xref: /freebsd/libexec/rtld-elf/rtld.c (revision 3750ccefb8629a08890bfbae894dd6bc6a7483b4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80 
81 struct dlerror_save {
82 	int seen;
83 	char *msg;
84 };
85 
86 /*
87  * Function declarations.
88  */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91     const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93     const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100     int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140     const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142     const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150     int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152     RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160     int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178     const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int  rtld_verify_versions(const Objlist *);
183 static int  rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int  object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188     struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191     const unsigned long);
192 
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195 
196 int __sys_openat(int, const char *, int, ...);
197 
198 /*
199  * Data declarations.
200  */
201 struct r_debug r_debug __exported;	/* for GDB; */
202 static bool libmap_disable;	/* Disable libmap */
203 static bool ld_loadfltr;	/* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust;		/* False for setuid and setgid programs */
206 static bool dangerous_ld_env;	/* True if environment variables have been
207 				   used to affect the libraries loaded */
208 bool ld_bind_not;		/* Disable PLT update */
209 static const char *ld_bind_now;	/* Environment variable for immediate binding */
210 static const char *ld_debug;	/* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 				       weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload;	/* Environment variable for libraries to
216 				   load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 				   descriptors */
219 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
220 static const char *ld_tracing;	/* Called from ldd to print libs */
221 static const char *ld_utrace;	/* Use utrace() to log events. */
222 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
223 static Obj_Entry *obj_main;	/* The main program shared object */
224 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
225 static unsigned int obj_count;	/* Number of objects in obj_list */
226 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
228   RTLD_STATIC_TLS_EXTRA;
229 
230 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
231   STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main =	/* Objects loaded at program startup */
233   STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini =	/* Objects needing fini() calls */
235   STAILQ_HEAD_INITIALIZER(list_fini);
236 
237 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
238 
239 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
240 
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243 
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
256 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
257 int _rtld_get_stack_prot(void) __exported;
258 int _rtld_is_dlopened(void *) __exported;
259 void _rtld_error(const char *, ...) __exported;
260 const char *rtld_get_var(const char *name) __exported;
261 int rtld_set_var(const char *name, const char *val) __exported;
262 
263 /* Only here to fix -Wmissing-prototypes warnings */
264 int __getosreldate(void);
265 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
266 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
267 
268 int npagesizes;
269 static int osreldate;
270 size_t *pagesizes;
271 size_t page_size;
272 
273 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
274 static int max_stack_flags;
275 
276 /*
277  * Global declarations normally provided by crt1.  The dynamic linker is
278  * not built with crt1, so we have to provide them ourselves.
279  */
280 char *__progname;
281 char **environ;
282 
283 /*
284  * Used to pass argc, argv to init functions.
285  */
286 int main_argc;
287 char **main_argv;
288 
289 /*
290  * Globals to control TLS allocation.
291  */
292 size_t tls_last_offset;		/* Static TLS offset of last module */
293 size_t tls_last_size;		/* Static TLS size of last module */
294 size_t tls_static_space;	/* Static TLS space allocated */
295 static size_t tls_static_max_align;
296 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
297 int tls_max_index = 1;		/* Largest module index allocated */
298 
299 static bool ld_library_path_rpath = false;
300 bool ld_fast_sigblock = false;
301 
302 /*
303  * Globals for path names, and such
304  */
305 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
306 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
307 const char *ld_path_rtld = _PATH_RTLD;
308 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
309 const char *ld_env_prefix = LD_;
310 
311 static void (*rtld_exit_ptr)(void);
312 
313 /*
314  * Fill in a DoneList with an allocation large enough to hold all of
315  * the currently-loaded objects.  Keep this as a macro since it calls
316  * alloca and we want that to occur within the scope of the caller.
317  */
318 #define donelist_init(dlp)					\
319     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
320     assert((dlp)->objs != NULL),				\
321     (dlp)->num_alloc = obj_count,				\
322     (dlp)->num_used = 0)
323 
324 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
325 	if (ld_utrace != NULL)					\
326 		ld_utrace_log(e, h, mb, ms, r, n);		\
327 } while (0)
328 
329 static void
330 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
331     int refcnt, const char *name)
332 {
333 	struct utrace_rtld ut;
334 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
335 
336 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
337 	ut.event = event;
338 	ut.handle = handle;
339 	ut.mapbase = mapbase;
340 	ut.mapsize = mapsize;
341 	ut.refcnt = refcnt;
342 	bzero(ut.name, sizeof(ut.name));
343 	if (name)
344 		strlcpy(ut.name, name, sizeof(ut.name));
345 	utrace(&ut, sizeof(ut));
346 }
347 
348 struct ld_env_var_desc {
349 	const char * const n;
350 	const char *val;
351 	const bool unsecure:1;
352 	const bool can_update:1;
353 	const bool debug:1;
354 	bool owned:1;
355 };
356 #define LD_ENV_DESC(var, unsec, ...)		\
357 	[LD_##var] = {				\
358 	    .n = #var,				\
359 	    .unsecure = unsec,			\
360 	    __VA_ARGS__				\
361 	}
362 
363 static struct ld_env_var_desc ld_env_vars[] = {
364 	LD_ENV_DESC(BIND_NOW, false),
365 	LD_ENV_DESC(PRELOAD, true),
366 	LD_ENV_DESC(LIBMAP, true),
367 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
368 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
369 	LD_ENV_DESC(LIBMAP_DISABLE, true),
370 	LD_ENV_DESC(BIND_NOT, true),
371 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
372 	LD_ENV_DESC(ELF_HINTS_PATH, true),
373 	LD_ENV_DESC(LOADFLTR, true),
374 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
375 	LD_ENV_DESC(PRELOAD_FDS, true),
376 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
377 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
378 	LD_ENV_DESC(UTRACE, false, .can_update = true),
379 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
380 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
381 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
382 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
383 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
384 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
385 	LD_ENV_DESC(SHOW_AUXV, false),
386 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
387 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
388 };
389 
390 const char *
391 ld_get_env_var(int idx)
392 {
393 	return (ld_env_vars[idx].val);
394 }
395 
396 static const char *
397 rtld_get_env_val(char **env, const char *name, size_t name_len)
398 {
399 	char **m, *n, *v;
400 
401 	for (m = env; *m != NULL; m++) {
402 		n = *m;
403 		v = strchr(n, '=');
404 		if (v == NULL) {
405 			/* corrupt environment? */
406 			continue;
407 		}
408 		if (v - n == (ptrdiff_t)name_len &&
409 		    strncmp(name, n, name_len) == 0)
410 			return (v + 1);
411 	}
412 	return (NULL);
413 }
414 
415 static void
416 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
417 {
418 	struct ld_env_var_desc *lvd;
419 	size_t prefix_len, nlen;
420 	char **m, *n, *v;
421 	int i;
422 
423 	prefix_len = strlen(env_prefix);
424 	for (m = env; *m != NULL; m++) {
425 		n = *m;
426 		if (strncmp(env_prefix, n, prefix_len) != 0) {
427 			/* Not a rtld environment variable. */
428 			continue;
429 		}
430 		n += prefix_len;
431 		v = strchr(n, '=');
432 		if (v == NULL) {
433 			/* corrupt environment? */
434 			continue;
435 		}
436 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
437 			lvd = &ld_env_vars[i];
438 			if (lvd->val != NULL) {
439 				/* Saw higher-priority variable name already. */
440 				continue;
441 			}
442 			nlen = strlen(lvd->n);
443 			if (v - n == (ptrdiff_t)nlen &&
444 			    strncmp(lvd->n, n, nlen) == 0) {
445 				lvd->val = v + 1;
446 				break;
447 			}
448 		}
449 	}
450 }
451 
452 static void
453 rtld_init_env_vars(char **env)
454 {
455 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
456 }
457 
458 static void
459 set_ld_elf_hints_path(void)
460 {
461 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
462 		ld_elf_hints_path = ld_elf_hints_default;
463 }
464 
465 uintptr_t
466 rtld_round_page(uintptr_t x)
467 {
468 	return (roundup2(x, page_size));
469 }
470 
471 uintptr_t
472 rtld_trunc_page(uintptr_t x)
473 {
474 	return (rounddown2(x, page_size));
475 }
476 
477 /*
478  * Main entry point for dynamic linking.  The first argument is the
479  * stack pointer.  The stack is expected to be laid out as described
480  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
481  * Specifically, the stack pointer points to a word containing
482  * ARGC.  Following that in the stack is a null-terminated sequence
483  * of pointers to argument strings.  Then comes a null-terminated
484  * sequence of pointers to environment strings.  Finally, there is a
485  * sequence of "auxiliary vector" entries.
486  *
487  * The second argument points to a place to store the dynamic linker's
488  * exit procedure pointer and the third to a place to store the main
489  * program's object.
490  *
491  * The return value is the main program's entry point.
492  */
493 func_ptr_type
494 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
495 {
496     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
497     Objlist_Entry *entry;
498     Obj_Entry *last_interposer, *obj, *preload_tail;
499     const Elf_Phdr *phdr;
500     Objlist initlist;
501     RtldLockState lockstate;
502     struct stat st;
503     Elf_Addr *argcp;
504     char **argv, **env, **envp, *kexecpath;
505     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
506     struct ld_env_var_desc *lvd;
507     caddr_t imgentry;
508     char buf[MAXPATHLEN];
509     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
510     size_t sz;
511 #ifdef __powerpc__
512     int old_auxv_format = 1;
513 #endif
514     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
515 
516     /*
517      * On entry, the dynamic linker itself has not been relocated yet.
518      * Be very careful not to reference any global data until after
519      * init_rtld has returned.  It is OK to reference file-scope statics
520      * and string constants, and to call static and global functions.
521      */
522 
523     /* Find the auxiliary vector on the stack. */
524     argcp = sp;
525     argc = *sp++;
526     argv = (char **) sp;
527     sp += argc + 1;	/* Skip over arguments and NULL terminator */
528     env = (char **) sp;
529     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
530 	;
531     aux = (Elf_Auxinfo *) sp;
532 
533     /* Digest the auxiliary vector. */
534     for (i = 0;  i < AT_COUNT;  i++)
535 	aux_info[i] = NULL;
536     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
537 	if (auxp->a_type < AT_COUNT)
538 	    aux_info[auxp->a_type] = auxp;
539 #ifdef __powerpc__
540 	if (auxp->a_type == 23) /* AT_STACKPROT */
541 	    old_auxv_format = 0;
542 #endif
543     }
544 
545 #ifdef __powerpc__
546     if (old_auxv_format) {
547 	/* Remap from old-style auxv numbers. */
548 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
549 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
550 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
551 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
552 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
553 	aux_info[13] = NULL;		/* AT_GID */
554 
555 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
556 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
557 	aux_info[16] = aux_info[14];	/* AT_CANARY */
558 	aux_info[14] = NULL;		/* AT_EGID */
559     }
560 #endif
561 
562     /* Initialize and relocate ourselves. */
563     assert(aux_info[AT_BASE] != NULL);
564     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
565 
566     dlerror_dflt_init();
567 
568     __progname = obj_rtld.path;
569     argv0 = argv[0] != NULL ? argv[0] : "(null)";
570     environ = env;
571     main_argc = argc;
572     main_argv = argv;
573 
574     if (aux_info[AT_BSDFLAGS] != NULL &&
575 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
576 	    ld_fast_sigblock = true;
577 
578     trust = !issetugid();
579     direct_exec = false;
580 
581     md_abi_variant_hook(aux_info);
582     rtld_init_env_vars(env);
583 
584     fd = -1;
585     if (aux_info[AT_EXECFD] != NULL) {
586 	fd = aux_info[AT_EXECFD]->a_un.a_val;
587     } else {
588 	assert(aux_info[AT_PHDR] != NULL);
589 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
590 	if (phdr == obj_rtld.phdr) {
591 	    if (!trust) {
592 		_rtld_error("Tainted process refusing to run binary %s",
593 		    argv0);
594 		rtld_die();
595 	    }
596 	    direct_exec = true;
597 
598 	    dbg("opening main program in direct exec mode");
599 	    if (argc >= 2) {
600 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
601 		  &argv0, &dir_ignore);
602 		explicit_fd = (fd != -1);
603 		binpath = NULL;
604 		if (!explicit_fd)
605 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
606 		if (fstat(fd, &st) == -1) {
607 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
608 		      explicit_fd ? "user-provided descriptor" : argv0,
609 		      rtld_strerror(errno));
610 		    rtld_die();
611 		}
612 
613 		/*
614 		 * Rough emulation of the permission checks done by
615 		 * execve(2), only Unix DACs are checked, ACLs are
616 		 * ignored.  Preserve the semantic of disabling owner
617 		 * to execute if owner x bit is cleared, even if
618 		 * others x bit is enabled.
619 		 * mmap(2) does not allow to mmap with PROT_EXEC if
620 		 * binary' file comes from noexec mount.  We cannot
621 		 * set a text reference on the binary.
622 		 */
623 		dir_enable = false;
624 		if (st.st_uid == geteuid()) {
625 		    if ((st.st_mode & S_IXUSR) != 0)
626 			dir_enable = true;
627 		} else if (st.st_gid == getegid()) {
628 		    if ((st.st_mode & S_IXGRP) != 0)
629 			dir_enable = true;
630 		} else if ((st.st_mode & S_IXOTH) != 0) {
631 		    dir_enable = true;
632 		}
633 		if (!dir_enable && !dir_ignore) {
634 		    _rtld_error("No execute permission for binary %s",
635 		        argv0);
636 		    rtld_die();
637 		}
638 
639 		/*
640 		 * For direct exec mode, argv[0] is the interpreter
641 		 * name, we must remove it and shift arguments left
642 		 * before invoking binary main.  Since stack layout
643 		 * places environment pointers and aux vectors right
644 		 * after the terminating NULL, we must shift
645 		 * environment and aux as well.
646 		 */
647 		main_argc = argc - rtld_argc;
648 		for (i = 0; i <= main_argc; i++)
649 		    argv[i] = argv[i + rtld_argc];
650 		*argcp -= rtld_argc;
651 		environ = env = envp = argv + main_argc + 1;
652 		dbg("move env from %p to %p", envp + rtld_argc, envp);
653 		do {
654 		    *envp = *(envp + rtld_argc);
655 		}  while (*envp++ != NULL);
656 		aux = auxp = (Elf_Auxinfo *)envp;
657 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
658 		dbg("move aux from %p to %p", auxpf, aux);
659 		/* XXXKIB insert place for AT_EXECPATH if not present */
660 		for (;; auxp++, auxpf++) {
661 		    *auxp = *auxpf;
662 		    if (auxp->a_type == AT_NULL)
663 			    break;
664 		}
665 		/* Since the auxiliary vector has moved, redigest it. */
666 		for (i = 0;  i < AT_COUNT;  i++)
667 		    aux_info[i] = NULL;
668 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
669 		    if (auxp->a_type < AT_COUNT)
670 			aux_info[auxp->a_type] = auxp;
671 		}
672 
673 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
674 		if (binpath == NULL) {
675 		    aux_info[AT_EXECPATH] = NULL;
676 		} else {
677 		    if (aux_info[AT_EXECPATH] == NULL) {
678 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
679 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
680 		    }
681 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
682 		      binpath);
683 		}
684 	    } else {
685 		_rtld_error("No binary");
686 		rtld_die();
687 	    }
688 	}
689     }
690 
691     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
692 
693     /*
694      * If the process is tainted, then we un-set the dangerous environment
695      * variables.  The process will be marked as tainted until setuid(2)
696      * is called.  If any child process calls setuid(2) we do not want any
697      * future processes to honor the potentially un-safe variables.
698      */
699     if (!trust) {
700 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
701 		    lvd = &ld_env_vars[i];
702 		    if (lvd->unsecure)
703 			    lvd->val = NULL;
704 	    }
705     }
706 
707     ld_debug = ld_get_env_var(LD_DEBUG);
708     if (ld_bind_now == NULL)
709 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
710     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
711     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
712     libmap_override = ld_get_env_var(LD_LIBMAP);
713     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
714     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
715     ld_preload = ld_get_env_var(LD_PRELOAD);
716     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
717     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
718     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
719     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
720     if (library_path_rpath != NULL) {
721 	    if (library_path_rpath[0] == 'y' ||
722 		library_path_rpath[0] == 'Y' ||
723 		library_path_rpath[0] == '1')
724 		    ld_library_path_rpath = true;
725 	    else
726 		    ld_library_path_rpath = false;
727     }
728     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
729     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
730 	sz = parse_integer(static_tls_extra);
731 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
732 	    ld_static_tls_extra = sz;
733     }
734     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
735 	ld_library_path != NULL || ld_preload != NULL ||
736 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
737 	static_tls_extra != NULL;
738     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
739     ld_utrace = ld_get_env_var(LD_UTRACE);
740 
741     set_ld_elf_hints_path();
742     if (ld_debug != NULL && *ld_debug != '\0')
743 	debug = 1;
744     dbg("%s is initialized, base address = %p", __progname,
745 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
746     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
747     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
748 
749     dbg("initializing thread locks");
750     lockdflt_init();
751 
752     /*
753      * Load the main program, or process its program header if it is
754      * already loaded.
755      */
756     if (fd != -1) {	/* Load the main program. */
757 	dbg("loading main program");
758 	obj_main = map_object(fd, argv0, NULL);
759 	close(fd);
760 	if (obj_main == NULL)
761 	    rtld_die();
762 	max_stack_flags = obj_main->stack_flags;
763     } else {				/* Main program already loaded. */
764 	dbg("processing main program's program header");
765 	assert(aux_info[AT_PHDR] != NULL);
766 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
767 	assert(aux_info[AT_PHNUM] != NULL);
768 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
769 	assert(aux_info[AT_PHENT] != NULL);
770 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
771 	assert(aux_info[AT_ENTRY] != NULL);
772 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
773 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
774 	    rtld_die();
775     }
776 
777     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
778 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
779 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
780 	    if (kexecpath[0] == '/')
781 		    obj_main->path = kexecpath;
782 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
783 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
784 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
785 		    obj_main->path = xstrdup(argv0);
786 	    else
787 		    obj_main->path = xstrdup(buf);
788     } else {
789 	    dbg("No AT_EXECPATH or direct exec");
790 	    obj_main->path = xstrdup(argv0);
791     }
792     dbg("obj_main path %s", obj_main->path);
793     obj_main->mainprog = true;
794 
795     if (aux_info[AT_STACKPROT] != NULL &&
796       aux_info[AT_STACKPROT]->a_un.a_val != 0)
797 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
798 
799 #ifndef COMPAT_libcompat
800     /*
801      * Get the actual dynamic linker pathname from the executable if
802      * possible.  (It should always be possible.)  That ensures that
803      * gdb will find the right dynamic linker even if a non-standard
804      * one is being used.
805      */
806     if (obj_main->interp != NULL &&
807       strcmp(obj_main->interp, obj_rtld.path) != 0) {
808 	free(obj_rtld.path);
809 	obj_rtld.path = xstrdup(obj_main->interp);
810         __progname = obj_rtld.path;
811     }
812 #endif
813 
814     if (!digest_dynamic(obj_main, 0))
815 	rtld_die();
816     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
817 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
818 	obj_main->dynsymcount);
819 
820     linkmap_add(obj_main);
821     linkmap_add(&obj_rtld);
822 
823     /* Link the main program into the list of objects. */
824     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
825     obj_count++;
826     obj_loads++;
827 
828     /* Initialize a fake symbol for resolving undefined weak references. */
829     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
830     sym_zero.st_shndx = SHN_UNDEF;
831     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
832 
833     if (!libmap_disable)
834         libmap_disable = (bool)lm_init(libmap_override);
835 
836     if (aux_info[AT_KPRELOAD] != NULL &&
837       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
838 	dbg("loading kernel vdso");
839 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
840 	    rtld_die();
841     }
842 
843     dbg("loading LD_PRELOAD_FDS libraries");
844     if (load_preload_objects(ld_preload_fds, true) == -1)
845 	rtld_die();
846 
847     dbg("loading LD_PRELOAD libraries");
848     if (load_preload_objects(ld_preload, false) == -1)
849 	rtld_die();
850     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
851 
852     dbg("loading needed objects");
853     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
854       0) == -1)
855 	rtld_die();
856 
857     /* Make a list of all objects loaded at startup. */
858     last_interposer = obj_main;
859     TAILQ_FOREACH(obj, &obj_list, next) {
860 	if (obj->marker)
861 	    continue;
862 	if (obj->z_interpose && obj != obj_main) {
863 	    objlist_put_after(&list_main, last_interposer, obj);
864 	    last_interposer = obj;
865 	} else {
866 	    objlist_push_tail(&list_main, obj);
867 	}
868     	obj->refcount++;
869     }
870 
871     dbg("checking for required versions");
872     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
873 	rtld_die();
874 
875     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
876        dump_auxv(aux_info);
877 
878     if (ld_tracing) {		/* We're done */
879 	trace_loaded_objects(obj_main, true);
880 	exit(0);
881     }
882 
883     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
884        dump_relocations(obj_main);
885        exit (0);
886     }
887 
888     /*
889      * Processing tls relocations requires having the tls offsets
890      * initialized.  Prepare offsets before starting initial
891      * relocation processing.
892      */
893     dbg("initializing initial thread local storage offsets");
894     STAILQ_FOREACH(entry, &list_main, link) {
895 	/*
896 	 * Allocate all the initial objects out of the static TLS
897 	 * block even if they didn't ask for it.
898 	 */
899 	allocate_tls_offset(entry->obj);
900     }
901 
902     if (relocate_objects(obj_main,
903       ld_bind_now != NULL && *ld_bind_now != '\0',
904       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
905 	rtld_die();
906 
907     dbg("doing copy relocations");
908     if (do_copy_relocations(obj_main) == -1)
909 	rtld_die();
910 
911     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
912        dump_relocations(obj_main);
913        exit (0);
914     }
915 
916     ifunc_init(aux_info);
917 
918     /*
919      * Setup TLS for main thread.  This must be done after the
920      * relocations are processed, since tls initialization section
921      * might be the subject for relocations.
922      */
923     dbg("initializing initial thread local storage");
924     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
925 
926     dbg("initializing key program variables");
927     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
928     set_program_var("environ", env);
929     set_program_var("__elf_aux_vector", aux);
930 
931     /* Make a list of init functions to call. */
932     objlist_init(&initlist);
933     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
934       preload_tail, &initlist);
935 
936     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
937 
938     map_stacks_exec(NULL);
939 
940     if (!obj_main->crt_no_init) {
941 	/*
942 	 * Make sure we don't call the main program's init and fini
943 	 * functions for binaries linked with old crt1 which calls
944 	 * _init itself.
