xref: /freebsd/libexec/rtld-elf/rtld.c (revision 27c43fe1f3795622c5bd4bbfc465a29a800c0799)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125     int flags, RtldLockState *lockstate);
126 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127     RtldLockState *);
128 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129     int flags, RtldLockState *lockstate);
130 static int rtld_dirname(const char *, char *);
131 static int rtld_dirname_abs(const char *, char *);
132 static void *rtld_dlopen(const char *name, int fd, int mode);
133 static void rtld_exit(void);
134 static char *search_library_path(const char *, const char *);
135 static const void **get_program_var_addr(const char *, RtldLockState *);
136 static void set_program_var(const char *, const void *);
137 static int symlook_default(SymLook *, const Obj_Entry *refobj);
138 static int symlook_global(SymLook *, DoneList *);
139 static void symlook_init_from_req(SymLook *, const SymLook *);
140 static int symlook_list(SymLook *, const Objlist *, DoneList *);
141 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144 static void trace_loaded_objects(Obj_Entry *);
145 static void unlink_object(Obj_Entry *);
146 static void unload_object(Obj_Entry *);
147 static void unref_dag(Obj_Entry *);
148 static void ref_dag(Obj_Entry *);
149 static char *origin_subst_one(char *, const char *, const char *, bool);
150 static char *origin_subst(char *, const char *);
151 static void preinit_main(void);
152 static int  rtld_verify_versions(const Objlist *);
153 static int  rtld_verify_object_versions(Obj_Entry *);
154 static void object_add_name(Obj_Entry *, const char *);
155 static int  object_match_name(const Obj_Entry *, const char *);
156 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158     struct dl_phdr_info *phdr_info);
159 static uint32_t gnu_hash(const char *);
160 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161     const unsigned long);
162 
163 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164 
165 /*
166  * Data declarations.
167  */
168 static char *error_message;	/* Message for dlerror(), or NULL */
169 struct r_debug r_debug;		/* for GDB; */
170 static bool libmap_disable;	/* Disable libmap */
171 static bool ld_loadfltr;	/* Immediate filters processing */
172 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173 static bool trust;		/* False for setuid and setgid programs */
174 static bool dangerous_ld_env;	/* True if environment variables have been
175 				   used to affect the libraries loaded */
176 static char *ld_bind_now;	/* Environment variable for immediate binding */
177 static char *ld_debug;		/* Environment variable for debugging */
178 static char *ld_library_path;	/* Environment variable for search path */
179 static char *ld_preload;	/* Environment variable for libraries to
180 				   load first */
181 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182 static char *ld_tracing;	/* Called from ldd to print libs */
183 static char *ld_utrace;		/* Use utrace() to log events. */
184 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
185 static Obj_Entry **obj_tail;	/* Link field of last object in list */
186 static Obj_Entry *obj_main;	/* The main program shared object */
187 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
188 static unsigned int obj_count;	/* Number of objects in obj_list */
189 static unsigned int obj_loads;	/* Number of objects in obj_list */
190 
191 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
192   STAILQ_HEAD_INITIALIZER(list_global);
193 static Objlist list_main =	/* Objects loaded at program startup */
194   STAILQ_HEAD_INITIALIZER(list_main);
195 static Objlist list_fini =	/* Objects needing fini() calls */
196   STAILQ_HEAD_INITIALIZER(list_fini);
197 
198 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
199 
200 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
201 
202 extern Elf_Dyn _DYNAMIC;
203 #pragma weak _DYNAMIC
204 #ifndef RTLD_IS_DYNAMIC
205 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
206 #endif
207 
208 int osreldate, pagesize;
209 
210 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
211 
212 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
213 static int max_stack_flags;
214 
215 /*
216  * Global declarations normally provided by crt1.  The dynamic linker is
217  * not built with crt1, so we have to provide them ourselves.
218  */
219 char *__progname;
220 char **environ;
221 
222 /*
223  * Used to pass argc, argv to init functions.
224  */
225 int main_argc;
226 char **main_argv;
227 
228 /*
229  * Globals to control TLS allocation.
230  */
231 size_t tls_last_offset;		/* Static TLS offset of last module */
232 size_t tls_last_size;		/* Static TLS size of last module */
233 size_t tls_static_space;	/* Static TLS space allocated */
234 size_t tls_static_max_align;
235 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
236 int tls_max_index = 1;		/* Largest module index allocated */
237 
238 bool ld_library_path_rpath = false;
239 
240 /*
241  * Fill in a DoneList with an allocation large enough to hold all of
242  * the currently-loaded objects.  Keep this as a macro since it calls
243  * alloca and we want that to occur within the scope of the caller.
244  */
245 #define donelist_init(dlp)					\
246     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
247     assert((dlp)->objs != NULL),				\
248     (dlp)->num_alloc = obj_count,				\
249     (dlp)->num_used = 0)
250 
251 #define	UTRACE_DLOPEN_START		1
252 #define	UTRACE_DLOPEN_STOP		2
253 #define	UTRACE_DLCLOSE_START		3
254 #define	UTRACE_DLCLOSE_STOP		4
255 #define	UTRACE_LOAD_OBJECT		5
256 #define	UTRACE_UNLOAD_OBJECT		6
257 #define	UTRACE_ADD_RUNDEP		7
258 #define	UTRACE_PRELOAD_FINISHED		8
259 #define	UTRACE_INIT_CALL		9
260 #define	UTRACE_FINI_CALL		10
261 
262 struct utrace_rtld {
263 	char sig[4];			/* 'RTLD' */
264 	int event;
265 	void *handle;
266 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
267 	size_t mapsize;
268 	int refcnt;			/* Used for 'mode' */
269 	char name[MAXPATHLEN];
270 };
271 
272 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
273 	if (ld_utrace != NULL)					\
274 		ld_utrace_log(e, h, mb, ms, r, n);		\
275 } while (0)
276 
277 static void
278 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
279     int refcnt, const char *name)
280 {
281 	struct utrace_rtld ut;
282 
283 	ut.sig[0] = 'R';
284 	ut.sig[1] = 'T';
285 	ut.sig[2] = 'L';
286 	ut.sig[3] = 'D';
287 	ut.event = event;
288 	ut.handle = handle;
289 	ut.mapbase = mapbase;
290 	ut.mapsize = mapsize;
291 	ut.refcnt = refcnt;
292 	bzero(ut.name, sizeof(ut.name));
293 	if (name)
294 		strlcpy(ut.name, name, sizeof(ut.name));
295 	utrace(&ut, sizeof(ut));
296 }
297 
298 /*
299  * Main entry point for dynamic linking.  The first argument is the
300  * stack pointer.  The stack is expected to be laid out as described
301  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
302  * Specifically, the stack pointer points to a word containing
303  * ARGC.  Following that in the stack is a null-terminated sequence
304  * of pointers to argument strings.  Then comes a null-terminated
305  * sequence of pointers to environment strings.  Finally, there is a
306  * sequence of "auxiliary vector" entries.
307  *
308  * The second argument points to a place to store the dynamic linker's
309  * exit procedure pointer and the third to a place to store the main
310  * program's object.
311  *
312  * The return value is the main program's entry point.
313  */
314 func_ptr_type
315 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
316 {
317     Elf_Auxinfo *aux_info[AT_COUNT];
318     int i;
319     int argc;
320     char **argv;
321     char **env;
322     Elf_Auxinfo *aux;
323     Elf_Auxinfo *auxp;
324     const char *argv0;
325     Objlist_Entry *entry;
326     Obj_Entry *obj;
327     Obj_Entry **preload_tail;
328     Obj_Entry *last_interposer;
329     Objlist initlist;
330     RtldLockState lockstate;
331     char *library_path_rpath;
332     int mib[2];
333     size_t len;
334 
335     /*
336      * On entry, the dynamic linker itself has not been relocated yet.
337      * Be very careful not to reference any global data until after
338      * init_rtld has returned.  It is OK to reference file-scope statics
339      * and string constants, and to call static and global functions.
340      */
341 
342     /* Find the auxiliary vector on the stack. */
343     argc = *sp++;
344     argv = (char **) sp;
345     sp += argc + 1;	/* Skip over arguments and NULL terminator */
346     env = (char **) sp;
347     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
348 	;
349     aux = (Elf_Auxinfo *) sp;
350 
351     /* Digest the auxiliary vector. */
352     for (i = 0;  i < AT_COUNT;  i++)
353 	aux_info[i] = NULL;
354     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
355 	if (auxp->a_type < AT_COUNT)
356 	    aux_info[auxp->a_type] = auxp;
357     }
358 
359     /* Initialize and relocate ourselves. */
360     assert(aux_info[AT_BASE] != NULL);
361     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
362 
363     __progname = obj_rtld.path;
364     argv0 = argv[0] != NULL ? argv[0] : "(null)";
365     environ = env;
366     main_argc = argc;
367     main_argv = argv;
368 
369     if (aux_info[AT_CANARY] != NULL &&
370 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
371 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
372 	    if (i > sizeof(__stack_chk_guard))
373 		    i = sizeof(__stack_chk_guard);
374 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
375     } else {
376 	mib[0] = CTL_KERN;
377 	mib[1] = KERN_ARND;
378 
379 	len = sizeof(__stack_chk_guard);
380 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
381 	    len != sizeof(__stack_chk_guard)) {
382 		/* If sysctl was unsuccessful, use the "terminator canary". */
383 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
384 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
385 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
386 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
387 	}
388     }
389 
390     trust = !issetugid();
391 
392     ld_bind_now = getenv(LD_ "BIND_NOW");
393     /*
394      * If the process is tainted, then we un-set the dangerous environment
395      * variables.  The process will be marked as tainted until setuid(2)
396      * is called.  If any child process calls setuid(2) we do not want any
397      * future processes to honor the potentially un-safe variables.
398      */
399     if (!trust) {
400         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
401 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
402 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
403 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
404 		_rtld_error("environment corrupt; aborting");
405 		die();
406 	}
407     }
408     ld_debug = getenv(LD_ "DEBUG");
409     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
410     libmap_override = getenv(LD_ "LIBMAP");
411     ld_library_path = getenv(LD_ "LIBRARY_PATH");
412     ld_preload = getenv(LD_ "PRELOAD");
413     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
414     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
415     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
416     if (library_path_rpath != NULL) {
417 	    if (library_path_rpath[0] == 'y' ||
418 		library_path_rpath[0] == 'Y' ||
419 		library_path_rpath[0] == '1')
420 		    ld_library_path_rpath = true;
421 	    else
422 		    ld_library_path_rpath = false;
423     }
424     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
425 	(ld_library_path != NULL) || (ld_preload != NULL) ||
426 	(ld_elf_hints_path != NULL) || ld_loadfltr;
427     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
428     ld_utrace = getenv(LD_ "UTRACE");
429 
430     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
431 	ld_elf_hints_path = _PATH_ELF_HINTS;
432 
433     if (ld_debug != NULL && *ld_debug != '\0')
434 	debug = 1;
435     dbg("%s is initialized, base address = %p", __progname,
436 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
437     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
438     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
439 
440     dbg("initializing thread locks");
441     lockdflt_init();
442 
443     /*
444      * Load the main program, or process its program header if it is
445      * already loaded.
446      */
447     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
448 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
449 	dbg("loading main program");
450 	obj_main = map_object(fd, argv0, NULL);
451 	close(fd);
452 	if (obj_main == NULL)
453 	    die();
454 	max_stack_flags = obj->stack_flags;
455     } else {				/* Main program already loaded. */
456 	const Elf_Phdr *phdr;
457 	int phnum;
458 	caddr_t entry;
459 
460 	dbg("processing main program's program header");
461 	assert(aux_info[AT_PHDR] != NULL);
462 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
463 	assert(aux_info[AT_PHNUM] != NULL);
464 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
465 	assert(aux_info[AT_PHENT] != NULL);
466 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
467 	assert(aux_info[AT_ENTRY] != NULL);
468 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
469 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
470 	    die();
471     }
472 
473     if (aux_info[AT_EXECPATH] != 0) {
474 	    char *kexecpath;
475 	    char buf[MAXPATHLEN];
476 
477 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
478 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
479 	    if (kexecpath[0] == '/')
480 		    obj_main->path = kexecpath;
481 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
482 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
483 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
484 		    obj_main->path = xstrdup(argv0);
485 	    else
486 		    obj_main->path = xstrdup(buf);
487     } else {
488 	    dbg("No AT_EXECPATH");
489 	    obj_main->path = xstrdup(argv0);
490     }
491     dbg("obj_main path %s", obj_main->path);
492     obj_main->mainprog = true;
493 
494     if (aux_info[AT_STACKPROT] != NULL &&
495       aux_info[AT_STACKPROT]->a_un.a_val != 0)
496 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
497 
498     /*
499      * Get the actual dynamic linker pathname from the executable if
500      * possible.  (It should always be possible.)  That ensures that
501      * gdb will find the right dynamic linker even if a non-standard
502      * one is being used.
503      */
504     if (obj_main->interp != NULL &&
505       strcmp(obj_main->interp, obj_rtld.path) != 0) {
506 	free(obj_rtld.path);
507 	obj_rtld.path = xstrdup(obj_main->interp);
508         __progname = obj_rtld.path;
509     }
510 
511     digest_dynamic(obj_main, 0);
512     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
513 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
514 	obj_main->dynsymcount);
515 
516     linkmap_add(obj_main);
517     linkmap_add(&obj_rtld);
518 
519     /* Link the main program into the list of objects. */
520     *obj_tail = obj_main;
521     obj_tail = &obj_main->next;
522     obj_count++;
523     obj_loads++;
524 
525     /* Initialize a fake symbol for resolving undefined weak references. */
526     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
527     sym_zero.st_shndx = SHN_UNDEF;
528     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
529 
530     if (!libmap_disable)
531         libmap_disable = (bool)lm_init(libmap_override);
532 
533     dbg("loading LD_PRELOAD libraries");
534     if (load_preload_objects() == -1)
535 	die();
536     preload_tail = obj_tail;
537 
538     dbg("loading needed objects");
539     if (load_needed_objects(obj_main, 0) == -1)
540 	die();
541 
542     /* Make a list of all objects loaded at startup. */
543     last_interposer = obj_main;
544     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
545 	if (obj->z_interpose && obj != obj_main) {
546 	    objlist_put_after(&list_main, last_interposer, obj);
547 	    last_interposer = obj;
548 	} else {
549 	    objlist_push_tail(&list_main, obj);
550 	}
551     	obj->refcount++;
552     }
553 
554     dbg("checking for required versions");
555     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
556 	die();
557 
558     if (ld_tracing) {		/* We're done */
559 	trace_loaded_objects(obj_main);
560 	exit(0);
561     }
562 
563     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
564        dump_relocations(obj_main);
565        exit (0);
566     }
567 
568     /*
569      * Processing tls relocations requires having the tls offsets
570      * initialized.  Prepare offsets before starting initial
571      * relocation processing.
572      */
573     dbg("initializing initial thread local storage offsets");
574     STAILQ_FOREACH(entry, &list_main, link) {
575 	/*
576 	 * Allocate all the initial objects out of the static TLS
577 	 * block even if they didn't ask for it.
578 	 */
579 	allocate_tls_offset(entry->obj);
580     }
581 
582     if (relocate_objects(obj_main,
583       ld_bind_now != NULL && *ld_bind_now != '\0',
584       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
585 	die();
586 
587     dbg("doing copy relocations");
588     if (do_copy_relocations(obj_main) == -1)
589 	die();
590 
591     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
592        dump_relocations(obj_main);
593        exit (0);
594     }
595 
596     /*
597      * Setup TLS for main thread.  This must be done after the
598      * relocations are processed, since tls initialization section
599      * might be the subject for relocations.
600      */
601     dbg("initializing initial thread local storage");
602     allocate_initial_tls(obj_list);
603 
604     dbg("initializing key program variables");
605     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
606     set_program_var("environ", env);
607     set_program_var("__elf_aux_vector", aux);
608 
609     /* Make a list of init functions to call. */
610     objlist_init(&initlist);
611     initlist_add_objects(obj_list, preload_tail, &initlist);
612 
613     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
614 
615     map_stacks_exec(NULL);
616 
617     dbg("resolving ifuncs");
618     if (resolve_objects_ifunc(obj_main,
619       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
620       NULL) == -1)
621 	die();
622 
623     if (!obj_main->crt_no_init) {
624 	/*
625 	 * Make sure we don't call the main program's init and fini
626 	 * functions for binaries linked with old crt1 which calls
627 	 * _init itself.
