name, const char *version)
3272 {
3273 	Ver_Entry ventry;
3274 
3275 	ventry.name = version;
3276 	ventry.file = NULL;
3277 	ventry.hash = elf_hash(version);
3278 	ventry.flags= 0;
3279 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3280 	    SYMLOOK_DLSYM);
3281 }
3282 
3283 int
3284 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3285 {
3286     const Obj_Entry *obj;
3287     RtldLockState lockstate;
3288 
3289     rlock_acquire(rtld_bind_lock, &lockstate);
3290     obj = obj_from_addr(addr);
3291     if (obj == NULL) {
3292         _rtld_error("No shared object contains address");
3293 	lock_release(rtld_bind_lock, &lockstate);
3294         return (0);
3295     }
3296     rtld_fill_dl_phdr_info(obj, phdr_info);
3297     lock_release(rtld_bind_lock, &lockstate);
3298     return (1);
3299 }
3300 
3301 int
3302 dladdr(const void *addr, Dl_info *info)
3303 {
3304     const Obj_Entry *obj;
3305     const Elf_Sym *def;
3306     void *symbol_addr;
3307     unsigned long symoffset;
3308     RtldLockState lockstate;
3309 
3310     rlock_acquire(rtld_bind_lock, &lockstate);
3311     obj = obj_from_addr(addr);
3312     if (obj == NULL) {
3313         _rtld_error("No shared object contains address");
3314 	lock_release(rtld_bind_lock, &lockstate);
3315         return 0;
3316     }
3317     info->dli_fname = obj->path;
3318     info->dli_fbase = obj->mapbase;
3319     info->dli_saddr = (void *)0;
3320     info->dli_sname = NULL;
3321 
3322     /*
3323      * Walk the symbol list looking for the symbol whose address is
3324      * closest to the address sent in.
3325      */
3326     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3327         def = obj->symtab + symoffset;
3328 
3329         /*
3330          * For skip the symbol if st_shndx is either SHN_UNDEF or
3331          * SHN_COMMON.
3332          */
3333         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3334             continue;
3335 
3336         /*
3337          * If the symbol is greater than the specified address, or if it
3338          * is further away from addr than the current nearest symbol,
3339          * then reject it.
3340          */
3341         symbol_addr = obj->relocbase + def->st_value;
3342         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3343             continue;
3344 
3345         /* Update our idea of the nearest symbol. */
3346         info->dli_sname = obj->strtab + def->st_name;
3347         info->dli_saddr = symbol_addr;
3348 
3349         /* Exact match? */
3350         if (info->dli_saddr == addr)
3351             break;
3352     }
3353     lock_release(rtld_bind_lock, &lockstate);
3354     return 1;
3355 }
3356 
3357 int
3358 dlinfo(void *handle, int request, void *p)
3359 {
3360     const Obj_Entry *obj;
3361     RtldLockState lockstate;
3362     int error;
3363 
3364     rlock_acquire(rtld_bind_lock, &lockstate);
3365 
3366     if (handle == NULL || handle == RTLD_SELF) {
3367 	void *retaddr;
3368 
3369 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3370 	if ((obj = obj_from_addr(retaddr)) == NULL)
3371 	    _rtld_error("Cannot determine caller's shared object");
3372     } else
3373 	obj = dlcheck(handle);
3374 
3375     if (obj == NULL) {
3376 	lock_release(rtld_bind_lock, &lockstate);
3377 	return (-1);
3378     }
3379 
3380     error = 0;
3381     switch (request) {
3382     case RTLD_DI_LINKMAP:
3383 	*((struct link_map const **)p) = &obj->linkmap;
3384 	break;
3385     case RTLD_DI_ORIGIN:
3386 	error = rtld_dirname(obj->path, p);
3387 	break;
3388 
3389     case RTLD_DI_SERINFOSIZE:
3390     case RTLD_DI_SERINFO:
3391 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3392 	break;
3393 
3394     default:
3395 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3396 	error = -1;
3397     }
3398 
3399     lock_release(rtld_bind_lock, &lockstate);
3400 
3401     return (error);
3402 }
3403 
3404 static void
3405 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3406 {
3407 
3408 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3409 	phdr_info->dlpi_name = obj->path;
3410 	phdr_info->dlpi_phdr = obj->phdr;
3411 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3412 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3413 	phdr_info->dlpi_tls_data = obj->tlsinit;
3414 	phdr_info->dlpi_adds = obj_loads;
3415 	phdr_info->dlpi_subs = obj_loads - obj_count;
3416 }
3417 
3418 int
3419 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3420 {
3421     struct dl_phdr_info phdr_info;
3422     const Obj_Entry *obj;
3423     RtldLockState bind_lockstate, phdr_lockstate;
3424     int error;
3425 
3426     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3427     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3428 
3429     error = 0;
3430 
3431     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3432 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3433 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3434 		break;
3435 
3436     }
3437     if (error == 0) {
3438 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3439 	error = callback(&phdr_info, sizeof(phdr_info), param);
3440     }
3441 
3442     lock_release(rtld_bind_lock, &bind_lockstate);
3443     lock_release(rtld_phdr_lock, &phdr_lockstate);
3444 
3445     return (error);
3446 }
3447 
3448 static void *
3449 fill_search_info(const char *dir, size_t dirlen, void *param)
3450 {
3451     struct fill_search_info_args *arg;
3452 
3453     arg = param;
3454 
3455     if (arg->request == RTLD_DI_SERINFOSIZE) {
3456 	arg->serinfo->dls_cnt ++;
3457 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3458     } else {
3459 	struct dl_serpath *s_entry;
3460 
3461 	s_entry = arg->serpath;
3462 	s_entry->dls_name  = arg->strspace;
3463 	s_entry->dls_flags = arg->flags;
3464 
3465 	strncpy(arg->strspace, dir, dirlen);
3466 	arg->strspace[dirlen] = '\0';
3467 
3468 	arg->strspace += dirlen + 1;
3469 	arg->serpath++;
3470     }
3471 
3472     return (NULL);
3473 }
3474 
3475 static int
3476 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3477 {
3478     struct dl_serinfo _info;
3479     struct fill_search_info_args args;
3480 
3481     args.request = RTLD_DI_SERINFOSIZE;
3482     args.serinfo = &_info;
3483 
3484     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3485     _info.dls_cnt  = 0;
3486 
3487     path_enumerate(obj->rpath, fill_search_info, &args);
3488     path_enumerate(ld_library_path, fill_search_info, &args);
3489     path_enumerate(obj->runpath, fill_search_info, &args);
3490     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3491     if (!obj->z_nodeflib)
3492       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3493 
3494 
3495     if (request == RTLD_DI_SERINFOSIZE) {