945 	 */
946 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
947 	obj_main->preinit_array = obj_main->init_array =
948 	    obj_main->fini_array = (Elf_Addr)NULL;
949     }
950 
951     if (direct_exec) {
952 	/* Set osrel for direct-execed binary */
953 	mib[0] = CTL_KERN;
954 	mib[1] = KERN_PROC;
955 	mib[2] = KERN_PROC_OSREL;
956 	mib[3] = getpid();
957 	osrel = obj_main->osrel;
958 	sz = sizeof(old_osrel);
959 	dbg("setting osrel to %d", osrel);
960 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
961     }
962 
963     wlock_acquire(rtld_bind_lock, &lockstate);
964 
965     dbg("resolving ifuncs");
966     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
967       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
968 	rtld_die();
969 
970     rtld_exit_ptr = rtld_exit;
971     if (obj_main->crt_no_init)
972 	preinit_main();
973     objlist_call_init(&initlist, &lockstate);
974     _r_debug_postinit(&obj_main->linkmap);
975     objlist_clear(&initlist);
976     dbg("loading filtees");
977     TAILQ_FOREACH(obj, &obj_list, next) {
978 	if (obj->marker)
979 	    continue;
980 	if (ld_loadfltr || obj->z_loadfltr)
981 	    load_filtees(obj, 0, &lockstate);
982     }
983 
984     dbg("enforcing main obj relro");
985     if (obj_enforce_relro(obj_main) == -1)
986 	rtld_die();
987 
988     lock_release(rtld_bind_lock, &lockstate);
989 
990     dbg("transferring control to program entry point = %p", obj_main->entry);
991 
992     /* Return the exit procedure and the program entry point. */
993     *exit_proc = rtld_exit_ptr;
994     *objp = obj_main;
995     return ((func_ptr_type)obj_main->entry);
996 }
997 
998 void *
999 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1000 {
1001 	void *ptr;
1002 	Elf_Addr target;
1003 
1004 	ptr = (void *)make_function_pointer(def, obj);
1005 	target = call_ifunc_resolver(ptr);
1006 	return ((void *)target);
1007 }
1008 
1009 Elf_Addr
1010 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1011 {
1012     const Elf_Rel *rel;
1013     const Elf_Sym *def;
1014     const Obj_Entry *defobj;
1015     Elf_Addr *where;
1016     Elf_Addr target;
1017     RtldLockState lockstate;
1018 
1019     rlock_acquire(rtld_bind_lock, &lockstate);
1020     if (sigsetjmp(lockstate.env, 0) != 0)
1021 	    lock_upgrade(rtld_bind_lock, &lockstate);
1022     if (obj->pltrel)
1023 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1024     else
1025 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1026 
1027     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1028     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1029 	NULL, &lockstate);
1030     if (def == NULL)
1031 	rtld_die();
1032     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1033 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1034     else
1035 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1036 
1037     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1038       defobj->strtab + def->st_name,
1039       obj->path == NULL ? NULL : basename(obj->path),
1040       (void *)target,
1041       defobj->path == NULL ? NULL : basename(defobj->path));
1042 
1043     /*
1044      * Write the new contents for the jmpslot. Note that depending on
1045      * architecture, the value which we need to return back to the
1046      * lazy binding trampoline may or may not be the target
1047      * address. The value returned from reloc_jmpslot() is the value
1048      * that the trampoline needs.
1049      */
1050     target = reloc_jmpslot(where, target, defobj, obj, rel);
1051     lock_release(rtld_bind_lock, &lockstate);
1052     return (target);
1053 }
1054 
1055 /*
1056  * Error reporting function.  Use it like printf.  If formats the message
1057  * into a buffer, and sets things up so that the next call to dlerror()
1058  * will return the message.
1059  */
1060 void
1061 _rtld_error(const char *fmt, ...)
1062 {
1063 	va_list ap;
1064 
1065 	va_start(ap, fmt);
1066 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1067 	    fmt, ap);
1068 	va_end(ap);
1069 	*lockinfo.dlerror_seen() = 0;
1070 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1071 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1072 }
1073 
1074 /*
1075  * Return a dynamically-allocated copy of the current error message, if any.
1076  */
1077 static struct dlerror_save *
1078 errmsg_save(void)
1079 {
1080 	struct dlerror_save *res;
1081 
1082 	res = xmalloc(sizeof(*res));
1083 	res->seen = *lockinfo.dlerror_seen();
1084 	if (res->seen == 0)
1085 		res->msg = xstrdup(lockinfo.dlerror_loc());
1086 	return (res);
1087 }
1088 
1089 /*
1090  * Restore the current error message from a copy which was previously saved
1091  * by errmsg_save().  The copy is freed.
1092  */
1093 static void
1094 errmsg_restore(struct dlerror_save *saved_msg)
1095 {
1096 	if (saved_msg == NULL || saved_msg->seen == 1) {
1097 		*lockinfo.dlerror_seen() = 1;
1098 	} else {
1099 		*lockinfo.dlerror_seen() = 0;
1100 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1101 		    lockinfo.dlerror_loc_sz);
1102 		free(saved_msg->msg);
1103 	}
1104 	free(saved_msg);
1105 }
1106 
1107 static const char *
1108 basename(const char *name)
1109 {
1110 	const char *p;
1111 
1112 	p = strrchr(name, '/');
1113 	return (p != NULL ? p + 1 : name);
1114 }
1115 
1116 static struct utsname uts;
1117 
1118 static char *
1119 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1120     const char *subst, bool may_free)
1121 {
1122 	char *p, *p1, *res, *resp;
1123 	int subst_len, kw_len, subst_count, old_len, new_len;
1124 
1125 	kw_len = strlen(kw);
1126 
1127 	/*
1128 	 * First, count the number of the keyword occurrences, to
1129 	 * preallocate the final string.
1130 	 */
1131 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1132 		p1 = strstr(p, kw);
1133 		if (p1 == NULL)
1134 			break;
1135 	}
1136 
1137 	/*
1138 	 * If the keyword is not found, just return.
1139 	 *
1140 	 * Return non-substituted string if resolution failed.  We
1141 	 * cannot do anything more reasonable, the failure mode of the
1142 	 * caller is unresolved library anyway.
1143 	 */
1144 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1145 		return (may_free ? real : xstrdup(real));
1146 	if (obj != NULL)
1147 		subst = obj->origin_path;
1148 
1149 	/*
1150 	 * There is indeed something to substitute.  Calculate the
1151 	 * length of the resulting string, and allocate it.
1152 	 */
1153 	subst_len = strlen(subst);
1154 	old_len = strlen(real);
1155 	new_len = old_len + (subst_len - kw_len) * subst_count;
1156 	res = xmalloc(new_len + 1);
1157 
1158 	/*
1159 	 * Now, execute the substitution loop.
1160 	 */
1161 	for (p = real, resp = res, *resp = '\0';;) {
1162 		p1 = strstr(p, kw);
1163 		if (p1 != NULL) {
1164 			/* Copy the prefix before keyword. */
1165 			memcpy(resp, p, p1 - p);
1166 			resp += p1 - p;
1167 			/* Keyword replacement. */
1168 			memcpy(resp, subst, subst_len);
1169 			resp += subst_len;
1170 			*resp = '\0';
1171 			p = p1 + kw_len;
1172 		} else
1173 			break;
1174 	}
1175 
1176 	/* Copy to the end of string and finish. */
1177 	strcat(resp, p);
1178 	if (may_free)
1179 		free(real);
1180 	return (res);
1181 }
1182 
1183 static const struct {
1184 	const char *kw;
1185 	bool pass_obj;
1186 	const char *subst;
1187 } tokens[] = {
1188 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1189 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1190 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1191 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1192 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1193 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1194 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1195 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1196 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1197 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1198 };
1199 
1200 static char *
1201 origin_subst(Obj_Entry *obj, const char *real)
1202 {
1203 	char *res;
1204 	int i;
1205 
1206 	if (obj == NULL || !trust)
1207 		return (xstrdup(real));
1208 	if (uts.sysname[0] == '\0') {
1209 		if (uname(&uts) != 0) {
1210 			_rtld_error("utsname failed: %d", errno);
1211 			return (NULL);
1212 		}
1213 	}
1214 
1215 	/* __DECONST is safe here since without may_free real is unchanged */
1216 	res = __DECONST(char *, real);
1217 	for (i = 0; i < (int)nitems(tokens); i++) {
1218 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1219 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1220 	}
1221 	return (res);
1222 }
1223 
1224 void
1225 rtld_die(void)
1226 {
1227     const char *msg = dlerror();
1228 
1229     if (msg == NULL)
1230 	msg = "Fatal error";
1231     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1232     rtld_fdputstr(STDERR_FILENO, msg);
1233     rtld_fdputchar(STDERR_FILENO, '\n');
1234     _exit(1);
1235 }
1236 
1237 /*
1238  * Process a shared object's DYNAMIC section, and save the important
1239  * information in its Obj_Entry structure.
1240  */
1241 static void
1242 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1243     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1244 {
1245     const Elf_Dyn *dynp;
1246     Needed_Entry **needed_tail = &obj->needed;
1247     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1248     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1249     const Elf_Hashelt *hashtab;
1250     const Elf32_Word *hashval;
1251     Elf32_Word bkt, nmaskwords;
1252     int bloom_size32;
1253     int plttype = DT_REL;
1254 
1255     *dyn_rpath = NULL;
1256     *dyn_soname = NULL;
1257     *dyn_runpath = NULL;
1258 
1259     obj->bind_now = false;
1260     dynp = obj->dynamic;
1261     if (dynp == NULL)
1262 	return;
1263     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1264 	switch (dynp->d_tag) {
1265 
1266 	case DT_REL:
1267 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1268 	    break;
1269 
1270 	case DT_RELSZ:
1271 	    obj->relsize = dynp->d_un.d_val;
1272 	    break;
1273 
1274 	case DT_RELENT:
1275 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1276 	    break;
1277 
1278 	case DT_JMPREL:
1279 	    obj->pltrel = (const Elf_Rel *)
1280 	      (obj->relocbase + dynp->d_un.d_ptr);
1281 	    break;
1282 
1283 	case DT_PLTRELSZ:
1284 	    obj->pltrelsize = dynp->d_un.d_val;
1285 	    break;
1286 
1287 	case DT_RELA:
1288 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1289 	    break;
1290 
1291 	case DT_RELASZ:
1292 	    obj->relasize = dynp->d_un.d_val;
1293 	    break;
1294 
1295 	case DT_RELAENT:
1296 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1297 	    break;
1298 
1299 	case DT_RELR:
1300 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1301 	    break;
1302 
1303 	case DT_RELRSZ:
1304 	    obj->relrsize = dynp->d_un.d_val;
1305 	    break;
1306 
1307 	case DT_RELRENT:
1308 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1309 	    break;
1310 
1311 	case DT_PLTREL:
1312 	    plttype = dynp->d_un.d_val;
1313 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1314 	    break;
1315 
1316 	case DT_SYMTAB:
1317 	    obj->symtab = (const Elf_Sym *)
1318 	      (obj->relocbase + dynp->d_un.d_ptr);
1319 	    break;
1320 
1321 	case DT_SYMENT:
1322 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1323 	    break;
1324 
1325 	case DT_STRTAB:
1326 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1327 	    break;
1328 
1329 	case DT_STRSZ:
1330 	    obj->strsize = dynp->d_un.d_val;
1331 	    break;
1332 
1333 	case DT_VERNEED:
1334 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1335 		dynp->d_un.d_val);
1336 	    break;
1337 
1338 	case DT_VERNEEDNUM:
1339 	    obj->verneednum = dynp->d_un.d_val;
1340 	    break;
1341 
1342 	case DT_VERDEF:
1343 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1344 		dynp->d_un.d_val);
1345 	    break;
1346 
1347 	case DT_VERDEFNUM:
1348 	    obj->verdefnum = dynp->d_un.d_val;
1349 	    break;
1350 
1351 	case DT_VERSYM:
1352 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1353 		dynp->d_un.d_val);
1354 	    break;
1355 
1356 	case DT_HASH:
1357 	    {
1358 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1359 		    dynp->d_un.d_ptr);
1360 		obj->nbuckets = hashtab[0];
1361 		obj->nchains = hashtab[1];
1362 		obj->buckets = hashtab + 2;
1363 		obj->chains = obj->buckets + obj->nbuckets;
1364 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1365 		  obj->buckets != NULL;
1366 	    }
1367 	    break;
1368 
1369 	case DT_GNU_HASH:
1370 	    {
1371 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1372 		    dynp->d_un.d_ptr);
1373 		obj->nbuckets_gnu = hashtab[0];
1374 		obj->symndx_gnu = hashtab[1];
1375 		nmaskwords = hashtab[2];
1376 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1377 		obj->maskwords_bm_gnu = nmaskwords - 1;
1378 		obj->shift2_gnu = hashtab[3];
1379 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1380 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1381 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1382 		  obj->symndx_gnu;
1383 		/* Number of bitmask words is required to be power of 2 */
1384 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1385 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1386 	    }
1387 	    break;
1388 
1389 	case DT_NEEDED:
1390 	    if (!obj->rtld) {
1391 		Needed_Entry *nep = NEW(Needed_Entry);
1392 		nep->name = dynp->d_un.d_val;
1393 		nep->obj = NULL;
1394 		nep->next = NULL;
1395 
1396 		*needed_tail = nep;
1397 		needed_tail = &nep->next;
1398 	    }
1399 	    break;
1400 
1401 	case DT_FILTER:
1402 	    if (!obj->rtld) {
1403 		Needed_Entry *nep = NEW(Needed_Entry);
1404 		nep->name = dynp->d_un.d_val;
1405 		nep->obj = NULL;
1406 		nep->next = NULL;
1407 
1408 		*needed_filtees_tail = nep;
1409 		needed_filtees_tail = &nep->next;
1410 
1411 		if (obj->linkmap.l_refname == NULL)
1412 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1413 	    }
1414 	    break;
1415 
1416 	case DT_AUXILIARY:
1417 	    if (!obj->rtld) {
1418 		Needed_Entry *nep = NEW(Needed_Entry);
1419 		nep->name = dynp->d_un.d_val;
1420 		nep->obj = NULL;
1421 		nep->next = NULL;
1422 
1423 		*needed_aux_filtees_tail = nep;
1424 		needed_aux_filtees_tail = &nep->next;
1425 	    }
1426 	    break;
1427 
1428 	case DT_PLTGOT:
1429 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1430 	    break;
1431 
1432 	case DT_TEXTREL:
1433 	    obj->textrel = true;
1434 	    break;
1435 
1436 	case DT_SYMBOLIC:
1437 	    obj->symbolic = true;
1438 	    break;
1439 
1440 	case DT_RPATH:
1441 	    /*
1442 	     * We have to wait until later to process this, because we
1443 	     * might not have gotten the address of the string table yet.
1444 	     */
1445 	    *dyn_rpath = dynp;
1446 	    break;
1447 
1448 	case DT_SONAME:
1449 	    *dyn_soname = dynp;
1450 	    break;
1451 
1452 	case DT_RUNPATH:
1453 	    *dyn_runpath = dynp;
1454 	    break;
1455 
1456 	case DT_INIT:
1457 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1458 	    break;
1459 
1460 	case DT_PREINIT_ARRAY:
1461 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1462 	    break;
1463 
1464 	case DT_PREINIT_ARRAYSZ:
1465 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1466 	    break;
1467 
1468 	case DT_INIT_ARRAY:
1469 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1470 	    break;
1471 
1472 	case DT_INIT_ARRAYSZ:
1473 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1474 	    break;
1475 
1476 	case DT_FINI:
1477 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1478 	    break;
1479 
1480 	case DT_FINI_ARRAY:
1481 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1482 	    break;
1483 
1484 	case DT_FINI_ARRAYSZ:
1485 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1486 	    break;
1487 
1488 	case DT_DEBUG:
1489 	    if (!early)
1490 		dbg("Filling in DT_DEBUG entry");
1491 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1492 	    break;
1493 
1494 	case DT_FLAGS:
1495 		if (dynp->d_un.d_val & DF_ORIGIN)
1496 		    obj->z_origin = true;
1497 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1498 		    obj->symbolic = true;
1499 		if (dynp->d_un.d_val & DF_TEXTREL)
1500 		    obj->textrel = true;
1501 		if (dynp->d_un.d_val & DF_BIND_NOW)
1502 		    obj->bind_now = true;
1503 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1504 		    obj->static_tls = true;
1505 	    break;
1506 
1507 	case DT_FLAGS_1:
1508 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1509 		    obj->z_noopen = true;
1510 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1511 		    obj->z_origin = true;
1512 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1513 		    obj->z_global = true;
1514 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1515 		    obj->bind_now = true;
1516 		if (dynp->d_un.d_val & DF_1_NODELETE)
1517 		    obj->z_nodelete = true;
1518 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1519 		    obj->z_loadfltr = true;
1520 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1521 		    obj->z_interpose = true;
1522 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1523 		    obj->z_nodeflib = true;
1524 		if (dynp->d_un.d_val & DF_1_PIE)
1525 		    obj->z_pie = true;
1526 	    break;
1527 
1528 	default:
1529 	    if (arch_digest_dynamic(obj, dynp))
1530 		break;
1531 
1532 	    if (!early) {
1533 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1534 		    (long)dynp->d_tag);
1535 	    }
1536 	    break;
1537 	}
1538     }
1539 
1540     obj->traced = false;
1541 
1542     if (plttype == DT_RELA) {
1543 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1544 	obj->pltrel = NULL;
1545 	obj->pltrelasize = obj->pltrelsize;
1546 	obj->pltrelsize = 0;
1547     }
1548 
1549     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1550     if (obj->valid_hash_sysv)
1551 	obj->dynsymcount = obj->nchains;
1552     else if (obj->valid_hash_gnu) {
1553 	obj->dynsymcount = 0;
1554 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1555 	    if (obj->buckets_gnu[bkt] == 0)
1556 		continue;
1557 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1558 	    do
1559 		obj->dynsymcount++;
1560 	    while ((*hashval++ & 1u) == 0);
1561 	}
1562 	obj->dynsymcount += obj->symndx_gnu;
1563     }
1564 
1565     if (obj->linkmap.l_refname != NULL)
1566 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1567 	  linkmap.l_refname;
1568 }
1569 
1570 static bool
1571 obj_resolve_origin(Obj_Entry *obj)
1572 {
1573 
1574 	if (obj->origin_path != NULL)
1575 		return (true);
1576 	obj->origin_path = xmalloc(PATH_MAX);
1577 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1578 }
1579 
1580 static bool
1581 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1582     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1583 {
1584 
1585 	if (obj->z_origin && !obj_resolve_origin(obj))
1586 		return (false);
1587 
1588 	if (dyn_runpath != NULL) {
1589 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1590 		obj->runpath = origin_subst(obj, obj->runpath);
1591 	} else if (dyn_rpath != NULL) {
1592 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1593 		obj->rpath = origin_subst(obj, obj->rpath);
1594 	}
1595 	if (dyn_soname != NULL)
1596 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1597 	return (true);
1598 }
1599 
1600 static bool
1601 digest_dynamic(Obj_Entry *obj, int early)
1602 {
1603 	const Elf_Dyn *dyn_rpath;
1604 	const Elf_Dyn *dyn_soname;
1605 	const Elf_Dyn *dyn_runpath;
1606 
1607 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1608 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1609 }
1610 
1611 /*
1612  * Process a shared object's program header.  This is used only for the
1613  * main program, when the kernel has already loaded the main program
1614  * into memory before calling the dynamic linker.  It creates and
1615  * returns an Obj_Entry structure.
1616  */
1617 static Obj_Entry *
1618 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1619 {
1620     Obj_Entry *obj;
1621     const Elf_Phdr *phlimit = phdr + phnum;
1622     const Elf_Phdr *ph;
1623     Elf_Addr note_start, note_end;
1624     int nsegs = 0;
1625 
1626     obj = obj_new();
1627     for (ph = phdr;  ph < phlimit;  ph++) {
1628 	if (ph->p_type != PT_PHDR)
1629 	    continue;
1630 
1631 	obj->phdr = phdr;
1632 	obj->phsize = ph->p_memsz;
1633 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1634 	break;
1635     }
1636 
1637     obj->stack_flags = PF_X | PF_R | PF_W;
1638 
1639     for (ph = phdr;  ph < phlimit;  ph++) {
1640 	switch (ph->p_type) {
1641 
1642 	case PT_INTERP:
1643 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1644 	    break;
1645 
1646 	case PT_LOAD:
1647 	    if (nsegs == 0) {	/* First load segment */
1648 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1649 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1650 	    } else {		/* Last load segment */
1651 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1652 		  obj->vaddrbase;
1653 	    }
1654 	    nsegs++;
1655 	    break;
1656 
1657 	case PT_DYNAMIC:
1658 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1659 	    break;
1660 
1661 	case PT_TLS:
1662 	    obj->tlsindex = 1;
1663 	    obj->tlssize = ph->p_memsz;
1664 	    obj->tlsalign = ph->p_align;
1665 	    obj->tlsinitsize = ph->p_filesz;
1666 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1667 	    obj->tlspoffset = ph->p_offset;
1668 	    break;
1669 
1670 	case PT_GNU_STACK:
1671 	    obj->stack_flags = ph->p_flags;
1672 	    break;
1673 
1674 	case PT_GNU_RELRO:
1675 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1676 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1677 	      rtld_trunc_page(ph->p_vaddr);
1678 	    break;
1679 
1680 	case PT_NOTE:
1681 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1682 	    note_end = note_start + ph->p_filesz;
1683 	    digest_notes(obj, note_start, note_end);
1684 	    break;
1685 	}
1686     }
1687     if (nsegs < 1) {
1688 	_rtld_error("%s: too few PT_LOAD segments", path);
1689 	return (NULL);
1690     }
1691 
1692     obj->entry = entry;
1693     return (obj);
1694 }
1695 
1696 void
1697 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1698 {
1699 	const Elf_Note *note;
1700 	const char *note_name;
1701 	uintptr_t p;
1702 
1703 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1704 	    note = (const Elf_Note *)((const char *)(note + 1) +
1705 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1706 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1707 		if (arch_digest_note(obj, note))
1708 			continue;
1709 
1710 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1711 		    note->n_descsz != sizeof(int32_t))
1712 			continue;
1713 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1714 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1715 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1716 			continue;
1717 		note_name = (const char *)(note + 1);
1718 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1719 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1720 			continue;
1721 		switch (note->n_type) {
1722 		case NT_FREEBSD_ABI_TAG:
1723 			/* FreeBSD osrel note */
1724 			p = (uintptr_t)(note + 1);
1725 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1726 			obj->osrel = *(const int32_t *)(p);
1727 			dbg("note osrel %d", obj->osrel);
1728 			break;
1729 		case NT_FREEBSD_FEATURE_CTL:
1730 			/* FreeBSD ABI feature control note */
1731 			p = (uintptr_t)(note + 1);
1732 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1733 			obj->fctl0 = *(const uint32_t *)(p);
1734 			dbg("note fctl0 %#x", obj->fctl0);
1735 			break;
1736 		case NT_FREEBSD_NOINIT_TAG:
1737 			/* FreeBSD 'crt does not call init' note */
1738 			obj->crt_no_init = true;
1739 			dbg("note crt_no_init");
1740 			break;
1741 		}
1742 	}
1743 }
1744 
1745 static Obj_Entry *
1746 dlcheck(void *handle)
1747 {
1748     Obj_Entry *obj;
1749 
1750     TAILQ_FOREACH(obj, &obj_list, next) {
1751 	if (obj == (Obj_Entry *) handle)
1752 	    break;
1753     }
1754 
1755     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1756 	_rtld_error("Invalid shared object handle %p", handle);
1757 	return (NULL);
1758     }
1759     return (obj);
1760 }
1761 
1762 /*
1763  * If the given object is already in the donelist, return true.  Otherwise
1764  * add the object to the list and return false.
1765  */
1766 static bool
1767 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1768 {
1769     unsigned int i;
1770 
1771     for (i = 0;  i < dlp->num_used;  i++)
1772 	if (dlp->objs[i] == obj)
1773 	    return (true);
1774     /*
1775      * Our donelist allocation should always be sufficient.  But if
1776      * our threads locking isn't working properly, more shared objects
1777      * could have been loaded since we allocated the list.  That should
1778      * never happen, but we'll handle it properly just in case it does.
1779      */
1780     if (dlp->num_used < dlp->num_alloc)
1781 	dlp->objs[dlp->num_used++] = obj;
1782     return (false);
1783 }
1784 
1785 /*
1786  * SysV hash function for symbol table lookup.  It is a slightly optimized
1787  * version of the hash specified by the System V ABI.