628 	 */
629 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
630 	obj_main->preinit_array = obj_main->init_array =
631 	    obj_main->fini_array = (Elf_Addr)NULL;
632     }
633 
634     wlock_acquire(rtld_bind_lock, &lockstate);
635     if (obj_main->crt_no_init)
636 	preinit_main();
637     objlist_call_init(&initlist, &lockstate);
638     objlist_clear(&initlist);
639     dbg("loading filtees");
640     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
641 	if (ld_loadfltr || obj->z_loadfltr)
642 	    load_filtees(obj, 0, &lockstate);
643     }
644     lock_release(rtld_bind_lock, &lockstate);
645 
646     dbg("transferring control to program entry point = %p", obj_main->entry);
647 
648     /* Return the exit procedure and the program entry point. */
649     *exit_proc = rtld_exit;
650     *objp = obj_main;
651     return (func_ptr_type) obj_main->entry;
652 }
653 
654 void *
655 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
656 {
657 	void *ptr;
658 	Elf_Addr target;
659 
660 	ptr = (void *)make_function_pointer(def, obj);
661 	target = ((Elf_Addr (*)(void))ptr)();
662 	return ((void *)target);
663 }
664 
665 Elf_Addr
666 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
667 {
668     const Elf_Rel *rel;
669     const Elf_Sym *def;
670     const Obj_Entry *defobj;
671     Elf_Addr *where;
672     Elf_Addr target;
673     RtldLockState lockstate;
674 
675     rlock_acquire(rtld_bind_lock, &lockstate);
676     if (sigsetjmp(lockstate.env, 0) != 0)
677 	    lock_upgrade(rtld_bind_lock, &lockstate);
678     if (obj->pltrel)
679 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
680     else
681 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
682 
683     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
684     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
685 	&lockstate);
686     if (def == NULL)
687 	die();
688     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
689 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
690     else
691 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
692 
693     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
694       defobj->strtab + def->st_name, basename(obj->path),
695       (void *)target, basename(defobj->path));
696 
697     /*
698      * Write the new contents for the jmpslot. Note that depending on
699      * architecture, the value which we need to return back to the
700      * lazy binding trampoline may or may not be the target
701      * address. The value returned from reloc_jmpslot() is the value
702      * that the trampoline needs.
703      */
704     target = reloc_jmpslot(where, target, defobj, obj, rel);
705     lock_release(rtld_bind_lock, &lockstate);
706     return target;
707 }
708 
709 /*
710  * Error reporting function.  Use it like printf.  If formats the message
711  * into a buffer, and sets things up so that the next call to dlerror()
712  * will return the message.
713  */
714 void
715 _rtld_error(const char *fmt, ...)
716 {
717     static char buf[512];
718     va_list ap;
719 
720     va_start(ap, fmt);
721     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
722     error_message = buf;
723     va_end(ap);
724 }
725 
726 /*
727  * Return a dynamically-allocated copy of the current error message, if any.
728  */
729 static char *
730 errmsg_save(void)
731 {
732     return error_message == NULL ? NULL : xstrdup(error_message);
733 }
734 
735 /*
736  * Restore the current error message from a copy which was previously saved
737  * by errmsg_save().  The copy is freed.
738  */
739 static void
740 errmsg_restore(char *saved_msg)
741 {
742     if (saved_msg == NULL)
743 	error_message = NULL;
744     else {
745 	_rtld_error("%s", saved_msg);
746 	free(saved_msg);
747     }
748 }
749 
750 static const char *
751 basename(const char *name)
752 {
753     const char *p = strrchr(name, '/');
754     return p != NULL ? p + 1 : name;
755 }
756 
757 static struct utsname uts;
758 
759 static char *
760 origin_subst_one(char *real, const char *kw, const char *subst,
761     bool may_free)
762 {
763 	char *p, *p1, *res, *resp;
764 	int subst_len, kw_len, subst_count, old_len, new_len;
765 
766 	kw_len = strlen(kw);
767 
768 	/*
769 	 * First, count the number of the keyword occurences, to
770 	 * preallocate the final string.
771 	 */
772 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
773 		p1 = strstr(p, kw);
774 		if (p1 == NULL)
775 			break;
776 	}
777 
778 	/*
779 	 * If the keyword is not found, just return.
780 	 */
781 	if (subst_count == 0)
782 		return (may_free ? real : xstrdup(real));
783 
784 	/*
785 	 * There is indeed something to substitute.  Calculate the
786 	 * length of the resulting string, and allocate it.
787 	 */
788 	subst_len = strlen(subst);
789 	old_len = strlen(real);
790 	new_len = old_len + (subst_len - kw_len) * subst_count;
791 	res = xmalloc(new_len + 1);
792 
793 	/*
794 	 * Now, execute the substitution loop.
795 	 */
796 	for (p = real, resp = res, *resp = '\0';;) {
797 		p1 = strstr(p, kw);
798 		if (p1 != NULL) {
799 			/* Copy the prefix before keyword. */
800 			memcpy(resp, p, p1 - p);
801 			resp += p1 - p;
802 			/* Keyword replacement. */
803 			memcpy(resp, subst, subst_len);
804 			resp += subst_len;
805 			*resp = '\0';
806 			p = p1 + kw_len;
807 		} else
808 			break;
809 	}
810 
811 	/* Copy to the end of string and finish. */
812 	strcat(resp, p);
813 	if (may_free)
814 		free(real);
815 	return (res);
816 }
817 
818 static char *
819 origin_subst(char *real, const char *origin_path)
820 {
821 	char *res1, *res2, *res3, *res4;
822 
823 	if (uts.sysname[0] == '\0') {
824 		if (uname(&uts) != 0) {
825 			_rtld_error("utsname failed: %d", errno);
826 			return (NULL);
827 		}
828 	}
829 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
830 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
831 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
832 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
833 	return (res4);
834 }
835 
836 static void
837 die(void)
838 {
839     const char *msg = dlerror();
840 
841     if (msg == NULL)
842 	msg = "Fatal error";
843     rtld_fdputstr(STDERR_FILENO, msg);
844     rtld_fdputchar(STDERR_FILENO, '\n');
845     _exit(1);
846 }
847 
848 /*
849  * Process a shared object's DYNAMIC section, and save the important
850  * information in its Obj_Entry structure.
851  */
852 static void
853 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
854     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
855 {
856     const Elf_Dyn *dynp;
857     Needed_Entry **needed_tail = &obj->needed;
858     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
859     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
860     const Elf_Hashelt *hashtab;
861     const Elf32_Word *hashval;
862     Elf32_Word bkt, nmaskwords;
863     int bloom_size32;
864     bool nmw_power2;
865     int plttype = DT_REL;
866 
867     *dyn_rpath = NULL;
868     *dyn_soname = NULL;
869     *dyn_runpath = NULL;
870 
871     obj->bind_now = false;
872     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
873 	switch (dynp->d_tag) {
874 
875 	case DT_REL:
876 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
877 	    break;
878 
879 	case DT_RELSZ:
880 	    obj->relsize = dynp->d_un.d_val;
881 	    break;
882 
883 	case DT_RELENT:
884 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
885 	    break;
886 
887 	case DT_JMPREL:
888 	    obj->pltrel = (const Elf_Rel *)
889 	      (obj->relocbase + dynp->d_un.d_ptr);
890 	    break;
891 
892 	case DT_PLTRELSZ:
893 	    obj->pltrelsize = dynp->d_un.d_val;
894 	    break;
895 
896 	case DT_RELA:
897 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
898 	    break;
899 
900 	case DT_RELASZ:
901 	    obj->relasize = dynp->d_un.d_val;
902 	    break;
903 
904 	case DT_RELAENT:
905 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
906 	    break;
907 
908 	case DT_PLTREL:
909 	    plttype = dynp->d_un.d_val;
910 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
911 	    break;
912 
913 	case DT_SYMTAB:
914 	    obj->symtab = (const Elf_Sym *)
915 	      (obj->relocbase + dynp->d_un.d_ptr);
916 	    break;
917 
918 	case DT_SYMENT:
919 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
920 	    break;
921 
922 	case DT_STRTAB:
923 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
924 	    break;
925 
926 	case DT_STRSZ:
927 	    obj->strsize = dynp->d_un.d_val;
928 	    break;
929 
930 	case DT_VERNEED:
931 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
932 		dynp->d_un.d_val);
933 	    break;
934 
935 	case DT_VERNEEDNUM:
936 	    obj->verneednum = dynp->d_un.d_val;
937 	    break;
938 
939 	case DT_VERDEF:
940 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
941 		dynp->d_un.d_val);
942 	    break;
943 
944 	case DT_VERDEFNUM:
945 	    obj->verdefnum = dynp->d_un.d_val;
946 	    break;
947 
948 	case DT_VERSYM:
949 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
950 		dynp->d_un.d_val);
951 	    break;
952 
953 	case DT_HASH:
954 	    {
955 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
956 		    dynp->d_un.d_ptr);
957 		obj->nbuckets = hashtab[0];
958 		obj->nchains = hashtab[1];
959 		obj->buckets = hashtab + 2;
960 		obj->chains = obj->buckets + obj->nbuckets;
961 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
962 		  obj->buckets != NULL;
963 	    }
964 	    break;
965 
966 	case DT_GNU_HASH:
967 	    {
968 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
969 		    dynp->d_un.d_ptr);
970 		obj->nbuckets_gnu = hashtab[0];
971 		obj->symndx_gnu = hashtab[1];
972 		nmaskwords = hashtab[2];
973 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
974 		/* Number of bitmask words is required to be power of 2 */
975 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
976 		obj->maskwords_bm_gnu = nmaskwords - 1;
977 		obj->shift2_gnu = hashtab[3];
978 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
979 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
980 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
981 		  obj->symndx_gnu;
982 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
983 		  obj->buckets_gnu != NULL;
984 	    }
985 	    break;
986 
987 	case DT_NEEDED:
988 	    if (!obj->rtld) {
989 		Needed_Entry *nep = NEW(Needed_Entry);
990 		nep->name = dynp->d_un.d_val;
991 		nep->obj = NULL;
992 		nep->next = NULL;
993 
994 		*needed_tail = nep;
995 		needed_tail = &nep->next;
996 	    }
997 	    break;
998 
999 	case DT_FILTER:
1000 	    if (!obj->rtld) {
1001 		Needed_Entry *nep = NEW(Needed_Entry);
1002 		nep->name = dynp->d_un.d_val;
1003 		nep->obj = NULL;
1004 		nep->next = NULL;
1005 
1006 		*needed_filtees_tail = nep;
1007 		needed_filtees_tail = &nep->next;
1008 	    }
1009 	    break;
1010 
1011 	case DT_AUXILIARY:
1012 	    if (!obj->rtld) {
1013 		Needed_Entry *nep = NEW(Needed_Entry);
1014 		nep->name = dynp->d_un.d_val;
1015 		nep->obj = NULL;
1016 		nep->next = NULL;
1017 
1018 		*needed_aux_filtees_tail = nep;
1019 		needed_aux_filtees_tail = &nep->next;
1020 	    }
1021 	    break;
1022 
1023 	case DT_PLTGOT:
1024 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1025 	    break;
1026 
1027 	case DT_TEXTREL:
1028 	    obj->textrel = true;
1029 	    break;
1030 
1031 	case DT_SYMBOLIC:
1032 	    obj->symbolic = true;
1033 	    break;
1034 
1035 	case DT_RPATH:
1036 	    /*
1037 	     * We have to wait until later to process this, because we
1038 	     * might not have gotten the address of the string table yet.
1039 	     */
1040 	    *dyn_rpath = dynp;
1041 	    break;
1042 
1043 	case DT_SONAME:
1044 	    *dyn_soname = dynp;
1045 	    break;
1046 
1047 	case DT_RUNPATH:
1048 	    *dyn_runpath = dynp;
1049 	    break;
1050 
1051 	case DT_INIT:
1052 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1053 	    break;
1054 
1055 	case DT_PREINIT_ARRAY:
1056 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1057 	    break;
1058 
1059 	case DT_PREINIT_ARRAYSZ:
1060 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1061 	    break;
1062 
1063 	case DT_INIT_ARRAY:
1064 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1065 	    break;
1066 
1067 	case DT_INIT_ARRAYSZ:
1068 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1069 	    break;
1070 
1071 	case DT_FINI:
1072 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1073 	    break;
1074 
1075 	case DT_FINI_ARRAY:
1076 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1077 	    break;
1078 
1079 	case DT_FINI_ARRAYSZ:
1080 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1081 	    break;
1082 
1083 	/*
1084 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1085 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1086 	 */
1087 
1088 #ifndef __mips__
1089 	case DT_DEBUG:
1090 	    /* XXX - not implemented yet */
1091 	    if (!early)
1092 		dbg("Filling in DT_DEBUG entry");
1093 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1094 	    break;
1095 #endif
1096 
1097 	case DT_FLAGS:
1098 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1099 		    obj->z_origin = true;
1100 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1101 		    obj->symbolic = true;
1102 		if (dynp->d_un.d_val & DF_TEXTREL)
1103 		    obj->textrel = true;
1104 		if (dynp->d_un.d_val & DF_BIND_NOW)
1105 		    obj->bind_now = true;
1106 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1107 		    ;*/
1108 	    break;
1109 #ifdef __mips__
1110 	case DT_MIPS_LOCAL_GOTNO:
1111 		obj->local_gotno = dynp->d_un.d_val;
1112 	    break;
1113 
1114 	case DT_MIPS_SYMTABNO:
1115 		obj->symtabno = dynp->d_un.d_val;
1116 		break;
1117 
1118 	case DT_MIPS_GOTSYM:
1119 		obj->gotsym = dynp->d_un.d_val;
1120 		break;
1121 
1122 	case DT_MIPS_RLD_MAP:
1123 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1124 		break;
1125 #endif
1126 
1127 	case DT_FLAGS_1:
1128 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1129 		    obj->z_noopen = true;
1130 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1131 		    obj->z_origin = true;
1132 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1133 		    XXX ;*/
1134 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1135 		    obj->bind_now = true;
1136 		if (dynp->d_un.d_val & DF_1_NODELETE)
1137 		    obj->z_nodelete = true;
1138 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1139 		    obj->z_loadfltr = true;
1140 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1141 		    obj->z_interpose = true;
1142 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1143 		    obj->z_nodeflib = true;
1144 	    break;
1145 
1146 	default:
1147 	    if (!early) {
1148 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1149 		    (long)dynp->d_tag);
1150 	    }
1151 	    break;
1152 	}
1153     }
1154 
1155     obj->traced = false;
1156 
1157     if (plttype == DT_RELA) {
1158 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1159 	obj->pltrel = NULL;
1160 	obj->pltrelasize = obj->pltrelsize;
1161 	obj->pltrelsize = 0;
1162     }
1163 
1164     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1165     if (obj->valid_hash_sysv)
1166 	obj->dynsymcount = obj->nchains;
1167     else if (obj->valid_hash_gnu) {
1168 	obj->dynsymcount = 0;
1169 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1170 	    if (obj->buckets_gnu[bkt] == 0)
1171 		continue;
1172 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1173 	    do
1174 		obj->dynsymcount++;
1175 	    while ((*hashval++ & 1u) == 0);
1176 	}
1177 	obj->dynsymcount += obj->symndx_gnu;
1178     }
1179 }
1180 
1181 static void
1182 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1183     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1184 {
1185 
1186     if (obj->z_origin && obj->origin_path == NULL) {
1187 	obj->origin_path = xmalloc(PATH_MAX);
1188 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1189 	    die();
1190     }
1191 
1192     if (dyn_runpath != NULL) {
1193 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1194 	if (obj->z_origin)
1195 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1196     }
1197     else if (dyn_rpath != NULL) {
1198 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1199 	if (obj->z_origin)
1200 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1201     }
1202 
1203     if (dyn_soname != NULL)
1204 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1205 }
1206 
1207 static void
1208 digest_dynamic(Obj_Entry *obj, int early)
1209 {
1210 	const Elf_Dyn *dyn_rpath;
1211 	const Elf_Dyn *dyn_soname;
1212 	const Elf_Dyn *dyn_runpath;
1213 
1214 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1215 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1216 }
1217 
1218 /*
1219  * Process a shared object's program header.  This is used only for the
1220  * main program, when the kernel has already loaded the main program
1221  * into memory before calling the dynamic linker.  It creates and
1222  * returns an Obj_Entry structure.
1223  */
1224 static Obj_Entry *
1225 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1226 {
1227     Obj_Entry *obj;
1228     const Elf_Phdr *phlimit = phdr + phnum;
1229     const Elf_Phdr *ph;
1230     Elf_Addr note_start, note_end;
1231     int nsegs = 0;
1232 
1233     obj = obj_new();
1234     for (ph = phdr;  ph < phlimit;  ph++) {
1235 	if (ph->p_type != PT_PHDR)
1236 	    continue;
1237 
1238 	obj->phdr = phdr;
1239 	obj->phsize = ph->p_memsz;
1240 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1241 	break;
1242     }
1243 
1244     obj->stack_flags = PF_X | PF_R | PF_W;
1245 
1246     for (ph = phdr;  ph < phlimit;  ph++) {
1247 	switch (ph->p_type) {
1248 
1249 	case PT_INTERP:
1250 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1251 	    break;
1252 
1253 	case PT_LOAD:
1254 	    if (nsegs == 0) {	/* First load segment */
1255 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1256 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1257 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1258 		  obj->vaddrbase;
1259 	    } else {		/* Last load segment */
1260 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1261 		  obj->vaddrbase;
1262 	    }
1263 	    nsegs++;
1264 	    break;
1265 
1266 	case PT_DYNAMIC:
1267 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1268 	    break;
1269 
1270 	case PT_TLS:
1271 	    obj->tlsindex = 1;
1272 	    obj->tlssize = ph->p_memsz;
1273 	    obj->tlsalign = ph->p_align;
1274 	    obj->tlsinitsize = ph->p_filesz;
1275 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1276 	    break;
1277 
1278 	case PT_GNU_STACK:
1279 	    obj->stack_flags = ph->p_flags;
1280 	    break;
1281 
1282 	case PT_GNU_RELRO:
1283 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1284 	    obj->relro_size = round_page(ph->p_memsz);
1285 	    break;
1286 
1287 	case PT_NOTE:
1288 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1289 	    note_end = note_start + ph->p_filesz;
1290 	    digest_notes(obj, note_start, note_end);
1291 	    break;
1292 	}
1293     }
1294     if (nsegs < 1) {
1295 	_rtld_error("%s: too few PT_LOAD segments", path);
1296 	return NULL;
1297     }
1298 
1299     obj->entry = entry;
1300     return obj;
1301 }
1302 
1303 void
1304 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1305 {
1306 	const Elf_Note *note;
1307 	const char *note_name;
1308 	uintptr_t p;
1309 
1310 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1311 	    note = (const Elf_Note *)((const char *)(note + 1) +
1312 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1313 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1314 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1315 		    note->n_descsz != sizeof(int32_t))
1316 			continue;
1317 		if (note->n_type != ABI_NOTETYPE &&
1318 		    note->n_type != CRT_NOINIT_NOTETYPE)
1319 			continue;
1320 		note_name = (const char *)(note + 1);
1321 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1322 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1323 			continue;
1324 		switch (note->n_type) {
1325 		case ABI_NOTETYPE:
1326 			/* FreeBSD osrel note */
1327 			p = (uintptr_t)(note + 1);
1328 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1329 			obj->osrel = *(const int32_t *)(p);
1330 			dbg("note osrel %d", obj->osrel);
1331 			break;
1332 		case CRT_NOINIT_NOTETYPE:
1333 			/* FreeBSD 'crt does not call init' note */
1334 			obj->crt_no_init = true;
1335 			dbg("note crt_no_init");
1336 			break;
1337 		}
1338 	}
1339 }
1340 
1341 static Obj_Entry *
1342 dlcheck(void *handle)
1343 {
1344     Obj_Entry *obj;
1345 
1346     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1347 	if (obj == (Obj_Entry *) handle)
1348 	    break;
1349 
1350     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1351 	_rtld_error("Invalid shared object handle %p", handle);
1352 	return NULL;
1353     }
1354     return obj;
1355 }
1356 
1357 /*
1358  * If the given object is already in the donelist, return true.  Otherwise
1359  * add the object to the list and return false.
