xref: /freebsd/libexec/rtld-elf/rtld.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/uio.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "rtld_tls.h"
60 
61 #ifndef COMPAT_32BIT
62 #define PATH_RTLD	"/libexec/ld-elf.so.1"
63 #else
64 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
65 #endif
66 
67 /* Types. */
68 typedef void (*func_ptr_type)();
69 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
70 
71 /*
72  * This structure provides a reentrant way to keep a list of objects and
73  * check which ones have already been processed in some way.
74  */
75 typedef struct Struct_DoneList {
76     const Obj_Entry **objs;		/* Array of object pointers */
77     unsigned int num_alloc;		/* Allocated size of the array */
78     unsigned int num_used;		/* Number of array slots used */
79 } DoneList;
80 
81 /*
82  * Function declarations.
83  */
84 static const char *basename(const char *);
85 static void die(void) __dead2;
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
99 static void init_rtld(caddr_t);
100 static void initlist_add_neededs(Needed_Entry *, Objlist *);
101 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
102 static bool is_exported(const Elf_Sym *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, const Obj_Entry *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *);
110 static void objlist_call_init(Objlist *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long,
126   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
127 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
128   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
129 static const Elf_Sym *symlook_needed(const char *, unsigned long,
130   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
131   int, DoneList *);
132 static void trace_loaded_objects(Obj_Entry *);
133 static void unlink_object(Obj_Entry *);
134 static void unload_object(Obj_Entry *);
135 static void unref_dag(Obj_Entry *);
136 static void ref_dag(Obj_Entry *);
137 static int  rtld_verify_versions(const Objlist *);
138 static int  rtld_verify_object_versions(Obj_Entry *);
139 static void object_add_name(Obj_Entry *, const char *);
140 static int  object_match_name(const Obj_Entry *, const char *);
141 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
142 
143 void r_debug_state(struct r_debug *, struct link_map *);
144 
145 /*
146  * Data declarations.
147  */
148 static char *error_message;	/* Message for dlerror(), or NULL */
149 struct r_debug r_debug;		/* for GDB; */
150 static bool libmap_disable;	/* Disable libmap */
151 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
152 static bool trust;		/* False for setuid and setgid programs */
153 static bool dangerous_ld_env;	/* True if environment variables have been
154 				   used to affect the libraries loaded */
155 static char *ld_bind_now;	/* Environment variable for immediate binding */
156 static char *ld_debug;		/* Environment variable for debugging */
157 static char *ld_library_path;	/* Environment variable for search path */
158 static char *ld_preload;	/* Environment variable for libraries to
159 				   load first */
160 static char *ld_tracing;	/* Called from ldd to print libs */
161 static char *ld_utrace;		/* Use utrace() to log events. */
162 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
163 static Obj_Entry **obj_tail;	/* Link field of last object in list */
164 static Obj_Entry *obj_main;	/* The main program shared object */
165 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
166 static unsigned int obj_count;	/* Number of objects in obj_list */
167 
168 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
169   STAILQ_HEAD_INITIALIZER(list_global);
170 static Objlist list_main =	/* Objects loaded at program startup */
171   STAILQ_HEAD_INITIALIZER(list_main);
172 static Objlist list_fini =	/* Objects needing fini() calls */
173   STAILQ_HEAD_INITIALIZER(list_fini);
174 
175 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
176 
177 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
178 
179 extern Elf_Dyn _DYNAMIC;
180 #pragma weak _DYNAMIC
181 #ifndef RTLD_IS_DYNAMIC
182 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
183 #endif
184 
185 /*
186  * These are the functions the dynamic linker exports to application
187  * programs.  They are the only symbols the dynamic linker is willing
188  * to export from itself.
189  */
190 static func_ptr_type exports[] = {
191     (func_ptr_type) &_rtld_error,
192     (func_ptr_type) &dlclose,
193     (func_ptr_type) &dlerror,
194     (func_ptr_type) &dlopen,
195     (func_ptr_type) &dlsym,
196     (func_ptr_type) &dlvsym,
197     (func_ptr_type) &dladdr,
198     (func_ptr_type) &dllockinit,
199     (func_ptr_type) &dlinfo,
200     (func_ptr_type) &_rtld_thread_init,
201 #ifdef __i386__
202     (func_ptr_type) &___tls_get_addr,
203 #endif
204     (func_ptr_type) &__tls_get_addr,
205     (func_ptr_type) &_rtld_allocate_tls,
206     (func_ptr_type) &_rtld_free_tls,
207     NULL
208 };
209 
210 /*
211  * Global declarations normally provided by crt1.  The dynamic linker is
212  * not built with crt1, so we have to provide them ourselves.
213  */
214 char *__progname;
215 char **environ;
216 
217 /*
218  * Globals to control TLS allocation.
219  */
220 size_t tls_last_offset;		/* Static TLS offset of last module */
221 size_t tls_last_size;		/* Static TLS size of last module */
222 size_t tls_static_space;	/* Static TLS space allocated */
223 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
224 int tls_max_index = 1;		/* Largest module index allocated */
225 
226 /*
227  * Fill in a DoneList with an allocation large enough to hold all of
228  * the currently-loaded objects.  Keep this as a macro since it calls
229  * alloca and we want that to occur within the scope of the caller.
230  */
231 #define donelist_init(dlp)					\
232     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
233     assert((dlp)->objs != NULL),				\
234     (dlp)->num_alloc = obj_count,				\
235     (dlp)->num_used = 0)
236 
237 #define	UTRACE_DLOPEN_START		1
238 #define	UTRACE_DLOPEN_STOP		2
239 #define	UTRACE_DLCLOSE_START		3
240 #define	UTRACE_DLCLOSE_STOP		4
241 #define	UTRACE_LOAD_OBJECT		5
242 #define	UTRACE_UNLOAD_OBJECT		6
243 #define	UTRACE_ADD_RUNDEP		7
244 #define	UTRACE_PRELOAD_FINISHED		8
245 #define	UTRACE_INIT_CALL		9
246 #define	UTRACE_FINI_CALL		10
247 
248 struct utrace_rtld {
249 	char sig[4];			/* 'RTLD' */
250 	int event;
251 	void *handle;
252 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
253 	size_t mapsize;
254 	int refcnt;			/* Used for 'mode' */
255 	char name[MAXPATHLEN];
256 };
257 
258 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
259 	if (ld_utrace != NULL)					\
260 		ld_utrace_log(e, h, mb, ms, r, n);		\
261 } while (0)
262 
263 static void
264 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
265     int refcnt, const char *name)
266 {
267 	struct utrace_rtld ut;
268 
269 	ut.sig[0] = 'R';
270 	ut.sig[1] = 'T';
271 	ut.sig[2] = 'L';
272 	ut.sig[3] = 'D';
273 	ut.event = event;
274 	ut.handle = handle;
275 	ut.mapbase = mapbase;
276 	ut.mapsize = mapsize;
277 	ut.refcnt = refcnt;
278 	bzero(ut.name, sizeof(ut.name));
279 	if (name)
280 		strlcpy(ut.name, name, sizeof(ut.name));
281 	utrace(&ut, sizeof(ut));
282 }
283 
284 /*
285  * Main entry point for dynamic linking.  The first argument is the
286  * stack pointer.  The stack is expected to be laid out as described
287  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
288  * Specifically, the stack pointer points to a word containing
289  * ARGC.  Following that in the stack is a null-terminated sequence
290  * of pointers to argument strings.  Then comes a null-terminated
291  * sequence of pointers to environment strings.  Finally, there is a
292  * sequence of "auxiliary vector" entries.
293  *
294  * The second argument points to a place to store the dynamic linker's
295  * exit procedure pointer and the third to a place to store the main
296  * program's object.
297  *
298  * The return value is the main program's entry point.
299  */
300 func_ptr_type
301 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
302 {
303     Elf_Auxinfo *aux_info[AT_COUNT];
304     int i;
305     int argc;
306     char **argv;
307     char **env;
308     Elf_Auxinfo *aux;
309     Elf_Auxinfo *auxp;
310     const char *argv0;
311     Objlist_Entry *entry;
312     Obj_Entry *obj;
313     Obj_Entry **preload_tail;
314     Objlist initlist;
315     int lockstate;
316 
317     /*
318      * On entry, the dynamic linker itself has not been relocated yet.
319      * Be very careful not to reference any global data until after
320      * init_rtld has returned.  It is OK to reference file-scope statics
321      * and string constants, and to call static and global functions.
322      */
323 
324     /* Find the auxiliary vector on the stack. */
325     argc = *sp++;
326     argv = (char **) sp;
327     sp += argc + 1;	/* Skip over arguments and NULL terminator */
328     env = (char **) sp;
329     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
330 	;
331     aux = (Elf_Auxinfo *) sp;
332 
333     /* Digest the auxiliary vector. */
334     for (i = 0;  i < AT_COUNT;  i++)
335 	aux_info[i] = NULL;
336     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
337 	if (auxp->a_type < AT_COUNT)
338 	    aux_info[auxp->a_type] = auxp;
339     }
340 
341     /* Initialize and relocate ourselves. */
342     assert(aux_info[AT_BASE] != NULL);
343     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
344 
345     __progname = obj_rtld.path;
346     argv0 = argv[0] != NULL ? argv[0] : "(null)";
347     environ = env;
348 
349     trust = !issetugid();
350 
351     ld_bind_now = getenv(LD_ "BIND_NOW");
352     if (trust) {
353 	ld_debug = getenv(LD_ "DEBUG");
354 	libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
355 	libmap_override = getenv(LD_ "LIBMAP");
356 	ld_library_path = getenv(LD_ "LIBRARY_PATH");
357 	ld_preload = getenv(LD_ "PRELOAD");
358 	dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
359 	    (ld_library_path != NULL) || (ld_preload != NULL);
360     } else
361 	dangerous_ld_env = 0;
362     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
363     ld_utrace = getenv(LD_ "UTRACE");
364 
365     if (ld_debug != NULL && *ld_debug != '\0')
366 	debug = 1;
367     dbg("%s is initialized, base address = %p", __progname,
368 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
369     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
370     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
371 
372     /*
373      * Load the main program, or process its program header if it is
374      * already loaded.
375      */
376     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
377 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
378 	dbg("loading main program");
379 	obj_main = map_object(fd, argv0, NULL);
380 	close(fd);
381 	if (obj_main == NULL)
382 	    die();
383     } else {				/* Main program already loaded. */
384 	const Elf_Phdr *phdr;
385 	int phnum;
386 	caddr_t entry;
387 
388 	dbg("processing main program's program header");
389 	assert(aux_info[AT_PHDR] != NULL);
390 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
391 	assert(aux_info[AT_PHNUM] != NULL);
392 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
393 	assert(aux_info[AT_PHENT] != NULL);
394 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
395 	assert(aux_info[AT_ENTRY] != NULL);
396 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
397 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
398 	    die();
399     }
400 
401     obj_main->path = xstrdup(argv0);
402     obj_main->mainprog = true;
403 
404     /*
405      * Get the actual dynamic linker pathname from the executable if
406      * possible.  (It should always be possible.)  That ensures that
407      * gdb will find the right dynamic linker even if a non-standard
408      * one is being used.
409      */
410     if (obj_main->interp != NULL &&
411       strcmp(obj_main->interp, obj_rtld.path) != 0) {
412 	free(obj_rtld.path);
413 	obj_rtld.path = xstrdup(obj_main->interp);
414         __progname = obj_rtld.path;
415     }
416 
417     digest_dynamic(obj_main, 0);
418 
419     linkmap_add(obj_main);
420     linkmap_add(&obj_rtld);
421 
422     /* Link the main program into the list of objects. */
423     *obj_tail = obj_main;
424     obj_tail = &obj_main->next;
425     obj_count++;
426     /* Make sure we don't call the main program's init and fini functions. */
427     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
428 
429     /* Initialize a fake symbol for resolving undefined weak references. */
430     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
431     sym_zero.st_shndx = SHN_UNDEF;
432 
433     if (!libmap_disable)
434         libmap_disable = (bool)lm_init(libmap_override);
435 
436     dbg("loading LD_PRELOAD libraries");
437     if (load_preload_objects() == -1)
438 	die();
439     preload_tail = obj_tail;
440 
441     dbg("loading needed objects");
442     if (load_needed_objects(obj_main) == -1)
443 	die();
444 
445     /* Make a list of all objects loaded at startup. */
446     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
447 	objlist_push_tail(&list_main, obj);
448     	obj->refcount++;
449     }
450 
451     dbg("checking for required versions");
452     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
453 	die();
454 
455     if (ld_tracing) {		/* We're done */
456 	trace_loaded_objects(obj_main);
457 	exit(0);
458     }
459 
460     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
461        dump_relocations(obj_main);
462        exit (0);
463     }
464 
465     /* setup TLS for main thread */
466     dbg("initializing initial thread local storage");
467     STAILQ_FOREACH(entry, &list_main, link) {
468 	/*
469 	 * Allocate all the initial objects out of the static TLS
470 	 * block even if they didn't ask for it.