1788  */
1789 Elf32_Word
1790 elf_hash(const char *name)
1791 {
1792 	const unsigned char *p = (const unsigned char *)name;
1793 	Elf32_Word h = 0;
1794 
1795 	while (*p != '\0') {
1796 		h = (h << 4) + *p++;
1797 		h ^= (h >> 24) & 0xf0;
1798 	}
1799 	return (h & 0x0fffffff);
1800 }
1801 
1802 /*
1803  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1804  * unsigned in case it's implemented with a wider type.
1805  */
1806 static uint32_t
1807 gnu_hash(const char *s)
1808 {
1809 	uint32_t h;
1810 	unsigned char c;
1811 
1812 	h = 5381;
1813 	for (c = *s; c != '\0'; c = *++s)
1814 		h = h * 33 + c;
1815 	return (h & 0xffffffff);
1816 }
1817 
1818 
1819 /*
1820  * Find the library with the given name, and return its full pathname.
1821  * The returned string is dynamically allocated.  Generates an error
1822  * message and returns NULL if the library cannot be found.
1823  *
1824  * If the second argument is non-NULL, then it refers to an already-
1825  * loaded shared object, whose library search path will be searched.
1826  *
1827  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1828  * descriptor (which is close-on-exec) will be passed out via the third
1829  * argument.
1830  *
1831  * The search order is:
1832  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1833  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1834  *   LD_LIBRARY_PATH
1835  *   DT_RUNPATH in the referencing file
1836  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1837  *	 from list)
1838  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1839  *
1840  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1841  */
1842 static char *
1843 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1844 {
1845 	char *pathname, *refobj_path;
1846 	const char *name;
1847 	bool nodeflib, objgiven;
1848 
1849 	objgiven = refobj != NULL;
1850 
1851 	if (libmap_disable || !objgiven ||
1852 	    (name = lm_find(refobj->path, xname)) == NULL)
1853 		name = xname;
1854 
1855 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1856 		if (name[0] != '/' && !trust) {
1857 			_rtld_error("Absolute pathname required "
1858 			    "for shared object \"%s\"", name);
1859 			return (NULL);
1860 		}
1861 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1862 		    __DECONST(char *, name)));
1863 	}
1864 
1865 	dbg(" Searching for \"%s\"", name);
1866 	refobj_path = objgiven ? refobj->path : NULL;
1867 
1868 	/*
1869 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1870 	 * back to pre-conforming behaviour if user requested so with
1871 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1872 	 * nodeflib.
1873 	 */
1874 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1875 		pathname = search_library_path(name, ld_library_path,
1876 		    refobj_path, fdp);
1877 		if (pathname != NULL)
1878 			return (pathname);
1879 		if (refobj != NULL) {
1880 			pathname = search_library_path(name, refobj->rpath,
1881 			    refobj_path, fdp);
1882 			if (pathname != NULL)
1883 				return (pathname);
1884 		}
1885 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1886 		if (pathname != NULL)
1887 			return (pathname);
1888 		pathname = search_library_path(name, gethints(false),
1889 		    refobj_path, fdp);
1890 		if (pathname != NULL)
1891 			return (pathname);
1892 		pathname = search_library_path(name, ld_standard_library_path,
1893 		    refobj_path, fdp);
1894 		if (pathname != NULL)
1895 			return (pathname);
1896 	} else {
1897 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1898 		if (objgiven) {
1899 			pathname = search_library_path(name, refobj->rpath,
1900 			    refobj->path, fdp);
1901 			if (pathname != NULL)
1902 				return (pathname);
1903 		}
1904 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1905 			pathname = search_library_path(name, obj_main->rpath,
1906 			    refobj_path, fdp);
1907 			if (pathname != NULL)
1908 				return (pathname);
1909 		}
1910 		pathname = search_library_path(name, ld_library_path,
1911 		    refobj_path, fdp);
1912 		if (pathname != NULL)
1913 			return (pathname);
1914 		if (objgiven) {
1915 			pathname = search_library_path(name, refobj->runpath,
1916 			    refobj_path, fdp);
1917 			if (pathname != NULL)
1918 				return (pathname);
1919 		}
1920 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1921 		if (pathname != NULL)
1922 			return (pathname);
1923 		pathname = search_library_path(name, gethints(nodeflib),
1924 		    refobj_path, fdp);
1925 		if (pathname != NULL)
1926 			return (pathname);
1927 		if (objgiven && !nodeflib) {
1928 			pathname = search_library_path(name,
1929 			    ld_standard_library_path, refobj_path, fdp);
1930 			if (pathname != NULL)
1931 				return (pathname);
1932 		}
1933 	}
1934 
1935 	if (objgiven && refobj->path != NULL) {
1936 		_rtld_error("Shared object \"%s\" not found, "
1937 		    "required by \"%s\"", name, basename(refobj->path));
1938 	} else {
1939 		_rtld_error("Shared object \"%s\" not found", name);
1940 	}
1941 	return (NULL);
1942 }
1943 
1944 /*
1945  * Given a symbol number in a referencing object, find the corresponding
1946  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1947  * no definition was found.  Returns a pointer to the Obj_Entry of the
1948  * defining object via the reference parameter DEFOBJ_OUT.
1949  */
1950 const Elf_Sym *
1951 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1952     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1953     RtldLockState *lockstate)
1954 {
1955     const Elf_Sym *ref;
1956     const Elf_Sym *def;
1957     const Obj_Entry *defobj;
1958     const Ver_Entry *ve;
1959     SymLook req;
1960     const char *name;
1961     int res;
1962 
1963     /*
1964      * If we have already found this symbol, get the information from
1965      * the cache.
1966      */
1967     if (symnum >= refobj->dynsymcount)
1968 	return (NULL);	/* Bad object */
1969     if (cache != NULL && cache[symnum].sym != NULL) {
1970 	*defobj_out = cache[symnum].obj;
1971 	return (cache[symnum].sym);
1972     }
1973 
1974     ref = refobj->symtab + symnum;
1975     name = refobj->strtab + ref->st_name;
1976     def = NULL;
1977     defobj = NULL;
1978     ve = NULL;
1979 
1980     /*
1981      * We don't have to do a full scale lookup if the symbol is local.
1982      * We know it will bind to the instance in this load module; to
1983      * which we already have a pointer (ie ref). By not doing a lookup,
1984      * we not only improve performance, but it also avoids unresolvable
1985      * symbols when local symbols are not in the hash table. This has
1986      * been seen with the ia64 toolchain.
1987      */
1988     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1989 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1990 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1991 		symnum);
1992 	}
1993 	symlook_init(&req, name);
1994 	req.flags = flags;
1995 	ve = req.ventry = fetch_ventry(refobj, symnum);
1996 	req.lockstate = lockstate;
1997 	res = symlook_default(&req, refobj);
1998 	if (res == 0) {
1999 	    def = req.sym_out;
2000 	    defobj = req.defobj_out;
2001 	}
2002     } else {
2003 	def = ref;
2004 	defobj = refobj;
2005     }
2006 
2007     /*
2008      * If we found no definition and the reference is weak, treat the
2009      * symbol as having the value zero.
2010      */
2011     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2012 	def = &sym_zero;
2013 	defobj = obj_main;
2014     }
2015 
2016     if (def != NULL) {
2017 	*defobj_out = defobj;
2018 	/* Record the information in the cache to avoid subsequent lookups. */
2019 	if (cache != NULL) {
2020 	    cache[symnum].sym = def;
2021 	    cache[symnum].obj = defobj;
2022 	}
2023     } else {
2024 	if (refobj != &obj_rtld)
2025 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2026 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2027     }
2028     return (def);
2029 }
2030 
2031 /* Convert between native byte order and forced little resp. big endian. */
2032 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2033 
2034 /*
2035  * Return the search path from the ldconfig hints file, reading it if
2036  * necessary.  If nostdlib is true, then the default search paths are
2037  * not added to result.
2038  *
2039  * Returns NULL if there are problems with the hints file,
2040  * or if the search path there is empty.
2041  */
2042 static const char *
2043 gethints(bool nostdlib)
2044 {
2045 	static char *filtered_path;
2046 	static const char *hints;
2047 	static struct elfhints_hdr hdr;
2048 	struct fill_search_info_args sargs, hargs;
2049 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2050 	struct dl_serpath *SLPpath, *hintpath;
2051 	char *p;
2052 	struct stat hint_stat;
2053 	unsigned int SLPndx, hintndx, fndx, fcount;
2054 	int fd;
2055 	size_t flen;
2056 	uint32_t dl;
2057 	uint32_t magic;		/* Magic number */
2058 	uint32_t version;	/* File version (1) */
2059 	uint32_t strtab;	/* Offset of string table in file */
2060 	uint32_t dirlist;	/* Offset of directory list in string table */
2061 	uint32_t dirlistlen;	/* strlen(dirlist) */
2062 	bool is_le;		/* Does the hints file use little endian */
2063 	bool skip;
2064 
2065 	/* First call, read the hints file */
2066 	if (hints == NULL) {
2067 		/* Keep from trying again in case the hints file is bad. */
2068 		hints = "";
2069 
2070 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2071 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2072 			return (NULL);
2073 		}
2074 
2075 		/*
2076 		 * Check of hdr.dirlistlen value against type limit
2077 		 * intends to pacify static analyzers.  Further
2078 		 * paranoia leads to checks that dirlist is fully
2079 		 * contained in the file range.
2080 		 */
2081 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2082 			dbg("failed to read %lu bytes from hints file \"%s\"",
2083 			    (u_long)sizeof hdr, ld_elf_hints_path);
2084 cleanup1:
2085 			close(fd);
2086 			hdr.dirlistlen = 0;
2087 			return (NULL);
2088 		}
2089 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2090 		dbg("hints file byte-order: %s-endian",
2091 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2092 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2093 		magic = COND_SWAP(hdr.magic);
2094 		version = COND_SWAP(hdr.version);
2095 		strtab = COND_SWAP(hdr.strtab);
2096 		dirlist = COND_SWAP(hdr.dirlist);
2097 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2098 		if (magic != ELFHINTS_MAGIC) {
2099 			dbg("invalid magic number %#08x (expected: %#08x)",
2100 			    magic, ELFHINTS_MAGIC);
2101 			goto cleanup1;
2102 		}
2103 		if (version != 1) {
2104 			dbg("hints file version %d (expected: 1)", version);
2105 			goto cleanup1;
2106 		}
2107 		if (dirlistlen > UINT_MAX / 2) {
2108 			dbg("directory list is to long: %d > %d",
2109 			    dirlistlen, UINT_MAX / 2);
2110 			goto cleanup1;
2111 		}
2112 		if (fstat(fd, &hint_stat) == -1) {
2113 			dbg("failed to find length of hints file \"%s\"",
2114 			    ld_elf_hints_path);
2115 			goto cleanup1;
2116 		}
2117 		dl = strtab;
2118 		if (dl + dirlist < dl) {
2119 			dbg("invalid string table position %d", dl);
2120 			goto cleanup1;
2121 		}
2122 		dl += dirlist;
2123 		if (dl + dirlistlen < dl) {
2124 			dbg("invalid directory list offset %d", dirlist);
2125 			goto cleanup1;
2126 		}
2127 		dl += dirlistlen;
2128 		if (dl > hint_stat.st_size) {
2129 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2130 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2131 			goto cleanup1;
2132 		}
2133 		p = xmalloc(dirlistlen + 1);
2134 		if (pread(fd, p, dirlistlen + 1,
2135 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2136 		    p[dirlistlen] != '\0') {
2137 			free(p);
2138 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2139 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2140 			goto cleanup1;
2141 		}
2142 		hints = p;
2143 		close(fd);
2144 	}
2145 
2146 	/*
2147 	 * If caller agreed to receive list which includes the default
2148 	 * paths, we are done. Otherwise, if we still did not
2149 	 * calculated filtered result, do it now.
2150 	 */
2151 	if (!nostdlib)
2152 		return (hints[0] != '\0' ? hints : NULL);
2153 	if (filtered_path != NULL)
2154 		goto filt_ret;
2155 
2156 	/*
2157 	 * Obtain the list of all configured search paths, and the
2158 	 * list of the default paths.
2159 	 *
2160 	 * First estimate the size of the results.
2161 	 */
2162 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2163 	smeta.dls_cnt = 0;
2164 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2165 	hmeta.dls_cnt = 0;
2166 
2167 	sargs.request = RTLD_DI_SERINFOSIZE;
2168 	sargs.serinfo = &smeta;
2169 	hargs.request = RTLD_DI_SERINFOSIZE;
2170 	hargs.serinfo = &hmeta;
2171 
2172 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2173 	    &sargs);
2174 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2175 
2176 	SLPinfo = xmalloc(smeta.dls_size);
2177 	hintinfo = xmalloc(hmeta.dls_size);
2178 
2179 	/*
2180 	 * Next fetch both sets of paths.
2181 	 */
2182 	sargs.request = RTLD_DI_SERINFO;
2183 	sargs.serinfo = SLPinfo;
2184 	sargs.serpath = &SLPinfo->dls_serpath[0];
2185 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2186 
2187 	hargs.request = RTLD_DI_SERINFO;
2188 	hargs.serinfo = hintinfo;
2189 	hargs.serpath = &hintinfo->dls_serpath[0];
2190 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2191 
2192 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2193 	    &sargs);
2194 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2195 
2196 	/*
2197 	 * Now calculate the difference between two sets, by excluding
2198 	 * standard paths from the full set.
2199 	 */
2200 	fndx = 0;
2201 	fcount = 0;
2202 	filtered_path = xmalloc(dirlistlen + 1);
2203 	hintpath = &hintinfo->dls_serpath[0];
2204 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2205 		skip = false;
2206 		SLPpath = &SLPinfo->dls_serpath[0];
2207 		/*
2208 		 * Check each standard path against current.
2209 		 */
2210 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2211 			/* matched, skip the path */
2212 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2213 				skip = true;
2214 				break;
2215 			}
2216 		}
2217 		if (skip)
2218 			continue;
2219 		/*
2220 		 * Not matched against any standard path, add the path
2221 		 * to result. Separate consequtive paths with ':'.
2222 		 */
2223 		if (fcount > 0) {
2224 			filtered_path[fndx] = ':';
2225 			fndx++;
2226 		}
2227 		fcount++;
2228 		flen = strlen(hintpath->dls_name);
2229 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2230 		fndx += flen;
2231 	}
2232 	filtered_path[fndx] = '\0';
2233 
2234 	free(SLPinfo);
2235 	free(hintinfo);
2236 
2237 filt_ret:
2238 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2239 }
2240 
2241 static void
2242 init_dag(Obj_Entry *root)
2243 {
2244     const Needed_Entry *needed;
2245     const Objlist_Entry *elm;
2246     DoneList donelist;
2247 
2248     if (root->dag_inited)
2249 	return;
2250     donelist_init(&donelist);
2251 
2252     /* Root object belongs to own DAG. */
2253     objlist_push_tail(&root->dldags, root);
2254     objlist_push_tail(&root->dagmembers, root);
2255     donelist_check(&donelist, root);
2256 
2257     /*
2258      * Add dependencies of root object to DAG in breadth order
2259      * by exploiting the fact that each new object get added
2260      * to the tail of the dagmembers list.
2261      */
2262     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2263 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2264 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2265 		continue;
2266 	    objlist_push_tail(&needed->obj->dldags, root);
2267 	    objlist_push_tail(&root->dagmembers, needed->obj);
2268 	}
2269     }
2270     root->dag_inited = true;
2271 }
2272 
2273 static void
2274 init_marker(Obj_Entry *marker)
2275 {
2276 
2277 	bzero(marker, sizeof(*marker));
2278 	marker->marker = true;
2279 }
2280 
2281 Obj_Entry *
2282 globallist_curr(const Obj_Entry *obj)
2283 {
2284 
2285 	for (;;) {
2286 		if (obj == NULL)
2287 			return (NULL);
2288 		if (!obj->marker)
2289 			return (__DECONST(Obj_Entry *, obj));
2290 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2291 	}
2292 }
2293 
2294 Obj_Entry *
2295 globallist_next(const Obj_Entry *obj)
2296 {
2297 
2298 	for (;;) {
2299 		obj = TAILQ_NEXT(obj, next);
2300 		if (obj == NULL)
2301 			return (NULL);
2302 		if (!obj->marker)
2303 			return (__DECONST(Obj_Entry *, obj));
2304 	}
2305 }
2306 
2307 /* Prevent the object from being unmapped while the bind lock is dropped. */
2308 static void
2309 hold_object(Obj_Entry *obj)
2310 {
2311 
2312 	obj->holdcount++;
2313 }
2314 
2315 static void
2316 unhold_object(Obj_Entry *obj)
2317 {
2318 
2319 	assert(obj->holdcount > 0);
2320 	if (--obj->holdcount == 0 && obj->unholdfree)
2321 		release_object(obj);
2322 }
2323 
2324 static void
2325 process_z(Obj_Entry *root)
2326 {
2327 	const Objlist_Entry *elm;
2328 	Obj_Entry *obj;
2329 
2330 	/*
2331 	 * Walk over object DAG and process every dependent object
2332 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2333 	 * to grow their own DAG.
2334 	 *
2335 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2336 	 * symlook_global() to work.
2337 	 *
2338 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2339 	 */
2340 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2341 		obj = elm->obj;
2342 		if (obj == NULL)
2343 			continue;
2344 		if (obj->z_nodelete && !obj->ref_nodel) {
2345 			dbg("obj %s -z nodelete", obj->path);
2346 			init_dag(obj);
2347 			ref_dag(obj);
2348 			obj->ref_nodel = true;
2349 		}
2350 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2351 			dbg("obj %s -z global", obj->path);
2352 			objlist_push_tail(&list_global, obj);
2353 			init_dag(obj);
2354 		}
2355 	}
2356 }
2357 
2358 static void
2359 parse_rtld_phdr(Obj_Entry *obj)
2360 {
2361 	const Elf_Phdr *ph;
2362 	Elf_Addr note_start, note_end;
2363 
2364 	obj->stack_flags = PF_X | PF_R | PF_W;
2365 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2366 	    obj->phsize; ph++) {
2367 		switch (ph->p_type) {
2368 		case PT_GNU_STACK:
2369 			obj->stack_flags = ph->p_flags;
2370 			break;
2371 		case PT_GNU_RELRO:
2372 			obj->relro_page = obj->relocbase +
2373 			    rtld_trunc_page(ph->p_vaddr);
2374 			obj->relro_size = rtld_round_page(ph->p_memsz);
2375 			break;
2376 		case PT_NOTE:
2377 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2378 			note_end = note_start + ph->p_filesz;
2379 			digest_notes(obj, note_start, note_end);
2380 			break;
2381 		}
2382 	}
2383 }
2384 
2385 /*
2386  * Initialize the dynamic linker.  The argument is the address at which
2387  * the dynamic linker has been mapped into memory.  The primary task of
2388  * this function is to relocate the dynamic linker.
2389  */
2390 static void
2391 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2392 {
2393     Obj_Entry objtmp;	/* Temporary rtld object */
2394     const Elf_Ehdr *ehdr;
2395     const Elf_Dyn *dyn_rpath;
2396     const Elf_Dyn *dyn_soname;
2397     const Elf_Dyn *dyn_runpath;
2398 
2399 #ifdef RTLD_INIT_PAGESIZES_EARLY
2400     /* The page size is required by the dynamic memory allocator. */
2401     init_pagesizes(aux_info);
2402 #endif
2403 
2404     /*
2405      * Conjure up an Obj_Entry structure for the dynamic linker.
2406      *
2407      * The "path" member can't be initialized yet because string constants
2408      * cannot yet be accessed. Below we will set it correctly.
2409      */
2410     memset(&objtmp, 0, sizeof(objtmp));
2411     objtmp.path = NULL;
2412     objtmp.rtld = true;
2413     objtmp.mapbase = mapbase;
2414 #ifdef PIC
2415     objtmp.relocbase = mapbase;
2416 #endif
2417 
2418     objtmp.dynamic = rtld_dynamic(&objtmp);
2419     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2420     assert(objtmp.needed == NULL);
2421     assert(!objtmp.textrel);
2422     /*
2423      * Temporarily put the dynamic linker entry into the object list, so
2424      * that symbols can be found.
2425      */
2426     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2427 
2428     ehdr = (Elf_Ehdr *)mapbase;
2429     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2430     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2431 
2432     /* Initialize the object list. */
2433     TAILQ_INIT(&obj_list);
2434 
2435     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2436     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2437 
2438 #ifndef RTLD_INIT_PAGESIZES_EARLY
2439     /* The page size is required by the dynamic memory allocator. */
2440     init_pagesizes(aux_info);
2441 #endif
2442 
2443     if (aux_info[AT_OSRELDATE] != NULL)
2444 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2445 
2446     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2447 
2448     /* Replace the path with a dynamically allocated copy. */
2449     obj_rtld.path = xstrdup(ld_path_rtld);
2450 
2451     parse_rtld_phdr(&obj_rtld);
2452     if (obj_enforce_relro(&obj_rtld) == -1)
2453 	rtld_die();
2454 
2455     r_debug.r_version = R_DEBUG_VERSION;
2456     r_debug.r_brk = r_debug_state;
2457     r_debug.r_state = RT_CONSISTENT;
2458     r_debug.r_ldbase = obj_rtld.relocbase;
2459 }
2460 
2461 /*
2462  * Retrieve the array of supported page sizes.  The kernel provides the page
2463  * sizes in increasing order.
2464  */
2465 static void
2466 init_pagesizes(Elf_Auxinfo **aux_info)
2467 {
2468 	static size_t psa[MAXPAGESIZES];
2469 	int mib[2];
2470 	size_t len, size;
2471 
2472 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2473 	    NULL) {
2474 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2475 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2476 	} else {
2477 		len = 2;
2478 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2479 			size = sizeof(psa);
2480 		else {
2481 			/* As a fallback, retrieve the base page size. */
2482 			size = sizeof(psa[0]);
2483 			if (aux_info[AT_PAGESZ] != NULL) {
2484 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2485 				goto psa_filled;
2486 			} else {
2487 				mib[0] = CTL_HW;
2488 				mib[1] = HW_PAGESIZE;
2489 				len = 2;
2490 			}
2491 		}
2492 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2493 			_rtld_error("sysctl for hw.pagesize(s) failed");
2494 			rtld_die();
2495 		}
2496 psa_filled:
2497 		pagesizes = psa;
2498 	}
2499 	npagesizes = size / sizeof(pagesizes[0]);
2500 	/* Discard any invalid entries at the end of the array. */
2501 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2502 		npagesizes--;
2503 
2504 	page_size = pagesizes[0];
2505 }
2506 
2507 /*
2508  * Add the init functions from a needed object list (and its recursive
2509  * needed objects) to "list".  This is not used directly; it is a helper
2510  * function for initlist_add_objects().  The write lock must be held
2511  * when this function is called.
2512  */
2513 static void
2514 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2515 {
2516     /* Recursively process the successor needed objects. */
2517     if (needed->next != NULL)
2518 	initlist_add_neededs(needed->next, list);
2519 
2520     /* Process the current needed object. */
2521     if (needed->obj != NULL)
2522 	initlist_add_objects(needed->obj, needed->obj, list);
2523 }
2524 
2525 /*
2526  * Scan all of the DAGs rooted in the range of objects from "obj" to
2527  * "tail" and add their init functions to "list".  This recurses over
2528  * the DAGs and ensure the proper init ordering such that each object's
2529  * needed libraries are initialized before the object itself.  At the
2530  * same time, this function adds the objects to the global finalization
2531  * list "list_fini" in the opposite order.  The write lock must be
2532  * held when this function is called.