1360  */
1361 static bool
1362 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1363 {
1364     unsigned int i;
1365 
1366     for (i = 0;  i < dlp->num_used;  i++)
1367 	if (dlp->objs[i] == obj)
1368 	    return true;
1369     /*
1370      * Our donelist allocation should always be sufficient.  But if
1371      * our threads locking isn't working properly, more shared objects
1372      * could have been loaded since we allocated the list.  That should
1373      * never happen, but we'll handle it properly just in case it does.
1374      */
1375     if (dlp->num_used < dlp->num_alloc)
1376 	dlp->objs[dlp->num_used++] = obj;
1377     return false;
1378 }
1379 
1380 /*
1381  * Hash function for symbol table lookup.  Don't even think about changing
1382  * this.  It is specified by the System V ABI.
1383  */
1384 unsigned long
1385 elf_hash(const char *name)
1386 {
1387     const unsigned char *p = (const unsigned char *) name;
1388     unsigned long h = 0;
1389     unsigned long g;
1390 
1391     while (*p != '\0') {
1392 	h = (h << 4) + *p++;
1393 	if ((g = h & 0xf0000000) != 0)
1394 	    h ^= g >> 24;
1395 	h &= ~g;
1396     }
1397     return h;
1398 }
1399 
1400 /*
1401  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1402  * unsigned in case it's implemented with a wider type.
1403  */
1404 static uint32_t
1405 gnu_hash(const char *s)
1406 {
1407 	uint32_t h;
1408 	unsigned char c;
1409 
1410 	h = 5381;
1411 	for (c = *s; c != '\0'; c = *++s)
1412 		h = h * 33 + c;
1413 	return (h & 0xffffffff);
1414 }
1415 
1416 /*
1417  * Find the library with the given name, and return its full pathname.
1418  * The returned string is dynamically allocated.  Generates an error
1419  * message and returns NULL if the library cannot be found.
1420  *
1421  * If the second argument is non-NULL, then it refers to an already-
1422  * loaded shared object, whose library search path will be searched.
1423  *
1424  * The search order is:
1425  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1426  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1427  *   LD_LIBRARY_PATH
1428  *   DT_RUNPATH in the referencing file
1429  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1430  *	 from list)
1431  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1432  *
1433  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1434  */
1435 static char *
1436 find_library(const char *xname, const Obj_Entry *refobj)
1437 {
1438     char *pathname;
1439     char *name;
1440     bool nodeflib, objgiven;
1441 
1442     objgiven = refobj != NULL;
1443     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1444 	if (xname[0] != '/' && !trust) {
1445 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1446 	      xname);
1447 	    return NULL;
1448 	}
1449 	if (objgiven && refobj->z_origin) {
1450 		return (origin_subst(__DECONST(char *, xname),
1451 		    refobj->origin_path));
1452 	} else {
1453 		return (xstrdup(xname));
1454 	}
1455     }
1456 
1457     if (libmap_disable || !objgiven ||
1458 	(name = lm_find(refobj->path, xname)) == NULL)
1459 	name = (char *)xname;
1460 
1461     dbg(" Searching for \"%s\"", name);
1462 
1463     /*
1464      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1465      * back to pre-conforming behaviour if user requested so with
1466      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1467      * nodeflib.
1468      */
1469     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1470 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1471 	  (refobj != NULL &&
1472 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1473           (pathname = search_library_path(name, gethints(false))) != NULL ||
1474 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1475 	    return (pathname);
1476     } else {
1477 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1478 	if ((objgiven &&
1479 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1480 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1481 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1482 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1483 	  (objgiven &&
1484 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1485 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1486 	  (objgiven && !nodeflib &&
1487 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1488 	    return (pathname);
1489     }
1490 
1491     if (objgiven && refobj->path != NULL) {
1492 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1493 	  name, basename(refobj->path));
1494     } else {
1495 	_rtld_error("Shared object \"%s\" not found", name);
1496     }
1497     return NULL;
1498 }
1499 
1500 /*
1501  * Given a symbol number in a referencing object, find the corresponding
1502  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1503  * no definition was found.  Returns a pointer to the Obj_Entry of the
1504  * defining object via the reference parameter DEFOBJ_OUT.
1505  */
1506 const Elf_Sym *
1507 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1508     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1509     RtldLockState *lockstate)
1510 {
1511     const Elf_Sym *ref;
1512     const Elf_Sym *def;
1513     const Obj_Entry *defobj;
1514     SymLook req;
1515     const char *name;
1516     int res;
1517 
1518     /*
1519      * If we have already found this symbol, get the information from
1520      * the cache.
1521      */
1522     if (symnum >= refobj->dynsymcount)
1523 	return NULL;	/* Bad object */
1524     if (cache != NULL && cache[symnum].sym != NULL) {
1525 	*defobj_out = cache[symnum].obj;
1526 	return cache[symnum].sym;
1527     }
1528 
1529     ref = refobj->symtab + symnum;
1530     name = refobj->strtab + ref->st_name;
1531     def = NULL;
1532     defobj = NULL;
1533 
1534     /*
1535      * We don't have to do a full scale lookup if the symbol is local.
1536      * We know it will bind to the instance in this load module; to
1537      * which we already have a pointer (ie ref). By not doing a lookup,
1538      * we not only improve performance, but it also avoids unresolvable
1539      * symbols when local symbols are not in the hash table. This has
1540      * been seen with the ia64 toolchain.
1541      */
1542     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1543 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1544 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1545 		symnum);
1546 	}
1547 	symlook_init(&req, name);
1548 	req.flags = flags;
1549 	req.ventry = fetch_ventry(refobj, symnum);
1550 	req.lockstate = lockstate;
1551 	res = symlook_default(&req, refobj);
1552 	if (res == 0) {
1553 	    def = req.sym_out;
1554 	    defobj = req.defobj_out;
1555 	}
1556     } else {
1557 	def = ref;
1558 	defobj = refobj;
1559     }
1560 
1561     /*
1562      * If we found no definition and the reference is weak, treat the
1563      * symbol as having the value zero.
1564      */
1565     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1566 	def = &sym_zero;
1567 	defobj = obj_main;
1568     }
1569 
1570     if (def != NULL) {
1571 	*defobj_out = defobj;
1572 	/* Record the information in the cache to avoid subsequent lookups. */
1573 	if (cache != NULL) {
1574 	    cache[symnum].sym = def;
1575 	    cache[symnum].obj = defobj;
1576 	}
1577     } else {
1578 	if (refobj != &obj_rtld)
1579 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1580     }
1581     return def;
1582 }
1583 
1584 /*
1585  * Return the search path from the ldconfig hints file, reading it if
1586  * necessary.  If nostdlib is true, then the default search paths are
1587  * not added to result.
1588  *
1589  * Returns NULL if there are problems with the hints file,
1590  * or if the search path there is empty.
1591  */
1592 static const char *
1593 gethints(bool nostdlib)
1594 {
1595 	static char *hints, *filtered_path;
1596 	struct elfhints_hdr hdr;
1597 	struct fill_search_info_args sargs, hargs;
1598 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1599 	struct dl_serpath *SLPpath, *hintpath;
1600 	char *p;
1601 	unsigned int SLPndx, hintndx, fndx, fcount;
1602 	int fd;
1603 	size_t flen;
1604 	bool skip;
1605 
1606 	/* First call, read the hints file */
1607 	if (hints == NULL) {
1608 		/* Keep from trying again in case the hints file is bad. */
1609 		hints = "";
1610 
1611 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1612 			return (NULL);
1613 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1614 		    hdr.magic != ELFHINTS_MAGIC ||
1615 		    hdr.version != 1) {
1616 			close(fd);
1617 			return (NULL);
1618 		}
1619 		p = xmalloc(hdr.dirlistlen + 1);
1620 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1621 		    read(fd, p, hdr.dirlistlen + 1) !=
1622 		    (ssize_t)hdr.dirlistlen + 1) {
1623 			free(p);
1624 			close(fd);
1625 			return (NULL);
1626 		}
1627 		hints = p;
1628 		close(fd);
1629 	}
1630 
1631 	/*
1632 	 * If caller agreed to receive list which includes the default
1633 	 * paths, we are done. Otherwise, if we still did not
1634 	 * calculated filtered result, do it now.
1635 	 */
1636 	if (!nostdlib)
1637 		return (hints[0] != '\0' ? hints : NULL);
1638 	if (filtered_path != NULL)
1639 		goto filt_ret;
1640 
1641 	/*
1642 	 * Obtain the list of all configured search paths, and the
1643 	 * list of the default paths.
1644 	 *
1645 	 * First estimate the size of the results.
1646 	 */
1647 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1648 	smeta.dls_cnt = 0;
1649 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1650 	hmeta.dls_cnt = 0;
1651 
1652 	sargs.request = RTLD_DI_SERINFOSIZE;
1653 	sargs.serinfo = &smeta;
1654 	hargs.request = RTLD_DI_SERINFOSIZE;
1655 	hargs.serinfo = &hmeta;
1656 
1657 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1658 	path_enumerate(p, fill_search_info, &hargs);
1659 
1660 	SLPinfo = xmalloc(smeta.dls_size);
1661 	hintinfo = xmalloc(hmeta.dls_size);
1662 
1663 	/*
1664 	 * Next fetch both sets of paths.
1665 	 */
1666 	sargs.request = RTLD_DI_SERINFO;
1667 	sargs.serinfo = SLPinfo;
1668 	sargs.serpath = &SLPinfo->dls_serpath[0];
1669 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1670 
1671 	hargs.request = RTLD_DI_SERINFO;
1672 	hargs.serinfo = hintinfo;
1673 	hargs.serpath = &hintinfo->dls_serpath[0];
1674 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1675 
1676 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1677 	path_enumerate(p, fill_search_info, &hargs);
1678 
1679 	/*
1680 	 * Now calculate the difference between two sets, by excluding
1681 	 * standard paths from the full set.
1682 	 */
1683 	fndx = 0;
1684 	fcount = 0;
1685 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1686 	hintpath = &hintinfo->dls_serpath[0];
1687 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1688 		skip = false;
1689 		SLPpath = &SLPinfo->dls_serpath[0];
1690 		/*
1691 		 * Check each standard path against current.
1692 		 */
1693 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1694 			/* matched, skip the path */
1695 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1696 				skip = true;
1697 				break;
1698 			}
1699 		}
1700 		if (skip)
1701 			continue;
1702 		/*
1703 		 * Not matched against any standard path, add the path
1704 		 * to result. Separate consequtive paths with ':'.
1705 		 */
1706 		if (fcount > 0) {
1707 			filtered_path[fndx] = ':';
1708 			fndx++;
1709 		}
1710 		fcount++;
1711 		flen = strlen(hintpath->dls_name);
1712 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1713 		fndx += flen;
1714 	}
1715 	filtered_path[fndx] = '\0';
1716 
1717 	free(SLPinfo);
1718 	free(hintinfo);
1719 
1720 filt_ret:
1721 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1722 }
1723 
1724 static void
1725 init_dag(Obj_Entry *root)
1726 {
1727     const Needed_Entry *needed;
1728     const Objlist_Entry *elm;
1729     DoneList donelist;
1730 
1731     if (root->dag_inited)
1732 	return;
1733     donelist_init(&donelist);
1734 
1735     /* Root object belongs to own DAG. */
1736     objlist_push_tail(&root->dldags, root);
1737     objlist_push_tail(&root->dagmembers, root);
1738     donelist_check(&donelist, root);
1739 
1740     /*
1741      * Add dependencies of root object to DAG in breadth order
1742      * by exploiting the fact that each new object get added
1743      * to the tail of the dagmembers list.
1744      */
1745     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1746 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1747 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1748 		continue;
1749 	    objlist_push_tail(&needed->obj->dldags, root);
1750 	    objlist_push_tail(&root->dagmembers, needed->obj);
1751 	}
1752     }
1753     root->dag_inited = true;
1754 }
1755 
1756 static void
1757 process_nodelete(Obj_Entry *root)
1758 {
1759 	const Objlist_Entry *elm;
1760 
1761 	/*
1762 	 * Walk over object DAG and process every dependent object that
1763 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1764 	 * which then should have its reference upped separately.
1765 	 */
1766 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1767 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1768 		    !elm->obj->ref_nodel) {
1769 			dbg("obj %s nodelete", elm->obj->path);
1770 			init_dag(elm->obj);
1771 			ref_dag(elm->obj);
1772 			elm->obj->ref_nodel = true;
1773 		}
1774 	}
1775 }
1776 /*
1777  * Initialize the dynamic linker.  The argument is the address at which
1778  * the dynamic linker has been mapped into memory.  The primary task of
1779  * this function is to relocate the dynamic linker.
1780  */
1781 static void
1782 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1783 {
1784     Obj_Entry objtmp;	/* Temporary rtld object */
1785     const Elf_Dyn *dyn_rpath;
1786     const Elf_Dyn *dyn_soname;
1787     const Elf_Dyn *dyn_runpath;
1788 
1789     /*
1790      * Conjure up an Obj_Entry structure for the dynamic linker.
1791      *
1792      * The "path" member can't be initialized yet because string constants
1793      * cannot yet be accessed. Below we will set it correctly.
1794      */
1795     memset(&objtmp, 0, sizeof(objtmp));
1796     objtmp.path = NULL;
1797     objtmp.rtld = true;
1798     objtmp.mapbase = mapbase;
1799 #ifdef PIC
1800     objtmp.relocbase = mapbase;
1801 #endif
1802     if (RTLD_IS_DYNAMIC()) {
1803 	objtmp.dynamic = rtld_dynamic(&objtmp);
1804 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1805 	assert(objtmp.needed == NULL);
1806 #if !defined(__mips__)
1807 	/* MIPS has a bogus DT_TEXTREL. */
1808 	assert(!objtmp.textrel);
1809 #endif
1810 
1811 	/*
1812 	 * Temporarily put the dynamic linker entry into the object list, so
1813 	 * that symbols can be found.
1814 	 */
1815 
1816 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1817     }
1818 
1819     /* Initialize the object list. */
1820     obj_tail = &obj_list;
1821 
1822     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1823     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1824 
1825     if (aux_info[AT_PAGESZ] != NULL)
1826 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1827     if (aux_info[AT_OSRELDATE] != NULL)
1828 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1829 
1830     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1831 
1832     /* Replace the path with a dynamically allocated copy. */
1833     obj_rtld.path = xstrdup(PATH_RTLD);
1834 
1835     r_debug.r_brk = r_debug_state;
1836     r_debug.r_state = RT_CONSISTENT;
1837 }
1838 
1839 /*
1840  * Add the init functions from a needed object list (and its recursive
1841  * needed objects) to "list".  This is not used directly; it is a helper
1842  * function for initlist_add_objects().  The write lock must be held
1843  * when this function is called.
1844  */
1845 static void
1846 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1847 {
1848     /* Recursively process the successor needed objects. */
1849     if (needed->next != NULL)
1850 	initlist_add_neededs(needed->next, list);
1851 
1852     /* Process the current needed object. */
1853     if (needed->obj != NULL)
1854 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1855 }
1856 
1857 /*
1858  * Scan all of the DAGs rooted in the range of objects from "obj" to
1859  * "tail" and add their init functions to "list".  This recurses over
1860  * the DAGs and ensure the proper init ordering such that each object's
1861  * needed libraries are initialized before the object itself.  At the
1862  * same time, this function adds the objects to the global finalization
1863  * list "list_fini" in the opposite order.  The write lock must be
1864  * held when this function is called.
