xref: /freebsd/libexec/rtld-elf/rtld.c (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
140 static int parse_integer(const char *);
141 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
142 static void print_usage(const char *argv0);
143 static void release_object(Obj_Entry *);
144 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
145     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
146 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
147     int flags, RtldLockState *lockstate);
148 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
149     RtldLockState *);
150 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
151 static int rtld_dirname(const char *, char *);
152 static int rtld_dirname_abs(const char *, char *);
153 static void *rtld_dlopen(const char *name, int fd, int mode);
154 static void rtld_exit(void);
155 static void rtld_nop_exit(void);
156 static char *search_library_path(const char *, const char *, const char *,
157     int *);
158 static char *search_library_pathfds(const char *, const char *, int *);
159 static const void **get_program_var_addr(const char *, RtldLockState *);
160 static void set_program_var(const char *, const void *);
161 static int symlook_default(SymLook *, const Obj_Entry *refobj);
162 static int symlook_global(SymLook *, DoneList *);
163 static void symlook_init_from_req(SymLook *, const SymLook *);
164 static int symlook_list(SymLook *, const Objlist *, DoneList *);
165 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
166 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
167 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
168 static void trace_loaded_objects(Obj_Entry *);
169 static void unlink_object(Obj_Entry *);
170 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
171 static void unref_dag(Obj_Entry *);
172 static void ref_dag(Obj_Entry *);
173 static char *origin_subst_one(Obj_Entry *, char *, const char *,
174     const char *, bool);
175 static char *origin_subst(Obj_Entry *, const char *);
176 static bool obj_resolve_origin(Obj_Entry *obj);
177 static void preinit_main(void);
178 static int  rtld_verify_versions(const Objlist *);
179 static int  rtld_verify_object_versions(Obj_Entry *);
180 static void object_add_name(Obj_Entry *, const char *);
181 static int  object_match_name(const Obj_Entry *, const char *);
182 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
183 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
184     struct dl_phdr_info *phdr_info);
185 static uint32_t gnu_hash(const char *);
186 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
187     const unsigned long);
188 
189 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
190 void _r_debug_postinit(struct link_map *) __noinline __exported;
191 
192 int __sys_openat(int, const char *, int, ...);
193 
194 /*
195  * Data declarations.
196  */
197 static char *error_message;	/* Message for dlerror(), or NULL */
198 struct r_debug r_debug __exported;	/* for GDB; */
199 static bool libmap_disable;	/* Disable libmap */
200 static bool ld_loadfltr;	/* Immediate filters processing */
201 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
202 static bool trust;		/* False for setuid and setgid programs */
203 static bool dangerous_ld_env;	/* True if environment variables have been
204 				   used to affect the libraries loaded */
205 bool ld_bind_not;		/* Disable PLT update */
206 static char *ld_bind_now;	/* Environment variable for immediate binding */
207 static char *ld_debug;		/* Environment variable for debugging */
208 static char *ld_library_path;	/* Environment variable for search path */
209 static char *ld_library_dirs;	/* Environment variable for library descriptors */
210 static char *ld_preload;	/* Environment variable for libraries to
211 				   load first */
212 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
213 static const char *ld_tracing;	/* Called from ldd to print libs */
214 static char *ld_utrace;		/* Use utrace() to log events. */
215 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
216 static Obj_Entry *obj_main;	/* The main program shared object */
217 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
218 static unsigned int obj_count;	/* Number of objects in obj_list */
219 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
220 
221 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
222   STAILQ_HEAD_INITIALIZER(list_global);
223 static Objlist list_main =	/* Objects loaded at program startup */
224   STAILQ_HEAD_INITIALIZER(list_main);
225 static Objlist list_fini =	/* Objects needing fini() calls */
226   STAILQ_HEAD_INITIALIZER(list_fini);
227 
228 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
229 
230 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
231 
232 extern Elf_Dyn _DYNAMIC;
233 #pragma weak _DYNAMIC
234 
235 int dlclose(void *) __exported;
236 char *dlerror(void) __exported;
237 void *dlopen(const char *, int) __exported;
238 void *fdlopen(int, int) __exported;
239 void *dlsym(void *, const char *) __exported;
240 dlfunc_t dlfunc(void *, const char *) __exported;
241 void *dlvsym(void *, const char *, const char *) __exported;
242 int dladdr(const void *, Dl_info *) __exported;
243 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
244     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
245 int dlinfo(void *, int , void *) __exported;
246 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
247 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
248 int _rtld_get_stack_prot(void) __exported;
249 int _rtld_is_dlopened(void *) __exported;
250 void _rtld_error(const char *, ...) __exported;
251 
252 /* Only here to fix -Wmissing-prototypes warnings */
253 int __getosreldate(void);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 
290 /*
291  * Globals for path names, and such
292  */
293 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
294 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
295 const char *ld_path_rtld = _PATH_RTLD;
296 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
297 const char *ld_env_prefix = LD_;
298 
299 static void (*rtld_exit_ptr)(void);
300 
301 /*
302  * Fill in a DoneList with an allocation large enough to hold all of
303  * the currently-loaded objects.  Keep this as a macro since it calls
304  * alloca and we want that to occur within the scope of the caller.
305  */
306 #define donelist_init(dlp)					\
307     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
308     assert((dlp)->objs != NULL),				\
309     (dlp)->num_alloc = obj_count,				\
310     (dlp)->num_used = 0)
311 
312 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
313 	if (ld_utrace != NULL)					\
314 		ld_utrace_log(e, h, mb, ms, r, n);		\
315 } while (0)
316 
317 static void
318 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
319     int refcnt, const char *name)
320 {
321 	struct utrace_rtld ut;
322 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
323 
324 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
325 	ut.event = event;
326 	ut.handle = handle;
327 	ut.mapbase = mapbase;
328 	ut.mapsize = mapsize;
329 	ut.refcnt = refcnt;
330 	bzero(ut.name, sizeof(ut.name));
331 	if (name)
332 		strlcpy(ut.name, name, sizeof(ut.name));
333 	utrace(&ut, sizeof(ut));
334 }
335 
336 #ifdef RTLD_VARIANT_ENV_NAMES
337 /*
338  * construct the env variable based on the type of binary that's
339  * running.
340  */
341 static inline const char *
342 _LD(const char *var)
343 {
344 	static char buffer[128];
345 
346 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
347 	strlcat(buffer, var, sizeof(buffer));
348 	return (buffer);
349 }
350 #else
351 #define _LD(x)	LD_ x
352 #endif
353 
354 /*
355  * Main entry point for dynamic linking.  The first argument is the
356  * stack pointer.  The stack is expected to be laid out as described
357  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
358  * Specifically, the stack pointer points to a word containing
359  * ARGC.  Following that in the stack is a null-terminated sequence
360  * of pointers to argument strings.  Then comes a null-terminated
361  * sequence of pointers to environment strings.  Finally, there is a
362  * sequence of "auxiliary vector" entries.
363  *
364  * The second argument points to a place to store the dynamic linker's
365  * exit procedure pointer and the third to a place to store the main
366  * program's object.
367  *
368  * The return value is the main program's entry point.
369  */
370 func_ptr_type
371 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
372 {
373     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
374     Objlist_Entry *entry;
375     Obj_Entry *last_interposer, *obj, *preload_tail;
376     const Elf_Phdr *phdr;
377     Objlist initlist;
378     RtldLockState lockstate;
379     struct stat st;
380     Elf_Addr *argcp;
381     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
382     const char *argv0, *binpath;
383     caddr_t imgentry;
384     char buf[MAXPATHLEN];
385     int argc, fd, i, phnum, rtld_argc;
386 #ifdef __powerpc__
387     int old_auxv_format = 1;
388 #endif
389     bool dir_enable, explicit_fd, search_in_path;
390 
391     /*
392      * On entry, the dynamic linker itself has not been relocated yet.
393      * Be very careful not to reference any global data until after
394      * init_rtld has returned.  It is OK to reference file-scope statics
395      * and string constants, and to call static and global functions.
396      */
397 
398     /* Find the auxiliary vector on the stack. */
399     argcp = sp;
400     argc = *sp++;
401     argv = (char **) sp;
402     sp += argc + 1;	/* Skip over arguments and NULL terminator */
403     env = (char **) sp;
404     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
405 	;
406     aux = (Elf_Auxinfo *) sp;
407 
408     /* Digest the auxiliary vector. */
409     for (i = 0;  i < AT_COUNT;  i++)
410 	aux_info[i] = NULL;
411     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
412 	if (auxp->a_type < AT_COUNT)
413 	    aux_info[auxp->a_type] = auxp;
414 #ifdef __powerpc__
415 	if (auxp->a_type == 23) /* AT_STACKPROT */
416 	    old_auxv_format = 0;
417 #endif
418     }
419 
420 #ifdef __powerpc__
421     if (old_auxv_format) {
422 	/* Remap from old-style auxv numbers. */
423 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
424 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
425 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
426 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
427 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
428 	aux_info[13] = NULL;		/* AT_GID */
429 
430 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
431 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
432 	aux_info[16] = aux_info[14];	/* AT_CANARY */
433 	aux_info[14] = NULL;		/* AT_EGID */
434     }
435 #endif
436 
437     /* Initialize and relocate ourselves. */
438     assert(aux_info[AT_BASE] != NULL);
439     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
440 
441     __progname = obj_rtld.path;
442     argv0 = argv[0] != NULL ? argv[0] : "(null)";
443     environ = env;
444     main_argc = argc;
445     main_argv = argv;
446 
447     trust = !issetugid();
448 
449     md_abi_variant_hook(aux_info);
450 
451     fd = -1;
452     if (aux_info[AT_EXECFD] != NULL) {
453 	fd = aux_info[AT_EXECFD]->a_un.a_val;
454     } else {
455 	assert(aux_info[AT_PHDR] != NULL);
456 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
457 	if (phdr == obj_rtld.phdr) {
458 	    if (!trust) {
459 		_rtld_error("Tainted process refusing to run binary %s",
460 		    argv0);
461 		rtld_die();
462 	    }
463 	    dbg("opening main program in direct exec mode");
464 	    if (argc >= 2) {
465 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
466 		argv0 = argv[rtld_argc];
467 		explicit_fd = (fd != -1);
468 		binpath = NULL;
469 		if (!explicit_fd)
470 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
471 		if (fstat(fd, &st) == -1) {
472 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
473 		      explicit_fd ? "user-provided descriptor" : argv0,
474 		      rtld_strerror(errno));
475 		    rtld_die();
476 		}
477 
478 		/*
479 		 * Rough emulation of the permission checks done by
480 		 * execve(2), only Unix DACs are checked, ACLs are
481 		 * ignored.  Preserve the semantic of disabling owner
482 		 * to execute if owner x bit is cleared, even if
483 		 * others x bit is enabled.
484 		 * mmap(2) does not allow to mmap with PROT_EXEC if
485 		 * binary' file comes from noexec mount.  We cannot
486 		 * set a text reference on the binary.
487 		 */
488 		dir_enable = false;
489 		if (st.st_uid == geteuid()) {
490 		    if ((st.st_mode & S_IXUSR) != 0)
491 			dir_enable = true;
492 		} else if (st.st_gid == getegid()) {
493 		    if ((st.st_mode & S_IXGRP) != 0)
494 			dir_enable = true;
495 		} else if ((st.st_mode & S_IXOTH) != 0) {
496 		    dir_enable = true;
497 		}
498 		if (!dir_enable) {
499 		    _rtld_error("No execute permission for binary %s",
500 		        argv0);
501 		    rtld_die();
502 		}
503 
504 		/*
505 		 * For direct exec mode, argv[0] is the interpreter
506 		 * name, we must remove it and shift arguments left
507 		 * before invoking binary main.  Since stack layout
508 		 * places environment pointers and aux vectors right
509 		 * after the terminating NULL, we must shift
510 		 * environment and aux as well.
511 		 */
512 		main_argc = argc - rtld_argc;
513 		for (i = 0; i <= main_argc; i++)
514 		    argv[i] = argv[i + rtld_argc];
515 		*argcp -= rtld_argc;
516 		environ = env = envp = argv + main_argc + 1;
517 		dbg("move env from %p to %p", envp + rtld_argc, envp);
518 		do {
519 		    *envp = *(envp + rtld_argc);
520 		}  while (*envp++ != NULL);
521 		aux = auxp = (Elf_Auxinfo *)envp;
522 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
523 		dbg("move aux from %p to %p", auxpf, aux);
524 		/* XXXKIB insert place for AT_EXECPATH if not present */
525 		for (;; auxp++, auxpf++) {
526 		    *auxp = *auxpf;
527 		    if (auxp->a_type == AT_NULL)
528 			    break;
529 		}
530 		/* Since the auxiliary vector has moved, redigest it. */
531 		for (i = 0;  i < AT_COUNT;  i++)
532 		    aux_info[i] = NULL;
533 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
534 		    if (auxp->a_type < AT_COUNT)
535 			aux_info[auxp->a_type] = auxp;
536 		}
537 
538 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
539 		if (binpath == NULL) {
540 		    aux_info[AT_EXECPATH] = NULL;
541 		} else {
542 		    if (aux_info[AT_EXECPATH] == NULL) {
543 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
544 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
545 		    }
546 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
547 		      binpath);
548 		}
549 	    } else {
550 		_rtld_error("No binary");
551 		rtld_die();
552 	    }
553 	}
554     }
555 
556     ld_bind_now = getenv(_LD("BIND_NOW"));
557 
558     /*
559      * If the process is tainted, then we un-set the dangerous environment
560      * variables.  The process will be marked as tainted until setuid(2)
561      * is called.  If any child process calls setuid(2) we do not want any
562      * future processes to honor the potentially un-safe variables.
563      */
564     if (!trust) {
565 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
566 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
567 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
568 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
569 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
570 		_rtld_error("environment corrupt; aborting");
571 		rtld_die();
572 	}
573     }
574     ld_debug = getenv(_LD("DEBUG"));
575     if (ld_bind_now == NULL)
576 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
577     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
578     libmap_override = getenv(_LD("LIBMAP"));
579     ld_library_path = getenv(_LD("LIBRARY_PATH"));
580     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
581     ld_preload = getenv(_LD("PRELOAD"));
582     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
583     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
584     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
585     if (library_path_rpath != NULL) {
586 	    if (library_path_rpath[0] == 'y' ||
587 		library_path_rpath[0] == 'Y' ||
588 		library_path_rpath[0] == '1')
589 		    ld_library_path_rpath = true;
590 	    else
591 		    ld_library_path_rpath = false;
592     }
593     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
594 	(ld_library_path != NULL) || (ld_preload != NULL) ||
595 	(ld_elf_hints_path != NULL) || ld_loadfltr;
596     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
597     ld_utrace = getenv(_LD("UTRACE"));
598 
599     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
600 	ld_elf_hints_path = ld_elf_hints_default;
601 
602     if (ld_debug != NULL && *ld_debug != '\0')
603 	debug = 1;
604     dbg("%s is initialized, base address = %p", __progname,
605 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
606     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
607     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
608 
609     dbg("initializing thread locks");
610     lockdflt_init();
611 
612     /*
613      * Load the main program, or process its program header if it is
614      * already loaded.
615      */
616     if (fd != -1) {	/* Load the main program. */
617 	dbg("loading main program");
618 	obj_main = map_object(fd, argv0, NULL);
619 	close(fd);
620 	if (obj_main == NULL)
621 	    rtld_die();
622 	max_stack_flags = obj_main->stack_flags;
623     } else {				/* Main program already loaded. */
624 	dbg("processing main program's program header");
625 	assert(aux_info[AT_PHDR] != NULL);
626 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
627 	assert(aux_info[AT_PHNUM] != NULL);
628 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
629 	assert(aux_info[AT_PHENT] != NULL);
630 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
631 	assert(aux_info[AT_ENTRY] != NULL);
632 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
633 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
634 	    rtld_die();
635     }
636 
637     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
638 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
639 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
640 	    if (kexecpath[0] == '/')
641 		    obj_main->path = kexecpath;
642 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
643 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
644 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
645 		    obj_main->path = xstrdup(argv0);
646 	    else
647 		    obj_main->path = xstrdup(buf);
648     } else {
649 	    dbg("No AT_EXECPATH or direct exec");
650 	    obj_main->path = xstrdup(argv0);
651     }
652     dbg("obj_main path %s", obj_main->path);
653     obj_main->mainprog = true;
654 
655     if (aux_info[AT_STACKPROT] != NULL &&
656       aux_info[AT_STACKPROT]->a_un.a_val != 0)
657 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
658 
659 #ifndef COMPAT_32BIT
660     /*
661      * Get the actual dynamic linker pathname from the executable if
662      * possible.  (It should always be possible.)  That ensures that
663      * gdb will find the right dynamic linker even if a non-standard
664      * one is being used.
665      */
666     if (obj_main->interp != NULL &&
667       strcmp(obj_main->interp, obj_rtld.path) != 0) {
668 	free(obj_rtld.path);
669 	obj_rtld.path = xstrdup(obj_main->interp);
670         __progname = obj_rtld.path;
671     }
672 #endif
673 
674     if (!digest_dynamic(obj_main, 0))
675 	rtld_die();
676     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
677 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
678 	obj_main->dynsymcount);
679 
680     linkmap_add(obj_main);
681     linkmap_add(&obj_rtld);
682 
683     /* Link the main program into the list of objects. */
684     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
685     obj_count++;
686     obj_loads++;
687 
688     /* Initialize a fake symbol for resolving undefined weak references. */
689     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
690     sym_zero.st_shndx = SHN_UNDEF;
691     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
692 
693     if (!libmap_disable)
694         libmap_disable = (bool)lm_init(libmap_override);
695 
696     dbg("loading LD_PRELOAD libraries");
697     if (load_preload_objects() == -1)
698 	rtld_die();
699     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
700 
701     dbg("loading needed objects");
702     if (load_needed_objects(obj_main, 0) == -1)
703 	rtld_die();
704 
705     /* Make a list of all objects loaded at startup. */
706     last_interposer = obj_main;
707     TAILQ_FOREACH(obj, &obj_list, next) {
708 	if (obj->marker)
709 	    continue;
710 	if (obj->z_interpose && obj != obj_main) {
711 	    objlist_put_after(&list_main, last_interposer, obj);
712 	    last_interposer = obj;
713 	} else {
714 	    objlist_push_tail(&list_main, obj);
715 	}
716     	obj->refcount++;
717     }
718 
719     dbg("checking for required versions");
720     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
721 	rtld_die();
722 
723     if (ld_tracing) {		/* We're done */
724 	trace_loaded_objects(obj_main);
725 	exit(0);
726     }
727 
728     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
729        dump_relocations(obj_main);
730        exit (0);
731     }
732 
733     /*
734      * Processing tls relocations requires having the tls offsets
735      * initialized.  Prepare offsets before starting initial
736      * relocation processing.
737      */
738     dbg("initializing initial thread local storage offsets");
739     STAILQ_FOREACH(entry, &list_main, link) {
740 	/*
741 	 * Allocate all the initial objects out of the static TLS
742 	 * block even if they didn't ask for it.
743 	 */
744 	allocate_tls_offset(entry->obj);
745     }
746 
747     if (relocate_objects(obj_main,
748       ld_bind_now != NULL && *ld_bind_now != '\0',
749       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
750 	rtld_die();
751 
752     dbg("doing copy relocations");
753     if (do_copy_relocations(obj_main) == -1)
754 	rtld_die();
755 
756     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
757        dump_relocations(obj_main);
758        exit (0);
759     }
760 
761     ifunc_init(aux);
762 
763     /*
764      * Setup TLS for main thread.  This must be done after the
765      * relocations are processed, since tls initialization section
766      * might be the subject for relocations.
767      */
768     dbg("initializing initial thread local storage");
769     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
770 
771     dbg("initializing key program variables");
772     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
773     set_program_var("environ", env);
774     set_program_var("__elf_aux_vector", aux);
775 
776     /* Make a list of init functions to call. */
777     objlist_init(&initlist);
778     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
779       preload_tail, &initlist);
780 
781     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
782 
783     map_stacks_exec(NULL);
784 
785     if (!obj_main->crt_no_init) {
786 	/*
787 	 * Make sure we don't call the main program's init and fini
788 	 * functions for binaries linked with old crt1 which calls
789 	 * _init itself.
790 	 */
791 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
792 	obj_main->preinit_array = obj_main->init_array =
793 	    obj_main->fini_array = (Elf_Addr)NULL;
794     }
795 
796     /*
797      * Execute MD initializers required before we call the objects'
798      * init functions.