471 	 */
472 	allocate_tls_offset(entry->obj);
473     }
474     allocate_initial_tls(obj_list);
475 
476     if (relocate_objects(obj_main,
477 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
478 	die();
479 
480     dbg("doing copy relocations");
481     if (do_copy_relocations(obj_main) == -1)
482 	die();
483 
484     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
485        dump_relocations(obj_main);
486        exit (0);
487     }
488 
489     dbg("initializing key program variables");
490     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
491     set_program_var("environ", env);
492 
493     dbg("initializing thread locks");
494     lockdflt_init();
495 
496     /* Make a list of init functions to call. */
497     objlist_init(&initlist);
498     initlist_add_objects(obj_list, preload_tail, &initlist);
499 
500     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
501 
502     objlist_call_init(&initlist);
503     lockstate = wlock_acquire(rtld_bind_lock);
504     objlist_clear(&initlist);
505     wlock_release(rtld_bind_lock, lockstate);
506 
507     dbg("transferring control to program entry point = %p", obj_main->entry);
508 
509     /* Return the exit procedure and the program entry point. */
510     *exit_proc = rtld_exit;
511     *objp = obj_main;
512     return (func_ptr_type) obj_main->entry;
513 }
514 
515 Elf_Addr
516 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
517 {
518     const Elf_Rel *rel;
519     const Elf_Sym *def;
520     const Obj_Entry *defobj;
521     Elf_Addr *where;
522     Elf_Addr target;
523     int lockstate;
524 
525     lockstate = rlock_acquire(rtld_bind_lock);
526     if (obj->pltrel)
527 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
528     else
529 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
530 
531     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
532     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
533     if (def == NULL)
534 	die();
535 
536     target = (Elf_Addr)(defobj->relocbase + def->st_value);
537 
538     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
539       defobj->strtab + def->st_name, basename(obj->path),
540       (void *)target, basename(defobj->path));
541 
542     /*
543      * Write the new contents for the jmpslot. Note that depending on
544      * architecture, the value which we need to return back to the
545      * lazy binding trampoline may or may not be the target
546      * address. The value returned from reloc_jmpslot() is the value
547      * that the trampoline needs.
548      */
549     target = reloc_jmpslot(where, target, defobj, obj, rel);
550     rlock_release(rtld_bind_lock, lockstate);
551     return target;
552 }
553 
554 /*
555  * Error reporting function.  Use it like printf.  If formats the message
556  * into a buffer, and sets things up so that the next call to dlerror()
557  * will return the message.
558  */
559 void
560 _rtld_error(const char *fmt, ...)
561 {
562     static char buf[512];
563     va_list ap;
564 
565     va_start(ap, fmt);
566     vsnprintf(buf, sizeof buf, fmt, ap);
567     error_message = buf;
568     va_end(ap);
569 }
570 
571 /*
572  * Return a dynamically-allocated copy of the current error message, if any.
573  */
574 static char *
575 errmsg_save(void)
576 {
577     return error_message == NULL ? NULL : xstrdup(error_message);
578 }
579 
580 /*
581  * Restore the current error message from a copy which was previously saved
582  * by errmsg_save().  The copy is freed.
583  */
584 static void
585 errmsg_restore(char *saved_msg)
586 {
587     if (saved_msg == NULL)
588 	error_message = NULL;
589     else {
590 	_rtld_error("%s", saved_msg);
591 	free(saved_msg);
592     }
593 }
594 
595 static const char *
596 basename(const char *name)
597 {
598     const char *p = strrchr(name, '/');
599     return p != NULL ? p + 1 : name;
600 }
601 
602 static void
603 die(void)
604 {
605     const char *msg = dlerror();
606 
607     if (msg == NULL)
608 	msg = "Fatal error";
609     errx(1, "%s", msg);
610 }
611 
612 /*
613  * Process a shared object's DYNAMIC section, and save the important
614  * information in its Obj_Entry structure.
615  */
616 static void
617 digest_dynamic(Obj_Entry *obj, int early)
618 {
619     const Elf_Dyn *dynp;
620     Needed_Entry **needed_tail = &obj->needed;
621     const Elf_Dyn *dyn_rpath = NULL;
622     const Elf_Dyn *dyn_soname = NULL;
623     int plttype = DT_REL;
624 
625     obj->bind_now = false;
626     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
627 	switch (dynp->d_tag) {
628 
629 	case DT_REL:
630 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
631 	    break;
632 
633 	case DT_RELSZ:
634 	    obj->relsize = dynp->d_un.d_val;
635 	    break;
636 
637 	case DT_RELENT:
638 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
639 	    break;
640 
641 	case DT_JMPREL:
642 	    obj->pltrel = (const Elf_Rel *)
643 	      (obj->relocbase + dynp->d_un.d_ptr);
644 	    break;
645 
646 	case DT_PLTRELSZ:
647 	    obj->pltrelsize = dynp->d_un.d_val;
648 	    break;
649 
650 	case DT_RELA:
651 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
652 	    break;
653 
654 	case DT_RELASZ:
655 	    obj->relasize = dynp->d_un.d_val;
656 	    break;
657 
658 	case DT_RELAENT:
659 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
660 	    break;
661 
662 	case DT_PLTREL:
663 	    plttype = dynp->d_un.d_val;
664 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
665 	    break;
666 
667 	case DT_SYMTAB:
668 	    obj->symtab = (const Elf_Sym *)
669 	      (obj->relocbase + dynp->d_un.d_ptr);
670 	    break;
671 
672 	case DT_SYMENT:
673 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
674 	    break;
675 
676 	case DT_STRTAB:
677 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
678 	    break;
679 
680 	case DT_STRSZ:
681 	    obj->strsize = dynp->d_un.d_val;
682 	    break;
683 
684 	case DT_VERNEED:
685 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
686 		dynp->d_un.d_val);
687 	    break;
688 
689 	case DT_VERNEEDNUM:
690 	    obj->verneednum = dynp->d_un.d_val;
691 	    break;
692 
693 	case DT_VERDEF:
694 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
695 		dynp->d_un.d_val);
696 	    break;
697 
698 	case DT_VERDEFNUM:
699 	    obj->verdefnum = dynp->d_un.d_val;
700 	    break;
701 
702 	case DT_VERSYM:
703 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
704 		dynp->d_un.d_val);
705 	    break;
706 
707 	case DT_HASH:
708 	    {
709 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
710 		  (obj->relocbase + dynp->d_un.d_ptr);
711 		obj->nbuckets = hashtab[0];
712 		obj->nchains = hashtab[1];
713 		obj->buckets = hashtab + 2;
714 		obj->chains = obj->buckets + obj->nbuckets;
715 	    }
716 	    break;
717 
718 	case DT_NEEDED:
719 	    if (!obj->rtld) {
720 		Needed_Entry *nep = NEW(Needed_Entry);
721 		nep->name = dynp->d_un.d_val;
722 		nep->obj = NULL;
723 		nep->next = NULL;
724 
725 		*needed_tail = nep;
726 		needed_tail = &nep->next;
727 	    }
728 	    break;
729 
730 	case DT_PLTGOT:
731 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
732 	    break;
733 
734 	case DT_TEXTREL:
735 	    obj->textrel = true;
736 	    break;
737 
738 	case DT_SYMBOLIC:
739 	    obj->symbolic = true;
740 	    break;
741 
742 	case DT_RPATH:
743 	case DT_RUNPATH:	/* XXX: process separately */
744 	    /*
745 	     * We have to wait until later to process this, because we
746 	     * might not have gotten the address of the string table yet.
747 	     */
748 	    dyn_rpath = dynp;
749 	    break;
750 
751 	case DT_SONAME:
752 	    dyn_soname = dynp;
753 	    break;
754 
755 	case DT_INIT:
756 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
757 	    break;
758 
759 	case DT_FINI:
760 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
761 	    break;
762 
763 	case DT_DEBUG:
764 	    /* XXX - not implemented yet */
765 	    if (!early)
766 		dbg("Filling in DT_DEBUG entry");
767 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
768 	    break;
769 
770 	case DT_FLAGS:
771 		if (dynp->d_un.d_val & DF_ORIGIN) {
772 		    obj->origin_path = xmalloc(PATH_MAX);
773 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
774 			die();
775 		}
776 		if (dynp->d_un.d_val & DF_SYMBOLIC)
777 		    obj->symbolic = true;
778 		if (dynp->d_un.d_val & DF_TEXTREL)
779 		    obj->textrel = true;
780 		if (dynp->d_un.d_val & DF_BIND_NOW)
781 		    obj->bind_now = true;
782 		if (dynp->d_un.d_val & DF_STATIC_TLS)
783 		    ;
784 	    break;
785 
786 	default:
787 	    if (!early) {
788 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
789 		    (long)dynp->d_tag);
790 	    }
791 	    break;
792 	}
793     }
794 
795     obj->traced = false;
796 
797     if (plttype == DT_RELA) {
798 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
799 	obj->pltrel = NULL;
800 	obj->pltrelasize = obj->pltrelsize;
801 	obj->pltrelsize = 0;
802     }
803 
804     if (dyn_rpath != NULL)
805 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
806 
807     if (dyn_soname != NULL)
808 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
809 }
810 
811 /*
812  * Process a shared object's program header.  This is used only for the
813  * main program, when the kernel has already loaded the main program
814  * into memory before calling the dynamic linker.  It creates and
815  * returns an Obj_Entry structure.
816  */
817 static Obj_Entry *
818 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
819 {
820     Obj_Entry *obj;
821     const Elf_Phdr *phlimit = phdr + phnum;
822     const Elf_Phdr *ph;
823     int nsegs = 0;
824 
825     obj = obj_new();
826     for (ph = phdr;  ph < phlimit;  ph++) {
827 	switch (ph->p_type) {
828 
829 	case PT_PHDR:
830 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
831 		_rtld_error("%s: invalid PT_PHDR", path);
832 		return NULL;
833 	    }
834 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
835 	    obj->phsize = ph->p_memsz;
836 	    break;
837 
838 	case PT_INTERP:
839 	    obj->interp = (const char *) ph->p_vaddr;
840 	    break;
841 
842 	case PT_LOAD:
843 	    if (nsegs == 0) {	/* First load segment */
844 		obj->vaddrbase = trunc_page(ph->p_vaddr);
845 		obj->mapbase = (caddr_t) obj->vaddrbase;
846 		obj->relocbase = obj->mapbase - obj->vaddrbase;
847 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
848 		  obj->vaddrbase;
849 	    } else {		/* Last load segment */
850 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
851 		  obj->vaddrbase;
852 	    }
853 	    nsegs++;
854 	    break;
855 
856 	case PT_DYNAMIC:
857 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
858 	    break;
859 
860 	case PT_TLS:
861 	    obj->tlsindex = 1;
862 	    obj->tlssize = ph->p_memsz;
863 	    obj->tlsalign = ph->p_align;
864 	    obj->tlsinitsize = ph->p_filesz;
865 	    obj->tlsinit = (void*) ph->p_vaddr;
866 	    break;
867 	}
868     }
869     if (nsegs < 1) {
870 	_rtld_error("%s: too few PT_LOAD segments", path);
871 	return NULL;
872     }
873 
874     obj->entry = entry;
875     return obj;
876 }
877 
878 static Obj_Entry *
879 dlcheck(void *handle)
880 {
881     Obj_Entry *obj;
882 
883     for (obj = obj_list;  obj != NULL;  obj = obj->next)
884 	if (obj == (Obj_Entry *) handle)
885 	    break;
886 
887     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
888 	_rtld_error("Invalid shared object handle %p", handle);
889 	return NULL;
890     }
891     return obj;
892 }
893 
894 /*
895  * If the given object is already in the donelist, return true.  Otherwise
896  * add the object to the list and return false.