1865  */
1866 static void
1867 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1868 {
1869 
1870     if (obj->init_scanned || obj->init_done)
1871 	return;
1872     obj->init_scanned = true;
1873 
1874     /* Recursively process the successor objects. */
1875     if (&obj->next != tail)
1876 	initlist_add_objects(obj->next, tail, list);
1877 
1878     /* Recursively process the needed objects. */
1879     if (obj->needed != NULL)
1880 	initlist_add_neededs(obj->needed, list);
1881     if (obj->needed_filtees != NULL)
1882 	initlist_add_neededs(obj->needed_filtees, list);
1883     if (obj->needed_aux_filtees != NULL)
1884 	initlist_add_neededs(obj->needed_aux_filtees, list);
1885 
1886     /* Add the object to the init list. */
1887     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1888       obj->init_array != (Elf_Addr)NULL)
1889 	objlist_push_tail(list, obj);
1890 
1891     /* Add the object to the global fini list in the reverse order. */
1892     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1893       && !obj->on_fini_list) {
1894 	objlist_push_head(&list_fini, obj);
1895 	obj->on_fini_list = true;
1896     }
1897 }
1898 
1899 #ifndef FPTR_TARGET
1900 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1901 #endif
1902 
1903 static void
1904 free_needed_filtees(Needed_Entry *n)
1905 {
1906     Needed_Entry *needed, *needed1;
1907 
1908     for (needed = n; needed != NULL; needed = needed->next) {
1909 	if (needed->obj != NULL) {
1910 	    dlclose(needed->obj);
1911 	    needed->obj = NULL;
1912 	}
1913     }
1914     for (needed = n; needed != NULL; needed = needed1) {
1915 	needed1 = needed->next;
1916 	free(needed);
1917     }
1918 }
1919 
1920 static void
1921 unload_filtees(Obj_Entry *obj)
1922 {
1923 
1924     free_needed_filtees(obj->needed_filtees);
1925     obj->needed_filtees = NULL;
1926     free_needed_filtees(obj->needed_aux_filtees);
1927     obj->needed_aux_filtees = NULL;
1928     obj->filtees_loaded = false;
1929 }
1930 
1931 static void
1932 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1933     RtldLockState *lockstate)
1934 {
1935 
1936     for (; needed != NULL; needed = needed->next) {
1937 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1938 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1939 	  RTLD_LOCAL, lockstate);
1940     }
1941 }
1942 
1943 static void
1944 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1945 {
1946 
1947     lock_restart_for_upgrade(lockstate);
1948     if (!obj->filtees_loaded) {
1949 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1950 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1951 	obj->filtees_loaded = true;
1952     }
1953 }
1954 
1955 static int
1956 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1957 {
1958     Obj_Entry *obj1;
1959 
1960     for (; needed != NULL; needed = needed->next) {
1961 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1962 	  flags & ~RTLD_LO_NOLOAD);
1963 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1964 	    return (-1);
1965     }
1966     return (0);
1967 }
1968 
1969 /*
1970  * Given a shared object, traverse its list of needed objects, and load
1971  * each of them.  Returns 0 on success.  Generates an error message and
1972  * returns -1 on failure.
1973  */
1974 static int
1975 load_needed_objects(Obj_Entry *first, int flags)
1976 {
1977     Obj_Entry *obj;
1978 
1979     for (obj = first;  obj != NULL;  obj = obj->next) {
1980 	if (process_needed(obj, obj->needed, flags) == -1)
1981 	    return (-1);
1982     }
1983     return (0);
1984 }
1985 
1986 static int
1987 load_preload_objects(void)
1988 {
1989     char *p = ld_preload;
1990     Obj_Entry *obj;
1991     static const char delim[] = " \t:;";
1992 
1993     if (p == NULL)
1994 	return 0;
1995 
1996     p += strspn(p, delim);
1997     while (*p != '\0') {
1998 	size_t len = strcspn(p, delim);
1999 	char savech;
2000 
2001 	savech = p[len];
2002 	p[len] = '\0';
2003 	obj = load_object(p, -1, NULL, 0);
2004 	if (obj == NULL)
2005 	    return -1;	/* XXX - cleanup */
2006 	obj->z_interpose = true;
2007 	p[len] = savech;
2008 	p += len;
2009 	p += strspn(p, delim);
2010     }
2011     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2012     return 0;
2013 }
2014 
2015 static const char *
2016 printable_path(const char *path)
2017 {
2018 
2019 	return (path == NULL ? "<unknown>" : path);
2020 }
2021 
2022 /*
2023  * Load a shared object into memory, if it is not already loaded.  The
2024  * object may be specified by name or by user-supplied file descriptor
2025  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2026  * duplicate is.
2027  *
2028  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2029  * on failure.
2030  */
2031 static Obj_Entry *
2032 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2033 {
2034     Obj_Entry *obj;
2035     int fd;
2036     struct stat sb;
2037     char *path;
2038 
2039     if (name != NULL) {
2040 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2041 	    if (object_match_name(obj, name))
2042 		return (obj);
2043 	}
2044 
2045 	path = find_library(name, refobj);
2046 	if (path == NULL)
2047 	    return (NULL);
2048     } else
2049 	path = NULL;
2050 
2051     /*
2052      * If we didn't find a match by pathname, or the name is not
2053      * supplied, open the file and check again by device and inode.
2054      * This avoids false mismatches caused by multiple links or ".."
2055      * in pathnames.
2056      *
2057      * To avoid a race, we open the file and use fstat() rather than
2058      * using stat().
2059      */
2060     fd = -1;
2061     if (fd_u == -1) {
2062 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2063 	    _rtld_error("Cannot open \"%s\"", path);
2064 	    free(path);
2065 	    return (NULL);
2066 	}
2067     } else {
2068 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2069 	if (fd == -1) {
2070 	    _rtld_error("Cannot dup fd");
2071 	    free(path);
2072 	    return (NULL);
2073 	}
2074     }
2075     if (fstat(fd, &sb) == -1) {
2076 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2077 	close(fd);
2078 	free(path);
2079 	return NULL;
2080     }
2081     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2082 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2083 	    break;
2084     if (obj != NULL && name != NULL) {
2085 	object_add_name(obj, name);
2086 	free(path);
2087 	close(fd);
2088 	return obj;
2089     }
2090     if (flags & RTLD_LO_NOLOAD) {
2091 	free(path);
2092 	close(fd);
2093 	return (NULL);
2094     }
2095 
2096     /* First use of this object, so we must map it in */
2097     obj = do_load_object(fd, name, path, &sb, flags);
2098     if (obj == NULL)
2099 	free(path);
2100     close(fd);
2101 
2102     return obj;
2103 }
2104 
2105 static Obj_Entry *
2106 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2107   int flags)
2108 {
2109     Obj_Entry *obj;
2110     struct statfs fs;
2111 
2112     /*
2113      * but first, make sure that environment variables haven't been
2114      * used to circumvent the noexec flag on a filesystem.
2115      */
2116     if (dangerous_ld_env) {
2117 	if (fstatfs(fd, &fs) != 0) {
2118 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2119 	    return NULL;
2120 	}
2121 	if (fs.f_flags & MNT_NOEXEC) {
2122 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2123 	    return NULL;
2124 	}
2125     }
2126     dbg("loading \"%s\"", printable_path(path));
2127     obj = map_object(fd, printable_path(path), sbp);
2128     if (obj == NULL)
2129         return NULL;
2130 
2131     /*
2132      * If DT_SONAME is present in the object, digest_dynamic2 already
2133      * added it to the object names.
2134      */
2135     if (name != NULL)
2136 	object_add_name(obj, name);
2137     obj->path = path;
2138     digest_dynamic(obj, 0);
2139     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2140 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2141     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2142       RTLD_LO_DLOPEN) {
2143 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2144 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2145 	munmap(obj->mapbase, obj->mapsize);
2146 	obj_free(obj);
2147 	return (NULL);
2148     }
2149 
2150     *obj_tail = obj;
2151     obj_tail = &obj->next;
2152     obj_count++;
2153     obj_loads++;
2154     linkmap_add(obj);	/* for GDB & dlinfo() */
2155     max_stack_flags |= obj->stack_flags;
2156 
2157     dbg("  %p .. %p: %s", obj->mapbase,
2158          obj->mapbase + obj->mapsize - 1, obj->path);
2159     if (obj->textrel)
2160 	dbg("  WARNING: %s has impure text", obj->path);
2161     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2162 	obj->path);
2163 
2164     return obj;
2165 }
2166 
2167 static Obj_Entry *
2168 obj_from_addr(const void *addr)
2169 {
2170     Obj_Entry *obj;
2171 
2172     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2173 	if (addr < (void *) obj->mapbase)
2174 	    continue;
2175 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2176 	    return obj;
2177     }
2178     return NULL;
2179 }
2180 
2181 static void
2182 preinit_main(void)
2183 {
2184     Elf_Addr *preinit_addr;
2185     int index;
2186 
2187     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2188     if (preinit_addr == NULL)
2189 	return;
2190 
2191     for (index = 0; index < obj_main->preinit_array_num; index++) {
2192 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2193 	    dbg("calling preinit function for %s at %p", obj_main->path,
2194 	      (void *)preinit_addr[index]);
2195 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2196 	      0, 0, obj_main->path);
2197 	    call_init_pointer(obj_main, preinit_addr[index]);
2198 	}
2199     }
2200 }
2201 
2202 /*
2203  * Call the finalization functions for each of the objects in "list"
2204  * belonging to the DAG of "root" and referenced once. If NULL "root"
2205  * is specified, every finalization function will be called regardless
2206  * of the reference count and the list elements won't be freed. All of
2207  * the objects are expected to have non-NULL fini functions.
2208  */
2209 static void
2210 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2211 {
2212     Objlist_Entry *elm;
2213     char *saved_msg;
2214     Elf_Addr *fini_addr;
2215     int index;
2216 
2217     assert(root == NULL || root->refcount == 1);
2218 
2219     /*
2220      * Preserve the current error message since a fini function might
2221      * call into the dynamic linker and overwrite it.
2222      */
2223     saved_msg = errmsg_save();
2224     do {
2225 	STAILQ_FOREACH(elm, list, link) {
2226 	    if (root != NULL && (elm->obj->refcount != 1 ||
2227 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2228 		continue;
2229 	    /* Remove object from fini list to prevent recursive invocation. */
2230 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2231 	    /*
2232 	     * XXX: If a dlopen() call references an object while the
2233 	     * fini function is in progress, we might end up trying to
2234 	     * unload the referenced object in dlclose() or the object
2235 	     * won't be unloaded although its fini function has been
2236 	     * called.
2237 	     */
2238 	    lock_release(rtld_bind_lock, lockstate);
2239 
2240 	    /*
2241 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2242 	     * When this happens, DT_FINI_ARRAY is processed first.
2243 	     */
2244 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2245 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2246 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2247 		  index--) {
2248 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2249 			dbg("calling fini function for %s at %p",
2250 			    elm->obj->path, (void *)fini_addr[index]);
2251 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2252 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2253 			call_initfini_pointer(elm->obj, fini_addr[index]);
2254 		    }
2255 		}
2256 	    }
2257 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2258 		dbg("calling fini function for %s at %p", elm->obj->path,
2259 		    (void *)elm->obj->fini);
2260 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2261 		    0, 0, elm->obj->path);
2262 		call_initfini_pointer(elm->obj, elm->obj->fini);
2263 	    }
2264 	    wlock_acquire(rtld_bind_lock, lockstate);
2265 	    /* No need to free anything if process is going down. */
2266 	    if (root != NULL)
2267 	    	free(elm);
2268 	    /*
2269 	     * We must restart the list traversal after every fini call
2270 	     * because a dlclose() call from the fini function or from
2271 	     * another thread might have modified the reference counts.
2272 	     */
2273 	    break;
2274 	}
2275     } while (elm != NULL);
2276     errmsg_restore(saved_msg);
2277 }
2278 
2279 /*
2280  * Call the initialization functions for each of the objects in
2281  * "list".  All of the objects are expected to have non-NULL init
2282  * functions.
2283  */
2284 static void
2285 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2286 {
2287     Objlist_Entry *elm;
2288     Obj_Entry *obj;
2289     char *saved_msg;
2290     Elf_Addr *init_addr;
2291     int index;
2292 
2293     /*
2294      * Clean init_scanned flag so that objects can be rechecked and
2295      * possibly initialized earlier if any of vectors called below
2296      * cause the change by using dlopen.
2297      */
2298     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2299 	obj->init_scanned = false;
2300 
2301     /*
2302      * Preserve the current error message since an init function might
2303      * call into the dynamic linker and overwrite it.
2304      */
2305     saved_msg = errmsg_save();
2306     STAILQ_FOREACH(elm, list, link) {
2307 	if (elm->obj->init_done) /* Initialized early. */
2308 	    continue;
2309 	/*
2310 	 * Race: other thread might try to use this object before current
2311 	 * one completes the initilization. Not much can be done here
2312 	 * without better locking.
2313 	 */
2314 	elm->obj->init_done = true;
2315 	lock_release(rtld_bind_lock, lockstate);
2316 
2317         /*
2318          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2319          * When this happens, DT_INIT is processed first.
2320          */
2321 	if (elm->obj->init != (Elf_Addr)NULL) {
2322 	    dbg("calling init function for %s at %p", elm->obj->path,
2323 	        (void *)elm->obj->init);
2324 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2325 	        0, 0, elm->obj->path);
2326 	    call_initfini_pointer(elm->obj, elm->obj->init);
2327 	}
2328 	init_addr = (Elf_Addr *)elm->obj->init_array;
2329 	if (init_addr != NULL) {
2330 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2331 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2332 		    dbg("calling init function for %s at %p", elm->obj->path,
2333 			(void *)init_addr[index]);
2334 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2335 			(void *)init_addr[index], 0, 0, elm->obj->path);
2336 		    call_init_pointer(elm->obj, init_addr[index]);
2337 		}
2338 	    }
2339 	}
2340 	wlock_acquire(rtld_bind_lock, lockstate);
2341     }
2342     errmsg_restore(saved_msg);
2343 }
2344 
2345 static void
2346 objlist_clear(Objlist *list)
2347 {
2348     Objlist_Entry *elm;
2349 
2350     while (!STAILQ_EMPTY(list)) {
2351 	elm = STAILQ_FIRST(list);
2352 	STAILQ_REMOVE_HEAD(list, link);
2353 	free(elm);
2354     }
2355 }
2356 
2357 static Objlist_Entry *
2358 objlist_find(Objlist *list, const Obj_Entry *obj)
2359 {
2360     Objlist_Entry *elm;
2361 
2362     STAILQ_FOREACH(elm, list, link)
2363 	if (elm->obj == obj)
2364 	    return elm;
2365     return NULL;
2366 }
2367 
2368 static void
2369 objlist_init(Objlist *list)
2370 {
2371     STAILQ_INIT(list);
2372 }
2373 
2374 static void
2375 objlist_push_head(Objlist *list, Obj_Entry *obj)
2376 {
2377     Objlist_Entry *elm;
2378 
2379     elm = NEW(Objlist_Entry);
2380     elm->obj = obj;
2381     STAILQ_INSERT_HEAD(list, elm, link);
2382 }
2383 
2384 static void
2385 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2386 {
2387     Objlist_Entry *elm;
2388 
2389     elm = NEW(Objlist_Entry);
2390     elm->obj = obj;
2391     STAILQ_INSERT_TAIL(list, elm, link);
2392 }
2393 
2394 static void
2395 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2396 {
2397 	Objlist_Entry *elm, *listelm;
2398 
2399 	STAILQ_FOREACH(listelm, list, link) {
2400 		if (listelm->obj == listobj)
2401 			break;
2402 	}
2403 	elm = NEW(Objlist_Entry);
2404 	elm->obj = obj;
2405 	if (listelm != NULL)
2406 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2407 	else
2408 		STAILQ_INSERT_TAIL(list, elm, link);
2409 }
2410 
2411 static void
2412 objlist_remove(Objlist *list, Obj_Entry *obj)
2413 {
2414     Objlist_Entry *elm;
2415 
2416     if ((elm = objlist_find(list, obj)) != NULL) {
2417 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2418 	free(elm);
2419     }
2420 }
2421 
2422 /*
2423  * Relocate dag rooted in the specified object.
2424  * Returns 0 on success, or -1 on failure.
2425  */
2426 
2427 static int
2428 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2429     int flags, RtldLockState *lockstate)
2430 {
2431 	Objlist_Entry *elm;
2432 	int error;
2433 
2434 	error = 0;
2435 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2436 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2437 		    lockstate);
2438 		if (error == -1)
2439 			break;
2440 	}
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Relocate single object.
2446  * Returns 0 on success, or -1 on failure.
2447  */
2448 static int
2449 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2450     int flags, RtldLockState *lockstate)
2451 {
2452 
2453 	if (obj->relocated)
2454 		return (0);
2455 	obj->relocated = true;
2456 	if (obj != rtldobj)
2457 		dbg("relocating \"%s\"", obj->path);
2458 
2459 	if (obj->symtab == NULL || obj->strtab == NULL ||
2460 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2461 		_rtld_error("%s: Shared object has no run-time symbol table",
2462 			    obj->path);
2463 		return (-1);
2464 	}
2465 
2466 	if (obj->textrel) {
2467 		/* There are relocations to the write-protected text segment. */
2468 		if (mprotect(obj->mapbase, obj->textsize,
2469 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2470 			_rtld_error("%s: Cannot write-enable text segment: %s",
2471 			    obj->path, rtld_strerror(errno));
2472 			return (-1);
2473 		}
2474 	}
2475 
2476 	/* Process the non-PLT relocations. */
2477 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2478 		return (-1);
2479 
2480 	if (obj->textrel) {	/* Re-protected the text segment. */
2481 		if (mprotect(obj->mapbase, obj->textsize,
2482 		    PROT_READ|PROT_EXEC) == -1) {
2483 			_rtld_error("%s: Cannot write-protect text segment: %s",
2484 			    obj->path, rtld_strerror(errno));
2485 			return (-1);
2486 		}
2487 	}
2488 
2489 
2490 	/* Set the special PLT or GOT entries. */
2491 	init_pltgot(obj);
2492 
2493 	/* Process the PLT relocations. */
2494 	if (reloc_plt(obj) == -1)
2495 		return (-1);
2496 	/* Relocate the jump slots if we are doing immediate binding. */
2497 	if (obj->bind_now || bind_now)
2498 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2499 			return (-1);
2500 
2501 	if (obj->relro_size > 0) {
2502 		if (mprotect(obj->relro_page, obj->relro_size,
2503 		    PROT_READ) == -1) {
2504 			_rtld_error("%s: Cannot enforce relro protection: %s",
2505 			    obj->path, rtld_strerror(errno));
2506 			return (-1);
2507 		}
2508 	}
2509 
2510 	/*
2511 	 * Set up the magic number and version in the Obj_Entry.  These
2512 	 * were checked in the crt1.o from the original ElfKit, so we
2513 	 * set them for backward compatibility.
