xref: /freebsd/libexec/rtld-elf/rtld.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **, const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
83     const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static int dlclose_locked(void *, RtldLockState *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *, int *);
97 static const char *gethints(bool);
98 static void hold_object(Obj_Entry *);
99 static void unhold_object(Obj_Entry *);
100 static void init_dag(Obj_Entry *);
101 static void init_marker(Obj_Entry *);
102 static void init_pagesizes(Elf_Auxinfo **aux_info);
103 static void init_rtld(caddr_t, Elf_Auxinfo **);
104 static void initlist_add_neededs(Needed_Entry *, Objlist *);
105 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
106 static void linkmap_add(Obj_Entry *);
107 static void linkmap_delete(Obj_Entry *);
108 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
109 static void unload_filtees(Obj_Entry *, RtldLockState *);
110 static int load_needed_objects(Obj_Entry *, int);
111 static int load_preload_objects(void);
112 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
113 static void map_stacks_exec(RtldLockState *);
114 static int obj_enforce_relro(Obj_Entry *);
115 static Obj_Entry *obj_from_addr(const void *);
116 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
117 static void objlist_call_init(Objlist *, RtldLockState *);
118 static void objlist_clear(Objlist *);
119 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
120 static void objlist_init(Objlist *);
121 static void objlist_push_head(Objlist *, Obj_Entry *);
122 static void objlist_push_tail(Objlist *, Obj_Entry *);
123 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
124 static void objlist_remove(Objlist *, Obj_Entry *);
125 static int open_binary_fd(const char *argv0, bool search_in_path);
126 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
127 static int parse_integer(const char *);
128 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
129 static void print_usage(const char *argv0);
130 static void release_object(Obj_Entry *);
131 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
132     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
133 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
134     int flags, RtldLockState *lockstate);
135 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
136     RtldLockState *);
137 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
138     int flags, RtldLockState *lockstate);
139 static int rtld_dirname(const char *, char *);
140 static int rtld_dirname_abs(const char *, char *);
141 static void *rtld_dlopen(const char *name, int fd, int mode);
142 static void rtld_exit(void);
143 static char *search_library_path(const char *, const char *, const char *,
144     int *);
145 static char *search_library_pathfds(const char *, const char *, int *);
146 static const void **get_program_var_addr(const char *, RtldLockState *);
147 static void set_program_var(const char *, const void *);
148 static int symlook_default(SymLook *, const Obj_Entry *refobj);
149 static int symlook_global(SymLook *, DoneList *);
150 static void symlook_init_from_req(SymLook *, const SymLook *);
151 static int symlook_list(SymLook *, const Objlist *, DoneList *);
152 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
153 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
154 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
155 static void trace_loaded_objects(Obj_Entry *);
156 static void unlink_object(Obj_Entry *);
157 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
158 static void unref_dag(Obj_Entry *);
159 static void ref_dag(Obj_Entry *);
160 static char *origin_subst_one(Obj_Entry *, char *, const char *,
161     const char *, bool);
162 static char *origin_subst(Obj_Entry *, char *);
163 static bool obj_resolve_origin(Obj_Entry *obj);
164 static void preinit_main(void);
165 static int  rtld_verify_versions(const Objlist *);
166 static int  rtld_verify_object_versions(Obj_Entry *);
167 static void object_add_name(Obj_Entry *, const char *);
168 static int  object_match_name(const Obj_Entry *, const char *);
169 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
170 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
171     struct dl_phdr_info *phdr_info);
172 static uint32_t gnu_hash(const char *);
173 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
174     const unsigned long);
175 
176 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
177 void _r_debug_postinit(struct link_map *) __noinline __exported;
178 
179 int __sys_openat(int, const char *, int, ...);
180 
181 /*
182  * Data declarations.
183  */
184 static char *error_message;	/* Message for dlerror(), or NULL */
185 struct r_debug r_debug __exported;	/* for GDB; */
186 static bool libmap_disable;	/* Disable libmap */
187 static bool ld_loadfltr;	/* Immediate filters processing */
188 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
189 static bool trust;		/* False for setuid and setgid programs */
190 static bool dangerous_ld_env;	/* True if environment variables have been
191 				   used to affect the libraries loaded */
192 bool ld_bind_not;		/* Disable PLT update */
193 static char *ld_bind_now;	/* Environment variable for immediate binding */
194 static char *ld_debug;		/* Environment variable for debugging */
195 static char *ld_library_path;	/* Environment variable for search path */
196 static char *ld_library_dirs;	/* Environment variable for library descriptors */
197 static char *ld_preload;	/* Environment variable for libraries to
198 				   load first */
199 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
200 static char *ld_tracing;	/* Called from ldd to print libs */
201 static char *ld_utrace;		/* Use utrace() to log events. */
202 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
203 static Obj_Entry *obj_main;	/* The main program shared object */
204 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
205 static unsigned int obj_count;	/* Number of objects in obj_list */
206 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
207 
208 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
209   STAILQ_HEAD_INITIALIZER(list_global);
210 static Objlist list_main =	/* Objects loaded at program startup */
211   STAILQ_HEAD_INITIALIZER(list_main);
212 static Objlist list_fini =	/* Objects needing fini() calls */
213   STAILQ_HEAD_INITIALIZER(list_fini);
214 
215 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
216 
217 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
218 
219 extern Elf_Dyn _DYNAMIC;
220 #pragma weak _DYNAMIC
221 
222 int dlclose(void *) __exported;
223 char *dlerror(void) __exported;
224 void *dlopen(const char *, int) __exported;
225 void *fdlopen(int, int) __exported;
226 void *dlsym(void *, const char *) __exported;
227 dlfunc_t dlfunc(void *, const char *) __exported;
228 void *dlvsym(void *, const char *, const char *) __exported;
229 int dladdr(const void *, Dl_info *) __exported;
230 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
231     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
232 int dlinfo(void *, int , void *) __exported;
233 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
234 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
235 int _rtld_get_stack_prot(void) __exported;
236 int _rtld_is_dlopened(void *) __exported;
237 void _rtld_error(const char *, ...) __exported;
238 
239 int npagesizes, osreldate;
240 size_t *pagesizes;
241 
242 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
243 static int max_stack_flags;
244 
245 /*
246  * Global declarations normally provided by crt1.  The dynamic linker is
247  * not built with crt1, so we have to provide them ourselves.
248  */
249 char *__progname;
250 char **environ;
251 
252 /*
253  * Used to pass argc, argv to init functions.
254  */
255 int main_argc;
256 char **main_argv;
257 
258 /*
259  * Globals to control TLS allocation.
260  */
261 size_t tls_last_offset;		/* Static TLS offset of last module */
262 size_t tls_last_size;		/* Static TLS size of last module */
263 size_t tls_static_space;	/* Static TLS space allocated */
264 size_t tls_static_max_align;
265 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
266 int tls_max_index = 1;		/* Largest module index allocated */
267 
268 bool ld_library_path_rpath = false;
269 
270 /*
271  * Globals for path names, and such
272  */
273 char *ld_elf_hints_default = _PATH_ELF_HINTS;
274 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
275 char *ld_path_rtld = _PATH_RTLD;
276 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
277 char *ld_env_prefix = LD_;
278 
279 /*
280  * Fill in a DoneList with an allocation large enough to hold all of
281  * the currently-loaded objects.  Keep this as a macro since it calls
282  * alloca and we want that to occur within the scope of the caller.
283  */
284 #define donelist_init(dlp)					\
285     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
286     assert((dlp)->objs != NULL),				\
287     (dlp)->num_alloc = obj_count,				\
288     (dlp)->num_used = 0)
289 
290 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
291 	if (ld_utrace != NULL)					\
292 		ld_utrace_log(e, h, mb, ms, r, n);		\
293 } while (0)
294 
295 static void
296 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
297     int refcnt, const char *name)
298 {
299 	struct utrace_rtld ut;
300 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
301 
302 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
303 	ut.event = event;
304 	ut.handle = handle;
305 	ut.mapbase = mapbase;
306 	ut.mapsize = mapsize;
307 	ut.refcnt = refcnt;
308 	bzero(ut.name, sizeof(ut.name));
309 	if (name)
310 		strlcpy(ut.name, name, sizeof(ut.name));
311 	utrace(&ut, sizeof(ut));
312 }
313 
314 #ifdef RTLD_VARIANT_ENV_NAMES
315 /*
316  * construct the env variable based on the type of binary that's
317  * running.
318  */
319 static inline const char *
320 _LD(const char *var)
321 {
322 	static char buffer[128];
323 
324 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
325 	strlcat(buffer, var, sizeof(buffer));
326 	return (buffer);
327 }
328 #else
329 #define _LD(x)	LD_ x
330 #endif
331 
332 /*
333  * Main entry point for dynamic linking.  The first argument is the
334  * stack pointer.  The stack is expected to be laid out as described
335  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
336  * Specifically, the stack pointer points to a word containing
337  * ARGC.  Following that in the stack is a null-terminated sequence
338  * of pointers to argument strings.  Then comes a null-terminated
339  * sequence of pointers to environment strings.  Finally, there is a
340  * sequence of "auxiliary vector" entries.
341  *
342  * The second argument points to a place to store the dynamic linker's
343  * exit procedure pointer and the third to a place to store the main
344  * program's object.
345  *
346  * The return value is the main program's entry point.
347  */
348 func_ptr_type
349 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
350 {
351     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
352     Objlist_Entry *entry;
353     Obj_Entry *last_interposer, *obj, *preload_tail;
354     const Elf_Phdr *phdr;
355     Objlist initlist;
356     RtldLockState lockstate;
357     struct stat st;
358     Elf_Addr *argcp;
359     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
360     caddr_t imgentry;
361     char buf[MAXPATHLEN];
362     int argc, fd, i, phnum, rtld_argc;
363     bool dir_enable, explicit_fd, search_in_path;
364 
365     /*
366      * On entry, the dynamic linker itself has not been relocated yet.
367      * Be very careful not to reference any global data until after
368      * init_rtld has returned.  It is OK to reference file-scope statics
369      * and string constants, and to call static and global functions.
370      */
371 
372     /* Find the auxiliary vector on the stack. */
373     argcp = sp;
374     argc = *sp++;
375     argv = (char **) sp;
376     sp += argc + 1;	/* Skip over arguments and NULL terminator */
377     env = (char **) sp;
378     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
379 	;
380     aux = (Elf_Auxinfo *) sp;
381 
382     /* Digest the auxiliary vector. */
383     for (i = 0;  i < AT_COUNT;  i++)
384 	aux_info[i] = NULL;
385     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
386 	if (auxp->a_type < AT_COUNT)
387 	    aux_info[auxp->a_type] = auxp;
388     }
389 
390     /* Initialize and relocate ourselves. */
391     assert(aux_info[AT_BASE] != NULL);
392     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
393 
394     __progname = obj_rtld.path;
395     argv0 = argv[0] != NULL ? argv[0] : "(null)";
396     environ = env;
397     main_argc = argc;
398     main_argv = argv;
399 
400     trust = !issetugid();
401 
402     md_abi_variant_hook(aux_info);
403 
404     fd = -1;
405     if (aux_info[AT_EXECFD] != NULL) {
406 	fd = aux_info[AT_EXECFD]->a_un.a_val;
407     } else {
408 	assert(aux_info[AT_PHDR] != NULL);
409 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
410 	if (phdr == obj_rtld.phdr) {
411 	    if (!trust) {
412 		_rtld_error("Tainted process refusing to run binary %s",
413 		    argv0);
414 		rtld_die();
415 	    }
416 	    dbg("opening main program in direct exec mode");
417 	    if (argc >= 2) {
418 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
419 		argv0 = argv[rtld_argc];
420 		explicit_fd = (fd != -1);
421 		if (!explicit_fd)
422 		    fd = open_binary_fd(argv0, search_in_path);
423 		if (fstat(fd, &st) == -1) {
424 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
425 		      explicit_fd ? "user-provided descriptor" : argv0,
426 		      rtld_strerror(errno));
427 		    rtld_die();
428 		}
429 
430 		/*
431 		 * Rough emulation of the permission checks done by
432 		 * execve(2), only Unix DACs are checked, ACLs are
433 		 * ignored.  Preserve the semantic of disabling owner
434 		 * to execute if owner x bit is cleared, even if
435 		 * others x bit is enabled.
436 		 * mmap(2) does not allow to mmap with PROT_EXEC if
437 		 * binary' file comes from noexec mount.  We cannot
438 		 * set VV_TEXT on the binary.
439 		 */
440 		dir_enable = false;
441 		if (st.st_uid == geteuid()) {
442 		    if ((st.st_mode & S_IXUSR) != 0)
443 			dir_enable = true;
444 		} else if (st.st_gid == getegid()) {
445 		    if ((st.st_mode & S_IXGRP) != 0)
446 			dir_enable = true;
447 		} else if ((st.st_mode & S_IXOTH) != 0) {
448 		    dir_enable = true;
449 		}
450 		if (!dir_enable) {
451 		    _rtld_error("No execute permission for binary %s",
452 		        argv0);
453 		    rtld_die();
454 		}
455 
456 		/*
457 		 * For direct exec mode, argv[0] is the interpreter
458 		 * name, we must remove it and shift arguments left
459 		 * before invoking binary main.  Since stack layout
460 		 * places environment pointers and aux vectors right
461 		 * after the terminating NULL, we must shift
462 		 * environment and aux as well.
463 		 */
464 		main_argc = argc - rtld_argc;
465 		for (i = 0; i <= main_argc; i++)
466 		    argv[i] = argv[i + rtld_argc];
467 		*argcp -= rtld_argc;
468 		environ = env = envp = argv + main_argc + 1;
469 		do {
470 		    *envp = *(envp + rtld_argc);
471 		    envp++;
472 		} while (*envp != NULL);
473 		aux = auxp = (Elf_Auxinfo *)envp;
474 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
475 		for (;; auxp++, auxpf++) {
476 		    *auxp = *auxpf;
477 		    if (auxp->a_type == AT_NULL)
478 			    break;
479 		}
480 	    } else {
481 		_rtld_error("No binary");
482 		rtld_die();
483 	    }
484 	}
485     }
486 
487     ld_bind_now = getenv(_LD("BIND_NOW"));
488 
489     /*
490      * If the process is tainted, then we un-set the dangerous environment
491      * variables.  The process will be marked as tainted until setuid(2)
492      * is called.  If any child process calls setuid(2) we do not want any
493      * future processes to honor the potentially un-safe variables.
494      */
495     if (!trust) {
496 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
497 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
498 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
499 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
500 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
501 		_rtld_error("environment corrupt; aborting");
502 		rtld_die();
503 	}
504     }
505     ld_debug = getenv(_LD("DEBUG"));
506     if (ld_bind_now == NULL)
507 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
508     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
509     libmap_override = getenv(_LD("LIBMAP"));
510     ld_library_path = getenv(_LD("LIBRARY_PATH"));
511     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
512     ld_preload = getenv(_LD("PRELOAD"));
513     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
514     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
515     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
516     if (library_path_rpath != NULL) {
517 	    if (library_path_rpath[0] == 'y' ||
518 		library_path_rpath[0] == 'Y' ||
519 		library_path_rpath[0] == '1')
520 		    ld_library_path_rpath = true;
521 	    else
522 		    ld_library_path_rpath = false;
523     }
524     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
525 	(ld_library_path != NULL) || (ld_preload != NULL) ||
526 	(ld_elf_hints_path != NULL) || ld_loadfltr;
527     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
528     ld_utrace = getenv(_LD("UTRACE"));
529 
530     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
531 	ld_elf_hints_path = ld_elf_hints_default;
532 
533     if (ld_debug != NULL && *ld_debug != '\0')
534 	debug = 1;
535     dbg("%s is initialized, base address = %p", __progname,
536 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
537     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
538     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
539 
540     dbg("initializing thread locks");
541     lockdflt_init();
542 
543     /*
544      * Load the main program, or process its program header if it is
545      * already loaded.
546      */
547     if (fd != -1) {	/* Load the main program. */
548 	dbg("loading main program");
549 	obj_main = map_object(fd, argv0, NULL);
550 	close(fd);
551 	if (obj_main == NULL)
552 	    rtld_die();
553 	max_stack_flags = obj_main->stack_flags;
554     } else {				/* Main program already loaded. */
555 	dbg("processing main program's program header");
556 	assert(aux_info[AT_PHDR] != NULL);
557 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
558 	assert(aux_info[AT_PHNUM] != NULL);
559 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
560 	assert(aux_info[AT_PHENT] != NULL);
561 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
562 	assert(aux_info[AT_ENTRY] != NULL);
563 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
564 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
565 	    rtld_die();
566     }
567 
568     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
569 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
570 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
571 	    if (kexecpath[0] == '/')
572 		    obj_main->path = kexecpath;
573 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
574 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
575 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
576 		    obj_main->path = xstrdup(argv0);
577 	    else
578 		    obj_main->path = xstrdup(buf);
579     } else {
580 	    dbg("No AT_EXECPATH or direct exec");
581 	    obj_main->path = xstrdup(argv0);
582     }
583     dbg("obj_main path %s", obj_main->path);
584     obj_main->mainprog = true;
585 
586     if (aux_info[AT_STACKPROT] != NULL &&
587       aux_info[AT_STACKPROT]->a_un.a_val != 0)
588 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
589 
590 #ifndef COMPAT_32BIT
591     /*
592      * Get the actual dynamic linker pathname from the executable if
593      * possible.  (It should always be possible.)  That ensures that
594      * gdb will find the right dynamic linker even if a non-standard
595      * one is being used.
596      */
597     if (obj_main->interp != NULL &&
598       strcmp(obj_main->interp, obj_rtld.path) != 0) {
599 	free(obj_rtld.path);
600 	obj_rtld.path = xstrdup(obj_main->interp);
601         __progname = obj_rtld.path;
602     }
603 #endif
604 
605     digest_dynamic(obj_main, 0);
606     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
607 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
608 	obj_main->dynsymcount);
609 
610     linkmap_add(obj_main);
611     linkmap_add(&obj_rtld);
612 
613     /* Link the main program into the list of objects. */
614     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
615     obj_count++;
616     obj_loads++;
617 
618     /* Initialize a fake symbol for resolving undefined weak references. */
619     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
620     sym_zero.st_shndx = SHN_UNDEF;
621     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
622 
623     if (!libmap_disable)
624         libmap_disable = (bool)lm_init(libmap_override);
625 
626     dbg("loading LD_PRELOAD libraries");
627     if (load_preload_objects() == -1)
628 	rtld_die();
629     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
630 
631     dbg("loading needed objects");
632     if (load_needed_objects(obj_main, 0) == -1)
633 	rtld_die();
634 
635     /* Make a list of all objects loaded at startup. */
636     last_interposer = obj_main;
637     TAILQ_FOREACH(obj, &obj_list, next) {
638 	if (obj->marker)
639 	    continue;
640 	if (obj->z_interpose && obj != obj_main) {
641 	    objlist_put_after(&list_main, last_interposer, obj);
642 	    last_interposer = obj;
643 	} else {
644 	    objlist_push_tail(&list_main, obj);
645 	}
646     	obj->refcount++;
647     }
648 
649     dbg("checking for required versions");
650     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
651 	rtld_die();
652 
653     if (ld_tracing) {		/* We're done */
654 	trace_loaded_objects(obj_main);
655 	exit(0);
656     }
657 
658     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
659        dump_relocations(obj_main);
660        exit (0);
661     }
662 
663     /*
664      * Processing tls relocations requires having the tls offsets
665      * initialized.  Prepare offsets before starting initial
666      * relocation processing.
667      */
668     dbg("initializing initial thread local storage offsets");
669     STAILQ_FOREACH(entry, &list_main, link) {
670 	/*
671 	 * Allocate all the initial objects out of the static TLS
672 	 * block even if they didn't ask for it.
673 	 */
674 	allocate_tls_offset(entry->obj);
675     }
676 
677     if (relocate_objects(obj_main,
678       ld_bind_now != NULL && *ld_bind_now != '\0',
679       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
680 	rtld_die();
681 
682     dbg("doing copy relocations");
683     if (do_copy_relocations(obj_main) == -1)
684 	rtld_die();
685 
686     dbg("enforcing main obj relro");
687     if (obj_enforce_relro(obj_main) == -1)
688 	rtld_die();
689 
690     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
691        dump_relocations(obj_main);
692        exit (0);
693     }
694 
695     /*
696      * Setup TLS for main thread.  This must be done after the
697      * relocations are processed, since tls initialization section
698      * might be the subject for relocations.