3496 	info->dls_size = _info.dls_size;
3497 	info->dls_cnt = _info.dls_cnt;
3498 	return (0);
3499     }
3500 
3501     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3502 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3503 	return (-1);
3504     }
3505 
3506     args.request  = RTLD_DI_SERINFO;
3507     args.serinfo  = info;
3508     args.serpath  = &info->dls_serpath[0];
3509     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3510 
3511     args.flags = LA_SER_RUNPATH;
3512     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3513 	return (-1);
3514 
3515     args.flags = LA_SER_LIBPATH;
3516     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3517 	return (-1);
3518 
3519     args.flags = LA_SER_RUNPATH;
3520     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3521 	return (-1);
3522 
3523     args.flags = LA_SER_CONFIG;
3524     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3525       != NULL)
3526 	return (-1);
3527 
3528     args.flags = LA_SER_DEFAULT;
3529     if (!obj->z_nodeflib &&
3530       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3531 	return (-1);
3532     return (0);
3533 }
3534 
3535 static int
3536 rtld_dirname(const char *path, char *bname)
3537 {
3538     const char *endp;
3539 
3540     /* Empty or NULL string gets treated as "." */
3541     if (path == NULL || *path == '\0') {
3542 	bname[0] = '.';
3543 	bname[1] = '\0';
3544 	return (0);
3545     }
3546 
3547     /* Strip trailing slashes */
3548     endp = path + strlen(path) - 1;
3549     while (endp > path && *endp == '/')
3550 	endp--;
3551 
3552     /* Find the start of the dir */
3553     while (endp > path && *endp != '/')
3554 	endp--;
3555 
3556     /* Either the dir is "/" or there are no slashes */
3557     if (endp == path) {
3558 	bname[0] = *endp == '/' ? '/' : '.';
3559 	bname[1] = '\0';
3560 	return (0);
3561     } else {
3562 	do {
3563 	    endp--;
3564 	} while (endp > path && *endp == '/');
3565     }
3566 
3567     if (endp - path + 2 > PATH_MAX)
3568     {
3569 	_rtld_error("Filename is too long: %s", path);
3570 	return(-1);
3571     }
3572 
3573     strncpy(bname, path, endp - path + 1);
3574     bname[endp - path + 1] = '\0';
3575     return (0);
3576 }
3577 
3578 static int
3579 rtld_dirname_abs(const char *path, char *base)
3580 {
3581 	char *last;
3582 
3583 	if (realpath(path, base) == NULL)
3584 		return (-1);
3585 	dbg("%s -> %s", path, base);
3586 	last = strrchr(base, '/');
3587 	if (last == NULL)
3588 		return (-1);
3589 	if (last != base)
3590 		*last = '\0';
3591 	return (0);
3592 }
3593 
3594 static void
3595 linkmap_add(Obj_Entry *obj)
3596 {
3597     struct link_map *l = &obj->linkmap;
3598     struct link_map *prev;
3599 
3600     obj->linkmap.l_name = obj->path;
3601     obj->linkmap.l_addr = obj->mapbase;
3602     obj->linkmap.l_ld = obj->dynamic;
3603 #ifdef __mips__
3604     /* GDB needs load offset on MIPS to use the symbols */
3605     obj->linkmap.l_offs = obj->relocbase;
3606 #endif
3607 
3608     if (r_debug.r_map == NULL) {
3609 	r_debug.r_map = l;
3610 	return;
3611     }
3612 
3613     /*
3614      * Scan to the end of the list, but not past the entry for the
3615      * dynamic linker, which we want to keep at the very end.
3616      */
3617     for (prev = r_debug.r_map;
3618       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3619       prev = prev->l_next)
3620 	;
3621 
3622     /* Link in the new entry. */
3623     l->l_prev = prev;
3624     l->l_next = prev->l_next;
3625     if (l->l_next != NULL)
3626 	l->l_next->l_prev = l;
3627     prev->l_next = l;
3628 }
3629 
3630 static void
3631 linkmap_delete(Obj_Entry *obj)
3632 {
3633     struct link_map *l = &obj->linkmap;
3634 
3635     if (l->l_prev == NULL) {
3636 	if ((r_debug.r_map = l->l_next) != NULL)
3637 	    l->l_next->l_prev = NULL;
3638 	return;
3639     }
3640 
3641     if ((l->l_prev->l_next = l->l_next) != NULL)
3642 	l->l_next->l_prev = l->l_prev;
3643 }
3644 
3645 /*
3646  * Function for the debugger to set a breakpoint on to gain control.
3647  *
3648  * The two parameters allow the debugger to easily find and determine
3649  * what the runtime loader is doing and to whom it is doing it.
3650  *
3651  * When the loadhook trap is hit (r_debug_state, set at program
3652  * initialization), the arguments can be found on the stack:
3653  *
3654  *  +8   struct link_map *m
3655  *  +4   struct r_debug  *rd
3656  *  +0   RetAddr
3657  */
3658 void
3659 r_debug_state(struct r_debug* rd, struct link_map *m)
3660 {
3661     /*
3662      * The following is a hack to force the compiler to emit calls to
3663      * this function, even when optimizing.  If the function is empty,
3664      * the compiler is not obliged to emit any code for calls to it,
3665      * even when marked __noinline.  However, gdb depends on those
3666      * calls being made.
3667      */
3668     __compiler_membar();
3669 }
3670 
3671 /*
3672  * A function called after init routines have completed. This can be used to
3673  * break before a program's entry routine is called, and can be used when
3674  * main is not available in the symbol table.
3675  */
3676 void
3677 _r_debug_postinit(struct link_map *m)
3678 {
3679 
3680 	/* See r_debug_state(). */
3681 	__compiler_membar();
3682 }
3683 
3684 /*
3685  * Get address of the pointer variable in the main program.
3686  * Prefer non-weak symbol over the weak one.
3687  */
3688 static const void **
3689 get_program_var_addr(const char *name, RtldLockState *lockstate)
3690 {
3691     SymLook req;
3692     DoneList donelist;
3693 
3694     symlook_init(&req, name);
3695     req.lockstate = lockstate;
3696     donelist_init(&donelist);
3697     if (symlook_global(&req, &donelist) != 0)
3698 	return (NULL);
3699     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3700 	return ((const void **)make_function_pointer(req.sym_out,
3701 	  req.defobj_out));
3702     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3703 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3704     else
3705 	return ((const void **)(req.defobj_out->relocbase +
3706 	  req.sym_out->st_value));
3707 }
3708 
3709 /*
3710  * Set a pointer variable in the main program to the given value.  This
3711  * is used to set key variables such as "environ" before any of the
3712  * init functions are called.
3713  */
3714 static void
3715 set_program_var(const char *name, const void *value)
3716 {
3717     const void **addr;
3718 
3719     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3720 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3721 	*addr = value;
3722     }
3723 }
3724 
3725 /*
3726  * Search the global objects, including dependencies and main object,
3727  * for the given symbol.