2514 	 */
2515 	obj->magic = RTLD_MAGIC;
2516 	obj->version = RTLD_VERSION;
2517 
2518 	return (0);
2519 }
2520 
2521 /*
2522  * Relocate newly-loaded shared objects.  The argument is a pointer to
2523  * the Obj_Entry for the first such object.  All objects from the first
2524  * to the end of the list of objects are relocated.  Returns 0 on success,
2525  * or -1 on failure.
2526  */
2527 static int
2528 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2529     int flags, RtldLockState *lockstate)
2530 {
2531 	Obj_Entry *obj;
2532 	int error;
2533 
2534 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2535 		error = relocate_object(obj, bind_now, rtldobj, flags,
2536 		    lockstate);
2537 		if (error == -1)
2538 			break;
2539 	}
2540 	return (error);
2541 }
2542 
2543 /*
2544  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2545  * referencing STT_GNU_IFUNC symbols is postponed till the other
2546  * relocations are done.  The indirect functions specified as
2547  * ifunc are allowed to call other symbols, so we need to have
2548  * objects relocated before asking for resolution from indirects.
2549  *
2550  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2551  * instead of the usual lazy handling of PLT slots.  It is
2552  * consistent with how GNU does it.
2553  */
2554 static int
2555 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2556     RtldLockState *lockstate)
2557 {
2558 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2559 		return (-1);
2560 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2561 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2562 		return (-1);
2563 	return (0);
2564 }
2565 
2566 static int
2567 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2568     RtldLockState *lockstate)
2569 {
2570 	Obj_Entry *obj;
2571 
2572 	for (obj = first;  obj != NULL;  obj = obj->next) {
2573 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2574 			return (-1);
2575 	}
2576 	return (0);
2577 }
2578 
2579 static int
2580 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2581     RtldLockState *lockstate)
2582 {
2583 	Objlist_Entry *elm;
2584 
2585 	STAILQ_FOREACH(elm, list, link) {
2586 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2587 		    lockstate) == -1)
2588 			return (-1);
2589 	}
2590 	return (0);
2591 }
2592 
2593 /*
2594  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2595  * before the process exits.
2596  */
2597 static void
2598 rtld_exit(void)
2599 {
2600     RtldLockState lockstate;
2601 
2602     wlock_acquire(rtld_bind_lock, &lockstate);
2603     dbg("rtld_exit()");
2604     objlist_call_fini(&list_fini, NULL, &lockstate);
2605     /* No need to remove the items from the list, since we are exiting. */
2606     if (!libmap_disable)
2607         lm_fini();
2608     lock_release(rtld_bind_lock, &lockstate);
2609 }
2610 
2611 /*
2612  * Iterate over a search path, translate each element, and invoke the
2613  * callback on the result.
2614  */
2615 static void *
2616 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2617 {
2618     const char *trans;
2619     if (path == NULL)
2620 	return (NULL);
2621 
2622     path += strspn(path, ":;");
2623     while (*path != '\0') {
2624 	size_t len;
2625 	char  *res;
2626 
2627 	len = strcspn(path, ":;");
2628 	trans = lm_findn(NULL, path, len);
2629 	if (trans)
2630 	    res = callback(trans, strlen(trans), arg);
2631 	else
2632 	    res = callback(path, len, arg);
2633 
2634 	if (res != NULL)
2635 	    return (res);
2636 
2637 	path += len;
2638 	path += strspn(path, ":;");
2639     }
2640 
2641     return (NULL);
2642 }
2643 
2644 struct try_library_args {
2645     const char	*name;
2646     size_t	 namelen;
2647     char	*buffer;
2648     size_t	 buflen;
2649 };
2650 
2651 static void *
2652 try_library_path(const char *dir, size_t dirlen, void *param)
2653 {
2654     struct try_library_args *arg;
2655 
2656     arg = param;
2657     if (*dir == '/' || trust) {
2658 	char *pathname;
2659 
2660 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2661 		return (NULL);
2662 
2663 	pathname = arg->buffer;
2664 	strncpy(pathname, dir, dirlen);
2665 	pathname[dirlen] = '/';
2666 	strcpy(pathname + dirlen + 1, arg->name);
2667 
2668 	dbg("  Trying \"%s\"", pathname);
2669 	if (access(pathname, F_OK) == 0) {		/* We found it */
2670 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2671 	    strcpy(pathname, arg->buffer);
2672 	    return (pathname);
2673 	}
2674     }
2675     return (NULL);
2676 }
2677 
2678 static char *
2679 search_library_path(const char *name, const char *path)
2680 {
2681     char *p;
2682     struct try_library_args arg;
2683 
2684     if (path == NULL)
2685 	return NULL;
2686 
2687     arg.name = name;
2688     arg.namelen = strlen(name);
2689     arg.buffer = xmalloc(PATH_MAX);
2690     arg.buflen = PATH_MAX;
2691 
2692     p = path_enumerate(path, try_library_path, &arg);
2693 
2694     free(arg.buffer);
2695 
2696     return (p);
2697 }
2698 
2699 int
2700 dlclose(void *handle)
2701 {
2702     Obj_Entry *root;
2703     RtldLockState lockstate;
2704 
2705     wlock_acquire(rtld_bind_lock, &lockstate);
2706     root = dlcheck(handle);
2707     if (root == NULL) {
2708 	lock_release(rtld_bind_lock, &lockstate);
2709 	return -1;
2710     }
2711     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2712 	root->path);
2713 
2714     /* Unreference the object and its dependencies. */
2715     root->dl_refcount--;
2716 
2717     if (root->refcount == 1) {
2718 	/*
2719 	 * The object will be no longer referenced, so we must unload it.
2720 	 * First, call the fini functions.
2721 	 */
2722 	objlist_call_fini(&list_fini, root, &lockstate);
2723 
2724 	unref_dag(root);
2725 
2726 	/* Finish cleaning up the newly-unreferenced objects. */
2727 	GDB_STATE(RT_DELETE,&root->linkmap);
2728 	unload_object(root);
2729 	GDB_STATE(RT_CONSISTENT,NULL);
2730     } else
2731 	unref_dag(root);
2732 
2733     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2734     lock_release(rtld_bind_lock, &lockstate);
2735     return 0;
2736 }
2737 
2738 char *
2739 dlerror(void)
2740 {
2741     char *msg = error_message;
2742     error_message = NULL;
2743     return msg;
2744 }
2745 
2746 /*
2747  * This function is deprecated and has no effect.
2748  */
2749 void
2750 dllockinit(void *context,
2751 	   void *(*lock_create)(void *context),
2752            void (*rlock_acquire)(void *lock),
2753            void (*wlock_acquire)(void *lock),
2754            void (*lock_release)(void *lock),
2755            void (*lock_destroy)(void *lock),
2756 	   void (*context_destroy)(void *context))
2757 {
2758     static void *cur_context;
2759     static void (*cur_context_destroy)(void *);
2760 
2761     /* Just destroy the context from the previous call, if necessary. */
2762     if (cur_context_destroy != NULL)
2763 	cur_context_destroy(cur_context);
2764     cur_context = context;
2765     cur_context_destroy = context_destroy;
2766 }
2767 
2768 void *
2769 dlopen(const char *name, int mode)
2770 {
2771 
2772 	return (rtld_dlopen(name, -1, mode));
2773 }
2774 
2775 void *
2776 fdlopen(int fd, int mode)
2777 {
2778 
2779 	return (rtld_dlopen(NULL, fd, mode));
2780 }
2781 
2782 static void *
2783 rtld_dlopen(const char *name, int fd, int mode)
2784 {
2785     RtldLockState lockstate;
2786     int lo_flags;
2787 
2788     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2789     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2790     if (ld_tracing != NULL) {
2791 	rlock_acquire(rtld_bind_lock, &lockstate);
2792 	if (sigsetjmp(lockstate.env, 0) != 0)
2793 	    lock_upgrade(rtld_bind_lock, &lockstate);
2794 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2795 	lock_release(rtld_bind_lock, &lockstate);
2796     }
2797     lo_flags = RTLD_LO_DLOPEN;
2798     if (mode & RTLD_NODELETE)
2799 	    lo_flags |= RTLD_LO_NODELETE;
2800     if (mode & RTLD_NOLOAD)
2801 	    lo_flags |= RTLD_LO_NOLOAD;
2802     if (ld_tracing != NULL)
2803 	    lo_flags |= RTLD_LO_TRACE;
2804 
2805     return (dlopen_object(name, fd, obj_main, lo_flags,
2806       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2807 }
2808 
2809 static void
2810 dlopen_cleanup(Obj_Entry *obj)
2811 {
2812 
2813 	obj->dl_refcount--;
2814 	unref_dag(obj);
2815 	if (obj->refcount == 0)
2816 		unload_object(obj);
2817 }
2818 
2819 static Obj_Entry *
2820 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2821     int mode, RtldLockState *lockstate)
2822 {
2823     Obj_Entry **old_obj_tail;
2824     Obj_Entry *obj;
2825     Objlist initlist;
2826     RtldLockState mlockstate;
2827     int result;
2828 
2829     objlist_init(&initlist);
2830 
2831     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2832 	wlock_acquire(rtld_bind_lock, &mlockstate);
2833 	lockstate = &mlockstate;
2834     }
2835     GDB_STATE(RT_ADD,NULL);
2836 
2837     old_obj_tail = obj_tail;
2838     obj = NULL;
2839     if (name == NULL && fd == -1) {
2840 	obj = obj_main;
2841 	obj->refcount++;
2842     } else {
2843 	obj = load_object(name, fd, refobj, lo_flags);
2844     }
2845 
2846     if (obj) {
2847 	obj->dl_refcount++;
2848 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2849 	    objlist_push_tail(&list_global, obj);
2850 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2851 	    assert(*old_obj_tail == obj);
2852 	    result = load_needed_objects(obj,
2853 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2854 	    init_dag(obj);
2855 	    ref_dag(obj);
2856 	    if (result != -1)
2857 		result = rtld_verify_versions(&obj->dagmembers);
2858 	    if (result != -1 && ld_tracing)
2859 		goto trace;
2860 	    if (result == -1 || relocate_object_dag(obj,
2861 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2862 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2863 	      lockstate) == -1) {
2864 		dlopen_cleanup(obj);
2865 		obj = NULL;
2866 	    } else if (lo_flags & RTLD_LO_EARLY) {
2867 		/*
2868 		 * Do not call the init functions for early loaded
2869 		 * filtees.  The image is still not initialized enough
2870 		 * for them to work.
2871 		 *
2872 		 * Our object is found by the global object list and
2873 		 * will be ordered among all init calls done right
2874 		 * before transferring control to main.
2875 		 */
2876 	    } else {
2877 		/* Make list of init functions to call. */
2878 		initlist_add_objects(obj, &obj->next, &initlist);
2879 	    }
2880 	    /*
2881 	     * Process all no_delete objects here, given them own
2882 	     * DAGs to prevent their dependencies from being unloaded.
2883 	     * This has to be done after we have loaded all of the
2884 	     * dependencies, so that we do not miss any.
2885 	     */
2886 	    if (obj != NULL)
2887 		process_nodelete(obj);
2888 	} else {
2889 	    /*
2890 	     * Bump the reference counts for objects on this DAG.  If
2891 	     * this is the first dlopen() call for the object that was
2892 	     * already loaded as a dependency, initialize the dag
2893 	     * starting at it.
2894 	     */
2895 	    init_dag(obj);
2896 	    ref_dag(obj);
2897 
2898 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2899 		goto trace;
2900 	}
2901 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2902 	  obj->z_nodelete) && !obj->ref_nodel) {
2903 	    dbg("obj %s nodelete", obj->path);
2904 	    ref_dag(obj);
2905 	    obj->z_nodelete = obj->ref_nodel = true;
2906 	}
2907     }
2908 
2909     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2910 	name);
2911     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2912 
2913     if (!(lo_flags & RTLD_LO_EARLY)) {
2914 	map_stacks_exec(lockstate);
2915     }
2916 
2917     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2918       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2919       lockstate) == -1) {
2920 	objlist_clear(&initlist);
2921 	dlopen_cleanup(obj);
2922 	if (lockstate == &mlockstate)
2923 	    lock_release(rtld_bind_lock, lockstate);
2924 	return (NULL);
2925     }
2926 
2927     if (!(lo_flags & RTLD_LO_EARLY)) {
2928 	/* Call the init functions. */
2929 	objlist_call_init(&initlist, lockstate);
2930     }
2931     objlist_clear(&initlist);
2932     if (lockstate == &mlockstate)
2933 	lock_release(rtld_bind_lock, lockstate);
2934     return obj;
2935 trace:
2936     trace_loaded_objects(obj);
2937     if (lockstate == &mlockstate)
2938 	lock_release(rtld_bind_lock, lockstate);
2939     exit(0);
2940 }
2941 
2942 static void *
2943 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2944     int flags)
2945 {
2946     DoneList donelist;
2947     const Obj_Entry *obj, *defobj;
2948     const Elf_Sym *def;
2949     SymLook req;
2950     RtldLockState lockstate;
2951 #ifndef __ia64__
2952     tls_index ti;
2953 #endif
2954     int res;
2955 
2956     def = NULL;
2957     defobj = NULL;
2958     symlook_init(&req, name);
2959     req.ventry = ve;
2960     req.flags = flags | SYMLOOK_IN_PLT;
2961     req.lockstate = &lockstate;
2962 
2963     rlock_acquire(rtld_bind_lock, &lockstate);
2964     if (sigsetjmp(lockstate.env, 0) != 0)
2965 	    lock_upgrade(rtld_bind_lock, &lockstate);
2966     if (handle == NULL || handle == RTLD_NEXT ||
2967 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2968 
2969 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2970 	    _rtld_error("Cannot determine caller's shared object");
2971 	    lock_release(rtld_bind_lock, &lockstate);
2972 	    return NULL;
2973 	}
2974 	if (handle == NULL) {	/* Just the caller's shared object. */
2975 	    res = symlook_obj(&req, obj);
2976 	    if (res == 0) {
2977 		def = req.sym_out;
2978 		defobj = req.defobj_out;
2979 	    }
2980 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2981 		   handle == RTLD_SELF) { /* ... caller included */
2982 	    if (handle == RTLD_NEXT)
2983 		obj = obj->next;
2984 	    for (; obj != NULL; obj = obj->next) {
2985 		res = symlook_obj(&req, obj);
2986 		if (res == 0) {
2987 		    if (def == NULL ||
2988 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2989 			def = req.sym_out;
2990 			defobj = req.defobj_out;
2991 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2992 			    break;
2993 		    }
2994 		}
2995 	    }
2996 	    /*
2997 	     * Search the dynamic linker itself, and possibly resolve the
2998 	     * symbol from there.  This is how the application links to
2999 	     * dynamic linker services such as dlopen.
3000 	     */
3001 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3002 		res = symlook_obj(&req, &obj_rtld);
3003 		if (res == 0) {
3004 		    def = req.sym_out;
3005 		    defobj = req.defobj_out;
3006 		}
3007 	    }
3008 	} else {
3009 	    assert(handle == RTLD_DEFAULT);
3010 	    res = symlook_default(&req, obj);
3011 	    if (res == 0) {
3012 		defobj = req.defobj_out;
3013 		def = req.sym_out;
3014 	    }
3015 	}
3016     } else {
3017 	if ((obj = dlcheck(handle)) == NULL) {
3018 	    lock_release(rtld_bind_lock, &lockstate);
3019 	    return NULL;
3020 	}
3021 
3022 	donelist_init(&donelist);
3023 	if (obj->mainprog) {
3024             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3025 	    res = symlook_global(&req, &donelist);
3026 	    if (res == 0) {
3027 		def = req.sym_out;
3028 		defobj = req.defobj_out;
3029 	    }
3030 	    /*
3031 	     * Search the dynamic linker itself, and possibly resolve the
3032 	     * symbol from there.  This is how the application links to
3033 	     * dynamic linker services such as dlopen.
3034 	     */
3035 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3036 		res = symlook_obj(&req, &obj_rtld);
3037 		if (res == 0) {
3038 		    def = req.sym_out;
3039 		    defobj = req.defobj_out;
3040 		}
3041 	    }
3042 	}
3043 	else {
3044 	    /* Search the whole DAG rooted at the given object. */
3045 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3046 	    if (res == 0) {
3047 		def = req.sym_out;
3048 		defobj = req.defobj_out;
3049 	    }
3050 	}
3051     }
3052 
3053     if (def != NULL) {
3054 	lock_release(rtld_bind_lock, &lockstate);
3055 
3056 	/*
3057 	 * The value required by the caller is derived from the value
3058 	 * of the symbol. For the ia64 architecture, we need to
3059 	 * construct a function descriptor which the caller can use to
3060 	 * call the function with the right 'gp' value. For other
3061 	 * architectures and for non-functions, the value is simply
3062 	 * the relocated value of the symbol.