699      */
700     dbg("initializing initial thread local storage");
701     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
702 
703     dbg("initializing key program variables");
704     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
705     set_program_var("environ", env);
706     set_program_var("__elf_aux_vector", aux);
707 
708     /* Make a list of init functions to call. */
709     objlist_init(&initlist);
710     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
711       preload_tail, &initlist);
712 
713     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
714 
715     map_stacks_exec(NULL);
716     ifunc_init(aux);
717 
718     dbg("resolving ifuncs");
719     if (resolve_objects_ifunc(obj_main,
720       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
721       NULL) == -1)
722 	rtld_die();
723 
724     if (!obj_main->crt_no_init) {
725 	/*
726 	 * Make sure we don't call the main program's init and fini
727 	 * functions for binaries linked with old crt1 which calls
728 	 * _init itself.
729 	 */
730 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
731 	obj_main->preinit_array = obj_main->init_array =
732 	    obj_main->fini_array = (Elf_Addr)NULL;
733     }
734 
735     /*
736      * Execute MD initializers required before we call the objects'
737      * init functions.
738      */
739     pre_init();
740 
741     wlock_acquire(rtld_bind_lock, &lockstate);
742     if (obj_main->crt_no_init)
743 	preinit_main();
744     objlist_call_init(&initlist, &lockstate);
745     _r_debug_postinit(&obj_main->linkmap);
746     objlist_clear(&initlist);
747     dbg("loading filtees");
748     TAILQ_FOREACH(obj, &obj_list, next) {
749 	if (obj->marker)
750 	    continue;
751 	if (ld_loadfltr || obj->z_loadfltr)
752 	    load_filtees(obj, 0, &lockstate);
753     }
754     lock_release(rtld_bind_lock, &lockstate);
755 
756     dbg("transferring control to program entry point = %p", obj_main->entry);
757 
758     /* Return the exit procedure and the program entry point. */
759     *exit_proc = rtld_exit;
760     *objp = obj_main;
761     return (func_ptr_type) obj_main->entry;
762 }
763 
764 void *
765 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
766 {
767 	void *ptr;
768 	Elf_Addr target;
769 
770 	ptr = (void *)make_function_pointer(def, obj);
771 	target = call_ifunc_resolver(ptr);
772 	return ((void *)target);
773 }
774 
775 /*
776  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
777  * Changes to this function should be applied there as well.
778  */
779 Elf_Addr
780 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
781 {
782     const Elf_Rel *rel;
783     const Elf_Sym *def;
784     const Obj_Entry *defobj;
785     Elf_Addr *where;
786     Elf_Addr target;
787     RtldLockState lockstate;
788 
789     rlock_acquire(rtld_bind_lock, &lockstate);
790     if (sigsetjmp(lockstate.env, 0) != 0)
791 	    lock_upgrade(rtld_bind_lock, &lockstate);
792     if (obj->pltrel)
793 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
794     else
795 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
796 
797     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
798     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
799 	NULL, &lockstate);
800     if (def == NULL)
801 	rtld_die();
802     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
803 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
804     else
805 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
806 
807     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
808       defobj->strtab + def->st_name, basename(obj->path),
809       (void *)target, basename(defobj->path));
810 
811     /*
812      * Write the new contents for the jmpslot. Note that depending on
813      * architecture, the value which we need to return back to the
814      * lazy binding trampoline may or may not be the target
815      * address. The value returned from reloc_jmpslot() is the value
816      * that the trampoline needs.
817      */
818     target = reloc_jmpslot(where, target, defobj, obj, rel);
819     lock_release(rtld_bind_lock, &lockstate);
820     return target;
821 }
822 
823 /*
824  * Error reporting function.  Use it like printf.  If formats the message
825  * into a buffer, and sets things up so that the next call to dlerror()
826  * will return the message.
827  */
828 void
829 _rtld_error(const char *fmt, ...)
830 {
831     static char buf[512];
832     va_list ap;
833 
834     va_start(ap, fmt);
835     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
836     error_message = buf;
837     va_end(ap);
838     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
839 }
840 
841 /*
842  * Return a dynamically-allocated copy of the current error message, if any.
843  */
844 static char *
845 errmsg_save(void)
846 {
847     return error_message == NULL ? NULL : xstrdup(error_message);
848 }
849 
850 /*
851  * Restore the current error message from a copy which was previously saved
852  * by errmsg_save().  The copy is freed.
853  */
854 static void
855 errmsg_restore(char *saved_msg)
856 {
857     if (saved_msg == NULL)
858 	error_message = NULL;
859     else {
860 	_rtld_error("%s", saved_msg);
861 	free(saved_msg);
862     }
863 }
864 
865 static const char *
866 basename(const char *name)
867 {
868     const char *p = strrchr(name, '/');
869     return p != NULL ? p + 1 : name;
870 }
871 
872 static struct utsname uts;
873 
874 static char *
875 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
876     const char *subst, bool may_free)
877 {
878 	char *p, *p1, *res, *resp;
879 	int subst_len, kw_len, subst_count, old_len, new_len;
880 
881 	kw_len = strlen(kw);
882 
883 	/*
884 	 * First, count the number of the keyword occurrences, to
885 	 * preallocate the final string.
886 	 */
887 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
888 		p1 = strstr(p, kw);
889 		if (p1 == NULL)
890 			break;
891 	}
892 
893 	/*
894 	 * If the keyword is not found, just return.
895 	 *
896 	 * Return non-substituted string if resolution failed.  We
897 	 * cannot do anything more reasonable, the failure mode of the
898 	 * caller is unresolved library anyway.
899 	 */
900 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
901 		return (may_free ? real : xstrdup(real));
902 	if (obj != NULL)
903 		subst = obj->origin_path;
904 
905 	/*
906 	 * There is indeed something to substitute.  Calculate the
907 	 * length of the resulting string, and allocate it.
908 	 */
909 	subst_len = strlen(subst);
910 	old_len = strlen(real);
911 	new_len = old_len + (subst_len - kw_len) * subst_count;
912 	res = xmalloc(new_len + 1);
913 
914 	/*
915 	 * Now, execute the substitution loop.
916 	 */
917 	for (p = real, resp = res, *resp = '\0';;) {
918 		p1 = strstr(p, kw);
919 		if (p1 != NULL) {
920 			/* Copy the prefix before keyword. */
921 			memcpy(resp, p, p1 - p);
922 			resp += p1 - p;
923 			/* Keyword replacement. */
924 			memcpy(resp, subst, subst_len);
925 			resp += subst_len;
926 			*resp = '\0';
927 			p = p1 + kw_len;
928 		} else
929 			break;
930 	}
931 
932 	/* Copy to the end of string and finish. */
933 	strcat(resp, p);
934 	if (may_free)
935 		free(real);
936 	return (res);
937 }
938 
939 static char *
940 origin_subst(Obj_Entry *obj, char *real)
941 {
942 	char *res1, *res2, *res3, *res4;
943 
944 	if (obj == NULL || !trust)
945 		return (xstrdup(real));
946 	if (uts.sysname[0] == '\0') {
947 		if (uname(&uts) != 0) {
948 			_rtld_error("utsname failed: %d", errno);
949 			return (NULL);
950 		}
951 	}
952 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
953 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
954 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
955 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
956 	return (res4);
957 }
958 
959 void
960 rtld_die(void)
961 {
962     const char *msg = dlerror();
963 
964     if (msg == NULL)
965 	msg = "Fatal error";
966     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
967     rtld_fdputstr(STDERR_FILENO, msg);
968     rtld_fdputchar(STDERR_FILENO, '\n');
969     _exit(1);
970 }
971 
972 /*
973  * Process a shared object's DYNAMIC section, and save the important
974  * information in its Obj_Entry structure.
975  */
976 static void
977 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
978     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
979 {
980     const Elf_Dyn *dynp;
981     Needed_Entry **needed_tail = &obj->needed;
982     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
983     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
984     const Elf_Hashelt *hashtab;
985     const Elf32_Word *hashval;
986     Elf32_Word bkt, nmaskwords;
987     int bloom_size32;
988     int plttype = DT_REL;
989 
990     *dyn_rpath = NULL;
991     *dyn_soname = NULL;
992     *dyn_runpath = NULL;
993 
994     obj->bind_now = false;
995     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
996 	switch (dynp->d_tag) {
997 
998 	case DT_REL:
999 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1000 	    break;
1001 
1002 	case DT_RELSZ:
1003 	    obj->relsize = dynp->d_un.d_val;
1004 	    break;
1005 
1006 	case DT_RELENT:
1007 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1008 	    break;
1009 
1010 	case DT_JMPREL:
1011 	    obj->pltrel = (const Elf_Rel *)
1012 	      (obj->relocbase + dynp->d_un.d_ptr);
1013 	    break;
1014 
1015 	case DT_PLTRELSZ:
1016 	    obj->pltrelsize = dynp->d_un.d_val;
1017 	    break;
1018 
1019 	case DT_RELA:
1020 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1021 	    break;
1022 
1023 	case DT_RELASZ:
1024 	    obj->relasize = dynp->d_un.d_val;
1025 	    break;
1026 
1027 	case DT_RELAENT:
1028 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1029 	    break;
1030 
1031 	case DT_PLTREL:
1032 	    plttype = dynp->d_un.d_val;
1033 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1034 	    break;
1035 
1036 	case DT_SYMTAB:
1037 	    obj->symtab = (const Elf_Sym *)
1038 	      (obj->relocbase + dynp->d_un.d_ptr);
1039 	    break;
1040 
1041 	case DT_SYMENT:
1042 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1043 	    break;
1044 
1045 	case DT_STRTAB:
1046 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1047 	    break;
1048 
1049 	case DT_STRSZ:
1050 	    obj->strsize = dynp->d_un.d_val;
1051 	    break;
1052 
1053 	case DT_VERNEED:
1054 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1055 		dynp->d_un.d_val);
1056 	    break;
1057 
1058 	case DT_VERNEEDNUM:
1059 	    obj->verneednum = dynp->d_un.d_val;
1060 	    break;
1061 
1062 	case DT_VERDEF:
1063 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1064 		dynp->d_un.d_val);
1065 	    break;
1066 
1067 	case DT_VERDEFNUM:
1068 	    obj->verdefnum = dynp->d_un.d_val;
1069 	    break;
1070 
1071 	case DT_VERSYM:
1072 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1073 		dynp->d_un.d_val);
1074 	    break;
1075 
1076 	case DT_HASH:
1077 	    {
1078 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1079 		    dynp->d_un.d_ptr);
1080 		obj->nbuckets = hashtab[0];
1081 		obj->nchains = hashtab[1];
1082 		obj->buckets = hashtab + 2;
1083 		obj->chains = obj->buckets + obj->nbuckets;
1084 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1085 		  obj->buckets != NULL;
1086 	    }
1087 	    break;
1088 
1089 	case DT_GNU_HASH:
1090 	    {
1091 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1092 		    dynp->d_un.d_ptr);
1093 		obj->nbuckets_gnu = hashtab[0];
1094 		obj->symndx_gnu = hashtab[1];
1095 		nmaskwords = hashtab[2];
1096 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1097 		obj->maskwords_bm_gnu = nmaskwords - 1;
1098 		obj->shift2_gnu = hashtab[3];
1099 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1100 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1101 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1102 		  obj->symndx_gnu;
1103 		/* Number of bitmask words is required to be power of 2 */
1104 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1105 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1106 	    }
1107 	    break;
1108 
1109 	case DT_NEEDED:
1110 	    if (!obj->rtld) {
1111 		Needed_Entry *nep = NEW(Needed_Entry);
1112 		nep->name = dynp->d_un.d_val;
1113 		nep->obj = NULL;
1114 		nep->next = NULL;
1115 
1116 		*needed_tail = nep;
1117 		needed_tail = &nep->next;
1118 	    }
1119 	    break;
1120 
1121 	case DT_FILTER:
1122 	    if (!obj->rtld) {
1123 		Needed_Entry *nep = NEW(Needed_Entry);
1124 		nep->name = dynp->d_un.d_val;
1125 		nep->obj = NULL;
1126 		nep->next = NULL;
1127 
1128 		*needed_filtees_tail = nep;
1129 		needed_filtees_tail = &nep->next;
1130 	    }
1131 	    break;
1132 
1133 	case DT_AUXILIARY:
1134 	    if (!obj->rtld) {
1135 		Needed_Entry *nep = NEW(Needed_Entry);
1136 		nep->name = dynp->d_un.d_val;
1137 		nep->obj = NULL;
1138 		nep->next = NULL;
1139 
1140 		*needed_aux_filtees_tail = nep;
1141 		needed_aux_filtees_tail = &nep->next;
1142 	    }
1143 	    break;
1144 
1145 	case DT_PLTGOT:
1146 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1147 	    break;
1148 
1149 	case DT_TEXTREL:
1150 	    obj->textrel = true;
1151 	    break;
1152 
1153 	case DT_SYMBOLIC:
1154 	    obj->symbolic = true;
1155 	    break;
1156 
1157 	case DT_RPATH:
1158 	    /*
1159 	     * We have to wait until later to process this, because we
1160 	     * might not have gotten the address of the string table yet.
1161 	     */
1162 	    *dyn_rpath = dynp;
1163 	    break;
1164 
1165 	case DT_SONAME:
1166 	    *dyn_soname = dynp;
1167 	    break;
1168 
1169 	case DT_RUNPATH:
1170 	    *dyn_runpath = dynp;
1171 	    break;
1172 
1173 	case DT_INIT:
1174 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1175 	    break;
1176 
1177 	case DT_PREINIT_ARRAY:
1178 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1179 	    break;
1180 
1181 	case DT_PREINIT_ARRAYSZ:
1182 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1183 	    break;
1184 
1185 	case DT_INIT_ARRAY:
1186 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1187 	    break;
1188 
1189 	case DT_INIT_ARRAYSZ:
1190 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1191 	    break;
1192 
1193 	case DT_FINI:
1194 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1195 	    break;
1196 
1197 	case DT_FINI_ARRAY:
1198 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1199 	    break;
1200 
1201 	case DT_FINI_ARRAYSZ:
1202 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1203 	    break;
1204 
1205 	/*
1206 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1207 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1208 	 */
1209 
1210 #ifndef __mips__
1211 	case DT_DEBUG:
1212 	    if (!early)
1213 		dbg("Filling in DT_DEBUG entry");
1214 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1215 	    break;
1216 #endif
1217 
1218 	case DT_FLAGS:
1219 		if (dynp->d_un.d_val & DF_ORIGIN)
1220 		    obj->z_origin = true;
1221 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1222 		    obj->symbolic = true;
1223 		if (dynp->d_un.d_val & DF_TEXTREL)
1224 		    obj->textrel = true;
1225 		if (dynp->d_un.d_val & DF_BIND_NOW)
1226 		    obj->bind_now = true;
1227 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1228 		    ;*/
1229 	    break;
1230 #ifdef __mips__
1231 	case DT_MIPS_LOCAL_GOTNO:
1232 		obj->local_gotno = dynp->d_un.d_val;
1233 		break;
1234 
1235 	case DT_MIPS_SYMTABNO:
1236 		obj->symtabno = dynp->d_un.d_val;
1237 		break;
1238 
1239 	case DT_MIPS_GOTSYM:
1240 		obj->gotsym = dynp->d_un.d_val;
1241 		break;
1242 
1243 	case DT_MIPS_RLD_MAP:
1244 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1245 		break;
1246 
1247 	case DT_MIPS_PLTGOT:
1248 		obj->mips_pltgot = (Elf_Addr *) (obj->relocbase +
1249 		    dynp->d_un.d_ptr);
1250 		break;
1251 
1252 #endif
1253 
1254 #ifdef __powerpc64__
1255 	case DT_PPC64_GLINK:
1256 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1257 		break;
1258 #endif
1259 
1260 	case DT_FLAGS_1:
1261 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1262 		    obj->z_noopen = true;
1263 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1264 		    obj->z_origin = true;
1265 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1266 		    obj->z_global = true;
1267 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1268 		    obj->bind_now = true;
1269 		if (dynp->d_un.d_val & DF_1_NODELETE)
1270 		    obj->z_nodelete = true;
1271 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1272 		    obj->z_loadfltr = true;
1273 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1274 		    obj->z_interpose = true;
1275 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1276 		    obj->z_nodeflib = true;
1277 	    break;
1278 
1279 	default:
1280 	    if (!early) {
1281 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1282 		    (long)dynp->d_tag);
1283 	    }
1284 	    break;
1285 	}
1286     }
1287 
1288     obj->traced = false;
1289 
1290     if (plttype == DT_RELA) {
1291 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1292 	obj->pltrel = NULL;
1293 	obj->pltrelasize = obj->pltrelsize;
1294 	obj->pltrelsize = 0;
1295     }
1296 
1297     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1298     if (obj->valid_hash_sysv)
1299 	obj->dynsymcount = obj->nchains;
1300     else if (obj->valid_hash_gnu) {
1301 	obj->dynsymcount = 0;
1302 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1303 	    if (obj->buckets_gnu[bkt] == 0)
1304 		continue;
1305 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1306 	    do
1307 		obj->dynsymcount++;
1308 	    while ((*hashval++ & 1u) == 0);
1309 	}
1310 	obj->dynsymcount += obj->symndx_gnu;
1311     }
1312 }
1313 
1314 static bool
1315 obj_resolve_origin(Obj_Entry *obj)
1316 {
1317 
1318 	if (obj->origin_path != NULL)
1319 		return (true);
1320 	obj->origin_path = xmalloc(PATH_MAX);
1321 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1322 }
1323 
1324 static void
1325 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1326     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1327 {
1328 
1329 	if (obj->z_origin && !obj_resolve_origin(obj))
1330 		rtld_die();
1331 
1332 	if (dyn_runpath != NULL) {
1333 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1334 		obj->runpath = origin_subst(obj, obj->runpath);
1335 	} else if (dyn_rpath != NULL) {
1336 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1337 		obj->rpath = origin_subst(obj, obj->rpath);
1338 	}
1339 	if (dyn_soname != NULL)
1340 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1341 }
1342 
1343 static void
1344 digest_dynamic(Obj_Entry *obj, int early)
1345 {
1346 	const Elf_Dyn *dyn_rpath;
1347 	const Elf_Dyn *dyn_soname;
1348 	const Elf_Dyn *dyn_runpath;
1349 
1350 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1351 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1352 }
1353 
1354 /*
1355  * Process a shared object's program header.  This is used only for the
1356  * main program, when the kernel has already loaded the main program
1357  * into memory before calling the dynamic linker.  It creates and
1358  * returns an Obj_Entry structure.
1359  */
1360 static Obj_Entry *
1361 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1362 {
1363     Obj_Entry *obj;
1364     const Elf_Phdr *phlimit = phdr + phnum;
1365     const Elf_Phdr *ph;
1366     Elf_Addr note_start, note_end;
1367     int nsegs = 0;
1368 
1369     obj = obj_new();
1370     for (ph = phdr;  ph < phlimit;  ph++) {
1371 	if (ph->p_type != PT_PHDR)
1372 	    continue;
1373 
1374 	obj->phdr = phdr;
1375 	obj->phsize = ph->p_memsz;
1376 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1377 	break;
1378     }
1379 
1380     obj->stack_flags = PF_X | PF_R | PF_W;
1381 
1382     for (ph = phdr;  ph < phlimit;  ph++) {
1383 	switch (ph->p_type) {
1384 
1385 	case PT_INTERP:
1386 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1387 	    break;
1388 
1389 	case PT_LOAD:
1390 	    if (nsegs == 0) {	/* First load segment */
1391 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1392 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1393 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1394 		  obj->vaddrbase;
1395 	    } else {		/* Last load segment */
1396 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1397 		  obj->vaddrbase;
1398 	    }
1399 	    nsegs++;
1400 	    break;
1401 
1402 	case PT_DYNAMIC:
1403 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1404 	    break;
1405 
1406 	case PT_TLS:
1407 	    obj->tlsindex = 1;
1408 	    obj->tlssize = ph->p_memsz;
1409 	    obj->tlsalign = ph->p_align;
1410 	    obj->tlsinitsize = ph->p_filesz;
1411 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1412 	    break;
1413 
1414 	case PT_GNU_STACK:
1415 	    obj->stack_flags = ph->p_flags;
1416 	    break;
1417 
1418 	case PT_GNU_RELRO:
1419 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1420 	    obj->relro_size = round_page(ph->p_memsz);
1421 	    break;
1422 
1423 	case PT_NOTE:
1424 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1425 	    note_end = note_start + ph->p_filesz;
1426 	    digest_notes(obj, note_start, note_end);
1427 	    break;
1428 	}
1429     }
1430     if (nsegs < 1) {
1431 	_rtld_error("%s: too few PT_LOAD segments", path);
1432 	return NULL;
1433     }
1434 
1435     obj->entry = entry;
1436     return obj;
1437 }
1438 
1439 void
1440 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1441 {
1442 	const Elf_Note *note;
1443 	const char *note_name;
1444 	uintptr_t p;
1445 
1446 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1447 	    note = (const Elf_Note *)((const char *)(note + 1) +
1448 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1449 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1450 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1451 		    note->n_descsz != sizeof(int32_t))
1452 			continue;
1453 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1454 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1455 			continue;
1456 		note_name = (const char *)(note + 1);
1457 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1458 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1459 			continue;
1460 		switch (note->n_type) {
1461 		case NT_FREEBSD_ABI_TAG:
1462 			/* FreeBSD osrel note */
1463 			p = (uintptr_t)(note + 1);
1464 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1465 			obj->osrel = *(const int32_t *)(p);
1466 			dbg("note osrel %d", obj->osrel);
1467 			break;
1468 		case NT_FREEBSD_NOINIT_TAG:
1469 			/* FreeBSD 'crt does not call init' note */
1470 			obj->crt_no_init = true;
1471 			dbg("note crt_no_init");
1472 			break;
1473 		}
1474 	}
1475 }
1476 
1477 static Obj_Entry *
1478 dlcheck(void *handle)
1479 {
1480     Obj_Entry *obj;
1481 
1482     TAILQ_FOREACH(obj, &obj_list, next) {
1483 	if (obj == (Obj_Entry *) handle)
1484 	    break;
1485     }
1486 
1487     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1488 	_rtld_error("Invalid shared object handle %p", handle);
1489 	return NULL;
1490     }
1491     return obj;
1492 }
1493 
1494 /*
1495  * If the given object is already in the donelist, return true.  Otherwise
1496  * add the object to the list and return false.