897  */
898 static bool
899 donelist_check(DoneList *dlp, const Obj_Entry *obj)
900 {
901     unsigned int i;
902 
903     for (i = 0;  i < dlp->num_used;  i++)
904 	if (dlp->objs[i] == obj)
905 	    return true;
906     /*
907      * Our donelist allocation should always be sufficient.  But if
908      * our threads locking isn't working properly, more shared objects
909      * could have been loaded since we allocated the list.  That should
910      * never happen, but we'll handle it properly just in case it does.
911      */
912     if (dlp->num_used < dlp->num_alloc)
913 	dlp->objs[dlp->num_used++] = obj;
914     return false;
915 }
916 
917 /*
918  * Hash function for symbol table lookup.  Don't even think about changing
919  * this.  It is specified by the System V ABI.
920  */
921 unsigned long
922 elf_hash(const char *name)
923 {
924     const unsigned char *p = (const unsigned char *) name;
925     unsigned long h = 0;
926     unsigned long g;
927 
928     while (*p != '\0') {
929 	h = (h << 4) + *p++;
930 	if ((g = h & 0xf0000000) != 0)
931 	    h ^= g >> 24;
932 	h &= ~g;
933     }
934     return h;
935 }
936 
937 /*
938  * Find the library with the given name, and return its full pathname.
939  * The returned string is dynamically allocated.  Generates an error
940  * message and returns NULL if the library cannot be found.
941  *
942  * If the second argument is non-NULL, then it refers to an already-
943  * loaded shared object, whose library search path will be searched.
944  *
945  * The search order is:
946  *   LD_LIBRARY_PATH
947  *   rpath in the referencing file
948  *   ldconfig hints
949  *   /lib:/usr/lib
950  */
951 static char *
952 find_library(const char *xname, const Obj_Entry *refobj)
953 {
954     char *pathname;
955     char *name;
956 
957     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
958 	if (xname[0] != '/' && !trust) {
959 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
960 	      xname);
961 	    return NULL;
962 	}
963 	return xstrdup(xname);
964     }
965 
966     if (libmap_disable || (refobj == NULL) ||
967 	(name = lm_find(refobj->path, xname)) == NULL)
968 	name = (char *)xname;
969 
970     dbg(" Searching for \"%s\"", name);
971 
972     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
973       (refobj != NULL &&
974       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
975       (pathname = search_library_path(name, gethints())) != NULL ||
976       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
977 	return pathname;
978 
979     if(refobj != NULL && refobj->path != NULL) {
980 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
981 	  name, basename(refobj->path));
982     } else {
983 	_rtld_error("Shared object \"%s\" not found", name);
984     }
985     return NULL;
986 }
987 
988 /*
989  * Given a symbol number in a referencing object, find the corresponding
990  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
991  * no definition was found.  Returns a pointer to the Obj_Entry of the
992  * defining object via the reference parameter DEFOBJ_OUT.
993  */
994 const Elf_Sym *
995 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
996     const Obj_Entry **defobj_out, int flags, SymCache *cache)
997 {
998     const Elf_Sym *ref;
999     const Elf_Sym *def;
1000     const Obj_Entry *defobj;
1001     const Ver_Entry *ventry;
1002     const char *name;
1003     unsigned long hash;
1004 
1005     /*
1006      * If we have already found this symbol, get the information from
1007      * the cache.
1008      */
1009     if (symnum >= refobj->nchains)
1010 	return NULL;	/* Bad object */
1011     if (cache != NULL && cache[symnum].sym != NULL) {
1012 	*defobj_out = cache[symnum].obj;
1013 	return cache[symnum].sym;
1014     }
1015 
1016     ref = refobj->symtab + symnum;
1017     name = refobj->strtab + ref->st_name;
1018     defobj = NULL;
1019 
1020     /*
1021      * We don't have to do a full scale lookup if the symbol is local.
1022      * We know it will bind to the instance in this load module; to
1023      * which we already have a pointer (ie ref). By not doing a lookup,
1024      * we not only improve performance, but it also avoids unresolvable
1025      * symbols when local symbols are not in the hash table. This has
1026      * been seen with the ia64 toolchain.
1027      */
1028     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1029 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1030 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1031 		symnum);
1032 	}
1033 	ventry = fetch_ventry(refobj, symnum);
1034 	hash = elf_hash(name);
1035 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1036     } else {
1037 	def = ref;
1038 	defobj = refobj;
1039     }
1040 
1041     /*
1042      * If we found no definition and the reference is weak, treat the
1043      * symbol as having the value zero.
1044      */
1045     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1046 	def = &sym_zero;
1047 	defobj = obj_main;
1048     }
1049 
1050     if (def != NULL) {
1051 	*defobj_out = defobj;
1052 	/* Record the information in the cache to avoid subsequent lookups. */
1053 	if (cache != NULL) {
1054 	    cache[symnum].sym = def;
1055 	    cache[symnum].obj = defobj;
1056 	}
1057     } else {
1058 	if (refobj != &obj_rtld)
1059 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1060     }
1061     return def;
1062 }
1063 
1064 /*
1065  * Return the search path from the ldconfig hints file, reading it if
1066  * necessary.  Returns NULL if there are problems with the hints file,
1067  * or if the search path there is empty.
1068  */
1069 static const char *
1070 gethints(void)
1071 {
1072     static char *hints;
1073 
1074     if (hints == NULL) {
1075 	int fd;
1076 	struct elfhints_hdr hdr;
1077 	char *p;
1078 
1079 	/* Keep from trying again in case the hints file is bad. */
1080 	hints = "";
1081 
1082 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1083 	    return NULL;
1084 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1085 	  hdr.magic != ELFHINTS_MAGIC ||
1086 	  hdr.version != 1) {
1087 	    close(fd);
1088 	    return NULL;
1089 	}
1090 	p = xmalloc(hdr.dirlistlen + 1);
1091 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1092 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1093 	    free(p);
1094 	    close(fd);
1095 	    return NULL;
1096 	}
1097 	hints = p;
1098 	close(fd);
1099     }
1100     return hints[0] != '\0' ? hints : NULL;
1101 }
1102 
1103 static void
1104 init_dag(Obj_Entry *root)
1105 {
1106     DoneList donelist;
1107 
1108     donelist_init(&donelist);
1109     init_dag1(root, root, &donelist);
1110 }
1111 
1112 static void
1113 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1114 {
1115     const Needed_Entry *needed;
1116 
1117     if (donelist_check(dlp, obj))
1118 	return;
1119 
1120     obj->refcount++;
1121     objlist_push_tail(&obj->dldags, root);
1122     objlist_push_tail(&root->dagmembers, obj);
1123     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1124 	if (needed->obj != NULL)
1125 	    init_dag1(root, needed->obj, dlp);
1126 }
1127 
1128 /*
1129  * Initialize the dynamic linker.  The argument is the address at which
1130  * the dynamic linker has been mapped into memory.  The primary task of
1131  * this function is to relocate the dynamic linker.
1132  */
1133 static void
1134 init_rtld(caddr_t mapbase)
1135 {
1136     Obj_Entry objtmp;	/* Temporary rtld object */
1137 
1138     /*
1139      * Conjure up an Obj_Entry structure for the dynamic linker.
1140      *
1141      * The "path" member can't be initialized yet because string constatns
1142      * cannot yet be acessed. Below we will set it correctly.
1143      */
1144     memset(&objtmp, 0, sizeof(objtmp));
1145     objtmp.path = NULL;
1146     objtmp.rtld = true;
1147     objtmp.mapbase = mapbase;
1148 #ifdef PIC
1149     objtmp.relocbase = mapbase;
1150 #endif
1151     if (RTLD_IS_DYNAMIC()) {
1152 	objtmp.dynamic = rtld_dynamic(&objtmp);
1153 	digest_dynamic(&objtmp, 1);
1154 	assert(objtmp.needed == NULL);
1155 	assert(!objtmp.textrel);
1156 
1157 	/*
1158 	 * Temporarily put the dynamic linker entry into the object list, so
1159 	 * that symbols can be found.
1160 	 */
1161 
1162 	relocate_objects(&objtmp, true, &objtmp);
1163     }
1164 
1165     /* Initialize the object list. */
1166     obj_tail = &obj_list;
1167 
1168     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1169     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1170 
1171     /* Replace the path with a dynamically allocated copy. */
1172     obj_rtld.path = xstrdup(PATH_RTLD);
1173 
1174     r_debug.r_brk = r_debug_state;
1175     r_debug.r_state = RT_CONSISTENT;
1176 }
1177 
1178 /*
1179  * Add the init functions from a needed object list (and its recursive
1180  * needed objects) to "list".  This is not used directly; it is a helper
1181  * function for initlist_add_objects().  The write lock must be held
1182  * when this function is called.
1183  */
1184 static void
1185 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1186 {
1187     /* Recursively process the successor needed objects. */
1188     if (needed->next != NULL)
1189 	initlist_add_neededs(needed->next, list);
1190 
1191     /* Process the current needed object. */
1192     if (needed->obj != NULL)
1193 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1194 }
1195 
1196 /*
1197  * Scan all of the DAGs rooted in the range of objects from "obj" to
1198  * "tail" and add their init functions to "list".  This recurses over
1199  * the DAGs and ensure the proper init ordering such that each object's
1200  * needed libraries are initialized before the object itself.  At the
1201  * same time, this function adds the objects to the global finalization
1202  * list "list_fini" in the opposite order.  The write lock must be
1203  * held when this function is called.
1204  */
1205 static void
1206 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1207 {
1208     if (obj->init_done)
1209 	return;
1210     obj->init_done = true;
1211 
1212     /* Recursively process the successor objects. */
1213     if (&obj->next != tail)
1214 	initlist_add_objects(obj->next, tail, list);
1215 
1216     /* Recursively process the needed objects. */
1217     if (obj->needed != NULL)
1218 	initlist_add_neededs(obj->needed, list);
1219 
1220     /* Add the object to the init list. */
1221     if (obj->init != (Elf_Addr)NULL)
1222 	objlist_push_tail(list, obj);
1223 
1224     /* Add the object to the global fini list in the reverse order. */
1225     if (obj->fini != (Elf_Addr)NULL)
1226 	objlist_push_head(&list_fini, obj);
1227 }
1228 
1229 #ifndef FPTR_TARGET
1230 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1231 #endif
1232 
1233 static bool
1234 is_exported(const Elf_Sym *def)
1235 {
1236     Elf_Addr value;
1237     const func_ptr_type *p;
1238 
1239     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1240     for (p = exports;  *p != NULL;  p++)
1241 	if (FPTR_TARGET(*p) == value)
1242 	    return true;
1243     return false;
1244 }
1245 
1246 /*
1247  * Given a shared object, traverse its list of needed objects, and load
1248  * each of them.  Returns 0 on success.  Generates an error message and
1249  * returns -1 on failure.
1250  */
1251 static int
1252 load_needed_objects(Obj_Entry *first)
1253 {
1254     Obj_Entry *obj;
1255 
1256     for (obj = first;  obj != NULL;  obj = obj->next) {
1257 	Needed_Entry *needed;
1258 
1259 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1260 	    needed->obj = load_object(obj->strtab + needed->name, obj);
1261 	    if (needed->obj == NULL && !ld_tracing)
1262 		return -1;
1263 	}
1264     }
1265 
1266     return 0;
1267 }
1268 
1269 static int
1270 load_preload_objects(void)
1271 {
1272     char *p = ld_preload;
1273     static const char delim[] = " \t:;";
1274 
1275     if (p == NULL)
1276 	return 0;
1277 
1278     p += strspn(p, delim);
1279     while (*p != '\0') {
1280 	size_t len = strcspn(p, delim);
1281 	char savech;
1282 
1283 	savech = p[len];
1284 	p[len] = '\0';
1285 	if (load_object(p, NULL) == NULL)
1286 	    return -1;	/* XXX - cleanup */
1287 	p[len] = savech;
1288 	p += len;
1289 	p += strspn(p, delim);
1290     }
1291     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1292     return 0;
1293 }
1294 
1295 /*
1296  * Load a shared object into memory, if it is not already loaded.