2533  */
2534 static void
2535 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2536 {
2537     Obj_Entry *nobj;
2538 
2539     if (obj->init_scanned || obj->init_done)
2540 	return;
2541     obj->init_scanned = true;
2542 
2543     /* Recursively process the successor objects. */
2544     nobj = globallist_next(obj);
2545     if (nobj != NULL && obj != tail)
2546 	initlist_add_objects(nobj, tail, list);
2547 
2548     /* Recursively process the needed objects. */
2549     if (obj->needed != NULL)
2550 	initlist_add_neededs(obj->needed, list);
2551     if (obj->needed_filtees != NULL)
2552 	initlist_add_neededs(obj->needed_filtees, list);
2553     if (obj->needed_aux_filtees != NULL)
2554 	initlist_add_neededs(obj->needed_aux_filtees, list);
2555 
2556     /* Add the object to the init list. */
2557     objlist_push_tail(list, obj);
2558 
2559     /* Add the object to the global fini list in the reverse order. */
2560     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2561       && !obj->on_fini_list) {
2562 	objlist_push_head(&list_fini, obj);
2563 	obj->on_fini_list = true;
2564     }
2565 }
2566 
2567 static void
2568 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2569 {
2570     Needed_Entry *needed, *needed1;
2571 
2572     for (needed = n; needed != NULL; needed = needed->next) {
2573 	if (needed->obj != NULL) {
2574 	    dlclose_locked(needed->obj, lockstate);
2575 	    needed->obj = NULL;
2576 	}
2577     }
2578     for (needed = n; needed != NULL; needed = needed1) {
2579 	needed1 = needed->next;
2580 	free(needed);
2581     }
2582 }
2583 
2584 static void
2585 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2586 {
2587 
2588 	free_needed_filtees(obj->needed_filtees, lockstate);
2589 	obj->needed_filtees = NULL;
2590 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2591 	obj->needed_aux_filtees = NULL;
2592 	obj->filtees_loaded = false;
2593 }
2594 
2595 static void
2596 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2597     RtldLockState *lockstate)
2598 {
2599 
2600     for (; needed != NULL; needed = needed->next) {
2601 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2602 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2603 	  RTLD_LOCAL, lockstate);
2604     }
2605 }
2606 
2607 static void
2608 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2609 {
2610 	if (obj->filtees_loaded || obj->filtees_loading)
2611 		return;
2612 	lock_restart_for_upgrade(lockstate);
2613 	obj->filtees_loading = true;
2614 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2615 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2616 	obj->filtees_loaded = true;
2617 	obj->filtees_loading = false;
2618 }
2619 
2620 static int
2621 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2622 {
2623     Obj_Entry *obj1;
2624 
2625     for (; needed != NULL; needed = needed->next) {
2626 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2627 	  flags & ~RTLD_LO_NOLOAD);
2628 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2629 	    return (-1);
2630     }
2631     return (0);
2632 }
2633 
2634 /*
2635  * Given a shared object, traverse its list of needed objects, and load
2636  * each of them.  Returns 0 on success.  Generates an error message and
2637  * returns -1 on failure.
2638  */
2639 static int
2640 load_needed_objects(Obj_Entry *first, int flags)
2641 {
2642     Obj_Entry *obj;
2643 
2644     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2645 	if (obj->marker)
2646 	    continue;
2647 	if (process_needed(obj, obj->needed, flags) == -1)
2648 	    return (-1);
2649     }
2650     return (0);
2651 }
2652 
2653 static int
2654 load_preload_objects(const char *penv, bool isfd)
2655 {
2656 	Obj_Entry *obj;
2657 	const char *name;
2658 	size_t len;
2659 	char savech, *p, *psave;
2660 	int fd;
2661 	static const char delim[] = " \t:;";
2662 
2663 	if (penv == NULL)
2664 		return (0);
2665 
2666 	p = psave = xstrdup(penv);
2667 	p += strspn(p, delim);
2668 	while (*p != '\0') {
2669 		len = strcspn(p, delim);
2670 
2671 		savech = p[len];
2672 		p[len] = '\0';
2673 		if (isfd) {
2674 			name = NULL;
2675 			fd = parse_integer(p);
2676 			if (fd == -1) {
2677 				free(psave);
2678 				return (-1);
2679 			}
2680 		} else {
2681 			name = p;
2682 			fd = -1;
2683 		}
2684 
2685 		obj = load_object(name, fd, NULL, 0);
2686 		if (obj == NULL) {
2687 			free(psave);
2688 			return (-1);	/* XXX - cleanup */
2689 		}
2690 		obj->z_interpose = true;
2691 		p[len] = savech;
2692 		p += len;
2693 		p += strspn(p, delim);
2694 	}
2695 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2696 
2697 	free(psave);
2698 	return (0);
2699 }
2700 
2701 static const char *
2702 printable_path(const char *path)
2703 {
2704 
2705 	return (path == NULL ? "<unknown>" : path);
2706 }
2707 
2708 /*
2709  * Load a shared object into memory, if it is not already loaded.  The
2710  * object may be specified by name or by user-supplied file descriptor
2711  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2712  * duplicate is.
2713  *
2714  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2715  * on failure.
2716  */
2717 static Obj_Entry *
2718 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2719 {
2720     Obj_Entry *obj;
2721     int fd;
2722     struct stat sb;
2723     char *path;
2724 
2725     fd = -1;
2726     if (name != NULL) {
2727 	TAILQ_FOREACH(obj, &obj_list, next) {
2728 	    if (obj->marker || obj->doomed)
2729 		continue;
2730 	    if (object_match_name(obj, name))
2731 		return (obj);
2732 	}
2733 
2734 	path = find_library(name, refobj, &fd);
2735 	if (path == NULL)
2736 	    return (NULL);
2737     } else
2738 	path = NULL;
2739 
2740     if (fd >= 0) {
2741 	/*
2742 	 * search_library_pathfds() opens a fresh file descriptor for the
2743 	 * library, so there is no need to dup().
2744 	 */
2745     } else if (fd_u == -1) {
2746 	/*
2747 	 * If we didn't find a match by pathname, or the name is not
2748 	 * supplied, open the file and check again by device and inode.
2749 	 * This avoids false mismatches caused by multiple links or ".."
2750 	 * in pathnames.
2751 	 *
2752 	 * To avoid a race, we open the file and use fstat() rather than
2753 	 * using stat().
2754 	 */
2755 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2756 	    _rtld_error("Cannot open \"%s\"", path);
2757 	    free(path);
2758 	    return (NULL);
2759 	}
2760     } else {
2761 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2762 	if (fd == -1) {
2763 	    _rtld_error("Cannot dup fd");
2764 	    free(path);
2765 	    return (NULL);
2766 	}
2767     }
2768     if (fstat(fd, &sb) == -1) {
2769 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2770 	close(fd);
2771 	free(path);
2772 	return (NULL);
2773     }
2774     TAILQ_FOREACH(obj, &obj_list, next) {
2775 	if (obj->marker || obj->doomed)
2776 	    continue;
2777 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2778 	    break;
2779     }
2780     if (obj != NULL) {
2781 	if (name != NULL)
2782 	    object_add_name(obj, name);
2783 	free(path);
2784 	close(fd);
2785 	return (obj);
2786     }
2787     if (flags & RTLD_LO_NOLOAD) {
2788 	free(path);
2789 	close(fd);
2790 	return (NULL);
2791     }
2792 
2793     /* First use of this object, so we must map it in */
2794     obj = do_load_object(fd, name, path, &sb, flags);
2795     if (obj == NULL)
2796 	free(path);
2797     close(fd);
2798 
2799     return (obj);
2800 }
2801 
2802 static Obj_Entry *
2803 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2804   int flags)
2805 {
2806     Obj_Entry *obj;
2807     struct statfs fs;
2808 
2809     /*
2810      * First, make sure that environment variables haven't been
2811      * used to circumvent the noexec flag on a filesystem.
2812      * We ignore fstatfs(2) failures, since fd might reference
2813      * not a file, e.g. shmfd.
2814      */
2815     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2816 	(fs.f_flags & MNT_NOEXEC) != 0) {
2817 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2818 	    return (NULL);
2819     }
2820 
2821     dbg("loading \"%s\"", printable_path(path));
2822     obj = map_object(fd, printable_path(path), sbp);
2823     if (obj == NULL)
2824         return (NULL);
2825 
2826     /*
2827      * If DT_SONAME is present in the object, digest_dynamic2 already
2828      * added it to the object names.
2829      */
2830     if (name != NULL)
2831 	object_add_name(obj, name);
2832     obj->path = path;
2833     if (!digest_dynamic(obj, 0))
2834 	goto errp;
2835     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2836 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2837     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2838 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2839 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2840 	goto errp;
2841     }
2842     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2843       RTLD_LO_DLOPEN) {
2844 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2845 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2846 	goto errp;
2847     }
2848 
2849     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2850     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2851     obj_count++;
2852     obj_loads++;
2853     linkmap_add(obj);	/* for GDB & dlinfo() */
2854     max_stack_flags |= obj->stack_flags;
2855 
2856     dbg("  %p .. %p: %s", obj->mapbase,
2857          obj->mapbase + obj->mapsize - 1, obj->path);
2858     if (obj->textrel)
2859 	dbg("  WARNING: %s has impure text", obj->path);
2860     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2861 	obj->path);
2862 
2863     return (obj);
2864 
2865 errp:
2866     munmap(obj->mapbase, obj->mapsize);
2867     obj_free(obj);
2868     return (NULL);
2869 }
2870 
2871 static int
2872 load_kpreload(const void *addr)
2873 {
2874 	Obj_Entry *obj;
2875 	const Elf_Ehdr *ehdr;
2876 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2877 	static const char kname[] = "[vdso]";
2878 
2879 	ehdr = addr;
2880 	if (!check_elf_headers(ehdr, "kpreload"))
2881 		return (-1);
2882 	obj = obj_new();
2883 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2884 	obj->phdr = phdr;
2885 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2886 	phlimit = phdr + ehdr->e_phnum;
2887 	seg0 = segn = NULL;
2888 
2889 	for (; phdr < phlimit; phdr++) {
2890 		switch (phdr->p_type) {
2891 		case PT_DYNAMIC:
2892 			phdyn = phdr;
2893 			break;
2894 		case PT_GNU_STACK:
2895 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2896 			obj->stack_flags = phdr->p_flags;
2897 			break;
2898 		case PT_LOAD:
2899 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2900 				seg0 = phdr;
2901 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2902 			    phdr->p_vaddr + phdr->p_memsz)
2903 				segn = phdr;
2904 			break;
2905 		}
2906 	}
2907 
2908 	obj->mapbase = __DECONST(caddr_t, addr);
2909 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2910 	obj->vaddrbase = 0;
2911 	obj->relocbase = obj->mapbase;
2912 
2913 	object_add_name(obj, kname);
2914 	obj->path = xstrdup(kname);
2915 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2916 
2917 	if (!digest_dynamic(obj, 0)) {
2918 		obj_free(obj);
2919 		return (-1);
2920 	}
2921 
2922 	/*
2923 	 * We assume that kernel-preloaded object does not need
2924 	 * relocation.  It is currently written into read-only page,
2925 	 * handling relocations would mean we need to allocate at
2926 	 * least one additional page per AS.
2927 	 */
2928 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2929 	    obj->path, obj->mapbase, obj->phdr, seg0,
2930 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2931 
2932 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2933 	obj_count++;
2934 	obj_loads++;
2935 	linkmap_add(obj);	/* for GDB & dlinfo() */
2936 	max_stack_flags |= obj->stack_flags;
2937 
2938 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2939 	return (0);
2940 }
2941 
2942 Obj_Entry *
2943 obj_from_addr(const void *addr)
2944 {
2945     Obj_Entry *obj;
2946 
2947     TAILQ_FOREACH(obj, &obj_list, next) {
2948 	if (obj->marker)
2949 	    continue;
2950 	if (addr < (void *) obj->mapbase)
2951 	    continue;
2952 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2953 	    return obj;
2954     }
2955     return (NULL);
2956 }
2957 
2958 static void
2959 preinit_main(void)
2960 {
2961     Elf_Addr *preinit_addr;
2962     int index;
2963 
2964     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2965     if (preinit_addr == NULL)
2966 	return;
2967 
2968     for (index = 0; index < obj_main->preinit_array_num; index++) {
2969 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2970 	    dbg("calling preinit function for %s at %p", obj_main->path,
2971 	      (void *)preinit_addr[index]);
2972 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2973 	      0, 0, obj_main->path);
2974 	    call_init_pointer(obj_main, preinit_addr[index]);
2975 	}
2976     }
2977 }
2978 
2979 /*
2980  * Call the finalization functions for each of the objects in "list"
2981  * belonging to the DAG of "root" and referenced once. If NULL "root"
2982  * is specified, every finalization function will be called regardless
2983  * of the reference count and the list elements won't be freed. All of
2984  * the objects are expected to have non-NULL fini functions.
2985  */
2986 static void
2987 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2988 {
2989     Objlist_Entry *elm;
2990     struct dlerror_save *saved_msg;
2991     Elf_Addr *fini_addr;
2992     int index;
2993 
2994     assert(root == NULL || root->refcount == 1);
2995 
2996     if (root != NULL)
2997 	root->doomed = true;
2998 
2999     /*
3000      * Preserve the current error message since a fini function might
3001      * call into the dynamic linker and overwrite it.
3002      */
3003     saved_msg = errmsg_save();
3004     do {
3005 	STAILQ_FOREACH(elm, list, link) {
3006 	    if (root != NULL && (elm->obj->refcount != 1 ||
3007 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
3008 		continue;
3009 	    /* Remove object from fini list to prevent recursive invocation. */
3010 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3011 	    /* Ensure that new references cannot be acquired. */
3012 	    elm->obj->doomed = true;
3013 
3014 	    hold_object(elm->obj);
3015 	    lock_release(rtld_bind_lock, lockstate);
3016 	    /*
3017 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3018 	     * When this happens, DT_FINI_ARRAY is processed first.
3019 	     */
3020 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3021 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3022 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3023 		  index--) {
3024 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3025 			dbg("calling fini function for %s at %p",
3026 			    elm->obj->path, (void *)fini_addr[index]);
3027 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3028 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3029 			call_initfini_pointer(elm->obj, fini_addr[index]);
3030 		    }
3031 		}
3032 	    }
3033 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3034 		dbg("calling fini function for %s at %p", elm->obj->path,
3035 		    (void *)elm->obj->fini);
3036 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3037 		    0, 0, elm->obj->path);
3038 		call_initfini_pointer(elm->obj, elm->obj->fini);
3039 	    }
3040 	    wlock_acquire(rtld_bind_lock, lockstate);
3041 	    unhold_object(elm->obj);
3042 	    /* No need to free anything if process is going down. */
3043 	    if (root != NULL)
3044 	    	free(elm);
3045 	    /*
3046 	     * We must restart the list traversal after every fini call
3047 	     * because a dlclose() call from the fini function or from
3048 	     * another thread might have modified the reference counts.
3049 	     */
3050 	    break;
3051 	}
3052     } while (elm != NULL);
3053     errmsg_restore(saved_msg);
3054 }
3055 
3056 /*
3057  * Call the initialization functions for each of the objects in
3058  * "list".  All of the objects are expected to have non-NULL init
3059  * functions.
3060  */
3061 static void
3062 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3063 {
3064     Objlist_Entry *elm;
3065     Obj_Entry *obj;
3066     struct dlerror_save *saved_msg;
3067     Elf_Addr *init_addr;
3068     void (*reg)(void (*)(void));
3069     int index;
3070 
3071     /*
3072      * Clean init_scanned flag so that objects can be rechecked and
3073      * possibly initialized earlier if any of vectors called below
3074      * cause the change by using dlopen.
3075      */
3076     TAILQ_FOREACH(obj, &obj_list, next) {
3077 	if (obj->marker)
3078 	    continue;
3079 	obj->init_scanned = false;
3080     }
3081 
3082     /*
3083      * Preserve the current error message since an init function might
3084      * call into the dynamic linker and overwrite it.
3085      */
3086     saved_msg = errmsg_save();
3087     STAILQ_FOREACH(elm, list, link) {
3088 	if (elm->obj->init_done) /* Initialized early. */
3089 	    continue;
3090 	/*
3091 	 * Race: other thread might try to use this object before current
3092 	 * one completes the initialization. Not much can be done here
3093 	 * without better locking.
3094 	 */
3095 	elm->obj->init_done = true;
3096 	hold_object(elm->obj);
3097 	reg = NULL;
3098 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3099 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3100 		    "__libc_atexit", lockstate);
3101 	}
3102 	lock_release(rtld_bind_lock, lockstate);
3103 	if (reg != NULL) {
3104 		reg(rtld_exit);
3105 		rtld_exit_ptr = rtld_nop_exit;
3106 	}
3107 
3108         /*
3109          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3110          * When this happens, DT_INIT is processed first.
3111          */
3112 	if (elm->obj->init != (Elf_Addr)NULL) {
3113 	    dbg("calling init function for %s at %p", elm->obj->path,
3114 	        (void *)elm->obj->init);
3115 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3116 	        0, 0, elm->obj->path);
3117 	    call_init_pointer(elm->obj, elm->obj->init);
3118 	}
3119 	init_addr = (Elf_Addr *)elm->obj->init_array;
3120 	if (init_addr != NULL) {
3121 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3122 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3123 		    dbg("calling init function for %s at %p", elm->obj->path,
3124 			(void *)init_addr[index]);
3125 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3126 			(void *)init_addr[index], 0, 0, elm->obj->path);
3127 		    call_init_pointer(elm->obj, init_addr[index]);
3128 		}
3129 	    }
3130 	}
3131 	wlock_acquire(rtld_bind_lock, lockstate);
3132 	unhold_object(elm->obj);
3133     }
3134     errmsg_restore(saved_msg);
3135 }
3136 
3137 static void
3138 objlist_clear(Objlist *list)
3139 {
3140     Objlist_Entry *elm;
3141 
3142     while (!STAILQ_EMPTY(list)) {
3143 	elm = STAILQ_FIRST(list);
3144 	STAILQ_REMOVE_HEAD(list, link);
3145 	free(elm);
3146     }
3147 }
3148 
3149 static Objlist_Entry *
3150 objlist_find(Objlist *list, const Obj_Entry *obj)
3151 {
3152     Objlist_Entry *elm;
3153 
3154     STAILQ_FOREACH(elm, list, link)
3155 	if (elm->obj == obj)
3156 	    return elm;
3157     return (NULL);
3158 }
3159 
3160 static void
3161 objlist_init(Objlist *list)
3162 {
3163     STAILQ_INIT(list);
3164 }
3165 
3166 static void
3167 objlist_push_head(Objlist *list, Obj_Entry *obj)
3168 {
3169     Objlist_Entry *elm;
3170 
3171     elm = NEW(Objlist_Entry);
3172     elm->obj = obj;
3173     STAILQ_INSERT_HEAD(list, elm, link);
3174 }
3175 
3176 static void
3177 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3178 {
3179     Objlist_Entry *elm;
3180 
3181     elm = NEW(Objlist_Entry);
3182     elm->obj = obj;
3183     STAILQ_INSERT_TAIL(list, elm, link);
3184 }
3185 
3186 static void
3187 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3188 {
3189 	Objlist_Entry *elm, *listelm;
3190 
3191 	STAILQ_FOREACH(listelm, list, link) {
3192 		if (listelm->obj == listobj)
3193 			break;
3194 	}
3195 	elm = NEW(Objlist_Entry);
3196 	elm->obj = obj;
3197 	if (listelm != NULL)
3198 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3199 	else
3200 		STAILQ_INSERT_TAIL(list, elm, link);
3201 }
3202 
3203 static void
3204 objlist_remove(Objlist *list, Obj_Entry *obj)
3205 {
3206     Objlist_Entry *elm;
3207 
3208     if ((elm = objlist_find(list, obj)) != NULL) {
3209 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3210 	free(elm);
3211     }
3212 }
3213 
3214 /*
3215  * Relocate dag rooted in the specified object.
3216  * Returns 0 on success, or -1 on failure.
3217  */
3218 
3219 static int
3220 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3221     int flags, RtldLockState *lockstate)
3222 {
3223 	Objlist_Entry *elm;
3224 	int error;
3225 
3226 	error = 0;
3227 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3228 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3229 		    lockstate);
3230 		if (error == -1)
3231 			break;
3232 	}
3233 	return (error);
3234 }
3235 
3236 /*
3237  * Prepare for, or clean after, relocating an object marked with
3238  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3239  * segments are remapped read-write.  After relocations are done, the
3240  * segment's permissions are returned back to the modes specified in
3241  * the phdrs.  If any relocation happened, or always for wired
3242  * program, COW is triggered.
3243  */
3244 static int
3245 reloc_textrel_prot(Obj_Entry *obj, bool before)
3246 {
3247 	const Elf_Phdr *ph;
3248 	void *base;
3249 	size_t l, sz;
3250 	int prot;
3251 
3252 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3253 	    l--, ph++) {
3254 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3255 			continue;
3256 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3257 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3258 		    rtld_trunc_page(ph->p_vaddr);
3259 		prot = before ? (PROT_READ | PROT_WRITE) :
3260 		    convert_prot(ph->p_flags);
3261 		if (mprotect(base, sz, prot) == -1) {
3262 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3263 			    obj->path, before ? "en" : "dis",
3264 			    rtld_strerror(errno));
3265 			return (-1);
3266 		}
3267 	}
3268 	return (0);
3269 }
3270 
3271 /* Process RELR relative relocations. */
3272 static void
3273 reloc_relr(Obj_Entry *obj)
3274 {
3275 	const Elf_Relr *relr, *relrlim;
3276 	Elf_Addr *where;
3277 
3278 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3279 	for (relr = obj->relr; relr < relrlim; relr++) {
3280 	    Elf_Relr entry = *relr;
3281 
3282 	    if ((entry & 1) == 0) {
3283 		where = (Elf_Addr *)(obj->relocbase + entry);
3284 		*where++ += (Elf_Addr)obj->relocbase;
3285 	    } else {
3286 		for (long i = 0; (entry >>= 1) != 0; i++)
3287 		    if ((entry & 1) != 0)
3288 			where[i] += (Elf_Addr)obj->relocbase;
3289 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3290 	    }
3291 	}
3292 }
3293 
3294 /*
3295  * Relocate single object.
3296  * Returns 0 on success, or -1 on failure.
3297  */
3298 static int
3299 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3300     int flags, RtldLockState *lockstate)
3301 {
3302 
3303 	if (obj->relocated)
3304 		return (0);
3305 	obj->relocated = true;
3306 	if (obj != rtldobj)
3307 		dbg("relocating \"%s\"", obj->path);
3308 
3309 	if (obj->symtab == NULL || obj->strtab == NULL ||
3310 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3311 		dbg("object %s has no run-time symbol table", obj->path);
3312 
3313 	/* There are relocations to the write-protected text segment. */
3314 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3315 		return (-1);
3316 
3317 	/* Process the non-PLT non-IFUNC relocations. */
3318 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3319 		return (-1);
3320 	reloc_relr(obj);
3321 
3322 	/* Re-protected the text segment. */
3323 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3324 		return (-1);
3325 
3326 	/* Set the special PLT or GOT entries. */
3327 	init_pltgot(obj);
3328 
3329 	/* Process the PLT relocations. */
3330 	if (reloc_plt(obj, flags, lockstate) == -1)
3331 		return (-1);
3332 	/* Relocate the jump slots if we are doing immediate binding. */
3333 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3334 	    lockstate) == -1)
3335 		return (-1);
3336 
3337 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3338 		return (-1);
3339 
3340 	/*
3341 	 * Set up the magic number and version in the Obj_Entry.  These
3342 	 * were checked in the crt1.o from the original ElfKit, so we
3343 	 * set them for backward compatibility.