3728  */
3729 static int
3730 symlook_global(SymLook *req, DoneList *donelist)
3731 {
3732     SymLook req1;
3733     const Objlist_Entry *elm;
3734     int res;
3735 
3736     symlook_init_from_req(&req1, req);
3737 
3738     /* Search all objects loaded at program start up. */
3739     if (req->defobj_out == NULL ||
3740       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3741 	res = symlook_list(&req1, &list_main, donelist);
3742 	if (res == 0 && (req->defobj_out == NULL ||
3743 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3744 	    req->sym_out = req1.sym_out;
3745 	    req->defobj_out = req1.defobj_out;
3746 	    assert(req->defobj_out != NULL);
3747 	}
3748     }
3749 
3750     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3751     STAILQ_FOREACH(elm, &list_global, link) {
3752 	if (req->defobj_out != NULL &&
3753 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3754 	    break;
3755 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3756 	if (res == 0 && (req->defobj_out == NULL ||
3757 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3758 	    req->sym_out = req1.sym_out;
3759 	    req->defobj_out = req1.defobj_out;
3760 	    assert(req->defobj_out != NULL);
3761 	}
3762     }
3763 
3764     return (req->sym_out != NULL ? 0 : ESRCH);
3765 }
3766 
3767 /*
3768  * Given a symbol name in a referencing object, find the corresponding
3769  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3770  * no definition was found.  Returns a pointer to the Obj_Entry of the
3771  * defining object via the reference parameter DEFOBJ_OUT.
3772  */
3773 static int
3774 symlook_default(SymLook *req, const Obj_Entry *refobj)
3775 {
3776     DoneList donelist;
3777     const Objlist_Entry *elm;
3778     SymLook req1;
3779     int res;
3780 
3781     donelist_init(&donelist);
3782     symlook_init_from_req(&req1, req);
3783 
3784     /* Look first in the referencing object if linked symbolically. */
3785     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3786 	res = symlook_obj(&req1, refobj);
3787 	if (res == 0) {
3788 	    req->sym_out = req1.sym_out;
3789 	    req->defobj_out = req1.defobj_out;
3790 	    assert(req->defobj_out != NULL);
3791 	}
3792     }
3793 
3794     symlook_global(req, &donelist);
3795 
3796     /* Search all dlopened DAGs containing the referencing object. */
3797     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3798 	if (req->sym_out != NULL &&
3799 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3800 	    break;
3801 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3802 	if (res == 0 && (req->sym_out == NULL ||
3803 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3804 	    req->sym_out = req1.sym_out;
3805 	    req->defobj_out = req1.defobj_out;
3806 	    assert(req->defobj_out != NULL);
3807 	}
3808     }
3809 
3810     /*
3811      * Search the dynamic linker itself, and possibly resolve the
3812      * symbol from there.  This is how the application links to
3813      * dynamic linker services such as dlopen.
3814      */
3815     if (req->sym_out == NULL ||
3816       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3817 	res = symlook_obj(&req1, &obj_rtld);
3818 	if (res == 0) {
3819 	    req->sym_out = req1.sym_out;
3820 	    req->defobj_out = req1.defobj_out;
3821 	    assert(req->defobj_out != NULL);
3822 	}
3823     }
3824 
3825     return (req->sym_out != NULL ? 0 : ESRCH);
3826 }
3827 
3828 static int
3829 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3830 {
3831     const Elf_Sym *def;
3832     const Obj_Entry *defobj;
3833     const Objlist_Entry *elm;
3834     SymLook req1;
3835     int res;
3836 
3837     def = NULL;
3838     defobj = NULL;
3839     STAILQ_FOREACH(elm, objlist, link) {
3840 	if (donelist_check(dlp, elm->obj))
3841 	    continue;
3842 	symlook_init_from_req(&req1, req);
3843 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3844 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3845 		def = req1.sym_out;
3846 		defobj = req1.defobj_out;
3847 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3848 		    break;
3849 	    }
3850 	}
3851     }
3852     if (def != NULL) {
3853 	req->sym_out = def;
3854 	req->defobj_out = defobj;
3855 	return (0);
3856     }
3857     return (ESRCH);
3858 }
3859 
3860 /*
3861  * Search the chain of DAGS cointed to by the given Needed_Entry
3862  * for a symbol of the given name.  Each DAG is scanned completely
3863  * before advancing to the next one.  Returns a pointer to the symbol,
3864  * or NULL if no definition was found.
3865  */
3866 static int
3867 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3868 {
3869     const Elf_Sym *def;
3870     const Needed_Entry *n;
3871     const Obj_Entry *defobj;
3872     SymLook req1;
3873     int res;
3874 
3875     def = NULL;
3876     defobj = NULL;
3877     symlook_init_from_req(&req1, req);
3878     for (n = needed; n != NULL; n = n->next) {
3879 	if (n->obj == NULL ||
3880 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3881 	    continue;
3882 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3883 	    def = req1.sym_out;
3884 	    defobj = req1.defobj_out;
3885 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3886 		break;
3887 	}
3888     }
3889     if (def != NULL) {
3890 	req->sym_out = def;
3891 	req->defobj_out = defobj;
3892 	return (0);
3893     }
3894     return (ESRCH);
3895 }
3896 
3897 /*
3898  * Search the symbol table of a single shared object for a symbol of
3899  * the given name and version, if requested.  Returns a pointer to the
3900  * symbol, or NULL if no definition was found.  If the object is
3901  * filter, return filtered symbol from filtee.
3902  *
3903  * The symbol's hash value is passed in for efficiency reasons; that
3904  * eliminates many recomputations of the hash value.
3905  */
3906 int
3907 symlook_obj(SymLook *req, const Obj_Entry *obj)
3908 {
3909     DoneList donelist;
3910     SymLook req1;
3911     int flags, res, mres;
3912 
3913     /*
3914      * If there is at least one valid hash at this point, we prefer to
3915      * use the faster GNU version if available.
