xref: /freebsd/libexec/rtld-elf/rtld.c (revision 2726a7014867ad7224d09b66836c5d385f0350f4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
388     size_t sz;
389 #ifdef __powerpc__
390     int old_auxv_format = 1;
391 #endif
392     bool dir_enable, direct_exec, explicit_fd, search_in_path;
393 
394     /*
395      * On entry, the dynamic linker itself has not been relocated yet.
396      * Be very careful not to reference any global data until after
397      * init_rtld has returned.  It is OK to reference file-scope statics
398      * and string constants, and to call static and global functions.
399      */
400 
401     /* Find the auxiliary vector on the stack. */
402     argcp = sp;
403     argc = *sp++;
404     argv = (char **) sp;
405     sp += argc + 1;	/* Skip over arguments and NULL terminator */
406     env = (char **) sp;
407     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
408 	;
409     aux = (Elf_Auxinfo *) sp;
410 
411     /* Digest the auxiliary vector. */
412     for (i = 0;  i < AT_COUNT;  i++)
413 	aux_info[i] = NULL;
414     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
415 	if (auxp->a_type < AT_COUNT)
416 	    aux_info[auxp->a_type] = auxp;
417 #ifdef __powerpc__
418 	if (auxp->a_type == 23) /* AT_STACKPROT */
419 	    old_auxv_format = 0;
420 #endif
421     }
422 
423 #ifdef __powerpc__
424     if (old_auxv_format) {
425 	/* Remap from old-style auxv numbers. */
426 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
427 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
428 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
429 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
430 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
431 	aux_info[13] = NULL;		/* AT_GID */
432 
433 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
434 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
435 	aux_info[16] = aux_info[14];	/* AT_CANARY */
436 	aux_info[14] = NULL;		/* AT_EGID */
437     }
438 #endif
439 
440     /* Initialize and relocate ourselves. */
441     assert(aux_info[AT_BASE] != NULL);
442     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
443 
444     __progname = obj_rtld.path;
445     argv0 = argv[0] != NULL ? argv[0] : "(null)";
446     environ = env;
447     main_argc = argc;
448     main_argv = argv;
449 
450     if (aux_info[AT_BSDFLAGS] != NULL &&
451 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
452 	    ld_fast_sigblock = true;
453 
454     trust = !issetugid();
455     direct_exec = false;
456 
457     md_abi_variant_hook(aux_info);
458 
459     fd = -1;
460     if (aux_info[AT_EXECFD] != NULL) {
461 	fd = aux_info[AT_EXECFD]->a_un.a_val;
462     } else {
463 	assert(aux_info[AT_PHDR] != NULL);
464 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
465 	if (phdr == obj_rtld.phdr) {
466 	    if (!trust) {
467 		_rtld_error("Tainted process refusing to run binary %s",
468 		    argv0);
469 		rtld_die();
470 	    }
471 	    direct_exec = true;
472 
473 	    /*
474 	     * Set osrel for us, it is later reset to the binary'
475 	     * value before first instruction of code from the binary
476 	     * is executed.
477 	     */
478 	    mib[0] = CTL_KERN;
479 	    mib[1] = KERN_PROC;
480 	    mib[2] = KERN_PROC_OSREL;
481 	    mib[3] = getpid();
482 	    osrel = __FreeBSD_version;
483 	    sz = sizeof(old_osrel);
484 	    (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
485 
486 	    dbg("opening main program in direct exec mode");
487 	    if (argc >= 2) {
488 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
489 		explicit_fd = (fd != -1);
490 		binpath = NULL;
491 		if (!explicit_fd)
492 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
493 		if (fstat(fd, &st) == -1) {
494 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
495 		      explicit_fd ? "user-provided descriptor" : argv0,
496 		      rtld_strerror(errno));
497 		    rtld_die();
498 		}
499 
500 		/*
501 		 * Rough emulation of the permission checks done by
502 		 * execve(2), only Unix DACs are checked, ACLs are
503 		 * ignored.  Preserve the semantic of disabling owner
504 		 * to execute if owner x bit is cleared, even if
505 		 * others x bit is enabled.