1297  *
1298  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1299  * on failure.
1300  */
1301 static Obj_Entry *
1302 load_object(const char *name, const Obj_Entry *refobj)
1303 {
1304     Obj_Entry *obj;
1305     int fd = -1;
1306     struct stat sb;
1307     char *path;
1308 
1309     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1310 	if (object_match_name(obj, name))
1311 	    return obj;
1312 
1313     path = find_library(name, refobj);
1314     if (path == NULL)
1315 	return NULL;
1316 
1317     /*
1318      * If we didn't find a match by pathname, open the file and check
1319      * again by device and inode.  This avoids false mismatches caused
1320      * by multiple links or ".." in pathnames.
1321      *
1322      * To avoid a race, we open the file and use fstat() rather than
1323      * using stat().
1324      */
1325     if ((fd = open(path, O_RDONLY)) == -1) {
1326 	_rtld_error("Cannot open \"%s\"", path);
1327 	free(path);
1328 	return NULL;
1329     }
1330     if (fstat(fd, &sb) == -1) {
1331 	_rtld_error("Cannot fstat \"%s\"", path);
1332 	close(fd);
1333 	free(path);
1334 	return NULL;
1335     }
1336     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1337 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1338 	    close(fd);
1339 	    break;
1340 	}
1341     }
1342     if (obj != NULL) {
1343 	object_add_name(obj, name);
1344 	free(path);
1345 	close(fd);
1346 	return obj;
1347     }
1348 
1349     /* First use of this object, so we must map it in */
1350     obj = do_load_object(fd, name, path, &sb);
1351     if (obj == NULL)
1352 	free(path);
1353     close(fd);
1354 
1355     return obj;
1356 }
1357 
1358 static Obj_Entry *
1359 do_load_object(int fd, const char *name, char *path, struct stat *sbp)
1360 {
1361     Obj_Entry *obj;
1362     struct statfs fs;
1363 
1364     /*
1365      * but first, make sure that environment variables haven't been
1366      * used to circumvent the noexec flag on a filesystem.
1367      */
1368     if (dangerous_ld_env) {
1369 	if (fstatfs(fd, &fs) != 0) {
1370 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1371 		return NULL;
1372 	}
1373 	if (fs.f_flags & MNT_NOEXEC) {
1374 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1375 	    return NULL;
1376 	}
1377     }
1378     dbg("loading \"%s\"", path);
1379     obj = map_object(fd, path, sbp);
1380     if (obj == NULL)
1381         return NULL;
1382 
1383     object_add_name(obj, name);
1384     obj->path = path;
1385     digest_dynamic(obj, 0);
1386 
1387     *obj_tail = obj;
1388     obj_tail = &obj->next;
1389     obj_count++;
1390     linkmap_add(obj);	/* for GDB & dlinfo() */
1391 
1392     dbg("  %p .. %p: %s", obj->mapbase,
1393          obj->mapbase + obj->mapsize - 1, obj->path);
1394     if (obj->textrel)
1395 	dbg("  WARNING: %s has impure text", obj->path);
1396     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1397 	obj->path);
1398 
1399     return obj;
1400 }
1401 
1402 static Obj_Entry *
1403 obj_from_addr(const void *addr)
1404 {
1405     Obj_Entry *obj;
1406 
1407     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1408 	if (addr < (void *) obj->mapbase)
1409 	    continue;
1410 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1411 	    return obj;
1412     }
1413     return NULL;
1414 }
1415 
1416 /*
1417  * Call the finalization functions for each of the objects in "list"
1418  * which are unreferenced.  All of the objects are expected to have
1419  * non-NULL fini functions.
1420  */
1421 static void
1422 objlist_call_fini(Objlist *list)
1423 {
1424     Objlist_Entry *elm;
1425     char *saved_msg;
1426 
1427     /*
1428      * Preserve the current error message since a fini function might
1429      * call into the dynamic linker and overwrite it.
1430      */
1431     saved_msg = errmsg_save();
1432     STAILQ_FOREACH(elm, list, link) {
1433 	if (elm->obj->refcount == 0) {
1434 	    dbg("calling fini function for %s at %p", elm->obj->path,
1435 	        (void *)elm->obj->fini);
1436 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1437 		elm->obj->path);
1438 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1439 	}
1440     }
1441     errmsg_restore(saved_msg);
1442 }
1443 
1444 /*
1445  * Call the initialization functions for each of the objects in
1446  * "list".  All of the objects are expected to have non-NULL init
1447  * functions.
1448  */
1449 static void
1450 objlist_call_init(Objlist *list)
1451 {
1452     Objlist_Entry *elm;
1453     char *saved_msg;
1454 
1455     /*
1456      * Preserve the current error message since an init function might
1457      * call into the dynamic linker and overwrite it.
1458      */
1459     saved_msg = errmsg_save();
1460     STAILQ_FOREACH(elm, list, link) {
1461 	dbg("calling init function for %s at %p", elm->obj->path,
1462 	    (void *)elm->obj->init);
1463 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1464 	    elm->obj->path);
1465 	call_initfini_pointer(elm->obj, elm->obj->init);
1466     }
1467     errmsg_restore(saved_msg);
1468 }
1469 
1470 static void
1471 objlist_clear(Objlist *list)
1472 {
1473     Objlist_Entry *elm;
1474 
1475     while (!STAILQ_EMPTY(list)) {
1476 	elm = STAILQ_FIRST(list);
1477 	STAILQ_REMOVE_HEAD(list, link);
1478 	free(elm);
1479     }
1480 }
1481 
1482 static Objlist_Entry *
1483 objlist_find(Objlist *list, const Obj_Entry *obj)
1484 {
1485     Objlist_Entry *elm;
1486 
1487     STAILQ_FOREACH(elm, list, link)
1488 	if (elm->obj == obj)
1489 	    return elm;
1490     return NULL;
1491 }
1492 
1493 static void
1494 objlist_init(Objlist *list)
1495 {
1496     STAILQ_INIT(list);
1497 }
1498 
1499 static void
1500 objlist_push_head(Objlist *list, Obj_Entry *obj)
1501 {
1502     Objlist_Entry *elm;
1503 
1504     elm = NEW(Objlist_Entry);
1505     elm->obj = obj;
1506     STAILQ_INSERT_HEAD(list, elm, link);
1507 }
1508 
1509 static void
1510 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1511 {
1512     Objlist_Entry *elm;
1513 
1514     elm = NEW(Objlist_Entry);
1515     elm->obj = obj;
1516     STAILQ_INSERT_TAIL(list, elm, link);
1517 }
1518 
1519 static void
1520 objlist_remove(Objlist *list, Obj_Entry *obj)
1521 {
1522     Objlist_Entry *elm;
1523 
1524     if ((elm = objlist_find(list, obj)) != NULL) {
1525 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1526 	free(elm);
1527     }
1528 }
1529 
1530 /*
1531  * Remove all of the unreferenced objects from "list".
1532  */
1533 static void
1534 objlist_remove_unref(Objlist *list)
1535 {
1536     Objlist newlist;
1537     Objlist_Entry *elm;
1538 
1539     STAILQ_INIT(&newlist);
1540     while (!STAILQ_EMPTY(list)) {
1541 	elm = STAILQ_FIRST(list);
1542 	STAILQ_REMOVE_HEAD(list, link);
1543 	if (elm->obj->refcount == 0)
1544 	    free(elm);
1545 	else
1546 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1547     }
1548     *list = newlist;
1549 }
1550 
1551 /*
1552  * Relocate newly-loaded shared objects.  The argument is a pointer to
1553  * the Obj_Entry for the first such object.  All objects from the first
1554  * to the end of the list of objects are relocated.  Returns 0 on success,
1555  * or -1 on failure.
1556  */
1557 static int
1558 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1559 {
1560     Obj_Entry *obj;
1561 
1562     for (obj = first;  obj != NULL;  obj = obj->next) {
1563 	if (obj != rtldobj)
1564 	    dbg("relocating \"%s\"", obj->path);
1565 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1566 	    obj->symtab == NULL || obj->strtab == NULL) {
1567 	    _rtld_error("%s: Shared object has no run-time symbol table",
1568 	      obj->path);
1569 	    return -1;
1570 	}
1571 
1572 	if (obj->textrel) {
1573 	    /* There are relocations to the write-protected text segment. */
1574 	    if (mprotect(obj->mapbase, obj->textsize,
1575 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1576 		_rtld_error("%s: Cannot write-enable text segment: %s",
1577 		  obj->path, strerror(errno));
1578 		return -1;
1579 	    }
1580 	}
1581 
1582 	/* Process the non-PLT relocations. */
1583 	if (reloc_non_plt(obj, rtldobj))
1584 		return -1;
1585 
1586 	if (obj->textrel) {	/* Re-protected the text segment. */
1587 	    if (mprotect(obj->mapbase, obj->textsize,
1588 	      PROT_READ|PROT_EXEC) == -1) {
1589 		_rtld_error("%s: Cannot write-protect text segment: %s",
1590 		  obj->path, strerror(errno));
1591 		return -1;
1592 	    }
1593 	}
1594 
1595 	/* Process the PLT relocations. */
1596 	if (reloc_plt(obj) == -1)
1597 	    return -1;
1598 	/* Relocate the jump slots if we are doing immediate binding. */
1599 	if (obj->bind_now || bind_now)
1600 	    if (reloc_jmpslots(obj) == -1)
1601 		return -1;
1602 
1603 
1604 	/*
1605 	 * Set up the magic number and version in the Obj_Entry.  These
1606 	 * were checked in the crt1.o from the original ElfKit, so we
1607 	 * set them for backward compatibility.
1608 	 */
1609 	obj->magic = RTLD_MAGIC;
1610 	obj->version = RTLD_VERSION;
1611 
1612 	/* Set the special PLT or GOT entries. */
1613 	init_pltgot(obj);
1614     }
1615 
1616     return 0;
1617 }
1618 
1619 /*
1620  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1621  * before the process exits.
1622  */
1623 static void
1624 rtld_exit(void)
1625 {
1626     Obj_Entry *obj;
1627 
1628     dbg("rtld_exit()");
1629     /* Clear all the reference counts so the fini functions will be called. */
1630     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1631 	obj->refcount = 0;
1632     objlist_call_fini(&list_fini);
1633     /* No need to remove the items from the list, since we are exiting. */
1634     if (!libmap_disable)
1635         lm_fini();
1636 }
1637 
1638 static void *
1639 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1640 {
1641 #ifdef COMPAT_32BIT
1642     const char *trans;
1643 #endif
1644     if (path == NULL)
1645 	return (NULL);
1646 
1647     path += strspn(path, ":;");
1648     while (*path != '\0') {
1649 	size_t len;
1650 	char  *res;
1651 
1652 	len = strcspn(path, ":;");
1653 #ifdef COMPAT_32BIT
1654 	trans = lm_findn(NULL, path, len);
1655 	if (trans)
1656 	    res = callback(trans, strlen(trans), arg);
1657 	else
1658 #endif
1659 	res = callback(path, len, arg);
1660 
1661 	if (res != NULL)
1662 	    return (res);
1663 
1664 	path += len;
1665 	path += strspn(path, ":;");
1666     }
1667 
1668     return (NULL);
1669 }
1670 
1671 struct try_library_args {
1672     const char	*name;
1673     size_t	 namelen;
1674     char	*buffer;
1675     size_t	 buflen;
1676 };
1677 
1678 static void *
1679 try_library_path(const char *dir, size_t dirlen, void *param)
1680 {
1681     struct try_library_args *arg;
1682 
1683     arg = param;
1684     if (*dir == '/' || trust) {
1685 	char *pathname;
1686 
1687 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1688 		return (NULL);
1689 
1690 	pathname = arg->buffer;
1691 	strncpy(pathname, dir, dirlen);
1692 	pathname[dirlen] = '/';
1693 	strcpy(pathname + dirlen + 1, arg->name);
1694 
1695 	dbg("  Trying \"%s\"", pathname);
1696 	if (access(pathname, F_OK) == 0) {		/* We found it */
1697 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1698 	    strcpy(pathname, arg->buffer);
1699 	    return (pathname);
1700 	}
1701     }
1702     return (NULL);
1703 }
1704 
1705 static char *
1706 search_library_path(const char *name, const char *path)
1707 {
1708     char *p;
1709     struct try_library_args arg;
1710 
1711     if (path == NULL)
1712 	return NULL;
1713 
1714     arg.name = name;
1715     arg.namelen = strlen(name);
1716     arg.buffer = xmalloc(PATH_MAX);
1717     arg.buflen = PATH_MAX;
1718 
1719     p = path_enumerate(path, try_library_path, &arg);
1720 
1721     free(arg.buffer);
1722 
1723     return (p);
1724 }
1725 
1726 int
1727 dlclose(void *handle)
1728 {
1729     Obj_Entry *root;
1730     int lockstate;
1731 
1732     lockstate = wlock_acquire(rtld_bind_lock);
1733     root = dlcheck(handle);
1734     if (root == NULL) {
1735 	wlock_release(rtld_bind_lock, lockstate);
1736 	return -1;
1737     }
1738     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1739 	root->path);
1740 
1741     /* Unreference the object and its dependencies. */
1742     root->dl_refcount--;
1743 
1744     unref_dag(root);
1745 
1746     if (root->refcount == 0) {
1747 	/*
1748 	 * The object is no longer referenced, so we must unload it.