1497  */
1498 static bool
1499 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1500 {
1501     unsigned int i;
1502 
1503     for (i = 0;  i < dlp->num_used;  i++)
1504 	if (dlp->objs[i] == obj)
1505 	    return true;
1506     /*
1507      * Our donelist allocation should always be sufficient.  But if
1508      * our threads locking isn't working properly, more shared objects
1509      * could have been loaded since we allocated the list.  That should
1510      * never happen, but we'll handle it properly just in case it does.
1511      */
1512     if (dlp->num_used < dlp->num_alloc)
1513 	dlp->objs[dlp->num_used++] = obj;
1514     return false;
1515 }
1516 
1517 /*
1518  * Hash function for symbol table lookup.  Don't even think about changing
1519  * this.  It is specified by the System V ABI.
1520  */
1521 unsigned long
1522 elf_hash(const char *name)
1523 {
1524     const unsigned char *p = (const unsigned char *) name;
1525     unsigned long h = 0;
1526     unsigned long g;
1527 
1528     while (*p != '\0') {
1529 	h = (h << 4) + *p++;
1530 	if ((g = h & 0xf0000000) != 0)
1531 	    h ^= g >> 24;
1532 	h &= ~g;
1533     }
1534     return h;
1535 }
1536 
1537 /*
1538  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1539  * unsigned in case it's implemented with a wider type.
1540  */
1541 static uint32_t
1542 gnu_hash(const char *s)
1543 {
1544 	uint32_t h;
1545 	unsigned char c;
1546 
1547 	h = 5381;
1548 	for (c = *s; c != '\0'; c = *++s)
1549 		h = h * 33 + c;
1550 	return (h & 0xffffffff);
1551 }
1552 
1553 
1554 /*
1555  * Find the library with the given name, and return its full pathname.
1556  * The returned string is dynamically allocated.  Generates an error
1557  * message and returns NULL if the library cannot be found.
1558  *
1559  * If the second argument is non-NULL, then it refers to an already-
1560  * loaded shared object, whose library search path will be searched.
1561  *
1562  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1563  * descriptor (which is close-on-exec) will be passed out via the third
1564  * argument.
1565  *
1566  * The search order is:
1567  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1568  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1569  *   LD_LIBRARY_PATH
1570  *   DT_RUNPATH in the referencing file
1571  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1572  *	 from list)
1573  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1574  *
1575  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1576  */
1577 static char *
1578 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1579 {
1580 	char *name, *pathname, *refobj_path;
1581 	bool nodeflib, objgiven;
1582 
1583 	objgiven = refobj != NULL;
1584 
1585 	if (libmap_disable || !objgiven ||
1586 	    (name = lm_find(refobj->path, xname)) == NULL)
1587 		name = (char *)xname;
1588 
1589 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1590 		if (name[0] != '/' && !trust) {
1591 			_rtld_error("Absolute pathname required "
1592 			    "for shared object \"%s\"", name);
1593 			return (NULL);
1594 		}
1595 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1596 		    __DECONST(char *, name)));
1597 	}
1598 
1599 	dbg(" Searching for \"%s\"", name);
1600 	refobj_path = objgiven ? refobj->path : NULL;
1601 
1602 	/*
1603 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1604 	 * back to pre-conforming behaviour if user requested so with
1605 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1606 	 * nodeflib.
1607 	 */
1608 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1609 		pathname = search_library_path(name, ld_library_path,
1610 		    refobj_path, fdp);
1611 		if (pathname != NULL)
1612 			return (pathname);
1613 		if (refobj != NULL) {
1614 			pathname = search_library_path(name, refobj->rpath,
1615 			    refobj_path, fdp);
1616 			if (pathname != NULL)
1617 				return (pathname);
1618 		}
1619 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1620 		if (pathname != NULL)
1621 			return (pathname);
1622 		pathname = search_library_path(name, gethints(false),
1623 		    refobj_path, fdp);
1624 		if (pathname != NULL)
1625 			return (pathname);
1626 		pathname = search_library_path(name, ld_standard_library_path,
1627 		    refobj_path, fdp);
1628 		if (pathname != NULL)
1629 			return (pathname);
1630 	} else {
1631 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1632 		if (objgiven) {
1633 			pathname = search_library_path(name, refobj->rpath,
1634 			    refobj->path, fdp);
1635 			if (pathname != NULL)
1636 				return (pathname);
1637 		}
1638 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1639 			pathname = search_library_path(name, obj_main->rpath,
1640 			    refobj_path, fdp);
1641 			if (pathname != NULL)
1642 				return (pathname);
1643 		}
1644 		pathname = search_library_path(name, ld_library_path,
1645 		    refobj_path, fdp);
1646 		if (pathname != NULL)
1647 			return (pathname);
1648 		if (objgiven) {
1649 			pathname = search_library_path(name, refobj->runpath,
1650 			    refobj_path, fdp);
1651 			if (pathname != NULL)
1652 				return (pathname);
1653 		}
1654 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1655 		if (pathname != NULL)
1656 			return (pathname);
1657 		pathname = search_library_path(name, gethints(nodeflib),
1658 		    refobj_path, fdp);
1659 		if (pathname != NULL)
1660 			return (pathname);
1661 		if (objgiven && !nodeflib) {
1662 			pathname = search_library_path(name,
1663 			    ld_standard_library_path, refobj_path, fdp);
1664 			if (pathname != NULL)
1665 				return (pathname);
1666 		}
1667 	}
1668 
1669 	if (objgiven && refobj->path != NULL) {
1670 		_rtld_error("Shared object \"%s\" not found, "
1671 		    "required by \"%s\"", name, basename(refobj->path));
1672 	} else {
1673 		_rtld_error("Shared object \"%s\" not found", name);
1674 	}
1675 	return (NULL);
1676 }
1677 
1678 /*
1679  * Given a symbol number in a referencing object, find the corresponding
1680  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1681  * no definition was found.  Returns a pointer to the Obj_Entry of the
1682  * defining object via the reference parameter DEFOBJ_OUT.
1683  */
1684 const Elf_Sym *
1685 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1686     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1687     RtldLockState *lockstate)
1688 {
1689     const Elf_Sym *ref;
1690     const Elf_Sym *def;
1691     const Obj_Entry *defobj;
1692     const Ver_Entry *ve;
1693     SymLook req;
1694     const char *name;
1695     int res;
1696 
1697     /*
1698      * If we have already found this symbol, get the information from
1699      * the cache.
1700      */
1701     if (symnum >= refobj->dynsymcount)
1702 	return NULL;	/* Bad object */
1703     if (cache != NULL && cache[symnum].sym != NULL) {
1704 	*defobj_out = cache[symnum].obj;
1705 	return cache[symnum].sym;
1706     }
1707 
1708     ref = refobj->symtab + symnum;
1709     name = refobj->strtab + ref->st_name;
1710     def = NULL;
1711     defobj = NULL;
1712     ve = NULL;
1713 
1714     /*
1715      * We don't have to do a full scale lookup if the symbol is local.
1716      * We know it will bind to the instance in this load module; to
1717      * which we already have a pointer (ie ref). By not doing a lookup,
1718      * we not only improve performance, but it also avoids unresolvable
1719      * symbols when local symbols are not in the hash table. This has
1720      * been seen with the ia64 toolchain.
1721      */
1722     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1723 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1724 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1725 		symnum);
1726 	}
1727 	symlook_init(&req, name);
1728 	req.flags = flags;
1729 	ve = req.ventry = fetch_ventry(refobj, symnum);
1730 	req.lockstate = lockstate;
1731 	res = symlook_default(&req, refobj);
1732 	if (res == 0) {
1733 	    def = req.sym_out;
1734 	    defobj = req.defobj_out;
1735 	}
1736     } else {
1737 	def = ref;
1738 	defobj = refobj;
1739     }
1740 
1741     /*
1742      * If we found no definition and the reference is weak, treat the
1743      * symbol as having the value zero.
1744      */
1745     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1746 	def = &sym_zero;
1747 	defobj = obj_main;
1748     }
1749 
1750     if (def != NULL) {
1751 	*defobj_out = defobj;
1752 	/* Record the information in the cache to avoid subsequent lookups. */
1753 	if (cache != NULL) {
1754 	    cache[symnum].sym = def;
1755 	    cache[symnum].obj = defobj;
1756 	}
1757     } else {
1758 	if (refobj != &obj_rtld)
1759 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1760 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1761     }
1762     return def;
1763 }
1764 
1765 /*
1766  * Return the search path from the ldconfig hints file, reading it if
1767  * necessary.  If nostdlib is true, then the default search paths are
1768  * not added to result.
1769  *
1770  * Returns NULL if there are problems with the hints file,
1771  * or if the search path there is empty.
1772  */
1773 static const char *
1774 gethints(bool nostdlib)
1775 {
1776 	static char *hints, *filtered_path;
1777 	static struct elfhints_hdr hdr;
1778 	struct fill_search_info_args sargs, hargs;
1779 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1780 	struct dl_serpath *SLPpath, *hintpath;
1781 	char *p;
1782 	struct stat hint_stat;
1783 	unsigned int SLPndx, hintndx, fndx, fcount;
1784 	int fd;
1785 	size_t flen;
1786 	uint32_t dl;
1787 	bool skip;
1788 
1789 	/* First call, read the hints file */
1790 	if (hints == NULL) {
1791 		/* Keep from trying again in case the hints file is bad. */
1792 		hints = "";
1793 
1794 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1795 			return (NULL);
1796 
1797 		/*
1798 		 * Check of hdr.dirlistlen value against type limit
1799 		 * intends to pacify static analyzers.  Further
1800 		 * paranoia leads to checks that dirlist is fully
1801 		 * contained in the file range.
1802 		 */
1803 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1804 		    hdr.magic != ELFHINTS_MAGIC ||
1805 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1806 		    fstat(fd, &hint_stat) == -1) {
1807 cleanup1:
1808 			close(fd);
1809 			hdr.dirlistlen = 0;
1810 			return (NULL);
1811 		}
1812 		dl = hdr.strtab;
1813 		if (dl + hdr.dirlist < dl)
1814 			goto cleanup1;
1815 		dl += hdr.dirlist;
1816 		if (dl + hdr.dirlistlen < dl)
1817 			goto cleanup1;
1818 		dl += hdr.dirlistlen;
1819 		if (dl > hint_stat.st_size)
1820 			goto cleanup1;
1821 		p = xmalloc(hdr.dirlistlen + 1);
1822 		if (pread(fd, p, hdr.dirlistlen + 1,
1823 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1824 		    p[hdr.dirlistlen] != '\0') {
1825 			free(p);
1826 			goto cleanup1;
1827 		}
1828 		hints = p;
1829 		close(fd);
1830 	}
1831 
1832 	/*
1833 	 * If caller agreed to receive list which includes the default
1834 	 * paths, we are done. Otherwise, if we still did not
1835 	 * calculated filtered result, do it now.
1836 	 */
1837 	if (!nostdlib)
1838 		return (hints[0] != '\0' ? hints : NULL);
1839 	if (filtered_path != NULL)
1840 		goto filt_ret;
1841 
1842 	/*
1843 	 * Obtain the list of all configured search paths, and the
1844 	 * list of the default paths.
1845 	 *
1846 	 * First estimate the size of the results.
1847 	 */
1848 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1849 	smeta.dls_cnt = 0;
1850 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1851 	hmeta.dls_cnt = 0;
1852 
1853 	sargs.request = RTLD_DI_SERINFOSIZE;
1854 	sargs.serinfo = &smeta;
1855 	hargs.request = RTLD_DI_SERINFOSIZE;
1856 	hargs.serinfo = &hmeta;
1857 
1858 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1859 	    &sargs);
1860 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1861 
1862 	SLPinfo = xmalloc(smeta.dls_size);
1863 	hintinfo = xmalloc(hmeta.dls_size);
1864 
1865 	/*
1866 	 * Next fetch both sets of paths.
1867 	 */
1868 	sargs.request = RTLD_DI_SERINFO;
1869 	sargs.serinfo = SLPinfo;
1870 	sargs.serpath = &SLPinfo->dls_serpath[0];
1871 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1872 
1873 	hargs.request = RTLD_DI_SERINFO;
1874 	hargs.serinfo = hintinfo;
1875 	hargs.serpath = &hintinfo->dls_serpath[0];
1876 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1877 
1878 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1879 	    &sargs);
1880 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1881 
1882 	/*
1883 	 * Now calculate the difference between two sets, by excluding
1884 	 * standard paths from the full set.
1885 	 */
1886 	fndx = 0;
1887 	fcount = 0;
1888 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1889 	hintpath = &hintinfo->dls_serpath[0];
1890 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1891 		skip = false;
1892 		SLPpath = &SLPinfo->dls_serpath[0];
1893 		/*
1894 		 * Check each standard path against current.
1895 		 */
1896 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1897 			/* matched, skip the path */
1898 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1899 				skip = true;
1900 				break;
1901 			}
1902 		}
1903 		if (skip)
1904 			continue;
1905 		/*
1906 		 * Not matched against any standard path, add the path
1907 		 * to result. Separate consequtive paths with ':'.
1908 		 */
1909 		if (fcount > 0) {
1910 			filtered_path[fndx] = ':';
1911 			fndx++;
1912 		}
1913 		fcount++;
1914 		flen = strlen(hintpath->dls_name);
1915 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1916 		fndx += flen;
1917 	}
1918 	filtered_path[fndx] = '\0';
1919 
1920 	free(SLPinfo);
1921 	free(hintinfo);
1922 
1923 filt_ret:
1924 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1925 }
1926 
1927 static void
1928 init_dag(Obj_Entry *root)
1929 {
1930     const Needed_Entry *needed;
1931     const Objlist_Entry *elm;
1932     DoneList donelist;
1933 
1934     if (root->dag_inited)
1935 	return;
1936     donelist_init(&donelist);
1937 
1938     /* Root object belongs to own DAG. */
1939     objlist_push_tail(&root->dldags, root);
1940     objlist_push_tail(&root->dagmembers, root);
1941     donelist_check(&donelist, root);
1942 
1943     /*
1944      * Add dependencies of root object to DAG in breadth order
1945      * by exploiting the fact that each new object get added
1946      * to the tail of the dagmembers list.
1947      */
1948     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1949 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1950 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1951 		continue;
1952 	    objlist_push_tail(&needed->obj->dldags, root);
1953 	    objlist_push_tail(&root->dagmembers, needed->obj);
1954 	}
1955     }
1956     root->dag_inited = true;
1957 }
1958 
1959 static void
1960 init_marker(Obj_Entry *marker)
1961 {
1962 
1963 	bzero(marker, sizeof(*marker));
1964 	marker->marker = true;
1965 }
1966 
1967 Obj_Entry *
1968 globallist_curr(const Obj_Entry *obj)
1969 {
1970 
1971 	for (;;) {
1972 		if (obj == NULL)
1973 			return (NULL);
1974 		if (!obj->marker)
1975 			return (__DECONST(Obj_Entry *, obj));
1976 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1977 	}
1978 }
1979 
1980 Obj_Entry *
1981 globallist_next(const Obj_Entry *obj)
1982 {
1983 
1984 	for (;;) {
1985 		obj = TAILQ_NEXT(obj, next);
1986 		if (obj == NULL)
1987 			return (NULL);
1988 		if (!obj->marker)
1989 			return (__DECONST(Obj_Entry *, obj));
1990 	}
1991 }
1992 
1993 /* Prevent the object from being unmapped while the bind lock is dropped. */
1994 static void
1995 hold_object(Obj_Entry *obj)
1996 {
1997 
1998 	obj->holdcount++;
1999 }
2000 
2001 static void
2002 unhold_object(Obj_Entry *obj)
2003 {
2004 
2005 	assert(obj->holdcount > 0);
2006 	if (--obj->holdcount == 0 && obj->unholdfree)
2007 		release_object(obj);
2008 }
2009 
2010 static void
2011 process_z(Obj_Entry *root)
2012 {
2013 	const Objlist_Entry *elm;
2014 	Obj_Entry *obj;
2015 
2016 	/*
2017 	 * Walk over object DAG and process every dependent object
2018 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2019 	 * to grow their own DAG.
2020 	 *
2021 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2022 	 * symlook_global() to work.
2023 	 *
2024 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2025 	 */
2026 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2027 		obj = elm->obj;
2028 		if (obj == NULL)
2029 			continue;
2030 		if (obj->z_nodelete && !obj->ref_nodel) {
2031 			dbg("obj %s -z nodelete", obj->path);
2032 			init_dag(obj);
2033 			ref_dag(obj);
2034 			obj->ref_nodel = true;
2035 		}
2036 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2037 			dbg("obj %s -z global", obj->path);
2038 			objlist_push_tail(&list_global, obj);
2039 			init_dag(obj);
2040 		}
2041 	}
2042 }
2043 /*
2044  * Initialize the dynamic linker.  The argument is the address at which
2045  * the dynamic linker has been mapped into memory.  The primary task of
2046  * this function is to relocate the dynamic linker.
2047  */
2048 static void
2049 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2050 {
2051     Obj_Entry objtmp;	/* Temporary rtld object */
2052     const Elf_Ehdr *ehdr;
2053     const Elf_Dyn *dyn_rpath;
2054     const Elf_Dyn *dyn_soname;
2055     const Elf_Dyn *dyn_runpath;
2056 
2057 #ifdef RTLD_INIT_PAGESIZES_EARLY
2058     /* The page size is required by the dynamic memory allocator. */
2059     init_pagesizes(aux_info);
2060 #endif
2061 
2062     /*
2063      * Conjure up an Obj_Entry structure for the dynamic linker.
2064      *
2065      * The "path" member can't be initialized yet because string constants
2066      * cannot yet be accessed. Below we will set it correctly.
2067      */
2068     memset(&objtmp, 0, sizeof(objtmp));
2069     objtmp.path = NULL;
2070     objtmp.rtld = true;
2071     objtmp.mapbase = mapbase;
2072 #ifdef PIC
2073     objtmp.relocbase = mapbase;
2074 #endif
2075 
2076     objtmp.dynamic = rtld_dynamic(&objtmp);
2077     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2078     assert(objtmp.needed == NULL);
2079 #if !defined(__mips__)
2080     /* MIPS has a bogus DT_TEXTREL. */
2081     assert(!objtmp.textrel);
2082 #endif
2083     /*
2084      * Temporarily put the dynamic linker entry into the object list, so
2085      * that symbols can be found.
2086      */
2087     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2088 
2089     ehdr = (Elf_Ehdr *)mapbase;
2090     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2091     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2092 
2093     /* Initialize the object list. */
2094     TAILQ_INIT(&obj_list);
2095 
2096     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2097     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2098 
2099 #ifndef RTLD_INIT_PAGESIZES_EARLY
2100     /* The page size is required by the dynamic memory allocator. */
2101     init_pagesizes(aux_info);
2102 #endif
2103 
2104     if (aux_info[AT_OSRELDATE] != NULL)
2105 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2106 
2107     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2108 
2109     /* Replace the path with a dynamically allocated copy. */
2110     obj_rtld.path = xstrdup(ld_path_rtld);
2111 
2112     r_debug.r_brk = r_debug_state;
2113     r_debug.r_state = RT_CONSISTENT;
2114 }
2115 
2116 /*
2117  * Retrieve the array of supported page sizes.  The kernel provides the page
2118  * sizes in increasing order.