506 		 * mmap(2) does not allow to mmap with PROT_EXEC if
507 		 * binary' file comes from noexec mount.  We cannot
508 		 * set a text reference on the binary.
509 		 */
510 		dir_enable = false;
511 		if (st.st_uid == geteuid()) {
512 		    if ((st.st_mode & S_IXUSR) != 0)
513 			dir_enable = true;
514 		} else if (st.st_gid == getegid()) {
515 		    if ((st.st_mode & S_IXGRP) != 0)
516 			dir_enable = true;
517 		} else if ((st.st_mode & S_IXOTH) != 0) {
518 		    dir_enable = true;
519 		}
520 		if (!dir_enable) {
521 		    _rtld_error("No execute permission for binary %s",
522 		        argv0);
523 		    rtld_die();
524 		}
525 
526 		/*
527 		 * For direct exec mode, argv[0] is the interpreter
528 		 * name, we must remove it and shift arguments left
529 		 * before invoking binary main.  Since stack layout
530 		 * places environment pointers and aux vectors right
531 		 * after the terminating NULL, we must shift
532 		 * environment and aux as well.
533 		 */
534 		main_argc = argc - rtld_argc;
535 		for (i = 0; i <= main_argc; i++)
536 		    argv[i] = argv[i + rtld_argc];
537 		*argcp -= rtld_argc;
538 		environ = env = envp = argv + main_argc + 1;
539 		dbg("move env from %p to %p", envp + rtld_argc, envp);
540 		do {
541 		    *envp = *(envp + rtld_argc);
542 		}  while (*envp++ != NULL);
543 		aux = auxp = (Elf_Auxinfo *)envp;
544 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
545 		dbg("move aux from %p to %p", auxpf, aux);
546 		/* XXXKIB insert place for AT_EXECPATH if not present */
547 		for (;; auxp++, auxpf++) {
548 		    *auxp = *auxpf;
549 		    if (auxp->a_type == AT_NULL)
550 			    break;
551 		}
552 		/* Since the auxiliary vector has moved, redigest it. */
553 		for (i = 0;  i < AT_COUNT;  i++)
554 		    aux_info[i] = NULL;
555 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
556 		    if (auxp->a_type < AT_COUNT)
557 			aux_info[auxp->a_type] = auxp;
558 		}
559 
560 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
561 		if (binpath == NULL) {
562 		    aux_info[AT_EXECPATH] = NULL;
563 		} else {
564 		    if (aux_info[AT_EXECPATH] == NULL) {
565 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
566 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
567 		    }
568 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
569 		      binpath);
570 		}
571 	    } else {
572 		_rtld_error("No binary");
573 		rtld_die();
574 	    }
575 	}
576     }
577 
578     ld_bind_now = getenv(_LD("BIND_NOW"));
579 
580     /*
581      * If the process is tainted, then we un-set the dangerous environment
582      * variables.  The process will be marked as tainted until setuid(2)
583      * is called.  If any child process calls setuid(2) we do not want any
584      * future processes to honor the potentially un-safe variables.
585      */
586     if (!trust) {
587 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
588 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
589 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
590 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
591 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
592 		_rtld_error("environment corrupt; aborting");
593 		rtld_die();
594 	}
595     }
596     ld_debug = getenv(_LD("DEBUG"));
597     if (ld_bind_now == NULL)
598 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
599     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
600     libmap_override = getenv(_LD("LIBMAP"));
601     ld_library_path = getenv(_LD("LIBRARY_PATH"));
602     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
603     ld_preload = getenv(_LD("PRELOAD"));
604     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
605     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
606     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
607     if (library_path_rpath != NULL) {
608 	    if (library_path_rpath[0] == 'y' ||
609 		library_path_rpath[0] == 'Y' ||
610 		library_path_rpath[0] == '1')
611 		    ld_library_path_rpath = true;
612 	    else
613 		    ld_library_path_rpath = false;
614     }
615     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
616 	(ld_library_path != NULL) || (ld_preload != NULL) ||
617 	(ld_elf_hints_path != NULL) || ld_loadfltr;
618     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
619     ld_utrace = getenv(_LD("UTRACE"));
620 
621     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
622 	ld_elf_hints_path = ld_elf_hints_default;
623 
624     if (ld_debug != NULL && *ld_debug != '\0')
625 	debug = 1;
626     dbg("%s is initialized, base address = %p", __progname,
627 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
628     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
629     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
630 
631     dbg("initializing thread locks");
632     lockdflt_init();
633 
634     /*
635      * Load the main program, or process its program header if it is
636      * already loaded.