3344 	 */
3345 	obj->magic = RTLD_MAGIC;
3346 	obj->version = RTLD_VERSION;
3347 
3348 	return (0);
3349 }
3350 
3351 /*
3352  * Relocate newly-loaded shared objects.  The argument is a pointer to
3353  * the Obj_Entry for the first such object.  All objects from the first
3354  * to the end of the list of objects are relocated.  Returns 0 on success,
3355  * or -1 on failure.
3356  */
3357 static int
3358 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3359     int flags, RtldLockState *lockstate)
3360 {
3361 	Obj_Entry *obj;
3362 	int error;
3363 
3364 	for (error = 0, obj = first;  obj != NULL;
3365 	    obj = TAILQ_NEXT(obj, next)) {
3366 		if (obj->marker)
3367 			continue;
3368 		error = relocate_object(obj, bind_now, rtldobj, flags,
3369 		    lockstate);
3370 		if (error == -1)
3371 			break;
3372 	}
3373 	return (error);
3374 }
3375 
3376 /*
3377  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3378  * referencing STT_GNU_IFUNC symbols is postponed till the other
3379  * relocations are done.  The indirect functions specified as
3380  * ifunc are allowed to call other symbols, so we need to have
3381  * objects relocated before asking for resolution from indirects.
3382  *
3383  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3384  * instead of the usual lazy handling of PLT slots.  It is
3385  * consistent with how GNU does it.
3386  */
3387 static int
3388 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3389     RtldLockState *lockstate)
3390 {
3391 
3392 	if (obj->ifuncs_resolved)
3393 		return (0);
3394 	obj->ifuncs_resolved = true;
3395 	if (!obj->irelative && !obj->irelative_nonplt &&
3396 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3397 	    !obj->non_plt_gnu_ifunc)
3398 		return (0);
3399 	if (obj_disable_relro(obj) == -1 ||
3400 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3401 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3402 	    lockstate) == -1) ||
3403 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3404 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3405 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3406 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3407 	    obj_enforce_relro(obj) == -1)
3408 		return (-1);
3409 	return (0);
3410 }
3411 
3412 static int
3413 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3414     RtldLockState *lockstate)
3415 {
3416 	Objlist_Entry *elm;
3417 	Obj_Entry *obj;
3418 
3419 	STAILQ_FOREACH(elm, list, link) {
3420 		obj = elm->obj;
3421 		if (obj->marker)
3422 			continue;
3423 		if (resolve_object_ifunc(obj, bind_now, flags,
3424 		    lockstate) == -1)
3425 			return (-1);
3426 	}
3427 	return (0);
3428 }
3429 
3430 /*
3431  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3432  * before the process exits.
3433  */
3434 static void
3435 rtld_exit(void)
3436 {
3437     RtldLockState lockstate;
3438 
3439     wlock_acquire(rtld_bind_lock, &lockstate);
3440     dbg("rtld_exit()");
3441     objlist_call_fini(&list_fini, NULL, &lockstate);
3442     /* No need to remove the items from the list, since we are exiting. */
3443     if (!libmap_disable)
3444         lm_fini();
3445     lock_release(rtld_bind_lock, &lockstate);
3446 }
3447 
3448 static void
3449 rtld_nop_exit(void)
3450 {
3451 }
3452 
3453 /*
3454  * Iterate over a search path, translate each element, and invoke the
3455  * callback on the result.
3456  */
3457 static void *
3458 path_enumerate(const char *path, path_enum_proc callback,
3459     const char *refobj_path, void *arg)
3460 {
3461     const char *trans;
3462     if (path == NULL)
3463 	return (NULL);
3464 
3465     path += strspn(path, ":;");
3466     while (*path != '\0') {
3467 	size_t len;
3468 	char  *res;
3469 
3470 	len = strcspn(path, ":;");
3471 	trans = lm_findn(refobj_path, path, len);
3472 	if (trans)
3473 	    res = callback(trans, strlen(trans), arg);
3474 	else
3475 	    res = callback(path, len, arg);
3476 
3477 	if (res != NULL)
3478 	    return (res);
3479 
3480 	path += len;
3481 	path += strspn(path, ":;");
3482     }
3483 
3484     return (NULL);
3485 }
3486 
3487 struct try_library_args {
3488     const char	*name;
3489     size_t	 namelen;
3490     char	*buffer;
3491     size_t	 buflen;
3492     int		 fd;
3493 };
3494 
3495 static void *
3496 try_library_path(const char *dir, size_t dirlen, void *param)
3497 {
3498     struct try_library_args *arg;
3499     int fd;
3500 
3501     arg = param;
3502     if (*dir == '/' || trust) {
3503 	char *pathname;
3504 
3505 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3506 		return (NULL);
3507 
3508 	pathname = arg->buffer;
3509 	strncpy(pathname, dir, dirlen);
3510 	pathname[dirlen] = '/';
3511 	strcpy(pathname + dirlen + 1, arg->name);
3512 
3513 	dbg("  Trying \"%s\"", pathname);
3514 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3515 	if (fd >= 0) {
3516 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3517 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3518 	    strcpy(pathname, arg->buffer);
3519 	    arg->fd = fd;
3520 	    return (pathname);
3521 	} else {
3522 	    dbg("  Failed to open \"%s\": %s",
3523 		pathname, rtld_strerror(errno));
3524 	}
3525     }
3526     return (NULL);
3527 }
3528 
3529 static char *
3530 search_library_path(const char *name, const char *path,
3531     const char *refobj_path, int *fdp)
3532 {
3533     char *p;
3534     struct try_library_args arg;
3535 
3536     if (path == NULL)
3537 	return (NULL);
3538 
3539     arg.name = name;
3540     arg.namelen = strlen(name);
3541     arg.buffer = xmalloc(PATH_MAX);
3542     arg.buflen = PATH_MAX;
3543     arg.fd = -1;
3544 
3545     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3546     *fdp = arg.fd;
3547 
3548     free(arg.buffer);
3549 
3550     return (p);
3551 }
3552 
3553 
3554 /*
3555  * Finds the library with the given name using the directory descriptors
3556  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3557  *
3558  * Returns a freshly-opened close-on-exec file descriptor for the library,
3559  * or -1 if the library cannot be found.
3560  */
3561 static char *
3562 search_library_pathfds(const char *name, const char *path, int *fdp)
3563 {
3564 	char *envcopy, *fdstr, *found, *last_token;
3565 	size_t len;
3566 	int dirfd, fd;
3567 
3568 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3569 
3570 	/* Don't load from user-specified libdirs into setuid binaries. */
3571 	if (!trust)
3572 		return (NULL);
3573 
3574 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3575 	if (path == NULL)
3576 		return (NULL);
3577 
3578 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3579 	if (name[0] == '/') {
3580 		dbg("Absolute path (%s) passed to %s", name, __func__);
3581 		return (NULL);
3582 	}
3583 
3584 	/*
3585 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3586 	 * copy of the path, as strtok_r rewrites separator tokens
3587 	 * with '\0'.
3588 	 */
3589 	found = NULL;
3590 	envcopy = xstrdup(path);
3591 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3592 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3593 		dirfd = parse_integer(fdstr);
3594 		if (dirfd < 0) {
3595 			_rtld_error("failed to parse directory FD: '%s'",
3596 				fdstr);
3597 			break;
3598 		}
3599 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3600 		if (fd >= 0) {
3601 			*fdp = fd;
3602 			len = strlen(fdstr) + strlen(name) + 3;
3603 			found = xmalloc(len);
3604 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3605 				_rtld_error("error generating '%d/%s'",
3606 				    dirfd, name);
3607 				rtld_die();
3608 			}
3609 			dbg("open('%s') => %d", found, fd);
3610 			break;
3611 		}
3612 	}
3613 	free(envcopy);
3614 
3615 	return (found);
3616 }
3617 
3618 
3619 int
3620 dlclose(void *handle)
3621 {
3622 	RtldLockState lockstate;
3623 	int error;
3624 
3625 	wlock_acquire(rtld_bind_lock, &lockstate);
3626 	error = dlclose_locked(handle, &lockstate);
3627 	lock_release(rtld_bind_lock, &lockstate);
3628 	return (error);
3629 }
3630 
3631 static int
3632 dlclose_locked(void *handle, RtldLockState *lockstate)
3633 {
3634     Obj_Entry *root;
3635 
3636     root = dlcheck(handle);
3637     if (root == NULL)
3638 	return (-1);
3639     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3640 	root->path);
3641 
3642     /* Unreference the object and its dependencies. */
3643     root->dl_refcount--;
3644 
3645     if (root->refcount == 1) {
3646 	/*
3647 	 * The object will be no longer referenced, so we must unload it.
3648 	 * First, call the fini functions.
3649 	 */
3650 	objlist_call_fini(&list_fini, root, lockstate);
3651 
3652 	unref_dag(root);
3653 
3654 	/* Finish cleaning up the newly-unreferenced objects. */
3655 	GDB_STATE(RT_DELETE,&root->linkmap);
3656 	unload_object(root, lockstate);
3657 	GDB_STATE(RT_CONSISTENT,NULL);
3658     } else
3659 	unref_dag(root);
3660 
3661     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3662     return (0);
3663 }
3664 
3665 char *
3666 dlerror(void)
3667 {
3668 	if (*(lockinfo.dlerror_seen()) != 0)
3669 		return (NULL);
3670 	*lockinfo.dlerror_seen() = 1;
3671 	return (lockinfo.dlerror_loc());
3672 }
3673 
3674 /*
3675  * This function is deprecated and has no effect.
3676  */
3677 void
3678 dllockinit(void *context,
3679     void *(*_lock_create)(void *context) __unused,
3680     void (*_rlock_acquire)(void *lock) __unused,
3681     void (*_wlock_acquire)(void *lock)  __unused,
3682     void (*_lock_release)(void *lock) __unused,
3683     void (*_lock_destroy)(void *lock) __unused,
3684     void (*context_destroy)(void *context))
3685 {
3686     static void *cur_context;
3687     static void (*cur_context_destroy)(void *);
3688 
3689     /* Just destroy the context from the previous call, if necessary. */
3690     if (cur_context_destroy != NULL)
3691 	cur_context_destroy(cur_context);
3692     cur_context = context;
3693     cur_context_destroy = context_destroy;
3694 }
3695 
3696 void *
3697 dlopen(const char *name, int mode)
3698 {
3699 
3700 	return (rtld_dlopen(name, -1, mode));
3701 }
3702 
3703 void *
3704 fdlopen(int fd, int mode)
3705 {
3706 
3707 	return (rtld_dlopen(NULL, fd, mode));
3708 }
3709 
3710 static void *
3711 rtld_dlopen(const char *name, int fd, int mode)
3712 {
3713     RtldLockState lockstate;
3714     int lo_flags;
3715 
3716     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3717     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3718     if (ld_tracing != NULL) {
3719 	rlock_acquire(rtld_bind_lock, &lockstate);
3720 	if (sigsetjmp(lockstate.env, 0) != 0)
3721 	    lock_upgrade(rtld_bind_lock, &lockstate);
3722 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3723 	lock_release(rtld_bind_lock, &lockstate);
3724     }
3725     lo_flags = RTLD_LO_DLOPEN;
3726     if (mode & RTLD_NODELETE)
3727 	    lo_flags |= RTLD_LO_NODELETE;
3728     if (mode & RTLD_NOLOAD)
3729 	    lo_flags |= RTLD_LO_NOLOAD;
3730     if (mode & RTLD_DEEPBIND)
3731 	    lo_flags |= RTLD_LO_DEEPBIND;
3732     if (ld_tracing != NULL)
3733 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3734 
3735     return (dlopen_object(name, fd, obj_main, lo_flags,
3736       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3737 }
3738 
3739 static void
3740 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3741 {
3742 
3743 	obj->dl_refcount--;
3744 	unref_dag(obj);
3745 	if (obj->refcount == 0)
3746 		unload_object(obj, lockstate);
3747 }
3748 
3749 static Obj_Entry *
3750 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3751     int mode, RtldLockState *lockstate)
3752 {
3753     Obj_Entry *obj;
3754     Objlist initlist;
3755     RtldLockState mlockstate;
3756     int result;
3757 
3758     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3759       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3760       refobj->path, lo_flags, mode);
3761     objlist_init(&initlist);
3762 
3763     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3764 	wlock_acquire(rtld_bind_lock, &mlockstate);
3765 	lockstate = &mlockstate;
3766     }
3767     GDB_STATE(RT_ADD,NULL);
3768 
3769     obj = NULL;
3770     if (name == NULL && fd == -1) {
3771 	obj = obj_main;
3772 	obj->refcount++;
3773     } else {
3774 	obj = load_object(name, fd, refobj, lo_flags);
3775     }
3776 
3777     if (obj) {
3778 	obj->dl_refcount++;
3779 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3780 	    objlist_push_tail(&list_global, obj);
3781 
3782 	if (!obj->init_done) {
3783 	    /* We loaded something new and have to init something. */
3784 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3785 		obj->deepbind = true;
3786 	    result = 0;
3787 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3788 	      obj->static_tls && !allocate_tls_offset(obj)) {
3789 		_rtld_error("%s: No space available "
3790 		  "for static Thread Local Storage", obj->path);
3791 		result = -1;
3792 	    }
3793 	    if (result != -1)
3794 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3795 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3796 	    init_dag(obj);
3797 	    ref_dag(obj);
3798 	    if (result != -1)
3799 		result = rtld_verify_versions(&obj->dagmembers);
3800 	    if (result != -1 && ld_tracing)
3801 		goto trace;
3802 	    if (result == -1 || relocate_object_dag(obj,
3803 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3804 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3805 	      lockstate) == -1) {
3806 		dlopen_cleanup(obj, lockstate);
3807 		obj = NULL;
3808 	    } else if (lo_flags & RTLD_LO_EARLY) {
3809 		/*
3810 		 * Do not call the init functions for early loaded
3811 		 * filtees.  The image is still not initialized enough
3812 		 * for them to work.
3813 		 *
3814 		 * Our object is found by the global object list and
3815 		 * will be ordered among all init calls done right
3816 		 * before transferring control to main.
3817 		 */
3818 	    } else {
3819 		/* Make list of init functions to call. */
3820 		initlist_add_objects(obj, obj, &initlist);
3821 	    }
3822 	    /*
3823 	     * Process all no_delete or global objects here, given
3824 	     * them own DAGs to prevent their dependencies from being
3825 	     * unloaded.  This has to be done after we have loaded all
3826 	     * of the dependencies, so that we do not miss any.
3827 	     */
3828 	    if (obj != NULL)
3829 		process_z(obj);
3830 	} else {
3831 	    /*
3832 	     * Bump the reference counts for objects on this DAG.  If
3833 	     * this is the first dlopen() call for the object that was
3834 	     * already loaded as a dependency, initialize the dag
3835 	     * starting at it.
3836 	     */
3837 	    init_dag(obj);
3838 	    ref_dag(obj);
3839 
3840 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3841 		goto trace;
3842 	}
3843 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3844 	  obj->z_nodelete) && !obj->ref_nodel) {
3845 	    dbg("obj %s nodelete", obj->path);
3846 	    ref_dag(obj);
3847 	    obj->z_nodelete = obj->ref_nodel = true;
3848 	}
3849     }
3850 
3851     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3852 	name);
3853     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3854 
3855     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3856 	map_stacks_exec(lockstate);
3857 	if (obj != NULL)
3858 	    distribute_static_tls(&initlist, lockstate);
3859     }
3860 
3861     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3862       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3863       lockstate) == -1) {
3864 	objlist_clear(&initlist);
3865 	dlopen_cleanup(obj, lockstate);
3866 	if (lockstate == &mlockstate)
3867 	    lock_release(rtld_bind_lock, lockstate);
3868 	return (NULL);
3869     }
3870 
3871     if (!(lo_flags & RTLD_LO_EARLY)) {
3872 	/* Call the init functions. */
3873 	objlist_call_init(&initlist, lockstate);
3874     }
3875     objlist_clear(&initlist);
3876     if (lockstate == &mlockstate)
3877 	lock_release(rtld_bind_lock, lockstate);
3878     return (obj);
3879 trace:
3880     trace_loaded_objects(obj, false);
3881     if (lockstate == &mlockstate)
3882 	lock_release(rtld_bind_lock, lockstate);
3883     exit(0);
3884 }
3885 
3886 static void *
3887 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3888     int flags)
3889 {
3890     DoneList donelist;
3891     const Obj_Entry *obj, *defobj;
3892     const Elf_Sym *def;
3893     SymLook req;
3894     RtldLockState lockstate;
3895     tls_index ti;
3896     void *sym;
3897     int res;
3898 
3899     def = NULL;
3900     defobj = NULL;
3901     symlook_init(&req, name);
3902     req.ventry = ve;
3903     req.flags = flags | SYMLOOK_IN_PLT;
3904     req.lockstate = &lockstate;
3905 
3906     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3907     rlock_acquire(rtld_bind_lock, &lockstate);
3908     if (sigsetjmp(lockstate.env, 0) != 0)
3909 	    lock_upgrade(rtld_bind_lock, &lockstate);
3910     if (handle == NULL || handle == RTLD_NEXT ||
3911 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3912 
3913 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3914 	    _rtld_error("Cannot determine caller's shared object");
3915 	    lock_release(rtld_bind_lock, &lockstate);
3916 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3917 	    return (NULL);
3918 	}
3919 	if (handle == NULL) {	/* Just the caller's shared object. */
3920 	    res = symlook_obj(&req, obj);
3921 	    if (res == 0) {
3922 		def = req.sym_out;
3923 		defobj = req.defobj_out;
3924 	    }
3925 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3926 		   handle == RTLD_SELF) { /* ... caller included */
3927 	    if (handle == RTLD_NEXT)
3928 		obj = globallist_next(obj);
3929 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3930 		if (obj->marker)
3931 		    continue;
3932 		res = symlook_obj(&req, obj);
3933 		if (res == 0) {
3934 		    if (def == NULL || (ld_dynamic_weak &&
3935                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3936 			def = req.sym_out;
3937 			defobj = req.defobj_out;
3938 			if (!ld_dynamic_weak ||
3939 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3940 			    break;
3941 		    }
3942 		}
3943 	    }
3944 	    /*
3945 	     * Search the dynamic linker itself, and possibly resolve the
3946 	     * symbol from there.  This is how the application links to
3947 	     * dynamic linker services such as dlopen.
3948 	     * Note that we ignore ld_dynamic_weak == false case,
3949 	     * always overriding weak symbols by rtld definitions.
3950 	     */
3951 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3952 		res = symlook_obj(&req, &obj_rtld);
3953 		if (res == 0) {
3954 		    def = req.sym_out;
3955 		    defobj = req.defobj_out;
3956 		}
3957 	    }
3958 	} else {
3959 	    assert(handle == RTLD_DEFAULT);
3960 	    res = symlook_default(&req, obj);
3961 	    if (res == 0) {
3962 		defobj = req.defobj_out;
3963 		def = req.sym_out;
3964 	    }
3965 	}
3966     } else {
3967 	if ((obj = dlcheck(handle)) == NULL) {
3968 	    lock_release(rtld_bind_lock, &lockstate);
3969 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3970 	    return (NULL);
3971 	}
3972 
3973 	donelist_init(&donelist);
3974 	if (obj->mainprog) {
3975             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3976 	    res = symlook_global(&req, &donelist);
3977 	    if (res == 0) {
3978 		def = req.sym_out;
3979 		defobj = req.defobj_out;
3980 	    }
3981 	    /*
3982 	     * Search the dynamic linker itself, and possibly resolve the
3983 	     * symbol from there.  This is how the application links to
3984 	     * dynamic linker services such as dlopen.
3985 	     */
3986 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3987 		res = symlook_obj(&req, &obj_rtld);
3988 		if (res == 0) {
3989 		    def = req.sym_out;
3990 		    defobj = req.defobj_out;
3991 		}
3992 	    }
3993 	}
3994 	else {
3995 	    /* Search the whole DAG rooted at the given object. */
3996 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3997 	    if (res == 0) {
3998 		def = req.sym_out;
3999 		defobj = req.defobj_out;
4000 	    }
4001 	}
4002     }
4003 
4004     if (def != NULL) {
4005 	lock_release(rtld_bind_lock, &lockstate);
4006 
4007 	/*
4008 	 * The value required by the caller is derived from the value
4009 	 * of the symbol. this is simply the relocated value of the
4010 	 * symbol.
4011 	 */
4012 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4013 	    sym = make_function_pointer(def, defobj);
4014 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4015 	    sym = rtld_resolve_ifunc(defobj, def);
4016 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4017 	    ti.ti_module = defobj->tlsindex;
4018 	    ti.ti_offset = def->st_value;
4019 	    sym = __tls_get_addr(&ti);
4020 	} else
4021 	    sym = defobj->relocbase + def->st_value;
4022 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4023 	return (sym);
4024     }
4025 
4026     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4027       ve != NULL ? ve->name : "");
4028     lock_release(rtld_bind_lock, &lockstate);
4029     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4030     return (NULL);
4031 }
4032 
4033 void *
4034 dlsym(void *handle, const char *name)
4035 {
4036 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4037 	    SYMLOOK_DLSYM));
4038 }
4039 
4040 dlfunc_t
4041 dlfunc(void *handle, const char *name)
4042 {
4043 	union {
4044 		void *d;
4045 		dlfunc_t f;
4046 	} rv;
4047 
4048 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4049 	    SYMLOOK_DLSYM);
4050 	return (rv.f);
4051 }
4052 
4053 void *
4054 dlvsym(void *handle, const char *name, const char *version)
4055 {
4056 	Ver_Entry ventry;
4057 
4058 	ventry.name = version;
4059 	ventry.file = NULL;
4060 	ventry.hash = elf_hash(version);
4061 	ventry.flags= 0;
4062 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4063 	    SYMLOOK_DLSYM));
4064 }
4065 
4066 int
4067 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4068 {
4069     const Obj_Entry *obj;
4070     RtldLockState lockstate;
4071 
4072     rlock_acquire(rtld_bind_lock, &lockstate);
4073     obj = obj_from_addr(addr);
4074     if (obj == NULL) {
4075         _rtld_error("No shared object contains address");
4076 	lock_release(rtld_bind_lock, &lockstate);
4077         return (0);
4078     }
4079     rtld_fill_dl_phdr_info(obj, phdr_info);
4080     lock_release(rtld_bind_lock, &lockstate);
4081     return (1);
4082 }
4083 
4084 int
4085 dladdr(const void *addr, Dl_info *info)
4086 {
4087     const Obj_Entry *obj;
4088     const Elf_Sym *def;
4089     void *symbol_addr;
4090     unsigned long symoffset;
4091     RtldLockState lockstate;
4092 
4093     rlock_acquire(rtld_bind_lock, &lockstate);
4094     obj = obj_from_addr(addr);
4095     if (obj == NULL) {
4096         _rtld_error("No shared object contains address");
4097 	lock_release(rtld_bind_lock, &lockstate);
4098         return (0);
4099     }
4100     info->dli_fname = obj->path;
4101     info->dli_fbase = obj->mapbase;
4102     info->dli_saddr = (void *)0;
4103     info->dli_sname = NULL;
4104 
4105     /*
4106      * Walk the symbol list looking for the symbol whose address is
4107      * closest to the address sent in.