3916      */
3917     if (obj->valid_hash_gnu)
3918 	mres = symlook_obj1_gnu(req, obj);
3919     else if (obj->valid_hash_sysv)
3920 	mres = symlook_obj1_sysv(req, obj);
3921     else
3922 	return (EINVAL);
3923 
3924     if (mres == 0) {
3925 	if (obj->needed_filtees != NULL) {
3926 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3927 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3928 	    donelist_init(&donelist);
3929 	    symlook_init_from_req(&req1, req);
3930 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3931 	    if (res == 0) {
3932 		req->sym_out = req1.sym_out;
3933 		req->defobj_out = req1.defobj_out;
3934 	    }
3935 	    return (res);
3936 	}
3937 	if (obj->needed_aux_filtees != NULL) {
3938 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3939 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3940 	    donelist_init(&donelist);
3941 	    symlook_init_from_req(&req1, req);
3942 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3943 	    if (res == 0) {
3944 		req->sym_out = req1.sym_out;
3945 		req->defobj_out = req1.defobj_out;
3946 		return (res);
3947 	    }
3948 	}
3949     }
3950     return (mres);
3951 }
3952 
3953 /* Symbol match routine common to both hash functions */
3954 static bool
3955 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3956     const unsigned long symnum)
3957 {
3958 	Elf_Versym verndx;
3959 	const Elf_Sym *symp;
3960 	const char *strp;
3961 
3962 	symp = obj->symtab + symnum;
3963 	strp = obj->strtab + symp->st_name;
3964 
3965 	switch (ELF_ST_TYPE(symp->st_info)) {
3966 	case STT_FUNC:
3967 	case STT_NOTYPE:
3968 	case STT_OBJECT:
3969 	case STT_COMMON:
3970 	case STT_GNU_IFUNC:
3971 		if (symp->st_value == 0)
3972 			return (false);
3973 		/* fallthrough */
3974 	case STT_TLS:
3975 		if (symp->st_shndx != SHN_UNDEF)
3976 			break;
3977 #ifndef __mips__
3978 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3979 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3980 			break;
3981 		/* fallthrough */
3982 #endif
3983 	default:
3984 		return (false);
3985 	}
3986 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3987 		return (false);
3988 
3989 	if (req->ventry == NULL) {
3990 		if (obj->versyms != NULL) {
3991 			verndx = VER_NDX(obj->versyms[symnum]);
3992 			if (verndx > obj->vernum) {
3993 				_rtld_error(
3994 				    "%s: symbol %s references wrong version %d",
3995 				    obj->path, obj->strtab + symnum, verndx);
3996 				return (false);
3997 			}
3998 			/*
3999 			 * If we are not called from dlsym (i.e. this
4000 			 * is a normal relocation from unversioned
4001 			 * binary), accept the symbol immediately if
4002 			 * it happens to have first version after this
4003 			 * shared object became versioned.  Otherwise,
4004 			 * if symbol is versioned and not hidden,
4005 			 * remember it. If it is the only symbol with
4006 			 * this name exported by the shared object, it
4007 			 * will be returned as a match by the calling
4008 			 * function. If symbol is global (verndx < 2)
4009 			 * accept it unconditionally.
4010 			 */
4011 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4012 			    verndx == VER_NDX_GIVEN) {
4013 				result->sym_out = symp;
4014 				return (true);
4015 			}
4016 			else if (verndx >= VER_NDX_GIVEN) {
4017 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4018 				    == 0) {
4019 					if (result->vsymp == NULL)
4020 						result->vsymp = symp;
4021 					result->vcount++;
4022 				}
4023 				return (false);
4024 			}
4025 		}
4026 		result->sym_out = symp;
4027 		return (true);
4028 	}
4029 	if (obj->versyms == NULL) {
4030 		if (object_match_name(obj, req->ventry->name)) {
4031 			_rtld_error("%s: object %s should provide version %s "
4032 			    "for symbol %s", obj_rtld.path, obj->path,
4033 			    req->ventry->name, obj->strtab + symnum);
4034 			return (false);
4035 		}
4036 	} else {
4037 		verndx = VER_NDX(obj->versyms[symnum]);
4038 		if (verndx > obj->vernum) {
4039 			_rtld_error("%s: symbol %s references wrong version %d",
4040 			    obj->path, obj->strtab + symnum, verndx);
4041 			return (false);
4042 		}
4043 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4044 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4045 			/*
4046 			 * Version does not match. Look if this is a
4047 			 * global symbol and if it is not hidden. If
4048 			 * global symbol (verndx < 2) is available,
4049 			 * use it. Do not return symbol if we are
4050 			 * called by dlvsym, because dlvsym looks for
4051 			 * a specific version and default one is not
4052 			 * what dlvsym wants.
4053 			 */
4054 			if ((req->flags & SYMLOOK_DLSYM) ||
4055 			    (verndx >= VER_NDX_GIVEN) ||
4056 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4057 				return (false);
4058 		}
4059 	}
4060 	result->sym_out = symp;
4061 	return (true);
4062 }
4063 
4064 /*
4065  * Search for symbol using SysV hash function.
4066  * obj->buckets is known not to be NULL at this point; the test for this was
4067  * performed with the obj->valid_hash_sysv assignment.
4068  */
4069 static int
4070 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4071 {
4072 	unsigned long symnum;
4073 	Sym_Match_Result matchres;
4074 
4075 	matchres.sym_out = NULL;
4076 	matchres.vsymp = NULL;
4077 	matchres.vcount = 0;
4078 
4079 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4080 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4081 		if (symnum >= obj->nchains)
4082 			return (ESRCH);	/* Bad object */
4083 
4084 		if (matched_symbol(req, obj, &matchres, symnum)) {
4085 			req->sym_out = matchres.sym_out;
4086 			req->defobj_out = obj;
4087 			return (0);
4088 		}
4089 	}
4090 	if (matchres.vcount == 1) {
4091 		req->sym_out = matchres.vsymp;
4092 		req->defobj_out = obj;
4093 		return (0);
4094 	}
4095 	return (ESRCH);
4096 }
4097 
4098 /* Search for symbol using GNU hash function */
4099 static int
4100 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4101 {
4102 	Elf_Addr bloom_word;
4103 	const Elf32_Word *hashval;
4104 	Elf32_Word bucket;
4105 	Sym_Match_Result matchres;
4106 	unsigned int h1, h2;
4107 	unsigned long symnum;
4108 
4109 	matchres.sym_out = NULL;
4110 	matchres.vsymp = NULL;
4111 	matchres.vcount = 0;
4112 
4113 	/* Pick right bitmask word from Bloom filter array */
4114 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4115 	    obj->maskwords_bm_gnu];
4116 
4117 	/* Calculate modulus word size of gnu hash and its derivative */
4118 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4119 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4120 
4121 	/* Filter out the "definitely not in set" queries */
4122 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4123 		return (ESRCH);
4124 
4125 	/* Locate hash chain and corresponding value element*/
4126 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4127 	if (bucket == 0)