637      */
638     if (fd != -1) {	/* Load the main program. */
639 	dbg("loading main program");
640 	obj_main = map_object(fd, argv0, NULL);
641 	close(fd);
642 	if (obj_main == NULL)
643 	    rtld_die();
644 	max_stack_flags = obj_main->stack_flags;
645     } else {				/* Main program already loaded. */
646 	dbg("processing main program's program header");
647 	assert(aux_info[AT_PHDR] != NULL);
648 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
649 	assert(aux_info[AT_PHNUM] != NULL);
650 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
651 	assert(aux_info[AT_PHENT] != NULL);
652 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
653 	assert(aux_info[AT_ENTRY] != NULL);
654 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
655 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
656 	    rtld_die();
657     }
658 
659     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
660 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
661 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
662 	    if (kexecpath[0] == '/')
663 		    obj_main->path = kexecpath;
664 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
665 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
666 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
667 		    obj_main->path = xstrdup(argv0);
668 	    else
669 		    obj_main->path = xstrdup(buf);
670     } else {
671 	    dbg("No AT_EXECPATH or direct exec");
672 	    obj_main->path = xstrdup(argv0);
673     }
674     dbg("obj_main path %s", obj_main->path);
675     obj_main->mainprog = true;
676 
677     if (aux_info[AT_STACKPROT] != NULL &&
678       aux_info[AT_STACKPROT]->a_un.a_val != 0)
679 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
680 
681 #ifndef COMPAT_32BIT
682     /*
683      * Get the actual dynamic linker pathname from the executable if
684      * possible.  (It should always be possible.)  That ensures that
685      * gdb will find the right dynamic linker even if a non-standard
686      * one is being used.
687      */
688     if (obj_main->interp != NULL &&
689       strcmp(obj_main->interp, obj_rtld.path) != 0) {
690 	free(obj_rtld.path);
691 	obj_rtld.path = xstrdup(obj_main->interp);
692         __progname = obj_rtld.path;
693     }
694 #endif
695 
696     if (!digest_dynamic(obj_main, 0))
697 	rtld_die();
698     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
699 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
700 	obj_main->dynsymcount);
701 
702     linkmap_add(obj_main);
703     linkmap_add(&obj_rtld);
704 
705     /* Link the main program into the list of objects. */
706     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
707     obj_count++;
708     obj_loads++;
709 
710     /* Initialize a fake symbol for resolving undefined weak references. */
711     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
712     sym_zero.st_shndx = SHN_UNDEF;
713     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
714 
715     if (!libmap_disable)
716         libmap_disable = (bool)lm_init(libmap_override);
717 
718     dbg("loading LD_PRELOAD libraries");
719     if (load_preload_objects() == -1)
720 	rtld_die();
721     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
722 
723     dbg("loading needed objects");
724     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
725       0) == -1)
726 	rtld_die();
727 
728     /* Make a list of all objects loaded at startup. */
729     last_interposer = obj_main;
730     TAILQ_FOREACH(obj, &obj_list, next) {
731 	if (obj->marker)
732 	    continue;
733 	if (obj->z_interpose && obj != obj_main) {
734 	    objlist_put_after(&list_main, last_interposer, obj);
735 	    last_interposer = obj;
736 	} else {
737 	    objlist_push_tail(&list_main, obj);
738 	}
739     	obj->refcount++;
740     }
741 
742     dbg("checking for required versions");
743     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
744 	rtld_die();
745 
746     if (ld_tracing) {		/* We're done */
747 	trace_loaded_objects(obj_main);
748 	exit(0);
749     }
750 
751     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
752        dump_relocations(obj_main);
753        exit (0);
754     }
755 
756     /*
757      * Processing tls relocations requires having the tls offsets
758      * initialized.  Prepare offsets before starting initial
759      * relocation processing.