4108      */
4109     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4110         def = obj->symtab + symoffset;
4111 
4112         /*
4113          * For skip the symbol if st_shndx is either SHN_UNDEF or
4114          * SHN_COMMON.
4115          */
4116         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4117             continue;
4118 
4119         /*
4120          * If the symbol is greater than the specified address, or if it
4121          * is further away from addr than the current nearest symbol,
4122          * then reject it.
4123          */
4124         symbol_addr = obj->relocbase + def->st_value;
4125         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4126             continue;
4127 
4128         /* Update our idea of the nearest symbol. */
4129         info->dli_sname = obj->strtab + def->st_name;
4130         info->dli_saddr = symbol_addr;
4131 
4132         /* Exact match? */
4133         if (info->dli_saddr == addr)
4134             break;
4135     }
4136     lock_release(rtld_bind_lock, &lockstate);
4137     return (1);
4138 }
4139 
4140 int
4141 dlinfo(void *handle, int request, void *p)
4142 {
4143     const Obj_Entry *obj;
4144     RtldLockState lockstate;
4145     int error;
4146 
4147     rlock_acquire(rtld_bind_lock, &lockstate);
4148 
4149     if (handle == NULL || handle == RTLD_SELF) {
4150 	void *retaddr;
4151 
4152 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4153 	if ((obj = obj_from_addr(retaddr)) == NULL)
4154 	    _rtld_error("Cannot determine caller's shared object");
4155     } else
4156 	obj = dlcheck(handle);
4157 
4158     if (obj == NULL) {
4159 	lock_release(rtld_bind_lock, &lockstate);
4160 	return (-1);
4161     }
4162 
4163     error = 0;
4164     switch (request) {
4165     case RTLD_DI_LINKMAP:
4166 	*((struct link_map const **)p) = &obj->linkmap;
4167 	break;
4168     case RTLD_DI_ORIGIN:
4169 	error = rtld_dirname(obj->path, p);
4170 	break;
4171 
4172     case RTLD_DI_SERINFOSIZE:
4173     case RTLD_DI_SERINFO:
4174 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4175 	break;
4176 
4177     default:
4178 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4179 	error = -1;
4180     }
4181 
4182     lock_release(rtld_bind_lock, &lockstate);
4183 
4184     return (error);
4185 }
4186 
4187 static void
4188 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4189 {
4190 	uintptr_t **dtvp;
4191 
4192 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4193 	phdr_info->dlpi_name = obj->path;
4194 	phdr_info->dlpi_phdr = obj->phdr;
4195 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4196 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4197 	dtvp = &_tcb_get()->tcb_dtv;
4198 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4199 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4200 	phdr_info->dlpi_adds = obj_loads;
4201 	phdr_info->dlpi_subs = obj_loads - obj_count;
4202 }
4203 
4204 int
4205 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4206 {
4207 	struct dl_phdr_info phdr_info;
4208 	Obj_Entry *obj, marker;
4209 	RtldLockState bind_lockstate, phdr_lockstate;
4210 	int error;
4211 
4212 	init_marker(&marker);
4213 	error = 0;
4214 
4215 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4216 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4217 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4218 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4219 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4220 		hold_object(obj);
4221 		lock_release(rtld_bind_lock, &bind_lockstate);
4222 
4223 		error = callback(&phdr_info, sizeof phdr_info, param);
4224 
4225 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4226 		unhold_object(obj);
4227 		obj = globallist_next(&marker);
4228 		TAILQ_REMOVE(&obj_list, &marker, next);
4229 		if (error != 0) {
4230 			lock_release(rtld_bind_lock, &bind_lockstate);
4231 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4232 			return (error);
4233 		}
4234 	}
4235 
4236 	if (error == 0) {
4237 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4238 		lock_release(rtld_bind_lock, &bind_lockstate);
4239 		error = callback(&phdr_info, sizeof(phdr_info), param);
4240 	}
4241 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4242 	return (error);
4243 }
4244 
4245 static void *
4246 fill_search_info(const char *dir, size_t dirlen, void *param)
4247 {
4248     struct fill_search_info_args *arg;
4249 
4250     arg = param;
4251 
4252     if (arg->request == RTLD_DI_SERINFOSIZE) {
4253 	arg->serinfo->dls_cnt ++;
4254 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4255     } else {
4256 	struct dl_serpath *s_entry;
4257 
4258 	s_entry = arg->serpath;
4259 	s_entry->dls_name  = arg->strspace;
4260 	s_entry->dls_flags = arg->flags;
4261 
4262 	strncpy(arg->strspace, dir, dirlen);
4263 	arg->strspace[dirlen] = '\0';
4264 
4265 	arg->strspace += dirlen + 1;
4266 	arg->serpath++;
4267     }
4268 
4269     return (NULL);
4270 }
4271 
4272 static int
4273 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4274 {
4275     struct dl_serinfo _info;
4276     struct fill_search_info_args args;
4277 
4278     args.request = RTLD_DI_SERINFOSIZE;
4279     args.serinfo = &_info;
4280 
4281     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4282     _info.dls_cnt  = 0;
4283 
4284     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4285     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4286     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4287     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4288     if (!obj->z_nodeflib)
4289       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4290 
4291 
4292     if (request == RTLD_DI_SERINFOSIZE) {
4293 	info->dls_size = _info.dls_size;
4294 	info->dls_cnt = _info.dls_cnt;
4295 	return (0);
4296     }
4297 
4298     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4299 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4300 	return (-1);
4301     }
4302 
4303     args.request  = RTLD_DI_SERINFO;
4304     args.serinfo  = info;
4305     args.serpath  = &info->dls_serpath[0];
4306     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4307 
4308     args.flags = LA_SER_RUNPATH;
4309     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4310 	return (-1);
4311 
4312     args.flags = LA_SER_LIBPATH;
4313     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4314 	return (-1);
4315 
4316     args.flags = LA_SER_RUNPATH;
4317     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4318 	return (-1);
4319 
4320     args.flags = LA_SER_CONFIG;
4321     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4322       != NULL)
4323 	return (-1);
4324 
4325     args.flags = LA_SER_DEFAULT;
4326     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4327       fill_search_info, NULL, &args) != NULL)
4328 	return (-1);
4329     return (0);
4330 }
4331 
4332 static int
4333 rtld_dirname(const char *path, char *bname)
4334 {
4335     const char *endp;
4336 
4337     /* Empty or NULL string gets treated as "." */
4338     if (path == NULL || *path == '\0') {
4339 	bname[0] = '.';
4340 	bname[1] = '\0';
4341 	return (0);
4342     }
4343 
4344     /* Strip trailing slashes */
4345     endp = path + strlen(path) - 1;
4346     while (endp > path && *endp == '/')
4347 	endp--;
4348 
4349     /* Find the start of the dir */
4350     while (endp > path && *endp != '/')
4351 	endp--;
4352 
4353     /* Either the dir is "/" or there are no slashes */
4354     if (endp == path) {
4355 	bname[0] = *endp == '/' ? '/' : '.';
4356 	bname[1] = '\0';
4357 	return (0);
4358     } else {
4359 	do {
4360 	    endp--;
4361 	} while (endp > path && *endp == '/');
4362     }
4363 
4364     if (endp - path + 2 > PATH_MAX)
4365     {
4366 	_rtld_error("Filename is too long: %s", path);
4367 	return(-1);
4368     }
4369 
4370     strncpy(bname, path, endp - path + 1);
4371     bname[endp - path + 1] = '\0';
4372     return (0);
4373 }
4374 
4375 static int
4376 rtld_dirname_abs(const char *path, char *base)
4377 {
4378 	char *last;
4379 
4380 	if (realpath(path, base) == NULL) {
4381 		_rtld_error("realpath \"%s\" failed (%s)", path,
4382 		    rtld_strerror(errno));
4383 		return (-1);
4384 	}
4385 	dbg("%s -> %s", path, base);
4386 	last = strrchr(base, '/');
4387 	if (last == NULL) {
4388 		_rtld_error("non-abs result from realpath \"%s\"", path);
4389 		return (-1);
4390 	}
4391 	if (last != base)
4392 		*last = '\0';
4393 	return (0);
4394 }
4395 
4396 static void
4397 linkmap_add(Obj_Entry *obj)
4398 {
4399 	struct link_map *l, *prev;
4400 
4401 	l = &obj->linkmap;
4402 	l->l_name = obj->path;
4403 	l->l_base = obj->mapbase;
4404 	l->l_ld = obj->dynamic;
4405 	l->l_addr = obj->relocbase;
4406 
4407 	if (r_debug.r_map == NULL) {
4408 		r_debug.r_map = l;
4409 		return;
4410 	}
4411 
4412 	/*
4413 	 * Scan to the end of the list, but not past the entry for the
4414 	 * dynamic linker, which we want to keep at the very end.
4415 	 */
4416 	for (prev = r_debug.r_map;
4417 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4418 	     prev = prev->l_next)
4419 		;
4420 
4421 	/* Link in the new entry. */
4422 	l->l_prev = prev;
4423 	l->l_next = prev->l_next;
4424 	if (l->l_next != NULL)
4425 		l->l_next->l_prev = l;
4426 	prev->l_next = l;
4427 }
4428 
4429 static void
4430 linkmap_delete(Obj_Entry *obj)
4431 {
4432 	struct link_map *l;
4433 
4434 	l = &obj->linkmap;
4435 	if (l->l_prev == NULL) {
4436 		if ((r_debug.r_map = l->l_next) != NULL)
4437 			l->l_next->l_prev = NULL;
4438 		return;
4439 	}
4440 
4441 	if ((l->l_prev->l_next = l->l_next) != NULL)
4442 		l->l_next->l_prev = l->l_prev;
4443 }
4444 
4445 /*
4446  * Function for the debugger to set a breakpoint on to gain control.
4447  *
4448  * The two parameters allow the debugger to easily find and determine
4449  * what the runtime loader is doing and to whom it is doing it.
4450  *
4451  * When the loadhook trap is hit (r_debug_state, set at program
4452  * initialization), the arguments can be found on the stack:
4453  *
4454  *  +8   struct link_map *m
4455  *  +4   struct r_debug  *rd
4456  *  +0   RetAddr
4457  */
4458 void
4459 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4460 {
4461     /*
4462      * The following is a hack to force the compiler to emit calls to
4463      * this function, even when optimizing.  If the function is empty,
4464      * the compiler is not obliged to emit any code for calls to it,
4465      * even when marked __noinline.  However, gdb depends on those
4466      * calls being made.
4467      */
4468     __compiler_membar();
4469 }
4470 
4471 /*
4472  * A function called after init routines have completed. This can be used to
4473  * break before a program's entry routine is called, and can be used when
4474  * main is not available in the symbol table.
4475  */
4476 void
4477 _r_debug_postinit(struct link_map *m __unused)
4478 {
4479 
4480 	/* See r_debug_state(). */
4481 	__compiler_membar();
4482 }
4483 
4484 static void
4485 release_object(Obj_Entry *obj)
4486 {
4487 
4488 	if (obj->holdcount > 0) {
4489 		obj->unholdfree = true;
4490 		return;
4491 	}
4492 	munmap(obj->mapbase, obj->mapsize);
4493 	linkmap_delete(obj);
4494 	obj_free(obj);
4495 }
4496 
4497 /*
4498  * Get address of the pointer variable in the main program.
4499  * Prefer non-weak symbol over the weak one.
4500  */
4501 static const void **
4502 get_program_var_addr(const char *name, RtldLockState *lockstate)
4503 {
4504     SymLook req;
4505     DoneList donelist;
4506 
4507     symlook_init(&req, name);
4508     req.lockstate = lockstate;
4509     donelist_init(&donelist);
4510     if (symlook_global(&req, &donelist) != 0)
4511 	return (NULL);
4512     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4513 	return ((const void **)make_function_pointer(req.sym_out,
4514 	  req.defobj_out));
4515     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4516 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4517     else
4518 	return ((const void **)(req.defobj_out->relocbase +
4519 	  req.sym_out->st_value));
4520 }
4521 
4522 /*
4523  * Set a pointer variable in the main program to the given value.  This
4524  * is used to set key variables such as "environ" before any of the
4525  * init functions are called.
4526  */
4527 static void
4528 set_program_var(const char *name, const void *value)
4529 {
4530     const void **addr;
4531 
4532     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4533 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4534 	*addr = value;
4535     }
4536 }
4537 
4538 /*
4539  * Search the global objects, including dependencies and main object,
4540  * for the given symbol.
4541  */
4542 static int
4543 symlook_global(SymLook *req, DoneList *donelist)
4544 {
4545     SymLook req1;
4546     const Objlist_Entry *elm;
4547     int res;
4548 
4549     symlook_init_from_req(&req1, req);
4550 
4551     /* Search all objects loaded at program start up. */
4552     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4553       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4554 	res = symlook_list(&req1, &list_main, donelist);
4555 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4556 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4557 	    req->sym_out = req1.sym_out;
4558 	    req->defobj_out = req1.defobj_out;
4559 	    assert(req->defobj_out != NULL);
4560 	}
4561     }
4562 
4563     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4564     STAILQ_FOREACH(elm, &list_global, link) {
4565 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4566           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4567 	    break;
4568 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4569 	if (res == 0 && (req->defobj_out == NULL ||
4570 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4571 	    req->sym_out = req1.sym_out;
4572 	    req->defobj_out = req1.defobj_out;
4573 	    assert(req->defobj_out != NULL);
4574 	}
4575     }
4576 
4577     return (req->sym_out != NULL ? 0 : ESRCH);
4578 }
4579 
4580 /*
4581  * Given a symbol name in a referencing object, find the corresponding
4582  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4583  * no definition was found.  Returns a pointer to the Obj_Entry of the
4584  * defining object via the reference parameter DEFOBJ_OUT.
4585  */
4586 static int
4587 symlook_default(SymLook *req, const Obj_Entry *refobj)
4588 {
4589     DoneList donelist;
4590     const Objlist_Entry *elm;
4591     SymLook req1;
4592     int res;
4593 
4594     donelist_init(&donelist);
4595     symlook_init_from_req(&req1, req);
4596 
4597     /*
4598      * Look first in the referencing object if linked symbolically,
4599      * and similarly handle protected symbols.
4600      */
4601     res = symlook_obj(&req1, refobj);
4602     if (res == 0 && (refobj->symbolic ||
4603       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4604 	req->sym_out = req1.sym_out;
4605 	req->defobj_out = req1.defobj_out;
4606 	assert(req->defobj_out != NULL);
4607     }
4608     if (refobj->symbolic || req->defobj_out != NULL)
4609 	donelist_check(&donelist, refobj);
4610 
4611     if (!refobj->deepbind)
4612         symlook_global(req, &donelist);
4613 
4614     /* Search all dlopened DAGs containing the referencing object. */
4615     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4616 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4617           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4618 	    break;
4619 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4620 	if (res == 0 && (req->sym_out == NULL ||
4621 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4622 	    req->sym_out = req1.sym_out;
4623 	    req->defobj_out = req1.defobj_out;
4624 	    assert(req->defobj_out != NULL);
4625 	}
4626     }
4627 
4628     if (refobj->deepbind)
4629         symlook_global(req, &donelist);
4630 
4631     /*
4632      * Search the dynamic linker itself, and possibly resolve the
4633      * symbol from there.  This is how the application links to
4634      * dynamic linker services such as dlopen.
4635      */
4636     if (req->sym_out == NULL ||
4637       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4638 	res = symlook_obj(&req1, &obj_rtld);
4639 	if (res == 0) {
4640 	    req->sym_out = req1.sym_out;
4641 	    req->defobj_out = req1.defobj_out;
4642 	    assert(req->defobj_out != NULL);
4643 	}
4644     }
4645 
4646     return (req->sym_out != NULL ? 0 : ESRCH);
4647 }
4648 
4649 static int
4650 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4651 {
4652     const Elf_Sym *def;
4653     const Obj_Entry *defobj;
4654     const Objlist_Entry *elm;
4655     SymLook req1;
4656     int res;
4657 
4658     def = NULL;
4659     defobj = NULL;
4660     STAILQ_FOREACH(elm, objlist, link) {
4661 	if (donelist_check(dlp, elm->obj))
4662 	    continue;
4663 	symlook_init_from_req(&req1, req);
4664 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4665 	    if (def == NULL || (ld_dynamic_weak &&
4666               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4667 		def = req1.sym_out;
4668 		defobj = req1.defobj_out;
4669 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4670 		    break;
4671 	    }
4672 	}
4673     }
4674     if (def != NULL) {
4675 	req->sym_out = def;
4676 	req->defobj_out = defobj;
4677 	return (0);
4678     }
4679     return (ESRCH);
4680 }
4681 
4682 /*
4683  * Search the chain of DAGS cointed to by the given Needed_Entry
4684  * for a symbol of the given name.  Each DAG is scanned completely
4685  * before advancing to the next one.  Returns a pointer to the symbol,
4686  * or NULL if no definition was found.
4687  */
4688 static int
4689 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4690 {
4691     const Elf_Sym *def;
4692     const Needed_Entry *n;
4693     const Obj_Entry *defobj;
4694     SymLook req1;
4695     int res;
4696 
4697     def = NULL;
4698     defobj = NULL;
4699     symlook_init_from_req(&req1, req);
4700     for (n = needed; n != NULL; n = n->next) {
4701 	if (n->obj == NULL ||
4702 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4703 	    continue;
4704 	if (def == NULL || (ld_dynamic_weak &&
4705           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4706 	    def = req1.sym_out;
4707 	    defobj = req1.defobj_out;
4708 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4709 		break;
4710 	}
4711     }
4712     if (def != NULL) {
4713 	req->sym_out = def;
4714 	req->defobj_out = defobj;
4715 	return (0);
4716     }
4717     return (ESRCH);
4718 }
4719 
4720 static int
4721 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4722     Needed_Entry *needed)
4723 {
4724 	DoneList donelist;
4725 	int flags;
4726 
4727 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4728 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4729 	donelist_init(&donelist);
4730 	symlook_init_from_req(req1, req);
4731 	return (symlook_needed(req1, needed, &donelist));
4732 }
4733 
4734 /*
4735  * Search the symbol table of a single shared object for a symbol of
4736  * the given name and version, if requested.  Returns a pointer to the
4737  * symbol, or NULL if no definition was found.  If the object is
4738  * filter, return filtered symbol from filtee.
4739  *
4740  * The symbol's hash value is passed in for efficiency reasons; that
4741  * eliminates many recomputations of the hash value.
4742  */
4743 int
4744 symlook_obj(SymLook *req, const Obj_Entry *obj)
4745 {
4746     SymLook req1;
4747     int res, mres;
4748 
4749     /*
4750      * If there is at least one valid hash at this point, we prefer to
4751      * use the faster GNU version if available.
4752      */
4753     if (obj->valid_hash_gnu)
4754 	mres = symlook_obj1_gnu(req, obj);
4755     else if (obj->valid_hash_sysv)
4756 	mres = symlook_obj1_sysv(req, obj);
4757     else
4758 	return (EINVAL);
4759 
4760     if (mres == 0) {
4761 	if (obj->needed_filtees != NULL) {
4762 	    res = symlook_obj_load_filtees(req, &req1, obj,
4763 		obj->needed_filtees);
4764 	    if (res == 0) {
4765 		req->sym_out = req1.sym_out;
4766 		req->defobj_out = req1.defobj_out;
4767 	    }
4768 	    return (res);
4769 	}
4770 	if (obj->needed_aux_filtees != NULL) {
4771 	    res = symlook_obj_load_filtees(req, &req1, obj,
4772 		obj->needed_aux_filtees);
4773 	    if (res == 0) {
4774 		req->sym_out = req1.sym_out;
4775 		req->defobj_out = req1.defobj_out;
4776 		return (res);
4777 	    }
4778 	}
4779     }
4780     return (mres);
4781 }
4782 
4783 /* Symbol match routine common to both hash functions */
4784 static bool
4785 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4786     const unsigned long symnum)
4787 {
4788 	Elf_Versym verndx;
4789 	const Elf_Sym *symp;
4790 	const char *strp;
4791 
4792 	symp = obj->symtab + symnum;
4793 	strp = obj->strtab + symp->st_name;
4794 
4795 	switch (ELF_ST_TYPE(symp->st_info)) {
4796 	case STT_FUNC:
4797 	case STT_NOTYPE:
4798 	case STT_OBJECT:
4799 	case STT_COMMON:
4800 	case STT_GNU_IFUNC:
4801 		if (symp->st_value == 0)
4802 			return (false);
4803 		/* fallthrough */
4804 	case STT_TLS:
4805 		if (symp->st_shndx != SHN_UNDEF)
4806 			break;
4807 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4808 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4809 			break;
4810 		/* fallthrough */
4811 	default:
4812 		return (false);
4813 	}
4814 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4815 		return (false);
4816 
4817 	if (req->ventry == NULL) {
4818 		if (obj->versyms != NULL) {
4819 			verndx = VER_NDX(obj->versyms[symnum]);
4820 			if (verndx > obj->vernum) {
4821 				_rtld_error(
4822 				    "%s: symbol %s references wrong version %d",
4823 				    obj->path, obj->strtab + symnum, verndx);
4824 				return (false);
4825 			}
4826 			/*
4827 			 * If we are not called from dlsym (i.e. this
4828 			 * is a normal relocation from unversioned
4829 			 * binary), accept the symbol immediately if
4830 			 * it happens to have first version after this
4831 			 * shared object became versioned.  Otherwise,
4832 			 * if symbol is versioned and not hidden,
4833 			 * remember it. If it is the only symbol with
4834 			 * this name exported by the shared object, it
4835 			 * will be returned as a match by the calling
4836 			 * function. If symbol is global (verndx < 2)
4837 			 * accept it unconditionally.
4838 			 */
4839 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4840 			    verndx == VER_NDX_GIVEN) {
4841 				result->sym_out = symp;
4842 				return (true);
4843 			}
4844 			else if (verndx >= VER_NDX_GIVEN) {
4845 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4846 				    == 0) {
4847 					if (result->vsymp == NULL)
4848 						result->vsymp = symp;
4849 					result->vcount++;
4850 				}
4851 				return (false);
4852 			}
4853 		}
4854 		result->sym_out = symp;
4855 		return (true);
4856 	}
4857 	if (obj->versyms == NULL) {
4858 		if (object_match_name(obj, req->ventry->name)) {
4859 			_rtld_error("%s: object %s should provide version %s "
4860 			    "for symbol %s", obj_rtld.path, obj->path,
4861 			    req->ventry->name, obj->strtab + symnum);
4862 			return (false);
4863 		}
4864 	} else {
4865 		verndx = VER_NDX(obj->versyms[symnum]);
4866 		if (verndx > obj->vernum) {
4867 			_rtld_error("%s: symbol %s references wrong version %d",
4868 			    obj->path, obj->strtab + symnum, verndx);
4869 			return (false);
4870 		}
4871 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4872 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4873 			/*
4874 			 * Version does not match. Look if this is a
4875 			 * global symbol and if it is not hidden. If
4876 			 * global symbol (verndx < 2) is available,
4877 			 * use it. Do not return symbol if we are
4878 			 * called by dlvsym, because dlvsym looks for
4879 			 * a specific version and default one is not
4880 			 * what dlvsym wants.
4881 			 */
4882 			if ((req->flags & SYMLOOK_DLSYM) ||
4883 			    (verndx >= VER_NDX_GIVEN) ||
4884 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4885 				return (false);
4886 		}
4887 	}
4888 	result->sym_out = symp;
4889 	return (true);
4890 }
4891 
4892 /*
4893  * Search for symbol using SysV hash function.
4894  * obj->buckets is known not to be NULL at this point; the test for this was
4895  * performed with the obj->valid_hash_sysv assignment.