1749 	 * First, call the fini functions with no locks held.
1750 	 */
1751 	wlock_release(rtld_bind_lock, lockstate);
1752 	objlist_call_fini(&list_fini);
1753 	lockstate = wlock_acquire(rtld_bind_lock);
1754 	objlist_remove_unref(&list_fini);
1755 
1756 	/* Finish cleaning up the newly-unreferenced objects. */
1757 	GDB_STATE(RT_DELETE,&root->linkmap);
1758 	unload_object(root);
1759 	GDB_STATE(RT_CONSISTENT,NULL);
1760     }
1761     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1762     wlock_release(rtld_bind_lock, lockstate);
1763     return 0;
1764 }
1765 
1766 const char *
1767 dlerror(void)
1768 {
1769     char *msg = error_message;
1770     error_message = NULL;
1771     return msg;
1772 }
1773 
1774 /*
1775  * This function is deprecated and has no effect.
1776  */
1777 void
1778 dllockinit(void *context,
1779 	   void *(*lock_create)(void *context),
1780            void (*rlock_acquire)(void *lock),
1781            void (*wlock_acquire)(void *lock),
1782            void (*lock_release)(void *lock),
1783            void (*lock_destroy)(void *lock),
1784 	   void (*context_destroy)(void *context))
1785 {
1786     static void *cur_context;
1787     static void (*cur_context_destroy)(void *);
1788 
1789     /* Just destroy the context from the previous call, if necessary. */
1790     if (cur_context_destroy != NULL)
1791 	cur_context_destroy(cur_context);
1792     cur_context = context;
1793     cur_context_destroy = context_destroy;
1794 }
1795 
1796 void *
1797 dlopen(const char *name, int mode)
1798 {
1799     Obj_Entry **old_obj_tail;
1800     Obj_Entry *obj;
1801     Objlist initlist;
1802     int result, lockstate;
1803 
1804     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1805     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1806     if (ld_tracing != NULL)
1807 	environ = (char **)*get_program_var_addr("environ");
1808 
1809     objlist_init(&initlist);
1810 
1811     lockstate = wlock_acquire(rtld_bind_lock);
1812     GDB_STATE(RT_ADD,NULL);
1813 
1814     old_obj_tail = obj_tail;
1815     obj = NULL;
1816     if (name == NULL) {
1817 	obj = obj_main;
1818 	obj->refcount++;
1819     } else {
1820 	obj = load_object(name, obj_main);
1821     }
1822 
1823     if (obj) {
1824 	obj->dl_refcount++;
1825 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1826 	    objlist_push_tail(&list_global, obj);
1827 	mode &= RTLD_MODEMASK;
1828 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1829 	    assert(*old_obj_tail == obj);
1830 	    result = load_needed_objects(obj);
1831 	    init_dag(obj);
1832 	    if (result != -1)
1833 		result = rtld_verify_versions(&obj->dagmembers);
1834 	    if (result != -1 && ld_tracing)
1835 		goto trace;
1836 	    if (result == -1 ||
1837 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
1838 		obj->dl_refcount--;
1839 		unref_dag(obj);
1840 		if (obj->refcount == 0)
1841 		    unload_object(obj);
1842 		obj = NULL;
1843 	    } else {
1844 		/* Make list of init functions to call. */
1845 		initlist_add_objects(obj, &obj->next, &initlist);
1846 	    }
1847 	} else {
1848 
1849 	    /* Bump the reference counts for objects on this DAG. */
1850 	    ref_dag(obj);
1851 
1852 	    if (ld_tracing)
1853 		goto trace;
1854 	}
1855     }
1856 
1857     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
1858 	name);
1859     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1860 
1861     /* Call the init functions with no locks held. */
1862     wlock_release(rtld_bind_lock, lockstate);
1863     objlist_call_init(&initlist);
1864     lockstate = wlock_acquire(rtld_bind_lock);
1865     objlist_clear(&initlist);
1866     wlock_release(rtld_bind_lock, lockstate);
1867     return obj;
1868 trace:
1869     trace_loaded_objects(obj);
1870     wlock_release(rtld_bind_lock, lockstate);
1871     exit(0);
1872 }
1873 
1874 static void *
1875 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
1876     int flags)
1877 {
1878     DoneList donelist;
1879     const Obj_Entry *obj, *defobj;
1880     const Elf_Sym *def;
1881     unsigned long hash;
1882     int lockstate;
1883 
1884     hash = elf_hash(name);
1885     def = NULL;
1886     defobj = NULL;
1887     flags |= SYMLOOK_IN_PLT;
1888 
1889     lockstate = rlock_acquire(rtld_bind_lock);
1890     if (handle == NULL || handle == RTLD_NEXT ||
1891 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1892 
1893 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1894 	    _rtld_error("Cannot determine caller's shared object");
1895 	    rlock_release(rtld_bind_lock, lockstate);
1896 	    return NULL;
1897 	}
1898 	if (handle == NULL) {	/* Just the caller's shared object. */
1899 	    def = symlook_obj(name, hash, obj, ve, flags);
1900 	    defobj = obj;
1901 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1902 		   handle == RTLD_SELF) { /* ... caller included */
1903 	    if (handle == RTLD_NEXT)
1904 		obj = obj->next;
1905 	    for (; obj != NULL; obj = obj->next) {
1906 		if ((def = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
1907 		    defobj = obj;
1908 		    break;
1909 		}
1910 	    }
1911 	} else {
1912 	    assert(handle == RTLD_DEFAULT);
1913 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
1914 	}
1915     } else {
1916 	if ((obj = dlcheck(handle)) == NULL) {
1917 	    rlock_release(rtld_bind_lock, lockstate);
1918 	    return NULL;
1919 	}
1920 
1921 	donelist_init(&donelist);
1922 	if (obj->mainprog) {
1923 	    /* Search main program and all libraries loaded by it. */
1924 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
1925 			       &donelist);
1926 	} else {
1927 	    Needed_Entry fake;
1928 
1929 	    /* Search the whole DAG rooted at the given object. */
1930 	    fake.next = NULL;
1931 	    fake.obj = (Obj_Entry *)obj;
1932 	    fake.name = 0;
1933 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
1934 				 &donelist);
1935 	}
1936     }
1937 
1938     if (def != NULL) {
1939 	rlock_release(rtld_bind_lock, lockstate);
1940 
1941 	/*
1942 	 * The value required by the caller is derived from the value
1943 	 * of the symbol. For the ia64 architecture, we need to
1944 	 * construct a function descriptor which the caller can use to
1945 	 * call the function with the right 'gp' value. For other
1946 	 * architectures and for non-functions, the value is simply
1947 	 * the relocated value of the symbol.
1948 	 */
1949 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1950 	    return make_function_pointer(def, defobj);
1951 	else
1952 	    return defobj->relocbase + def->st_value;
1953     }
1954 
1955     _rtld_error("Undefined symbol \"%s\"", name);
1956     rlock_release(rtld_bind_lock, lockstate);
1957     return NULL;
1958 }
1959 
1960 void *
1961 dlsym(void *handle, const char *name)
1962 {
1963 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
1964 	    SYMLOOK_DLSYM);
1965 }
1966 
1967 void *
1968 dlvsym(void *handle, const char *name, const char *version)
1969 {
1970 	Ver_Entry ventry;
1971 
1972 	ventry.name = version;
1973 	ventry.file = NULL;
1974 	ventry.hash = elf_hash(version);
1975 	ventry.flags= 0;
1976 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
1977 	    SYMLOOK_DLSYM);
1978 }
1979 
1980 int
1981 dladdr(const void *addr, Dl_info *info)
1982 {
1983     const Obj_Entry *obj;
1984     const Elf_Sym *def;
1985     void *symbol_addr;
1986     unsigned long symoffset;
1987     int lockstate;
1988 
1989     lockstate = rlock_acquire(rtld_bind_lock);
1990     obj = obj_from_addr(addr);
1991     if (obj == NULL) {
1992         _rtld_error("No shared object contains address");
1993 	rlock_release(rtld_bind_lock, lockstate);
1994         return 0;
1995     }
1996     info->dli_fname = obj->path;
1997     info->dli_fbase = obj->mapbase;
1998     info->dli_saddr = (void *)0;
1999     info->dli_sname = NULL;
2000 
2001     /*
2002      * Walk the symbol list looking for the symbol whose address is
2003      * closest to the address sent in.
2004      */
2005     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2006         def = obj->symtab + symoffset;
2007 
2008         /*
2009          * For skip the symbol if st_shndx is either SHN_UNDEF or
2010          * SHN_COMMON.
2011          */
2012         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2013             continue;
2014 
2015         /*
2016          * If the symbol is greater than the specified address, or if it
2017          * is further away from addr than the current nearest symbol,
2018          * then reject it.