760      */
761     dbg("initializing initial thread local storage offsets");
762     STAILQ_FOREACH(entry, &list_main, link) {
763 	/*
764 	 * Allocate all the initial objects out of the static TLS
765 	 * block even if they didn't ask for it.
766 	 */
767 	allocate_tls_offset(entry->obj);
768     }
769 
770     if (relocate_objects(obj_main,
771       ld_bind_now != NULL && *ld_bind_now != '\0',
772       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
773 	rtld_die();
774 
775     dbg("doing copy relocations");
776     if (do_copy_relocations(obj_main) == -1)
777 	rtld_die();
778 
779     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
780        dump_relocations(obj_main);
781        exit (0);
782     }
783 
784     ifunc_init(aux);
785 
786     /*
787      * Setup TLS for main thread.  This must be done after the
788      * relocations are processed, since tls initialization section
789      * might be the subject for relocations.
790      */
791     dbg("initializing initial thread local storage");
792     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
793 
794     dbg("initializing key program variables");
795     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
796     set_program_var("environ", env);
797     set_program_var("__elf_aux_vector", aux);
798 
799     /* Make a list of init functions to call. */
800     objlist_init(&initlist);
801     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
802       preload_tail, &initlist);
803 
804     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
805 
806     map_stacks_exec(NULL);
807 
808     if (!obj_main->crt_no_init) {
809 	/*
810 	 * Make sure we don't call the main program's init and fini
811 	 * functions for binaries linked with old crt1 which calls
812 	 * _init itself.
813 	 */
814 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
815 	obj_main->preinit_array = obj_main->init_array =
816 	    obj_main->fini_array = (Elf_Addr)NULL;
817     }
818 
819     /*
820      * Execute MD initializers required before we call the objects'
821      * init functions.
822      */
823     pre_init();
824 
825     if (direct_exec) {
826 	/* Set osrel for direct-execed binary */
827 	mib[0] = CTL_KERN;
828 	mib[1] = KERN_PROC;
829 	mib[2] = KERN_PROC_OSREL;
830 	mib[3] = getpid();
831 	osrel = obj_main->osrel;
832 	sz = sizeof(old_osrel);
833 	dbg("setting osrel to %d", osrel);
834 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
835     }
836 
837     wlock_acquire(rtld_bind_lock, &lockstate);
838 
839     dbg("resolving ifuncs");
840     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
841       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
842 	rtld_die();
843 
844     rtld_exit_ptr = rtld_exit;
845     if (obj_main->crt_no_init)
846 	preinit_main();
847     objlist_call_init(&initlist, &lockstate);
848     _r_debug_postinit(&obj_main->linkmap);
849     objlist_clear(&initlist);
850     dbg("loading filtees");
851     TAILQ_FOREACH(obj, &obj_list, next) {
852 	if (obj->marker)
853 	    continue;
854 	if (ld_loadfltr || obj->z_loadfltr)
855 	    load_filtees(obj, 0, &lockstate);
856     }
857 
858     dbg("enforcing main obj relro");
859     if (obj_enforce_relro(obj_main) == -1)
860 	rtld_die();
861 
862     lock_release(rtld_bind_lock, &lockstate);
863 
864     dbg("transferring control to program entry point = %p", obj_main->entry);
865 
866     /* Return the exit procedure and the program entry point. */
867     *exit_proc = rtld_exit_ptr;
868     *objp = obj_main;
869     return (func_ptr_type) obj_main->entry;
870 }
871 
872 void *
873 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
874 {
875 	void *ptr;
876 	Elf_Addr target;
877 
878 	ptr = (void *)make_function_pointer(def, obj);
879 	target = call_ifunc_resolver(ptr);
880 	return ((void *)target);
881 }
882 
883 /*
884  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
885  * Changes to this function should be applied there as well.