4896  */
4897 static int
4898 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4899 {
4900 	unsigned long symnum;
4901 	Sym_Match_Result matchres;
4902 
4903 	matchres.sym_out = NULL;
4904 	matchres.vsymp = NULL;
4905 	matchres.vcount = 0;
4906 
4907 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4908 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4909 		if (symnum >= obj->nchains)
4910 			return (ESRCH);	/* Bad object */
4911 
4912 		if (matched_symbol(req, obj, &matchres, symnum)) {
4913 			req->sym_out = matchres.sym_out;
4914 			req->defobj_out = obj;
4915 			return (0);
4916 		}
4917 	}
4918 	if (matchres.vcount == 1) {
4919 		req->sym_out = matchres.vsymp;
4920 		req->defobj_out = obj;
4921 		return (0);
4922 	}
4923 	return (ESRCH);
4924 }
4925 
4926 /* Search for symbol using GNU hash function */
4927 static int
4928 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4929 {
4930 	Elf_Addr bloom_word;
4931 	const Elf32_Word *hashval;
4932 	Elf32_Word bucket;
4933 	Sym_Match_Result matchres;
4934 	unsigned int h1, h2;
4935 	unsigned long symnum;
4936 
4937 	matchres.sym_out = NULL;
4938 	matchres.vsymp = NULL;
4939 	matchres.vcount = 0;
4940 
4941 	/* Pick right bitmask word from Bloom filter array */
4942 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4943 	    obj->maskwords_bm_gnu];
4944 
4945 	/* Calculate modulus word size of gnu hash and its derivative */
4946 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4947 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4948 
4949 	/* Filter out the "definitely not in set" queries */
4950 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4951 		return (ESRCH);
4952 
4953 	/* Locate hash chain and corresponding value element*/
4954 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4955 	if (bucket == 0)
4956 		return (ESRCH);
4957 	hashval = &obj->chain_zero_gnu[bucket];
4958 	do {
4959 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4960 			symnum = hashval - obj->chain_zero_gnu;
4961 			if (matched_symbol(req, obj, &matchres, symnum)) {
4962 				req->sym_out = matchres.sym_out;
4963 				req->defobj_out = obj;
4964 				return (0);
4965 			}
4966 		}
4967 	} while ((*hashval++ & 1) == 0);
4968 	if (matchres.vcount == 1) {
4969 		req->sym_out = matchres.vsymp;
4970 		req->defobj_out = obj;
4971 		return (0);
4972 	}
4973 	return (ESRCH);
4974 }
4975 
4976 static void
4977 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4978 {
4979 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4980 	if (*main_local == NULL)
4981 		*main_local = "";
4982 
4983 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4984 	if (*fmt1 == NULL)
4985 		*fmt1 = "\t%o => %p (%x)\n";
4986 
4987 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4988 	if (*fmt2 == NULL)
4989 		*fmt2 = "\t%o (%x)\n";
4990 }
4991 
4992 static void
4993 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4994     const char *main_local, const char *fmt1, const char *fmt2)
4995 {
4996 	const char *fmt;
4997 	int c;
4998 
4999 	if (fmt1 == NULL)
5000 		fmt = fmt2;
5001 	else
5002 		/* XXX bogus */
5003 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5004 
5005 	while ((c = *fmt++) != '\0') {
5006 		switch (c) {
5007 		default:
5008 			rtld_putchar(c);
5009 			continue;
5010 		case '\\':
5011 			switch (c = *fmt) {
5012 			case '\0':
5013 				continue;
5014 			case 'n':
5015 				rtld_putchar('\n');
5016 				break;
5017 			case 't':
5018 				rtld_putchar('\t');
5019 				break;
5020 			}
5021 			break;
5022 		case '%':
5023 			switch (c = *fmt) {
5024 			case '\0':
5025 				continue;
5026 			case '%':
5027 			default:
5028 				rtld_putchar(c);
5029 				break;
5030 			case 'A':
5031 				rtld_putstr(main_local);
5032 				break;
5033 			case 'a':
5034 				rtld_putstr(obj_main->path);
5035 				break;
5036 			case 'o':
5037 				rtld_putstr(name);
5038 				break;
5039 			case 'p':
5040 				rtld_putstr(path);
5041 				break;
5042 			case 'x':
5043 				rtld_printf("%p", obj != NULL ?
5044 				    obj->mapbase : NULL);
5045 				break;
5046 			}
5047 			break;
5048 		}
5049 		++fmt;
5050 	}
5051 }
5052 
5053 static void
5054 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5055 {
5056 	const char *fmt1, *fmt2, *main_local;
5057 	const char *name, *path;
5058 	bool first_spurious, list_containers;
5059 
5060 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5061 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5062 
5063 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5064 		Needed_Entry *needed;
5065 
5066 		if (obj->marker)
5067 			continue;
5068 		if (list_containers && obj->needed != NULL)
5069 			rtld_printf("%s:\n", obj->path);
5070 		for (needed = obj->needed; needed; needed = needed->next) {
5071 			if (needed->obj != NULL) {
5072 				if (needed->obj->traced && !list_containers)
5073 					continue;
5074 				needed->obj->traced = true;
5075 				path = needed->obj->path;
5076 			} else
5077 				path = "not found";
5078 
5079 			name = obj->strtab + needed->name;
5080 			trace_print_obj(needed->obj, name, path, main_local,
5081 			    fmt1, fmt2);
5082 		}
5083 	}
5084 
5085 	if (show_preload) {
5086 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5087 			fmt2 = "\t%p (%x)\n";
5088 		first_spurious = true;
5089 
5090 		TAILQ_FOREACH(obj, &obj_list, next) {
5091 			if (obj->marker || obj == obj_main || obj->traced)
5092 				continue;
5093 
5094 			if (list_containers && first_spurious) {
5095 				rtld_printf("[preloaded]\n");
5096 				first_spurious = false;
5097 			}
5098 
5099 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5100 			name = fname == NULL ? "<unknown>" : fname->name;
5101 			trace_print_obj(obj, name, obj->path, main_local,
5102 			    NULL, fmt2);
5103 		}
5104 	}
5105 }
5106 
5107 /*
5108  * Unload a dlopened object and its dependencies from memory and from
5109  * our data structures.  It is assumed that the DAG rooted in the
5110  * object has already been unreferenced, and that the object has a
5111  * reference count of 0.
5112  */
5113 static void
5114 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5115 {
5116 	Obj_Entry marker, *obj, *next;
5117 
5118 	assert(root->refcount == 0);
5119 
5120 	/*
5121 	 * Pass over the DAG removing unreferenced objects from
5122 	 * appropriate lists.
5123 	 */
5124 	unlink_object(root);
5125 
5126 	/* Unmap all objects that are no longer referenced. */
5127 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5128 		next = TAILQ_NEXT(obj, next);
5129 		if (obj->marker || obj->refcount != 0)
5130 			continue;
5131 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5132 		    obj->mapsize, 0, obj->path);
5133 		dbg("unloading \"%s\"", obj->path);
5134 		/*
5135 		 * Unlink the object now to prevent new references from
5136 		 * being acquired while the bind lock is dropped in
5137 		 * recursive dlclose() invocations.
5138 		 */
5139 		TAILQ_REMOVE(&obj_list, obj, next);
5140 		obj_count--;
5141 
5142 		if (obj->filtees_loaded) {
5143 			if (next != NULL) {
5144 				init_marker(&marker);
5145 				TAILQ_INSERT_BEFORE(next, &marker, next);
5146 				unload_filtees(obj, lockstate);
5147 				next = TAILQ_NEXT(&marker, next);
5148 				TAILQ_REMOVE(&obj_list, &marker, next);
5149 			} else
5150 				unload_filtees(obj, lockstate);
5151 		}
5152 		release_object(obj);
5153 	}
5154 }
5155 
5156 static void
5157 unlink_object(Obj_Entry *root)
5158 {
5159     Objlist_Entry *elm;
5160 
5161     if (root->refcount == 0) {
5162 	/* Remove the object from the RTLD_GLOBAL list. */
5163 	objlist_remove(&list_global, root);
5164 
5165     	/* Remove the object from all objects' DAG lists. */
5166     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5167 	    objlist_remove(&elm->obj->dldags, root);
5168 	    if (elm->obj != root)
5169 		unlink_object(elm->obj);
5170 	}
5171     }
5172 }
5173 
5174 static void
5175 ref_dag(Obj_Entry *root)
5176 {
5177     Objlist_Entry *elm;
5178 
5179     assert(root->dag_inited);
5180     STAILQ_FOREACH(elm, &root->dagmembers, link)
5181 	elm->obj->refcount++;
5182 }
5183 
5184 static void
5185 unref_dag(Obj_Entry *root)
5186 {
5187     Objlist_Entry *elm;
5188 
5189     assert(root->dag_inited);
5190     STAILQ_FOREACH(elm, &root->dagmembers, link)
5191 	elm->obj->refcount--;
5192 }
5193 
5194 /*
5195  * Common code for MD __tls_get_addr().
5196  */
5197 static void *
5198 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5199 {
5200 	Elf_Addr *newdtv, *dtv;
5201 	RtldLockState lockstate;
5202 	int to_copy;
5203 
5204 	dtv = *dtvp;
5205 	/* Check dtv generation in case new modules have arrived */
5206 	if (dtv[0] != tls_dtv_generation) {
5207 		if (!locked)
5208 			wlock_acquire(rtld_bind_lock, &lockstate);
5209 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5210 		to_copy = dtv[1];
5211 		if (to_copy > tls_max_index)
5212 			to_copy = tls_max_index;
5213 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5214 		newdtv[0] = tls_dtv_generation;
5215 		newdtv[1] = tls_max_index;
5216 		free(dtv);
5217 		if (!locked)
5218 			lock_release(rtld_bind_lock, &lockstate);
5219 		dtv = *dtvp = newdtv;
5220 	}
5221 
5222 	/* Dynamically allocate module TLS if necessary */
5223 	if (dtv[index + 1] == 0) {
5224 		/* Signal safe, wlock will block out signals. */
5225 		if (!locked)
5226 			wlock_acquire(rtld_bind_lock, &lockstate);
5227 		if (!dtv[index + 1])
5228 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5229 		if (!locked)
5230 			lock_release(rtld_bind_lock, &lockstate);
5231 	}
5232 	return ((void *)(dtv[index + 1] + offset));
5233 }
5234 
5235 void *
5236 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5237 {
5238 	uintptr_t *dtv;
5239 
5240 	dtv = *dtvp;
5241 	/* Check dtv generation in case new modules have arrived */
5242 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5243 	    dtv[index + 1] != 0))
5244 		return ((void *)(dtv[index + 1] + offset));
5245 	return (tls_get_addr_slow(dtvp, index, offset, false));
5246 }
5247 
5248 #ifdef TLS_VARIANT_I
5249 
5250 /*
5251  * Return pointer to allocated TLS block
5252  */
5253 static void *
5254 get_tls_block_ptr(void *tcb, size_t tcbsize)
5255 {
5256     size_t extra_size, post_size, pre_size, tls_block_size;
5257     size_t tls_init_align;
5258 
5259     tls_init_align = MAX(obj_main->tlsalign, 1);
5260 
5261     /* Compute fragments sizes. */
5262     extra_size = tcbsize - TLS_TCB_SIZE;
5263     post_size = calculate_tls_post_size(tls_init_align);
5264     tls_block_size = tcbsize + post_size;
5265     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5266 
5267     return ((char *)tcb - pre_size - extra_size);
5268 }
5269 
5270 /*
5271  * Allocate Static TLS using the Variant I method.
5272  *
5273  * For details on the layout, see lib/libc/gen/tls.c.
5274  *
5275  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5276  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5277  *     offsets, whereas libc's tls_static_space is just the executable's static
5278  *     TLS segment.
5279  */
5280 void *
5281 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5282 {
5283     Obj_Entry *obj;
5284     char *tls_block;
5285     Elf_Addr *dtv, **tcb;
5286     Elf_Addr addr;
5287     Elf_Addr i;
5288     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5289     size_t tls_init_align, tls_init_offset;
5290 
5291     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5292 	return (oldtcb);
5293 
5294     assert(tcbsize >= TLS_TCB_SIZE);
5295     maxalign = MAX(tcbalign, tls_static_max_align);
5296     tls_init_align = MAX(obj_main->tlsalign, 1);
5297 
5298     /* Compute fragmets sizes. */
5299     extra_size = tcbsize - TLS_TCB_SIZE;
5300     post_size = calculate_tls_post_size(tls_init_align);
5301     tls_block_size = tcbsize + post_size;
5302     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5303     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5304 
5305     /* Allocate whole TLS block */
5306     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5307     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5308 
5309     if (oldtcb != NULL) {
5310 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5311 	    tls_static_space);
5312 	free(get_tls_block_ptr(oldtcb, tcbsize));
5313 
5314 	/* Adjust the DTV. */
5315 	dtv = tcb[0];
5316 	for (i = 0; i < dtv[1]; i++) {
5317 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5318 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5319 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5320 	    }
5321 	}
5322     } else {
5323 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5324 	tcb[0] = dtv;
5325 	dtv[0] = tls_dtv_generation;
5326 	dtv[1] = tls_max_index;
5327 
5328 	for (obj = globallist_curr(objs); obj != NULL;
5329 	  obj = globallist_next(obj)) {
5330 	    if (obj->tlsoffset == 0)
5331 		continue;
5332 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5333 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5334 	    if (tls_init_offset > 0)
5335 		memset((void *)addr, 0, tls_init_offset);
5336 	    if (obj->tlsinitsize > 0) {
5337 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5338 		    obj->tlsinitsize);
5339 	    }
5340 	    if (obj->tlssize > obj->tlsinitsize) {
5341 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5342 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5343 	    }
5344 	    dtv[obj->tlsindex + 1] = addr;
5345 	}
5346     }
5347 
5348     return (tcb);
5349 }
5350 
5351 void
5352 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5353 {
5354     Elf_Addr *dtv;
5355     Elf_Addr tlsstart, tlsend;
5356     size_t post_size;
5357     size_t dtvsize, i, tls_init_align __unused;
5358 
5359     assert(tcbsize >= TLS_TCB_SIZE);
5360     tls_init_align = MAX(obj_main->tlsalign, 1);
5361 
5362     /* Compute fragments sizes. */
5363     post_size = calculate_tls_post_size(tls_init_align);
5364 
5365     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5366     tlsend = (Elf_Addr)tcb + tls_static_space;
5367 
5368     dtv = *(Elf_Addr **)tcb;
5369     dtvsize = dtv[1];
5370     for (i = 0; i < dtvsize; i++) {
5371 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5372 	    free((void*)dtv[i+2]);
5373 	}
5374     }
5375     free(dtv);
5376     free(get_tls_block_ptr(tcb, tcbsize));
5377 }
5378 
5379 #endif	/* TLS_VARIANT_I */
5380 
5381 #ifdef TLS_VARIANT_II
5382 
5383 /*
5384  * Allocate Static TLS using the Variant II method.
5385  */
5386 void *
5387 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5388 {
5389     Obj_Entry *obj;
5390     size_t size, ralign;
5391     char *tls;
5392     Elf_Addr *dtv, *olddtv;
5393     Elf_Addr segbase, oldsegbase, addr;
5394     size_t i;
5395 
5396     ralign = tcbalign;
5397     if (tls_static_max_align > ralign)
5398 	    ralign = tls_static_max_align;
5399     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5400 
5401     assert(tcbsize >= 2*sizeof(Elf_Addr));
5402     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5403     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5404 
5405     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5406     ((Elf_Addr *)segbase)[0] = segbase;
5407     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5408 
5409     dtv[0] = tls_dtv_generation;
5410     dtv[1] = tls_max_index;
5411 
5412     if (oldtls) {
5413 	/*
5414 	 * Copy the static TLS block over whole.
5415 	 */
5416 	oldsegbase = (Elf_Addr) oldtls;
5417 	memcpy((void *)(segbase - tls_static_space),
5418 	   (const void *)(oldsegbase - tls_static_space),
5419 	   tls_static_space);
5420 
5421 	/*
5422 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5423 	 * move them over.
5424 	 */
5425 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5426 	for (i = 0; i < olddtv[1]; i++) {
5427 	    if (olddtv[i + 2] < oldsegbase - size ||
5428 		olddtv[i + 2] > oldsegbase) {
5429 		    dtv[i + 2] = olddtv[i + 2];
5430 		    olddtv[i + 2] = 0;
5431 	    }
5432 	}
5433 
5434 	/*
5435 	 * We assume that this block was the one we created with
5436 	 * allocate_initial_tls().
5437 	 */
5438 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5439     } else {
5440 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5441 		if (obj->marker || obj->tlsoffset == 0)
5442 			continue;
5443 		addr = segbase - obj->tlsoffset;
5444 		memset((void *)(addr + obj->tlsinitsize),
5445 		    0, obj->tlssize - obj->tlsinitsize);
5446 		if (obj->tlsinit) {
5447 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5448 			obj->static_tls_copied = true;
5449 		}
5450 		dtv[obj->tlsindex + 1] = addr;
5451 	}
5452     }
5453 
5454     return ((void *)segbase);
5455 }
5456 
5457 void
5458 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5459 {
5460     Elf_Addr* dtv;
5461     size_t size, ralign;
5462     int dtvsize, i;
5463     Elf_Addr tlsstart, tlsend;
5464 
5465     /*
5466      * Figure out the size of the initial TLS block so that we can
5467      * find stuff which ___tls_get_addr() allocated dynamically.
5468      */
5469     ralign = tcbalign;
5470     if (tls_static_max_align > ralign)
5471 	    ralign = tls_static_max_align;
5472     size = roundup(tls_static_space, ralign);
5473 
5474     dtv = ((Elf_Addr **)tls)[1];
5475     dtvsize = dtv[1];
5476     tlsend = (Elf_Addr)tls;
5477     tlsstart = tlsend - size;
5478     for (i = 0; i < dtvsize; i++) {
5479 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5480 	        dtv[i + 2] > tlsend)) {
5481 		    free((void *)dtv[i + 2]);
5482 	}
5483     }
5484 
5485     free((void *)tlsstart);
5486     free((void *)dtv);
5487 }
5488 
5489 #endif	/* TLS_VARIANT_II */
5490 
5491 /*
5492  * Allocate TLS block for module with given index.
5493  */
5494 void *
5495 allocate_module_tls(int index)
5496 {
5497 	Obj_Entry *obj;
5498 	char *p;
5499 
5500 	TAILQ_FOREACH(obj, &obj_list, next) {
5501 		if (obj->marker)
5502 			continue;
5503 		if (obj->tlsindex == index)
5504 			break;
5505 	}
5506 	if (obj == NULL) {
5507 		_rtld_error("Can't find module with TLS index %d", index);
5508 		rtld_die();
5509 	}
5510 
5511 	if (obj->tls_static) {
5512 #ifdef TLS_VARIANT_I
5513 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5514 #else
5515 		p = (char *)_tcb_get() - obj->tlsoffset;
5516 #endif
5517 		return (p);
5518 	}
5519 
5520 	obj->tls_dynamic = true;
5521 
5522 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5523 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5524 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5525 	return (p);
5526 }
5527 
5528 bool
5529 allocate_tls_offset(Obj_Entry *obj)
5530 {
5531     size_t off;
5532 
5533     if (obj->tls_dynamic)
5534 	return (false);
5535 
5536     if (obj->tls_static)
5537 	return (true);
5538 
5539     if (obj->tlssize == 0) {
5540 	obj->tls_static = true;
5541 	return (true);
5542     }
5543 
5544     if (tls_last_offset == 0)
5545 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5546 	  obj->tlspoffset);
5547     else
5548 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5549 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5550 
5551     obj->tlsoffset = off;
5552 #ifdef TLS_VARIANT_I
5553     off += obj->tlssize;
5554 #endif
5555 
5556     /*
5557      * If we have already fixed the size of the static TLS block, we
5558      * must stay within that size. When allocating the static TLS, we
5559      * leave a small amount of space spare to be used for dynamically
5560      * loading modules which use static TLS.
5561      */
5562     if (tls_static_space != 0) {
5563 	if (off > tls_static_space)
5564 	    return (false);
5565     } else if (obj->tlsalign > tls_static_max_align) {
5566 	    tls_static_max_align = obj->tlsalign;
5567     }
5568 
5569     tls_last_offset = off;
5570     tls_last_size = obj->tlssize;
5571     obj->tls_static = true;
5572 
5573     return (true);
5574 }
5575 
5576 void
5577 free_tls_offset(Obj_Entry *obj)
5578 {
5579 
5580     /*
5581      * If we were the last thing to allocate out of the static TLS
5582      * block, we give our space back to the 'allocator'. This is a
5583      * simplistic workaround to allow libGL.so.1 to be loaded and
5584      * unloaded multiple times.
5585      */
5586     size_t off = obj->tlsoffset;
5587 #ifdef TLS_VARIANT_I
5588     off += obj->tlssize;
5589 #endif
5590     if (off == tls_last_offset) {
5591 	tls_last_offset -= obj->tlssize;
5592 	tls_last_size = 0;
5593     }
5594 }
5595 
5596 void *
5597 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5598 {
5599     void *ret;
5600     RtldLockState lockstate;
5601 
5602     wlock_acquire(rtld_bind_lock, &lockstate);
5603     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5604       tcbsize, tcbalign);
5605     lock_release(rtld_bind_lock, &lockstate);
5606     return (ret);
5607 }
5608 
5609 void
5610 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5611 {
5612     RtldLockState lockstate;
5613 
5614     wlock_acquire(rtld_bind_lock, &lockstate);
5615     free_tls(tcb, tcbsize, tcbalign);
5616     lock_release(rtld_bind_lock, &lockstate);
5617 }
5618 
5619 static void
5620 object_add_name(Obj_Entry *obj, const char *name)
5621 {
5622     Name_Entry *entry;
5623     size_t len;
5624 
5625     len = strlen(name);
5626     entry = malloc(sizeof(Name_Entry) + len);
5627 
5628     if (entry != NULL) {
5629 	strcpy(entry->name, name);
5630 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5631     }
5632 }
5633 
5634 static int
5635 object_match_name(const Obj_Entry *obj, const char *name)
5636 {
5637     Name_Entry *entry;
5638 
5639     STAILQ_FOREACH(entry, &obj->names, link) {
5640 	if (strcmp(name, entry->name) == 0)
5641 	    return (1);
5642     }
5643     return (0);
5644 }
5645 
5646 static Obj_Entry *
5647 locate_dependency(const Obj_Entry *obj, const char *name)
5648 {
5649     const Objlist_Entry *entry;
5650     const Needed_Entry *needed;
5651 
5652     STAILQ_FOREACH(entry, &list_main, link) {
5653 	if (object_match_name(entry->obj, name))
5654 	    return (entry->obj);
5655     }
5656 
5657     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5658 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5659 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5660 	    /*
5661 	     * If there is DT_NEEDED for the name we are looking for,
5662 	     * we are all set.  Note that object might not be found if
5663 	     * dependency was not loaded yet, so the function can
5664 	     * return NULL here.  This is expected and handled
5665 	     * properly by the caller.