799      */
800     pre_init();
801 
802     wlock_acquire(rtld_bind_lock, &lockstate);
803 
804     dbg("resolving ifuncs");
805     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
806       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
807 	rtld_die();
808 
809     rtld_exit_ptr = rtld_exit;
810     if (obj_main->crt_no_init)
811 	preinit_main();
812     objlist_call_init(&initlist, &lockstate);
813     _r_debug_postinit(&obj_main->linkmap);
814     objlist_clear(&initlist);
815     dbg("loading filtees");
816     TAILQ_FOREACH(obj, &obj_list, next) {
817 	if (obj->marker)
818 	    continue;
819 	if (ld_loadfltr || obj->z_loadfltr)
820 	    load_filtees(obj, 0, &lockstate);
821     }
822 
823     dbg("enforcing main obj relro");
824     if (obj_enforce_relro(obj_main) == -1)
825 	rtld_die();
826 
827     lock_release(rtld_bind_lock, &lockstate);
828 
829     dbg("transferring control to program entry point = %p", obj_main->entry);
830 
831     /* Return the exit procedure and the program entry point. */
832     *exit_proc = rtld_exit_ptr;
833     *objp = obj_main;
834     return (func_ptr_type) obj_main->entry;
835 }
836 
837 void *
838 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
839 {
840 	void *ptr;
841 	Elf_Addr target;
842 
843 	ptr = (void *)make_function_pointer(def, obj);
844 	target = call_ifunc_resolver(ptr);
845 	return ((void *)target);
846 }
847 
848 /*
849  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
850  * Changes to this function should be applied there as well.
851  */
852 Elf_Addr
853 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
854 {
855     const Elf_Rel *rel;
856     const Elf_Sym *def;
857     const Obj_Entry *defobj;
858     Elf_Addr *where;
859     Elf_Addr target;
860     RtldLockState lockstate;
861 
862     rlock_acquire(rtld_bind_lock, &lockstate);
863     if (sigsetjmp(lockstate.env, 0) != 0)
864 	    lock_upgrade(rtld_bind_lock, &lockstate);
865     if (obj->pltrel)
866 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
867     else
868 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
869 
870     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
871     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
872 	NULL, &lockstate);
873     if (def == NULL)
874 	rtld_die();
875     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
876 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
877     else
878 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
879 
880     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
881       defobj->strtab + def->st_name, basename(obj->path),
882       (void *)target, basename(defobj->path));
883 
884     /*
885      * Write the new contents for the jmpslot. Note that depending on
886      * architecture, the value which we need to return back to the
887      * lazy binding trampoline may or may not be the target
888      * address. The value returned from reloc_jmpslot() is the value
889      * that the trampoline needs.
890      */
891     target = reloc_jmpslot(where, target, defobj, obj, rel);
892     lock_release(rtld_bind_lock, &lockstate);
893     return target;
894 }
895 
896 /*
897  * Error reporting function.  Use it like printf.  If formats the message
898  * into a buffer, and sets things up so that the next call to dlerror()
899  * will return the message.
900  */
901 void
902 _rtld_error(const char *fmt, ...)
903 {
904     static char buf[512];
905     va_list ap;
906 
907     va_start(ap, fmt);
908     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
909     error_message = buf;
910     va_end(ap);
911     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
912 }
913 
914 /*
915  * Return a dynamically-allocated copy of the current error message, if any.
916  */
917 static char *
918 errmsg_save(void)
919 {
920     return error_message == NULL ? NULL : xstrdup(error_message);
921 }
922 
923 /*
924  * Restore the current error message from a copy which was previously saved
925  * by errmsg_save().  The copy is freed.
926  */
927 static void
928 errmsg_restore(char *saved_msg)
929 {
930     if (saved_msg == NULL)
931 	error_message = NULL;
932     else {
933 	_rtld_error("%s", saved_msg);
934 	free(saved_msg);
935     }
936 }
937 
938 static const char *
939 basename(const char *name)
940 {
941     const char *p = strrchr(name, '/');
942     return p != NULL ? p + 1 : name;
943 }
944 
945 static struct utsname uts;
946 
947 static char *
948 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
949     const char *subst, bool may_free)
950 {
951 	char *p, *p1, *res, *resp;
952 	int subst_len, kw_len, subst_count, old_len, new_len;
953 
954 	kw_len = strlen(kw);
955 
956 	/*
957 	 * First, count the number of the keyword occurrences, to
958 	 * preallocate the final string.
959 	 */
960 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
961 		p1 = strstr(p, kw);
962 		if (p1 == NULL)
963 			break;
964 	}
965 
966 	/*
967 	 * If the keyword is not found, just return.
968 	 *
969 	 * Return non-substituted string if resolution failed.  We
970 	 * cannot do anything more reasonable, the failure mode of the
971 	 * caller is unresolved library anyway.
972 	 */
973 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
974 		return (may_free ? real : xstrdup(real));
975 	if (obj != NULL)
976 		subst = obj->origin_path;
977 
978 	/*
979 	 * There is indeed something to substitute.  Calculate the
980 	 * length of the resulting string, and allocate it.
981 	 */
982 	subst_len = strlen(subst);
983 	old_len = strlen(real);
984 	new_len = old_len + (subst_len - kw_len) * subst_count;
985 	res = xmalloc(new_len + 1);
986 
987 	/*
988 	 * Now, execute the substitution loop.
989 	 */
990 	for (p = real, resp = res, *resp = '\0';;) {
991 		p1 = strstr(p, kw);
992 		if (p1 != NULL) {
993 			/* Copy the prefix before keyword. */
994 			memcpy(resp, p, p1 - p);
995 			resp += p1 - p;
996 			/* Keyword replacement. */
997 			memcpy(resp, subst, subst_len);
998 			resp += subst_len;
999 			*resp = '\0';
1000 			p = p1 + kw_len;
1001 		} else
1002 			break;
1003 	}
1004 
1005 	/* Copy to the end of string and finish. */
1006 	strcat(resp, p);
1007 	if (may_free)
1008 		free(real);
1009 	return (res);
1010 }
1011 
1012 static char *
1013 origin_subst(Obj_Entry *obj, const char *real)
1014 {
1015 	char *res1, *res2, *res3, *res4;
1016 
1017 	if (obj == NULL || !trust)
1018 		return (xstrdup(real));
1019 	if (uts.sysname[0] == '\0') {
1020 		if (uname(&uts) != 0) {
1021 			_rtld_error("utsname failed: %d", errno);
1022 			return (NULL);
1023 		}
1024 	}
1025 	/* __DECONST is safe here since without may_free real is unchanged */
1026 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1027 	    false);
1028 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1029 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1030 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1031 	return (res4);
1032 }
1033 
1034 void
1035 rtld_die(void)
1036 {
1037     const char *msg = dlerror();
1038 
1039     if (msg == NULL)
1040 	msg = "Fatal error";
1041     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1042     rtld_fdputstr(STDERR_FILENO, msg);
1043     rtld_fdputchar(STDERR_FILENO, '\n');
1044     _exit(1);
1045 }
1046 
1047 /*
1048  * Process a shared object's DYNAMIC section, and save the important
1049  * information in its Obj_Entry structure.
1050  */
1051 static void
1052 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1053     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1054 {
1055     const Elf_Dyn *dynp;
1056     Needed_Entry **needed_tail = &obj->needed;
1057     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1058     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1059     const Elf_Hashelt *hashtab;
1060     const Elf32_Word *hashval;
1061     Elf32_Word bkt, nmaskwords;
1062     int bloom_size32;
1063     int plttype = DT_REL;
1064 
1065     *dyn_rpath = NULL;
1066     *dyn_soname = NULL;
1067     *dyn_runpath = NULL;
1068 
1069     obj->bind_now = false;
1070     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1071 	switch (dynp->d_tag) {
1072 
1073 	case DT_REL:
1074 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1075 	    break;
1076 
1077 	case DT_RELSZ:
1078 	    obj->relsize = dynp->d_un.d_val;
1079 	    break;
1080 
1081 	case DT_RELENT:
1082 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1083 	    break;
1084 
1085 	case DT_JMPREL:
1086 	    obj->pltrel = (const Elf_Rel *)
1087 	      (obj->relocbase + dynp->d_un.d_ptr);
1088 	    break;
1089 
1090 	case DT_PLTRELSZ:
1091 	    obj->pltrelsize = dynp->d_un.d_val;
1092 	    break;
1093 
1094 	case DT_RELA:
1095 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_RELASZ:
1099 	    obj->relasize = dynp->d_un.d_val;
1100 	    break;
1101 
1102 	case DT_RELAENT:
1103 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1104 	    break;
1105 
1106 	case DT_PLTREL:
1107 	    plttype = dynp->d_un.d_val;
1108 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1109 	    break;
1110 
1111 	case DT_SYMTAB:
1112 	    obj->symtab = (const Elf_Sym *)
1113 	      (obj->relocbase + dynp->d_un.d_ptr);
1114 	    break;
1115 
1116 	case DT_SYMENT:
1117 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1118 	    break;
1119 
1120 	case DT_STRTAB:
1121 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1122 	    break;
1123 
1124 	case DT_STRSZ:
1125 	    obj->strsize = dynp->d_un.d_val;
1126 	    break;
1127 
1128 	case DT_VERNEED:
1129 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1130 		dynp->d_un.d_val);
1131 	    break;
1132 
1133 	case DT_VERNEEDNUM:
1134 	    obj->verneednum = dynp->d_un.d_val;
1135 	    break;
1136 
1137 	case DT_VERDEF:
1138 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1139 		dynp->d_un.d_val);
1140 	    break;
1141 
1142 	case DT_VERDEFNUM:
1143 	    obj->verdefnum = dynp->d_un.d_val;
1144 	    break;
1145 
1146 	case DT_VERSYM:
1147 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1148 		dynp->d_un.d_val);
1149 	    break;
1150 
1151 	case DT_HASH:
1152 	    {
1153 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1154 		    dynp->d_un.d_ptr);
1155 		obj->nbuckets = hashtab[0];
1156 		obj->nchains = hashtab[1];
1157 		obj->buckets = hashtab + 2;
1158 		obj->chains = obj->buckets + obj->nbuckets;
1159 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1160 		  obj->buckets != NULL;
1161 	    }
1162 	    break;
1163 
1164 	case DT_GNU_HASH:
1165 	    {
1166 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1167 		    dynp->d_un.d_ptr);
1168 		obj->nbuckets_gnu = hashtab[0];
1169 		obj->symndx_gnu = hashtab[1];
1170 		nmaskwords = hashtab[2];
1171 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1172 		obj->maskwords_bm_gnu = nmaskwords - 1;
1173 		obj->shift2_gnu = hashtab[3];
1174 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1175 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1176 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1177 		  obj->symndx_gnu;
1178 		/* Number of bitmask words is required to be power of 2 */
1179 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1180 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1181 	    }
1182 	    break;
1183 
1184 	case DT_NEEDED:
1185 	    if (!obj->rtld) {
1186 		Needed_Entry *nep = NEW(Needed_Entry);
1187 		nep->name = dynp->d_un.d_val;
1188 		nep->obj = NULL;
1189 		nep->next = NULL;
1190 
1191 		*needed_tail = nep;
1192 		needed_tail = &nep->next;
1193 	    }
1194 	    break;
1195 
1196 	case DT_FILTER:
1197 	    if (!obj->rtld) {
1198 		Needed_Entry *nep = NEW(Needed_Entry);
1199 		nep->name = dynp->d_un.d_val;
1200 		nep->obj = NULL;
1201 		nep->next = NULL;
1202 
1203 		*needed_filtees_tail = nep;
1204 		needed_filtees_tail = &nep->next;
1205 	    }
1206 	    break;
1207 
1208 	case DT_AUXILIARY:
1209 	    if (!obj->rtld) {
1210 		Needed_Entry *nep = NEW(Needed_Entry);
1211 		nep->name = dynp->d_un.d_val;
1212 		nep->obj = NULL;
1213 		nep->next = NULL;
1214 
1215 		*needed_aux_filtees_tail = nep;
1216 		needed_aux_filtees_tail = &nep->next;
1217 	    }
1218 	    break;
1219 
1220 	case DT_PLTGOT:
1221 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1222 	    break;
1223 
1224 	case DT_TEXTREL:
1225 	    obj->textrel = true;
1226 	    break;
1227 
1228 	case DT_SYMBOLIC:
1229 	    obj->symbolic = true;
1230 	    break;
1231 
1232 	case DT_RPATH:
1233 	    /*
1234 	     * We have to wait until later to process this, because we
1235 	     * might not have gotten the address of the string table yet.
1236 	     */
1237 	    *dyn_rpath = dynp;
1238 	    break;
1239 
1240 	case DT_SONAME:
1241 	    *dyn_soname = dynp;
1242 	    break;
1243 
1244 	case DT_RUNPATH:
1245 	    *dyn_runpath = dynp;
1246 	    break;
1247 
1248 	case DT_INIT:
1249 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1250 	    break;
1251 
1252 	case DT_PREINIT_ARRAY:
1253 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1254 	    break;
1255 
1256 	case DT_PREINIT_ARRAYSZ:
1257 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1258 	    break;
1259 
1260 	case DT_INIT_ARRAY:
1261 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1262 	    break;
1263 
1264 	case DT_INIT_ARRAYSZ:
1265 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1266 	    break;
1267 
1268 	case DT_FINI:
1269 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1270 	    break;
1271 
1272 	case DT_FINI_ARRAY:
1273 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1274 	    break;
1275 
1276 	case DT_FINI_ARRAYSZ:
1277 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1278 	    break;
1279 
1280 	/*
1281 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1282 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1283 	 */
1284 
1285 #ifndef __mips__
1286 	case DT_DEBUG:
1287 	    if (!early)
1288 		dbg("Filling in DT_DEBUG entry");
1289 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1290 	    break;
1291 #endif
1292 
1293 	case DT_FLAGS:
1294 		if (dynp->d_un.d_val & DF_ORIGIN)
1295 		    obj->z_origin = true;
1296 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1297 		    obj->symbolic = true;
1298 		if (dynp->d_un.d_val & DF_TEXTREL)
1299 		    obj->textrel = true;
1300 		if (dynp->d_un.d_val & DF_BIND_NOW)
1301 		    obj->bind_now = true;
1302 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1303 		    obj->static_tls = true;
1304 	    break;
1305 #ifdef __mips__
1306 	case DT_MIPS_LOCAL_GOTNO:
1307 		obj->local_gotno = dynp->d_un.d_val;
1308 		break;
1309 
1310 	case DT_MIPS_SYMTABNO:
1311 		obj->symtabno = dynp->d_un.d_val;
1312 		break;
1313 
1314 	case DT_MIPS_GOTSYM:
1315 		obj->gotsym = dynp->d_un.d_val;
1316 		break;
1317 
1318 	case DT_MIPS_RLD_MAP:
1319 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1320 		break;
1321 
1322 	case DT_MIPS_RLD_MAP_REL:
1323 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1324 		// section relative to the address of the tag itself.
1325 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1326 		    (Elf_Addr) &r_debug;
1327 		break;
1328 
1329 	case DT_MIPS_PLTGOT:
1330 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1331 		    dynp->d_un.d_ptr);
1332 		break;
1333 
1334 #endif
1335 
1336 #ifdef __powerpc__
1337 #ifdef __powerpc64__
1338 	case DT_PPC64_GLINK:
1339 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1340 		break;
1341 #else
1342 	case DT_PPC_GOT:
1343 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1344 		break;
1345 #endif
1346 #endif
1347 
1348 	case DT_FLAGS_1:
1349 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1350 		    obj->z_noopen = true;
1351 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1352 		    obj->z_origin = true;
1353 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1354 		    obj->z_global = true;
1355 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1356 		    obj->bind_now = true;
1357 		if (dynp->d_un.d_val & DF_1_NODELETE)
1358 		    obj->z_nodelete = true;
1359 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1360 		    obj->z_loadfltr = true;
1361 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1362 		    obj->z_interpose = true;
1363 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1364 		    obj->z_nodeflib = true;
1365 	    break;
1366 
1367 	default:
1368 	    if (!early) {
1369 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1370 		    (long)dynp->d_tag);
1371 	    }
1372 	    break;
1373 	}
1374     }
1375 
1376     obj->traced = false;
1377 
1378     if (plttype == DT_RELA) {
1379 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1380 	obj->pltrel = NULL;
1381 	obj->pltrelasize = obj->pltrelsize;
1382 	obj->pltrelsize = 0;
1383     }
1384 
1385     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1386     if (obj->valid_hash_sysv)
1387 	obj->dynsymcount = obj->nchains;
1388     else if (obj->valid_hash_gnu) {
1389 	obj->dynsymcount = 0;
1390 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1391 	    if (obj->buckets_gnu[bkt] == 0)
1392 		continue;
1393 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1394 	    do
1395 		obj->dynsymcount++;
1396 	    while ((*hashval++ & 1u) == 0);
1397 	}
1398 	obj->dynsymcount += obj->symndx_gnu;
1399     }
1400 }
1401 
1402 static bool
1403 obj_resolve_origin(Obj_Entry *obj)
1404 {
1405 
1406 	if (obj->origin_path != NULL)
1407 		return (true);
1408 	obj->origin_path = xmalloc(PATH_MAX);
1409 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1410 }
1411 
1412 static bool
1413 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1414     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1415 {
1416 
1417 	if (obj->z_origin && !obj_resolve_origin(obj))
1418 		return (false);
1419 
1420 	if (dyn_runpath != NULL) {
1421 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1422 		obj->runpath = origin_subst(obj, obj->runpath);
1423 	} else if (dyn_rpath != NULL) {
1424 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1425 		obj->rpath = origin_subst(obj, obj->rpath);
1426 	}
1427 	if (dyn_soname != NULL)
1428 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1429 	return (true);
1430 }
1431 
1432 static bool
1433 digest_dynamic(Obj_Entry *obj, int early)
1434 {
1435 	const Elf_Dyn *dyn_rpath;
1436 	const Elf_Dyn *dyn_soname;
1437 	const Elf_Dyn *dyn_runpath;
1438 
1439 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1440 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1441 }
1442 
1443 /*
1444  * Process a shared object's program header.  This is used only for the
1445  * main program, when the kernel has already loaded the main program
1446  * into memory before calling the dynamic linker.  It creates and
1447  * returns an Obj_Entry structure.
1448  */
1449 static Obj_Entry *
1450 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1451 {
1452     Obj_Entry *obj;
1453     const Elf_Phdr *phlimit = phdr + phnum;
1454     const Elf_Phdr *ph;
1455     Elf_Addr note_start, note_end;
1456     int nsegs = 0;
1457 
1458     obj = obj_new();
1459     for (ph = phdr;  ph < phlimit;  ph++) {
1460 	if (ph->p_type != PT_PHDR)
1461 	    continue;
1462 
1463 	obj->phdr = phdr;
1464 	obj->phsize = ph->p_memsz;
1465 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1466 	break;
1467     }
1468 
1469     obj->stack_flags = PF_X | PF_R | PF_W;
1470 
1471     for (ph = phdr;  ph < phlimit;  ph++) {
1472 	switch (ph->p_type) {
1473 
1474 	case PT_INTERP:
1475 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1476 	    break;
1477 
1478 	case PT_LOAD:
1479 	    if (nsegs == 0) {	/* First load segment */
1480 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1481 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1482 	    } else {		/* Last load segment */
1483 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1484 		  obj->vaddrbase;
1485 	    }
1486 	    nsegs++;
1487 	    break;
1488 
1489 	case PT_DYNAMIC:
1490 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1491 	    break;
1492 
1493 	case PT_TLS:
1494 	    obj->tlsindex = 1;
1495 	    obj->tlssize = ph->p_memsz;
1496 	    obj->tlsalign = ph->p_align;
1497 	    obj->tlsinitsize = ph->p_filesz;
1498 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1499 	    break;
1500 
1501 	case PT_GNU_STACK:
1502 	    obj->stack_flags = ph->p_flags;
1503 	    break;
1504 
1505 	case PT_GNU_RELRO:
1506 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1507 	    obj->relro_size = round_page(ph->p_memsz);
1508 	    break;
1509 
1510 	case PT_NOTE:
1511 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1512 	    note_end = note_start + ph->p_filesz;
1513 	    digest_notes(obj, note_start, note_end);
1514 	    break;
1515 	}
1516     }
1517     if (nsegs < 1) {
1518 	_rtld_error("%s: too few PT_LOAD segments", path);
1519 	return NULL;
1520     }
1521 
1522     obj->entry = entry;
1523     return obj;
1524 }
1525 
1526 void
1527 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1528 {
1529 	const Elf_Note *note;
1530 	const char *note_name;
1531 	uintptr_t p;
1532 
1533 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1534 	    note = (const Elf_Note *)((const char *)(note + 1) +
1535 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1536 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1537 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1538 		    note->n_descsz != sizeof(int32_t))
1539 			continue;
1540 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1541 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1542 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1543 			continue;
1544 		note_name = (const char *)(note + 1);
1545 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1546 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1547 			continue;
1548 		switch (note->n_type) {
1549 		case NT_FREEBSD_ABI_TAG:
1550 			/* FreeBSD osrel note */
1551 			p = (uintptr_t)(note + 1);
1552 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1553 			obj->osrel = *(const int32_t *)(p);
1554 			dbg("note osrel %d", obj->osrel);
1555 			break;
1556 		case NT_FREEBSD_FEATURE_CTL:
1557 			/* FreeBSD ABI feature control note */
1558 			p = (uintptr_t)(note + 1);
1559 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1560 			obj->fctl0 = *(const uint32_t *)(p);
1561 			dbg("note fctl0 %#x", obj->fctl0);
1562 			break;
1563 		case NT_FREEBSD_NOINIT_TAG:
1564 			/* FreeBSD 'crt does not call init' note */
1565 			obj->crt_no_init = true;
1566 			dbg("note crt_no_init");
1567 			break;
1568 		}
1569 	}
1570 }
1571 
1572 static Obj_Entry *
1573 dlcheck(void *handle)
1574 {
1575     Obj_Entry *obj;
1576 
1577     TAILQ_FOREACH(obj, &obj_list, next) {
1578 	if (obj == (Obj_Entry *) handle)
1579 	    break;
1580     }
1581 
1582     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1583 	_rtld_error("Invalid shared object handle %p", handle);
1584 	return NULL;
1585     }
1586     return obj;
1587 }
1588 
1589 /*
1590  * If the given object is already in the donelist, return true.  Otherwise
1591  * add the object to the list and return false.