886  */
887 Elf_Addr
888 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
889 {
890     const Elf_Rel *rel;
891     const Elf_Sym *def;
892     const Obj_Entry *defobj;
893     Elf_Addr *where;
894     Elf_Addr target;
895     RtldLockState lockstate;
896 
897     rlock_acquire(rtld_bind_lock, &lockstate);
898     if (sigsetjmp(lockstate.env, 0) != 0)
899 	    lock_upgrade(rtld_bind_lock, &lockstate);
900     if (obj->pltrel)
901 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
902     else
903 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
904 
905     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
906     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
907 	NULL, &lockstate);
908     if (def == NULL)
909 	rtld_die();
910     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
911 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
912     else
913 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
914 
915     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
916       defobj->strtab + def->st_name, basename(obj->path),
917       (void *)target, basename(defobj->path));
918 
919     /*
920      * Write the new contents for the jmpslot. Note that depending on
921      * architecture, the value which we need to return back to the
922      * lazy binding trampoline may or may not be the target
923      * address. The value returned from reloc_jmpslot() is the value
924      * that the trampoline needs.
925      */
926     target = reloc_jmpslot(where, target, defobj, obj, rel);
927     lock_release(rtld_bind_lock, &lockstate);
928     return target;
929 }
930 
931 /*
932  * Error reporting function.  Use it like printf.  If formats the message
933  * into a buffer, and sets things up so that the next call to dlerror()
934  * will return the message.
935  */
936 void
937 _rtld_error(const char *fmt, ...)
938 {
939     static char buf[512];
940     va_list ap;
941 
942     va_start(ap, fmt);
943     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
944     error_message = buf;
945     va_end(ap);
946     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
947 }
948 
949 /*
950  * Return a dynamically-allocated copy of the current error message, if any.
951  */
952 static char *
953 errmsg_save(void)
954 {
955     return error_message == NULL ? NULL : xstrdup(error_message);
956 }
957 
958 /*
959  * Restore the current error message from a copy which was previously saved
960  * by errmsg_save().  The copy is freed.
961  */
962 static void
963 errmsg_restore(char *saved_msg)
964 {
965     if (saved_msg == NULL)
966 	error_message = NULL;
967     else {
968 	_rtld_error("%s", saved_msg);
969 	free(saved_msg);
970     }
971 }
972 
973 static const char *
974 basename(const char *name)
975 {
976     const char *p = strrchr(name, '/');
977     return p != NULL ? p + 1 : name;
978 }
979 
980 static struct utsname uts;
981 
982 static char *
983 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
984     const char *subst, bool may_free)
985 {
986 	char *p, *p1, *res, *resp;
987 	int subst_len, kw_len, subst_count, old_len, new_len;
988 
989 	kw_len = strlen(kw);
990 
991 	/*
992 	 * First, count the number of the keyword occurrences, to
993 	 * preallocate the final string.
994 	 */
995 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
996 		p1 = strstr(p, kw);
997 		if (p1 == NULL)
998 			break;
999 	}
1000 
1001 	/*
1002 	 * If the keyword is not found, just return.
1003 	 *
1004 	 * Return non-substituted string if resolution failed.  We
1005 	 * cannot do anything more reasonable, the failure mode of the
1006 	 * caller is unresolved library anyway.
1007 	 */
1008 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1009 		return (may_free ? real : xstrdup(real));
1010 	if (obj != NULL)
1011 		subst = obj->origin_path;
1012 
1013 	/*
1014 	 * There is indeed something to substitute.  Calculate the
1015 	 * length of the resulting string, and allocate it.
1016 	 */
1017 	subst_len = strlen(subst);
1018 	old_len = strlen(real);
1019 	new_len = old_len + (subst_len - kw_len) * subst_count;
1020 	res = xmalloc(new_len + 1);
1021 
1022 	/*
1023 	 * Now, execute the substitution loop.