2119  */
2120 static void
2121 init_pagesizes(Elf_Auxinfo **aux_info)
2122 {
2123 	static size_t psa[MAXPAGESIZES];
2124 	int mib[2];
2125 	size_t len, size;
2126 
2127 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2128 	    NULL) {
2129 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2130 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2131 	} else {
2132 		len = 2;
2133 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2134 			size = sizeof(psa);
2135 		else {
2136 			/* As a fallback, retrieve the base page size. */
2137 			size = sizeof(psa[0]);
2138 			if (aux_info[AT_PAGESZ] != NULL) {
2139 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2140 				goto psa_filled;
2141 			} else {
2142 				mib[0] = CTL_HW;
2143 				mib[1] = HW_PAGESIZE;
2144 				len = 2;
2145 			}
2146 		}
2147 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2148 			_rtld_error("sysctl for hw.pagesize(s) failed");
2149 			rtld_die();
2150 		}
2151 psa_filled:
2152 		pagesizes = psa;
2153 	}
2154 	npagesizes = size / sizeof(pagesizes[0]);
2155 	/* Discard any invalid entries at the end of the array. */
2156 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2157 		npagesizes--;
2158 }
2159 
2160 /*
2161  * Add the init functions from a needed object list (and its recursive
2162  * needed objects) to "list".  This is not used directly; it is a helper
2163  * function for initlist_add_objects().  The write lock must be held
2164  * when this function is called.
2165  */
2166 static void
2167 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2168 {
2169     /* Recursively process the successor needed objects. */
2170     if (needed->next != NULL)
2171 	initlist_add_neededs(needed->next, list);
2172 
2173     /* Process the current needed object. */
2174     if (needed->obj != NULL)
2175 	initlist_add_objects(needed->obj, needed->obj, list);
2176 }
2177 
2178 /*
2179  * Scan all of the DAGs rooted in the range of objects from "obj" to
2180  * "tail" and add their init functions to "list".  This recurses over
2181  * the DAGs and ensure the proper init ordering such that each object's
2182  * needed libraries are initialized before the object itself.  At the
2183  * same time, this function adds the objects to the global finalization
2184  * list "list_fini" in the opposite order.  The write lock must be
2185  * held when this function is called.
2186  */
2187 static void
2188 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2189 {
2190     Obj_Entry *nobj;
2191 
2192     if (obj->init_scanned || obj->init_done)
2193 	return;
2194     obj->init_scanned = true;
2195 
2196     /* Recursively process the successor objects. */
2197     nobj = globallist_next(obj);
2198     if (nobj != NULL && obj != tail)
2199 	initlist_add_objects(nobj, tail, list);
2200 
2201     /* Recursively process the needed objects. */
2202     if (obj->needed != NULL)
2203 	initlist_add_neededs(obj->needed, list);
2204     if (obj->needed_filtees != NULL)
2205 	initlist_add_neededs(obj->needed_filtees, list);
2206     if (obj->needed_aux_filtees != NULL)
2207 	initlist_add_neededs(obj->needed_aux_filtees, list);
2208 
2209     /* Add the object to the init list. */
2210     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2211       obj->init_array != (Elf_Addr)NULL)
2212 	objlist_push_tail(list, obj);
2213 
2214     /* Add the object to the global fini list in the reverse order. */
2215     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2216       && !obj->on_fini_list) {
2217 	objlist_push_head(&list_fini, obj);
2218 	obj->on_fini_list = true;
2219     }
2220 }
2221 
2222 #ifndef FPTR_TARGET
2223 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2224 #endif
2225 
2226 static void
2227 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2228 {
2229     Needed_Entry *needed, *needed1;
2230 
2231     for (needed = n; needed != NULL; needed = needed->next) {
2232 	if (needed->obj != NULL) {
2233 	    dlclose_locked(needed->obj, lockstate);
2234 	    needed->obj = NULL;
2235 	}
2236     }
2237     for (needed = n; needed != NULL; needed = needed1) {
2238 	needed1 = needed->next;
2239 	free(needed);
2240     }
2241 }
2242 
2243 static void
2244 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2245 {
2246 
2247 	free_needed_filtees(obj->needed_filtees, lockstate);
2248 	obj->needed_filtees = NULL;
2249 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2250 	obj->needed_aux_filtees = NULL;
2251 	obj->filtees_loaded = false;
2252 }
2253 
2254 static void
2255 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2256     RtldLockState *lockstate)
2257 {
2258 
2259     for (; needed != NULL; needed = needed->next) {
2260 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2261 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2262 	  RTLD_LOCAL, lockstate);
2263     }
2264 }
2265 
2266 static void
2267 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2268 {
2269 
2270     lock_restart_for_upgrade(lockstate);
2271     if (!obj->filtees_loaded) {
2272 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2273 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2274 	obj->filtees_loaded = true;
2275     }
2276 }
2277 
2278 static int
2279 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2280 {
2281     Obj_Entry *obj1;
2282 
2283     for (; needed != NULL; needed = needed->next) {
2284 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2285 	  flags & ~RTLD_LO_NOLOAD);
2286 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2287 	    return (-1);
2288     }
2289     return (0);
2290 }
2291 
2292 /*
2293  * Given a shared object, traverse its list of needed objects, and load
2294  * each of them.  Returns 0 on success.  Generates an error message and
2295  * returns -1 on failure.
2296  */
2297 static int
2298 load_needed_objects(Obj_Entry *first, int flags)
2299 {
2300     Obj_Entry *obj;
2301 
2302     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2303 	if (obj->marker)
2304 	    continue;
2305 	if (process_needed(obj, obj->needed, flags) == -1)
2306 	    return (-1);
2307     }
2308     return (0);
2309 }
2310 
2311 static int
2312 load_preload_objects(void)
2313 {
2314     char *p = ld_preload;
2315     Obj_Entry *obj;
2316     static const char delim[] = " \t:;";
2317 
2318     if (p == NULL)
2319 	return 0;
2320 
2321     p += strspn(p, delim);
2322     while (*p != '\0') {
2323 	size_t len = strcspn(p, delim);
2324 	char savech;
2325 
2326 	savech = p[len];
2327 	p[len] = '\0';
2328 	obj = load_object(p, -1, NULL, 0);
2329 	if (obj == NULL)
2330 	    return -1;	/* XXX - cleanup */
2331 	obj->z_interpose = true;
2332 	p[len] = savech;
2333 	p += len;
2334 	p += strspn(p, delim);
2335     }
2336     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2337     return 0;
2338 }
2339 
2340 static const char *
2341 printable_path(const char *path)
2342 {
2343 
2344 	return (path == NULL ? "<unknown>" : path);
2345 }
2346 
2347 /*
2348  * Load a shared object into memory, if it is not already loaded.  The
2349  * object may be specified by name or by user-supplied file descriptor
2350  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2351  * duplicate is.
2352  *
2353  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2354  * on failure.
2355  */
2356 static Obj_Entry *
2357 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2358 {
2359     Obj_Entry *obj;
2360     int fd;
2361     struct stat sb;
2362     char *path;
2363 
2364     fd = -1;
2365     if (name != NULL) {
2366 	TAILQ_FOREACH(obj, &obj_list, next) {
2367 	    if (obj->marker || obj->doomed)
2368 		continue;
2369 	    if (object_match_name(obj, name))
2370 		return (obj);
2371 	}
2372 
2373 	path = find_library(name, refobj, &fd);
2374 	if (path == NULL)
2375 	    return (NULL);
2376     } else
2377 	path = NULL;
2378 
2379     if (fd >= 0) {
2380 	/*
2381 	 * search_library_pathfds() opens a fresh file descriptor for the
2382 	 * library, so there is no need to dup().
2383 	 */
2384     } else if (fd_u == -1) {
2385 	/*
2386 	 * If we didn't find a match by pathname, or the name is not
2387 	 * supplied, open the file and check again by device and inode.
2388 	 * This avoids false mismatches caused by multiple links or ".."
2389 	 * in pathnames.
2390 	 *
2391 	 * To avoid a race, we open the file and use fstat() rather than
2392 	 * using stat().
2393 	 */
2394 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2395 	    _rtld_error("Cannot open \"%s\"", path);
2396 	    free(path);
2397 	    return (NULL);
2398 	}
2399     } else {
2400 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2401 	if (fd == -1) {
2402 	    _rtld_error("Cannot dup fd");
2403 	    free(path);
2404 	    return (NULL);
2405 	}
2406     }
2407     if (fstat(fd, &sb) == -1) {
2408 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2409 	close(fd);
2410 	free(path);
2411 	return NULL;
2412     }
2413     TAILQ_FOREACH(obj, &obj_list, next) {
2414 	if (obj->marker || obj->doomed)
2415 	    continue;
2416 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2417 	    break;
2418     }
2419     if (obj != NULL && name != NULL) {
2420 	object_add_name(obj, name);
2421 	free(path);
2422 	close(fd);
2423 	return obj;
2424     }
2425     if (flags & RTLD_LO_NOLOAD) {
2426 	free(path);
2427 	close(fd);
2428 	return (NULL);
2429     }
2430 
2431     /* First use of this object, so we must map it in */
2432     obj = do_load_object(fd, name, path, &sb, flags);
2433     if (obj == NULL)
2434 	free(path);
2435     close(fd);
2436 
2437     return obj;
2438 }
2439 
2440 static Obj_Entry *
2441 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2442   int flags)
2443 {
2444     Obj_Entry *obj;
2445     struct statfs fs;
2446 
2447     /*
2448      * but first, make sure that environment variables haven't been
2449      * used to circumvent the noexec flag on a filesystem.
2450      */
2451     if (dangerous_ld_env) {
2452 	if (fstatfs(fd, &fs) != 0) {
2453 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2454 	    return NULL;
2455 	}
2456 	if (fs.f_flags & MNT_NOEXEC) {
2457 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2458 	    return NULL;
2459 	}
2460     }
2461     dbg("loading \"%s\"", printable_path(path));
2462     obj = map_object(fd, printable_path(path), sbp);
2463     if (obj == NULL)
2464         return NULL;
2465 
2466     /*
2467      * If DT_SONAME is present in the object, digest_dynamic2 already
2468      * added it to the object names.
2469      */
2470     if (name != NULL)
2471 	object_add_name(obj, name);
2472     obj->path = path;
2473     digest_dynamic(obj, 0);
2474     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2475 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2476     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2477       RTLD_LO_DLOPEN) {
2478 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2479 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2480 	munmap(obj->mapbase, obj->mapsize);
2481 	obj_free(obj);
2482 	return (NULL);
2483     }
2484 
2485     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2486     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2487     obj_count++;
2488     obj_loads++;
2489     linkmap_add(obj);	/* for GDB & dlinfo() */
2490     max_stack_flags |= obj->stack_flags;
2491 
2492     dbg("  %p .. %p: %s", obj->mapbase,
2493          obj->mapbase + obj->mapsize - 1, obj->path);
2494     if (obj->textrel)
2495 	dbg("  WARNING: %s has impure text", obj->path);
2496     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2497 	obj->path);
2498 
2499     return obj;
2500 }
2501 
2502 static Obj_Entry *
2503 obj_from_addr(const void *addr)
2504 {
2505     Obj_Entry *obj;
2506 
2507     TAILQ_FOREACH(obj, &obj_list, next) {
2508 	if (obj->marker)
2509 	    continue;
2510 	if (addr < (void *) obj->mapbase)
2511 	    continue;
2512 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2513 	    return obj;
2514     }
2515     return NULL;
2516 }
2517 
2518 static void
2519 preinit_main(void)
2520 {
2521     Elf_Addr *preinit_addr;
2522     int index;
2523 
2524     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2525     if (preinit_addr == NULL)
2526 	return;
2527 
2528     for (index = 0; index < obj_main->preinit_array_num; index++) {
2529 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2530 	    dbg("calling preinit function for %s at %p", obj_main->path,
2531 	      (void *)preinit_addr[index]);
2532 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2533 	      0, 0, obj_main->path);
2534 	    call_init_pointer(obj_main, preinit_addr[index]);
2535 	}
2536     }
2537 }
2538 
2539 /*
2540  * Call the finalization functions for each of the objects in "list"
2541  * belonging to the DAG of "root" and referenced once. If NULL "root"
2542  * is specified, every finalization function will be called regardless
2543  * of the reference count and the list elements won't be freed. All of
2544  * the objects are expected to have non-NULL fini functions.
2545  */
2546 static void
2547 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2548 {
2549     Objlist_Entry *elm;
2550     char *saved_msg;
2551     Elf_Addr *fini_addr;
2552     int index;
2553 
2554     assert(root == NULL || root->refcount == 1);
2555 
2556     if (root != NULL)
2557 	root->doomed = true;
2558 
2559     /*
2560      * Preserve the current error message since a fini function might
2561      * call into the dynamic linker and overwrite it.
2562      */
2563     saved_msg = errmsg_save();
2564     do {
2565 	STAILQ_FOREACH(elm, list, link) {
2566 	    if (root != NULL && (elm->obj->refcount != 1 ||
2567 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2568 		continue;
2569 	    /* Remove object from fini list to prevent recursive invocation. */
2570 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2571 	    /* Ensure that new references cannot be acquired. */
2572 	    elm->obj->doomed = true;
2573 
2574 	    hold_object(elm->obj);
2575 	    lock_release(rtld_bind_lock, lockstate);
2576 	    /*
2577 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2578 	     * When this happens, DT_FINI_ARRAY is processed first.
2579 	     */
2580 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2581 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2582 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2583 		  index--) {
2584 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2585 			dbg("calling fini function for %s at %p",
2586 			    elm->obj->path, (void *)fini_addr[index]);
2587 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2588 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2589 			call_initfini_pointer(elm->obj, fini_addr[index]);
2590 		    }
2591 		}
2592 	    }
2593 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2594 		dbg("calling fini function for %s at %p", elm->obj->path,
2595 		    (void *)elm->obj->fini);
2596 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2597 		    0, 0, elm->obj->path);
2598 		call_initfini_pointer(elm->obj, elm->obj->fini);
2599 	    }
2600 	    wlock_acquire(rtld_bind_lock, lockstate);
2601 	    unhold_object(elm->obj);
2602 	    /* No need to free anything if process is going down. */
2603 	    if (root != NULL)
2604 	    	free(elm);
2605 	    /*
2606 	     * We must restart the list traversal after every fini call
2607 	     * because a dlclose() call from the fini function or from
2608 	     * another thread might have modified the reference counts.
2609 	     */
2610 	    break;
2611 	}
2612     } while (elm != NULL);
2613     errmsg_restore(saved_msg);
2614 }
2615 
2616 /*
2617  * Call the initialization functions for each of the objects in
2618  * "list".  All of the objects are expected to have non-NULL init
2619  * functions.
2620  */
2621 static void
2622 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2623 {
2624     Objlist_Entry *elm;
2625     Obj_Entry *obj;
2626     char *saved_msg;
2627     Elf_Addr *init_addr;
2628     int index;
2629 
2630     /*
2631      * Clean init_scanned flag so that objects can be rechecked and
2632      * possibly initialized earlier if any of vectors called below
2633      * cause the change by using dlopen.
2634      */
2635     TAILQ_FOREACH(obj, &obj_list, next) {
2636 	if (obj->marker)
2637 	    continue;
2638 	obj->init_scanned = false;
2639     }
2640 
2641     /*
2642      * Preserve the current error message since an init function might
2643      * call into the dynamic linker and overwrite it.
2644      */
2645     saved_msg = errmsg_save();
2646     STAILQ_FOREACH(elm, list, link) {
2647 	if (elm->obj->init_done) /* Initialized early. */
2648 	    continue;
2649 	/*
2650 	 * Race: other thread might try to use this object before current
2651 	 * one completes the initialization. Not much can be done here
2652 	 * without better locking.
2653 	 */
2654 	elm->obj->init_done = true;
2655 	hold_object(elm->obj);
2656 	lock_release(rtld_bind_lock, lockstate);
2657 
2658         /*
2659          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2660          * When this happens, DT_INIT is processed first.
2661          */
2662 	if (elm->obj->init != (Elf_Addr)NULL) {
2663 	    dbg("calling init function for %s at %p", elm->obj->path,
2664 	        (void *)elm->obj->init);
2665 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2666 	        0, 0, elm->obj->path);
2667 	    call_initfini_pointer(elm->obj, elm->obj->init);
2668 	}
2669 	init_addr = (Elf_Addr *)elm->obj->init_array;
2670 	if (init_addr != NULL) {
2671 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2672 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2673 		    dbg("calling init function for %s at %p", elm->obj->path,
2674 			(void *)init_addr[index]);
2675 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2676 			(void *)init_addr[index], 0, 0, elm->obj->path);
2677 		    call_init_pointer(elm->obj, init_addr[index]);
2678 		}
2679 	    }
2680 	}
2681 	wlock_acquire(rtld_bind_lock, lockstate);
2682 	unhold_object(elm->obj);
2683     }
2684     errmsg_restore(saved_msg);
2685 }
2686 
2687 static void
2688 objlist_clear(Objlist *list)
2689 {
2690     Objlist_Entry *elm;
2691 
2692     while (!STAILQ_EMPTY(list)) {
2693 	elm = STAILQ_FIRST(list);
2694 	STAILQ_REMOVE_HEAD(list, link);
2695 	free(elm);
2696     }
2697 }
2698 
2699 static Objlist_Entry *
2700 objlist_find(Objlist *list, const Obj_Entry *obj)
2701 {
2702     Objlist_Entry *elm;
2703 
2704     STAILQ_FOREACH(elm, list, link)
2705 	if (elm->obj == obj)
2706 	    return elm;
2707     return NULL;
2708 }
2709 
2710 static void
2711 objlist_init(Objlist *list)
2712 {
2713     STAILQ_INIT(list);
2714 }
2715 
2716 static void
2717 objlist_push_head(Objlist *list, Obj_Entry *obj)
2718 {
2719     Objlist_Entry *elm;
2720 
2721     elm = NEW(Objlist_Entry);
2722     elm->obj = obj;
2723     STAILQ_INSERT_HEAD(list, elm, link);
2724 }
2725 
2726 static void
2727 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2728 {
2729     Objlist_Entry *elm;
2730 
2731     elm = NEW(Objlist_Entry);
2732     elm->obj = obj;
2733     STAILQ_INSERT_TAIL(list, elm, link);
2734 }
2735 
2736 static void
2737 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2738 {
2739 	Objlist_Entry *elm, *listelm;
2740 
2741 	STAILQ_FOREACH(listelm, list, link) {
2742 		if (listelm->obj == listobj)
2743 			break;
2744 	}
2745 	elm = NEW(Objlist_Entry);
2746 	elm->obj = obj;
2747 	if (listelm != NULL)
2748 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2749 	else
2750 		STAILQ_INSERT_TAIL(list, elm, link);
2751 }
2752 
2753 static void
2754 objlist_remove(Objlist *list, Obj_Entry *obj)
2755 {
2756     Objlist_Entry *elm;
2757 
2758     if ((elm = objlist_find(list, obj)) != NULL) {
2759 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2760 	free(elm);
2761     }
2762 }
2763 
2764 /*
2765  * Relocate dag rooted in the specified object.
2766  * Returns 0 on success, or -1 on failure.
2767  */
2768 
2769 static int
2770 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2771     int flags, RtldLockState *lockstate)
2772 {
2773 	Objlist_Entry *elm;
2774 	int error;
2775 
2776 	error = 0;
2777 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2778 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2779 		    lockstate);
2780 		if (error == -1)
2781 			break;
2782 	}
2783 	return (error);
2784 }
2785 
2786 /*
2787  * Prepare for, or clean after, relocating an object marked with
2788  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2789  * segments are remapped read-write.  After relocations are done, the
2790  * segment's permissions are returned back to the modes specified in
2791  * the phdrs.  If any relocation happened, or always for wired
2792  * program, COW is triggered.
2793  */
2794 static int
2795 reloc_textrel_prot(Obj_Entry *obj, bool before)
2796 {
2797 	const Elf_Phdr *ph;
2798 	void *base;
2799 	size_t l, sz;
2800 	int prot;
2801 
2802 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2803 	    l--, ph++) {
2804 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2805 			continue;
2806 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2807 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2808 		    trunc_page(ph->p_vaddr);
2809 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2810 		if (mprotect(base, sz, prot) == -1) {
2811 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2812 			    obj->path, before ? "en" : "dis",
2813 			    rtld_strerror(errno));
2814 			return (-1);
2815 		}
2816 	}
2817 	return (0);
2818 }
2819 
2820 /*
2821  * Relocate single object.