1592  */
1593 static bool
1594 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1595 {
1596     unsigned int i;
1597 
1598     for (i = 0;  i < dlp->num_used;  i++)
1599 	if (dlp->objs[i] == obj)
1600 	    return true;
1601     /*
1602      * Our donelist allocation should always be sufficient.  But if
1603      * our threads locking isn't working properly, more shared objects
1604      * could have been loaded since we allocated the list.  That should
1605      * never happen, but we'll handle it properly just in case it does.
1606      */
1607     if (dlp->num_used < dlp->num_alloc)
1608 	dlp->objs[dlp->num_used++] = obj;
1609     return false;
1610 }
1611 
1612 /*
1613  * Hash function for symbol table lookup.  Don't even think about changing
1614  * this.  It is specified by the System V ABI.
1615  */
1616 unsigned long
1617 elf_hash(const char *name)
1618 {
1619     const unsigned char *p = (const unsigned char *) name;
1620     unsigned long h = 0;
1621     unsigned long g;
1622 
1623     while (*p != '\0') {
1624 	h = (h << 4) + *p++;
1625 	if ((g = h & 0xf0000000) != 0)
1626 	    h ^= g >> 24;
1627 	h &= ~g;
1628     }
1629     return h;
1630 }
1631 
1632 /*
1633  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1634  * unsigned in case it's implemented with a wider type.
1635  */
1636 static uint32_t
1637 gnu_hash(const char *s)
1638 {
1639 	uint32_t h;
1640 	unsigned char c;
1641 
1642 	h = 5381;
1643 	for (c = *s; c != '\0'; c = *++s)
1644 		h = h * 33 + c;
1645 	return (h & 0xffffffff);
1646 }
1647 
1648 
1649 /*
1650  * Find the library with the given name, and return its full pathname.
1651  * The returned string is dynamically allocated.  Generates an error
1652  * message and returns NULL if the library cannot be found.
1653  *
1654  * If the second argument is non-NULL, then it refers to an already-
1655  * loaded shared object, whose library search path will be searched.
1656  *
1657  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1658  * descriptor (which is close-on-exec) will be passed out via the third
1659  * argument.
1660  *
1661  * The search order is:
1662  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1663  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1664  *   LD_LIBRARY_PATH
1665  *   DT_RUNPATH in the referencing file
1666  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1667  *	 from list)
1668  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1669  *
1670  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1671  */
1672 static char *
1673 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1674 {
1675 	char *pathname, *refobj_path;
1676 	const char *name;
1677 	bool nodeflib, objgiven;
1678 
1679 	objgiven = refobj != NULL;
1680 
1681 	if (libmap_disable || !objgiven ||
1682 	    (name = lm_find(refobj->path, xname)) == NULL)
1683 		name = xname;
1684 
1685 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1686 		if (name[0] != '/' && !trust) {
1687 			_rtld_error("Absolute pathname required "
1688 			    "for shared object \"%s\"", name);
1689 			return (NULL);
1690 		}
1691 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1692 		    __DECONST(char *, name)));
1693 	}
1694 
1695 	dbg(" Searching for \"%s\"", name);
1696 	refobj_path = objgiven ? refobj->path : NULL;
1697 
1698 	/*
1699 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1700 	 * back to pre-conforming behaviour if user requested so with
1701 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1702 	 * nodeflib.
1703 	 */
1704 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1705 		pathname = search_library_path(name, ld_library_path,
1706 		    refobj_path, fdp);
1707 		if (pathname != NULL)
1708 			return (pathname);
1709 		if (refobj != NULL) {
1710 			pathname = search_library_path(name, refobj->rpath,
1711 			    refobj_path, fdp);
1712 			if (pathname != NULL)
1713 				return (pathname);
1714 		}
1715 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1716 		if (pathname != NULL)
1717 			return (pathname);
1718 		pathname = search_library_path(name, gethints(false),
1719 		    refobj_path, fdp);
1720 		if (pathname != NULL)
1721 			return (pathname);
1722 		pathname = search_library_path(name, ld_standard_library_path,
1723 		    refobj_path, fdp);
1724 		if (pathname != NULL)
1725 			return (pathname);
1726 	} else {
1727 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1728 		if (objgiven) {
1729 			pathname = search_library_path(name, refobj->rpath,
1730 			    refobj->path, fdp);
1731 			if (pathname != NULL)
1732 				return (pathname);
1733 		}
1734 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1735 			pathname = search_library_path(name, obj_main->rpath,
1736 			    refobj_path, fdp);
1737 			if (pathname != NULL)
1738 				return (pathname);
1739 		}
1740 		pathname = search_library_path(name, ld_library_path,
1741 		    refobj_path, fdp);
1742 		if (pathname != NULL)
1743 			return (pathname);
1744 		if (objgiven) {
1745 			pathname = search_library_path(name, refobj->runpath,
1746 			    refobj_path, fdp);
1747 			if (pathname != NULL)
1748 				return (pathname);
1749 		}
1750 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1751 		if (pathname != NULL)
1752 			return (pathname);
1753 		pathname = search_library_path(name, gethints(nodeflib),
1754 		    refobj_path, fdp);
1755 		if (pathname != NULL)
1756 			return (pathname);
1757 		if (objgiven && !nodeflib) {
1758 			pathname = search_library_path(name,
1759 			    ld_standard_library_path, refobj_path, fdp);
1760 			if (pathname != NULL)
1761 				return (pathname);
1762 		}
1763 	}
1764 
1765 	if (objgiven && refobj->path != NULL) {
1766 		_rtld_error("Shared object \"%s\" not found, "
1767 		    "required by \"%s\"", name, basename(refobj->path));
1768 	} else {
1769 		_rtld_error("Shared object \"%s\" not found", name);
1770 	}
1771 	return (NULL);
1772 }
1773 
1774 /*
1775  * Given a symbol number in a referencing object, find the corresponding
1776  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1777  * no definition was found.  Returns a pointer to the Obj_Entry of the
1778  * defining object via the reference parameter DEFOBJ_OUT.
1779  */
1780 const Elf_Sym *
1781 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1782     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1783     RtldLockState *lockstate)
1784 {
1785     const Elf_Sym *ref;
1786     const Elf_Sym *def;
1787     const Obj_Entry *defobj;
1788     const Ver_Entry *ve;
1789     SymLook req;
1790     const char *name;
1791     int res;
1792 
1793     /*
1794      * If we have already found this symbol, get the information from
1795      * the cache.
1796      */
1797     if (symnum >= refobj->dynsymcount)
1798 	return NULL;	/* Bad object */
1799     if (cache != NULL && cache[symnum].sym != NULL) {
1800 	*defobj_out = cache[symnum].obj;
1801 	return cache[symnum].sym;
1802     }
1803 
1804     ref = refobj->symtab + symnum;
1805     name = refobj->strtab + ref->st_name;
1806     def = NULL;
1807     defobj = NULL;
1808     ve = NULL;
1809 
1810     /*
1811      * We don't have to do a full scale lookup if the symbol is local.
1812      * We know it will bind to the instance in this load module; to
1813      * which we already have a pointer (ie ref). By not doing a lookup,
1814      * we not only improve performance, but it also avoids unresolvable
1815      * symbols when local symbols are not in the hash table. This has
1816      * been seen with the ia64 toolchain.
1817      */
1818     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1819 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1820 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1821 		symnum);
1822 	}
1823 	symlook_init(&req, name);
1824 	req.flags = flags;
1825 	ve = req.ventry = fetch_ventry(refobj, symnum);
1826 	req.lockstate = lockstate;
1827 	res = symlook_default(&req, refobj);
1828 	if (res == 0) {
1829 	    def = req.sym_out;
1830 	    defobj = req.defobj_out;
1831 	}
1832     } else {
1833 	def = ref;
1834 	defobj = refobj;
1835     }
1836 
1837     /*
1838      * If we found no definition and the reference is weak, treat the
1839      * symbol as having the value zero.
1840      */
1841     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1842 	def = &sym_zero;
1843 	defobj = obj_main;
1844     }
1845 
1846     if (def != NULL) {
1847 	*defobj_out = defobj;
1848 	/* Record the information in the cache to avoid subsequent lookups. */
1849 	if (cache != NULL) {
1850 	    cache[symnum].sym = def;
1851 	    cache[symnum].obj = defobj;
1852 	}
1853     } else {
1854 	if (refobj != &obj_rtld)
1855 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1856 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1857     }
1858     return def;
1859 }
1860 
1861 /*
1862  * Return the search path from the ldconfig hints file, reading it if
1863  * necessary.  If nostdlib is true, then the default search paths are
1864  * not added to result.
1865  *
1866  * Returns NULL if there are problems with the hints file,
1867  * or if the search path there is empty.
1868  */
1869 static const char *
1870 gethints(bool nostdlib)
1871 {
1872 	static char *filtered_path;
1873 	static const char *hints;
1874 	static struct elfhints_hdr hdr;
1875 	struct fill_search_info_args sargs, hargs;
1876 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1877 	struct dl_serpath *SLPpath, *hintpath;
1878 	char *p;
1879 	struct stat hint_stat;
1880 	unsigned int SLPndx, hintndx, fndx, fcount;
1881 	int fd;
1882 	size_t flen;
1883 	uint32_t dl;
1884 	bool skip;
1885 
1886 	/* First call, read the hints file */
1887 	if (hints == NULL) {
1888 		/* Keep from trying again in case the hints file is bad. */
1889 		hints = "";
1890 
1891 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1892 			return (NULL);
1893 
1894 		/*
1895 		 * Check of hdr.dirlistlen value against type limit
1896 		 * intends to pacify static analyzers.  Further
1897 		 * paranoia leads to checks that dirlist is fully
1898 		 * contained in the file range.
1899 		 */
1900 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1901 		    hdr.magic != ELFHINTS_MAGIC ||
1902 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1903 		    fstat(fd, &hint_stat) == -1) {
1904 cleanup1:
1905 			close(fd);
1906 			hdr.dirlistlen = 0;
1907 			return (NULL);
1908 		}
1909 		dl = hdr.strtab;
1910 		if (dl + hdr.dirlist < dl)
1911 			goto cleanup1;
1912 		dl += hdr.dirlist;
1913 		if (dl + hdr.dirlistlen < dl)
1914 			goto cleanup1;
1915 		dl += hdr.dirlistlen;
1916 		if (dl > hint_stat.st_size)
1917 			goto cleanup1;
1918 		p = xmalloc(hdr.dirlistlen + 1);
1919 		if (pread(fd, p, hdr.dirlistlen + 1,
1920 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1921 		    p[hdr.dirlistlen] != '\0') {
1922 			free(p);
1923 			goto cleanup1;
1924 		}
1925 		hints = p;
1926 		close(fd);
1927 	}
1928 
1929 	/*
1930 	 * If caller agreed to receive list which includes the default
1931 	 * paths, we are done. Otherwise, if we still did not
1932 	 * calculated filtered result, do it now.
1933 	 */
1934 	if (!nostdlib)
1935 		return (hints[0] != '\0' ? hints : NULL);
1936 	if (filtered_path != NULL)
1937 		goto filt_ret;
1938 
1939 	/*
1940 	 * Obtain the list of all configured search paths, and the
1941 	 * list of the default paths.
1942 	 *
1943 	 * First estimate the size of the results.
1944 	 */
1945 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1946 	smeta.dls_cnt = 0;
1947 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1948 	hmeta.dls_cnt = 0;
1949 
1950 	sargs.request = RTLD_DI_SERINFOSIZE;
1951 	sargs.serinfo = &smeta;
1952 	hargs.request = RTLD_DI_SERINFOSIZE;
1953 	hargs.serinfo = &hmeta;
1954 
1955 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1956 	    &sargs);
1957 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1958 
1959 	SLPinfo = xmalloc(smeta.dls_size);
1960 	hintinfo = xmalloc(hmeta.dls_size);
1961 
1962 	/*
1963 	 * Next fetch both sets of paths.
1964 	 */
1965 	sargs.request = RTLD_DI_SERINFO;
1966 	sargs.serinfo = SLPinfo;
1967 	sargs.serpath = &SLPinfo->dls_serpath[0];
1968 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1969 
1970 	hargs.request = RTLD_DI_SERINFO;
1971 	hargs.serinfo = hintinfo;
1972 	hargs.serpath = &hintinfo->dls_serpath[0];
1973 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1974 
1975 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1976 	    &sargs);
1977 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1978 
1979 	/*
1980 	 * Now calculate the difference between two sets, by excluding
1981 	 * standard paths from the full set.
1982 	 */
1983 	fndx = 0;
1984 	fcount = 0;
1985 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1986 	hintpath = &hintinfo->dls_serpath[0];
1987 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1988 		skip = false;
1989 		SLPpath = &SLPinfo->dls_serpath[0];
1990 		/*
1991 		 * Check each standard path against current.
1992 		 */
1993 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1994 			/* matched, skip the path */
1995 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1996 				skip = true;
1997 				break;
1998 			}
1999 		}
2000 		if (skip)
2001 			continue;
2002 		/*
2003 		 * Not matched against any standard path, add the path
2004 		 * to result. Separate consequtive paths with ':'.
2005 		 */
2006 		if (fcount > 0) {
2007 			filtered_path[fndx] = ':';
2008 			fndx++;
2009 		}
2010 		fcount++;
2011 		flen = strlen(hintpath->dls_name);
2012 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2013 		fndx += flen;
2014 	}
2015 	filtered_path[fndx] = '\0';
2016 
2017 	free(SLPinfo);
2018 	free(hintinfo);
2019 
2020 filt_ret:
2021 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2022 }
2023 
2024 static void
2025 init_dag(Obj_Entry *root)
2026 {
2027     const Needed_Entry *needed;
2028     const Objlist_Entry *elm;
2029     DoneList donelist;
2030 
2031     if (root->dag_inited)
2032 	return;
2033     donelist_init(&donelist);
2034 
2035     /* Root object belongs to own DAG. */
2036     objlist_push_tail(&root->dldags, root);
2037     objlist_push_tail(&root->dagmembers, root);
2038     donelist_check(&donelist, root);
2039 
2040     /*
2041      * Add dependencies of root object to DAG in breadth order
2042      * by exploiting the fact that each new object get added
2043      * to the tail of the dagmembers list.
2044      */
2045     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2046 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2047 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2048 		continue;
2049 	    objlist_push_tail(&needed->obj->dldags, root);
2050 	    objlist_push_tail(&root->dagmembers, needed->obj);
2051 	}
2052     }
2053     root->dag_inited = true;
2054 }
2055 
2056 static void
2057 init_marker(Obj_Entry *marker)
2058 {
2059 
2060 	bzero(marker, sizeof(*marker));
2061 	marker->marker = true;
2062 }
2063 
2064 Obj_Entry *
2065 globallist_curr(const Obj_Entry *obj)
2066 {
2067 
2068 	for (;;) {
2069 		if (obj == NULL)
2070 			return (NULL);
2071 		if (!obj->marker)
2072 			return (__DECONST(Obj_Entry *, obj));
2073 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2074 	}
2075 }
2076 
2077 Obj_Entry *
2078 globallist_next(const Obj_Entry *obj)
2079 {
2080 
2081 	for (;;) {
2082 		obj = TAILQ_NEXT(obj, next);
2083 		if (obj == NULL)
2084 			return (NULL);
2085 		if (!obj->marker)
2086 			return (__DECONST(Obj_Entry *, obj));
2087 	}
2088 }
2089 
2090 /* Prevent the object from being unmapped while the bind lock is dropped. */
2091 static void
2092 hold_object(Obj_Entry *obj)
2093 {
2094 
2095 	obj->holdcount++;
2096 }
2097 
2098 static void
2099 unhold_object(Obj_Entry *obj)
2100 {
2101 
2102 	assert(obj->holdcount > 0);
2103 	if (--obj->holdcount == 0 && obj->unholdfree)
2104 		release_object(obj);
2105 }
2106 
2107 static void
2108 process_z(Obj_Entry *root)
2109 {
2110 	const Objlist_Entry *elm;
2111 	Obj_Entry *obj;
2112 
2113 	/*
2114 	 * Walk over object DAG and process every dependent object
2115 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2116 	 * to grow their own DAG.
2117 	 *
2118 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2119 	 * symlook_global() to work.
2120 	 *
2121 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2122 	 */
2123 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2124 		obj = elm->obj;
2125 		if (obj == NULL)
2126 			continue;
2127 		if (obj->z_nodelete && !obj->ref_nodel) {
2128 			dbg("obj %s -z nodelete", obj->path);
2129 			init_dag(obj);
2130 			ref_dag(obj);
2131 			obj->ref_nodel = true;
2132 		}
2133 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2134 			dbg("obj %s -z global", obj->path);
2135 			objlist_push_tail(&list_global, obj);
2136 			init_dag(obj);
2137 		}
2138 	}
2139 }
2140 /*
2141  * Initialize the dynamic linker.  The argument is the address at which
2142  * the dynamic linker has been mapped into memory.  The primary task of
2143  * this function is to relocate the dynamic linker.
2144  */
2145 static void
2146 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2147 {
2148     Obj_Entry objtmp;	/* Temporary rtld object */
2149     const Elf_Ehdr *ehdr;
2150     const Elf_Dyn *dyn_rpath;
2151     const Elf_Dyn *dyn_soname;
2152     const Elf_Dyn *dyn_runpath;
2153 
2154 #ifdef RTLD_INIT_PAGESIZES_EARLY
2155     /* The page size is required by the dynamic memory allocator. */
2156     init_pagesizes(aux_info);
2157 #endif
2158 
2159     /*
2160      * Conjure up an Obj_Entry structure for the dynamic linker.
2161      *
2162      * The "path" member can't be initialized yet because string constants
2163      * cannot yet be accessed. Below we will set it correctly.
2164      */
2165     memset(&objtmp, 0, sizeof(objtmp));
2166     objtmp.path = NULL;
2167     objtmp.rtld = true;
2168     objtmp.mapbase = mapbase;
2169 #ifdef PIC
2170     objtmp.relocbase = mapbase;
2171 #endif
2172 
2173     objtmp.dynamic = rtld_dynamic(&objtmp);
2174     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2175     assert(objtmp.needed == NULL);
2176 #if !defined(__mips__)
2177     /* MIPS has a bogus DT_TEXTREL. */
2178     assert(!objtmp.textrel);
2179 #endif
2180     /*
2181      * Temporarily put the dynamic linker entry into the object list, so
2182      * that symbols can be found.
2183      */
2184     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2185 
2186     ehdr = (Elf_Ehdr *)mapbase;
2187     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2188     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2189 
2190     /* Initialize the object list. */
2191     TAILQ_INIT(&obj_list);
2192 
2193     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2194     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2195 
2196 #ifndef RTLD_INIT_PAGESIZES_EARLY
2197     /* The page size is required by the dynamic memory allocator. */
2198     init_pagesizes(aux_info);
2199 #endif
2200 
2201     if (aux_info[AT_OSRELDATE] != NULL)
2202 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2203 
2204     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2205 
2206     /* Replace the path with a dynamically allocated copy. */
2207     obj_rtld.path = xstrdup(ld_path_rtld);
2208 
2209     r_debug.r_brk = r_debug_state;
2210     r_debug.r_state = RT_CONSISTENT;
2211 }
2212 
2213 /*
2214  * Retrieve the array of supported page sizes.  The kernel provides the page
2215  * sizes in increasing order.