1024 	 */
1025 	for (p = real, resp = res, *resp = '\0';;) {
1026 		p1 = strstr(p, kw);
1027 		if (p1 != NULL) {
1028 			/* Copy the prefix before keyword. */
1029 			memcpy(resp, p, p1 - p);
1030 			resp += p1 - p;
1031 			/* Keyword replacement. */
1032 			memcpy(resp, subst, subst_len);
1033 			resp += subst_len;
1034 			*resp = '\0';
1035 			p = p1 + kw_len;
1036 		} else
1037 			break;
1038 	}
1039 
1040 	/* Copy to the end of string and finish. */
1041 	strcat(resp, p);
1042 	if (may_free)
1043 		free(real);
1044 	return (res);
1045 }
1046 
1047 static char *
1048 origin_subst(Obj_Entry *obj, const char *real)
1049 {
1050 	char *res1, *res2, *res3, *res4;
1051 
1052 	if (obj == NULL || !trust)
1053 		return (xstrdup(real));
1054 	if (uts.sysname[0] == '\0') {
1055 		if (uname(&uts) != 0) {
1056 			_rtld_error("utsname failed: %d", errno);
1057 			return (NULL);
1058 		}
1059 	}
1060 	/* __DECONST is safe here since without may_free real is unchanged */
1061 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1062 	    false);
1063 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1064 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1065 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1066 	return (res4);
1067 }
1068 
1069 void
1070 rtld_die(void)
1071 {
1072     const char *msg = dlerror();
1073 
1074     if (msg == NULL)
1075 	msg = "Fatal error";
1076     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1077     rtld_fdputstr(STDERR_FILENO, msg);
1078     rtld_fdputchar(STDERR_FILENO, '\n');
1079     _exit(1);
1080 }
1081 
1082 /*
1083  * Process a shared object's DYNAMIC section, and save the important
1084  * information in its Obj_Entry structure.
1085  */
1086 static void
1087 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1088     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1089 {
1090     const Elf_Dyn *dynp;
1091     Needed_Entry **needed_tail = &obj->needed;
1092     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1093     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1094     const Elf_Hashelt *hashtab;
1095     const Elf32_Word *hashval;
1096     Elf32_Word bkt, nmaskwords;
1097     int bloom_size32;
1098     int plttype = DT_REL;
1099 
1100     *dyn_rpath = NULL;
1101     *dyn_soname = NULL;
1102     *dyn_runpath = NULL;
1103 
1104     obj->bind_now = false;
1105     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1106 	switch (dynp->d_tag) {
1107 
1108 	case DT_REL:
1109 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1110 	    break;
1111 
1112 	case DT_RELSZ:
1113 	    obj->relsize = dynp->d_un.d_val;
1114 	    break;
1115 
1116 	case DT_RELENT:
1117 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1118 	    break;
1119 
1120 	case DT_JMPREL:
1121 	    obj->pltrel = (const Elf_Rel *)
1122 	      (obj->relocbase + dynp->d_un.d_ptr);
1123 	    break;
1124 
1125 	case DT_PLTRELSZ:
1126 	    obj->pltrelsize = dynp->d_un.d_val;
1127 	    break;
1128 
1129 	case DT_RELA:
1130 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1131 	    break;
1132 
1133 	case DT_RELASZ:
1134 	    obj->relasize = dynp->d_un.d_val;
1135 	    break;
1136 
1137 	case DT_RELAENT:
1138 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1139 	    break;
1140 
1141 	case DT_PLTREL:
1142 	    plttype = dynp->d_un.d_val;
1143 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1144 	    break;
1145 
1146 	case DT_SYMTAB:
1147 	    obj->symtab = (const Elf_Sym *)
1148 	      (obj->relocbase + dynp->d_un.d_ptr);