2822  * Returns 0 on success, or -1 on failure.
2823  */
2824 static int
2825 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2826     int flags, RtldLockState *lockstate)
2827 {
2828 
2829 	if (obj->relocated)
2830 		return (0);
2831 	obj->relocated = true;
2832 	if (obj != rtldobj)
2833 		dbg("relocating \"%s\"", obj->path);
2834 
2835 	if (obj->symtab == NULL || obj->strtab == NULL ||
2836 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2837 		_rtld_error("%s: Shared object has no run-time symbol table",
2838 			    obj->path);
2839 		return (-1);
2840 	}
2841 
2842 	/* There are relocations to the write-protected text segment. */
2843 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2844 		return (-1);
2845 
2846 	/* Process the non-PLT non-IFUNC relocations. */
2847 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2848 		return (-1);
2849 
2850 	/* Re-protected the text segment. */
2851 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2852 		return (-1);
2853 
2854 	/* Set the special PLT or GOT entries. */
2855 	init_pltgot(obj);
2856 
2857 	/* Process the PLT relocations. */
2858 	if (reloc_plt(obj) == -1)
2859 		return (-1);
2860 	/* Relocate the jump slots if we are doing immediate binding. */
2861 	if (obj->bind_now || bind_now)
2862 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2863 			return (-1);
2864 
2865 	/*
2866 	 * Process the non-PLT IFUNC relocations.  The relocations are
2867 	 * processed in two phases, because IFUNC resolvers may
2868 	 * reference other symbols, which must be readily processed
2869 	 * before resolvers are called.
2870 	 */
2871 	if (obj->non_plt_gnu_ifunc &&
2872 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2873 		return (-1);
2874 
2875 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2876 		return (-1);
2877 
2878 	/*
2879 	 * Set up the magic number and version in the Obj_Entry.  These
2880 	 * were checked in the crt1.o from the original ElfKit, so we
2881 	 * set them for backward compatibility.
2882 	 */
2883 	obj->magic = RTLD_MAGIC;
2884 	obj->version = RTLD_VERSION;
2885 
2886 	return (0);
2887 }
2888 
2889 /*
2890  * Relocate newly-loaded shared objects.  The argument is a pointer to
2891  * the Obj_Entry for the first such object.  All objects from the first
2892  * to the end of the list of objects are relocated.  Returns 0 on success,
2893  * or -1 on failure.
2894  */
2895 static int
2896 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2897     int flags, RtldLockState *lockstate)
2898 {
2899 	Obj_Entry *obj;
2900 	int error;
2901 
2902 	for (error = 0, obj = first;  obj != NULL;
2903 	    obj = TAILQ_NEXT(obj, next)) {
2904 		if (obj->marker)
2905 			continue;
2906 		error = relocate_object(obj, bind_now, rtldobj, flags,
2907 		    lockstate);
2908 		if (error == -1)
2909 			break;
2910 	}
2911 	return (error);
2912 }
2913 
2914 /*
2915  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2916  * referencing STT_GNU_IFUNC symbols is postponed till the other
2917  * relocations are done.  The indirect functions specified as
2918  * ifunc are allowed to call other symbols, so we need to have
2919  * objects relocated before asking for resolution from indirects.
2920  *
2921  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2922  * instead of the usual lazy handling of PLT slots.  It is
2923  * consistent with how GNU does it.
2924  */
2925 static int
2926 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2927     RtldLockState *lockstate)
2928 {
2929 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2930 		return (-1);
2931 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2932 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2933 		return (-1);
2934 	return (0);
2935 }
2936 
2937 static int
2938 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2939     RtldLockState *lockstate)
2940 {
2941 	Obj_Entry *obj;
2942 
2943 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2944 		if (obj->marker)
2945 			continue;
2946 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2947 			return (-1);
2948 	}
2949 	return (0);
2950 }
2951 
2952 static int
2953 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2954     RtldLockState *lockstate)
2955 {
2956 	Objlist_Entry *elm;
2957 
2958 	STAILQ_FOREACH(elm, list, link) {
2959 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2960 		    lockstate) == -1)
2961 			return (-1);
2962 	}
2963 	return (0);
2964 }
2965 
2966 /*
2967  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2968  * before the process exits.
2969  */
2970 static void
2971 rtld_exit(void)
2972 {
2973     RtldLockState lockstate;
2974 
2975     wlock_acquire(rtld_bind_lock, &lockstate);
2976     dbg("rtld_exit()");
2977     objlist_call_fini(&list_fini, NULL, &lockstate);
2978     /* No need to remove the items from the list, since we are exiting. */
2979     if (!libmap_disable)
2980         lm_fini();
2981     lock_release(rtld_bind_lock, &lockstate);
2982 }
2983 
2984 /*
2985  * Iterate over a search path, translate each element, and invoke the
2986  * callback on the result.
2987  */
2988 static void *
2989 path_enumerate(const char *path, path_enum_proc callback,
2990     const char *refobj_path, void *arg)
2991 {
2992     const char *trans;
2993     if (path == NULL)
2994 	return (NULL);
2995 
2996     path += strspn(path, ":;");
2997     while (*path != '\0') {
2998 	size_t len;
2999 	char  *res;
3000 
3001 	len = strcspn(path, ":;");
3002 	trans = lm_findn(refobj_path, path, len);
3003 	if (trans)
3004 	    res = callback(trans, strlen(trans), arg);
3005 	else
3006 	    res = callback(path, len, arg);
3007 
3008 	if (res != NULL)
3009 	    return (res);
3010 
3011 	path += len;
3012 	path += strspn(path, ":;");
3013     }
3014 
3015     return (NULL);
3016 }
3017 
3018 struct try_library_args {
3019     const char	*name;
3020     size_t	 namelen;
3021     char	*buffer;
3022     size_t	 buflen;
3023     int		 fd;
3024 };
3025 
3026 static void *
3027 try_library_path(const char *dir, size_t dirlen, void *param)
3028 {
3029     struct try_library_args *arg;
3030     int fd;
3031 
3032     arg = param;
3033     if (*dir == '/' || trust) {
3034 	char *pathname;
3035 
3036 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3037 		return (NULL);
3038 
3039 	pathname = arg->buffer;
3040 	strncpy(pathname, dir, dirlen);
3041 	pathname[dirlen] = '/';
3042 	strcpy(pathname + dirlen + 1, arg->name);
3043 
3044 	dbg("  Trying \"%s\"", pathname);
3045 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3046 	if (fd >= 0) {
3047 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3048 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3049 	    strcpy(pathname, arg->buffer);
3050 	    arg->fd = fd;
3051 	    return (pathname);
3052 	} else {
3053 	    dbg("  Failed to open \"%s\": %s",
3054 		pathname, rtld_strerror(errno));
3055 	}
3056     }
3057     return (NULL);
3058 }
3059 
3060 static char *
3061 search_library_path(const char *name, const char *path,
3062     const char *refobj_path, int *fdp)
3063 {
3064     char *p;
3065     struct try_library_args arg;
3066 
3067     if (path == NULL)
3068 	return NULL;
3069 
3070     arg.name = name;
3071     arg.namelen = strlen(name);
3072     arg.buffer = xmalloc(PATH_MAX);
3073     arg.buflen = PATH_MAX;
3074     arg.fd = -1;
3075 
3076     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3077     *fdp = arg.fd;
3078 
3079     free(arg.buffer);
3080 
3081     return (p);
3082 }
3083 
3084 
3085 /*
3086  * Finds the library with the given name using the directory descriptors
3087  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3088  *
3089  * Returns a freshly-opened close-on-exec file descriptor for the library,
3090  * or -1 if the library cannot be found.
3091  */
3092 static char *
3093 search_library_pathfds(const char *name, const char *path, int *fdp)
3094 {
3095 	char *envcopy, *fdstr, *found, *last_token;
3096 	size_t len;
3097 	int dirfd, fd;
3098 
3099 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3100 
3101 	/* Don't load from user-specified libdirs into setuid binaries. */
3102 	if (!trust)
3103 		return (NULL);
3104 
3105 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3106 	if (path == NULL)
3107 		return (NULL);
3108 
3109 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3110 	if (name[0] == '/') {
3111 		dbg("Absolute path (%s) passed to %s", name, __func__);
3112 		return (NULL);
3113 	}
3114 
3115 	/*
3116 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3117 	 * copy of the path, as strtok_r rewrites separator tokens
3118 	 * with '\0'.
3119 	 */
3120 	found = NULL;
3121 	envcopy = xstrdup(path);
3122 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3123 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3124 		dirfd = parse_integer(fdstr);
3125 		if (dirfd < 0) {
3126 			_rtld_error("failed to parse directory FD: '%s'",
3127 				fdstr);
3128 			break;
3129 		}
3130 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3131 		if (fd >= 0) {
3132 			*fdp = fd;
3133 			len = strlen(fdstr) + strlen(name) + 3;
3134 			found = xmalloc(len);
3135 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3136 				_rtld_error("error generating '%d/%s'",
3137 				    dirfd, name);
3138 				rtld_die();
3139 			}
3140 			dbg("open('%s') => %d", found, fd);
3141 			break;
3142 		}
3143 	}
3144 	free(envcopy);
3145 
3146 	return (found);
3147 }
3148 
3149 
3150 int
3151 dlclose(void *handle)
3152 {
3153 	RtldLockState lockstate;
3154 	int error;
3155 
3156 	wlock_acquire(rtld_bind_lock, &lockstate);
3157 	error = dlclose_locked(handle, &lockstate);
3158 	lock_release(rtld_bind_lock, &lockstate);
3159 	return (error);
3160 }
3161 
3162 static int
3163 dlclose_locked(void *handle, RtldLockState *lockstate)
3164 {
3165     Obj_Entry *root;
3166 
3167     root = dlcheck(handle);
3168     if (root == NULL)
3169 	return -1;
3170     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3171 	root->path);
3172 
3173     /* Unreference the object and its dependencies. */
3174     root->dl_refcount--;
3175 
3176     if (root->refcount == 1) {
3177 	/*
3178 	 * The object will be no longer referenced, so we must unload it.
3179 	 * First, call the fini functions.
3180 	 */
3181 	objlist_call_fini(&list_fini, root, lockstate);
3182 
3183 	unref_dag(root);
3184 
3185 	/* Finish cleaning up the newly-unreferenced objects. */
3186 	GDB_STATE(RT_DELETE,&root->linkmap);
3187 	unload_object(root, lockstate);
3188 	GDB_STATE(RT_CONSISTENT,NULL);
3189     } else
3190 	unref_dag(root);
3191 
3192     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3193     return 0;
3194 }
3195 
3196 char *
3197 dlerror(void)
3198 {
3199     char *msg = error_message;
3200     error_message = NULL;
3201     return msg;
3202 }
3203 
3204 /*
3205  * This function is deprecated and has no effect.
3206  */
3207 void
3208 dllockinit(void *context,
3209 	   void *(*lock_create)(void *context),
3210            void (*rlock_acquire)(void *lock),
3211            void (*wlock_acquire)(void *lock),
3212            void (*lock_release)(void *lock),
3213            void (*lock_destroy)(void *lock),
3214 	   void (*context_destroy)(void *context))
3215 {
3216     static void *cur_context;
3217     static void (*cur_context_destroy)(void *);
3218 
3219     /* Just destroy the context from the previous call, if necessary. */
3220     if (cur_context_destroy != NULL)
3221 	cur_context_destroy(cur_context);
3222     cur_context = context;
3223     cur_context_destroy = context_destroy;
3224 }
3225 
3226 void *
3227 dlopen(const char *name, int mode)
3228 {
3229 
3230 	return (rtld_dlopen(name, -1, mode));
3231 }
3232 
3233 void *
3234 fdlopen(int fd, int mode)
3235 {
3236 
3237 	return (rtld_dlopen(NULL, fd, mode));
3238 }
3239 
3240 static void *
3241 rtld_dlopen(const char *name, int fd, int mode)
3242 {
3243     RtldLockState lockstate;
3244     int lo_flags;
3245 
3246     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3247     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3248     if (ld_tracing != NULL) {
3249 	rlock_acquire(rtld_bind_lock, &lockstate);
3250 	if (sigsetjmp(lockstate.env, 0) != 0)
3251 	    lock_upgrade(rtld_bind_lock, &lockstate);
3252 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3253 	lock_release(rtld_bind_lock, &lockstate);
3254     }
3255     lo_flags = RTLD_LO_DLOPEN;
3256     if (mode & RTLD_NODELETE)
3257 	    lo_flags |= RTLD_LO_NODELETE;
3258     if (mode & RTLD_NOLOAD)
3259 	    lo_flags |= RTLD_LO_NOLOAD;
3260     if (ld_tracing != NULL)
3261 	    lo_flags |= RTLD_LO_TRACE;
3262 
3263     return (dlopen_object(name, fd, obj_main, lo_flags,
3264       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3265 }
3266 
3267 static void
3268 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3269 {
3270 
3271 	obj->dl_refcount--;
3272 	unref_dag(obj);
3273 	if (obj->refcount == 0)
3274 		unload_object(obj, lockstate);
3275 }
3276 
3277 static Obj_Entry *
3278 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3279     int mode, RtldLockState *lockstate)
3280 {
3281     Obj_Entry *old_obj_tail;
3282     Obj_Entry *obj;
3283     Objlist initlist;
3284     RtldLockState mlockstate;
3285     int result;
3286 
3287     objlist_init(&initlist);
3288 
3289     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3290 	wlock_acquire(rtld_bind_lock, &mlockstate);
3291 	lockstate = &mlockstate;
3292     }
3293     GDB_STATE(RT_ADD,NULL);
3294 
3295     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3296     obj = NULL;
3297     if (name == NULL && fd == -1) {
3298 	obj = obj_main;
3299 	obj->refcount++;
3300     } else {
3301 	obj = load_object(name, fd, refobj, lo_flags);
3302     }
3303 
3304     if (obj) {
3305 	obj->dl_refcount++;
3306 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3307 	    objlist_push_tail(&list_global, obj);
3308 	if (globallist_next(old_obj_tail) != NULL) {
3309 	    /* We loaded something new. */
3310 	    assert(globallist_next(old_obj_tail) == obj);
3311 	    result = load_needed_objects(obj,
3312 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3313 	    init_dag(obj);
3314 	    ref_dag(obj);
3315 	    if (result != -1)
3316 		result = rtld_verify_versions(&obj->dagmembers);
3317 	    if (result != -1 && ld_tracing)
3318 		goto trace;
3319 	    if (result == -1 || relocate_object_dag(obj,
3320 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3321 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3322 	      lockstate) == -1) {
3323 		dlopen_cleanup(obj, lockstate);
3324 		obj = NULL;
3325 	    } else if (lo_flags & RTLD_LO_EARLY) {
3326 		/*
3327 		 * Do not call the init functions for early loaded
3328 		 * filtees.  The image is still not initialized enough
3329 		 * for them to work.
3330 		 *
3331 		 * Our object is found by the global object list and
3332 		 * will be ordered among all init calls done right
3333 		 * before transferring control to main.
3334 		 */
3335 	    } else {
3336 		/* Make list of init functions to call. */
3337 		initlist_add_objects(obj, obj, &initlist);
3338 	    }
3339 	    /*
3340 	     * Process all no_delete or global objects here, given
3341 	     * them own DAGs to prevent their dependencies from being
3342 	     * unloaded.  This has to be done after we have loaded all
3343 	     * of the dependencies, so that we do not miss any.
3344 	     */
3345 	    if (obj != NULL)
3346 		process_z(obj);
3347 	} else {
3348 	    /*
3349 	     * Bump the reference counts for objects on this DAG.  If
3350 	     * this is the first dlopen() call for the object that was
3351 	     * already loaded as a dependency, initialize the dag
3352 	     * starting at it.
3353 	     */
3354 	    init_dag(obj);
3355 	    ref_dag(obj);
3356 
3357 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3358 		goto trace;
3359 	}
3360 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3361 	  obj->z_nodelete) && !obj->ref_nodel) {
3362 	    dbg("obj %s nodelete", obj->path);
3363 	    ref_dag(obj);
3364 	    obj->z_nodelete = obj->ref_nodel = true;
3365 	}
3366     }
3367 
3368     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3369 	name);
3370     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3371 
3372     if (!(lo_flags & RTLD_LO_EARLY)) {
3373 	map_stacks_exec(lockstate);
3374     }
3375 
3376     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3377       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3378       lockstate) == -1) {
3379 	objlist_clear(&initlist);
3380 	dlopen_cleanup(obj, lockstate);
3381 	if (lockstate == &mlockstate)
3382 	    lock_release(rtld_bind_lock, lockstate);
3383 	return (NULL);
3384     }
3385 
3386     if (!(lo_flags & RTLD_LO_EARLY)) {
3387 	/* Call the init functions. */
3388 	objlist_call_init(&initlist, lockstate);
3389     }
3390     objlist_clear(&initlist);
3391     if (lockstate == &mlockstate)
3392 	lock_release(rtld_bind_lock, lockstate);
3393     return obj;
3394 trace:
3395     trace_loaded_objects(obj);
3396     if (lockstate == &mlockstate)
3397 	lock_release(rtld_bind_lock, lockstate);
3398     exit(0);
3399 }
3400 
3401 static void *
3402 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3403     int flags)
3404 {
3405     DoneList donelist;
3406     const Obj_Entry *obj, *defobj;
3407     const Elf_Sym *def;
3408     SymLook req;
3409     RtldLockState lockstate;
3410     tls_index ti;
3411     void *sym;
3412     int res;
3413 
3414     def = NULL;
3415     defobj = NULL;
3416     symlook_init(&req, name);
3417     req.ventry = ve;
3418     req.flags = flags | SYMLOOK_IN_PLT;
3419     req.lockstate = &lockstate;
3420 
3421     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3422     rlock_acquire(rtld_bind_lock, &lockstate);
3423     if (sigsetjmp(lockstate.env, 0) != 0)
3424 	    lock_upgrade(rtld_bind_lock, &lockstate);
3425     if (handle == NULL || handle == RTLD_NEXT ||
3426 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3427 
3428 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3429 	    _rtld_error("Cannot determine caller's shared object");
3430 	    lock_release(rtld_bind_lock, &lockstate);
3431 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3432 	    return NULL;
3433 	}
3434 	if (handle == NULL) {	/* Just the caller's shared object. */
3435 	    res = symlook_obj(&req, obj);
3436 	    if (res == 0) {
3437 		def = req.sym_out;
3438 		defobj = req.defobj_out;
3439 	    }
3440 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3441 		   handle == RTLD_SELF) { /* ... caller included */
3442 	    if (handle == RTLD_NEXT)
3443 		obj = globallist_next(obj);
3444 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3445 		if (obj->marker)
3446 		    continue;
3447 		res = symlook_obj(&req, obj);
3448 		if (res == 0) {
3449 		    if (def == NULL ||
3450 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3451 			def = req.sym_out;
3452 			defobj = req.defobj_out;
3453 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3454 			    break;
3455 		    }
3456 		}
3457 	    }
3458 	    /*
3459 	     * Search the dynamic linker itself, and possibly resolve the
3460 	     * symbol from there.  This is how the application links to
3461 	     * dynamic linker services such as dlopen.
3462 	     */
3463 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3464 		res = symlook_obj(&req, &obj_rtld);
3465 		if (res == 0) {
3466 		    def = req.sym_out;
3467 		    defobj = req.defobj_out;
3468 		}
3469 	    }
3470 	} else {
3471 	    assert(handle == RTLD_DEFAULT);
3472 	    res = symlook_default(&req, obj);
3473 	    if (res == 0) {
3474 		defobj = req.defobj_out;
3475 		def = req.sym_out;
3476 	    }
3477 	}
3478     } else {
3479 	if ((obj = dlcheck(handle)) == NULL) {
3480 	    lock_release(rtld_bind_lock, &lockstate);
3481 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3482 	    return NULL;
3483 	}
3484 
3485 	donelist_init(&donelist);
3486 	if (obj->mainprog) {
3487             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3488 	    res = symlook_global(&req, &donelist);
3489 	    if (res == 0) {
3490 		def = req.sym_out;
3491 		defobj = req.defobj_out;
3492 	    }
3493 	    /*
3494 	     * Search the dynamic linker itself, and possibly resolve the
3495 	     * symbol from there.  This is how the application links to
3496 	     * dynamic linker services such as dlopen.