3063 	 */
3064 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3065 	    return (make_function_pointer(def, defobj));
3066 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3067 	    return (rtld_resolve_ifunc(defobj, def));
3068 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3069 #ifdef __ia64__
3070 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3071 #else
3072 	    ti.ti_module = defobj->tlsindex;
3073 	    ti.ti_offset = def->st_value;
3074 	    return (__tls_get_addr(&ti));
3075 #endif
3076 	} else
3077 	    return (defobj->relocbase + def->st_value);
3078     }
3079 
3080     _rtld_error("Undefined symbol \"%s\"", name);
3081     lock_release(rtld_bind_lock, &lockstate);
3082     return NULL;
3083 }
3084 
3085 void *
3086 dlsym(void *handle, const char *name)
3087 {
3088 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3089 	    SYMLOOK_DLSYM);
3090 }
3091 
3092 dlfunc_t
3093 dlfunc(void *handle, const char *name)
3094 {
3095 	union {
3096 		void *d;
3097 		dlfunc_t f;
3098 	} rv;
3099 
3100 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3101 	    SYMLOOK_DLSYM);
3102 	return (rv.f);
3103 }
3104 
3105 void *
3106 dlvsym(void *handle, const char *name, const char *version)
3107 {
3108 	Ver_Entry ventry;
3109 
3110 	ventry.name = version;
3111 	ventry.file = NULL;
3112 	ventry.hash = elf_hash(version);
3113 	ventry.flags= 0;
3114 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3115 	    SYMLOOK_DLSYM);
3116 }
3117 
3118 int
3119 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3120 {
3121     const Obj_Entry *obj;
3122     RtldLockState lockstate;
3123 
3124     rlock_acquire(rtld_bind_lock, &lockstate);
3125     obj = obj_from_addr(addr);
3126     if (obj == NULL) {
3127         _rtld_error("No shared object contains address");
3128 	lock_release(rtld_bind_lock, &lockstate);
3129         return (0);
3130     }
3131     rtld_fill_dl_phdr_info(obj, phdr_info);
3132     lock_release(rtld_bind_lock, &lockstate);
3133     return (1);
3134 }
3135 
3136 int
3137 dladdr(const void *addr, Dl_info *info)
3138 {
3139     const Obj_Entry *obj;
3140     const Elf_Sym *def;
3141     void *symbol_addr;
3142     unsigned long symoffset;
3143     RtldLockState lockstate;
3144 
3145     rlock_acquire(rtld_bind_lock, &lockstate);
3146     obj = obj_from_addr(addr);
3147     if (obj == NULL) {
3148         _rtld_error("No shared object contains address");
3149 	lock_release(rtld_bind_lock, &lockstate);
3150         return 0;
3151     }
3152     info->dli_fname = obj->path;
3153     info->dli_fbase = obj->mapbase;
3154     info->dli_saddr = (void *)0;
3155     info->dli_sname = NULL;
3156 
3157     /*
3158      * Walk the symbol list looking for the symbol whose address is
3159      * closest to the address sent in.
3160      */
3161     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3162         def = obj->symtab + symoffset;
3163 
3164         /*
3165          * For skip the symbol if st_shndx is either SHN_UNDEF or
3166          * SHN_COMMON.
3167          */
3168         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3169             continue;
3170 
3171         /*
3172          * If the symbol is greater than the specified address, or if it
3173          * is further away from addr than the current nearest symbol,
3174          * then reject it.
3175          */
3176         symbol_addr = obj->relocbase + def->st_value;
3177         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3178             continue;
3179 
3180         /* Update our idea of the nearest symbol. */
3181         info->dli_sname = obj->strtab + def->st_name;
3182         info->dli_saddr = symbol_addr;
3183 
3184         /* Exact match? */
3185         if (info->dli_saddr == addr)
3186             break;
3187     }
3188     lock_release(rtld_bind_lock, &lockstate);
3189     return 1;
3190 }
3191 
3192 int
3193 dlinfo(void *handle, int request, void *p)
3194 {
3195     const Obj_Entry *obj;
3196     RtldLockState lockstate;
3197     int error;
3198 
3199     rlock_acquire(rtld_bind_lock, &lockstate);
3200 
3201     if (handle == NULL || handle == RTLD_SELF) {
3202 	void *retaddr;
3203 
3204 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3205 	if ((obj = obj_from_addr(retaddr)) == NULL)
3206 	    _rtld_error("Cannot determine caller's shared object");
3207     } else
3208 	obj = dlcheck(handle);
3209 
3210     if (obj == NULL) {
3211 	lock_release(rtld_bind_lock, &lockstate);
3212 	return (-1);
3213     }
3214 
3215     error = 0;
3216     switch (request) {
3217     case RTLD_DI_LINKMAP:
3218 	*((struct link_map const **)p) = &obj->linkmap;
3219 	break;
3220     case RTLD_DI_ORIGIN:
3221 	error = rtld_dirname(obj->path, p);
3222 	break;
3223 
3224     case RTLD_DI_SERINFOSIZE:
3225     case RTLD_DI_SERINFO:
3226 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3227 	break;
3228 
3229     default:
3230 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3231 	error = -1;
3232     }
3233 
3234     lock_release(rtld_bind_lock, &lockstate);
3235 
3236     return (error);
3237 }
3238 
3239 static void
3240 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3241 {
3242 
3243 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3244 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3245 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3246 	phdr_info->dlpi_phdr = obj->phdr;
3247 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3248 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3249 	phdr_info->dlpi_tls_data = obj->tlsinit;
3250 	phdr_info->dlpi_adds = obj_loads;
3251 	phdr_info->dlpi_subs = obj_loads - obj_count;
3252 }
3253 
3254 int
3255 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3256 {
3257     struct dl_phdr_info phdr_info;
3258     const Obj_Entry *obj;
3259     RtldLockState bind_lockstate, phdr_lockstate;
3260     int error;
3261 
3262     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3263     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3264 
3265     error = 0;
3266 
3267     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3268 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3269 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3270 		break;
3271 
3272     }
3273     if (error == 0) {
3274 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3275 	error = callback(&phdr_info, sizeof(phdr_info), param);
3276     }
3277 
3278     lock_release(rtld_bind_lock, &bind_lockstate);
3279     lock_release(rtld_phdr_lock, &phdr_lockstate);
3280 
3281     return (error);
3282 }
3283 
3284 static void *
3285 fill_search_info(const char *dir, size_t dirlen, void *param)
3286 {
3287     struct fill_search_info_args *arg;
3288 
3289     arg = param;
3290 
3291     if (arg->request == RTLD_DI_SERINFOSIZE) {
3292 	arg->serinfo->dls_cnt ++;
3293 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3294     } else {
3295 	struct dl_serpath *s_entry;
3296 
3297 	s_entry = arg->serpath;
3298 	s_entry->dls_name  = arg->strspace;
3299 	s_entry->dls_flags = arg->flags;
3300 
3301 	strncpy(arg->strspace, dir, dirlen);
3302 	arg->strspace[dirlen] = '\0';
3303 
3304 	arg->strspace += dirlen + 1;
3305 	arg->serpath++;
3306     }
3307 
3308     return (NULL);
3309 }
3310 
3311 static int
3312 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3313 {
3314     struct dl_serinfo _info;
3315     struct fill_search_info_args args;
3316 
3317     args.request = RTLD_DI_SERINFOSIZE;
3318     args.serinfo = &_info;
3319 
3320     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3321     _info.dls_cnt  = 0;
3322 
3323     path_enumerate(obj->rpath, fill_search_info, &args);
3324     path_enumerate(ld_library_path, fill_search_info, &args);
3325     path_enumerate(obj->runpath, fill_search_info, &args);
3326     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3327     if (!obj->z_nodeflib)
3328       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3329 
3330 
3331     if (request == RTLD_DI_SERINFOSIZE) {
3332 	info->dls_size = _info.dls_size;
3333 	info->dls_cnt = _info.dls_cnt;
3334 	return (0);
3335     }
3336 
3337     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3338 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3339 	return (-1);
3340     }
3341 
3342     args.request  = RTLD_DI_SERINFO;
3343     args.serinfo  = info;
3344     args.serpath  = &info->dls_serpath[0];
3345     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3346 
3347     args.flags = LA_SER_RUNPATH;
3348     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3349 	return (-1);
3350 
3351     args.flags = LA_SER_LIBPATH;
3352     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3353 	return (-1);
3354 
3355     args.flags = LA_SER_RUNPATH;
3356     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3357 	return (-1);
3358 
3359     args.flags = LA_SER_CONFIG;
3360     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3361       != NULL)
3362 	return (-1);
3363 
3364     args.flags = LA_SER_DEFAULT;
3365     if (!obj->z_nodeflib &&
3366       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3367 	return (-1);
3368     return (0);
3369 }
3370 
3371 static int
3372 rtld_dirname(const char *path, char *bname)
3373 {
3374     const char *endp;
3375 
3376     /* Empty or NULL string gets treated as "." */
3377     if (path == NULL || *path == '\0') {
3378 	bname[0] = '.';
3379 	bname[1] = '\0';
3380 	return (0);
3381     }
3382 
3383     /* Strip trailing slashes */
3384     endp = path + strlen(path) - 1;
3385     while (endp > path && *endp == '/')
3386 	endp--;
3387 
3388     /* Find the start of the dir */
3389     while (endp > path && *endp != '/')
3390 	endp--;
3391 
3392     /* Either the dir is "/" or there are no slashes */
3393     if (endp == path) {
3394 	bname[0] = *endp == '/' ? '/' : '.';
3395 	bname[1] = '\0';
3396 	return (0);
3397     } else {
3398 	do {
3399 	    endp--;
3400 	} while (endp > path && *endp == '/');
3401     }
3402 
3403     if (endp - path + 2 > PATH_MAX)
3404     {
3405 	_rtld_error("Filename is too long: %s", path);
3406 	return(-1);
3407     }
3408 
3409     strncpy(bname, path, endp - path + 1);
3410     bname[endp - path + 1] = '\0';
3411     return (0);
3412 }
3413 
3414 static int
3415 rtld_dirname_abs(const char *path, char *base)
3416 {
3417 	char base_rel[PATH_MAX];
3418 
3419 	if (rtld_dirname(path, base) == -1)
3420 		return (-1);
3421 	if (base[0] == '/')
3422 		return (0);
3423 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3424 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3425 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3426 		return (-1);
3427 	strcpy(base, base_rel);
3428 	return (0);
3429 }
3430 
3431 static void
3432 linkmap_add(Obj_Entry *obj)
3433 {
3434     struct link_map *l = &obj->linkmap;
3435     struct link_map *prev;
3436 
3437     obj->linkmap.l_name = obj->path;
3438     obj->linkmap.l_addr = obj->mapbase;
3439     obj->linkmap.l_ld = obj->dynamic;
3440 #ifdef __mips__
3441     /* GDB needs load offset on MIPS to use the symbols */
3442     obj->linkmap.l_offs = obj->relocbase;
3443 #endif
3444 
3445     if (r_debug.r_map == NULL) {
3446 	r_debug.r_map = l;
3447 	return;
3448     }
3449 
3450     /*
3451      * Scan to the end of the list, but not past the entry for the
3452      * dynamic linker, which we want to keep at the very end.
3453      */
3454     for (prev = r_debug.r_map;
3455       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3456       prev = prev->l_next)
3457 	;
3458 
3459     /* Link in the new entry. */
3460     l->l_prev = prev;
3461     l->l_next = prev->l_next;
3462     if (l->l_next != NULL)
3463 	l->l_next->l_prev = l;
3464     prev->l_next = l;
3465 }
3466 
3467 static void
3468 linkmap_delete(Obj_Entry *obj)
3469 {
3470     struct link_map *l = &obj->linkmap;
3471 
3472     if (l->l_prev == NULL) {
3473 	if ((r_debug.r_map = l->l_next) != NULL)
3474 	    l->l_next->l_prev = NULL;
3475 	return;
3476     }
3477 
3478     if ((l->l_prev->l_next = l->l_next) != NULL)
3479 	l->l_next->l_prev = l->l_prev;
3480 }
3481 
3482 /*
3483  * Function for the debugger to set a breakpoint on to gain control.
3484  *
3485  * The two parameters allow the debugger to easily find and determine
3486  * what the runtime loader is doing and to whom it is doing it.
3487  *
3488  * When the loadhook trap is hit (r_debug_state, set at program
3489  * initialization), the arguments can be found on the stack:
3490  *
3491  *  +8   struct link_map *m
3492  *  +4   struct r_debug  *rd
3493  *  +0   RetAddr
3494  */
3495 void
3496 r_debug_state(struct r_debug* rd, struct link_map *m)
3497 {
3498     /*
3499      * The following is a hack to force the compiler to emit calls to
3500      * this function, even when optimizing.  If the function is empty,
3501      * the compiler is not obliged to emit any code for calls to it,
3502      * even when marked __noinline.  However, gdb depends on those
3503      * calls being made.
3504      */
3505     __asm __volatile("" : : : "memory");
3506 }
3507 
3508 /*
3509  * Get address of the pointer variable in the main program.
3510  * Prefer non-weak symbol over the weak one.
3511  */
3512 static const void **
3513 get_program_var_addr(const char *name, RtldLockState *lockstate)
3514 {
3515     SymLook req;
3516     DoneList donelist;
3517 
3518     symlook_init(&req, name);
3519     req.lockstate = lockstate;
3520     donelist_init(&donelist);
3521     if (symlook_global(&req, &donelist) != 0)
3522 	return (NULL);
3523     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3524 	return ((const void **)make_function_pointer(req.sym_out,
3525 	  req.defobj_out));
3526     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3527 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3528     else
3529 	return ((const void **)(req.defobj_out->relocbase +
3530 	  req.sym_out->st_value));
3531 }
3532 
3533 /*
3534  * Set a pointer variable in the main program to the given value.  This
3535  * is used to set key variables such as "environ" before any of the
3536  * init functions are called.
3537  */
3538 static void
3539 set_program_var(const char *name, const void *value)
3540 {
3541     const void **addr;
3542 
3543     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3544 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3545 	*addr = value;
3546     }
3547 }
3548 
3549 /*
3550  * Search the global objects, including dependencies and main object,
3551  * for the given symbol.
3552  */
3553 static int
3554 symlook_global(SymLook *req, DoneList *donelist)
3555 {
3556     SymLook req1;
3557     const Objlist_Entry *elm;
3558     int res;
3559 
3560     symlook_init_from_req(&req1, req);
3561 
3562     /* Search all objects loaded at program start up. */
3563     if (req->defobj_out == NULL ||
3564       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3565 	res = symlook_list(&req1, &list_main, donelist);
3566 	if (res == 0 && (req->defobj_out == NULL ||
3567 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3568 	    req->sym_out = req1.sym_out;
3569 	    req->defobj_out = req1.defobj_out;
3570 	    assert(req->defobj_out != NULL);
3571 	}
3572     }
3573 
3574     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3575     STAILQ_FOREACH(elm, &list_global, link) {
3576 	if (req->defobj_out != NULL &&
3577 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3578 	    break;
3579 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3580 	if (res == 0 && (req->defobj_out == NULL ||
3581 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3582 	    req->sym_out = req1.sym_out;
3583 	    req->defobj_out = req1.defobj_out;
3584 	    assert(req->defobj_out != NULL);
3585 	}
3586     }
3587 
3588     return (req->sym_out != NULL ? 0 : ESRCH);
3589 }
3590 
3591 /*
3592  * Given a symbol name in a referencing object, find the corresponding
3593  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3594  * no definition was found.  Returns a pointer to the Obj_Entry of the
3595  * defining object via the reference parameter DEFOBJ_OUT.
3596  */
3597 static int
3598 symlook_default(SymLook *req, const Obj_Entry *refobj)
3599 {
3600     DoneList donelist;
3601     const Objlist_Entry *elm;
3602     SymLook req1;
3603     int res;
3604 
3605     donelist_init(&donelist);
3606     symlook_init_from_req(&req1, req);
3607 
3608     /* Look first in the referencing object if linked symbolically. */
3609     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3610 	res = symlook_obj(&req1, refobj);
3611 	if (res == 0) {
3612 	    req->sym_out = req1.sym_out;
3613 	    req->defobj_out = req1.defobj_out;
3614 	    assert(req->defobj_out != NULL);
3615 	}
3616     }
3617 
3618     symlook_global(req, &donelist);
3619 
3620     /* Search all dlopened DAGs containing the referencing object. */
3621     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3622 	if (req->sym_out != NULL &&
3623 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3624 	    break;
3625 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3626 	if (res == 0 && (req->sym_out == NULL ||
3627 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3628 	    req->sym_out = req1.sym_out;
3629 	    req->defobj_out = req1.defobj_out;
3630 	    assert(req->defobj_out != NULL);
3631 	}
3632     }
3633 
3634     /*
3635      * Search the dynamic linker itself, and possibly resolve the
3636      * symbol from there.  This is how the application links to
3637      * dynamic linker services such as dlopen.