1149 	    break;
1150 
1151 	case DT_SYMENT:
1152 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1153 	    break;
1154 
1155 	case DT_STRTAB:
1156 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1157 	    break;
1158 
1159 	case DT_STRSZ:
1160 	    obj->strsize = dynp->d_un.d_val;
1161 	    break;
1162 
1163 	case DT_VERNEED:
1164 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1165 		dynp->d_un.d_val);
1166 	    break;
1167 
1168 	case DT_VERNEEDNUM:
1169 	    obj->verneednum = dynp->d_un.d_val;
1170 	    break;
1171 
1172 	case DT_VERDEF:
1173 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1174 		dynp->d_un.d_val);
1175 	    break;
1176 
1177 	case DT_VERDEFNUM:
1178 	    obj->verdefnum = dynp->d_un.d_val;
1179 	    break;
1180 
1181 	case DT_VERSYM:
1182 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1183 		dynp->d_un.d_val);
1184 	    break;
1185 
1186 	case DT_HASH:
1187 	    {
1188 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1189 		    dynp->d_un.d_ptr);
1190 		obj->nbuckets = hashtab[0];
1191 		obj->nchains = hashtab[1];
1192 		obj->buckets = hashtab + 2;
1193 		obj->chains = obj->buckets + obj->nbuckets;
1194 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1195 		  obj->buckets != NULL;
1196 	    }
1197 	    break;
1198 
1199 	case DT_GNU_HASH:
1200 	    {
1201 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1202 		    dynp->d_un.d_ptr);
1203 		obj->nbuckets_gnu = hashtab[0];
1204 		obj->symndx_gnu = hashtab[1];
1205 		nmaskwords = hashtab[2];
1206 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1207 		obj->maskwords_bm_gnu = nmaskwords - 1;
1208 		obj->shift2_gnu = hashtab[3];
1209 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1210 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1211 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1212 		  obj->symndx_gnu;
1213 		/* Number of bitmask words is required to be power of 2 */
1214 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1215 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1216 	    }
1217 	    break;
1218 
1219 	case DT_NEEDED:
1220 	    if (!obj->rtld) {
1221 		Needed_Entry *nep = NEW(Needed_Entry);
1222 		nep->name = dynp->d_un.d_val;
1223 		nep->obj = NULL;
1224 		nep->next = NULL;
1225 
1226 		*needed_tail = nep;
1227 		needed_tail = &nep->next;
1228 	    }
1229 	    break;
1230 
1231 	case DT_FILTER:
1232 	    if (!obj->rtld) {
1233 		Needed_Entry *nep = NEW(Needed_Entry);
1234 		nep->name = dynp->d_un.d_val;
1235 		nep->obj = NULL;
1236 		nep->next = NULL;
1237 
1238 		*needed_filtees_tail = nep;
1239 		needed_filtees_tail = &nep->next;
1240 
1241 		if (obj->linkmap.l_refname == NULL)
1242 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1243 	    }
1244 	    break;
1245 
1246 	case DT_AUXILIARY:
1247 	    if (!obj->rtld) {
1248 		Needed_Entry *nep = NEW(Needed_Entry);
1249 		nep->name = dynp->d_un.d_val;
1250 		nep->obj = NULL;
1251 		nep->next = NULL;
1252 
1253 		*needed_aux_filtees_tail = nep;
1254 		needed_aux_filtees_tail = &nep->next;
1255 	    }
1256 	    break;
1257 
1258 	case DT_PLTGOT:
1259 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1260 	    break;
1261 
1262 	case DT_TEXTREL:
1263 	    obj->textrel = true;
1264 	    break;
1265 
1266 	case DT_SYMBOLIC:
1267 	    obj->symbolic = true;
1268 	    break;
1269 
1270 	case DT_RPATH:
1271 	    /*
1272 	     * We have to wait until later to process this, because we
1273 	     * might not have gotten the address of the string table yet.