5666 	     */
5667 	    return (needed->obj);
5668 	}
5669     }
5670     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5671 	obj->path, name);
5672     rtld_die();
5673 }
5674 
5675 static int
5676 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5677     const Elf_Vernaux *vna)
5678 {
5679     const Elf_Verdef *vd;
5680     const char *vername;
5681 
5682     vername = refobj->strtab + vna->vna_name;
5683     vd = depobj->verdef;
5684     if (vd == NULL) {
5685 	_rtld_error("%s: version %s required by %s not defined",
5686 	    depobj->path, vername, refobj->path);
5687 	return (-1);
5688     }
5689     for (;;) {
5690 	if (vd->vd_version != VER_DEF_CURRENT) {
5691 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5692 		depobj->path, vd->vd_version);
5693 	    return (-1);
5694 	}
5695 	if (vna->vna_hash == vd->vd_hash) {
5696 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5697 		((const char *)vd + vd->vd_aux);
5698 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5699 		return (0);
5700 	}
5701 	if (vd->vd_next == 0)
5702 	    break;
5703 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5704     }
5705     if (vna->vna_flags & VER_FLG_WEAK)
5706 	return (0);
5707     _rtld_error("%s: version %s required by %s not found",
5708 	depobj->path, vername, refobj->path);
5709     return (-1);
5710 }
5711 
5712 static int
5713 rtld_verify_object_versions(Obj_Entry *obj)
5714 {
5715     const Elf_Verneed *vn;
5716     const Elf_Verdef  *vd;
5717     const Elf_Verdaux *vda;
5718     const Elf_Vernaux *vna;
5719     const Obj_Entry *depobj;
5720     int maxvernum, vernum;
5721 
5722     if (obj->ver_checked)
5723 	return (0);
5724     obj->ver_checked = true;
5725 
5726     maxvernum = 0;
5727     /*
5728      * Walk over defined and required version records and figure out
5729      * max index used by any of them. Do very basic sanity checking
5730      * while there.
5731      */
5732     vn = obj->verneed;
5733     while (vn != NULL) {
5734 	if (vn->vn_version != VER_NEED_CURRENT) {
5735 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5736 		obj->path, vn->vn_version);
5737 	    return (-1);
5738 	}
5739 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5740 	for (;;) {
5741 	    vernum = VER_NEED_IDX(vna->vna_other);
5742 	    if (vernum > maxvernum)
5743 		maxvernum = vernum;
5744 	    if (vna->vna_next == 0)
5745 		 break;
5746 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5747 	}
5748 	if (vn->vn_next == 0)
5749 	    break;
5750 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5751     }
5752 
5753     vd = obj->verdef;
5754     while (vd != NULL) {
5755 	if (vd->vd_version != VER_DEF_CURRENT) {
5756 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5757 		obj->path, vd->vd_version);
5758 	    return (-1);
5759 	}
5760 	vernum = VER_DEF_IDX(vd->vd_ndx);
5761 	if (vernum > maxvernum)
5762 		maxvernum = vernum;
5763 	if (vd->vd_next == 0)
5764 	    break;
5765 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5766     }
5767 
5768     if (maxvernum == 0)
5769 	return (0);
5770 
5771     /*
5772      * Store version information in array indexable by version index.
5773      * Verify that object version requirements are satisfied along the
5774      * way.
5775      */
5776     obj->vernum = maxvernum + 1;
5777     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5778 
5779     vd = obj->verdef;
5780     while (vd != NULL) {
5781 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5782 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5783 	    assert(vernum <= maxvernum);
5784 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5785 	    obj->vertab[vernum].hash = vd->vd_hash;
5786 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5787 	    obj->vertab[vernum].file = NULL;
5788 	    obj->vertab[vernum].flags = 0;
5789 	}
5790 	if (vd->vd_next == 0)
5791 	    break;
5792 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5793     }
5794 
5795     vn = obj->verneed;
5796     while (vn != NULL) {
5797 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5798 	if (depobj == NULL)
5799 	    return (-1);
5800 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5801 	for (;;) {
5802 	    if (check_object_provided_version(obj, depobj, vna))
5803 		return (-1);
5804 	    vernum = VER_NEED_IDX(vna->vna_other);
5805 	    assert(vernum <= maxvernum);
5806 	    obj->vertab[vernum].hash = vna->vna_hash;
5807 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5808 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5809 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5810 		VER_INFO_HIDDEN : 0;
5811 	    if (vna->vna_next == 0)
5812 		 break;
5813 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5814 	}
5815 	if (vn->vn_next == 0)
5816 	    break;
5817 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5818     }
5819     return (0);
5820 }
5821 
5822 static int
5823 rtld_verify_versions(const Objlist *objlist)
5824 {
5825     Objlist_Entry *entry;
5826     int rc;
5827 
5828     rc = 0;
5829     STAILQ_FOREACH(entry, objlist, link) {
5830 	/*
5831 	 * Skip dummy objects or objects that have their version requirements
5832 	 * already checked.
5833 	 */
5834 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5835 	    continue;
5836 	if (rtld_verify_object_versions(entry->obj) == -1) {
5837 	    rc = -1;
5838 	    if (ld_tracing == NULL)
5839 		break;
5840 	}
5841     }
5842     if (rc == 0 || ld_tracing != NULL)
5843     	rc = rtld_verify_object_versions(&obj_rtld);
5844     return (rc);
5845 }
5846 
5847 const Ver_Entry *
5848 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5849 {
5850     Elf_Versym vernum;
5851 
5852     if (obj->vertab) {
5853 	vernum = VER_NDX(obj->versyms[symnum]);
5854 	if (vernum >= obj->vernum) {
5855 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5856 		obj->path, obj->strtab + symnum, vernum);
5857 	} else if (obj->vertab[vernum].hash != 0) {
5858 	    return (&obj->vertab[vernum]);
5859 	}
5860     }
5861     return (NULL);
5862 }
5863 
5864 int
5865 _rtld_get_stack_prot(void)
5866 {
5867 
5868 	return (stack_prot);
5869 }
5870 
5871 int
5872 _rtld_is_dlopened(void *arg)
5873 {
5874 	Obj_Entry *obj;
5875 	RtldLockState lockstate;
5876 	int res;
5877 
5878 	rlock_acquire(rtld_bind_lock, &lockstate);
5879 	obj = dlcheck(arg);
5880 	if (obj == NULL)
5881 		obj = obj_from_addr(arg);
5882 	if (obj == NULL) {
5883 		_rtld_error("No shared object contains address");
5884 		lock_release(rtld_bind_lock, &lockstate);
5885 		return (-1);
5886 	}
5887 	res = obj->dlopened ? 1 : 0;
5888 	lock_release(rtld_bind_lock, &lockstate);
5889 	return (res);
5890 }
5891 
5892 static int
5893 obj_remap_relro(Obj_Entry *obj, int prot)
5894 {
5895 
5896 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5897 	    prot) == -1) {
5898 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5899 		    obj->path, prot, rtld_strerror(errno));
5900 		return (-1);
5901 	}
5902 	return (0);
5903 }
5904 
5905 static int
5906 obj_disable_relro(Obj_Entry *obj)
5907 {
5908 
5909 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5910 }
5911 
5912 static int
5913 obj_enforce_relro(Obj_Entry *obj)
5914 {
5915 
5916 	return (obj_remap_relro(obj, PROT_READ));
5917 }
5918 
5919 static void
5920 map_stacks_exec(RtldLockState *lockstate)
5921 {
5922 	void (*thr_map_stacks_exec)(void);
5923 
5924 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5925 		return;
5926 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5927 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5928 	if (thr_map_stacks_exec != NULL) {
5929 		stack_prot |= PROT_EXEC;
5930 		thr_map_stacks_exec();
5931 	}
5932 }
5933 
5934 static void
5935 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5936 {
5937 	Objlist_Entry *elm;
5938 	Obj_Entry *obj;
5939 	void (*distrib)(size_t, void *, size_t, size_t);
5940 
5941 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5942 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5943 	if (distrib == NULL)
5944 		return;
5945 	STAILQ_FOREACH(elm, list, link) {
5946 		obj = elm->obj;
5947 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5948 			continue;
5949 		lock_release(rtld_bind_lock, lockstate);
5950 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5951 		    obj->tlssize);
5952 		wlock_acquire(rtld_bind_lock, lockstate);
5953 		obj->static_tls_copied = true;
5954 	}
5955 }
5956 
5957 void
5958 symlook_init(SymLook *dst, const char *name)
5959 {
5960 
5961 	bzero(dst, sizeof(*dst));
5962 	dst->name = name;
5963 	dst->hash = elf_hash(name);
5964 	dst->hash_gnu = gnu_hash(name);
5965 }
5966 
5967 static void
5968 symlook_init_from_req(SymLook *dst, const SymLook *src)
5969 {
5970 
5971 	dst->name = src->name;
5972 	dst->hash = src->hash;
5973 	dst->hash_gnu = src->hash_gnu;
5974 	dst->ventry = src->ventry;
5975 	dst->flags = src->flags;
5976 	dst->defobj_out = NULL;
5977 	dst->sym_out = NULL;
5978 	dst->lockstate = src->lockstate;
5979 }
5980 
5981 static int
5982 open_binary_fd(const char *argv0, bool search_in_path,
5983     const char **binpath_res)
5984 {
5985 	char *binpath, *pathenv, *pe, *res1;
5986 	const char *res;
5987 	int fd;
5988 
5989 	binpath = NULL;
5990 	res = NULL;
5991 	if (search_in_path && strchr(argv0, '/') == NULL) {
5992 		binpath = xmalloc(PATH_MAX);
5993 		pathenv = getenv("PATH");
5994 		if (pathenv == NULL) {
5995 			_rtld_error("-p and no PATH environment variable");
5996 			rtld_die();
5997 		}
5998 		pathenv = strdup(pathenv);
5999 		if (pathenv == NULL) {
6000 			_rtld_error("Cannot allocate memory");
6001 			rtld_die();
6002 		}
6003 		fd = -1;
6004 		errno = ENOENT;
6005 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6006 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6007 				continue;
6008 			if (binpath[0] != '\0' &&
6009 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6010 				continue;
6011 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6012 				continue;
6013 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6014 			if (fd != -1 || errno != ENOENT) {
6015 				res = binpath;
6016 				break;
6017 			}
6018 		}
6019 		free(pathenv);
6020 	} else {
6021 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6022 		res = argv0;
6023 	}
6024 
6025 	if (fd == -1) {
6026 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6027 		rtld_die();
6028 	}
6029 	if (res != NULL && res[0] != '/') {
6030 		res1 = xmalloc(PATH_MAX);
6031 		if (realpath(res, res1) != NULL) {
6032 			if (res != argv0)
6033 				free(__DECONST(char *, res));
6034 			res = res1;
6035 		} else {
6036 			free(res1);
6037 		}
6038 	}
6039 	*binpath_res = res;
6040 	return (fd);
6041 }
6042 
6043 /*
6044  * Parse a set of command-line arguments.
6045  */
6046 static int
6047 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6048     const char **argv0, bool *dir_ignore)
6049 {
6050 	const char *arg;
6051 	char machine[64];
6052 	size_t sz;
6053 	int arglen, fd, i, j, mib[2];
6054 	char opt;
6055 	bool seen_b, seen_f;
6056 
6057 	dbg("Parsing command-line arguments");
6058 	*use_pathp = false;
6059 	*fdp = -1;
6060 	*dir_ignore = false;
6061 	seen_b = seen_f = false;
6062 
6063 	for (i = 1; i < argc; i++ ) {
6064 		arg = argv[i];
6065 		dbg("argv[%d]: '%s'", i, arg);
6066 
6067 		/*
6068 		 * rtld arguments end with an explicit "--" or with the first
6069 		 * non-prefixed argument.
6070 		 */
6071 		if (strcmp(arg, "--") == 0) {
6072 			i++;
6073 			break;
6074 		}
6075 		if (arg[0] != '-')
6076 			break;
6077 
6078 		/*
6079 		 * All other arguments are single-character options that can
6080 		 * be combined, so we need to search through `arg` for them.
6081 		 */
6082 		arglen = strlen(arg);
6083 		for (j = 1; j < arglen; j++) {
6084 			opt = arg[j];
6085 			if (opt == 'h') {
6086 				print_usage(argv[0]);
6087 				_exit(0);
6088 			} else if (opt == 'b') {
6089 				if (seen_f) {
6090 					_rtld_error("Both -b and -f specified");
6091 					rtld_die();
6092 				}
6093 				if (j != arglen - 1) {
6094 					_rtld_error("Invalid options: %s", arg);
6095 					rtld_die();
6096 				}
6097 				i++;
6098 				*argv0 = argv[i];
6099 				seen_b = true;
6100 				break;
6101 			} else if (opt == 'd') {
6102 				*dir_ignore = true;
6103 			} else if (opt == 'f') {
6104 				if (seen_b) {
6105 					_rtld_error("Both -b and -f specified");
6106 					rtld_die();
6107 				}
6108 
6109 				/*
6110 				 * -f XX can be used to specify a
6111 				 * descriptor for the binary named at
6112 				 * the command line (i.e., the later
6113 				 * argument will specify the process
6114 				 * name but the descriptor is what
6115 				 * will actually be executed).
6116 				 *
6117 				 * -f must be the last option in the
6118 				 * group, e.g., -abcf <fd>.
6119 				 */
6120 				if (j != arglen - 1) {
6121 					_rtld_error("Invalid options: %s", arg);
6122 					rtld_die();
6123 				}
6124 				i++;
6125 				fd = parse_integer(argv[i]);
6126 				if (fd == -1) {
6127 					_rtld_error(
6128 					    "Invalid file descriptor: '%s'",
6129 					    argv[i]);
6130 					rtld_die();
6131 				}
6132 				*fdp = fd;
6133 				seen_f = true;
6134 				break;
6135 			} else if (opt == 'o') {
6136 				struct ld_env_var_desc *l;
6137 				char *n, *v;
6138 				u_int ll;
6139 
6140 				if (j != arglen - 1) {
6141 					_rtld_error("Invalid options: %s", arg);
6142 					rtld_die();
6143 				}
6144 				i++;
6145 				n = argv[i];
6146 				v = strchr(n, '=');
6147 				if (v == NULL) {
6148 					_rtld_error("No '=' in -o parameter");
6149 					rtld_die();
6150 				}
6151 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6152 					l = &ld_env_vars[ll];
6153 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6154 					    strncmp(n, l->n, v - n) == 0) {
6155 						l->val = v + 1;
6156 						break;
6157 					}
6158 				}
6159 				if (ll == nitems(ld_env_vars)) {
6160 					_rtld_error("Unknown LD_ option %s",
6161 					    n);
6162 					rtld_die();
6163 				}
6164 			} else if (opt == 'p') {
6165 				*use_pathp = true;
6166 			} else if (opt == 'u') {
6167 				u_int ll;
6168 
6169 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6170 					ld_env_vars[ll].val = NULL;
6171 			} else if (opt == 'v') {
6172 				machine[0] = '\0';
6173 				mib[0] = CTL_HW;
6174 				mib[1] = HW_MACHINE;
6175 				sz = sizeof(machine);
6176 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6177 				ld_elf_hints_path = ld_get_env_var(
6178 				    LD_ELF_HINTS_PATH);
6179 				set_ld_elf_hints_path();
6180 				rtld_printf(
6181 				    "FreeBSD ld-elf.so.1 %s\n"
6182 				    "FreeBSD_version %d\n"
6183 				    "Default lib path %s\n"
6184 				    "Hints lib path %s\n"
6185 				    "Env prefix %s\n"
6186 				    "Default hint file %s\n"
6187 				    "Hint file %s\n"
6188 				    "libmap file %s\n"
6189 				    "Optional static TLS size %zd bytes\n",
6190 				    machine,
6191 				    __FreeBSD_version, ld_standard_library_path,
6192 				    gethints(false),
6193 				    ld_env_prefix, ld_elf_hints_default,
6194 				    ld_elf_hints_path,
6195 				    ld_path_libmap_conf,
6196 				    ld_static_tls_extra);
6197 				_exit(0);
6198 			} else {
6199 				_rtld_error("Invalid argument: '%s'", arg);
6200 				print_usage(argv[0]);
6201 				rtld_die();
6202 			}
6203 		}
6204 	}
6205 
6206 	if (!seen_b)
6207 		*argv0 = argv[i];
6208 	return (i);
6209 }
6210 
6211 /*
6212  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6213  */
6214 static int
6215 parse_integer(const char *str)
6216 {
6217 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6218 	const char *orig;
6219 	int n;
6220 	char c;
6221 
6222 	orig = str;
6223 	n = 0;
6224 	for (c = *str; c != '\0'; c = *++str) {
6225 		if (c < '0' || c > '9')
6226 			return (-1);
6227 
6228 		n *= RADIX;
6229 		n += c - '0';
6230 	}
6231 
6232 	/* Make sure we actually parsed something. */
6233 	if (str == orig)
6234 		return (-1);
6235 	return (n);
6236 }
6237 
6238 static void
6239 print_usage(const char *argv0)
6240 {
6241 
6242 	rtld_printf(
6243 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6244 	    "\n"
6245 	    "Options:\n"
6246 	    "  -h        Display this help message\n"
6247 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6248 	    "  -d        Ignore lack of exec permissions for the binary\n"
6249 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6250 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6251 	    "  -p        Search in PATH for named binary\n"
6252 	    "  -u        Ignore LD_ environment variables\n"
6253 	    "  -v        Display identification information\n"
6254 	    "  --        End of RTLD options\n"
6255 	    "  <binary>  Name of process to execute\n"
6256 	    "  <args>    Arguments to the executed process\n", argv0);
6257 }
6258 
6259 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6260 static const struct auxfmt {
6261 	const char *name;
6262 	const char *fmt;
6263 } auxfmts[] = {
6264 	AUXFMT(AT_NULL, NULL),
6265 	AUXFMT(AT_IGNORE, NULL),
6266 	AUXFMT(AT_EXECFD, "%ld"),
6267 	AUXFMT(AT_PHDR, "%p"),
6268 	AUXFMT(AT_PHENT, "%lu"),
6269 	AUXFMT(AT_PHNUM, "%lu"),
6270 	AUXFMT(AT_PAGESZ, "%lu"),
6271 	AUXFMT(AT_BASE, "%#lx"),
6272 	AUXFMT(AT_FLAGS, "%#lx"),
6273 	AUXFMT(AT_ENTRY, "%p"),
6274 	AUXFMT(AT_NOTELF, NULL),
6275 	AUXFMT(AT_UID, "%ld"),
6276 	AUXFMT(AT_EUID, "%ld"),
6277 	AUXFMT(AT_GID, "%ld"),
6278 	AUXFMT(AT_EGID, "%ld"),
6279 	AUXFMT(AT_EXECPATH, "%s"),
6280 	AUXFMT(AT_CANARY, "%p"),
6281 	AUXFMT(AT_CANARYLEN, "%lu"),
6282 	AUXFMT(AT_OSRELDATE, "%lu"),
6283 	AUXFMT(AT_NCPUS, "%lu"),
6284 	AUXFMT(AT_PAGESIZES, "%p"),
6285 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6286 	AUXFMT(AT_TIMEKEEP, "%p"),
6287 	AUXFMT(AT_STACKPROT, "%#lx"),
6288 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6289 	AUXFMT(AT_HWCAP, "%#lx"),
6290 	AUXFMT(AT_HWCAP2, "%#lx"),
6291 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6292 	AUXFMT(AT_ARGC, "%lu"),
6293 	AUXFMT(AT_ARGV, "%p"),
6294 	AUXFMT(AT_ENVC, "%p"),
6295 	AUXFMT(AT_ENVV, "%p"),
6296 	AUXFMT(AT_PS_STRINGS, "%p"),
6297 	AUXFMT(AT_FXRNG, "%p"),
6298 	AUXFMT(AT_KPRELOAD, "%p"),
6299 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6300 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6301 };
6302 
6303 static bool
6304 is_ptr_fmt(const char *fmt)
6305 {
6306 	char last;
6307 
6308 	last = fmt[strlen(fmt) - 1];
6309 	return (last == 'p' || last == 's');
6310 }
6311 
6312 static void
6313 dump_auxv(Elf_Auxinfo **aux_info)
6314 {
6315 	Elf_Auxinfo *auxp;
6316 	const struct auxfmt *fmt;
6317 	int i;
6318 
6319 	for (i = 0; i < AT_COUNT; i++) {
6320 		auxp = aux_info[i];
6321 		if (auxp == NULL)
6322 			continue;
6323 		fmt = &auxfmts[i];
6324 		if (fmt->fmt == NULL)
6325 			continue;
6326 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6327 		if (is_ptr_fmt(fmt->fmt)) {
6328 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6329 			    auxp->a_un.a_ptr);
6330 		} else {
6331 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6332 			    auxp->a_un.a_val);
6333 		}
6334 		rtld_fdprintf(STDOUT_FILENO, "\n");
6335 	}
6336 }
6337 
6338 const char *
6339 rtld_get_var(const char *name)
6340 {
6341 	const struct ld_env_var_desc *lvd;
6342 	u_int i;
6343 
6344 	for (i = 0; i < nitems(ld_env_vars); i++) {
6345 		lvd = &ld_env_vars[i];
6346 		if (strcmp(lvd->n, name) == 0)
6347 			return (lvd->val);
6348 	}
6349 	return (NULL);
6350 }
6351 
6352 int
6353 rtld_set_var(const char *name, const char *val)
6354 {
6355 	struct ld_env_var_desc *lvd;
6356 	u_int i;
6357 
6358 	for (i = 0; i < nitems(ld_env_vars); i++) {
6359 		lvd = &ld_env_vars[i];
6360 		if (strcmp(lvd->n, name) != 0)
6361 			continue;
6362 		if (!lvd->can_update || (lvd->unsecure && !trust))
6363 			return (EPERM);
6364 		if (lvd->owned)
6365 			free(__DECONST(char *, lvd->val));
6366 		if (val != NULL)
6367 			lvd->val = xstrdup(val);
6368 		else
6369 			lvd->val = NULL;
6370 		lvd->owned = true;
6371 		if (lvd->debug)
6372 			debug = lvd->val != NULL && *lvd->val != '\0';
6373 		return (0);
6374 	}
6375 	return (ENOENT);
6376 }
6377 
6378 /*
6379  * Overrides for libc_pic-provided functions.
6380  */
6381 
6382 int
6383 __getosreldate(void)
6384 {
6385 	size_t len;
6386 	int oid[2];
6387 	int error, osrel;
6388 
6389 	if (osreldate != 0)
6390 		return (osreldate);
6391 
6392 	oid[0] = CTL_KERN;
6393 	oid[1] = KERN_OSRELDATE;
6394 	osrel = 0;
6395 	len = sizeof(osrel);
6396 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6397 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6398 		osreldate = osrel;
6399 	return (osreldate);
6400 }
6401 const char *
6402 rtld_strerror(int errnum)
6403 {
6404 
6405 	if (errnum < 0 || errnum >= sys_nerr)
6406 		return ("Unknown error");
6407 	return (sys_errlist[errnum]);
6408 }
6409 
6410 char *
6411 getenv(const char *name)
6412 {
6413 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6414 	    strlen(name))));
6415 }
6416 
6417 /* malloc */
6418 void *
6419 malloc(size_t nbytes)
6420 {
6421 
6422 	return (__crt_malloc(nbytes));
6423 }
6424 
6425 void *
6426 calloc(size_t num, size_t size)
6427 {
6428 
6429 	return (__crt_calloc(num, size));
6430 }
6431 
6432 void
6433 free(void *cp)
6434 {
6435 
6436 	__crt_free(cp);
6437 }
6438 
6439 void *
6440 realloc(void *cp, size_t nbytes)
6441 {
6442 
6443 	return (__crt_realloc(cp, nbytes));
6444 }
6445 
6446 extern int _rtld_version__FreeBSD_version __exported;
6447 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6448 
6449 extern char _rtld_version_laddr_offset __exported;
6450 char _rtld_version_laddr_offset;
6451 
6452 extern char _rtld_version_dlpi_tls_data __exported;
6453 char _rtld_version_dlpi_tls_data;
6454