3497 	     */
3498 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3499 		res = symlook_obj(&req, &obj_rtld);
3500 		if (res == 0) {
3501 		    def = req.sym_out;
3502 		    defobj = req.defobj_out;
3503 		}
3504 	    }
3505 	}
3506 	else {
3507 	    /* Search the whole DAG rooted at the given object. */
3508 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3509 	    if (res == 0) {
3510 		def = req.sym_out;
3511 		defobj = req.defobj_out;
3512 	    }
3513 	}
3514     }
3515 
3516     if (def != NULL) {
3517 	lock_release(rtld_bind_lock, &lockstate);
3518 
3519 	/*
3520 	 * The value required by the caller is derived from the value
3521 	 * of the symbol. this is simply the relocated value of the
3522 	 * symbol.
3523 	 */
3524 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3525 	    sym = make_function_pointer(def, defobj);
3526 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3527 	    sym = rtld_resolve_ifunc(defobj, def);
3528 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3529 	    ti.ti_module = defobj->tlsindex;
3530 	    ti.ti_offset = def->st_value;
3531 	    sym = __tls_get_addr(&ti);
3532 	} else
3533 	    sym = defobj->relocbase + def->st_value;
3534 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3535 	return (sym);
3536     }
3537 
3538     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3539       ve != NULL ? ve->name : "");
3540     lock_release(rtld_bind_lock, &lockstate);
3541     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3542     return NULL;
3543 }
3544 
3545 void *
3546 dlsym(void *handle, const char *name)
3547 {
3548 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3549 	    SYMLOOK_DLSYM);
3550 }
3551 
3552 dlfunc_t
3553 dlfunc(void *handle, const char *name)
3554 {
3555 	union {
3556 		void *d;
3557 		dlfunc_t f;
3558 	} rv;
3559 
3560 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3561 	    SYMLOOK_DLSYM);
3562 	return (rv.f);
3563 }
3564 
3565 void *
3566 dlvsym(void *handle, const char *name, const char *version)
3567 {
3568 	Ver_Entry ventry;
3569 
3570 	ventry.name = version;
3571 	ventry.file = NULL;
3572 	ventry.hash = elf_hash(version);
3573 	ventry.flags= 0;
3574 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3575 	    SYMLOOK_DLSYM);
3576 }
3577 
3578 int
3579 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3580 {
3581     const Obj_Entry *obj;
3582     RtldLockState lockstate;
3583 
3584     rlock_acquire(rtld_bind_lock, &lockstate);
3585     obj = obj_from_addr(addr);
3586     if (obj == NULL) {
3587         _rtld_error("No shared object contains address");
3588 	lock_release(rtld_bind_lock, &lockstate);
3589         return (0);
3590     }
3591     rtld_fill_dl_phdr_info(obj, phdr_info);
3592     lock_release(rtld_bind_lock, &lockstate);
3593     return (1);
3594 }
3595 
3596 int
3597 dladdr(const void *addr, Dl_info *info)
3598 {
3599     const Obj_Entry *obj;
3600     const Elf_Sym *def;
3601     void *symbol_addr;
3602     unsigned long symoffset;
3603     RtldLockState lockstate;
3604 
3605     rlock_acquire(rtld_bind_lock, &lockstate);
3606     obj = obj_from_addr(addr);
3607     if (obj == NULL) {
3608         _rtld_error("No shared object contains address");
3609 	lock_release(rtld_bind_lock, &lockstate);
3610         return 0;
3611     }
3612     info->dli_fname = obj->path;
3613     info->dli_fbase = obj->mapbase;
3614     info->dli_saddr = (void *)0;
3615     info->dli_sname = NULL;
3616 
3617     /*
3618      * Walk the symbol list looking for the symbol whose address is
3619      * closest to the address sent in.
3620      */
3621     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3622         def = obj->symtab + symoffset;
3623 
3624         /*
3625          * For skip the symbol if st_shndx is either SHN_UNDEF or
3626          * SHN_COMMON.
3627          */
3628         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3629             continue;
3630 
3631         /*
3632          * If the symbol is greater than the specified address, or if it
3633          * is further away from addr than the current nearest symbol,
3634          * then reject it.
3635          */
3636         symbol_addr = obj->relocbase + def->st_value;
3637         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3638             continue;
3639 
3640         /* Update our idea of the nearest symbol. */
3641         info->dli_sname = obj->strtab + def->st_name;
3642         info->dli_saddr = symbol_addr;
3643 
3644         /* Exact match? */
3645         if (info->dli_saddr == addr)
3646             break;
3647     }
3648     lock_release(rtld_bind_lock, &lockstate);
3649     return 1;
3650 }
3651 
3652 int
3653 dlinfo(void *handle, int request, void *p)
3654 {
3655     const Obj_Entry *obj;
3656     RtldLockState lockstate;
3657     int error;
3658 
3659     rlock_acquire(rtld_bind_lock, &lockstate);
3660 
3661     if (handle == NULL || handle == RTLD_SELF) {
3662 	void *retaddr;
3663 
3664 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3665 	if ((obj = obj_from_addr(retaddr)) == NULL)
3666 	    _rtld_error("Cannot determine caller's shared object");
3667     } else
3668 	obj = dlcheck(handle);
3669 
3670     if (obj == NULL) {
3671 	lock_release(rtld_bind_lock, &lockstate);
3672 	return (-1);
3673     }
3674 
3675     error = 0;
3676     switch (request) {
3677     case RTLD_DI_LINKMAP:
3678 	*((struct link_map const **)p) = &obj->linkmap;
3679 	break;
3680     case RTLD_DI_ORIGIN:
3681 	error = rtld_dirname(obj->path, p);
3682 	break;
3683 
3684     case RTLD_DI_SERINFOSIZE:
3685     case RTLD_DI_SERINFO:
3686 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3687 	break;
3688 
3689     default:
3690 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3691 	error = -1;
3692     }
3693 
3694     lock_release(rtld_bind_lock, &lockstate);
3695 
3696     return (error);
3697 }
3698 
3699 static void
3700 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3701 {
3702 
3703 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3704 	phdr_info->dlpi_name = obj->path;
3705 	phdr_info->dlpi_phdr = obj->phdr;
3706 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3707 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3708 	phdr_info->dlpi_tls_data = obj->tlsinit;
3709 	phdr_info->dlpi_adds = obj_loads;
3710 	phdr_info->dlpi_subs = obj_loads - obj_count;
3711 }
3712 
3713 int
3714 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3715 {
3716 	struct dl_phdr_info phdr_info;
3717 	Obj_Entry *obj, marker;
3718 	RtldLockState bind_lockstate, phdr_lockstate;
3719 	int error;
3720 
3721 	init_marker(&marker);
3722 	error = 0;
3723 
3724 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3725 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3726 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3727 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3728 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3729 		hold_object(obj);
3730 		lock_release(rtld_bind_lock, &bind_lockstate);
3731 
3732 		error = callback(&phdr_info, sizeof phdr_info, param);
3733 
3734 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3735 		unhold_object(obj);
3736 		obj = globallist_next(&marker);
3737 		TAILQ_REMOVE(&obj_list, &marker, next);
3738 		if (error != 0) {
3739 			lock_release(rtld_bind_lock, &bind_lockstate);
3740 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3741 			return (error);
3742 		}
3743 	}
3744 
3745 	if (error == 0) {
3746 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3747 		lock_release(rtld_bind_lock, &bind_lockstate);
3748 		error = callback(&phdr_info, sizeof(phdr_info), param);
3749 	}
3750 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3751 	return (error);
3752 }
3753 
3754 static void *
3755 fill_search_info(const char *dir, size_t dirlen, void *param)
3756 {
3757     struct fill_search_info_args *arg;
3758 
3759     arg = param;
3760 
3761     if (arg->request == RTLD_DI_SERINFOSIZE) {
3762 	arg->serinfo->dls_cnt ++;
3763 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3764     } else {
3765 	struct dl_serpath *s_entry;
3766 
3767 	s_entry = arg->serpath;
3768 	s_entry->dls_name  = arg->strspace;
3769 	s_entry->dls_flags = arg->flags;
3770 
3771 	strncpy(arg->strspace, dir, dirlen);
3772 	arg->strspace[dirlen] = '\0';
3773 
3774 	arg->strspace += dirlen + 1;
3775 	arg->serpath++;
3776     }
3777 
3778     return (NULL);
3779 }
3780 
3781 static int
3782 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3783 {
3784     struct dl_serinfo _info;
3785     struct fill_search_info_args args;
3786 
3787     args.request = RTLD_DI_SERINFOSIZE;
3788     args.serinfo = &_info;
3789 
3790     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3791     _info.dls_cnt  = 0;
3792 
3793     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3794     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3795     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3796     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3797     if (!obj->z_nodeflib)
3798       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3799 
3800 
3801     if (request == RTLD_DI_SERINFOSIZE) {
3802 	info->dls_size = _info.dls_size;
3803 	info->dls_cnt = _info.dls_cnt;
3804 	return (0);
3805     }
3806 
3807     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3808 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3809 	return (-1);
3810     }
3811 
3812     args.request  = RTLD_DI_SERINFO;
3813     args.serinfo  = info;
3814     args.serpath  = &info->dls_serpath[0];
3815     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3816 
3817     args.flags = LA_SER_RUNPATH;
3818     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3819 	return (-1);
3820 
3821     args.flags = LA_SER_LIBPATH;
3822     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3823 	return (-1);
3824 
3825     args.flags = LA_SER_RUNPATH;
3826     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3827 	return (-1);
3828 
3829     args.flags = LA_SER_CONFIG;
3830     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3831       != NULL)
3832 	return (-1);
3833 
3834     args.flags = LA_SER_DEFAULT;
3835     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3836       fill_search_info, NULL, &args) != NULL)
3837 	return (-1);
3838     return (0);
3839 }
3840 
3841 static int
3842 rtld_dirname(const char *path, char *bname)
3843 {
3844     const char *endp;
3845 
3846     /* Empty or NULL string gets treated as "." */
3847     if (path == NULL || *path == '\0') {
3848 	bname[0] = '.';
3849 	bname[1] = '\0';
3850 	return (0);
3851     }
3852 
3853     /* Strip trailing slashes */
3854     endp = path + strlen(path) - 1;
3855     while (endp > path && *endp == '/')
3856 	endp--;
3857 
3858     /* Find the start of the dir */
3859     while (endp > path && *endp != '/')
3860 	endp--;
3861 
3862     /* Either the dir is "/" or there are no slashes */
3863     if (endp == path) {
3864 	bname[0] = *endp == '/' ? '/' : '.';
3865 	bname[1] = '\0';
3866 	return (0);
3867     } else {
3868 	do {
3869 	    endp--;
3870 	} while (endp > path && *endp == '/');
3871     }
3872 
3873     if (endp - path + 2 > PATH_MAX)
3874     {
3875 	_rtld_error("Filename is too long: %s", path);
3876 	return(-1);
3877     }
3878 
3879     strncpy(bname, path, endp - path + 1);
3880     bname[endp - path + 1] = '\0';
3881     return (0);
3882 }
3883 
3884 static int
3885 rtld_dirname_abs(const char *path, char *base)
3886 {
3887 	char *last;
3888 
3889 	if (realpath(path, base) == NULL)
3890 		return (-1);
3891 	dbg("%s -> %s", path, base);
3892 	last = strrchr(base, '/');
3893 	if (last == NULL)
3894 		return (-1);
3895 	if (last != base)
3896 		*last = '\0';
3897 	return (0);
3898 }
3899 
3900 static void
3901 linkmap_add(Obj_Entry *obj)
3902 {
3903     struct link_map *l = &obj->linkmap;
3904     struct link_map *prev;
3905 
3906     obj->linkmap.l_name = obj->path;
3907     obj->linkmap.l_addr = obj->mapbase;
3908     obj->linkmap.l_ld = obj->dynamic;
3909 #ifdef __mips__
3910     /* GDB needs load offset on MIPS to use the symbols */
3911     obj->linkmap.l_offs = obj->relocbase;
3912 #endif
3913 
3914     if (r_debug.r_map == NULL) {
3915 	r_debug.r_map = l;
3916 	return;
3917     }
3918 
3919     /*
3920      * Scan to the end of the list, but not past the entry for the
3921      * dynamic linker, which we want to keep at the very end.
3922      */
3923     for (prev = r_debug.r_map;
3924       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3925       prev = prev->l_next)
3926 	;
3927 
3928     /* Link in the new entry. */
3929     l->l_prev = prev;
3930     l->l_next = prev->l_next;
3931     if (l->l_next != NULL)
3932 	l->l_next->l_prev = l;
3933     prev->l_next = l;
3934 }
3935 
3936 static void
3937 linkmap_delete(Obj_Entry *obj)
3938 {
3939     struct link_map *l = &obj->linkmap;
3940 
3941     if (l->l_prev == NULL) {
3942 	if ((r_debug.r_map = l->l_next) != NULL)
3943 	    l->l_next->l_prev = NULL;
3944 	return;
3945     }
3946 
3947     if ((l->l_prev->l_next = l->l_next) != NULL)
3948 	l->l_next->l_prev = l->l_prev;
3949 }
3950 
3951 /*
3952  * Function for the debugger to set a breakpoint on to gain control.
3953  *
3954  * The two parameters allow the debugger to easily find and determine
3955  * what the runtime loader is doing and to whom it is doing it.
3956  *
3957  * When the loadhook trap is hit (r_debug_state, set at program
3958  * initialization), the arguments can be found on the stack:
3959  *
3960  *  +8   struct link_map *m
3961  *  +4   struct r_debug  *rd
3962  *  +0   RetAddr
3963  */
3964 void
3965 r_debug_state(struct r_debug* rd, struct link_map *m)
3966 {
3967     /*
3968      * The following is a hack to force the compiler to emit calls to
3969      * this function, even when optimizing.  If the function is empty,
3970      * the compiler is not obliged to emit any code for calls to it,
3971      * even when marked __noinline.  However, gdb depends on those
3972      * calls being made.
3973      */
3974     __compiler_membar();
3975 }
3976 
3977 /*
3978  * A function called after init routines have completed. This can be used to
3979  * break before a program's entry routine is called, and can be used when
3980  * main is not available in the symbol table.
3981  */
3982 void
3983 _r_debug_postinit(struct link_map *m)
3984 {
3985 
3986 	/* See r_debug_state(). */
3987 	__compiler_membar();
3988 }
3989 
3990 static void
3991 release_object(Obj_Entry *obj)
3992 {
3993 
3994 	if (obj->holdcount > 0) {
3995 		obj->unholdfree = true;
3996 		return;
3997 	}
3998 	munmap(obj->mapbase, obj->mapsize);
3999 	linkmap_delete(obj);
4000 	obj_free(obj);
4001 }
4002 
4003 /*
4004  * Get address of the pointer variable in the main program.
4005  * Prefer non-weak symbol over the weak one.
4006  */
4007 static const void **
4008 get_program_var_addr(const char *name, RtldLockState *lockstate)
4009 {
4010     SymLook req;
4011     DoneList donelist;
4012 
4013     symlook_init(&req, name);
4014     req.lockstate = lockstate;
4015     donelist_init(&donelist);
4016     if (symlook_global(&req, &donelist) != 0)
4017 	return (NULL);
4018     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4019 	return ((const void **)make_function_pointer(req.sym_out,
4020 	  req.defobj_out));
4021     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4022 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4023     else
4024 	return ((const void **)(req.defobj_out->relocbase +
4025 	  req.sym_out->st_value));
4026 }
4027 
4028 /*
4029  * Set a pointer variable in the main program to the given value.  This
4030  * is used to set key variables such as "environ" before any of the
4031  * init functions are called.
4032  */
4033 static void
4034 set_program_var(const char *name, const void *value)
4035 {
4036     const void **addr;
4037 
4038     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4039 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4040 	*addr = value;
4041     }
4042 }
4043 
4044 /*
4045  * Search the global objects, including dependencies and main object,
4046  * for the given symbol.
4047  */
4048 static int
4049 symlook_global(SymLook *req, DoneList *donelist)
4050 {
4051     SymLook req1;
4052     const Objlist_Entry *elm;
4053     int res;
4054 
4055     symlook_init_from_req(&req1, req);
4056 
4057     /* Search all objects loaded at program start up. */
4058     if (req->defobj_out == NULL ||
4059       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4060 	res = symlook_list(&req1, &list_main, donelist);
4061 	if (res == 0 && (req->defobj_out == NULL ||
4062 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4063 	    req->sym_out = req1.sym_out;
4064 	    req->defobj_out = req1.defobj_out;
4065 	    assert(req->defobj_out != NULL);
4066 	}
4067     }
4068 
4069     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4070     STAILQ_FOREACH(elm, &list_global, link) {
4071 	if (req->defobj_out != NULL &&
4072 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4073 	    break;
4074 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4075 	if (res == 0 && (req->defobj_out == NULL ||
4076 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4077 	    req->sym_out = req1.sym_out;
4078 	    req->defobj_out = req1.defobj_out;
4079 	    assert(req->defobj_out != NULL);
4080 	}
4081     }
4082 
4083     return (req->sym_out != NULL ? 0 : ESRCH);
4084 }
4085 
4086 /*
4087  * Given a symbol name in a referencing object, find the corresponding
4088  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4089  * no definition was found.  Returns a pointer to the Obj_Entry of the
4090  * defining object via the reference parameter DEFOBJ_OUT.
4091  */
4092 static int
4093 symlook_default(SymLook *req, const Obj_Entry *refobj)
4094 {
4095     DoneList donelist;
4096     const Objlist_Entry *elm;
4097     SymLook req1;
4098     int res;
4099 
4100     donelist_init(&donelist);
4101     symlook_init_from_req(&req1, req);
4102 
4103     /*
4104      * Look first in the referencing object if linked symbolically,
4105      * and similarly handle protected symbols.
4106      */
4107     res = symlook_obj(&req1, refobj);
4108     if (res == 0 && (refobj->symbolic ||
4109       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4110 	req->sym_out = req1.sym_out;
4111 	req->defobj_out = req1.defobj_out;
4112 	assert(req->defobj_out != NULL);
4113     }
4114     if (refobj->symbolic || req->defobj_out != NULL)
4115 	donelist_check(&donelist, refobj);
4116 
4117     symlook_global(req, &donelist);
4118 
4119     /* Search all dlopened DAGs containing the referencing object. */
4120     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4121 	if (req->sym_out != NULL &&
4122 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4123 	    break;
4124 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4125 	if (res == 0 && (req->sym_out == NULL ||
4126 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4127 	    req->sym_out = req1.sym_out;
4128 	    req->defobj_out = req1.defobj_out;
4129 	    assert(req->defobj_out != NULL);
4130 	}
4131     }
4132 
4133     /*
4134      * Search the dynamic linker itself, and possibly resolve the
4135      * symbol from there.  This is how the application links to
4136      * dynamic linker services such as dlopen.
4137      */
4138     if (req->sym_out == NULL ||
4139       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4140 	res = symlook_obj(&req1, &obj_rtld);
4141 	if (res == 0) {
4142 	    req->sym_out = req1.sym_out;
4143 	    req->defobj_out = req1.defobj_out;
4144 	    assert(req->defobj_out != NULL);
4145 	}
4146     }
4147 
4148     return (req->sym_out != NULL ? 0 : ESRCH);
4149 }
4150 
4151 static int
4152 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4153 {
4154     const Elf_Sym *def;
4155     const Obj_Entry *defobj;
4156     const Objlist_Entry *elm;
4157     SymLook req1;
4158     int res;
4159 
4160     def = NULL;
4161     defobj = NULL;
4162     STAILQ_FOREACH(elm, objlist, link) {
4163 	if (donelist_check(dlp, elm->obj))
4164 	    continue;
4165 	symlook_init_from_req(&req1, req);
4166 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4167 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4168 		def = req1.sym_out;
4169 		defobj = req1.defobj_out;
4170 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4171 		    break;
4172 	    }
4173 	}
4174     }
4175     if (def != NULL) {
4176 	req->sym_out = def;
4177 	req->defobj_out = defobj;
4178 	return (0);
4179     }
4180     return (ESRCH);
4181 }
4182 
4183 /*
4184  * Search the chain of DAGS cointed to by the given Needed_Entry
4185  * for a symbol of the given name.  Each DAG is scanned completely
4186  * before advancing to the next one.  Returns a pointer to the symbol,
4187  * or NULL if no definition was found.