3638      */
3639     if (req->sym_out == NULL ||
3640       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3641 	res = symlook_obj(&req1, &obj_rtld);
3642 	if (res == 0) {
3643 	    req->sym_out = req1.sym_out;
3644 	    req->defobj_out = req1.defobj_out;
3645 	    assert(req->defobj_out != NULL);
3646 	}
3647     }
3648 
3649     return (req->sym_out != NULL ? 0 : ESRCH);
3650 }
3651 
3652 static int
3653 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3654 {
3655     const Elf_Sym *def;
3656     const Obj_Entry *defobj;
3657     const Objlist_Entry *elm;
3658     SymLook req1;
3659     int res;
3660 
3661     def = NULL;
3662     defobj = NULL;
3663     STAILQ_FOREACH(elm, objlist, link) {
3664 	if (donelist_check(dlp, elm->obj))
3665 	    continue;
3666 	symlook_init_from_req(&req1, req);
3667 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3668 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3669 		def = req1.sym_out;
3670 		defobj = req1.defobj_out;
3671 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3672 		    break;
3673 	    }
3674 	}
3675     }
3676     if (def != NULL) {
3677 	req->sym_out = def;
3678 	req->defobj_out = defobj;
3679 	return (0);
3680     }
3681     return (ESRCH);
3682 }
3683 
3684 /*
3685  * Search the chain of DAGS cointed to by the given Needed_Entry
3686  * for a symbol of the given name.  Each DAG is scanned completely
3687  * before advancing to the next one.  Returns a pointer to the symbol,
3688  * or NULL if no definition was found.
3689  */
3690 static int
3691 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3692 {
3693     const Elf_Sym *def;
3694     const Needed_Entry *n;
3695     const Obj_Entry *defobj;
3696     SymLook req1;
3697     int res;
3698 
3699     def = NULL;
3700     defobj = NULL;
3701     symlook_init_from_req(&req1, req);
3702     for (n = needed; n != NULL; n = n->next) {
3703 	if (n->obj == NULL ||
3704 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3705 	    continue;
3706 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3707 	    def = req1.sym_out;
3708 	    defobj = req1.defobj_out;
3709 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3710 		break;
3711 	}
3712     }
3713     if (def != NULL) {
3714 	req->sym_out = def;
3715 	req->defobj_out = defobj;
3716 	return (0);
3717     }
3718     return (ESRCH);
3719 }
3720 
3721 /*
3722  * Search the symbol table of a single shared object for a symbol of
3723  * the given name and version, if requested.  Returns a pointer to the
3724  * symbol, or NULL if no definition was found.  If the object is
3725  * filter, return filtered symbol from filtee.
3726  *
3727  * The symbol's hash value is passed in for efficiency reasons; that
3728  * eliminates many recomputations of the hash value.
3729  */
3730 int
3731 symlook_obj(SymLook *req, const Obj_Entry *obj)
3732 {
3733     DoneList donelist;
3734     SymLook req1;
3735     int flags, res, mres;
3736 
3737     /*
3738      * If there is at least one valid hash at this point, we prefer to
3739      * use the faster GNU version if available.
3740      */
3741     if (obj->valid_hash_gnu)
3742 	mres = symlook_obj1_gnu(req, obj);
3743     else if (obj->valid_hash_sysv)
3744 	mres = symlook_obj1_sysv(req, obj);
3745     else
3746 	return (EINVAL);
3747 
3748     if (mres == 0) {
3749 	if (obj->needed_filtees != NULL) {
3750 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3751 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3752 	    donelist_init(&donelist);
3753 	    symlook_init_from_req(&req1, req);
3754 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3755 	    if (res == 0) {
3756 		req->sym_out = req1.sym_out;
3757 		req->defobj_out = req1.defobj_out;
3758 	    }
3759 	    return (res);
3760 	}
3761 	if (obj->needed_aux_filtees != NULL) {
3762 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3763 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3764 	    donelist_init(&donelist);
3765 	    symlook_init_from_req(&req1, req);
3766 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3767 	    if (res == 0) {
3768 		req->sym_out = req1.sym_out;
3769 		req->defobj_out = req1.defobj_out;
3770 		return (res);
3771 	    }
3772 	}
3773     }
3774     return (mres);
3775 }
3776 
3777 /* Symbol match routine common to both hash functions */
3778 static bool
3779 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3780     const unsigned long symnum)
3781 {
3782 	Elf_Versym verndx;
3783 	const Elf_Sym *symp;
3784 	const char *strp;
3785 
3786 	symp = obj->symtab + symnum;
3787 	strp = obj->strtab + symp->st_name;
3788 
3789 	switch (ELF_ST_TYPE(symp->st_info)) {
3790 	case STT_FUNC:
3791 	case STT_NOTYPE:
3792 	case STT_OBJECT:
3793 	case STT_COMMON:
3794 	case STT_GNU_IFUNC:
3795 		if (symp->st_value == 0)
3796 			return (false);
3797 		/* fallthrough */
3798 	case STT_TLS:
3799 		if (symp->st_shndx != SHN_UNDEF)
3800 			break;
3801 #ifndef __mips__
3802 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3803 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3804 			break;
3805 		/* fallthrough */
3806 #endif
3807 	default:
3808 		return (false);
3809 	}
3810 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3811 		return (false);
3812 
3813 	if (req->ventry == NULL) {
3814 		if (obj->versyms != NULL) {
3815 			verndx = VER_NDX(obj->versyms[symnum]);
3816 			if (verndx > obj->vernum) {
3817 				_rtld_error(
3818 				    "%s: symbol %s references wrong version %d",
3819 				    obj->path, obj->strtab + symnum, verndx);
3820 				return (false);
3821 			}
3822 			/*
3823 			 * If we are not called from dlsym (i.e. this
3824 			 * is a normal relocation from unversioned
3825 			 * binary), accept the symbol immediately if
3826 			 * it happens to have first version after this
3827 			 * shared object became versioned.  Otherwise,
3828 			 * if symbol is versioned and not hidden,
3829 			 * remember it. If it is the only symbol with
3830 			 * this name exported by the shared object, it
3831 			 * will be returned as a match by the calling
3832 			 * function. If symbol is global (verndx < 2)
3833 			 * accept it unconditionally.
3834 			 */
3835 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3836 			    verndx == VER_NDX_GIVEN) {
3837 				result->sym_out = symp;
3838 				return (true);
3839 			}
3840 			else if (verndx >= VER_NDX_GIVEN) {
3841 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3842 				    == 0) {
3843 					if (result->vsymp == NULL)
3844 						result->vsymp = symp;
3845 					result->vcount++;
3846 				}
3847 				return (false);
3848 			}
3849 		}
3850 		result->sym_out = symp;
3851 		return (true);
3852 	}
3853 	if (obj->versyms == NULL) {
3854 		if (object_match_name(obj, req->ventry->name)) {
3855 			_rtld_error("%s: object %s should provide version %s "
3856 			    "for symbol %s", obj_rtld.path, obj->path,
3857 			    req->ventry->name, obj->strtab + symnum);
3858 			return (false);
3859 		}
3860 	} else {
3861 		verndx = VER_NDX(obj->versyms[symnum]);
3862 		if (verndx > obj->vernum) {
3863 			_rtld_error("%s: symbol %s references wrong version %d",
3864 			    obj->path, obj->strtab + symnum, verndx);
3865 			return (false);
3866 		}
3867 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3868 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3869 			/*
3870 			 * Version does not match. Look if this is a
3871 			 * global symbol and if it is not hidden. If
3872 			 * global symbol (verndx < 2) is available,
3873 			 * use it. Do not return symbol if we are
3874 			 * called by dlvsym, because dlvsym looks for
3875 			 * a specific version and default one is not
3876 			 * what dlvsym wants.
3877 			 */
3878 			if ((req->flags & SYMLOOK_DLSYM) ||
3879 			    (verndx >= VER_NDX_GIVEN) ||
3880 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3881 				return (false);
3882 		}
3883 	}
3884 	result->sym_out = symp;
3885 	return (true);
3886 }
3887 
3888 /*
3889  * Search for symbol using SysV hash function.
3890  * obj->buckets is known not to be NULL at this point; the test for this was
3891  * performed with the obj->valid_hash_sysv assignment.
3892  */
3893 static int
3894 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3895 {
3896 	unsigned long symnum;
3897 	Sym_Match_Result matchres;
3898 
3899 	matchres.sym_out = NULL;
3900 	matchres.vsymp = NULL;
3901 	matchres.vcount = 0;
3902 
3903 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3904 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3905 		if (symnum >= obj->nchains)
3906 			return (ESRCH);	/* Bad object */
3907 
3908 		if (matched_symbol(req, obj, &matchres, symnum)) {
3909 			req->sym_out = matchres.sym_out;
3910 			req->defobj_out = obj;
3911 			return (0);
3912 		}
3913 	}
3914 	if (matchres.vcount == 1) {
3915 		req->sym_out = matchres.vsymp;
3916 		req->defobj_out = obj;
3917 		return (0);
3918 	}
3919 	return (ESRCH);
3920 }
3921 
3922 /* Search for symbol using GNU hash function */
3923 static int
3924 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3925 {
3926 	Elf_Addr bloom_word;
3927 	const Elf32_Word *hashval;
3928 	Elf32_Word bucket;
3929 	Sym_Match_Result matchres;
3930 	unsigned int h1, h2;
3931 	unsigned long symnum;
3932 
3933 	matchres.sym_out = NULL;
3934 	matchres.vsymp = NULL;
3935 	matchres.vcount = 0;
3936 
3937 	/* Pick right bitmask word from Bloom filter array */
3938 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3939 	    obj->maskwords_bm_gnu];
3940 
3941 	/* Calculate modulus word size of gnu hash and its derivative */
3942 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3943 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3944 
3945 	/* Filter out the "definitely not in set" queries */
3946 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3947 		return (ESRCH);
3948 
3949 	/* Locate hash chain and corresponding value element*/
3950 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3951 	if (bucket == 0)
3952 		return (ESRCH);
3953 	hashval = &obj->chain_zero_gnu[bucket];
3954 	do {
3955 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3956 			symnum = hashval - obj->chain_zero_gnu;
3957 			if (matched_symbol(req, obj, &matchres, symnum)) {
3958 				req->sym_out = matchres.sym_out;
3959 				req->defobj_out = obj;
3960 				return (0);
3961 			}
3962 		}
3963 	} while ((*hashval++ & 1) == 0);
3964 	if (matchres.vcount == 1) {
3965 		req->sym_out = matchres.vsymp;
3966 		req->defobj_out = obj;
3967 		return (0);
3968 	}
3969 	return (ESRCH);
3970 }
3971 
3972 static void
3973 trace_loaded_objects(Obj_Entry *obj)
3974 {
3975     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3976     int		c;
3977 
3978     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3979 	main_local = "";
3980 
3981     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3982 	fmt1 = "\t%o => %p (%x)\n";
3983 
3984     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3985 	fmt2 = "\t%o (%x)\n";
3986 
3987     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3988 
3989     for (; obj; obj = obj->next) {
3990 	Needed_Entry		*needed;
3991 	char			*name, *path;
3992 	bool			is_lib;
3993 
3994 	if (list_containers && obj->needed != NULL)
3995 	    rtld_printf("%s:\n", obj->path);
3996 	for (needed = obj->needed; needed; needed = needed->next) {
3997 	    if (needed->obj != NULL) {
3998 		if (needed->obj->traced && !list_containers)
3999 		    continue;
4000 		needed->obj->traced = true;
4001 		path = needed->obj->path;
4002 	    } else
4003 		path = "not found";
4004 
4005 	    name = (char *)obj->strtab + needed->name;
4006 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4007 
4008 	    fmt = is_lib ? fmt1 : fmt2;
4009 	    while ((c = *fmt++) != '\0') {
4010 		switch (c) {
4011 		default:
4012 		    rtld_putchar(c);
4013 		    continue;
4014 		case '\\':
4015 		    switch (c = *fmt) {
4016 		    case '\0':
4017 			continue;
4018 		    case 'n':
4019 			rtld_putchar('\n');
4020 			break;
4021 		    case 't':
4022 			rtld_putchar('\t');
4023 			break;
4024 		    }
4025 		    break;
4026 		case '%':
4027 		    switch (c = *fmt) {
4028 		    case '\0':
4029 			continue;
4030 		    case '%':
4031 		    default:
4032 			rtld_putchar(c);
4033 			break;
4034 		    case 'A':
4035 			rtld_putstr(main_local);
4036 			break;
4037 		    case 'a':
4038 			rtld_putstr(obj_main->path);
4039 			break;
4040 		    case 'o':
4041 			rtld_putstr(name);
4042 			break;
4043 #if 0
4044 		    case 'm':
4045 			rtld_printf("%d", sodp->sod_major);
4046 			break;
4047 		    case 'n':
4048 			rtld_printf("%d", sodp->sod_minor);
4049 			break;
4050 #endif
4051 		    case 'p':
4052 			rtld_putstr(path);
4053 			break;
4054 		    case 'x':
4055 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4056 			  0);
4057 			break;
4058 		    }
4059 		    break;
4060 		}
4061 		++fmt;
4062 	    }
4063 	}
4064     }
4065 }
4066 
4067 /*
4068  * Unload a dlopened object and its dependencies from memory and from
4069  * our data structures.  It is assumed that the DAG rooted in the
4070  * object has already been unreferenced, and that the object has a
4071  * reference count of 0.
4072  */
4073 static void
4074 unload_object(Obj_Entry *root)
4075 {
4076     Obj_Entry *obj;
4077     Obj_Entry **linkp;
4078 
4079     assert(root->refcount == 0);
4080 
4081     /*
4082      * Pass over the DAG removing unreferenced objects from
4083      * appropriate lists.
4084      */
4085     unlink_object(root);
4086 
4087     /* Unmap all objects that are no longer referenced. */
4088     linkp = &obj_list->next;
4089     while ((obj = *linkp) != NULL) {
4090 	if (obj->refcount == 0) {
4091 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4092 		obj->path);
4093 	    dbg("unloading \"%s\"", obj->path);
4094 	    unload_filtees(root);
4095 	    munmap(obj->mapbase, obj->mapsize);
4096 	    linkmap_delete(obj);
4097 	    *linkp = obj->next;
4098 	    obj_count--;
4099 	    obj_free(obj);
4100 	} else
4101 	    linkp = &obj->next;
4102     }
4103     obj_tail = linkp;
4104 }
4105 
4106 static void
4107 unlink_object(Obj_Entry *root)
4108 {
4109     Objlist_Entry *elm;
4110 
4111     if (root->refcount == 0) {
4112 	/* Remove the object from the RTLD_GLOBAL list. */
4113 	objlist_remove(&list_global, root);
4114 
4115     	/* Remove the object from all objects' DAG lists. */
4116     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4117 	    objlist_remove(&elm->obj->dldags, root);
4118 	    if (elm->obj != root)
4119 		unlink_object(elm->obj);
4120 	}
4121     }
4122 }
4123 
4124 static void
4125 ref_dag(Obj_Entry *root)
4126 {
4127     Objlist_Entry *elm;
4128 
4129     assert(root->dag_inited);
4130     STAILQ_FOREACH(elm, &root->dagmembers, link)
4131 	elm->obj->refcount++;
4132 }
4133 
4134 static void
4135 unref_dag(Obj_Entry *root)
4136 {
4137     Objlist_Entry *elm;
4138 
4139     assert(root->dag_inited);
4140     STAILQ_FOREACH(elm, &root->dagmembers, link)
4141 	elm->obj->refcount--;
4142 }
4143 
4144 /*
4145  * Common code for MD __tls_get_addr().
4146  */
4147 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4148 static void *
4149 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4150 {
4151     Elf_Addr *newdtv, *dtv;
4152     RtldLockState lockstate;
4153     int to_copy;
4154 
4155     dtv = *dtvp;
4156     /* Check dtv generation in case new modules have arrived */
4157     if (dtv[0] != tls_dtv_generation) {
4158 	wlock_acquire(rtld_bind_lock, &lockstate);
4159 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4160 	to_copy = dtv[1];
4161 	if (to_copy > tls_max_index)
4162 	    to_copy = tls_max_index;
4163 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4164 	newdtv[0] = tls_dtv_generation;
4165 	newdtv[1] = tls_max_index;
4166 	free(dtv);
4167 	lock_release(rtld_bind_lock, &lockstate);
4168 	dtv = *dtvp = newdtv;
4169     }
4170 
4171     /* Dynamically allocate module TLS if necessary */
4172     if (dtv[index + 1] == 0) {
4173 	/* Signal safe, wlock will block out signals. */
4174 	wlock_acquire(rtld_bind_lock, &lockstate);
4175 	if (!dtv[index + 1])
4176 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4177 	lock_release(rtld_bind_lock, &lockstate);
4178     }
4179     return ((void *)(dtv[index + 1] + offset));
4180 }
4181 
4182 void *
4183 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4184 {
4185 	Elf_Addr *dtv;
4186 
4187 	dtv = *dtvp;
4188 	/* Check dtv generation in case new modules have arrived */
4189 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4190 	    dtv[index + 1] != 0))
4191 		return ((void *)(dtv[index + 1] + offset));
4192 	return (tls_get_addr_slow(dtvp, index, offset));
4193 }
4194 
4195 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4196 
4197 /*
4198  * Allocate Static TLS using the Variant I method.