2216  */
2217 static void
2218 init_pagesizes(Elf_Auxinfo **aux_info)
2219 {
2220 	static size_t psa[MAXPAGESIZES];
2221 	int mib[2];
2222 	size_t len, size;
2223 
2224 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2225 	    NULL) {
2226 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2227 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2228 	} else {
2229 		len = 2;
2230 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2231 			size = sizeof(psa);
2232 		else {
2233 			/* As a fallback, retrieve the base page size. */
2234 			size = sizeof(psa[0]);
2235 			if (aux_info[AT_PAGESZ] != NULL) {
2236 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2237 				goto psa_filled;
2238 			} else {
2239 				mib[0] = CTL_HW;
2240 				mib[1] = HW_PAGESIZE;
2241 				len = 2;
2242 			}
2243 		}
2244 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2245 			_rtld_error("sysctl for hw.pagesize(s) failed");
2246 			rtld_die();
2247 		}
2248 psa_filled:
2249 		pagesizes = psa;
2250 	}
2251 	npagesizes = size / sizeof(pagesizes[0]);
2252 	/* Discard any invalid entries at the end of the array. */
2253 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2254 		npagesizes--;
2255 }
2256 
2257 /*
2258  * Add the init functions from a needed object list (and its recursive
2259  * needed objects) to "list".  This is not used directly; it is a helper
2260  * function for initlist_add_objects().  The write lock must be held
2261  * when this function is called.
2262  */
2263 static void
2264 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2265 {
2266     /* Recursively process the successor needed objects. */
2267     if (needed->next != NULL)
2268 	initlist_add_neededs(needed->next, list);
2269 
2270     /* Process the current needed object. */
2271     if (needed->obj != NULL)
2272 	initlist_add_objects(needed->obj, needed->obj, list);
2273 }
2274 
2275 /*
2276  * Scan all of the DAGs rooted in the range of objects from "obj" to
2277  * "tail" and add their init functions to "list".  This recurses over
2278  * the DAGs and ensure the proper init ordering such that each object's
2279  * needed libraries are initialized before the object itself.  At the
2280  * same time, this function adds the objects to the global finalization
2281  * list "list_fini" in the opposite order.  The write lock must be
2282  * held when this function is called.
2283  */
2284 static void
2285 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2286 {
2287     Obj_Entry *nobj;
2288 
2289     if (obj->init_scanned || obj->init_done)
2290 	return;
2291     obj->init_scanned = true;
2292 
2293     /* Recursively process the successor objects. */
2294     nobj = globallist_next(obj);
2295     if (nobj != NULL && obj != tail)
2296 	initlist_add_objects(nobj, tail, list);
2297 
2298     /* Recursively process the needed objects. */
2299     if (obj->needed != NULL)
2300 	initlist_add_neededs(obj->needed, list);
2301     if (obj->needed_filtees != NULL)
2302 	initlist_add_neededs(obj->needed_filtees, list);
2303     if (obj->needed_aux_filtees != NULL)
2304 	initlist_add_neededs(obj->needed_aux_filtees, list);
2305 
2306     /* Add the object to the init list. */
2307     objlist_push_tail(list, obj);
2308 
2309     /* Add the object to the global fini list in the reverse order. */
2310     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2311       && !obj->on_fini_list) {
2312 	objlist_push_head(&list_fini, obj);
2313 	obj->on_fini_list = true;
2314     }
2315 }
2316 
2317 #ifndef FPTR_TARGET
2318 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2319 #endif
2320 
2321 static void
2322 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2323 {
2324     Needed_Entry *needed, *needed1;
2325 
2326     for (needed = n; needed != NULL; needed = needed->next) {
2327 	if (needed->obj != NULL) {
2328 	    dlclose_locked(needed->obj, lockstate);
2329 	    needed->obj = NULL;
2330 	}
2331     }
2332     for (needed = n; needed != NULL; needed = needed1) {
2333 	needed1 = needed->next;
2334 	free(needed);
2335     }
2336 }
2337 
2338 static void
2339 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2340 {
2341 
2342 	free_needed_filtees(obj->needed_filtees, lockstate);
2343 	obj->needed_filtees = NULL;
2344 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2345 	obj->needed_aux_filtees = NULL;
2346 	obj->filtees_loaded = false;
2347 }
2348 
2349 static void
2350 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2351     RtldLockState *lockstate)
2352 {
2353 
2354     for (; needed != NULL; needed = needed->next) {
2355 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2356 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2357 	  RTLD_LOCAL, lockstate);
2358     }
2359 }
2360 
2361 static void
2362 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2363 {
2364 
2365     lock_restart_for_upgrade(lockstate);
2366     if (!obj->filtees_loaded) {
2367 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2368 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2369 	obj->filtees_loaded = true;
2370     }
2371 }
2372 
2373 static int
2374 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2375 {
2376     Obj_Entry *obj1;
2377 
2378     for (; needed != NULL; needed = needed->next) {
2379 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2380 	  flags & ~RTLD_LO_NOLOAD);
2381 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2382 	    return (-1);
2383     }
2384     return (0);
2385 }
2386 
2387 /*
2388  * Given a shared object, traverse its list of needed objects, and load
2389  * each of them.  Returns 0 on success.  Generates an error message and
2390  * returns -1 on failure.
2391  */
2392 static int
2393 load_needed_objects(Obj_Entry *first, int flags)
2394 {
2395     Obj_Entry *obj;
2396 
2397     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2398 	if (obj->marker)
2399 	    continue;
2400 	if (process_needed(obj, obj->needed, flags) == -1)
2401 	    return (-1);
2402     }
2403     return (0);
2404 }
2405 
2406 static int
2407 load_preload_objects(void)
2408 {
2409     char *p = ld_preload;
2410     Obj_Entry *obj;
2411     static const char delim[] = " \t:;";
2412 
2413     if (p == NULL)
2414 	return 0;
2415 
2416     p += strspn(p, delim);
2417     while (*p != '\0') {
2418 	size_t len = strcspn(p, delim);
2419 	char savech;
2420 
2421 	savech = p[len];
2422 	p[len] = '\0';
2423 	obj = load_object(p, -1, NULL, 0);
2424 	if (obj == NULL)
2425 	    return -1;	/* XXX - cleanup */
2426 	obj->z_interpose = true;
2427 	p[len] = savech;
2428 	p += len;
2429 	p += strspn(p, delim);
2430     }
2431     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2432     return 0;
2433 }
2434 
2435 static const char *
2436 printable_path(const char *path)
2437 {
2438 
2439 	return (path == NULL ? "<unknown>" : path);
2440 }
2441 
2442 /*
2443  * Load a shared object into memory, if it is not already loaded.  The
2444  * object may be specified by name or by user-supplied file descriptor
2445  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2446  * duplicate is.
2447  *
2448  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2449  * on failure.
2450  */
2451 static Obj_Entry *
2452 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2453 {
2454     Obj_Entry *obj;
2455     int fd;
2456     struct stat sb;
2457     char *path;
2458 
2459     fd = -1;
2460     if (name != NULL) {
2461 	TAILQ_FOREACH(obj, &obj_list, next) {
2462 	    if (obj->marker || obj->doomed)
2463 		continue;
2464 	    if (object_match_name(obj, name))
2465 		return (obj);
2466 	}
2467 
2468 	path = find_library(name, refobj, &fd);
2469 	if (path == NULL)
2470 	    return (NULL);
2471     } else
2472 	path = NULL;
2473 
2474     if (fd >= 0) {
2475 	/*
2476 	 * search_library_pathfds() opens a fresh file descriptor for the
2477 	 * library, so there is no need to dup().
2478 	 */
2479     } else if (fd_u == -1) {
2480 	/*
2481 	 * If we didn't find a match by pathname, or the name is not
2482 	 * supplied, open the file and check again by device and inode.
2483 	 * This avoids false mismatches caused by multiple links or ".."
2484 	 * in pathnames.
2485 	 *
2486 	 * To avoid a race, we open the file and use fstat() rather than
2487 	 * using stat().
2488 	 */
2489 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2490 	    _rtld_error("Cannot open \"%s\"", path);
2491 	    free(path);
2492 	    return (NULL);
2493 	}
2494     } else {
2495 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2496 	if (fd == -1) {
2497 	    _rtld_error("Cannot dup fd");
2498 	    free(path);
2499 	    return (NULL);
2500 	}
2501     }
2502     if (fstat(fd, &sb) == -1) {
2503 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2504 	close(fd);
2505 	free(path);
2506 	return NULL;
2507     }
2508     TAILQ_FOREACH(obj, &obj_list, next) {
2509 	if (obj->marker || obj->doomed)
2510 	    continue;
2511 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2512 	    break;
2513     }
2514     if (obj != NULL && name != NULL) {
2515 	object_add_name(obj, name);
2516 	free(path);
2517 	close(fd);
2518 	return obj;
2519     }
2520     if (flags & RTLD_LO_NOLOAD) {
2521 	free(path);
2522 	close(fd);
2523 	return (NULL);
2524     }
2525 
2526     /* First use of this object, so we must map it in */
2527     obj = do_load_object(fd, name, path, &sb, flags);
2528     if (obj == NULL)
2529 	free(path);
2530     close(fd);
2531 
2532     return obj;
2533 }
2534 
2535 static Obj_Entry *
2536 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2537   int flags)
2538 {
2539     Obj_Entry *obj;
2540     struct statfs fs;
2541 
2542     /*
2543      * but first, make sure that environment variables haven't been
2544      * used to circumvent the noexec flag on a filesystem.
2545      */
2546     if (dangerous_ld_env) {
2547 	if (fstatfs(fd, &fs) != 0) {
2548 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2549 	    return NULL;
2550 	}
2551 	if (fs.f_flags & MNT_NOEXEC) {
2552 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2553 	    return NULL;
2554 	}
2555     }
2556     dbg("loading \"%s\"", printable_path(path));
2557     obj = map_object(fd, printable_path(path), sbp);
2558     if (obj == NULL)
2559         return NULL;
2560 
2561     /*
2562      * If DT_SONAME is present in the object, digest_dynamic2 already
2563      * added it to the object names.
2564      */
2565     if (name != NULL)
2566 	object_add_name(obj, name);
2567     obj->path = path;
2568     if (!digest_dynamic(obj, 0))
2569 	goto errp;
2570     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2571 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2572     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2573       RTLD_LO_DLOPEN) {
2574 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2575 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2576 	goto errp;
2577     }
2578 
2579     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2580     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2581     obj_count++;
2582     obj_loads++;
2583     linkmap_add(obj);	/* for GDB & dlinfo() */
2584     max_stack_flags |= obj->stack_flags;
2585 
2586     dbg("  %p .. %p: %s", obj->mapbase,
2587          obj->mapbase + obj->mapsize - 1, obj->path);
2588     if (obj->textrel)
2589 	dbg("  WARNING: %s has impure text", obj->path);
2590     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2591 	obj->path);
2592 
2593     return (obj);
2594 
2595 errp:
2596     munmap(obj->mapbase, obj->mapsize);
2597     obj_free(obj);
2598     return (NULL);
2599 }
2600 
2601 static Obj_Entry *
2602 obj_from_addr(const void *addr)
2603 {
2604     Obj_Entry *obj;
2605 
2606     TAILQ_FOREACH(obj, &obj_list, next) {
2607 	if (obj->marker)
2608 	    continue;
2609 	if (addr < (void *) obj->mapbase)
2610 	    continue;
2611 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2612 	    return obj;
2613     }
2614     return NULL;
2615 }
2616 
2617 static void
2618 preinit_main(void)
2619 {
2620     Elf_Addr *preinit_addr;
2621     int index;
2622 
2623     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2624     if (preinit_addr == NULL)
2625 	return;
2626 
2627     for (index = 0; index < obj_main->preinit_array_num; index++) {
2628 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2629 	    dbg("calling preinit function for %s at %p", obj_main->path,
2630 	      (void *)preinit_addr[index]);
2631 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2632 	      0, 0, obj_main->path);
2633 	    call_init_pointer(obj_main, preinit_addr[index]);
2634 	}
2635     }
2636 }
2637 
2638 /*
2639  * Call the finalization functions for each of the objects in "list"
2640  * belonging to the DAG of "root" and referenced once. If NULL "root"
2641  * is specified, every finalization function will be called regardless
2642  * of the reference count and the list elements won't be freed. All of
2643  * the objects are expected to have non-NULL fini functions.
2644  */
2645 static void
2646 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2647 {
2648     Objlist_Entry *elm;
2649     char *saved_msg;
2650     Elf_Addr *fini_addr;
2651     int index;
2652 
2653     assert(root == NULL || root->refcount == 1);
2654 
2655     if (root != NULL)
2656 	root->doomed = true;
2657 
2658     /*
2659      * Preserve the current error message since a fini function might
2660      * call into the dynamic linker and overwrite it.
2661      */
2662     saved_msg = errmsg_save();
2663     do {
2664 	STAILQ_FOREACH(elm, list, link) {
2665 	    if (root != NULL && (elm->obj->refcount != 1 ||
2666 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2667 		continue;
2668 	    /* Remove object from fini list to prevent recursive invocation. */
2669 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2670 	    /* Ensure that new references cannot be acquired. */
2671 	    elm->obj->doomed = true;
2672 
2673 	    hold_object(elm->obj);
2674 	    lock_release(rtld_bind_lock, lockstate);
2675 	    /*
2676 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2677 	     * When this happens, DT_FINI_ARRAY is processed first.
2678 	     */
2679 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2680 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2681 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2682 		  index--) {
2683 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2684 			dbg("calling fini function for %s at %p",
2685 			    elm->obj->path, (void *)fini_addr[index]);
2686 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2687 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2688 			call_initfini_pointer(elm->obj, fini_addr[index]);
2689 		    }
2690 		}
2691 	    }
2692 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2693 		dbg("calling fini function for %s at %p", elm->obj->path,
2694 		    (void *)elm->obj->fini);
2695 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2696 		    0, 0, elm->obj->path);
2697 		call_initfini_pointer(elm->obj, elm->obj->fini);
2698 	    }
2699 	    wlock_acquire(rtld_bind_lock, lockstate);
2700 	    unhold_object(elm->obj);
2701 	    /* No need to free anything if process is going down. */
2702 	    if (root != NULL)
2703 	    	free(elm);
2704 	    /*
2705 	     * We must restart the list traversal after every fini call
2706 	     * because a dlclose() call from the fini function or from
2707 	     * another thread might have modified the reference counts.
2708 	     */
2709 	    break;
2710 	}
2711     } while (elm != NULL);
2712     errmsg_restore(saved_msg);
2713 }
2714 
2715 /*
2716  * Call the initialization functions for each of the objects in
2717  * "list".  All of the objects are expected to have non-NULL init
2718  * functions.
2719  */
2720 static void
2721 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2722 {
2723     Objlist_Entry *elm;
2724     Obj_Entry *obj;
2725     char *saved_msg;
2726     Elf_Addr *init_addr;
2727     void (*reg)(void (*)(void));
2728     int index;
2729 
2730     /*
2731      * Clean init_scanned flag so that objects can be rechecked and
2732      * possibly initialized earlier if any of vectors called below
2733      * cause the change by using dlopen.
2734      */
2735     TAILQ_FOREACH(obj, &obj_list, next) {
2736 	if (obj->marker)
2737 	    continue;
2738 	obj->init_scanned = false;
2739     }
2740 
2741     /*
2742      * Preserve the current error message since an init function might
2743      * call into the dynamic linker and overwrite it.
2744      */
2745     saved_msg = errmsg_save();
2746     STAILQ_FOREACH(elm, list, link) {
2747 	if (elm->obj->init_done) /* Initialized early. */
2748 	    continue;
2749 	/*
2750 	 * Race: other thread might try to use this object before current
2751 	 * one completes the initialization. Not much can be done here
2752 	 * without better locking.
2753 	 */
2754 	elm->obj->init_done = true;
2755 	hold_object(elm->obj);
2756 	reg = NULL;
2757 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2758 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2759 		    "__libc_atexit", lockstate);
2760 	}
2761 	lock_release(rtld_bind_lock, lockstate);
2762 	if (reg != NULL) {
2763 		reg(rtld_exit);
2764 		rtld_exit_ptr = rtld_nop_exit;
2765 	}
2766 
2767         /*
2768          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2769          * When this happens, DT_INIT is processed first.
2770          */
2771 	if (elm->obj->init != (Elf_Addr)NULL) {
2772 	    dbg("calling init function for %s at %p", elm->obj->path,
2773 	        (void *)elm->obj->init);
2774 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2775 	        0, 0, elm->obj->path);
2776 	    call_initfini_pointer(elm->obj, elm->obj->init);
2777 	}
2778 	init_addr = (Elf_Addr *)elm->obj->init_array;
2779 	if (init_addr != NULL) {
2780 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2781 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2782 		    dbg("calling init function for %s at %p", elm->obj->path,
2783 			(void *)init_addr[index]);
2784 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2785 			(void *)init_addr[index], 0, 0, elm->obj->path);
2786 		    call_init_pointer(elm->obj, init_addr[index]);
2787 		}
2788 	    }
2789 	}
2790 	wlock_acquire(rtld_bind_lock, lockstate);
2791 	unhold_object(elm->obj);
2792     }
2793     errmsg_restore(saved_msg);
2794 }
2795 
2796 static void
2797 objlist_clear(Objlist *list)
2798 {
2799     Objlist_Entry *elm;
2800 
2801     while (!STAILQ_EMPTY(list)) {
2802 	elm = STAILQ_FIRST(list);
2803 	STAILQ_REMOVE_HEAD(list, link);
2804 	free(elm);
2805     }
2806 }
2807 
2808 static Objlist_Entry *
2809 objlist_find(Objlist *list, const Obj_Entry *obj)
2810 {
2811     Objlist_Entry *elm;
2812 
2813     STAILQ_FOREACH(elm, list, link)
2814 	if (elm->obj == obj)
2815 	    return elm;
2816     return NULL;
2817 }
2818 
2819 static void
2820 objlist_init(Objlist *list)
2821 {
2822     STAILQ_INIT(list);
2823 }
2824 
2825 static void
2826 objlist_push_head(Objlist *list, Obj_Entry *obj)
2827 {
2828     Objlist_Entry *elm;
2829 
2830     elm = NEW(Objlist_Entry);
2831     elm->obj = obj;
2832     STAILQ_INSERT_HEAD(list, elm, link);
2833 }
2834 
2835 static void
2836 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2837 {
2838     Objlist_Entry *elm;
2839 
2840     elm = NEW(Objlist_Entry);
2841     elm->obj = obj;
2842     STAILQ_INSERT_TAIL(list, elm, link);
2843 }
2844 
2845 static void
2846 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2847 {
2848 	Objlist_Entry *elm, *listelm;
2849 
2850 	STAILQ_FOREACH(listelm, list, link) {
2851 		if (listelm->obj == listobj)
2852 			break;
2853 	}
2854 	elm = NEW(Objlist_Entry);
2855 	elm->obj = obj;
2856 	if (listelm != NULL)
2857 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2858 	else
2859 		STAILQ_INSERT_TAIL(list, elm, link);
2860 }
2861 
2862 static void
2863 objlist_remove(Objlist *list, Obj_Entry *obj)
2864 {
2865     Objlist_Entry *elm;
2866 
2867     if ((elm = objlist_find(list, obj)) != NULL) {
2868 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2869 	free(elm);
2870     }
2871 }
2872 
2873 /*
2874  * Relocate dag rooted in the specified object.
2875  * Returns 0 on success, or -1 on failure.
2876  */
2877 
2878 static int
2879 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2880     int flags, RtldLockState *lockstate)
2881 {
2882 	Objlist_Entry *elm;
2883 	int error;
2884 
2885 	error = 0;
2886 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2887 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2888 		    lockstate);
2889 		if (error == -1)
2890 			break;
2891 	}
2892 	return (error);
2893 }
2894 
2895 /*
2896  * Prepare for, or clean after, relocating an object marked with
2897  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2898  * segments are remapped read-write.  After relocations are done, the
2899  * segment's permissions are returned back to the modes specified in
2900  * the phdrs.  If any relocation happened, or always for wired
2901  * program, COW is triggered.
2902  */
2903 static int
2904 reloc_textrel_prot(Obj_Entry *obj, bool before)
2905 {
2906 	const Elf_Phdr *ph;
2907 	void *base;
2908 	size_t l, sz;
2909 	int prot;
2910 
2911 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2912 	    l--, ph++) {
2913 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2914 			continue;
2915 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2916 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2917 		    trunc_page(ph->p_vaddr);
2918 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2919 		if (mprotect(base, sz, prot) == -1) {
2920 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2921 			    obj->path, before ? "en" : "dis",
2922 			    rtld_strerror(errno));
2923 			return (-1);
2924 		}
2925 	}
2926 	return (0);
2927 }
2928 
2929 /*
2930  * Relocate single object.
2931  * Returns 0 on success, or -1 on failure.