2019          */
2020         symbol_addr = obj->relocbase + def->st_value;
2021         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2022             continue;
2023 
2024         /* Update our idea of the nearest symbol. */
2025         info->dli_sname = obj->strtab + def->st_name;
2026         info->dli_saddr = symbol_addr;
2027 
2028         /* Exact match? */
2029         if (info->dli_saddr == addr)
2030             break;
2031     }
2032     rlock_release(rtld_bind_lock, lockstate);
2033     return 1;
2034 }
2035 
2036 int
2037 dlinfo(void *handle, int request, void *p)
2038 {
2039     const Obj_Entry *obj;
2040     int error, lockstate;
2041 
2042     lockstate = rlock_acquire(rtld_bind_lock);
2043 
2044     if (handle == NULL || handle == RTLD_SELF) {
2045 	void *retaddr;
2046 
2047 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2048 	if ((obj = obj_from_addr(retaddr)) == NULL)
2049 	    _rtld_error("Cannot determine caller's shared object");
2050     } else
2051 	obj = dlcheck(handle);
2052 
2053     if (obj == NULL) {
2054 	rlock_release(rtld_bind_lock, lockstate);
2055 	return (-1);
2056     }
2057 
2058     error = 0;
2059     switch (request) {
2060     case RTLD_DI_LINKMAP:
2061 	*((struct link_map const **)p) = &obj->linkmap;
2062 	break;
2063     case RTLD_DI_ORIGIN:
2064 	error = rtld_dirname(obj->path, p);
2065 	break;
2066 
2067     case RTLD_DI_SERINFOSIZE:
2068     case RTLD_DI_SERINFO:
2069 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2070 	break;
2071 
2072     default:
2073 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2074 	error = -1;
2075     }
2076 
2077     rlock_release(rtld_bind_lock, lockstate);
2078 
2079     return (error);
2080 }
2081 
2082 struct fill_search_info_args {
2083     int		 request;
2084     unsigned int flags;
2085     Dl_serinfo  *serinfo;
2086     Dl_serpath  *serpath;
2087     char	*strspace;
2088 };
2089 
2090 static void *
2091 fill_search_info(const char *dir, size_t dirlen, void *param)
2092 {
2093     struct fill_search_info_args *arg;
2094 
2095     arg = param;
2096 
2097     if (arg->request == RTLD_DI_SERINFOSIZE) {
2098 	arg->serinfo->dls_cnt ++;
2099 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2100     } else {
2101 	struct dl_serpath *s_entry;
2102 
2103 	s_entry = arg->serpath;
2104 	s_entry->dls_name  = arg->strspace;
2105 	s_entry->dls_flags = arg->flags;
2106 
2107 	strncpy(arg->strspace, dir, dirlen);
2108 	arg->strspace[dirlen] = '\0';
2109 
2110 	arg->strspace += dirlen + 1;
2111 	arg->serpath++;
2112     }
2113 
2114     return (NULL);
2115 }
2116 
2117 static int
2118 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2119 {
2120     struct dl_serinfo _info;
2121     struct fill_search_info_args args;
2122 
2123     args.request = RTLD_DI_SERINFOSIZE;
2124     args.serinfo = &_info;
2125 
2126     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2127     _info.dls_cnt  = 0;
2128 
2129     path_enumerate(ld_library_path, fill_search_info, &args);
2130     path_enumerate(obj->rpath, fill_search_info, &args);
2131     path_enumerate(gethints(), fill_search_info, &args);
2132     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2133 
2134 
2135     if (request == RTLD_DI_SERINFOSIZE) {
2136 	info->dls_size = _info.dls_size;
2137 	info->dls_cnt = _info.dls_cnt;
2138 	return (0);
2139     }
2140 
2141     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2142 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2143 	return (-1);
2144     }
2145 
2146     args.request  = RTLD_DI_SERINFO;
2147     args.serinfo  = info;
2148     args.serpath  = &info->dls_serpath[0];
2149     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2150 
2151     args.flags = LA_SER_LIBPATH;
2152     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2153 	return (-1);
2154 
2155     args.flags = LA_SER_RUNPATH;
2156     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2157 	return (-1);
2158 
2159     args.flags = LA_SER_CONFIG;
2160     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2161 	return (-1);
2162 
2163     args.flags = LA_SER_DEFAULT;
2164     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2165 	return (-1);
2166     return (0);
2167 }
2168 
2169 static int
2170 rtld_dirname(const char *path, char *bname)
2171 {
2172     const char *endp;
2173 
2174     /* Empty or NULL string gets treated as "." */
2175     if (path == NULL || *path == '\0') {
2176 	bname[0] = '.';
2177 	bname[1] = '\0';
2178 	return (0);
2179     }
2180 
2181     /* Strip trailing slashes */
2182     endp = path + strlen(path) - 1;
2183     while (endp > path && *endp == '/')
2184 	endp--;
2185 
2186     /* Find the start of the dir */
2187     while (endp > path && *endp != '/')
2188 	endp--;
2189 
2190     /* Either the dir is "/" or there are no slashes */
2191     if (endp == path) {
2192 	bname[0] = *endp == '/' ? '/' : '.';
2193 	bname[1] = '\0';
2194 	return (0);
2195     } else {
2196 	do {
2197 	    endp--;
2198 	} while (endp > path && *endp == '/');
2199     }
2200 
2201     if (endp - path + 2 > PATH_MAX)
2202     {
2203 	_rtld_error("Filename is too long: %s", path);
2204 	return(-1);
2205     }
2206 
2207     strncpy(bname, path, endp - path + 1);
2208     bname[endp - path + 1] = '\0';
2209     return (0);
2210 }
2211 
2212 static void
2213 linkmap_add(Obj_Entry *obj)
2214 {
2215     struct link_map *l = &obj->linkmap;
2216     struct link_map *prev;
2217 
2218     obj->linkmap.l_name = obj->path;
2219     obj->linkmap.l_addr = obj->mapbase;
2220     obj->linkmap.l_ld = obj->dynamic;
2221 #ifdef __mips__
2222     /* GDB needs load offset on MIPS to use the symbols */
2223     obj->linkmap.l_offs = obj->relocbase;
2224 #endif
2225 
2226     if (r_debug.r_map == NULL) {
2227 	r_debug.r_map = l;
2228 	return;
2229     }
2230 
2231     /*
2232      * Scan to the end of the list, but not past the entry for the
2233      * dynamic linker, which we want to keep at the very end.
2234      */
2235     for (prev = r_debug.r_map;
2236       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2237       prev = prev->l_next)
2238 	;
2239 
2240     /* Link in the new entry. */
2241     l->l_prev = prev;
2242     l->l_next = prev->l_next;
2243     if (l->l_next != NULL)
2244 	l->l_next->l_prev = l;
2245     prev->l_next = l;
2246 }
2247 
2248 static void
2249 linkmap_delete(Obj_Entry *obj)
2250 {
2251     struct link_map *l = &obj->linkmap;
2252 
2253     if (l->l_prev == NULL) {
2254 	if ((r_debug.r_map = l->l_next) != NULL)
2255 	    l->l_next->l_prev = NULL;
2256 	return;
2257     }
2258 
2259     if ((l->l_prev->l_next = l->l_next) != NULL)
2260 	l->l_next->l_prev = l->l_prev;
2261 }
2262 
2263 /*
2264  * Function for the debugger to set a breakpoint on to gain control.
2265  *
2266  * The two parameters allow the debugger to easily find and determine
2267  * what the runtime loader is doing and to whom it is doing it.
2268  *
2269  * When the loadhook trap is hit (r_debug_state, set at program
2270  * initialization), the arguments can be found on the stack:
2271  *
2272  *  +8   struct link_map *m
2273  *  +4   struct r_debug  *rd
2274  *  +0   RetAddr
2275  */
2276 void
2277 r_debug_state(struct r_debug* rd, struct link_map *m)
2278 {
2279 }
2280 
2281 /*
2282  * Get address of the pointer variable in the main program.
2283  */
2284 static const void **
2285 get_program_var_addr(const char *name)
2286 {
2287     const Obj_Entry *obj;
2288     unsigned long hash;
2289 
2290     hash = elf_hash(name);
2291     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2292 	const Elf_Sym *def;
2293 
2294 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2295 	    const void **addr;
2296 
2297 	    addr = (const void **)(obj->relocbase + def->st_value);
2298 	    return addr;
2299 	}
2300     }
2301     return NULL;
2302 }
2303 
2304 /*
2305  * Set a pointer variable in the main program to the given value.  This
2306  * is used to set key variables such as "environ" before any of the
2307  * init functions are called.
2308  */
2309 static void
2310 set_program_var(const char *name, const void *value)
2311 {
2312     const void **addr;
2313 
2314     if ((addr = get_program_var_addr(name)) != NULL) {
2315 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2316 	*addr = value;
2317     }
2318 }
2319 
2320 /*
2321  * Given a symbol name in a referencing object, find the corresponding
2322  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2323  * no definition was found.  Returns a pointer to the Obj_Entry of the
2324  * defining object via the reference parameter DEFOBJ_OUT.
2325  */
2326 static const Elf_Sym *
2327 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2328     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2329 {
2330     DoneList donelist;
2331     const Elf_Sym *def;
2332     const Elf_Sym *symp;
2333     const Obj_Entry *obj;
2334     const Obj_Entry *defobj;
2335     const Objlist_Entry *elm;
2336     def = NULL;
2337     defobj = NULL;
2338     donelist_init(&donelist);
2339 
2340     /* Look first in the referencing object if linked symbolically. */
2341     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2342 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2343 	if (symp != NULL) {
2344 	    def = symp;
2345 	    defobj = refobj;
2346 	}
2347     }
2348 
2349     /* Search all objects loaded at program start up. */
2350     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2351 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2352 	    &donelist);
2353 	if (symp != NULL &&
2354 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2355 	    def = symp;
2356 	    defobj = obj;
2357 	}
2358     }
2359 
2360     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2361     STAILQ_FOREACH(elm, &list_global, link) {
2362        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2363            break;
2364        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2365 	   flags, &donelist);
2366 	if (symp != NULL &&
2367 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2368 	    def = symp;
2369 	    defobj = obj;
2370 	}
2371     }
2372 
2373     /* Search all dlopened DAGs containing the referencing object. */
2374     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2375 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2376 	    break;
2377 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2378 	    flags, &donelist);
2379 	if (symp != NULL &&
2380 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2381 	    def = symp;
2382 	    defobj = obj;
2383 	}
2384     }
2385 
2386     /*
2387      * Search the dynamic linker itself, and possibly resolve the
2388      * symbol from there.  This is how the application links to
2389      * dynamic linker services such as dlopen.  Only the values listed
2390      * in the "exports" array can be resolved from the dynamic linker.
2391      */
2392     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2393 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2394 	if (symp != NULL && is_exported(symp)) {
2395 	    def = symp;
2396 	    defobj = &obj_rtld;
2397 	}
2398     }
2399 
2400     if (def != NULL)
2401 	*defobj_out = defobj;
2402     return def;
2403 }
2404 
2405 static const Elf_Sym *
2406 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2407   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2408   DoneList *dlp)
2409 {
2410     const Elf_Sym *symp;
2411     const Elf_Sym *def;
2412     const Obj_Entry *defobj;
2413     const Objlist_Entry *elm;
2414 
2415     def = NULL;
2416     defobj = NULL;
2417     STAILQ_FOREACH(elm, objlist, link) {
2418 	if (donelist_check(dlp, elm->obj))
2419 	    continue;
2420 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2421 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2422 		def = symp;
2423 		defobj = elm->obj;
2424 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2425 		    break;
2426 	    }
2427 	}
2428     }
2429     if (def != NULL)
2430 	*defobj_out = defobj;
2431     return def;
2432 }
2433 
2434 /*
2435  * Search the symbol table of a shared object and all objects needed
2436  * by it for a symbol of the given name.  Search order is
2437  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2438  * definition was found.
2439  */
2440 static const Elf_Sym *
2441 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2442   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2443   DoneList *dlp)
2444 {
2445     const Elf_Sym *def, *def_w;
2446     const Needed_Entry *n;
2447     const Obj_Entry *obj, *defobj, *defobj1;
2448 
2449     def = def_w = NULL;
2450     defobj = NULL;
2451     for (n = needed; n != NULL; n = n->next) {
2452 	if ((obj = n->obj) == NULL ||
2453 	    donelist_check(dlp, obj) ||
2454 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2455 	    continue;
2456 	defobj = obj;
2457 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2458 	    *defobj_out = defobj;
2459 	    return (def);
2460 	}
2461     }
2462     /*
2463      * There we come when either symbol definition is not found in
2464      * directly needed objects, or found symbol is weak.
2465      */
2466     for (n = needed; n != NULL; n = n->next) {
2467 	if ((obj = n->obj) == NULL)
2468 	    continue;
2469 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2470 			       ventry, flags, dlp);
2471 	if (def_w == NULL)
2472 	    continue;
2473 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2474 	    def = def_w;
2475 	    defobj = defobj1;
2476 	}
2477 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2478 	    break;
2479     }
2480     if (def != NULL)
2481 	*defobj_out = defobj;
2482     return (def);
2483 }
2484 
2485 /*
2486  * Search the symbol table of a single shared object for a symbol of
2487  * the given name and version, if requested.  Returns a pointer to the
2488  * symbol, or NULL if no definition was found.
2489  *
2490  * The symbol's hash value is passed in for efficiency reasons; that
2491  * eliminates many recomputations of the hash value.