4188  */
4189 static int
4190 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4191 {
4192     const Elf_Sym *def;
4193     const Needed_Entry *n;
4194     const Obj_Entry *defobj;
4195     SymLook req1;
4196     int res;
4197 
4198     def = NULL;
4199     defobj = NULL;
4200     symlook_init_from_req(&req1, req);
4201     for (n = needed; n != NULL; n = n->next) {
4202 	if (n->obj == NULL ||
4203 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4204 	    continue;
4205 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4206 	    def = req1.sym_out;
4207 	    defobj = req1.defobj_out;
4208 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4209 		break;
4210 	}
4211     }
4212     if (def != NULL) {
4213 	req->sym_out = def;
4214 	req->defobj_out = defobj;
4215 	return (0);
4216     }
4217     return (ESRCH);
4218 }
4219 
4220 /*
4221  * Search the symbol table of a single shared object for a symbol of
4222  * the given name and version, if requested.  Returns a pointer to the
4223  * symbol, or NULL if no definition was found.  If the object is
4224  * filter, return filtered symbol from filtee.
4225  *
4226  * The symbol's hash value is passed in for efficiency reasons; that
4227  * eliminates many recomputations of the hash value.
4228  */
4229 int
4230 symlook_obj(SymLook *req, const Obj_Entry *obj)
4231 {
4232     DoneList donelist;
4233     SymLook req1;
4234     int flags, res, mres;
4235 
4236     /*
4237      * If there is at least one valid hash at this point, we prefer to
4238      * use the faster GNU version if available.
4239      */
4240     if (obj->valid_hash_gnu)
4241 	mres = symlook_obj1_gnu(req, obj);
4242     else if (obj->valid_hash_sysv)
4243 	mres = symlook_obj1_sysv(req, obj);
4244     else
4245 	return (EINVAL);
4246 
4247     if (mres == 0) {
4248 	if (obj->needed_filtees != NULL) {
4249 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4250 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4251 	    donelist_init(&donelist);
4252 	    symlook_init_from_req(&req1, req);
4253 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4254 	    if (res == 0) {
4255 		req->sym_out = req1.sym_out;
4256 		req->defobj_out = req1.defobj_out;
4257 	    }
4258 	    return (res);
4259 	}
4260 	if (obj->needed_aux_filtees != NULL) {
4261 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4262 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4263 	    donelist_init(&donelist);
4264 	    symlook_init_from_req(&req1, req);
4265 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4266 	    if (res == 0) {
4267 		req->sym_out = req1.sym_out;
4268 		req->defobj_out = req1.defobj_out;
4269 		return (res);
4270 	    }
4271 	}
4272     }
4273     return (mres);
4274 }
4275 
4276 /* Symbol match routine common to both hash functions */
4277 static bool
4278 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4279     const unsigned long symnum)
4280 {
4281 	Elf_Versym verndx;
4282 	const Elf_Sym *symp;
4283 	const char *strp;
4284 
4285 	symp = obj->symtab + symnum;
4286 	strp = obj->strtab + symp->st_name;
4287 
4288 	switch (ELF_ST_TYPE(symp->st_info)) {
4289 	case STT_FUNC:
4290 	case STT_NOTYPE:
4291 	case STT_OBJECT:
4292 	case STT_COMMON:
4293 	case STT_GNU_IFUNC:
4294 		if (symp->st_value == 0)
4295 			return (false);
4296 		/* fallthrough */
4297 	case STT_TLS:
4298 		if (symp->st_shndx != SHN_UNDEF)
4299 			break;
4300 #ifndef __mips__
4301 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4302 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4303 			break;
4304 		/* fallthrough */
4305 #endif
4306 	default:
4307 		return (false);
4308 	}
4309 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4310 		return (false);
4311 
4312 	if (req->ventry == NULL) {
4313 		if (obj->versyms != NULL) {
4314 			verndx = VER_NDX(obj->versyms[symnum]);
4315 			if (verndx > obj->vernum) {
4316 				_rtld_error(
4317 				    "%s: symbol %s references wrong version %d",
4318 				    obj->path, obj->strtab + symnum, verndx);
4319 				return (false);
4320 			}
4321 			/*
4322 			 * If we are not called from dlsym (i.e. this
4323 			 * is a normal relocation from unversioned
4324 			 * binary), accept the symbol immediately if
4325 			 * it happens to have first version after this
4326 			 * shared object became versioned.  Otherwise,
4327 			 * if symbol is versioned and not hidden,
4328 			 * remember it. If it is the only symbol with
4329 			 * this name exported by the shared object, it
4330 			 * will be returned as a match by the calling
4331 			 * function. If symbol is global (verndx < 2)
4332 			 * accept it unconditionally.
4333 			 */
4334 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4335 			    verndx == VER_NDX_GIVEN) {
4336 				result->sym_out = symp;
4337 				return (true);
4338 			}
4339 			else if (verndx >= VER_NDX_GIVEN) {
4340 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4341 				    == 0) {
4342 					if (result->vsymp == NULL)
4343 						result->vsymp = symp;
4344 					result->vcount++;
4345 				}
4346 				return (false);
4347 			}
4348 		}
4349 		result->sym_out = symp;
4350 		return (true);
4351 	}
4352 	if (obj->versyms == NULL) {
4353 		if (object_match_name(obj, req->ventry->name)) {
4354 			_rtld_error("%s: object %s should provide version %s "
4355 			    "for symbol %s", obj_rtld.path, obj->path,
4356 			    req->ventry->name, obj->strtab + symnum);
4357 			return (false);
4358 		}
4359 	} else {
4360 		verndx = VER_NDX(obj->versyms[symnum]);
4361 		if (verndx > obj->vernum) {
4362 			_rtld_error("%s: symbol %s references wrong version %d",
4363 			    obj->path, obj->strtab + symnum, verndx);
4364 			return (false);
4365 		}
4366 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4367 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4368 			/*
4369 			 * Version does not match. Look if this is a
4370 			 * global symbol and if it is not hidden. If
4371 			 * global symbol (verndx < 2) is available,
4372 			 * use it. Do not return symbol if we are
4373 			 * called by dlvsym, because dlvsym looks for
4374 			 * a specific version and default one is not
4375 			 * what dlvsym wants.
4376 			 */
4377 			if ((req->flags & SYMLOOK_DLSYM) ||
4378 			    (verndx >= VER_NDX_GIVEN) ||
4379 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4380 				return (false);
4381 		}
4382 	}
4383 	result->sym_out = symp;
4384 	return (true);
4385 }
4386 
4387 /*
4388  * Search for symbol using SysV hash function.
4389  * obj->buckets is known not to be NULL at this point; the test for this was
4390  * performed with the obj->valid_hash_sysv assignment.
4391  */
4392 static int
4393 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4394 {
4395 	unsigned long symnum;
4396 	Sym_Match_Result matchres;
4397 
4398 	matchres.sym_out = NULL;
4399 	matchres.vsymp = NULL;
4400 	matchres.vcount = 0;
4401 
4402 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4403 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4404 		if (symnum >= obj->nchains)
4405 			return (ESRCH);	/* Bad object */
4406 
4407 		if (matched_symbol(req, obj, &matchres, symnum)) {
4408 			req->sym_out = matchres.sym_out;
4409 			req->defobj_out = obj;
4410 			return (0);
4411 		}
4412 	}
4413 	if (matchres.vcount == 1) {
4414 		req->sym_out = matchres.vsymp;
4415 		req->defobj_out = obj;
4416 		return (0);
4417 	}
4418 	return (ESRCH);
4419 }
4420 
4421 /* Search for symbol using GNU hash function */
4422 static int
4423 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4424 {
4425 	Elf_Addr bloom_word;
4426 	const Elf32_Word *hashval;
4427 	Elf32_Word bucket;
4428 	Sym_Match_Result matchres;
4429 	unsigned int h1, h2;
4430 	unsigned long symnum;
4431 
4432 	matchres.sym_out = NULL;
4433 	matchres.vsymp = NULL;
4434 	matchres.vcount = 0;
4435 
4436 	/* Pick right bitmask word from Bloom filter array */
4437 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4438 	    obj->maskwords_bm_gnu];
4439 
4440 	/* Calculate modulus word size of gnu hash and its derivative */
4441 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4442 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4443 
4444 	/* Filter out the "definitely not in set" queries */
4445 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4446 		return (ESRCH);
4447 
4448 	/* Locate hash chain and corresponding value element*/
4449 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4450 	if (bucket == 0)
4451 		return (ESRCH);
4452 	hashval = &obj->chain_zero_gnu[bucket];
4453 	do {
4454 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4455 			symnum = hashval - obj->chain_zero_gnu;
4456 			if (matched_symbol(req, obj, &matchres, symnum)) {
4457 				req->sym_out = matchres.sym_out;
4458 				req->defobj_out = obj;
4459 				return (0);
4460 			}
4461 		}
4462 	} while ((*hashval++ & 1) == 0);
4463 	if (matchres.vcount == 1) {
4464 		req->sym_out = matchres.vsymp;
4465 		req->defobj_out = obj;
4466 		return (0);
4467 	}
4468 	return (ESRCH);
4469 }
4470 
4471 static void
4472 trace_loaded_objects(Obj_Entry *obj)
4473 {
4474     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4475     int		c;
4476 
4477     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4478 	main_local = "";
4479 
4480     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4481 	fmt1 = "\t%o => %p (%x)\n";
4482 
4483     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4484 	fmt2 = "\t%o (%x)\n";
4485 
4486     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4487 
4488     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4489 	Needed_Entry		*needed;
4490 	char			*name, *path;
4491 	bool			is_lib;
4492 
4493 	if (obj->marker)
4494 	    continue;
4495 	if (list_containers && obj->needed != NULL)
4496 	    rtld_printf("%s:\n", obj->path);
4497 	for (needed = obj->needed; needed; needed = needed->next) {
4498 	    if (needed->obj != NULL) {
4499 		if (needed->obj->traced && !list_containers)
4500 		    continue;
4501 		needed->obj->traced = true;
4502 		path = needed->obj->path;
4503 	    } else
4504 		path = "not found";
4505 
4506 	    name = (char *)obj->strtab + needed->name;
4507 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4508 
4509 	    fmt = is_lib ? fmt1 : fmt2;
4510 	    while ((c = *fmt++) != '\0') {
4511 		switch (c) {
4512 		default:
4513 		    rtld_putchar(c);
4514 		    continue;
4515 		case '\\':
4516 		    switch (c = *fmt) {
4517 		    case '\0':
4518 			continue;
4519 		    case 'n':
4520 			rtld_putchar('\n');
4521 			break;
4522 		    case 't':
4523 			rtld_putchar('\t');
4524 			break;
4525 		    }
4526 		    break;
4527 		case '%':
4528 		    switch (c = *fmt) {
4529 		    case '\0':
4530 			continue;
4531 		    case '%':
4532 		    default:
4533 			rtld_putchar(c);
4534 			break;
4535 		    case 'A':
4536 			rtld_putstr(main_local);
4537 			break;
4538 		    case 'a':
4539 			rtld_putstr(obj_main->path);
4540 			break;
4541 		    case 'o':
4542 			rtld_putstr(name);
4543 			break;
4544 #if 0
4545 		    case 'm':
4546 			rtld_printf("%d", sodp->sod_major);
4547 			break;
4548 		    case 'n':
4549 			rtld_printf("%d", sodp->sod_minor);
4550 			break;
4551 #endif
4552 		    case 'p':
4553 			rtld_putstr(path);
4554 			break;
4555 		    case 'x':
4556 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4557 			  0);
4558 			break;
4559 		    }
4560 		    break;
4561 		}
4562 		++fmt;
4563 	    }
4564 	}
4565     }
4566 }
4567 
4568 /*
4569  * Unload a dlopened object and its dependencies from memory and from
4570  * our data structures.  It is assumed that the DAG rooted in the
4571  * object has already been unreferenced, and that the object has a
4572  * reference count of 0.
4573  */
4574 static void
4575 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4576 {
4577 	Obj_Entry marker, *obj, *next;
4578 
4579 	assert(root->refcount == 0);
4580 
4581 	/*
4582 	 * Pass over the DAG removing unreferenced objects from
4583 	 * appropriate lists.
4584 	 */
4585 	unlink_object(root);
4586 
4587 	/* Unmap all objects that are no longer referenced. */
4588 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4589 		next = TAILQ_NEXT(obj, next);
4590 		if (obj->marker || obj->refcount != 0)
4591 			continue;
4592 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4593 		    obj->mapsize, 0, obj->path);
4594 		dbg("unloading \"%s\"", obj->path);
4595 		/*
4596 		 * Unlink the object now to prevent new references from
4597 		 * being acquired while the bind lock is dropped in
4598 		 * recursive dlclose() invocations.
4599 		 */
4600 		TAILQ_REMOVE(&obj_list, obj, next);
4601 		obj_count--;
4602 
4603 		if (obj->filtees_loaded) {
4604 			if (next != NULL) {
4605 				init_marker(&marker);
4606 				TAILQ_INSERT_BEFORE(next, &marker, next);
4607 				unload_filtees(obj, lockstate);
4608 				next = TAILQ_NEXT(&marker, next);
4609 				TAILQ_REMOVE(&obj_list, &marker, next);
4610 			} else
4611 				unload_filtees(obj, lockstate);
4612 		}
4613 		release_object(obj);
4614 	}
4615 }
4616 
4617 static void
4618 unlink_object(Obj_Entry *root)
4619 {
4620     Objlist_Entry *elm;
4621 
4622     if (root->refcount == 0) {
4623 	/* Remove the object from the RTLD_GLOBAL list. */
4624 	objlist_remove(&list_global, root);
4625 
4626     	/* Remove the object from all objects' DAG lists. */
4627     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4628 	    objlist_remove(&elm->obj->dldags, root);
4629 	    if (elm->obj != root)
4630 		unlink_object(elm->obj);
4631 	}
4632     }
4633 }
4634 
4635 static void
4636 ref_dag(Obj_Entry *root)
4637 {
4638     Objlist_Entry *elm;
4639 
4640     assert(root->dag_inited);
4641     STAILQ_FOREACH(elm, &root->dagmembers, link)
4642 	elm->obj->refcount++;
4643 }
4644 
4645 static void
4646 unref_dag(Obj_Entry *root)
4647 {
4648     Objlist_Entry *elm;
4649 
4650     assert(root->dag_inited);
4651     STAILQ_FOREACH(elm, &root->dagmembers, link)
4652 	elm->obj->refcount--;
4653 }
4654 
4655 /*
4656  * Common code for MD __tls_get_addr().
4657  */
4658 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4659 static void *
4660 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4661 {
4662     Elf_Addr *newdtv, *dtv;
4663     RtldLockState lockstate;
4664     int to_copy;
4665 
4666     dtv = *dtvp;
4667     /* Check dtv generation in case new modules have arrived */
4668     if (dtv[0] != tls_dtv_generation) {
4669 	wlock_acquire(rtld_bind_lock, &lockstate);
4670 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4671 	to_copy = dtv[1];
4672 	if (to_copy > tls_max_index)
4673 	    to_copy = tls_max_index;
4674 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4675 	newdtv[0] = tls_dtv_generation;
4676 	newdtv[1] = tls_max_index;
4677 	free(dtv);
4678 	lock_release(rtld_bind_lock, &lockstate);
4679 	dtv = *dtvp = newdtv;
4680     }
4681 
4682     /* Dynamically allocate module TLS if necessary */
4683     if (dtv[index + 1] == 0) {
4684 	/* Signal safe, wlock will block out signals. */
4685 	wlock_acquire(rtld_bind_lock, &lockstate);
4686 	if (!dtv[index + 1])
4687 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4688 	lock_release(rtld_bind_lock, &lockstate);
4689     }
4690     return ((void *)(dtv[index + 1] + offset));
4691 }
4692 
4693 void *
4694 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4695 {
4696 	Elf_Addr *dtv;
4697 
4698 	dtv = *dtvp;
4699 	/* Check dtv generation in case new modules have arrived */
4700 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4701 	    dtv[index + 1] != 0))
4702 		return ((void *)(dtv[index + 1] + offset));
4703 	return (tls_get_addr_slow(dtvp, index, offset));
4704 }
4705 
4706 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4707     defined(__powerpc__) || defined(__riscv)
4708 
4709 /*
4710  * Return pointer to allocated TLS block
4711  */
4712 static void *
4713 get_tls_block_ptr(void *tcb, size_t tcbsize)
4714 {
4715     size_t extra_size, post_size, pre_size, tls_block_size;
4716     size_t tls_init_align;
4717 
4718     tls_init_align = MAX(obj_main->tlsalign, 1);
4719 
4720     /* Compute fragments sizes. */
4721     extra_size = tcbsize - TLS_TCB_SIZE;
4722     post_size = calculate_tls_post_size(tls_init_align);
4723     tls_block_size = tcbsize + post_size;
4724     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4725 
4726     return ((char *)tcb - pre_size - extra_size);
4727 }
4728 
4729 /*
4730  * Allocate Static TLS using the Variant I method.
4731  *
4732  * For details on the layout, see lib/libc/gen/tls.c.
4733  *
4734  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4735  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4736  *     offsets, whereas libc's tls_static_space is just the executable's static
4737  *     TLS segment.
4738  */
4739 void *
4740 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4741 {
4742     Obj_Entry *obj;
4743     char *tls_block;
4744     Elf_Addr *dtv, **tcb;
4745     Elf_Addr addr;
4746     int i;
4747     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4748     size_t tls_init_align;
4749 
4750     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4751 	return (oldtcb);
4752 
4753     assert(tcbsize >= TLS_TCB_SIZE);
4754     maxalign = MAX(tcbalign, tls_static_max_align);
4755     tls_init_align = MAX(obj_main->tlsalign, 1);
4756 
4757     /* Compute fragmets sizes. */
4758     extra_size = tcbsize - TLS_TCB_SIZE;
4759     post_size = calculate_tls_post_size(tls_init_align);
4760     tls_block_size = tcbsize + post_size;
4761     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4762     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4763 
4764     /* Allocate whole TLS block */
4765     tls_block = malloc_aligned(tls_block_size, maxalign);
4766     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4767 
4768     if (oldtcb != NULL) {
4769 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4770 	    tls_static_space);
4771 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4772 
4773 	/* Adjust the DTV. */
4774 	dtv = tcb[0];
4775 	for (i = 0; i < dtv[1]; i++) {
4776 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4777 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4778 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4779 	    }
4780 	}
4781     } else {
4782 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4783 	tcb[0] = dtv;
4784 	dtv[0] = tls_dtv_generation;
4785 	dtv[1] = tls_max_index;
4786 
4787 	for (obj = globallist_curr(objs); obj != NULL;
4788 	  obj = globallist_next(obj)) {
4789 	    if (obj->tlsoffset > 0) {
4790 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4791 		if (obj->tlsinitsize > 0)
4792 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4793 		if (obj->tlssize > obj->tlsinitsize)
4794 		    memset((void*) (addr + obj->tlsinitsize), 0,
4795 			   obj->tlssize - obj->tlsinitsize);
4796 		dtv[obj->tlsindex + 1] = addr;
4797 	    }
4798 	}
4799     }
4800 
4801     return (tcb);
4802 }
4803 
4804 void
4805 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4806 {
4807     Elf_Addr *dtv;
4808     Elf_Addr tlsstart, tlsend;
4809     size_t post_size;
4810     size_t dtvsize, i, tls_init_align;
4811 
4812     assert(tcbsize >= TLS_TCB_SIZE);
4813     tls_init_align = MAX(obj_main->tlsalign, 1);
4814 
4815     /* Compute fragments sizes. */
4816     post_size = calculate_tls_post_size(tls_init_align);
4817 
4818     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4819     tlsend = (Elf_Addr)tcb + tls_static_space;
4820 
4821     dtv = *(Elf_Addr **)tcb;
4822     dtvsize = dtv[1];
4823     for (i = 0; i < dtvsize; i++) {
4824 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4825 	    free((void*)dtv[i+2]);
4826 	}
4827     }
4828     free(dtv);
4829     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4830 }
4831 
4832 #endif
4833 
4834 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4835 
4836 /*
4837  * Allocate Static TLS using the Variant II method.
4838  */
4839 void *
4840 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4841 {
4842     Obj_Entry *obj;
4843     size_t size, ralign;
4844     char *tls;
4845     Elf_Addr *dtv, *olddtv;
4846     Elf_Addr segbase, oldsegbase, addr;
4847     int i;
4848 
4849     ralign = tcbalign;
4850     if (tls_static_max_align > ralign)
4851 	    ralign = tls_static_max_align;
4852     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4853 
4854     assert(tcbsize >= 2*sizeof(Elf_Addr));
4855     tls = malloc_aligned(size, ralign);
4856     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4857 
4858     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4859     ((Elf_Addr*)segbase)[0] = segbase;
4860     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4861 
4862     dtv[0] = tls_dtv_generation;
4863     dtv[1] = tls_max_index;
4864 
4865     if (oldtls) {
4866 	/*
4867 	 * Copy the static TLS block over whole.