2932  */
2933 static int
2934 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2935     int flags, RtldLockState *lockstate)
2936 {
2937 
2938 	if (obj->relocated)
2939 		return (0);
2940 	obj->relocated = true;
2941 	if (obj != rtldobj)
2942 		dbg("relocating \"%s\"", obj->path);
2943 
2944 	if (obj->symtab == NULL || obj->strtab == NULL ||
2945 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2946 		_rtld_error("%s: Shared object has no run-time symbol table",
2947 			    obj->path);
2948 		return (-1);
2949 	}
2950 
2951 	/* There are relocations to the write-protected text segment. */
2952 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2953 		return (-1);
2954 
2955 	/* Process the non-PLT non-IFUNC relocations. */
2956 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2957 		return (-1);
2958 
2959 	/* Re-protected the text segment. */
2960 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2961 		return (-1);
2962 
2963 	/* Set the special PLT or GOT entries. */
2964 	init_pltgot(obj);
2965 
2966 	/* Process the PLT relocations. */
2967 	if (reloc_plt(obj, flags, lockstate) == -1)
2968 		return (-1);
2969 	/* Relocate the jump slots if we are doing immediate binding. */
2970 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2971 	    lockstate) == -1)
2972 		return (-1);
2973 
2974 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2975 		return (-1);
2976 
2977 	/*
2978 	 * Set up the magic number and version in the Obj_Entry.  These
2979 	 * were checked in the crt1.o from the original ElfKit, so we
2980 	 * set them for backward compatibility.
2981 	 */
2982 	obj->magic = RTLD_MAGIC;
2983 	obj->version = RTLD_VERSION;
2984 
2985 	return (0);
2986 }
2987 
2988 /*
2989  * Relocate newly-loaded shared objects.  The argument is a pointer to
2990  * the Obj_Entry for the first such object.  All objects from the first
2991  * to the end of the list of objects are relocated.  Returns 0 on success,
2992  * or -1 on failure.
2993  */
2994 static int
2995 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2996     int flags, RtldLockState *lockstate)
2997 {
2998 	Obj_Entry *obj;
2999 	int error;
3000 
3001 	for (error = 0, obj = first;  obj != NULL;
3002 	    obj = TAILQ_NEXT(obj, next)) {
3003 		if (obj->marker)
3004 			continue;
3005 		error = relocate_object(obj, bind_now, rtldobj, flags,
3006 		    lockstate);
3007 		if (error == -1)
3008 			break;
3009 	}
3010 	return (error);
3011 }
3012 
3013 /*
3014  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3015  * referencing STT_GNU_IFUNC symbols is postponed till the other
3016  * relocations are done.  The indirect functions specified as
3017  * ifunc are allowed to call other symbols, so we need to have
3018  * objects relocated before asking for resolution from indirects.
3019  *
3020  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3021  * instead of the usual lazy handling of PLT slots.  It is
3022  * consistent with how GNU does it.
3023  */
3024 static int
3025 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3026     RtldLockState *lockstate)
3027 {
3028 
3029 	if (obj->ifuncs_resolved)
3030 		return (0);
3031 	obj->ifuncs_resolved = true;
3032 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3033 		return (0);
3034 	if (obj_disable_relro(obj) == -1 ||
3035 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3036 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3037 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3038 	    obj_enforce_relro(obj) == -1)
3039 		return (-1);
3040 	return (0);
3041 }
3042 
3043 static int
3044 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3045     RtldLockState *lockstate)
3046 {
3047 	Objlist_Entry *elm;
3048 	Obj_Entry *obj;
3049 
3050 	STAILQ_FOREACH(elm, list, link) {
3051 		obj = elm->obj;
3052 		if (obj->marker)
3053 			continue;
3054 		if (resolve_object_ifunc(obj, bind_now, flags,
3055 		    lockstate) == -1)
3056 			return (-1);
3057 	}
3058 	return (0);
3059 }
3060 
3061 /*
3062  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3063  * before the process exits.
3064  */
3065 static void
3066 rtld_exit(void)
3067 {
3068     RtldLockState lockstate;
3069 
3070     wlock_acquire(rtld_bind_lock, &lockstate);
3071     dbg("rtld_exit()");
3072     objlist_call_fini(&list_fini, NULL, &lockstate);
3073     /* No need to remove the items from the list, since we are exiting. */
3074     if (!libmap_disable)
3075         lm_fini();
3076     lock_release(rtld_bind_lock, &lockstate);
3077 }
3078 
3079 static void
3080 rtld_nop_exit(void)
3081 {
3082 }
3083 
3084 /*
3085  * Iterate over a search path, translate each element, and invoke the
3086  * callback on the result.
3087  */
3088 static void *
3089 path_enumerate(const char *path, path_enum_proc callback,
3090     const char *refobj_path, void *arg)
3091 {
3092     const char *trans;
3093     if (path == NULL)
3094 	return (NULL);
3095 
3096     path += strspn(path, ":;");
3097     while (*path != '\0') {
3098 	size_t len;
3099 	char  *res;
3100 
3101 	len = strcspn(path, ":;");
3102 	trans = lm_findn(refobj_path, path, len);
3103 	if (trans)
3104 	    res = callback(trans, strlen(trans), arg);
3105 	else
3106 	    res = callback(path, len, arg);
3107 
3108 	if (res != NULL)
3109 	    return (res);
3110 
3111 	path += len;
3112 	path += strspn(path, ":;");
3113     }
3114 
3115     return (NULL);
3116 }
3117 
3118 struct try_library_args {
3119     const char	*name;
3120     size_t	 namelen;
3121     char	*buffer;
3122     size_t	 buflen;
3123     int		 fd;
3124 };
3125 
3126 static void *
3127 try_library_path(const char *dir, size_t dirlen, void *param)
3128 {
3129     struct try_library_args *arg;
3130     int fd;
3131 
3132     arg = param;
3133     if (*dir == '/' || trust) {
3134 	char *pathname;
3135 
3136 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3137 		return (NULL);
3138 
3139 	pathname = arg->buffer;
3140 	strncpy(pathname, dir, dirlen);
3141 	pathname[dirlen] = '/';
3142 	strcpy(pathname + dirlen + 1, arg->name);
3143 
3144 	dbg("  Trying \"%s\"", pathname);
3145 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3146 	if (fd >= 0) {
3147 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3148 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3149 	    strcpy(pathname, arg->buffer);
3150 	    arg->fd = fd;
3151 	    return (pathname);
3152 	} else {
3153 	    dbg("  Failed to open \"%s\": %s",
3154 		pathname, rtld_strerror(errno));
3155 	}
3156     }
3157     return (NULL);
3158 }
3159 
3160 static char *
3161 search_library_path(const char *name, const char *path,
3162     const char *refobj_path, int *fdp)
3163 {
3164     char *p;
3165     struct try_library_args arg;
3166 
3167     if (path == NULL)
3168 	return NULL;
3169 
3170     arg.name = name;
3171     arg.namelen = strlen(name);
3172     arg.buffer = xmalloc(PATH_MAX);
3173     arg.buflen = PATH_MAX;
3174     arg.fd = -1;
3175 
3176     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3177     *fdp = arg.fd;
3178 
3179     free(arg.buffer);
3180 
3181     return (p);
3182 }
3183 
3184 
3185 /*
3186  * Finds the library with the given name using the directory descriptors
3187  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3188  *
3189  * Returns a freshly-opened close-on-exec file descriptor for the library,
3190  * or -1 if the library cannot be found.
3191  */
3192 static char *
3193 search_library_pathfds(const char *name, const char *path, int *fdp)
3194 {
3195 	char *envcopy, *fdstr, *found, *last_token;
3196 	size_t len;
3197 	int dirfd, fd;
3198 
3199 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3200 
3201 	/* Don't load from user-specified libdirs into setuid binaries. */
3202 	if (!trust)
3203 		return (NULL);
3204 
3205 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3206 	if (path == NULL)
3207 		return (NULL);
3208 
3209 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3210 	if (name[0] == '/') {
3211 		dbg("Absolute path (%s) passed to %s", name, __func__);
3212 		return (NULL);
3213 	}
3214 
3215 	/*
3216 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3217 	 * copy of the path, as strtok_r rewrites separator tokens
3218 	 * with '\0'.
3219 	 */
3220 	found = NULL;
3221 	envcopy = xstrdup(path);
3222 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3223 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3224 		dirfd = parse_integer(fdstr);
3225 		if (dirfd < 0) {
3226 			_rtld_error("failed to parse directory FD: '%s'",
3227 				fdstr);
3228 			break;
3229 		}
3230 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3231 		if (fd >= 0) {
3232 			*fdp = fd;
3233 			len = strlen(fdstr) + strlen(name) + 3;
3234 			found = xmalloc(len);
3235 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3236 				_rtld_error("error generating '%d/%s'",
3237 				    dirfd, name);
3238 				rtld_die();
3239 			}
3240 			dbg("open('%s') => %d", found, fd);
3241 			break;
3242 		}
3243 	}
3244 	free(envcopy);
3245 
3246 	return (found);
3247 }
3248 
3249 
3250 int
3251 dlclose(void *handle)
3252 {
3253 	RtldLockState lockstate;
3254 	int error;
3255 
3256 	wlock_acquire(rtld_bind_lock, &lockstate);
3257 	error = dlclose_locked(handle, &lockstate);
3258 	lock_release(rtld_bind_lock, &lockstate);
3259 	return (error);
3260 }
3261 
3262 static int
3263 dlclose_locked(void *handle, RtldLockState *lockstate)
3264 {
3265     Obj_Entry *root;
3266 
3267     root = dlcheck(handle);
3268     if (root == NULL)
3269 	return -1;
3270     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3271 	root->path);
3272 
3273     /* Unreference the object and its dependencies. */
3274     root->dl_refcount--;
3275 
3276     if (root->refcount == 1) {
3277 	/*
3278 	 * The object will be no longer referenced, so we must unload it.
3279 	 * First, call the fini functions.
3280 	 */
3281 	objlist_call_fini(&list_fini, root, lockstate);
3282 
3283 	unref_dag(root);
3284 
3285 	/* Finish cleaning up the newly-unreferenced objects. */
3286 	GDB_STATE(RT_DELETE,&root->linkmap);
3287 	unload_object(root, lockstate);
3288 	GDB_STATE(RT_CONSISTENT,NULL);
3289     } else
3290 	unref_dag(root);
3291 
3292     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3293     return 0;
3294 }
3295 
3296 char *
3297 dlerror(void)
3298 {
3299     char *msg = error_message;
3300     error_message = NULL;
3301     return msg;
3302 }
3303 
3304 /*
3305  * This function is deprecated and has no effect.
3306  */
3307 void
3308 dllockinit(void *context,
3309     void *(*_lock_create)(void *context) __unused,
3310     void (*_rlock_acquire)(void *lock) __unused,
3311     void (*_wlock_acquire)(void *lock)  __unused,
3312     void (*_lock_release)(void *lock) __unused,
3313     void (*_lock_destroy)(void *lock) __unused,
3314     void (*context_destroy)(void *context))
3315 {
3316     static void *cur_context;
3317     static void (*cur_context_destroy)(void *);
3318 
3319     /* Just destroy the context from the previous call, if necessary. */
3320     if (cur_context_destroy != NULL)
3321 	cur_context_destroy(cur_context);
3322     cur_context = context;
3323     cur_context_destroy = context_destroy;
3324 }
3325 
3326 void *
3327 dlopen(const char *name, int mode)
3328 {
3329 
3330 	return (rtld_dlopen(name, -1, mode));
3331 }
3332 
3333 void *
3334 fdlopen(int fd, int mode)
3335 {
3336 
3337 	return (rtld_dlopen(NULL, fd, mode));
3338 }
3339 
3340 static void *
3341 rtld_dlopen(const char *name, int fd, int mode)
3342 {
3343     RtldLockState lockstate;
3344     int lo_flags;
3345 
3346     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3347     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3348     if (ld_tracing != NULL) {
3349 	rlock_acquire(rtld_bind_lock, &lockstate);
3350 	if (sigsetjmp(lockstate.env, 0) != 0)
3351 	    lock_upgrade(rtld_bind_lock, &lockstate);
3352 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3353 	lock_release(rtld_bind_lock, &lockstate);
3354     }
3355     lo_flags = RTLD_LO_DLOPEN;
3356     if (mode & RTLD_NODELETE)
3357 	    lo_flags |= RTLD_LO_NODELETE;
3358     if (mode & RTLD_NOLOAD)
3359 	    lo_flags |= RTLD_LO_NOLOAD;
3360     if (ld_tracing != NULL)
3361 	    lo_flags |= RTLD_LO_TRACE;
3362 
3363     return (dlopen_object(name, fd, obj_main, lo_flags,
3364       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3365 }
3366 
3367 static void
3368 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3369 {
3370 
3371 	obj->dl_refcount--;
3372 	unref_dag(obj);
3373 	if (obj->refcount == 0)
3374 		unload_object(obj, lockstate);
3375 }
3376 
3377 static Obj_Entry *
3378 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3379     int mode, RtldLockState *lockstate)
3380 {
3381     Obj_Entry *old_obj_tail;
3382     Obj_Entry *obj;
3383     Objlist initlist;
3384     RtldLockState mlockstate;
3385     int result;
3386 
3387     objlist_init(&initlist);
3388 
3389     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3390 	wlock_acquire(rtld_bind_lock, &mlockstate);
3391 	lockstate = &mlockstate;
3392     }
3393     GDB_STATE(RT_ADD,NULL);
3394 
3395     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3396     obj = NULL;
3397     if (name == NULL && fd == -1) {
3398 	obj = obj_main;
3399 	obj->refcount++;
3400     } else {
3401 	obj = load_object(name, fd, refobj, lo_flags);
3402     }
3403 
3404     if (obj) {
3405 	obj->dl_refcount++;
3406 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3407 	    objlist_push_tail(&list_global, obj);
3408 	if (globallist_next(old_obj_tail) != NULL) {
3409 	    /* We loaded something new. */
3410 	    assert(globallist_next(old_obj_tail) == obj);
3411 	    result = 0;
3412 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3413 	      !allocate_tls_offset(obj)) {
3414 		_rtld_error("%s: No space available "
3415 		  "for static Thread Local Storage", obj->path);
3416 		result = -1;
3417 	    }
3418 	    if (result != -1)
3419 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3420 		    RTLD_LO_EARLY));
3421 	    init_dag(obj);
3422 	    ref_dag(obj);
3423 	    if (result != -1)
3424 		result = rtld_verify_versions(&obj->dagmembers);
3425 	    if (result != -1 && ld_tracing)
3426 		goto trace;
3427 	    if (result == -1 || relocate_object_dag(obj,
3428 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3429 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3430 	      lockstate) == -1) {
3431 		dlopen_cleanup(obj, lockstate);
3432 		obj = NULL;
3433 	    } else if (lo_flags & RTLD_LO_EARLY) {
3434 		/*
3435 		 * Do not call the init functions for early loaded
3436 		 * filtees.  The image is still not initialized enough
3437 		 * for them to work.
3438 		 *
3439 		 * Our object is found by the global object list and
3440 		 * will be ordered among all init calls done right
3441 		 * before transferring control to main.
3442 		 */
3443 	    } else {
3444 		/* Make list of init functions to call. */
3445 		initlist_add_objects(obj, obj, &initlist);
3446 	    }
3447 	    /*
3448 	     * Process all no_delete or global objects here, given
3449 	     * them own DAGs to prevent their dependencies from being
3450 	     * unloaded.  This has to be done after we have loaded all
3451 	     * of the dependencies, so that we do not miss any.
3452 	     */
3453 	    if (obj != NULL)
3454 		process_z(obj);
3455 	} else {
3456 	    /*
3457 	     * Bump the reference counts for objects on this DAG.  If
3458 	     * this is the first dlopen() call for the object that was
3459 	     * already loaded as a dependency, initialize the dag
3460 	     * starting at it.
3461 	     */
3462 	    init_dag(obj);
3463 	    ref_dag(obj);
3464 
3465 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3466 		goto trace;
3467 	}
3468 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3469 	  obj->z_nodelete) && !obj->ref_nodel) {
3470 	    dbg("obj %s nodelete", obj->path);
3471 	    ref_dag(obj);
3472 	    obj->z_nodelete = obj->ref_nodel = true;
3473 	}
3474     }
3475 
3476     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3477 	name);
3478     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3479 
3480     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3481 	map_stacks_exec(lockstate);
3482 	if (obj != NULL)
3483 	    distribute_static_tls(&initlist, lockstate);
3484     }
3485 
3486     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3487       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3488       lockstate) == -1) {
3489 	objlist_clear(&initlist);
3490 	dlopen_cleanup(obj, lockstate);
3491 	if (lockstate == &mlockstate)
3492 	    lock_release(rtld_bind_lock, lockstate);
3493 	return (NULL);
3494     }
3495 
3496     if (!(lo_flags & RTLD_LO_EARLY)) {
3497 	/* Call the init functions. */
3498 	objlist_call_init(&initlist, lockstate);
3499     }
3500     objlist_clear(&initlist);
3501     if (lockstate == &mlockstate)
3502 	lock_release(rtld_bind_lock, lockstate);
3503     return obj;
3504 trace:
3505     trace_loaded_objects(obj);
3506     if (lockstate == &mlockstate)
3507 	lock_release(rtld_bind_lock, lockstate);
3508     exit(0);
3509 }
3510 
3511 static void *
3512 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3513     int flags)
3514 {
3515     DoneList donelist;
3516     const Obj_Entry *obj, *defobj;
3517     const Elf_Sym *def;
3518     SymLook req;
3519     RtldLockState lockstate;
3520     tls_index ti;
3521     void *sym;
3522     int res;
3523 
3524     def = NULL;
3525     defobj = NULL;
3526     symlook_init(&req, name);
3527     req.ventry = ve;
3528     req.flags = flags | SYMLOOK_IN_PLT;
3529     req.lockstate = &lockstate;
3530 
3531     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3532     rlock_acquire(rtld_bind_lock, &lockstate);
3533     if (sigsetjmp(lockstate.env, 0) != 0)
3534 	    lock_upgrade(rtld_bind_lock, &lockstate);
3535     if (handle == NULL || handle == RTLD_NEXT ||
3536 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3537 
3538 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3539 	    _rtld_error("Cannot determine caller's shared object");
3540 	    lock_release(rtld_bind_lock, &lockstate);
3541 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3542 	    return NULL;
3543 	}
3544 	if (handle == NULL) {	/* Just the caller's shared object. */
3545 	    res = symlook_obj(&req, obj);
3546 	    if (res == 0) {
3547 		def = req.sym_out;
3548 		defobj = req.defobj_out;
3549 	    }
3550 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3551 		   handle == RTLD_SELF) { /* ... caller included */
3552 	    if (handle == RTLD_NEXT)
3553 		obj = globallist_next(obj);
3554 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3555 		if (obj->marker)
3556 		    continue;
3557 		res = symlook_obj(&req, obj);
3558 		if (res == 0) {
3559 		    if (def == NULL ||
3560 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3561 			def = req.sym_out;
3562 			defobj = req.defobj_out;
3563 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3564 			    break;
3565 		    }
3566 		}
3567 	    }
3568 	    /*
3569 	     * Search the dynamic linker itself, and possibly resolve the
3570 	     * symbol from there.  This is how the application links to
3571 	     * dynamic linker services such as dlopen.
3572 	     */
3573 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3574 		res = symlook_obj(&req, &obj_rtld);
3575 		if (res == 0) {
3576 		    def = req.sym_out;
3577 		    defobj = req.defobj_out;
3578 		}
3579 	    }
3580 	} else {
3581 	    assert(handle == RTLD_DEFAULT);
3582 	    res = symlook_default(&req, obj);
3583 	    if (res == 0) {
3584 		defobj = req.defobj_out;
3585 		def = req.sym_out;
3586 	    }
3587 	}
3588     } else {
3589 	if ((obj = dlcheck(handle)) == NULL) {
3590 	    lock_release(rtld_bind_lock, &lockstate);
3591 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3592 	    return NULL;
3593 	}
3594 
3595 	donelist_init(&donelist);
3596 	if (obj->mainprog) {
3597             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3598 	    res = symlook_global(&req, &donelist);
3599 	    if (res == 0) {
3600 		def = req.sym_out;
3601 		defobj = req.defobj_out;
3602 	    }
3603 	    /*
3604 	     * Search the dynamic linker itself, and possibly resolve the
3605 	     * symbol from there.  This is how the application links to
3606 	     * dynamic linker services such as dlopen.
3607 	     */
3608 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3609 		res = symlook_obj(&req, &obj_rtld);
3610 		if (res == 0) {
3611 		    def = req.sym_out;
3612 		    defobj = req.defobj_out;
3613 		}
3614 	    }
3615 	}
3616 	else {
3617 	    /* Search the whole DAG rooted at the given object. */
3618 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3619 	    if (res == 0) {
3620 		def = req.sym_out;
3621 		defobj = req.defobj_out;
3622 	    }
3623 	}
3624     }
3625 
3626     if (def != NULL) {
3627 	lock_release(rtld_bind_lock, &lockstate);
3628 
3629 	/*
3630 	 * The value required by the caller is derived from the value
3631 	 * of the symbol. this is simply the relocated value of the
3632 	 * symbol.