4128 		return (ESRCH);
4129 	hashval = &obj->chain_zero_gnu[bucket];
4130 	do {
4131 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4132 			symnum = hashval - obj->chain_zero_gnu;
4133 			if (matched_symbol(req, obj, &matchres, symnum)) {
4134 				req->sym_out = matchres.sym_out;
4135 				req->defobj_out = obj;
4136 				return (0);
4137 			}
4138 		}
4139 	} while ((*hashval++ & 1) == 0);
4140 	if (matchres.vcount == 1) {
4141 		req->sym_out = matchres.vsymp;
4142 		req->defobj_out = obj;
4143 		return (0);
4144 	}
4145 	return (ESRCH);
4146 }
4147 
4148 static void
4149 trace_loaded_objects(Obj_Entry *obj)
4150 {
4151     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4152     int		c;
4153 
4154     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4155 	main_local = "";
4156 
4157     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4158 	fmt1 = "\t%o => %p (%x)\n";
4159 
4160     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4161 	fmt2 = "\t%o (%x)\n";
4162 
4163     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4164 
4165     for (; obj; obj = obj->next) {
4166 	Needed_Entry		*needed;
4167 	char			*name, *path;
4168 	bool			is_lib;
4169 
4170 	if (list_containers && obj->needed != NULL)
4171 	    rtld_printf("%s:\n", obj->path);
4172 	for (needed = obj->needed; needed; needed = needed->next) {
4173 	    if (needed->obj != NULL) {
4174 		if (needed->obj->traced && !list_containers)
4175 		    continue;
4176 		needed->obj->traced = true;
4177 		path = needed->obj->path;
4178 	    } else
4179 		path = "not found";
4180 
4181 	    name = (char *)obj->strtab + needed->name;
4182 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4183 
4184 	    fmt = is_lib ? fmt1 : fmt2;
4185 	    while ((c = *fmt++) != '\0') {
4186 		switch (c) {
4187 		default:
4188 		    rtld_putchar(c);
4189 		    continue;
4190 		case '\\':
4191 		    switch (c = *fmt) {
4192 		    case '\0':
4193 			continue;
4194 		    case 'n':
4195 			rtld_putchar('\n');
4196 			break;
4197 		    case 't':
4198 			rtld_putchar('\t');
4199 			break;
4200 		    }
4201 		    break;
4202 		case '%':
4203 		    switch (c = *fmt) {
4204 		    case '\0':
4205 			continue;
4206 		    case '%':
4207 		    default:
4208 			rtld_putchar(c);
4209 			break;
4210 		    case 'A':
4211 			rtld_putstr(main_local);
4212 			break;
4213 		    case 'a':
4214 			rtld_putstr(obj_main->path);
4215 			break;
4216 		    case 'o':
4217 			rtld_putstr(name);
4218 			break;
4219 #if 0
4220 		    case 'm':
4221 			rtld_printf("%d", sodp->sod_major);
4222 			break;
4223 		    case 'n':
4224 			rtld_printf("%d", sodp->sod_minor);
4225 			break;
4226 #endif
4227 		    case 'p':
4228 			rtld_putstr(path);
4229 			break;
4230 		    case 'x':
4231 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4232 			  0);
4233 			break;
4234 		    }
4235 		    break;
4236 		}
4237 		++fmt;
4238 	    }
4239 	}
4240     }
4241 }
4242 
4243 /*
4244  * Unload a dlopened object and its dependencies from memory and from
4245  * our data structures.  It is assumed that the DAG rooted in the
4246  * object has already been unreferenced, and that the object has a
4247  * reference count of 0.
4248  */
4249 static void
4250 unload_object(Obj_Entry *root)
4251 {
4252     Obj_Entry *obj;
4253     Obj_Entry **linkp;
4254 
4255     assert(root->refcount == 0);
4256 
4257     /*
4258      * Pass over the DAG removing unreferenced objects from
4259      * appropriate lists.
4260      */
4261     unlink_object(root);
4262 
4263     /* Unmap all objects that are no longer referenced. */
4264     linkp = &obj_list->next;
4265     while ((obj = *linkp) != NULL) {
4266 	if (obj->refcount == 0) {
4267 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4268 		obj->path);
4269 	    dbg("unloading \"%s\"", obj->path);
4270 	    unload_filtees(root);
4271 	    munmap(obj->mapbase, obj->mapsize);
4272 	    linkmap_delete(obj);
4273 	    *linkp = obj->next;
4274 	    obj_count--;
4275 	    obj_free(obj);
4276 	} else
4277 	    linkp = &obj->next;
4278     }
4279     obj_tail = linkp;
4280 }
4281 
4282 static void
4283 unlink_object(Obj_Entry *root)
4284 {
4285     Objlist_Entry *elm;
4286 
4287     if (root->refcount == 0) {
4288 	/* Remove the object from the RTLD_GLOBAL list. */
4289 	objlist_remove(&list_global, root);
4290 
4291     	/* Remove the object from all objects' DAG lists. */
4292     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4293 	    objlist_remove(&elm->obj->dldags, root);
4294 	    if (elm->obj != root)
4295 		unlink_object(elm->obj);
4296 	}
4297     }
4298 }
4299 
4300 static void
4301 ref_dag(Obj_Entry *root)
4302 {
4303     Objlist_Entry *elm;
4304 
4305     assert(root->dag_inited);
4306     STAILQ_FOREACH(elm, &root->dagmembers, link)
4307 	elm->obj->refcount++;
4308 }
4309 
4310 static void
4311 unref_dag(Obj_Entry *root)
4312 {
4313     Objlist_Entry *elm;
4314 
4315     assert(root->dag_inited);
4316     STAILQ_FOREACH(elm, &root->dagmembers, link)
4317 	elm->obj->refcount--;
4318 }
4319 
4320 /*
4321  * Common code for MD __tls_get_addr().
4322  */
4323 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4324 static void *
4325 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4326 {
4327     Elf_Addr *newdtv, *dtv;
4328     RtldLockState lockstate;
4329     int to_copy;
4330 
4331     dtv = *dtvp;
4332     /* Check dtv generation in case new modules have arrived */
4333     if (dtv[0] != tls_dtv_generation) {
4334 	wlock_acquire(rtld_bind_lock, &lockstate);
4335 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4336 	to_copy = dtv[1];
4337 	if (to_copy > tls_max_index)
4338 	    to_copy = tls_max_index;
4339 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4340 	newdtv[0] = tls_dtv_generation;
4341 	newdtv[1] = tls_max_index;
4342 	free(dtv);
4343 	lock_release(rtld_bind_lock, &lockstate);
4344 	dtv = *dtvp = newdtv;
4345     }
4346 
4347     /* Dynamically allocate module TLS if necessary */
4348     if (dtv[index + 1] == 0) {
4349 	/* Signal safe, wlock will block out signals. */
4350 	wlock_acquire(rtld_bind_lock, &lockstate);
4351 	if (!dtv[index + 1])
4352 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4353 	lock_release(rtld_bind_lock, &lockstate);
4354     }
4355     return ((void *)(dtv[index + 1] + offset));
4356 }
4357 
4358 void *
4359 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4360 {
4361 	Elf_Addr *dtv;
4362 
4363 	dtv = *dtvp;
4364 	/* Check dtv generation in case new modules have arrived */
4365 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4366 	    dtv[index + 1] != 0))
4367 		return ((void *)(dtv[index + 1] + offset));
4368 	return (tls_get_addr_slow(dtvp, index, offset));
4369 }
4370 
4371 #if defined(__arm__) || defined(__mips__) || defined(__powerpc__)
4372 
4373 /*
4374  * Allocate Static TLS using the Variant I method.