4868 	 */
4869 	oldsegbase = (Elf_Addr) oldtls;
4870 	memcpy((void *)(segbase - tls_static_space),
4871 	       (const void *)(oldsegbase - tls_static_space),
4872 	       tls_static_space);
4873 
4874 	/*
4875 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4876 	 * move them over.
4877 	 */
4878 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4879 	for (i = 0; i < olddtv[1]; i++) {
4880 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4881 		dtv[i+2] = olddtv[i+2];
4882 		olddtv[i+2] = 0;
4883 	    }
4884 	}
4885 
4886 	/*
4887 	 * We assume that this block was the one we created with
4888 	 * allocate_initial_tls().
4889 	 */
4890 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4891     } else {
4892 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4893 		if (obj->marker || obj->tlsoffset == 0)
4894 			continue;
4895 		addr = segbase - obj->tlsoffset;
4896 		memset((void*) (addr + obj->tlsinitsize),
4897 		       0, obj->tlssize - obj->tlsinitsize);
4898 		if (obj->tlsinit)
4899 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4900 		dtv[obj->tlsindex + 1] = addr;
4901 	}
4902     }
4903 
4904     return (void*) segbase;
4905 }
4906 
4907 void
4908 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4909 {
4910     Elf_Addr* dtv;
4911     size_t size, ralign;
4912     int dtvsize, i;
4913     Elf_Addr tlsstart, tlsend;
4914 
4915     /*
4916      * Figure out the size of the initial TLS block so that we can
4917      * find stuff which ___tls_get_addr() allocated dynamically.
4918      */
4919     ralign = tcbalign;
4920     if (tls_static_max_align > ralign)
4921 	    ralign = tls_static_max_align;
4922     size = round(tls_static_space, ralign);
4923 
4924     dtv = ((Elf_Addr**)tls)[1];
4925     dtvsize = dtv[1];
4926     tlsend = (Elf_Addr) tls;
4927     tlsstart = tlsend - size;
4928     for (i = 0; i < dtvsize; i++) {
4929 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4930 		free_aligned((void *)dtv[i + 2]);
4931 	}
4932     }
4933 
4934     free_aligned((void *)tlsstart);
4935     free((void*) dtv);
4936 }
4937 
4938 #endif
4939 
4940 /*
4941  * Allocate TLS block for module with given index.
4942  */
4943 void *
4944 allocate_module_tls(int index)
4945 {
4946     Obj_Entry* obj;
4947     char* p;
4948 
4949     TAILQ_FOREACH(obj, &obj_list, next) {
4950 	if (obj->marker)
4951 	    continue;
4952 	if (obj->tlsindex == index)
4953 	    break;
4954     }
4955     if (!obj) {
4956 	_rtld_error("Can't find module with TLS index %d", index);
4957 	rtld_die();
4958     }
4959 
4960     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4961     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4962     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4963 
4964     return p;
4965 }
4966 
4967 bool
4968 allocate_tls_offset(Obj_Entry *obj)
4969 {
4970     size_t off;
4971 
4972     if (obj->tls_done)
4973 	return true;
4974 
4975     if (obj->tlssize == 0) {
4976 	obj->tls_done = true;
4977 	return true;
4978     }
4979 
4980     if (tls_last_offset == 0)
4981 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4982     else
4983 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4984 				   obj->tlssize, obj->tlsalign);
4985 
4986     /*
4987      * If we have already fixed the size of the static TLS block, we
4988      * must stay within that size. When allocating the static TLS, we
4989      * leave a small amount of space spare to be used for dynamically
4990      * loading modules which use static TLS.
4991      */
4992     if (tls_static_space != 0) {
4993 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4994 	    return false;
4995     } else if (obj->tlsalign > tls_static_max_align) {
4996 	    tls_static_max_align = obj->tlsalign;
4997     }
4998 
4999     tls_last_offset = obj->tlsoffset = off;
5000     tls_last_size = obj->tlssize;
5001     obj->tls_done = true;
5002 
5003     return true;
5004 }
5005 
5006 void
5007 free_tls_offset(Obj_Entry *obj)
5008 {
5009 
5010     /*
5011      * If we were the last thing to allocate out of the static TLS
5012      * block, we give our space back to the 'allocator'. This is a
5013      * simplistic workaround to allow libGL.so.1 to be loaded and
5014      * unloaded multiple times.
5015      */
5016     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5017 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5018 	tls_last_offset -= obj->tlssize;
5019 	tls_last_size = 0;
5020     }
5021 }
5022 
5023 void *
5024 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5025 {
5026     void *ret;
5027     RtldLockState lockstate;
5028 
5029     wlock_acquire(rtld_bind_lock, &lockstate);
5030     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5031       tcbsize, tcbalign);
5032     lock_release(rtld_bind_lock, &lockstate);
5033     return (ret);
5034 }
5035 
5036 void
5037 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5038 {
5039     RtldLockState lockstate;
5040 
5041     wlock_acquire(rtld_bind_lock, &lockstate);
5042     free_tls(tcb, tcbsize, tcbalign);
5043     lock_release(rtld_bind_lock, &lockstate);
5044 }
5045 
5046 static void
5047 object_add_name(Obj_Entry *obj, const char *name)
5048 {
5049     Name_Entry *entry;
5050     size_t len;
5051 
5052     len = strlen(name);
5053     entry = malloc(sizeof(Name_Entry) + len);
5054 
5055     if (entry != NULL) {
5056 	strcpy(entry->name, name);
5057 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5058     }
5059 }
5060 
5061 static int
5062 object_match_name(const Obj_Entry *obj, const char *name)
5063 {
5064     Name_Entry *entry;
5065 
5066     STAILQ_FOREACH(entry, &obj->names, link) {
5067 	if (strcmp(name, entry->name) == 0)
5068 	    return (1);
5069     }
5070     return (0);
5071 }
5072 
5073 static Obj_Entry *
5074 locate_dependency(const Obj_Entry *obj, const char *name)
5075 {
5076     const Objlist_Entry *entry;
5077     const Needed_Entry *needed;
5078 
5079     STAILQ_FOREACH(entry, &list_main, link) {
5080 	if (object_match_name(entry->obj, name))
5081 	    return entry->obj;
5082     }
5083 
5084     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5085 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5086 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5087 	    /*
5088 	     * If there is DT_NEEDED for the name we are looking for,
5089 	     * we are all set.  Note that object might not be found if
5090 	     * dependency was not loaded yet, so the function can
5091 	     * return NULL here.  This is expected and handled
5092 	     * properly by the caller.
5093 	     */
5094 	    return (needed->obj);
5095 	}
5096     }
5097     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5098 	obj->path, name);
5099     rtld_die();
5100 }
5101 
5102 static int
5103 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5104     const Elf_Vernaux *vna)
5105 {
5106     const Elf_Verdef *vd;
5107     const char *vername;
5108 
5109     vername = refobj->strtab + vna->vna_name;
5110     vd = depobj->verdef;
5111     if (vd == NULL) {
5112 	_rtld_error("%s: version %s required by %s not defined",
5113 	    depobj->path, vername, refobj->path);
5114 	return (-1);
5115     }
5116     for (;;) {
5117 	if (vd->vd_version != VER_DEF_CURRENT) {
5118 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5119 		depobj->path, vd->vd_version);
5120 	    return (-1);
5121 	}
5122 	if (vna->vna_hash == vd->vd_hash) {
5123 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5124 		((char *)vd + vd->vd_aux);
5125 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5126 		return (0);
5127 	}
5128 	if (vd->vd_next == 0)
5129 	    break;
5130 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5131     }
5132     if (vna->vna_flags & VER_FLG_WEAK)
5133 	return (0);
5134     _rtld_error("%s: version %s required by %s not found",
5135 	depobj->path, vername, refobj->path);
5136     return (-1);
5137 }
5138 
5139 static int
5140 rtld_verify_object_versions(Obj_Entry *obj)
5141 {
5142     const Elf_Verneed *vn;
5143     const Elf_Verdef  *vd;
5144     const Elf_Verdaux *vda;
5145     const Elf_Vernaux *vna;
5146     const Obj_Entry *depobj;
5147     int maxvernum, vernum;
5148 
5149     if (obj->ver_checked)
5150 	return (0);
5151     obj->ver_checked = true;
5152 
5153     maxvernum = 0;
5154     /*
5155      * Walk over defined and required version records and figure out
5156      * max index used by any of them. Do very basic sanity checking
5157      * while there.
5158      */
5159     vn = obj->verneed;
5160     while (vn != NULL) {
5161 	if (vn->vn_version != VER_NEED_CURRENT) {
5162 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5163 		obj->path, vn->vn_version);
5164 	    return (-1);
5165 	}
5166 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5167 	for (;;) {
5168 	    vernum = VER_NEED_IDX(vna->vna_other);
5169 	    if (vernum > maxvernum)
5170 		maxvernum = vernum;
5171 	    if (vna->vna_next == 0)
5172 		 break;
5173 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5174 	}
5175 	if (vn->vn_next == 0)
5176 	    break;
5177 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5178     }
5179 
5180     vd = obj->verdef;
5181     while (vd != NULL) {
5182 	if (vd->vd_version != VER_DEF_CURRENT) {
5183 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5184 		obj->path, vd->vd_version);
5185 	    return (-1);
5186 	}
5187 	vernum = VER_DEF_IDX(vd->vd_ndx);
5188 	if (vernum > maxvernum)
5189 		maxvernum = vernum;
5190 	if (vd->vd_next == 0)
5191 	    break;
5192 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5193     }
5194 
5195     if (maxvernum == 0)
5196 	return (0);
5197 
5198     /*
5199      * Store version information in array indexable by version index.
5200      * Verify that object version requirements are satisfied along the
5201      * way.
5202      */
5203     obj->vernum = maxvernum + 1;
5204     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5205 
5206     vd = obj->verdef;
5207     while (vd != NULL) {
5208 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5209 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5210 	    assert(vernum <= maxvernum);
5211 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5212 	    obj->vertab[vernum].hash = vd->vd_hash;
5213 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5214 	    obj->vertab[vernum].file = NULL;
5215 	    obj->vertab[vernum].flags = 0;
5216 	}
5217 	if (vd->vd_next == 0)
5218 	    break;
5219 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5220     }
5221 
5222     vn = obj->verneed;
5223     while (vn != NULL) {
5224 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5225 	if (depobj == NULL)
5226 	    return (-1);
5227 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5228 	for (;;) {
5229 	    if (check_object_provided_version(obj, depobj, vna))
5230 		return (-1);
5231 	    vernum = VER_NEED_IDX(vna->vna_other);
5232 	    assert(vernum <= maxvernum);
5233 	    obj->vertab[vernum].hash = vna->vna_hash;
5234 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5235 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5236 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5237 		VER_INFO_HIDDEN : 0;
5238 	    if (vna->vna_next == 0)
5239 		 break;
5240 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5241 	}
5242 	if (vn->vn_next == 0)
5243 	    break;
5244 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5245     }
5246     return 0;
5247 }
5248 
5249 static int
5250 rtld_verify_versions(const Objlist *objlist)
5251 {
5252     Objlist_Entry *entry;
5253     int rc;
5254 
5255     rc = 0;
5256     STAILQ_FOREACH(entry, objlist, link) {
5257 	/*
5258 	 * Skip dummy objects or objects that have their version requirements
5259 	 * already checked.
5260 	 */
5261 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5262 	    continue;
5263 	if (rtld_verify_object_versions(entry->obj) == -1) {
5264 	    rc = -1;
5265 	    if (ld_tracing == NULL)
5266 		break;
5267 	}
5268     }
5269     if (rc == 0 || ld_tracing != NULL)
5270     	rc = rtld_verify_object_versions(&obj_rtld);
5271     return rc;
5272 }
5273 
5274 const Ver_Entry *
5275 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5276 {
5277     Elf_Versym vernum;
5278 
5279     if (obj->vertab) {
5280 	vernum = VER_NDX(obj->versyms[symnum]);
5281 	if (vernum >= obj->vernum) {
5282 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5283 		obj->path, obj->strtab + symnum, vernum);
5284 	} else if (obj->vertab[vernum].hash != 0) {
5285 	    return &obj->vertab[vernum];
5286 	}
5287     }
5288     return NULL;
5289 }
5290 
5291 int
5292 _rtld_get_stack_prot(void)
5293 {
5294 
5295 	return (stack_prot);
5296 }
5297 
5298 int
5299 _rtld_is_dlopened(void *arg)
5300 {
5301 	Obj_Entry *obj;
5302 	RtldLockState lockstate;
5303 	int res;
5304 
5305 	rlock_acquire(rtld_bind_lock, &lockstate);
5306 	obj = dlcheck(arg);
5307 	if (obj == NULL)
5308 		obj = obj_from_addr(arg);
5309 	if (obj == NULL) {
5310 		_rtld_error("No shared object contains address");
5311 		lock_release(rtld_bind_lock, &lockstate);
5312 		return (-1);
5313 	}
5314 	res = obj->dlopened ? 1 : 0;
5315 	lock_release(rtld_bind_lock, &lockstate);
5316 	return (res);
5317 }
5318 
5319 int
5320 obj_enforce_relro(Obj_Entry *obj)
5321 {
5322 
5323 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5324 	    PROT_READ) == -1) {
5325 		_rtld_error("%s: Cannot enforce relro protection: %s",
5326 		    obj->path, rtld_strerror(errno));
5327 		return (-1);
5328 	}
5329 	return (0);
5330 }
5331 
5332 static void
5333 map_stacks_exec(RtldLockState *lockstate)
5334 {
5335 	void (*thr_map_stacks_exec)(void);
5336 
5337 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5338 		return;
5339 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5340 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5341 	if (thr_map_stacks_exec != NULL) {
5342 		stack_prot |= PROT_EXEC;
5343 		thr_map_stacks_exec();
5344 	}
5345 }
5346 
5347 void
5348 symlook_init(SymLook *dst, const char *name)
5349 {
5350 
5351 	bzero(dst, sizeof(*dst));
5352 	dst->name = name;
5353 	dst->hash = elf_hash(name);
5354 	dst->hash_gnu = gnu_hash(name);
5355 }
5356 
5357 static void
5358 symlook_init_from_req(SymLook *dst, const SymLook *src)
5359 {
5360 
5361 	dst->name = src->name;
5362 	dst->hash = src->hash;
5363 	dst->hash_gnu = src->hash_gnu;
5364 	dst->ventry = src->ventry;
5365 	dst->flags = src->flags;
5366 	dst->defobj_out = NULL;
5367 	dst->sym_out = NULL;
5368 	dst->lockstate = src->lockstate;
5369 }
5370 
5371 static int
5372 open_binary_fd(const char *argv0, bool search_in_path)
5373 {
5374 	char *pathenv, *pe, binpath[PATH_MAX];
5375 	int fd;
5376 
5377 	if (search_in_path && strchr(argv0, '/') == NULL) {
5378 		pathenv = getenv("PATH");
5379 		if (pathenv == NULL) {
5380 			_rtld_error("-p and no PATH environment variable");
5381 			rtld_die();
5382 		}
5383 		pathenv = strdup(pathenv);
5384 		if (pathenv == NULL) {
5385 			_rtld_error("Cannot allocate memory");
5386 			rtld_die();
5387 		}
5388 		fd = -1;
5389 		errno = ENOENT;
5390 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5391 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5392 			    sizeof(binpath))
5393 				continue;
5394 			if (binpath[0] != '\0' &&
5395 			    strlcat(binpath, "/", sizeof(binpath)) >=
5396 			    sizeof(binpath))
5397 				continue;
5398 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5399 			    sizeof(binpath))
5400 				continue;
5401 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5402 			if (fd != -1 || errno != ENOENT)
5403 				break;
5404 		}
5405 		free(pathenv);
5406 	} else {
5407 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5408 	}
5409 
5410 	if (fd == -1) {
5411 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5412 		rtld_die();
5413 	}
5414 	return (fd);
5415 }
5416 
5417 /*
5418  * Parse a set of command-line arguments.
5419  */
5420 static int
5421 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5422 {
5423 	const char *arg;
5424 	int fd, i, j, arglen;
5425 	char opt;
5426 
5427 	dbg("Parsing command-line arguments");
5428 	*use_pathp = false;
5429 	*fdp = -1;
5430 
5431 	for (i = 1; i < argc; i++ ) {
5432 		arg = argv[i];
5433 		dbg("argv[%d]: '%s'", i, arg);
5434 
5435 		/*
5436 		 * rtld arguments end with an explicit "--" or with the first
5437 		 * non-prefixed argument.
5438 		 */
5439 		if (strcmp(arg, "--") == 0) {
5440 			i++;
5441 			break;
5442 		}
5443 		if (arg[0] != '-')
5444 			break;
5445 
5446 		/*
5447 		 * All other arguments are single-character options that can
5448 		 * be combined, so we need to search through `arg` for them.
5449 		 */
5450 		arglen = strlen(arg);
5451 		for (j = 1; j < arglen; j++) {
5452 			opt = arg[j];
5453 			if (opt == 'h') {
5454 				print_usage(argv[0]);
5455 				_exit(0);
5456 			} else if (opt == 'f') {
5457 			/*
5458 			 * -f XX can be used to specify a descriptor for the
5459 			 * binary named at the command line (i.e., the later
5460 			 * argument will specify the process name but the
5461 			 * descriptor is what will actually be executed)
5462 			 */
5463 			if (j != arglen - 1) {
5464 				/* -f must be the last option in, e.g., -abcf */
5465 				_rtld_error("Invalid options: %s", arg);
5466 				rtld_die();
5467 			}
5468 			i++;
5469 			fd = parse_integer(argv[i]);
5470 			if (fd == -1) {
5471 				_rtld_error("Invalid file descriptor: '%s'",
5472 				    argv[i]);
5473 				rtld_die();
5474 			}
5475 			*fdp = fd;
5476 			break;
5477 			} else if (opt == 'p') {
5478 				*use_pathp = true;
5479 			} else {
5480 				_rtld_error("Invalid argument: '%s'", arg);
5481 				print_usage(argv[0]);
5482 				rtld_die();
5483 			}
5484 		}
5485 	}
5486 
5487 	return (i);
5488 }
5489 
5490 /*
5491  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5492  */
5493 static int
5494 parse_integer(const char *str)
5495 {
5496 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5497 	const char *orig;
5498 	int n;
5499 	char c;
5500 
5501 	orig = str;
5502 	n = 0;
5503 	for (c = *str; c != '\0'; c = *++str) {
5504 		if (c < '0' || c > '9')
5505 			return (-1);
5506 
5507 		n *= RADIX;
5508 		n += c - '0';
5509 	}
5510 
5511 	/* Make sure we actually parsed something. */
5512 	if (str == orig)
5513 		return (-1);
5514 	return (n);
5515 }
5516 
5517 static void
5518 print_usage(const char *argv0)
5519 {
5520 
5521 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5522 		"\n"
5523 		"Options:\n"
5524 		"  -h        Display this help message\n"
5525 		"  -p        Search in PATH for named binary\n"
5526 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5527 		"  --        End of RTLD options\n"
5528 		"  <binary>  Name of process to execute\n"
5529 		"  <args>    Arguments to the executed process\n", argv0);
5530 }
5531 
5532 /*
5533  * Overrides for libc_pic-provided functions.
5534  */
5535 
5536 int
5537 __getosreldate(void)
5538 {
5539 	size_t len;
5540 	int oid[2];
5541 	int error, osrel;
5542 
5543 	if (osreldate != 0)
5544 		return (osreldate);
5545 
5546 	oid[0] = CTL_KERN;
5547 	oid[1] = KERN_OSRELDATE;
5548 	osrel = 0;
5549 	len = sizeof(osrel);
5550 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5551 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5552 		osreldate = osrel;
5553 	return (osreldate);
5554 }
5555 
5556 void
5557 exit(int status)
5558 {
5559 
5560 	_exit(status);
5561 }
5562 
5563 void (*__cleanup)(void);
5564 int __isthreaded = 0;
5565 int _thread_autoinit_dummy_decl = 1;
5566 
5567 /*
5568  * No unresolved symbols for rtld.
5569  */
5570 void
5571 __pthread_cxa_finalize(struct dl_phdr_info *a)
5572 {
5573 }
5574 
5575 const char *
5576 rtld_strerror(int errnum)
5577 {
5578 
5579 	if (errnum < 0 || errnum >= sys_nerr)
5580 		return ("Unknown error");
5581 	return (sys_errlist[errnum]);
5582 }
5583