3633 	 */
3634 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3635 	    sym = make_function_pointer(def, defobj);
3636 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3637 	    sym = rtld_resolve_ifunc(defobj, def);
3638 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3639 	    ti.ti_module = defobj->tlsindex;
3640 	    ti.ti_offset = def->st_value;
3641 	    sym = __tls_get_addr(&ti);
3642 	} else
3643 	    sym = defobj->relocbase + def->st_value;
3644 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3645 	return (sym);
3646     }
3647 
3648     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3649       ve != NULL ? ve->name : "");
3650     lock_release(rtld_bind_lock, &lockstate);
3651     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3652     return NULL;
3653 }
3654 
3655 void *
3656 dlsym(void *handle, const char *name)
3657 {
3658 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3659 	    SYMLOOK_DLSYM);
3660 }
3661 
3662 dlfunc_t
3663 dlfunc(void *handle, const char *name)
3664 {
3665 	union {
3666 		void *d;
3667 		dlfunc_t f;
3668 	} rv;
3669 
3670 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3671 	    SYMLOOK_DLSYM);
3672 	return (rv.f);
3673 }
3674 
3675 void *
3676 dlvsym(void *handle, const char *name, const char *version)
3677 {
3678 	Ver_Entry ventry;
3679 
3680 	ventry.name = version;
3681 	ventry.file = NULL;
3682 	ventry.hash = elf_hash(version);
3683 	ventry.flags= 0;
3684 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3685 	    SYMLOOK_DLSYM);
3686 }
3687 
3688 int
3689 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3690 {
3691     const Obj_Entry *obj;
3692     RtldLockState lockstate;
3693 
3694     rlock_acquire(rtld_bind_lock, &lockstate);
3695     obj = obj_from_addr(addr);
3696     if (obj == NULL) {
3697         _rtld_error("No shared object contains address");
3698 	lock_release(rtld_bind_lock, &lockstate);
3699         return (0);
3700     }
3701     rtld_fill_dl_phdr_info(obj, phdr_info);
3702     lock_release(rtld_bind_lock, &lockstate);
3703     return (1);
3704 }
3705 
3706 int
3707 dladdr(const void *addr, Dl_info *info)
3708 {
3709     const Obj_Entry *obj;
3710     const Elf_Sym *def;
3711     void *symbol_addr;
3712     unsigned long symoffset;
3713     RtldLockState lockstate;
3714 
3715     rlock_acquire(rtld_bind_lock, &lockstate);
3716     obj = obj_from_addr(addr);
3717     if (obj == NULL) {
3718         _rtld_error("No shared object contains address");
3719 	lock_release(rtld_bind_lock, &lockstate);
3720         return 0;
3721     }
3722     info->dli_fname = obj->path;
3723     info->dli_fbase = obj->mapbase;
3724     info->dli_saddr = (void *)0;
3725     info->dli_sname = NULL;
3726 
3727     /*
3728      * Walk the symbol list looking for the symbol whose address is
3729      * closest to the address sent in.
3730      */
3731     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3732         def = obj->symtab + symoffset;
3733 
3734         /*
3735          * For skip the symbol if st_shndx is either SHN_UNDEF or
3736          * SHN_COMMON.
3737          */
3738         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3739             continue;
3740 
3741         /*
3742          * If the symbol is greater than the specified address, or if it
3743          * is further away from addr than the current nearest symbol,
3744          * then reject it.
3745          */
3746         symbol_addr = obj->relocbase + def->st_value;
3747         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3748             continue;
3749 
3750         /* Update our idea of the nearest symbol. */
3751         info->dli_sname = obj->strtab + def->st_name;
3752         info->dli_saddr = symbol_addr;
3753 
3754         /* Exact match? */
3755         if (info->dli_saddr == addr)
3756             break;
3757     }
3758     lock_release(rtld_bind_lock, &lockstate);
3759     return 1;
3760 }
3761 
3762 int
3763 dlinfo(void *handle, int request, void *p)
3764 {
3765     const Obj_Entry *obj;
3766     RtldLockState lockstate;
3767     int error;
3768 
3769     rlock_acquire(rtld_bind_lock, &lockstate);
3770 
3771     if (handle == NULL || handle == RTLD_SELF) {
3772 	void *retaddr;
3773 
3774 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3775 	if ((obj = obj_from_addr(retaddr)) == NULL)
3776 	    _rtld_error("Cannot determine caller's shared object");
3777     } else
3778 	obj = dlcheck(handle);
3779 
3780     if (obj == NULL) {
3781 	lock_release(rtld_bind_lock, &lockstate);
3782 	return (-1);
3783     }
3784 
3785     error = 0;
3786     switch (request) {
3787     case RTLD_DI_LINKMAP:
3788 	*((struct link_map const **)p) = &obj->linkmap;
3789 	break;
3790     case RTLD_DI_ORIGIN:
3791 	error = rtld_dirname(obj->path, p);
3792 	break;
3793 
3794     case RTLD_DI_SERINFOSIZE:
3795     case RTLD_DI_SERINFO:
3796 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3797 	break;
3798 
3799     default:
3800 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3801 	error = -1;
3802     }
3803 
3804     lock_release(rtld_bind_lock, &lockstate);
3805 
3806     return (error);
3807 }
3808 
3809 static void
3810 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3811 {
3812 
3813 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3814 	phdr_info->dlpi_name = obj->path;
3815 	phdr_info->dlpi_phdr = obj->phdr;
3816 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3817 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3818 	phdr_info->dlpi_tls_data = obj->tlsinit;
3819 	phdr_info->dlpi_adds = obj_loads;
3820 	phdr_info->dlpi_subs = obj_loads - obj_count;
3821 }
3822 
3823 int
3824 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3825 {
3826 	struct dl_phdr_info phdr_info;
3827 	Obj_Entry *obj, marker;
3828 	RtldLockState bind_lockstate, phdr_lockstate;
3829 	int error;
3830 
3831 	init_marker(&marker);
3832 	error = 0;
3833 
3834 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3835 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3836 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3837 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3838 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3839 		hold_object(obj);
3840 		lock_release(rtld_bind_lock, &bind_lockstate);
3841 
3842 		error = callback(&phdr_info, sizeof phdr_info, param);
3843 
3844 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3845 		unhold_object(obj);
3846 		obj = globallist_next(&marker);
3847 		TAILQ_REMOVE(&obj_list, &marker, next);
3848 		if (error != 0) {
3849 			lock_release(rtld_bind_lock, &bind_lockstate);
3850 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3851 			return (error);
3852 		}
3853 	}
3854 
3855 	if (error == 0) {
3856 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3857 		lock_release(rtld_bind_lock, &bind_lockstate);
3858 		error = callback(&phdr_info, sizeof(phdr_info), param);
3859 	}
3860 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3861 	return (error);
3862 }
3863 
3864 static void *
3865 fill_search_info(const char *dir, size_t dirlen, void *param)
3866 {
3867     struct fill_search_info_args *arg;
3868 
3869     arg = param;
3870 
3871     if (arg->request == RTLD_DI_SERINFOSIZE) {
3872 	arg->serinfo->dls_cnt ++;
3873 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3874     } else {
3875 	struct dl_serpath *s_entry;
3876 
3877 	s_entry = arg->serpath;
3878 	s_entry->dls_name  = arg->strspace;
3879 	s_entry->dls_flags = arg->flags;
3880 
3881 	strncpy(arg->strspace, dir, dirlen);
3882 	arg->strspace[dirlen] = '\0';
3883 
3884 	arg->strspace += dirlen + 1;
3885 	arg->serpath++;
3886     }
3887 
3888     return (NULL);
3889 }
3890 
3891 static int
3892 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3893 {
3894     struct dl_serinfo _info;
3895     struct fill_search_info_args args;
3896 
3897     args.request = RTLD_DI_SERINFOSIZE;
3898     args.serinfo = &_info;
3899 
3900     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3901     _info.dls_cnt  = 0;
3902 
3903     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3904     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3905     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3906     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3907     if (!obj->z_nodeflib)
3908       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3909 
3910 
3911     if (request == RTLD_DI_SERINFOSIZE) {
3912 	info->dls_size = _info.dls_size;
3913 	info->dls_cnt = _info.dls_cnt;
3914 	return (0);
3915     }
3916 
3917     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3918 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3919 	return (-1);
3920     }
3921 
3922     args.request  = RTLD_DI_SERINFO;
3923     args.serinfo  = info;
3924     args.serpath  = &info->dls_serpath[0];
3925     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3926 
3927     args.flags = LA_SER_RUNPATH;
3928     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3929 	return (-1);
3930 
3931     args.flags = LA_SER_LIBPATH;
3932     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3933 	return (-1);
3934 
3935     args.flags = LA_SER_RUNPATH;
3936     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3937 	return (-1);
3938 
3939     args.flags = LA_SER_CONFIG;
3940     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3941       != NULL)
3942 	return (-1);
3943 
3944     args.flags = LA_SER_DEFAULT;
3945     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3946       fill_search_info, NULL, &args) != NULL)
3947 	return (-1);
3948     return (0);
3949 }
3950 
3951 static int
3952 rtld_dirname(const char *path, char *bname)
3953 {
3954     const char *endp;
3955 
3956     /* Empty or NULL string gets treated as "." */
3957     if (path == NULL || *path == '\0') {
3958 	bname[0] = '.';
3959 	bname[1] = '\0';
3960 	return (0);
3961     }
3962 
3963     /* Strip trailing slashes */
3964     endp = path + strlen(path) - 1;
3965     while (endp > path && *endp == '/')
3966 	endp--;
3967 
3968     /* Find the start of the dir */
3969     while (endp > path && *endp != '/')
3970 	endp--;
3971 
3972     /* Either the dir is "/" or there are no slashes */
3973     if (endp == path) {
3974 	bname[0] = *endp == '/' ? '/' : '.';
3975 	bname[1] = '\0';
3976 	return (0);
3977     } else {
3978 	do {
3979 	    endp--;
3980 	} while (endp > path && *endp == '/');
3981     }
3982 
3983     if (endp - path + 2 > PATH_MAX)
3984     {
3985 	_rtld_error("Filename is too long: %s", path);
3986 	return(-1);
3987     }
3988 
3989     strncpy(bname, path, endp - path + 1);
3990     bname[endp - path + 1] = '\0';
3991     return (0);
3992 }
3993 
3994 static int
3995 rtld_dirname_abs(const char *path, char *base)
3996 {
3997 	char *last;
3998 
3999 	if (realpath(path, base) == NULL) {
4000 		_rtld_error("realpath \"%s\" failed (%s)", path,
4001 		    rtld_strerror(errno));
4002 		return (-1);
4003 	}
4004 	dbg("%s -> %s", path, base);
4005 	last = strrchr(base, '/');
4006 	if (last == NULL) {
4007 		_rtld_error("non-abs result from realpath \"%s\"", path);
4008 		return (-1);
4009 	}
4010 	if (last != base)
4011 		*last = '\0';
4012 	return (0);
4013 }
4014 
4015 static void
4016 linkmap_add(Obj_Entry *obj)
4017 {
4018     struct link_map *l = &obj->linkmap;
4019     struct link_map *prev;
4020 
4021     obj->linkmap.l_name = obj->path;
4022     obj->linkmap.l_addr = obj->mapbase;
4023     obj->linkmap.l_ld = obj->dynamic;
4024 #ifdef __mips__
4025     /* GDB needs load offset on MIPS to use the symbols */
4026     obj->linkmap.l_offs = obj->relocbase;
4027 #endif
4028 
4029     if (r_debug.r_map == NULL) {
4030 	r_debug.r_map = l;
4031 	return;
4032     }
4033 
4034     /*
4035      * Scan to the end of the list, but not past the entry for the
4036      * dynamic linker, which we want to keep at the very end.
4037      */
4038     for (prev = r_debug.r_map;
4039       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4040       prev = prev->l_next)
4041 	;
4042 
4043     /* Link in the new entry. */
4044     l->l_prev = prev;
4045     l->l_next = prev->l_next;
4046     if (l->l_next != NULL)
4047 	l->l_next->l_prev = l;
4048     prev->l_next = l;
4049 }
4050 
4051 static void
4052 linkmap_delete(Obj_Entry *obj)
4053 {
4054     struct link_map *l = &obj->linkmap;
4055 
4056     if (l->l_prev == NULL) {
4057 	if ((r_debug.r_map = l->l_next) != NULL)
4058 	    l->l_next->l_prev = NULL;
4059 	return;
4060     }
4061 
4062     if ((l->l_prev->l_next = l->l_next) != NULL)
4063 	l->l_next->l_prev = l->l_prev;
4064 }
4065 
4066 /*
4067  * Function for the debugger to set a breakpoint on to gain control.
4068  *
4069  * The two parameters allow the debugger to easily find and determine
4070  * what the runtime loader is doing and to whom it is doing it.
4071  *
4072  * When the loadhook trap is hit (r_debug_state, set at program
4073  * initialization), the arguments can be found on the stack:
4074  *
4075  *  +8   struct link_map *m
4076  *  +4   struct r_debug  *rd
4077  *  +0   RetAddr
4078  */
4079 void
4080 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4081 {
4082     /*
4083      * The following is a hack to force the compiler to emit calls to
4084      * this function, even when optimizing.  If the function is empty,
4085      * the compiler is not obliged to emit any code for calls to it,
4086      * even when marked __noinline.  However, gdb depends on those
4087      * calls being made.
4088      */
4089     __compiler_membar();
4090 }
4091 
4092 /*
4093  * A function called after init routines have completed. This can be used to
4094  * break before a program's entry routine is called, and can be used when
4095  * main is not available in the symbol table.
4096  */
4097 void
4098 _r_debug_postinit(struct link_map *m __unused)
4099 {
4100 
4101 	/* See r_debug_state(). */
4102 	__compiler_membar();
4103 }
4104 
4105 static void
4106 release_object(Obj_Entry *obj)
4107 {
4108 
4109 	if (obj->holdcount > 0) {
4110 		obj->unholdfree = true;
4111 		return;
4112 	}
4113 	munmap(obj->mapbase, obj->mapsize);
4114 	linkmap_delete(obj);
4115 	obj_free(obj);
4116 }
4117 
4118 /*
4119  * Get address of the pointer variable in the main program.
4120  * Prefer non-weak symbol over the weak one.
4121  */
4122 static const void **
4123 get_program_var_addr(const char *name, RtldLockState *lockstate)
4124 {
4125     SymLook req;
4126     DoneList donelist;
4127 
4128     symlook_init(&req, name);
4129     req.lockstate = lockstate;
4130     donelist_init(&donelist);
4131     if (symlook_global(&req, &donelist) != 0)
4132 	return (NULL);
4133     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4134 	return ((const void **)make_function_pointer(req.sym_out,
4135 	  req.defobj_out));
4136     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4137 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4138     else
4139 	return ((const void **)(req.defobj_out->relocbase +
4140 	  req.sym_out->st_value));
4141 }
4142 
4143 /*
4144  * Set a pointer variable in the main program to the given value.  This
4145  * is used to set key variables such as "environ" before any of the
4146  * init functions are called.
4147  */
4148 static void
4149 set_program_var(const char *name, const void *value)
4150 {
4151     const void **addr;
4152 
4153     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4154 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4155 	*addr = value;
4156     }
4157 }
4158 
4159 /*
4160  * Search the global objects, including dependencies and main object,
4161  * for the given symbol.
4162  */
4163 static int
4164 symlook_global(SymLook *req, DoneList *donelist)
4165 {
4166     SymLook req1;
4167     const Objlist_Entry *elm;
4168     int res;
4169 
4170     symlook_init_from_req(&req1, req);
4171 
4172     /* Search all objects loaded at program start up. */
4173     if (req->defobj_out == NULL ||
4174       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4175 	res = symlook_list(&req1, &list_main, donelist);
4176 	if (res == 0 && (req->defobj_out == NULL ||
4177 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4178 	    req->sym_out = req1.sym_out;
4179 	    req->defobj_out = req1.defobj_out;
4180 	    assert(req->defobj_out != NULL);
4181 	}
4182     }
4183 
4184     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4185     STAILQ_FOREACH(elm, &list_global, link) {
4186 	if (req->defobj_out != NULL &&
4187 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4188 	    break;
4189 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4190 	if (res == 0 && (req->defobj_out == NULL ||
4191 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4192 	    req->sym_out = req1.sym_out;
4193 	    req->defobj_out = req1.defobj_out;
4194 	    assert(req->defobj_out != NULL);
4195 	}
4196     }
4197 
4198     return (req->sym_out != NULL ? 0 : ESRCH);
4199 }
4200 
4201 /*
4202  * Given a symbol name in a referencing object, find the corresponding
4203  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4204  * no definition was found.  Returns a pointer to the Obj_Entry of the
4205  * defining object via the reference parameter DEFOBJ_OUT.
4206  */
4207 static int
4208 symlook_default(SymLook *req, const Obj_Entry *refobj)
4209 {
4210     DoneList donelist;
4211     const Objlist_Entry *elm;
4212     SymLook req1;
4213     int res;
4214 
4215     donelist_init(&donelist);
4216     symlook_init_from_req(&req1, req);
4217 
4218     /*
4219      * Look first in the referencing object if linked symbolically,
4220      * and similarly handle protected symbols.
4221      */
4222     res = symlook_obj(&req1, refobj);
4223     if (res == 0 && (refobj->symbolic ||
4224       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4225 	req->sym_out = req1.sym_out;
4226 	req->defobj_out = req1.defobj_out;
4227 	assert(req->defobj_out != NULL);
4228     }
4229     if (refobj->symbolic || req->defobj_out != NULL)
4230 	donelist_check(&donelist, refobj);
4231 
4232     symlook_global(req, &donelist);
4233 
4234     /* Search all dlopened DAGs containing the referencing object. */
4235     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4236 	if (req->sym_out != NULL &&
4237 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4238 	    break;
4239 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4240 	if (res == 0 && (req->sym_out == NULL ||
4241 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4242 	    req->sym_out = req1.sym_out;
4243 	    req->defobj_out = req1.defobj_out;
4244 	    assert(req->defobj_out != NULL);
4245 	}
4246     }
4247 
4248     /*
4249      * Search the dynamic linker itself, and possibly resolve the
4250      * symbol from there.  This is how the application links to
4251      * dynamic linker services such as dlopen.
4252      */
4253     if (req->sym_out == NULL ||
4254       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4255 	res = symlook_obj(&req1, &obj_rtld);
4256 	if (res == 0) {
4257 	    req->sym_out = req1.sym_out;
4258 	    req->defobj_out = req1.defobj_out;
4259 	    assert(req->defobj_out != NULL);
4260 	}
4261     }
4262 
4263     return (req->sym_out != NULL ? 0 : ESRCH);
4264 }
4265 
4266 static int
4267 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4268 {
4269     const Elf_Sym *def;
4270     const Obj_Entry *defobj;
4271     const Objlist_Entry *elm;
4272     SymLook req1;
4273     int res;
4274 
4275     def = NULL;
4276     defobj = NULL;
4277     STAILQ_FOREACH(elm, objlist, link) {
4278 	if (donelist_check(dlp, elm->obj))
4279 	    continue;
4280 	symlook_init_from_req(&req1, req);
4281 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4282 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4283 		def = req1.sym_out;
4284 		defobj = req1.defobj_out;
4285 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4286 		    break;
4287 	    }
4288 	}
4289     }
4290     if (def != NULL) {
4291 	req->sym_out = def;
4292 	req->defobj_out = defobj;
4293 	return (0);
4294     }
4295     return (ESRCH);
4296 }
4297 
4298 /*
4299  * Search the chain of DAGS cointed to by the given Needed_Entry
4300  * for a symbol of the given name.  Each DAG is scanned completely
4301  * before advancing to the next one.  Returns a pointer to the symbol,
4302  * or NULL if no definition was found.
4303  */
4304 static int
4305 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4306 {
4307     const Elf_Sym *def;
4308     const Needed_Entry *n;
4309     const Obj_Entry *defobj;
4310     SymLook req1;
4311     int res;
4312 
4313     def = NULL;
4314     defobj = NULL;
4315     symlook_init_from_req(&req1, req);
4316     for (n = needed; n != NULL; n = n->next) {
4317 	if (n->obj == NULL ||
4318 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4319 	    continue;
4320 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4321 	    def = req1.sym_out;
4322 	    defobj = req1.defobj_out;
4323 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4324 		break;
4325 	}
4326     }
4327     if (def != NULL) {
4328 	req->sym_out = def;
4329 	req->defobj_out = defobj;
4330 	return (0);
4331     }
4332     return (ESRCH);
4333 }
4334 
4335 /*
4336  * Search the symbol table of a single shared object for a symbol of
4337  * the given name and version, if requested.  Returns a pointer to the
4338  * symbol, or NULL if no definition was found.  If the object is
4339  * filter, return filtered symbol from filtee.