4199  */
4200 void *
4201 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4202 {
4203     Obj_Entry *obj;
4204     char *tcb;
4205     Elf_Addr **tls;
4206     Elf_Addr *dtv;
4207     Elf_Addr addr;
4208     int i;
4209 
4210     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4211 	return (oldtcb);
4212 
4213     assert(tcbsize >= TLS_TCB_SIZE);
4214     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4215     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4216 
4217     if (oldtcb != NULL) {
4218 	memcpy(tls, oldtcb, tls_static_space);
4219 	free(oldtcb);
4220 
4221 	/* Adjust the DTV. */
4222 	dtv = tls[0];
4223 	for (i = 0; i < dtv[1]; i++) {
4224 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4225 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4226 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4227 	    }
4228 	}
4229     } else {
4230 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4231 	tls[0] = dtv;
4232 	dtv[0] = tls_dtv_generation;
4233 	dtv[1] = tls_max_index;
4234 
4235 	for (obj = objs; obj; obj = obj->next) {
4236 	    if (obj->tlsoffset > 0) {
4237 		addr = (Elf_Addr)tls + obj->tlsoffset;
4238 		if (obj->tlsinitsize > 0)
4239 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4240 		if (obj->tlssize > obj->tlsinitsize)
4241 		    memset((void*) (addr + obj->tlsinitsize), 0,
4242 			   obj->tlssize - obj->tlsinitsize);
4243 		dtv[obj->tlsindex + 1] = addr;
4244 	    }
4245 	}
4246     }
4247 
4248     return (tcb);
4249 }
4250 
4251 void
4252 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4253 {
4254     Elf_Addr *dtv;
4255     Elf_Addr tlsstart, tlsend;
4256     int dtvsize, i;
4257 
4258     assert(tcbsize >= TLS_TCB_SIZE);
4259 
4260     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4261     tlsend = tlsstart + tls_static_space;
4262 
4263     dtv = *(Elf_Addr **)tlsstart;
4264     dtvsize = dtv[1];
4265     for (i = 0; i < dtvsize; i++) {
4266 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4267 	    free((void*)dtv[i+2]);
4268 	}
4269     }
4270     free(dtv);
4271     free(tcb);
4272 }
4273 
4274 #endif
4275 
4276 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4277 
4278 /*
4279  * Allocate Static TLS using the Variant II method.
4280  */
4281 void *
4282 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4283 {
4284     Obj_Entry *obj;
4285     size_t size, ralign;
4286     char *tls;
4287     Elf_Addr *dtv, *olddtv;
4288     Elf_Addr segbase, oldsegbase, addr;
4289     int i;
4290 
4291     ralign = tcbalign;
4292     if (tls_static_max_align > ralign)
4293 	    ralign = tls_static_max_align;
4294     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4295 
4296     assert(tcbsize >= 2*sizeof(Elf_Addr));
4297     tls = malloc_aligned(size, ralign);
4298     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4299 
4300     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4301     ((Elf_Addr*)segbase)[0] = segbase;
4302     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4303 
4304     dtv[0] = tls_dtv_generation;
4305     dtv[1] = tls_max_index;
4306 
4307     if (oldtls) {
4308 	/*
4309 	 * Copy the static TLS block over whole.
4310 	 */
4311 	oldsegbase = (Elf_Addr) oldtls;
4312 	memcpy((void *)(segbase - tls_static_space),
4313 	       (const void *)(oldsegbase - tls_static_space),
4314 	       tls_static_space);
4315 
4316 	/*
4317 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4318 	 * move them over.
4319 	 */
4320 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4321 	for (i = 0; i < olddtv[1]; i++) {
4322 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4323 		dtv[i+2] = olddtv[i+2];
4324 		olddtv[i+2] = 0;
4325 	    }
4326 	}
4327 
4328 	/*
4329 	 * We assume that this block was the one we created with
4330 	 * allocate_initial_tls().
4331 	 */
4332 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4333     } else {
4334 	for (obj = objs; obj; obj = obj->next) {
4335 	    if (obj->tlsoffset) {
4336 		addr = segbase - obj->tlsoffset;
4337 		memset((void*) (addr + obj->tlsinitsize),
4338 		       0, obj->tlssize - obj->tlsinitsize);
4339 		if (obj->tlsinit)
4340 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4341 		dtv[obj->tlsindex + 1] = addr;
4342 	    }
4343 	}
4344     }
4345 
4346     return (void*) segbase;
4347 }
4348 
4349 void
4350 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4351 {
4352     Elf_Addr* dtv;
4353     size_t size, ralign;
4354     int dtvsize, i;
4355     Elf_Addr tlsstart, tlsend;
4356 
4357     /*
4358      * Figure out the size of the initial TLS block so that we can
4359      * find stuff which ___tls_get_addr() allocated dynamically.
4360      */
4361     ralign = tcbalign;
4362     if (tls_static_max_align > ralign)
4363 	    ralign = tls_static_max_align;
4364     size = round(tls_static_space, ralign);
4365 
4366     dtv = ((Elf_Addr**)tls)[1];
4367     dtvsize = dtv[1];
4368     tlsend = (Elf_Addr) tls;
4369     tlsstart = tlsend - size;
4370     for (i = 0; i < dtvsize; i++) {
4371 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4372 		free_aligned((void *)dtv[i + 2]);
4373 	}
4374     }
4375 
4376     free_aligned((void *)tlsstart);
4377     free((void*) dtv);
4378 }
4379 
4380 #endif
4381 
4382 /*
4383  * Allocate TLS block for module with given index.
4384  */
4385 void *
4386 allocate_module_tls(int index)
4387 {
4388     Obj_Entry* obj;
4389     char* p;
4390 
4391     for (obj = obj_list; obj; obj = obj->next) {
4392 	if (obj->tlsindex == index)
4393 	    break;
4394     }
4395     if (!obj) {
4396 	_rtld_error("Can't find module with TLS index %d", index);
4397 	die();
4398     }
4399 
4400     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4401     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4402     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4403 
4404     return p;
4405 }
4406 
4407 bool
4408 allocate_tls_offset(Obj_Entry *obj)
4409 {
4410     size_t off;
4411 
4412     if (obj->tls_done)
4413 	return true;
4414 
4415     if (obj->tlssize == 0) {
4416 	obj->tls_done = true;
4417 	return true;
4418     }
4419 
4420     if (obj->tlsindex == 1)
4421 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4422     else
4423 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4424 				   obj->tlssize, obj->tlsalign);
4425 
4426     /*
4427      * If we have already fixed the size of the static TLS block, we
4428      * must stay within that size. When allocating the static TLS, we
4429      * leave a small amount of space spare to be used for dynamically
4430      * loading modules which use static TLS.
4431      */
4432     if (tls_static_space != 0) {
4433 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4434 	    return false;
4435     } else if (obj->tlsalign > tls_static_max_align) {
4436 	    tls_static_max_align = obj->tlsalign;
4437     }
4438 
4439     tls_last_offset = obj->tlsoffset = off;
4440     tls_last_size = obj->tlssize;
4441     obj->tls_done = true;
4442 
4443     return true;
4444 }
4445 
4446 void
4447 free_tls_offset(Obj_Entry *obj)
4448 {
4449 
4450     /*
4451      * If we were the last thing to allocate out of the static TLS
4452      * block, we give our space back to the 'allocator'. This is a
4453      * simplistic workaround to allow libGL.so.1 to be loaded and
4454      * unloaded multiple times.
4455      */
4456     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4457 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4458 	tls_last_offset -= obj->tlssize;
4459 	tls_last_size = 0;
4460     }
4461 }
4462 
4463 void *
4464 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4465 {
4466     void *ret;
4467     RtldLockState lockstate;
4468 
4469     wlock_acquire(rtld_bind_lock, &lockstate);
4470     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4471     lock_release(rtld_bind_lock, &lockstate);
4472     return (ret);
4473 }
4474 
4475 void
4476 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4477 {
4478     RtldLockState lockstate;
4479 
4480     wlock_acquire(rtld_bind_lock, &lockstate);
4481     free_tls(tcb, tcbsize, tcbalign);
4482     lock_release(rtld_bind_lock, &lockstate);
4483 }
4484 
4485 static void
4486 object_add_name(Obj_Entry *obj, const char *name)
4487 {
4488     Name_Entry *entry;
4489     size_t len;
4490 
4491     len = strlen(name);
4492     entry = malloc(sizeof(Name_Entry) + len);
4493 
4494     if (entry != NULL) {
4495 	strcpy(entry->name, name);
4496 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4497     }
4498 }
4499 
4500 static int
4501 object_match_name(const Obj_Entry *obj, const char *name)
4502 {
4503     Name_Entry *entry;
4504 
4505     STAILQ_FOREACH(entry, &obj->names, link) {
4506 	if (strcmp(name, entry->name) == 0)
4507 	    return (1);
4508     }
4509     return (0);
4510 }
4511 
4512 static Obj_Entry *
4513 locate_dependency(const Obj_Entry *obj, const char *name)
4514 {
4515     const Objlist_Entry *entry;
4516     const Needed_Entry *needed;
4517 
4518     STAILQ_FOREACH(entry, &list_main, link) {
4519 	if (object_match_name(entry->obj, name))
4520 	    return entry->obj;
4521     }
4522 
4523     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4524 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4525 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4526 	    /*
4527 	     * If there is DT_NEEDED for the name we are looking for,
4528 	     * we are all set.  Note that object might not be found if
4529 	     * dependency was not loaded yet, so the function can
4530 	     * return NULL here.  This is expected and handled
4531 	     * properly by the caller.
4532 	     */
4533 	    return (needed->obj);
4534 	}
4535     }
4536     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4537 	obj->path, name);
4538     die();
4539 }
4540 
4541 static int
4542 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4543     const Elf_Vernaux *vna)
4544 {
4545     const Elf_Verdef *vd;
4546     const char *vername;
4547 
4548     vername = refobj->strtab + vna->vna_name;
4549     vd = depobj->verdef;
4550     if (vd == NULL) {
4551 	_rtld_error("%s: version %s required by %s not defined",
4552 	    depobj->path, vername, refobj->path);
4553 	return (-1);
4554     }
4555     for (;;) {
4556 	if (vd->vd_version != VER_DEF_CURRENT) {
4557 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4558 		depobj->path, vd->vd_version);
4559 	    return (-1);
4560 	}
4561 	if (vna->vna_hash == vd->vd_hash) {
4562 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4563 		((char *)vd + vd->vd_aux);
4564 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4565 		return (0);
4566 	}
4567 	if (vd->vd_next == 0)
4568 	    break;
4569 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4570     }
4571     if (vna->vna_flags & VER_FLG_WEAK)
4572 	return (0);
4573     _rtld_error("%s: version %s required by %s not found",
4574 	depobj->path, vername, refobj->path);
4575     return (-1);
4576 }
4577 
4578 static int
4579 rtld_verify_object_versions(Obj_Entry *obj)
4580 {
4581     const Elf_Verneed *vn;
4582     const Elf_Verdef  *vd;
4583     const Elf_Verdaux *vda;
4584     const Elf_Vernaux *vna;
4585     const Obj_Entry *depobj;
4586     int maxvernum, vernum;
4587 
4588     if (obj->ver_checked)
4589 	return (0);
4590     obj->ver_checked = true;
4591 
4592     maxvernum = 0;
4593     /*
4594      * Walk over defined and required version records and figure out
4595      * max index used by any of them. Do very basic sanity checking
4596      * while there.
4597      */
4598     vn = obj->verneed;
4599     while (vn != NULL) {
4600 	if (vn->vn_version != VER_NEED_CURRENT) {
4601 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4602 		obj->path, vn->vn_version);
4603 	    return (-1);
4604 	}
4605 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4606 	for (;;) {
4607 	    vernum = VER_NEED_IDX(vna->vna_other);
4608 	    if (vernum > maxvernum)
4609 		maxvernum = vernum;
4610 	    if (vna->vna_next == 0)
4611 		 break;
4612 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4613 	}
4614 	if (vn->vn_next == 0)
4615 	    break;
4616 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4617     }
4618 
4619     vd = obj->verdef;
4620     while (vd != NULL) {
4621 	if (vd->vd_version != VER_DEF_CURRENT) {
4622 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4623 		obj->path, vd->vd_version);
4624 	    return (-1);
4625 	}
4626 	vernum = VER_DEF_IDX(vd->vd_ndx);
4627 	if (vernum > maxvernum)
4628 		maxvernum = vernum;
4629 	if (vd->vd_next == 0)
4630 	    break;
4631 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4632     }
4633 
4634     if (maxvernum == 0)
4635 	return (0);
4636 
4637     /*
4638      * Store version information in array indexable by version index.
4639      * Verify that object version requirements are satisfied along the
4640      * way.
4641      */
4642     obj->vernum = maxvernum + 1;
4643     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4644 
4645     vd = obj->verdef;
4646     while (vd != NULL) {
4647 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4648 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4649 	    assert(vernum <= maxvernum);
4650 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4651 	    obj->vertab[vernum].hash = vd->vd_hash;
4652 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4653 	    obj->vertab[vernum].file = NULL;
4654 	    obj->vertab[vernum].flags = 0;
4655 	}
4656 	if (vd->vd_next == 0)
4657 	    break;
4658 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4659     }
4660 
4661     vn = obj->verneed;
4662     while (vn != NULL) {
4663 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4664 	if (depobj == NULL)
4665 	    return (-1);
4666 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4667 	for (;;) {
4668 	    if (check_object_provided_version(obj, depobj, vna))
4669 		return (-1);
4670 	    vernum = VER_NEED_IDX(vna->vna_other);
4671 	    assert(vernum <= maxvernum);
4672 	    obj->vertab[vernum].hash = vna->vna_hash;
4673 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4674 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4675 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4676 		VER_INFO_HIDDEN : 0;
4677 	    if (vna->vna_next == 0)
4678 		 break;
4679 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4680 	}
4681 	if (vn->vn_next == 0)
4682 	    break;
4683 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4684     }
4685     return 0;
4686 }
4687 
4688 static int
4689 rtld_verify_versions(const Objlist *objlist)
4690 {
4691     Objlist_Entry *entry;
4692     int rc;
4693 
4694     rc = 0;
4695     STAILQ_FOREACH(entry, objlist, link) {
4696 	/*
4697 	 * Skip dummy objects or objects that have their version requirements
4698 	 * already checked.
4699 	 */
4700 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4701 	    continue;
4702 	if (rtld_verify_object_versions(entry->obj) == -1) {
4703 	    rc = -1;
4704 	    if (ld_tracing == NULL)
4705 		break;
4706 	}
4707     }
4708     if (rc == 0 || ld_tracing != NULL)
4709     	rc = rtld_verify_object_versions(&obj_rtld);
4710     return rc;
4711 }
4712 
4713 const Ver_Entry *
4714 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4715 {
4716     Elf_Versym vernum;
4717 
4718     if (obj->vertab) {
4719 	vernum = VER_NDX(obj->versyms[symnum]);
4720 	if (vernum >= obj->vernum) {
4721 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4722 		obj->path, obj->strtab + symnum, vernum);
4723 	} else if (obj->vertab[vernum].hash != 0) {
4724 	    return &obj->vertab[vernum];
4725 	}
4726     }
4727     return NULL;
4728 }
4729 
4730 int
4731 _rtld_get_stack_prot(void)
4732 {
4733 
4734 	return (stack_prot);
4735 }
4736 
4737 static void
4738 map_stacks_exec(RtldLockState *lockstate)
4739 {
4740 	void (*thr_map_stacks_exec)(void);
4741 
4742 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4743 		return;
4744 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4745 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4746 	if (thr_map_stacks_exec != NULL) {
4747 		stack_prot |= PROT_EXEC;
4748 		thr_map_stacks_exec();
4749 	}
4750 }
4751 
4752 void
4753 symlook_init(SymLook *dst, const char *name)
4754 {
4755 
4756 	bzero(dst, sizeof(*dst));
4757 	dst->name = name;
4758 	dst->hash = elf_hash(name);
4759 	dst->hash_gnu = gnu_hash(name);
4760 }
4761 
4762 static void
4763 symlook_init_from_req(SymLook *dst, const SymLook *src)
4764 {
4765 
4766 	dst->name = src->name;
4767 	dst->hash = src->hash;
4768 	dst->hash_gnu = src->hash_gnu;
4769 	dst->ventry = src->ventry;
4770 	dst->flags = src->flags;
4771 	dst->defobj_out = NULL;
4772 	dst->sym_out = NULL;
4773 	dst->lockstate = src->lockstate;
4774 }
4775 
4776 /*
4777  * Overrides for libc_pic-provided functions.
4778  */
4779 
4780 int
4781 __getosreldate(void)
4782 {
4783 	size_t len;
4784 	int oid[2];
4785 	int error, osrel;
4786 
4787 	if (osreldate != 0)
4788 		return (osreldate);
4789 
4790 	oid[0] = CTL_KERN;
4791 	oid[1] = KERN_OSRELDATE;
4792 	osrel = 0;
4793 	len = sizeof(osrel);
4794 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4795 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4796 		osreldate = osrel;
4797 	return (osreldate);
4798 }
4799 
4800 void
4801 exit(int status)
4802 {
4803 
4804 	_exit(status);
4805 }
4806 
4807 void (*__cleanup)(void);
4808 int __isthreaded = 0;
4809 int _thread_autoinit_dummy_decl = 1;
4810 
4811 /*
4812  * No unresolved symbols for rtld.
4813  */
4814 void
4815 __pthread_cxa_finalize(struct dl_phdr_info *a)
4816 {
4817 }
4818 
4819 void
4820 __stack_chk_fail(void)
4821 {
4822 
4823 	_rtld_error("stack overflow detected; terminated");
4824 	die();
4825 }
4826 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4827 
4828 void
4829 __chk_fail(void)
4830 {
4831 
4832 	_rtld_error("buffer overflow detected; terminated");
4833 	die();
4834 }
4835 
4836 const char *
4837 rtld_strerror(int errnum)
4838 {
4839 
4840 	if (errnum < 0 || errnum >= sys_nerr)
4841 		return ("Unknown error");
4842 	return (sys_errlist[errnum]);
4843 }
4844