2492  */
2493 const Elf_Sym *
2494 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2495     const Ver_Entry *ventry, int flags)
2496 {
2497     unsigned long symnum;
2498     const Elf_Sym *vsymp;
2499     Elf_Versym verndx;
2500     int vcount;
2501 
2502     if (obj->buckets == NULL)
2503 	return NULL;
2504 
2505     vsymp = NULL;
2506     vcount = 0;
2507     symnum = obj->buckets[hash % obj->nbuckets];
2508 
2509     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2510 	const Elf_Sym *symp;
2511 	const char *strp;
2512 
2513 	if (symnum >= obj->nchains)
2514 		return NULL;	/* Bad object */
2515 
2516 	symp = obj->symtab + symnum;
2517 	strp = obj->strtab + symp->st_name;
2518 
2519 	switch (ELF_ST_TYPE(symp->st_info)) {
2520 	case STT_FUNC:
2521 	case STT_NOTYPE:
2522 	case STT_OBJECT:
2523 	    if (symp->st_value == 0)
2524 		continue;
2525 		/* fallthrough */
2526 	case STT_TLS:
2527 	    if (symp->st_shndx != SHN_UNDEF ||
2528 		((flags & SYMLOOK_IN_PLT) == 0 &&
2529 		 ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2530 		break;
2531 		/* fallthrough */
2532 	default:
2533 	    continue;
2534 	}
2535 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2536 	    continue;
2537 
2538 	if (ventry == NULL) {
2539 	    if (obj->versyms != NULL) {
2540 		verndx = VER_NDX(obj->versyms[symnum]);
2541 		if (verndx > obj->vernum) {
2542 		    _rtld_error("%s: symbol %s references wrong version %d",
2543 			obj->path, obj->strtab + symnum, verndx);
2544 		    continue;
2545 		}
2546 		/*
2547 		 * If we are not called from dlsym (i.e. this is a normal
2548 		 * relocation from unversioned binary, accept the symbol
2549 		 * immediately if it happens to have first version after
2550 		 * this shared object became versioned. Otherwise, if
2551 		 * symbol is versioned and not hidden, remember it. If it
2552 		 * is the only symbol with this name exported by the
2553 		 * shared object, it will be returned as a match at the
2554 		 * end of the function. If symbol is global (verndx < 2)
2555 		 * accept it unconditionally.
2556 		 */
2557 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2558 		    return symp;
2559 	        else if (verndx >= VER_NDX_GIVEN) {
2560 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2561 			if (vsymp == NULL)
2562 			    vsymp = symp;
2563 			vcount ++;
2564 		    }
2565 		    continue;
2566 		}
2567 	    }
2568 	    return symp;
2569 	} else {
2570 	    if (obj->versyms == NULL) {
2571 		if (object_match_name(obj, ventry->name)) {
2572 		    _rtld_error("%s: object %s should provide version %s for "
2573 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2574 			obj->strtab + symnum);
2575 		    continue;
2576 		}
2577 	    } else {
2578 		verndx = VER_NDX(obj->versyms[symnum]);
2579 		if (verndx > obj->vernum) {
2580 		    _rtld_error("%s: symbol %s references wrong version %d",
2581 			obj->path, obj->strtab + symnum, verndx);
2582 		    continue;
2583 		}
2584 		if (obj->vertab[verndx].hash != ventry->hash ||
2585 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2586 		    /*
2587 		     * Version does not match. Look if this is a global symbol
2588 		     * and if it is not hidden. If global symbol (verndx < 2)
2589 		     * is available, use it. Do not return symbol if we are
2590 		     * called by dlvsym, because dlvsym looks for a specific
2591 		     * version and default one is not what dlvsym wants.
2592 		     */
2593 		    if ((flags & SYMLOOK_DLSYM) ||
2594 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2595 			(verndx >= VER_NDX_GIVEN))
2596 			continue;
2597 		}
2598 	    }
2599 	    return symp;
2600 	}
2601     }
2602     return (vcount == 1) ? vsymp : NULL;
2603 }
2604 
2605 static void
2606 trace_loaded_objects(Obj_Entry *obj)
2607 {
2608     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2609     int		c;
2610 
2611     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2612 	main_local = "";
2613 
2614     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2615 	fmt1 = "\t%o => %p (%x)\n";
2616 
2617     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2618 	fmt2 = "\t%o (%x)\n";
2619 
2620     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2621 
2622     for (; obj; obj = obj->next) {
2623 	Needed_Entry		*needed;
2624 	char			*name, *path;
2625 	bool			is_lib;
2626 
2627 	if (list_containers && obj->needed != NULL)
2628 	    printf("%s:\n", obj->path);
2629 	for (needed = obj->needed; needed; needed = needed->next) {
2630 	    if (needed->obj != NULL) {
2631 		if (needed->obj->traced && !list_containers)
2632 		    continue;
2633 		needed->obj->traced = true;
2634 		path = needed->obj->path;
2635 	    } else
2636 		path = "not found";
2637 
2638 	    name = (char *)obj->strtab + needed->name;
2639 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2640 
2641 	    fmt = is_lib ? fmt1 : fmt2;
2642 	    while ((c = *fmt++) != '\0') {
2643 		switch (c) {
2644 		default:
2645 		    putchar(c);
2646 		    continue;
2647 		case '\\':
2648 		    switch (c = *fmt) {
2649 		    case '\0':
2650 			continue;
2651 		    case 'n':
2652 			putchar('\n');
2653 			break;
2654 		    case 't':
2655 			putchar('\t');
2656 			break;
2657 		    }
2658 		    break;
2659 		case '%':
2660 		    switch (c = *fmt) {
2661 		    case '\0':
2662 			continue;
2663 		    case '%':
2664 		    default:
2665 			putchar(c);
2666 			break;
2667 		    case 'A':
2668 			printf("%s", main_local);
2669 			break;
2670 		    case 'a':
2671 			printf("%s", obj_main->path);
2672 			break;
2673 		    case 'o':
2674 			printf("%s", name);
2675 			break;
2676 #if 0
2677 		    case 'm':
2678 			printf("%d", sodp->sod_major);
2679 			break;
2680 		    case 'n':
2681 			printf("%d", sodp->sod_minor);
2682 			break;
2683 #endif
2684 		    case 'p':
2685 			printf("%s", path);
2686 			break;
2687 		    case 'x':
2688 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2689 			break;
2690 		    }
2691 		    break;
2692 		}
2693 		++fmt;
2694 	    }
2695 	}
2696     }
2697 }
2698 
2699 /*
2700  * Unload a dlopened object and its dependencies from memory and from
2701  * our data structures.  It is assumed that the DAG rooted in the
2702  * object has already been unreferenced, and that the object has a
2703  * reference count of 0.
2704  */
2705 static void
2706 unload_object(Obj_Entry *root)
2707 {
2708     Obj_Entry *obj;
2709     Obj_Entry **linkp;
2710 
2711     assert(root->refcount == 0);
2712 
2713     /*
2714      * Pass over the DAG removing unreferenced objects from
2715      * appropriate lists.
2716      */
2717     unlink_object(root);
2718 
2719     /* Unmap all objects that are no longer referenced. */
2720     linkp = &obj_list->next;
2721     while ((obj = *linkp) != NULL) {
2722 	if (obj->refcount == 0) {
2723 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2724 		obj->path);
2725 	    dbg("unloading \"%s\"", obj->path);
2726 	    munmap(obj->mapbase, obj->mapsize);
2727 	    linkmap_delete(obj);
2728 	    *linkp = obj->next;
2729 	    obj_count--;
2730 	    obj_free(obj);
2731 	} else
2732 	    linkp = &obj->next;
2733     }
2734     obj_tail = linkp;
2735 }
2736 
2737 static void
2738 unlink_object(Obj_Entry *root)
2739 {
2740     Objlist_Entry *elm;
2741 
2742     if (root->refcount == 0) {
2743 	/* Remove the object from the RTLD_GLOBAL list. */
2744 	objlist_remove(&list_global, root);
2745 
2746     	/* Remove the object from all objects' DAG lists. */
2747     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2748 	    objlist_remove(&elm->obj->dldags, root);
2749 	    if (elm->obj != root)
2750 		unlink_object(elm->obj);
2751 	}
2752     }
2753 }
2754 
2755 static void
2756 ref_dag(Obj_Entry *root)
2757 {
2758     Objlist_Entry *elm;
2759 
2760     STAILQ_FOREACH(elm, &root->dagmembers, link)
2761 	elm->obj->refcount++;
2762 }
2763 
2764 static void
2765 unref_dag(Obj_Entry *root)
2766 {
2767     Objlist_Entry *elm;
2768 
2769     STAILQ_FOREACH(elm, &root->dagmembers, link)
2770 	elm->obj->refcount--;
2771 }
2772 
2773 /*
2774  * Common code for MD __tls_get_addr().
2775  */
2776 void *
2777 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2778 {
2779     Elf_Addr* dtv = *dtvp;
2780     int lockstate;
2781 
2782     /* Check dtv generation in case new modules have arrived */
2783     if (dtv[0] != tls_dtv_generation) {
2784 	Elf_Addr* newdtv;
2785 	int to_copy;
2786 
2787 	lockstate = wlock_acquire(rtld_bind_lock);
2788 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2789 	to_copy = dtv[1];
2790 	if (to_copy > tls_max_index)
2791 	    to_copy = tls_max_index;
2792 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2793 	newdtv[0] = tls_dtv_generation;
2794 	newdtv[1] = tls_max_index;
2795 	free(dtv);
2796 	wlock_release(rtld_bind_lock, lockstate);
2797 	*dtvp = newdtv;
2798     }
2799 
2800     /* Dynamically allocate module TLS if necessary */
2801     if (!dtv[index + 1]) {
2802 	/* Signal safe, wlock will block out signals. */
2803 	lockstate = wlock_acquire(rtld_bind_lock);
2804 	if (!dtv[index + 1])
2805 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2806 	wlock_release(rtld_bind_lock, lockstate);
2807     }
2808     return (void*) (dtv[index + 1] + offset);
2809 }
2810 
2811 /* XXX not sure what variants to use for arm. */
2812 
2813 #if defined(__ia64__) || defined(__powerpc__)
2814 
2815 /*
2816  * Allocate Static TLS using the Variant I method.
2817  */
2818 void *
2819 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
2820 {
2821     Obj_Entry *obj;
2822     char *tcb;
2823     Elf_Addr **tls;
2824     Elf_Addr *dtv;
2825     Elf_Addr addr;
2826     int i;
2827 
2828     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
2829 	return (oldtcb);
2830 
2831     assert(tcbsize >= TLS_TCB_SIZE);
2832     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
2833     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
2834 
2835     if (oldtcb != NULL) {
2836 	memcpy(tls, oldtcb, tls_static_space);
2837 	free(oldtcb);
2838 
2839 	/* Adjust the DTV. */
2840 	dtv = tls[0];
2841 	for (i = 0; i < dtv[1]; i++) {
2842 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
2843 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
2844 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
2845 	    }
2846 	}
2847     } else {
2848 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
2849 	tls[0] = dtv;
2850 	dtv[0] = tls_dtv_generation;
2851 	dtv[1] = tls_max_index;
2852 
2853 	for (obj = objs; obj; obj = obj->next) {
2854 	    if (obj->tlsoffset) {
2855 		addr = (Elf_Addr)tls + obj->tlsoffset;
2856 		memset((void*) (addr + obj->tlsinitsize),
2857 		       0, obj->tlssize - obj->tlsinitsize);
2858 		if (obj->tlsinit)
2859 		    memcpy((void*) addr, obj->tlsinit,
2860 			   obj->tlsinitsize);
2861 		dtv[obj->tlsindex + 1] = addr;
2862 	    }
2863 	}
2864     }
2865 
2866     return (tcb);
2867 }
2868 
2869 void
2870 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2871 {
2872     Elf_Addr *dtv;
2873     Elf_Addr tlsstart, tlsend;
2874     int dtvsize, i;
2875 
2876     assert(tcbsize >= TLS_TCB_SIZE);
2877 
2878     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
2879     tlsend = tlsstart + tls_static_space;
2880 
2881     dtv = *(Elf_Addr **)tlsstart;
2882     dtvsize = dtv[1];
2883     for (i = 0; i < dtvsize; i++) {
2884 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
2885 	    free((void*)dtv[i+2]);
2886 	}
2887     }
2888     free(dtv);
2889     free(tcb);
2890 }
2891 
2892 #endif
2893 
2894 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2895     defined(__arm__)
2896 
2897 /*
2898  * Allocate Static TLS using the Variant II method.