4340  *
4341  * The symbol's hash value is passed in for efficiency reasons; that
4342  * eliminates many recomputations of the hash value.
4343  */
4344 int
4345 symlook_obj(SymLook *req, const Obj_Entry *obj)
4346 {
4347     DoneList donelist;
4348     SymLook req1;
4349     int flags, res, mres;
4350 
4351     /*
4352      * If there is at least one valid hash at this point, we prefer to
4353      * use the faster GNU version if available.
4354      */
4355     if (obj->valid_hash_gnu)
4356 	mres = symlook_obj1_gnu(req, obj);
4357     else if (obj->valid_hash_sysv)
4358 	mres = symlook_obj1_sysv(req, obj);
4359     else
4360 	return (EINVAL);
4361 
4362     if (mres == 0) {
4363 	if (obj->needed_filtees != NULL) {
4364 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4365 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4366 	    donelist_init(&donelist);
4367 	    symlook_init_from_req(&req1, req);
4368 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4369 	    if (res == 0) {
4370 		req->sym_out = req1.sym_out;
4371 		req->defobj_out = req1.defobj_out;
4372 	    }
4373 	    return (res);
4374 	}
4375 	if (obj->needed_aux_filtees != NULL) {
4376 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4377 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4378 	    donelist_init(&donelist);
4379 	    symlook_init_from_req(&req1, req);
4380 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4381 	    if (res == 0) {
4382 		req->sym_out = req1.sym_out;
4383 		req->defobj_out = req1.defobj_out;
4384 		return (res);
4385 	    }
4386 	}
4387     }
4388     return (mres);
4389 }
4390 
4391 /* Symbol match routine common to both hash functions */
4392 static bool
4393 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4394     const unsigned long symnum)
4395 {
4396 	Elf_Versym verndx;
4397 	const Elf_Sym *symp;
4398 	const char *strp;
4399 
4400 	symp = obj->symtab + symnum;
4401 	strp = obj->strtab + symp->st_name;
4402 
4403 	switch (ELF_ST_TYPE(symp->st_info)) {
4404 	case STT_FUNC:
4405 	case STT_NOTYPE:
4406 	case STT_OBJECT:
4407 	case STT_COMMON:
4408 	case STT_GNU_IFUNC:
4409 		if (symp->st_value == 0)
4410 			return (false);
4411 		/* fallthrough */
4412 	case STT_TLS:
4413 		if (symp->st_shndx != SHN_UNDEF)
4414 			break;
4415 #ifndef __mips__
4416 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4417 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4418 			break;
4419 #endif
4420 		/* fallthrough */
4421 	default:
4422 		return (false);
4423 	}
4424 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4425 		return (false);
4426 
4427 	if (req->ventry == NULL) {
4428 		if (obj->versyms != NULL) {
4429 			verndx = VER_NDX(obj->versyms[symnum]);
4430 			if (verndx > obj->vernum) {
4431 				_rtld_error(
4432 				    "%s: symbol %s references wrong version %d",
4433 				    obj->path, obj->strtab + symnum, verndx);
4434 				return (false);
4435 			}
4436 			/*
4437 			 * If we are not called from dlsym (i.e. this
4438 			 * is a normal relocation from unversioned
4439 			 * binary), accept the symbol immediately if
4440 			 * it happens to have first version after this
4441 			 * shared object became versioned.  Otherwise,
4442 			 * if symbol is versioned and not hidden,
4443 			 * remember it. If it is the only symbol with
4444 			 * this name exported by the shared object, it
4445 			 * will be returned as a match by the calling
4446 			 * function. If symbol is global (verndx < 2)
4447 			 * accept it unconditionally.
4448 			 */
4449 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4450 			    verndx == VER_NDX_GIVEN) {
4451 				result->sym_out = symp;
4452 				return (true);
4453 			}
4454 			else if (verndx >= VER_NDX_GIVEN) {
4455 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4456 				    == 0) {
4457 					if (result->vsymp == NULL)
4458 						result->vsymp = symp;
4459 					result->vcount++;
4460 				}
4461 				return (false);
4462 			}
4463 		}
4464 		result->sym_out = symp;
4465 		return (true);
4466 	}
4467 	if (obj->versyms == NULL) {
4468 		if (object_match_name(obj, req->ventry->name)) {
4469 			_rtld_error("%s: object %s should provide version %s "
4470 			    "for symbol %s", obj_rtld.path, obj->path,
4471 			    req->ventry->name, obj->strtab + symnum);
4472 			return (false);
4473 		}
4474 	} else {
4475 		verndx = VER_NDX(obj->versyms[symnum]);
4476 		if (verndx > obj->vernum) {
4477 			_rtld_error("%s: symbol %s references wrong version %d",
4478 			    obj->path, obj->strtab + symnum, verndx);
4479 			return (false);
4480 		}
4481 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4482 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4483 			/*
4484 			 * Version does not match. Look if this is a
4485 			 * global symbol and if it is not hidden. If
4486 			 * global symbol (verndx < 2) is available,
4487 			 * use it. Do not return symbol if we are
4488 			 * called by dlvsym, because dlvsym looks for
4489 			 * a specific version and default one is not
4490 			 * what dlvsym wants.
4491 			 */
4492 			if ((req->flags & SYMLOOK_DLSYM) ||
4493 			    (verndx >= VER_NDX_GIVEN) ||
4494 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4495 				return (false);
4496 		}
4497 	}
4498 	result->sym_out = symp;
4499 	return (true);
4500 }
4501 
4502 /*
4503  * Search for symbol using SysV hash function.
4504  * obj->buckets is known not to be NULL at this point; the test for this was
4505  * performed with the obj->valid_hash_sysv assignment.
4506  */
4507 static int
4508 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4509 {
4510 	unsigned long symnum;
4511 	Sym_Match_Result matchres;
4512 
4513 	matchres.sym_out = NULL;
4514 	matchres.vsymp = NULL;
4515 	matchres.vcount = 0;
4516 
4517 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4518 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4519 		if (symnum >= obj->nchains)
4520 			return (ESRCH);	/* Bad object */
4521 
4522 		if (matched_symbol(req, obj, &matchres, symnum)) {
4523 			req->sym_out = matchres.sym_out;
4524 			req->defobj_out = obj;
4525 			return (0);
4526 		}
4527 	}
4528 	if (matchres.vcount == 1) {
4529 		req->sym_out = matchres.vsymp;
4530 		req->defobj_out = obj;
4531 		return (0);
4532 	}
4533 	return (ESRCH);
4534 }
4535 
4536 /* Search for symbol using GNU hash function */
4537 static int
4538 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4539 {
4540 	Elf_Addr bloom_word;
4541 	const Elf32_Word *hashval;
4542 	Elf32_Word bucket;
4543 	Sym_Match_Result matchres;
4544 	unsigned int h1, h2;
4545 	unsigned long symnum;
4546 
4547 	matchres.sym_out = NULL;
4548 	matchres.vsymp = NULL;
4549 	matchres.vcount = 0;
4550 
4551 	/* Pick right bitmask word from Bloom filter array */
4552 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4553 	    obj->maskwords_bm_gnu];
4554 
4555 	/* Calculate modulus word size of gnu hash and its derivative */
4556 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4557 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4558 
4559 	/* Filter out the "definitely not in set" queries */
4560 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4561 		return (ESRCH);
4562 
4563 	/* Locate hash chain and corresponding value element*/
4564 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4565 	if (bucket == 0)
4566 		return (ESRCH);
4567 	hashval = &obj->chain_zero_gnu[bucket];
4568 	do {
4569 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4570 			symnum = hashval - obj->chain_zero_gnu;
4571 			if (matched_symbol(req, obj, &matchres, symnum)) {
4572 				req->sym_out = matchres.sym_out;
4573 				req->defobj_out = obj;
4574 				return (0);
4575 			}
4576 		}
4577 	} while ((*hashval++ & 1) == 0);
4578 	if (matchres.vcount == 1) {
4579 		req->sym_out = matchres.vsymp;
4580 		req->defobj_out = obj;
4581 		return (0);
4582 	}
4583 	return (ESRCH);
4584 }
4585 
4586 static void
4587 trace_loaded_objects(Obj_Entry *obj)
4588 {
4589     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4590     int c;
4591 
4592     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4593 	main_local = "";
4594 
4595     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4596 	fmt1 = "\t%o => %p (%x)\n";
4597 
4598     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4599 	fmt2 = "\t%o (%x)\n";
4600 
4601     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4602 
4603     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4604 	Needed_Entry *needed;
4605 	const char *name, *path;
4606 	bool is_lib;
4607 
4608 	if (obj->marker)
4609 	    continue;
4610 	if (list_containers && obj->needed != NULL)
4611 	    rtld_printf("%s:\n", obj->path);
4612 	for (needed = obj->needed; needed; needed = needed->next) {
4613 	    if (needed->obj != NULL) {
4614 		if (needed->obj->traced && !list_containers)
4615 		    continue;
4616 		needed->obj->traced = true;
4617 		path = needed->obj->path;
4618 	    } else
4619 		path = "not found";
4620 
4621 	    name = obj->strtab + needed->name;
4622 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4623 
4624 	    fmt = is_lib ? fmt1 : fmt2;
4625 	    while ((c = *fmt++) != '\0') {
4626 		switch (c) {
4627 		default:
4628 		    rtld_putchar(c);
4629 		    continue;
4630 		case '\\':
4631 		    switch (c = *fmt) {
4632 		    case '\0':
4633 			continue;
4634 		    case 'n':
4635 			rtld_putchar('\n');
4636 			break;
4637 		    case 't':
4638 			rtld_putchar('\t');
4639 			break;
4640 		    }
4641 		    break;
4642 		case '%':
4643 		    switch (c = *fmt) {
4644 		    case '\0':
4645 			continue;
4646 		    case '%':
4647 		    default:
4648 			rtld_putchar(c);
4649 			break;
4650 		    case 'A':
4651 			rtld_putstr(main_local);
4652 			break;
4653 		    case 'a':
4654 			rtld_putstr(obj_main->path);
4655 			break;
4656 		    case 'o':
4657 			rtld_putstr(name);
4658 			break;
4659 #if 0
4660 		    case 'm':
4661 			rtld_printf("%d", sodp->sod_major);
4662 			break;
4663 		    case 'n':
4664 			rtld_printf("%d", sodp->sod_minor);
4665 			break;
4666 #endif
4667 		    case 'p':
4668 			rtld_putstr(path);
4669 			break;
4670 		    case 'x':
4671 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4672 			  0);
4673 			break;
4674 		    }
4675 		    break;
4676 		}
4677 		++fmt;
4678 	    }
4679 	}
4680     }
4681 }
4682 
4683 /*
4684  * Unload a dlopened object and its dependencies from memory and from
4685  * our data structures.  It is assumed that the DAG rooted in the
4686  * object has already been unreferenced, and that the object has a
4687  * reference count of 0.
4688  */
4689 static void
4690 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4691 {
4692 	Obj_Entry marker, *obj, *next;
4693 
4694 	assert(root->refcount == 0);
4695 
4696 	/*
4697 	 * Pass over the DAG removing unreferenced objects from
4698 	 * appropriate lists.
4699 	 */
4700 	unlink_object(root);
4701 
4702 	/* Unmap all objects that are no longer referenced. */
4703 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4704 		next = TAILQ_NEXT(obj, next);
4705 		if (obj->marker || obj->refcount != 0)
4706 			continue;
4707 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4708 		    obj->mapsize, 0, obj->path);
4709 		dbg("unloading \"%s\"", obj->path);
4710 		/*
4711 		 * Unlink the object now to prevent new references from
4712 		 * being acquired while the bind lock is dropped in
4713 		 * recursive dlclose() invocations.
4714 		 */
4715 		TAILQ_REMOVE(&obj_list, obj, next);
4716 		obj_count--;
4717 
4718 		if (obj->filtees_loaded) {
4719 			if (next != NULL) {
4720 				init_marker(&marker);
4721 				TAILQ_INSERT_BEFORE(next, &marker, next);
4722 				unload_filtees(obj, lockstate);
4723 				next = TAILQ_NEXT(&marker, next);
4724 				TAILQ_REMOVE(&obj_list, &marker, next);
4725 			} else
4726 				unload_filtees(obj, lockstate);
4727 		}
4728 		release_object(obj);
4729 	}
4730 }
4731 
4732 static void
4733 unlink_object(Obj_Entry *root)
4734 {
4735     Objlist_Entry *elm;
4736 
4737     if (root->refcount == 0) {
4738 	/* Remove the object from the RTLD_GLOBAL list. */
4739 	objlist_remove(&list_global, root);
4740 
4741     	/* Remove the object from all objects' DAG lists. */
4742     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4743 	    objlist_remove(&elm->obj->dldags, root);
4744 	    if (elm->obj != root)
4745 		unlink_object(elm->obj);
4746 	}
4747     }
4748 }
4749 
4750 static void
4751 ref_dag(Obj_Entry *root)
4752 {
4753     Objlist_Entry *elm;
4754 
4755     assert(root->dag_inited);
4756     STAILQ_FOREACH(elm, &root->dagmembers, link)
4757 	elm->obj->refcount++;
4758 }
4759 
4760 static void
4761 unref_dag(Obj_Entry *root)
4762 {
4763     Objlist_Entry *elm;
4764 
4765     assert(root->dag_inited);
4766     STAILQ_FOREACH(elm, &root->dagmembers, link)
4767 	elm->obj->refcount--;
4768 }
4769 
4770 /*
4771  * Common code for MD __tls_get_addr().
4772  */
4773 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4774 static void *
4775 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4776 {
4777     Elf_Addr *newdtv, *dtv;
4778     RtldLockState lockstate;
4779     int to_copy;
4780 
4781     dtv = *dtvp;
4782     /* Check dtv generation in case new modules have arrived */
4783     if (dtv[0] != tls_dtv_generation) {
4784 	wlock_acquire(rtld_bind_lock, &lockstate);
4785 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4786 	to_copy = dtv[1];
4787 	if (to_copy > tls_max_index)
4788 	    to_copy = tls_max_index;
4789 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4790 	newdtv[0] = tls_dtv_generation;
4791 	newdtv[1] = tls_max_index;
4792 	free(dtv);
4793 	lock_release(rtld_bind_lock, &lockstate);
4794 	dtv = *dtvp = newdtv;
4795     }
4796 
4797     /* Dynamically allocate module TLS if necessary */
4798     if (dtv[index + 1] == 0) {
4799 	/* Signal safe, wlock will block out signals. */
4800 	wlock_acquire(rtld_bind_lock, &lockstate);
4801 	if (!dtv[index + 1])
4802 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4803 	lock_release(rtld_bind_lock, &lockstate);
4804     }
4805     return ((void *)(dtv[index + 1] + offset));
4806 }
4807 
4808 void *
4809 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4810 {
4811 	Elf_Addr *dtv;
4812 
4813 	dtv = *dtvp;
4814 	/* Check dtv generation in case new modules have arrived */
4815 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4816 	    dtv[index + 1] != 0))
4817 		return ((void *)(dtv[index + 1] + offset));
4818 	return (tls_get_addr_slow(dtvp, index, offset));
4819 }
4820 
4821 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4822     defined(__powerpc__) || defined(__riscv)
4823 
4824 /*
4825  * Return pointer to allocated TLS block
4826  */
4827 static void *
4828 get_tls_block_ptr(void *tcb, size_t tcbsize)
4829 {
4830     size_t extra_size, post_size, pre_size, tls_block_size;
4831     size_t tls_init_align;
4832 
4833     tls_init_align = MAX(obj_main->tlsalign, 1);
4834 
4835     /* Compute fragments sizes. */
4836     extra_size = tcbsize - TLS_TCB_SIZE;
4837     post_size = calculate_tls_post_size(tls_init_align);
4838     tls_block_size = tcbsize + post_size;
4839     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4840 
4841     return ((char *)tcb - pre_size - extra_size);
4842 }
4843 
4844 /*
4845  * Allocate Static TLS using the Variant I method.
4846  *
4847  * For details on the layout, see lib/libc/gen/tls.c.
4848  *
4849  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4850  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4851  *     offsets, whereas libc's tls_static_space is just the executable's static
4852  *     TLS segment.
4853  */
4854 void *
4855 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4856 {
4857     Obj_Entry *obj;
4858     char *tls_block;
4859     Elf_Addr *dtv, **tcb;
4860     Elf_Addr addr;
4861     Elf_Addr i;
4862     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4863     size_t tls_init_align;
4864 
4865     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4866 	return (oldtcb);
4867 
4868     assert(tcbsize >= TLS_TCB_SIZE);
4869     maxalign = MAX(tcbalign, tls_static_max_align);
4870     tls_init_align = MAX(obj_main->tlsalign, 1);
4871 
4872     /* Compute fragmets sizes. */
4873     extra_size = tcbsize - TLS_TCB_SIZE;
4874     post_size = calculate_tls_post_size(tls_init_align);
4875     tls_block_size = tcbsize + post_size;
4876     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4877     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4878 
4879     /* Allocate whole TLS block */
4880     tls_block = malloc_aligned(tls_block_size, maxalign);
4881     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4882 
4883     if (oldtcb != NULL) {
4884 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4885 	    tls_static_space);
4886 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4887 
4888 	/* Adjust the DTV. */
4889 	dtv = tcb[0];
4890 	for (i = 0; i < dtv[1]; i++) {
4891 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4892 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4893 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4894 	    }
4895 	}
4896     } else {
4897 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4898 	tcb[0] = dtv;
4899 	dtv[0] = tls_dtv_generation;
4900 	dtv[1] = tls_max_index;
4901 
4902 	for (obj = globallist_curr(objs); obj != NULL;
4903 	  obj = globallist_next(obj)) {
4904 	    if (obj->tlsoffset > 0) {
4905 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4906 		if (obj->tlsinitsize > 0)
4907 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4908 		if (obj->tlssize > obj->tlsinitsize)
4909 		    memset((void*)(addr + obj->tlsinitsize), 0,
4910 			   obj->tlssize - obj->tlsinitsize);
4911 		dtv[obj->tlsindex + 1] = addr;
4912 	    }
4913 	}
4914     }
4915 
4916     return (tcb);
4917 }
4918 
4919 void
4920 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4921 {
4922     Elf_Addr *dtv;
4923     Elf_Addr tlsstart, tlsend;
4924     size_t post_size;
4925     size_t dtvsize, i, tls_init_align;
4926 
4927     assert(tcbsize >= TLS_TCB_SIZE);
4928     tls_init_align = MAX(obj_main->tlsalign, 1);
4929 
4930     /* Compute fragments sizes. */
4931     post_size = calculate_tls_post_size(tls_init_align);
4932 
4933     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4934     tlsend = (Elf_Addr)tcb + tls_static_space;
4935 
4936     dtv = *(Elf_Addr **)tcb;
4937     dtvsize = dtv[1];
4938     for (i = 0; i < dtvsize; i++) {
4939 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4940 	    free((void*)dtv[i+2]);
4941 	}
4942     }
4943     free(dtv);
4944     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4945 }
4946 
4947 #endif
4948 
4949 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4950 
4951 /*
4952  * Allocate Static TLS using the Variant II method.
4953  */
4954 void *
4955 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4956 {
4957     Obj_Entry *obj;
4958     size_t size, ralign;
4959     char *tls;
4960     Elf_Addr *dtv, *olddtv;
4961     Elf_Addr segbase, oldsegbase, addr;
4962     size_t i;
4963 
4964     ralign = tcbalign;
4965     if (tls_static_max_align > ralign)
4966 	    ralign = tls_static_max_align;
4967     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4968 
4969     assert(tcbsize >= 2*sizeof(Elf_Addr));
4970     tls = malloc_aligned(size, ralign);
4971     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4972 
4973     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4974     ((Elf_Addr*)segbase)[0] = segbase;
4975     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4976 
4977     dtv[0] = tls_dtv_generation;
4978     dtv[1] = tls_max_index;
4979 
4980     if (oldtls) {
4981 	/*
4982 	 * Copy the static TLS block over whole.
4983 	 */
4984 	oldsegbase = (Elf_Addr) oldtls;
4985 	memcpy((void *)(segbase - tls_static_space),
4986 	       (const void *)(oldsegbase - tls_static_space),
4987 	       tls_static_space);
4988 
4989 	/*
4990 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4991 	 * move them over.
4992 	 */
4993 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4994 	for (i = 0; i < olddtv[1]; i++) {
4995 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4996 		dtv[i+2] = olddtv[i+2];
4997 		olddtv[i+2] = 0;
4998 	    }
4999 	}
5000 
5001 	/*
5002 	 * We assume that this block was the one we created with
5003 	 * allocate_initial_tls().