4375  */
4376 void *
4377 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4378 {
4379     Obj_Entry *obj;
4380     char *tcb;
4381     Elf_Addr **tls;
4382     Elf_Addr *dtv;
4383     Elf_Addr addr;
4384     int i;
4385 
4386     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4387 	return (oldtcb);
4388 
4389     assert(tcbsize >= TLS_TCB_SIZE);
4390     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4391     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4392 
4393     if (oldtcb != NULL) {
4394 	memcpy(tls, oldtcb, tls_static_space);
4395 	free(oldtcb);
4396 
4397 	/* Adjust the DTV. */
4398 	dtv = tls[0];
4399 	for (i = 0; i < dtv[1]; i++) {
4400 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4401 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4402 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4403 	    }
4404 	}
4405     } else {
4406 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4407 	tls[0] = dtv;
4408 	dtv[0] = tls_dtv_generation;
4409 	dtv[1] = tls_max_index;
4410 
4411 	for (obj = objs; obj; obj = obj->next) {
4412 	    if (obj->tlsoffset > 0) {
4413 		addr = (Elf_Addr)tls + obj->tlsoffset;
4414 		if (obj->tlsinitsize > 0)
4415 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4416 		if (obj->tlssize > obj->tlsinitsize)
4417 		    memset((void*) (addr + obj->tlsinitsize), 0,
4418 			   obj->tlssize - obj->tlsinitsize);
4419 		dtv[obj->tlsindex + 1] = addr;
4420 	    }
4421 	}
4422     }
4423 
4424     return (tcb);
4425 }
4426 
4427 void
4428 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4429 {
4430     Elf_Addr *dtv;
4431     Elf_Addr tlsstart, tlsend;
4432     int dtvsize, i;
4433 
4434     assert(tcbsize >= TLS_TCB_SIZE);
4435 
4436     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4437     tlsend = tlsstart + tls_static_space;
4438 
4439     dtv = *(Elf_Addr **)tlsstart;
4440     dtvsize = dtv[1];
4441     for (i = 0; i < dtvsize; i++) {
4442 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4443 	    free((void*)dtv[i+2]);
4444 	}
4445     }
4446     free(dtv);
4447     free(tcb);
4448 }
4449 
4450 #endif
4451 
4452 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4453 
4454 /*
4455  * Allocate Static TLS using the Variant II method.
4456  */
4457 void *
4458 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4459 {
4460     Obj_Entry *obj;
4461     size_t size, ralign;
4462     char *tls;
4463     Elf_Addr *dtv, *olddtv;
4464     Elf_Addr segbase, oldsegbase, addr;
4465     int i;
4466 
4467     ralign = tcbalign;
4468     if (tls_static_max_align > ralign)
4469 	    ralign = tls_static_max_align;
4470     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4471 
4472     assert(tcbsize >= 2*sizeof(Elf_Addr));
4473     tls = malloc_aligned(size, ralign);
4474     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4475 
4476     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4477     ((Elf_Addr*)segbase)[0] = segbase;
4478     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4479 
4480     dtv[0] = tls_dtv_generation;
4481     dtv[1] = tls_max_index;
4482 
4483     if (oldtls) {
4484 	/*
4485 	 * Copy the static TLS block over whole.
4486 	 */
4487 	oldsegbase = (Elf_Addr) oldtls;
4488 	memcpy((void *)(segbase - tls_static_space),
4489 	       (const void *)(oldsegbase - tls_static_space),
4490 	       tls_static_space);
4491 
4492 	/*
4493 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4494 	 * move them over.
4495 	 */
4496 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4497 	for (i = 0; i < olddtv[1]; i++) {
4498 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4499 		dtv[i+2] = olddtv[i+2];
4500 		olddtv[i+2] = 0;
4501 	    }
4502 	}
4503 
4504 	/*
4505 	 * We assume that this block was the one we created with
4506 	 * allocate_initial_tls().
4507 	 */
4508 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4509     } else {
4510 	for (obj = objs; obj; obj = obj->next) {
4511 	    if (obj->tlsoffset) {
4512 		addr = segbase - obj->tlsoffset;
4513 		memset((void*) (addr + obj->tlsinitsize),
4514 		       0, obj->tlssize - obj->tlsinitsize);
4515 		if (obj->tlsinit)
4516 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4517 		dtv[obj->tlsindex + 1] = addr;
4518 	    }
4519 	}
4520     }
4521 
4522     return (void*) segbase;
4523 }
4524 
4525 void
4526 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4527 {
4528     Elf_Addr* dtv;
4529     size_t size, ralign;
4530     int dtvsize, i;
4531     Elf_Addr tlsstart, tlsend;
4532 
4533     /*
4534      * Figure out the size of the initial TLS block so that we can
4535      * find stuff which ___tls_get_addr() allocated dynamically.
4536      */
4537     ralign = tcbalign;
4538     if (tls_static_max_align > ralign)
4539 	    ralign = tls_static_max_align;
4540     size = round(tls_static_space, ralign);
4541 
4542     dtv = ((Elf_Addr**)tls)[1];
4543     dtvsize = dtv[1];
4544     tlsend = (Elf_Addr) tls;
4545     tlsstart = tlsend - size;
4546     for (i = 0; i < dtvsize; i++) {
4547 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4548 		free_aligned((void *)dtv[i + 2]);
4549 	}
4550     }
4551 
4552     free_aligned((void *)tlsstart);
4553     free((void*) dtv);
4554 }
4555 
4556 #endif
4557 
4558 /*
4559  * Allocate TLS block for module with given index.
4560  */
4561 void *
4562 allocate_module_tls(int index)
4563 {
4564     Obj_Entry* obj;
4565     char* p;
4566 
4567     for (obj = obj_list; obj; obj = obj->next) {
4568 	if (obj->tlsindex == index)
4569 	    break;
4570     }
4571     if (!obj) {
4572 	_rtld_error("Can't find module with TLS index %d", index);
4573 	die();
4574     }
4575 
4576     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4577     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4578     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4579 
4580     return p;
4581 }
4582 
4583 bool
4584 allocate_tls_offset(Obj_Entry *obj)
4585 {
4586     size_t off;
4587 
4588     if (obj->tls_done)
4589 	return true;
4590 
4591     if (obj->tlssize == 0) {
4592 	obj->tls_done = true;
4593 	return true;
4594     }
4595 
4596     if (obj->tlsindex == 1)
4597 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4598     else
4599 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4600 				   obj->tlssize, obj->tlsalign);
4601 
4602     /*
4603      * If we have already fixed the size of the static TLS block, we
4604      * must stay within that size. When allocating the static TLS, we
4605      * leave a small amount of space spare to be used for dynamically
4606      * loading modules which use static TLS.