2899  */
2900 void *
2901 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2902 {
2903     Obj_Entry *obj;
2904     size_t size;
2905     char *tls;
2906     Elf_Addr *dtv, *olddtv;
2907     Elf_Addr segbase, oldsegbase, addr;
2908     int i;
2909 
2910     size = round(tls_static_space, tcbalign);
2911 
2912     assert(tcbsize >= 2*sizeof(Elf_Addr));
2913     tls = calloc(1, size + tcbsize);
2914     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2915 
2916     segbase = (Elf_Addr)(tls + size);
2917     ((Elf_Addr*)segbase)[0] = segbase;
2918     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
2919 
2920     dtv[0] = tls_dtv_generation;
2921     dtv[1] = tls_max_index;
2922 
2923     if (oldtls) {
2924 	/*
2925 	 * Copy the static TLS block over whole.
2926 	 */
2927 	oldsegbase = (Elf_Addr) oldtls;
2928 	memcpy((void *)(segbase - tls_static_space),
2929 	       (const void *)(oldsegbase - tls_static_space),
2930 	       tls_static_space);
2931 
2932 	/*
2933 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2934 	 * move them over.
2935 	 */
2936 	olddtv = ((Elf_Addr**)oldsegbase)[1];
2937 	for (i = 0; i < olddtv[1]; i++) {
2938 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
2939 		dtv[i+2] = olddtv[i+2];
2940 		olddtv[i+2] = 0;
2941 	    }
2942 	}
2943 
2944 	/*
2945 	 * We assume that this block was the one we created with
2946 	 * allocate_initial_tls().
2947 	 */
2948 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
2949     } else {
2950 	for (obj = objs; obj; obj = obj->next) {
2951 	    if (obj->tlsoffset) {
2952 		addr = segbase - obj->tlsoffset;
2953 		memset((void*) (addr + obj->tlsinitsize),
2954 		       0, obj->tlssize - obj->tlsinitsize);
2955 		if (obj->tlsinit)
2956 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2957 		dtv[obj->tlsindex + 1] = addr;
2958 	    }
2959 	}
2960     }
2961 
2962     return (void*) segbase;
2963 }
2964 
2965 void
2966 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2967 {
2968     size_t size;
2969     Elf_Addr* dtv;
2970     int dtvsize, i;
2971     Elf_Addr tlsstart, tlsend;
2972 
2973     /*
2974      * Figure out the size of the initial TLS block so that we can
2975      * find stuff which ___tls_get_addr() allocated dynamically.
2976      */
2977     size = round(tls_static_space, tcbalign);
2978 
2979     dtv = ((Elf_Addr**)tls)[1];
2980     dtvsize = dtv[1];
2981     tlsend = (Elf_Addr) tls;
2982     tlsstart = tlsend - size;
2983     for (i = 0; i < dtvsize; i++) {
2984 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
2985 	    free((void*) dtv[i+2]);
2986 	}
2987     }
2988 
2989     free((void*) tlsstart);
2990 }
2991 
2992 #endif
2993 
2994 /*
2995  * Allocate TLS block for module with given index.
2996  */
2997 void *
2998 allocate_module_tls(int index)
2999 {
3000     Obj_Entry* obj;
3001     char* p;
3002 
3003     for (obj = obj_list; obj; obj = obj->next) {
3004 	if (obj->tlsindex == index)
3005 	    break;
3006     }
3007     if (!obj) {
3008 	_rtld_error("Can't find module with TLS index %d", index);
3009 	die();
3010     }
3011 
3012     p = malloc(obj->tlssize);
3013     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3014     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3015 
3016     return p;
3017 }
3018 
3019 bool
3020 allocate_tls_offset(Obj_Entry *obj)
3021 {
3022     size_t off;
3023 
3024     if (obj->tls_done)
3025 	return true;
3026 
3027     if (obj->tlssize == 0) {
3028 	obj->tls_done = true;
3029 	return true;
3030     }
3031 
3032     if (obj->tlsindex == 1)
3033 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3034     else
3035 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3036 				   obj->tlssize, obj->tlsalign);
3037 
3038     /*
3039      * If we have already fixed the size of the static TLS block, we
3040      * must stay within that size. When allocating the static TLS, we
3041      * leave a small amount of space spare to be used for dynamically
3042      * loading modules which use static TLS.
3043      */
3044     if (tls_static_space) {
3045 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3046 	    return false;
3047     }
3048 
3049     tls_last_offset = obj->tlsoffset = off;
3050     tls_last_size = obj->tlssize;
3051     obj->tls_done = true;
3052 
3053     return true;
3054 }
3055 
3056 void
3057 free_tls_offset(Obj_Entry *obj)
3058 {
3059 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3060     defined(__arm__)
3061     /*
3062      * If we were the last thing to allocate out of the static TLS
3063      * block, we give our space back to the 'allocator'. This is a
3064      * simplistic workaround to allow libGL.so.1 to be loaded and
3065      * unloaded multiple times. We only handle the Variant II
3066      * mechanism for now - this really needs a proper allocator.
3067      */
3068     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3069 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3070 	tls_last_offset -= obj->tlssize;
3071 	tls_last_size = 0;
3072     }
3073 #endif
3074 }
3075 
3076 void *
3077 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3078 {
3079     void *ret;
3080     int lockstate;
3081 
3082     lockstate = wlock_acquire(rtld_bind_lock);
3083     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3084     wlock_release(rtld_bind_lock, lockstate);
3085     return (ret);
3086 }
3087 
3088 void
3089 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3090 {
3091     int lockstate;
3092 
3093     lockstate = wlock_acquire(rtld_bind_lock);
3094     free_tls(tcb, tcbsize, tcbalign);
3095     wlock_release(rtld_bind_lock, lockstate);
3096 }
3097 
3098 static void
3099 object_add_name(Obj_Entry *obj, const char *name)
3100 {
3101     Name_Entry *entry;
3102     size_t len;
3103 
3104     len = strlen(name);
3105     entry = malloc(sizeof(Name_Entry) + len);
3106 
3107     if (entry != NULL) {
3108 	strcpy(entry->name, name);
3109 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3110     }
3111 }
3112 
3113 static int
3114 object_match_name(const Obj_Entry *obj, const char *name)
3115 {
3116     Name_Entry *entry;
3117 
3118     STAILQ_FOREACH(entry, &obj->names, link) {
3119 	if (strcmp(name, entry->name) == 0)
3120 	    return (1);
3121     }
3122     return (0);
3123 }
3124 
3125 static Obj_Entry *
3126 locate_dependency(const Obj_Entry *obj, const char *name)
3127 {
3128     const Objlist_Entry *entry;
3129     const Needed_Entry *needed;
3130 
3131     STAILQ_FOREACH(entry, &list_main, link) {
3132 	if (object_match_name(entry->obj, name))
3133 	    return entry->obj;
3134     }
3135 
3136     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3137 	if (needed->obj == NULL)
3138 	    continue;
3139 	if (object_match_name(needed->obj, name))
3140 	    return needed->obj;
3141     }
3142     _rtld_error("%s: Unexpected  inconsistency: dependency %s not found",
3143 	obj->path, name);
3144     die();
3145 }
3146 
3147 static int
3148 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3149     const Elf_Vernaux *vna)
3150 {
3151     const Elf_Verdef *vd;
3152     const char *vername;
3153 
3154     vername = refobj->strtab + vna->vna_name;
3155     vd = depobj->verdef;
3156     if (vd == NULL) {
3157 	_rtld_error("%s: version %s required by %s not defined",
3158 	    depobj->path, vername, refobj->path);
3159 	return (-1);
3160     }
3161     for (;;) {
3162 	if (vd->vd_version != VER_DEF_CURRENT) {
3163 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3164 		depobj->path, vd->vd_version);
3165 	    return (-1);
3166 	}
3167 	if (vna->vna_hash == vd->vd_hash) {
3168 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3169 		((char *)vd + vd->vd_aux);
3170 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3171 		return (0);
3172 	}
3173 	if (vd->vd_next == 0)
3174 	    break;
3175 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3176     }
3177     if (vna->vna_flags & VER_FLG_WEAK)
3178 	return (0);
3179     _rtld_error("%s: version %s required by %s not found",
3180 	depobj->path, vername, refobj->path);
3181     return (-1);
3182 }
3183 
3184 static int
3185 rtld_verify_object_versions(Obj_Entry *obj)
3186 {
3187     const Elf_Verneed *vn;
3188     const Elf_Verdef  *vd;
3189     const Elf_Verdaux *vda;
3190     const Elf_Vernaux *vna;
3191     const Obj_Entry *depobj;
3192     int maxvernum, vernum;
3193 
3194     maxvernum = 0;
3195     /*
3196      * Walk over defined and required version records and figure out
3197      * max index used by any of them. Do very basic sanity checking
3198      * while there.
3199      */
3200     vn = obj->verneed;
3201     while (vn != NULL) {
3202 	if (vn->vn_version != VER_NEED_CURRENT) {
3203 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3204 		obj->path, vn->vn_version);
3205 	    return (-1);
3206 	}
3207 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3208 	for (;;) {
3209 	    vernum = VER_NEED_IDX(vna->vna_other);
3210 	    if (vernum > maxvernum)
3211 		maxvernum = vernum;
3212 	    if (vna->vna_next == 0)
3213 		 break;
3214 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3215 	}
3216 	if (vn->vn_next == 0)
3217 	    break;
3218 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3219     }
3220 
3221     vd = obj->verdef;
3222     while (vd != NULL) {
3223 	if (vd->vd_version != VER_DEF_CURRENT) {
3224 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3225 		obj->path, vd->vd_version);
3226 	    return (-1);
3227 	}
3228 	vernum = VER_DEF_IDX(vd->vd_ndx);
3229 	if (vernum > maxvernum)
3230 		maxvernum = vernum;
3231 	if (vd->vd_next == 0)
3232 	    break;
3233 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3234     }
3235 
3236     if (maxvernum == 0)
3237 	return (0);
3238 
3239     /*
3240      * Store version information in array indexable by version index.
3241      * Verify that object version requirements are satisfied along the
3242      * way.
3243      */
3244     obj->vernum = maxvernum + 1;
3245     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3246 
3247     vd = obj->verdef;
3248     while (vd != NULL) {
3249 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3250 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3251 	    assert(vernum <= maxvernum);
3252 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3253 	    obj->vertab[vernum].hash = vd->vd_hash;
3254 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3255 	    obj->vertab[vernum].file = NULL;
3256 	    obj->vertab[vernum].flags = 0;
3257 	}
3258 	if (vd->vd_next == 0)
3259 	    break;
3260 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3261     }
3262 
3263     vn = obj->verneed;
3264     while (vn != NULL) {
3265 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3266 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3267 	for (;;) {
3268 	    if (check_object_provided_version(obj, depobj, vna))
3269 		return (-1);
3270 	    vernum = VER_NEED_IDX(vna->vna_other);
3271 	    assert(vernum <= maxvernum);
3272 	    obj->vertab[vernum].hash = vna->vna_hash;
3273 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3274 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3275 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3276 		VER_INFO_HIDDEN : 0;
3277 	    if (vna->vna_next == 0)
3278 		 break;
3279 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3280 	}
3281 	if (vn->vn_next == 0)
3282 	    break;
3283 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3284     }
3285     return 0;
3286 }
3287 
3288 static int
3289 rtld_verify_versions(const Objlist *objlist)
3290 {
3291     Objlist_Entry *entry;
3292     int rc;
3293 
3294     rc = 0;
3295     STAILQ_FOREACH(entry, objlist, link) {
3296 	/*
3297 	 * Skip dummy objects or objects that have their version requirements
3298 	 * already checked.
3299 	 */
3300 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3301 	    continue;
3302 	if (rtld_verify_object_versions(entry->obj) == -1) {
3303 	    rc = -1;
3304 	    if (ld_tracing == NULL)
3305 		break;
3306 	}
3307     }
3308     return rc;
3309 }
3310 
3311 const Ver_Entry *
3312 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3313 {
3314     Elf_Versym vernum;
3315 
3316     if (obj->vertab) {
3317 	vernum = VER_NDX(obj->versyms[symnum]);
3318 	if (vernum >= obj->vernum) {
3319 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3320 		obj->path, obj->strtab + symnum, vernum);
3321 	} else if (obj->vertab[vernum].hash != 0) {
3322 	    return &obj->vertab[vernum];
3323 	}
3324     }
3325     return NULL;
3326 }
3327