5004 	 */
5005 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5006     } else {
5007 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5008 		if (obj->marker || obj->tlsoffset == 0)
5009 			continue;
5010 		addr = segbase - obj->tlsoffset;
5011 		memset((void*)(addr + obj->tlsinitsize),
5012 		       0, obj->tlssize - obj->tlsinitsize);
5013 		if (obj->tlsinit) {
5014 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5015 		    obj->static_tls_copied = true;
5016 		}
5017 		dtv[obj->tlsindex + 1] = addr;
5018 	}
5019     }
5020 
5021     return (void*) segbase;
5022 }
5023 
5024 void
5025 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5026 {
5027     Elf_Addr* dtv;
5028     size_t size, ralign;
5029     int dtvsize, i;
5030     Elf_Addr tlsstart, tlsend;
5031 
5032     /*
5033      * Figure out the size of the initial TLS block so that we can
5034      * find stuff which ___tls_get_addr() allocated dynamically.
5035      */
5036     ralign = tcbalign;
5037     if (tls_static_max_align > ralign)
5038 	    ralign = tls_static_max_align;
5039     size = round(tls_static_space, ralign);
5040 
5041     dtv = ((Elf_Addr**)tls)[1];
5042     dtvsize = dtv[1];
5043     tlsend = (Elf_Addr) tls;
5044     tlsstart = tlsend - size;
5045     for (i = 0; i < dtvsize; i++) {
5046 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5047 		free_aligned((void *)dtv[i + 2]);
5048 	}
5049     }
5050 
5051     free_aligned((void *)tlsstart);
5052     free((void*) dtv);
5053 }
5054 
5055 #endif
5056 
5057 /*
5058  * Allocate TLS block for module with given index.
5059  */
5060 void *
5061 allocate_module_tls(int index)
5062 {
5063     Obj_Entry* obj;
5064     char* p;
5065 
5066     TAILQ_FOREACH(obj, &obj_list, next) {
5067 	if (obj->marker)
5068 	    continue;
5069 	if (obj->tlsindex == index)
5070 	    break;
5071     }
5072     if (!obj) {
5073 	_rtld_error("Can't find module with TLS index %d", index);
5074 	rtld_die();
5075     }
5076 
5077     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5078     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5079     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5080 
5081     return p;
5082 }
5083 
5084 bool
5085 allocate_tls_offset(Obj_Entry *obj)
5086 {
5087     size_t off;
5088 
5089     if (obj->tls_done)
5090 	return true;
5091 
5092     if (obj->tlssize == 0) {
5093 	obj->tls_done = true;
5094 	return true;
5095     }
5096 
5097     if (tls_last_offset == 0)
5098 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5099     else
5100 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5101 				   obj->tlssize, obj->tlsalign);
5102 
5103     /*
5104      * If we have already fixed the size of the static TLS block, we
5105      * must stay within that size. When allocating the static TLS, we
5106      * leave a small amount of space spare to be used for dynamically
5107      * loading modules which use static TLS.
5108      */
5109     if (tls_static_space != 0) {
5110 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5111 	    return false;
5112     } else if (obj->tlsalign > tls_static_max_align) {
5113 	    tls_static_max_align = obj->tlsalign;
5114     }
5115 
5116     tls_last_offset = obj->tlsoffset = off;
5117     tls_last_size = obj->tlssize;
5118     obj->tls_done = true;
5119 
5120     return true;
5121 }
5122 
5123 void
5124 free_tls_offset(Obj_Entry *obj)
5125 {
5126 
5127     /*
5128      * If we were the last thing to allocate out of the static TLS
5129      * block, we give our space back to the 'allocator'. This is a
5130      * simplistic workaround to allow libGL.so.1 to be loaded and
5131      * unloaded multiple times.
5132      */
5133     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5134 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5135 	tls_last_offset -= obj->tlssize;
5136 	tls_last_size = 0;
5137     }
5138 }
5139 
5140 void *
5141 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5142 {
5143     void *ret;
5144     RtldLockState lockstate;
5145 
5146     wlock_acquire(rtld_bind_lock, &lockstate);
5147     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5148       tcbsize, tcbalign);
5149     lock_release(rtld_bind_lock, &lockstate);
5150     return (ret);
5151 }
5152 
5153 void
5154 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5155 {
5156     RtldLockState lockstate;
5157 
5158     wlock_acquire(rtld_bind_lock, &lockstate);
5159     free_tls(tcb, tcbsize, tcbalign);
5160     lock_release(rtld_bind_lock, &lockstate);
5161 }
5162 
5163 static void
5164 object_add_name(Obj_Entry *obj, const char *name)
5165 {
5166     Name_Entry *entry;
5167     size_t len;
5168 
5169     len = strlen(name);
5170     entry = malloc(sizeof(Name_Entry) + len);
5171 
5172     if (entry != NULL) {
5173 	strcpy(entry->name, name);
5174 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5175     }
5176 }
5177 
5178 static int
5179 object_match_name(const Obj_Entry *obj, const char *name)
5180 {
5181     Name_Entry *entry;
5182 
5183     STAILQ_FOREACH(entry, &obj->names, link) {
5184 	if (strcmp(name, entry->name) == 0)
5185 	    return (1);
5186     }
5187     return (0);
5188 }
5189 
5190 static Obj_Entry *
5191 locate_dependency(const Obj_Entry *obj, const char *name)
5192 {
5193     const Objlist_Entry *entry;
5194     const Needed_Entry *needed;
5195 
5196     STAILQ_FOREACH(entry, &list_main, link) {
5197 	if (object_match_name(entry->obj, name))
5198 	    return entry->obj;
5199     }
5200 
5201     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5202 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5203 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5204 	    /*
5205 	     * If there is DT_NEEDED for the name we are looking for,
5206 	     * we are all set.  Note that object might not be found if
5207 	     * dependency was not loaded yet, so the function can
5208 	     * return NULL here.  This is expected and handled
5209 	     * properly by the caller.
5210 	     */
5211 	    return (needed->obj);
5212 	}
5213     }
5214     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5215 	obj->path, name);
5216     rtld_die();
5217 }
5218 
5219 static int
5220 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5221     const Elf_Vernaux *vna)
5222 {
5223     const Elf_Verdef *vd;
5224     const char *vername;
5225 
5226     vername = refobj->strtab + vna->vna_name;
5227     vd = depobj->verdef;
5228     if (vd == NULL) {
5229 	_rtld_error("%s: version %s required by %s not defined",
5230 	    depobj->path, vername, refobj->path);
5231 	return (-1);
5232     }
5233     for (;;) {
5234 	if (vd->vd_version != VER_DEF_CURRENT) {
5235 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5236 		depobj->path, vd->vd_version);
5237 	    return (-1);
5238 	}
5239 	if (vna->vna_hash == vd->vd_hash) {
5240 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5241 		((const char *)vd + vd->vd_aux);
5242 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5243 		return (0);
5244 	}
5245 	if (vd->vd_next == 0)
5246 	    break;
5247 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5248     }
5249     if (vna->vna_flags & VER_FLG_WEAK)
5250 	return (0);
5251     _rtld_error("%s: version %s required by %s not found",
5252 	depobj->path, vername, refobj->path);
5253     return (-1);
5254 }
5255 
5256 static int
5257 rtld_verify_object_versions(Obj_Entry *obj)
5258 {
5259     const Elf_Verneed *vn;
5260     const Elf_Verdef  *vd;
5261     const Elf_Verdaux *vda;
5262     const Elf_Vernaux *vna;
5263     const Obj_Entry *depobj;
5264     int maxvernum, vernum;
5265 
5266     if (obj->ver_checked)
5267 	return (0);
5268     obj->ver_checked = true;
5269 
5270     maxvernum = 0;
5271     /*
5272      * Walk over defined and required version records and figure out
5273      * max index used by any of them. Do very basic sanity checking
5274      * while there.
5275      */
5276     vn = obj->verneed;
5277     while (vn != NULL) {
5278 	if (vn->vn_version != VER_NEED_CURRENT) {
5279 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5280 		obj->path, vn->vn_version);
5281 	    return (-1);
5282 	}
5283 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5284 	for (;;) {
5285 	    vernum = VER_NEED_IDX(vna->vna_other);
5286 	    if (vernum > maxvernum)
5287 		maxvernum = vernum;
5288 	    if (vna->vna_next == 0)
5289 		 break;
5290 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5291 	}
5292 	if (vn->vn_next == 0)
5293 	    break;
5294 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5295     }
5296 
5297     vd = obj->verdef;
5298     while (vd != NULL) {
5299 	if (vd->vd_version != VER_DEF_CURRENT) {
5300 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5301 		obj->path, vd->vd_version);
5302 	    return (-1);
5303 	}
5304 	vernum = VER_DEF_IDX(vd->vd_ndx);
5305 	if (vernum > maxvernum)
5306 		maxvernum = vernum;
5307 	if (vd->vd_next == 0)
5308 	    break;
5309 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5310     }
5311 
5312     if (maxvernum == 0)
5313 	return (0);
5314 
5315     /*
5316      * Store version information in array indexable by version index.
5317      * Verify that object version requirements are satisfied along the
5318      * way.
5319      */
5320     obj->vernum = maxvernum + 1;
5321     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5322 
5323     vd = obj->verdef;
5324     while (vd != NULL) {
5325 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5326 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5327 	    assert(vernum <= maxvernum);
5328 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5329 	    obj->vertab[vernum].hash = vd->vd_hash;
5330 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5331 	    obj->vertab[vernum].file = NULL;
5332 	    obj->vertab[vernum].flags = 0;
5333 	}
5334 	if (vd->vd_next == 0)
5335 	    break;
5336 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5337     }
5338 
5339     vn = obj->verneed;
5340     while (vn != NULL) {
5341 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5342 	if (depobj == NULL)
5343 	    return (-1);
5344 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5345 	for (;;) {
5346 	    if (check_object_provided_version(obj, depobj, vna))
5347 		return (-1);
5348 	    vernum = VER_NEED_IDX(vna->vna_other);
5349 	    assert(vernum <= maxvernum);
5350 	    obj->vertab[vernum].hash = vna->vna_hash;
5351 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5352 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5353 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5354 		VER_INFO_HIDDEN : 0;
5355 	    if (vna->vna_next == 0)
5356 		 break;
5357 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5358 	}
5359 	if (vn->vn_next == 0)
5360 	    break;
5361 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5362     }
5363     return 0;
5364 }
5365 
5366 static int
5367 rtld_verify_versions(const Objlist *objlist)
5368 {
5369     Objlist_Entry *entry;
5370     int rc;
5371 
5372     rc = 0;
5373     STAILQ_FOREACH(entry, objlist, link) {
5374 	/*
5375 	 * Skip dummy objects or objects that have their version requirements
5376 	 * already checked.
5377 	 */
5378 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5379 	    continue;
5380 	if (rtld_verify_object_versions(entry->obj) == -1) {
5381 	    rc = -1;
5382 	    if (ld_tracing == NULL)
5383 		break;
5384 	}
5385     }
5386     if (rc == 0 || ld_tracing != NULL)
5387     	rc = rtld_verify_object_versions(&obj_rtld);
5388     return rc;
5389 }
5390 
5391 const Ver_Entry *
5392 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5393 {
5394     Elf_Versym vernum;
5395 
5396     if (obj->vertab) {
5397 	vernum = VER_NDX(obj->versyms[symnum]);
5398 	if (vernum >= obj->vernum) {
5399 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5400 		obj->path, obj->strtab + symnum, vernum);
5401 	} else if (obj->vertab[vernum].hash != 0) {
5402 	    return &obj->vertab[vernum];
5403 	}
5404     }
5405     return NULL;
5406 }
5407 
5408 int
5409 _rtld_get_stack_prot(void)
5410 {
5411 
5412 	return (stack_prot);
5413 }
5414 
5415 int
5416 _rtld_is_dlopened(void *arg)
5417 {
5418 	Obj_Entry *obj;
5419 	RtldLockState lockstate;
5420 	int res;
5421 
5422 	rlock_acquire(rtld_bind_lock, &lockstate);
5423 	obj = dlcheck(arg);
5424 	if (obj == NULL)
5425 		obj = obj_from_addr(arg);
5426 	if (obj == NULL) {
5427 		_rtld_error("No shared object contains address");
5428 		lock_release(rtld_bind_lock, &lockstate);
5429 		return (-1);
5430 	}
5431 	res = obj->dlopened ? 1 : 0;
5432 	lock_release(rtld_bind_lock, &lockstate);
5433 	return (res);
5434 }
5435 
5436 static int
5437 obj_remap_relro(Obj_Entry *obj, int prot)
5438 {
5439 
5440 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5441 	    prot) == -1) {
5442 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5443 		    obj->path, prot, rtld_strerror(errno));
5444 		return (-1);
5445 	}
5446 	return (0);
5447 }
5448 
5449 static int
5450 obj_disable_relro(Obj_Entry *obj)
5451 {
5452 
5453 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5454 }
5455 
5456 static int
5457 obj_enforce_relro(Obj_Entry *obj)
5458 {
5459 
5460 	return (obj_remap_relro(obj, PROT_READ));
5461 }
5462 
5463 static void
5464 map_stacks_exec(RtldLockState *lockstate)
5465 {
5466 	void (*thr_map_stacks_exec)(void);
5467 
5468 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5469 		return;
5470 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5471 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5472 	if (thr_map_stacks_exec != NULL) {
5473 		stack_prot |= PROT_EXEC;
5474 		thr_map_stacks_exec();
5475 	}
5476 }
5477 
5478 static void
5479 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5480 {
5481 	Objlist_Entry *elm;
5482 	Obj_Entry *obj;
5483 	void (*distrib)(size_t, void *, size_t, size_t);
5484 
5485 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5486 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5487 	if (distrib == NULL)
5488 		return;
5489 	STAILQ_FOREACH(elm, list, link) {
5490 		obj = elm->obj;
5491 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5492 			continue;
5493 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5494 		    obj->tlssize);
5495 		obj->static_tls_copied = true;
5496 	}
5497 }
5498 
5499 void
5500 symlook_init(SymLook *dst, const char *name)
5501 {
5502 
5503 	bzero(dst, sizeof(*dst));
5504 	dst->name = name;
5505 	dst->hash = elf_hash(name);
5506 	dst->hash_gnu = gnu_hash(name);
5507 }
5508 
5509 static void
5510 symlook_init_from_req(SymLook *dst, const SymLook *src)
5511 {
5512 
5513 	dst->name = src->name;
5514 	dst->hash = src->hash;
5515 	dst->hash_gnu = src->hash_gnu;
5516 	dst->ventry = src->ventry;
5517 	dst->flags = src->flags;
5518 	dst->defobj_out = NULL;
5519 	dst->sym_out = NULL;
5520 	dst->lockstate = src->lockstate;
5521 }
5522 
5523 static int
5524 open_binary_fd(const char *argv0, bool search_in_path,
5525     const char **binpath_res)
5526 {
5527 	char *binpath, *pathenv, *pe, *res1;
5528 	const char *res;
5529 	int fd;
5530 
5531 	binpath = NULL;
5532 	res = NULL;
5533 	if (search_in_path && strchr(argv0, '/') == NULL) {
5534 		binpath = xmalloc(PATH_MAX);
5535 		pathenv = getenv("PATH");
5536 		if (pathenv == NULL) {
5537 			_rtld_error("-p and no PATH environment variable");
5538 			rtld_die();
5539 		}
5540 		pathenv = strdup(pathenv);
5541 		if (pathenv == NULL) {
5542 			_rtld_error("Cannot allocate memory");
5543 			rtld_die();
5544 		}
5545 		fd = -1;
5546 		errno = ENOENT;
5547 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5548 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5549 				continue;
5550 			if (binpath[0] != '\0' &&
5551 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5552 				continue;
5553 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5554 				continue;
5555 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5556 			if (fd != -1 || errno != ENOENT) {
5557 				res = binpath;
5558 				break;
5559 			}
5560 		}
5561 		free(pathenv);
5562 	} else {
5563 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5564 		res = argv0;
5565 	}
5566 
5567 	if (fd == -1) {
5568 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5569 		rtld_die();
5570 	}
5571 	if (res != NULL && res[0] != '/') {
5572 		res1 = xmalloc(PATH_MAX);
5573 		if (realpath(res, res1) != NULL) {
5574 			if (res != argv0)
5575 				free(__DECONST(char *, res));
5576 			res = res1;
5577 		} else {
5578 			free(res1);
5579 		}
5580 	}
5581 	*binpath_res = res;
5582 	return (fd);
5583 }
5584 
5585 /*
5586  * Parse a set of command-line arguments.
5587  */
5588 static int
5589 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5590 {
5591 	const char *arg;
5592 	int fd, i, j, arglen;
5593 	char opt;
5594 
5595 	dbg("Parsing command-line arguments");
5596 	*use_pathp = false;
5597 	*fdp = -1;
5598 
5599 	for (i = 1; i < argc; i++ ) {
5600 		arg = argv[i];
5601 		dbg("argv[%d]: '%s'", i, arg);
5602 
5603 		/*
5604 		 * rtld arguments end with an explicit "--" or with the first
5605 		 * non-prefixed argument.
5606 		 */
5607 		if (strcmp(arg, "--") == 0) {
5608 			i++;
5609 			break;
5610 		}
5611 		if (arg[0] != '-')
5612 			break;
5613 
5614 		/*
5615 		 * All other arguments are single-character options that can
5616 		 * be combined, so we need to search through `arg` for them.
5617 		 */
5618 		arglen = strlen(arg);
5619 		for (j = 1; j < arglen; j++) {
5620 			opt = arg[j];
5621 			if (opt == 'h') {
5622 				print_usage(argv[0]);
5623 				_exit(0);
5624 			} else if (opt == 'f') {
5625 			/*
5626 			 * -f XX can be used to specify a descriptor for the
5627 			 * binary named at the command line (i.e., the later
5628 			 * argument will specify the process name but the
5629 			 * descriptor is what will actually be executed)
5630 			 */
5631 			if (j != arglen - 1) {
5632 				/* -f must be the last option in, e.g., -abcf */
5633 				_rtld_error("Invalid options: %s", arg);
5634 				rtld_die();
5635 			}
5636 			i++;
5637 			fd = parse_integer(argv[i]);
5638 			if (fd == -1) {
5639 				_rtld_error("Invalid file descriptor: '%s'",
5640 				    argv[i]);
5641 				rtld_die();
5642 			}
5643 			*fdp = fd;
5644 			break;
5645 			} else if (opt == 'p') {
5646 				*use_pathp = true;
5647 			} else {
5648 				_rtld_error("Invalid argument: '%s'", arg);
5649 				print_usage(argv[0]);
5650 				rtld_die();
5651 			}
5652 		}
5653 	}
5654 
5655 	return (i);
5656 }
5657 
5658 /*
5659  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5660  */
5661 static int
5662 parse_integer(const char *str)
5663 {
5664 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5665 	const char *orig;
5666 	int n;
5667 	char c;
5668 
5669 	orig = str;
5670 	n = 0;
5671 	for (c = *str; c != '\0'; c = *++str) {
5672 		if (c < '0' || c > '9')
5673 			return (-1);
5674 
5675 		n *= RADIX;
5676 		n += c - '0';
5677 	}
5678 
5679 	/* Make sure we actually parsed something. */
5680 	if (str == orig)
5681 		return (-1);
5682 	return (n);
5683 }
5684 
5685 static void
5686 print_usage(const char *argv0)
5687 {
5688 
5689 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5690 		"\n"
5691 		"Options:\n"
5692 		"  -h        Display this help message\n"
5693 		"  -p        Search in PATH for named binary\n"
5694 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5695 		"  --        End of RTLD options\n"
5696 		"  <binary>  Name of process to execute\n"
5697 		"  <args>    Arguments to the executed process\n", argv0);
5698 }
5699 
5700 /*
5701  * Overrides for libc_pic-provided functions.
5702  */
5703 
5704 int
5705 __getosreldate(void)
5706 {
5707 	size_t len;
5708 	int oid[2];
5709 	int error, osrel;
5710 
5711 	if (osreldate != 0)
5712 		return (osreldate);
5713 
5714 	oid[0] = CTL_KERN;
5715 	oid[1] = KERN_OSRELDATE;
5716 	osrel = 0;
5717 	len = sizeof(osrel);
5718 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5719 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5720 		osreldate = osrel;
5721 	return (osreldate);
5722 }
5723 const char *
5724 rtld_strerror(int errnum)
5725 {
5726 
5727 	if (errnum < 0 || errnum >= sys_nerr)
5728 		return ("Unknown error");
5729 	return (sys_errlist[errnum]);
5730 }
5731 
5732 /* malloc */
5733 void *
5734 malloc(size_t nbytes)
5735 {
5736 
5737 	return (__crt_malloc(nbytes));
5738 }
5739 
5740 void *
5741 calloc(size_t num, size_t size)
5742 {
5743 
5744 	return (__crt_calloc(num, size));
5745 }
5746 
5747 void
5748 free(void *cp)
5749 {
5750 
5751 	__crt_free(cp);
5752 }
5753 
5754 void *
5755 realloc(void *cp, size_t nbytes)
5756 {
5757 
5758 	return (__crt_realloc(cp, nbytes));
5759 }
5760