4607      */
4608     if (tls_static_space != 0) {
4609 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4610 	    return false;
4611     } else if (obj->tlsalign > tls_static_max_align) {
4612 	    tls_static_max_align = obj->tlsalign;
4613     }
4614 
4615     tls_last_offset = obj->tlsoffset = off;
4616     tls_last_size = obj->tlssize;
4617     obj->tls_done = true;
4618 
4619     return true;
4620 }
4621 
4622 void
4623 free_tls_offset(Obj_Entry *obj)
4624 {
4625 
4626     /*
4627      * If we were the last thing to allocate out of the static TLS
4628      * block, we give our space back to the 'allocator'. This is a
4629      * simplistic workaround to allow libGL.so.1 to be loaded and
4630      * unloaded multiple times.
4631      */
4632     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4633 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4634 	tls_last_offset -= obj->tlssize;
4635 	tls_last_size = 0;
4636     }
4637 }
4638 
4639 void *
4640 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4641 {
4642     void *ret;
4643     RtldLockState lockstate;
4644 
4645     wlock_acquire(rtld_bind_lock, &lockstate);
4646     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4647     lock_release(rtld_bind_lock, &lockstate);
4648     return (ret);
4649 }
4650 
4651 void
4652 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4653 {
4654     RtldLockState lockstate;
4655 
4656     wlock_acquire(rtld_bind_lock, &lockstate);
4657     free_tls(tcb, tcbsize, tcbalign);
4658     lock_release(rtld_bind_lock, &lockstate);
4659 }
4660 
4661 static void
4662 object_add_name(Obj_Entry *obj, const char *name)
4663 {
4664     Name_Entry *entry;
4665     size_t len;
4666 
4667     len = strlen(name);
4668     entry = malloc(sizeof(Name_Entry) + len);
4669 
4670     if (entry != NULL) {
4671 	strcpy(entry->name, name);
4672 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4673     }
4674 }
4675 
4676 static int
4677 object_match_name(const Obj_Entry *obj, const char *name)
4678 {
4679     Name_Entry *entry;
4680 
4681     STAILQ_FOREACH(entry, &obj->names, link) {
4682 	if (strcmp(name, entry->name) == 0)
4683 	    return (1);
4684     }
4685     return (0);
4686 }
4687 
4688 static Obj_Entry *
4689 locate_dependency(const Obj_Entry *obj, const char *name)
4690 {
4691     const Objlist_Entry *entry;
4692     const Needed_Entry *needed;
4693 
4694     STAILQ_FOREACH(entry, &list_main, link) {
4695 	if (object_match_name(entry->obj, name))
4696 	    return entry->obj;
4697     }
4698 
4699     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4700 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4701 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4702 	    /*
4703 	     * If there is DT_NEEDED for the name we are looking for,
4704 	     * we are all set.  Note that object might not be found if
4705 	     * dependency was not loaded yet, so the function can
4706 	     * return NULL here.  This is expected and handled
4707 	     * properly by the caller.
4708 	     */
4709 	    return (needed->obj);
4710 	}
4711     }
4712     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4713 	obj->path, name);
4714     die();
4715 }
4716 
4717 static int
4718 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4719     const Elf_Vernaux *vna)
4720 {
4721     const Elf_Verdef *vd;
4722     const char *vername;
4723 
4724     vername = refobj->strtab + vna->vna_name;
4725     vd = depobj->verdef;
4726     if (vd == NULL) {
4727 	_rtld_error("%s: version %s required by %s not defined",
4728 	    depobj->path, vername, refobj->path);
4729 	return (-1);
4730     }
4731     for (;;) {
4732 	if (vd->vd_version != VER_DEF_CURRENT) {
4733 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4734 		depobj->path, vd->vd_version);
4735 	    return (-1);
4736 	}
4737 	if (vna->vna_hash == vd->vd_hash) {
4738 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4739 		((char *)vd + vd->vd_aux);
4740 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4741 		return (0);
4742 	}
4743 	if (vd->vd_next == 0)
4744 	    break;
4745 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4746     }
4747     if (vna->vna_flags & VER_FLG_WEAK)
4748 	return (0);
4749     _rtld_error("%s: version %s required by %s not found",
4750 	depobj->path, vername, refobj->path);
4751     return (-1);
4752 }
4753 
4754 static int
4755 rtld_verify_object_versions(Obj_Entry *obj)
4756 {
4757     const Elf_Verneed *vn;
4758     const Elf_Verdef  *vd;
4759     const Elf_Verdaux *vda;
4760     const Elf_Vernaux *vna;
4761     const Obj_Entry *depobj;
4762     int maxvernum, vernum;
4763 
4764     if (obj->ver_checked)
4765 	return (0);
4766     obj->ver_checked = true;
4767 
4768     maxvernum = 0;
4769     /*
4770      * Walk over defined and required version records and figure out
4771      * max index used by any of them. Do very basic sanity checking
4772      * while there.
4773      */
4774     vn = obj->verneed;
4775     while (vn != NULL) {
4776 	if (vn->vn_version != VER_NEED_CURRENT) {
4777 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4778 		obj->path, vn->vn_version);
4779 	    return (-1);
4780 	}
4781 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4782 	for (;;) {
4783 	    vernum = VER_NEED_IDX(vna->vna_other);
4784 	    if (vernum > maxvernum)
4785 		maxvernum = vernum;
4786 	    if (vna->vna_next == 0)
4787 		 break;
4788 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4789 	}
4790 	if (vn->vn_next == 0)
4791 	    break;
4792 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4793     }
4794 
4795     vd = obj->verdef;
4796     while (vd != NULL) {
4797 	if (vd->vd_version != VER_DEF_CURRENT) {
4798 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4799 		obj->path, vd->vd_version);
4800 	    return (-1);
4801 	}
4802 	vernum = VER_DEF_IDX(vd->vd_ndx);
4803 	if (vernum > maxvernum)
4804 		maxvernum = vernum;
4805 	if (vd->vd_next == 0)
4806 	    break;
4807 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4808     }
4809 
4810     if (maxvernum == 0)
4811 	return (0);
4812 
4813     /*
4814      * Store version information in array indexable by version index.
4815      * Verify that object version requirements are satisfied along the
4816      * way.
4817      */
4818     obj->vernum = maxvernum + 1;
4819     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4820 
4821     vd = obj->verdef;
4822     while (vd != NULL) {
4823 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4824 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4825 	    assert(vernum <= maxvernum);
4826 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4827 	    obj->vertab[vernum].hash = vd->vd_hash;
4828 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4829 	    obj->vertab[vernum].file = NULL;
4830 	    obj->vertab[vernum].flags = 0;
4831 	}
4832 	if (vd->vd_next == 0)
4833 	    break;
4834 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4835     }
4836 
4837     vn = obj->verneed;
4838     while (vn != NULL) {
4839 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4840 	if (depobj == NULL)
4841 	    return (-1);
4842 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4843 	for (;;) {
4844 	    if (check_object_provided_version(obj, depobj, vna))
4845 		return (-1);
4846 	    vernum = VER_NEED_IDX(vna->vna_other);
4847 	    assert(vernum <= maxvernum);
4848 	    obj->vertab[vernum].hash = vna->vna_hash;
4849 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4850 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4851 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4852 		VER_INFO_HIDDEN : 0;
4853 	    if (vna->vna_next == 0)
4854 		 break;
4855 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4856 	}
4857 	if (vn->vn_next == 0)
4858 	    break;
4859 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4860     }
4861     return 0;
4862 }
4863 
4864 static int
4865 rtld_verify_versions(const Objlist *objlist)
4866 {
4867     Objlist_Entry *entry;
4868     int rc;
4869 
4870     rc = 0;
4871     STAILQ_FOREACH(entry, objlist, link) {
4872 	/*
4873 	 * Skip dummy objects or objects that have their version requirements
4874 	 * already checked.
4875 	 */
4876 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4877 	    continue;
4878 	if (rtld_verify_object_versions(entry->obj) == -1) {
4879 	    rc = -1;
4880 	    if (ld_tracing == NULL)
4881 		break;
4882 	}
4883     }
4884     if (rc == 0 || ld_tracing != NULL)
4885     	rc = rtld_verify_object_versions(&obj_rtld);
4886     return rc;
4887 }
4888 
4889 const Ver_Entry *
4890 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4891 {
4892     Elf_Versym vernum;
4893 
4894     if (obj->vertab) {
4895 	vernum = VER_NDX(obj->versyms[symnum]);
4896 	if (vernum >= obj->vernum) {
4897 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4898 		obj->path, obj->strtab + symnum, vernum);
4899 	} else if (obj->vertab[vernum].hash != 0) {
4900 	    return &obj->vertab[vernum];
4901 	}
4902     }
4903     return NULL;
4904 }
4905 
4906 int
4907 _rtld_get_stack_prot(void)
4908 {
4909 
4910 	return (stack_prot);
4911 }
4912 
4913 int
4914 _rtld_is_dlopened(void *arg)
4915 {
4916 	Obj_Entry *obj;
4917 	RtldLockState lockstate;
4918 	int res;
4919 
4920 	rlock_acquire(rtld_bind_lock, &lockstate);
4921 	obj = dlcheck(arg);
4922 	if (obj == NULL)
4923 		obj = obj_from_addr(arg);
4924 	if (obj == NULL) {
4925 		_rtld_error("No shared object contains address");
4926 		lock_release(rtld_bind_lock, &lockstate);
4927 		return (-1);
4928 	}
4929 	res = obj->dlopened ? 1 : 0;
4930 	lock_release(rtld_bind_lock, &lockstate);
4931 	return (res);
4932 }
4933 
4934 static void
4935 map_stacks_exec(RtldLockState *lockstate)
4936 {
4937 	void (*thr_map_stacks_exec)(void);
4938 
4939 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4940 		return;
4941 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4942 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4943 	if (thr_map_stacks_exec != NULL) {
4944 		stack_prot |= PROT_EXEC;
4945 		thr_map_stacks_exec();
4946 	}
4947 }
4948 
4949 void
4950 symlook_init(SymLook *dst, const char *name)
4951 {
4952 
4953 	bzero(dst, sizeof(*dst));
4954 	dst->name = name;
4955 	dst->hash = elf_hash(name);
4956 	dst->hash_gnu = gnu_hash(name);
4957 }
4958 
4959 static void
4960 symlook_init_from_req(SymLook *dst, const SymLook *src)
4961 {
4962 
4963 	dst->name = src->name;
4964 	dst->hash = src->hash;
4965 	dst->hash_gnu = src->hash_gnu;
4966 	dst->ventry = src->ventry;
4967 	dst->flags = src->flags;
4968 	dst->defobj_out = NULL;
4969 	dst->sym_out = NULL;
4970 	dst->lockstate = src->lockstate;
4971 }
4972 
4973 
4974 /*
4975  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4976  */
4977 static int
4978 parse_libdir(const char *str)
4979 {
4980 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4981 	const char *orig;
4982 	int fd;
4983 	char c;
4984 
4985 	orig = str;
4986 	fd = 0;
4987 	for (c = *str; c != '\0'; c = *++str) {
4988 		if (c < '0' || c > '9')
4989 			return (-1);
4990 
4991 		fd *= RADIX;
4992 		fd += c - '0';
4993 	}
4994 
4995 	/* Make sure we actually parsed something. */
4996 	if (str == orig) {
4997 		_rtld_error("failed to parse directory FD from '%s'", str);
4998 		return (-1);
4999 	}
5000 	return (fd);
5001 }
5002 
5003 /*
5004  * Overrides for libc_pic-provided functions.
5005  */
5006 
5007 int
5008 __getosreldate(void)
5009 {
5010 	size_t len;
5011 	int oid[2];
5012 	int error, osrel;
5013 
5014 	if (osreldate != 0)
5015 		return (osreldate);
5016 
5017 	oid[0] = CTL_KERN;
5018 	oid[1] = KERN_OSRELDATE;
5019 	osrel = 0;
5020 	len = sizeof(osrel);
5021 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5022 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5023 		osreldate = osrel;
5024 	return (osreldate);
5025 }
5026 
5027 void
5028 exit(int status)
5029 {
5030 
5031 	_exit(status);
5032 }
5033 
5034 void (*__cleanup)(void);
5035 int __isthreaded = 0;
5036 int _thread_autoinit_dummy_decl = 1;
5037 
5038 /*
5039  * No unresolved symbols for rtld.
5040  */
5041 void
5042 __pthread_cxa_finalize(struct dl_phdr_info *a)
5043 {
5044 }
5045 
5046 void
5047 __stack_chk_fail(void)
5048 {
5049 
5050 	_rtld_error("stack overflow detected; terminated");
5051 	die();
5052 }
5053 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5054 
5055 void
5056 __chk_fail(void)
5057 {
5058 
5059 	_rtld_error("buffer overflow detected; terminated");
5060 	die();
5061 }
5062 
5063 const char *
5064 rtld_strerror(int errnum)
5065 {
5066 
5067 	if (errnum < 0 || errnum >= sys_nerr)
5068 		return ("Unknown error");
5069 	return (sys_errlist[errnum]);
5070 }
5071