1274 	     */
1275 	    *dyn_rpath = dynp;
1276 	    break;
1277 
1278 	case DT_SONAME:
1279 	    *dyn_soname = dynp;
1280 	    break;
1281 
1282 	case DT_RUNPATH:
1283 	    *dyn_runpath = dynp;
1284 	    break;
1285 
1286 	case DT_INIT:
1287 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1288 	    break;
1289 
1290 	case DT_PREINIT_ARRAY:
1291 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1292 	    break;
1293 
1294 	case DT_PREINIT_ARRAYSZ:
1295 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1296 	    break;
1297 
1298 	case DT_INIT_ARRAY:
1299 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1300 	    break;
1301 
1302 	case DT_INIT_ARRAYSZ:
1303 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1304 	    break;
1305 
1306 	case DT_FINI:
1307 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1308 	    break;
1309 
1310 	case DT_FINI_ARRAY:
1311 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1312 	    break;
1313 
1314 	case DT_FINI_ARRAYSZ:
1315 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1316 	    break;
1317 
1318 	/*
1319 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1320 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1321 	 */
1322 
1323 #ifndef __mips__
1324 	case DT_DEBUG:
1325 	    if (!early)
1326 		dbg("Filling in DT_DEBUG entry");
1327 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1328 	    break;
1329 #endif
1330 
1331 	case DT_FLAGS:
1332 		if (dynp->d_un.d_val & DF_ORIGIN)
1333 		    obj->z_origin = true;
1334 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1335 		    obj->symbolic = true;
1336 		if (dynp->d_un.d_val & DF_TEXTREL)
1337 		    obj->textrel = true;
1338 		if (dynp->d_un.d_val & DF_BIND_NOW)
1339 		    obj->bind_now = true;
1340 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1341 		    obj->static_tls = true;
1342 	    break;
1343 #ifdef __mips__
1344 	case DT_MIPS_LOCAL_GOTNO:
1345 		obj->local_gotno = dynp->d_un.d_val;
1346 		break;
1347 
1348 	case DT_MIPS_SYMTABNO:
1349 		obj->symtabno = dynp->d_un.d_val;
1350 		break;
1351 
1352 	case DT_MIPS_GOTSYM:
1353 		obj->gotsym = dynp->d_un.d_val;
1354 		break;
1355 
1356 	case DT_MIPS_RLD_MAP:
1357 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1358 		break;
1359 
1360 	case DT_MIPS_RLD_MAP_REL:
1361 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1362 		// section relative to the address of the tag itself.
1363 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1364 		    (Elf_Addr) &r_debug;
1365 		break;
1366 
1367 	case DT_MIPS_PLTGOT:
1368 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1369 		    dynp->d_un.d_ptr);
1370 		break;
1371 
1372 #endif
1373 
1374 #ifdef __powerpc__
1375 #ifdef __powerpc64__
1376 	case DT_PPC64_GLINK:
1377 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1378 		break;
1379 #else
1380 	case DT_PPC_GOT:
1381 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1382 		break;
1383 #endif
1384 #endif
1385 
1386 	case DT_FLAGS_1:
1387 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1388 		    obj->z_noopen = true;
1389 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1390 		    obj->z_origin = true;
1391 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1392 		    obj->z_global = true;
1393 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1394 		    obj->bind_now = true;
1395 		if (dynp->d_un.d_val & DF_1_NODELETE)
1396 		    obj->z_nodelete = true;
1397 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1398 		    obj->z_loadfltr = true;
1399 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1400 		    obj->z_interpose = true;
1401 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1402 		    obj->z_nodeflib = true;
1403 		if (dynp->d_un.d_val & DF_1_PIE)
1404 		    obj->z_pie = true;
1405 	    break;
1406 
1407 	default:
1408 	    if (!early) {
1409 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1410 		    (long)dynp->d_tag);
1411 	    }
1412 	    break;
1413 	}
1414     }
1415 
1416     obj->traced = false;
1417 
1418     if (plttype == DT_RELA) {
1419 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1420 	obj->pltrel = NULL;
1421 	obj->pltrelasize = obj->pltrelsize;
1422 	obj->pltrelsize = 0;
1423     }
1424 
1425     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1426     if (obj->valid_hash_sysv)
1427 	obj->dynsymcount = obj->nchains;
1428     else if (obj->valid_hash_gnu) {
1429 	obj->dynsymcount = 0;
1430 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1431 	    if (obj->buckets_gnu[bkt] == 0)
1432 		continue;
1433 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1434 	    do
1435 		obj->dynsymcount++;
1436 	    while ((*hashval++ & 1u) == 0);
1437 	}
1438 	obj->dynsymcount += obj->symndx_gnu;
1439     }
1440 
1441     if (obj->linkmap.l_refname != NULL)
1442 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1443 	  linkmap.l_refname;
1444 }
1445 
1446 static bool
1447 obj_resolve_origin(Obj_Entry *obj)
1448 {
1449 
1450 	if (obj->origin_path != NULL)
1451 		return (true);
1452 	obj->origin_path = xmalloc(PATH_MAX);
1453 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1454 }
1455 
1456 static bool
1457 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1458     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1459 {
1460 
1461 	if (obj->z_origin && !obj_resolve_origin(obj))
1462 		return (false);
1463 
1464 	if (dyn_runpath != NULL) {
1465 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1466 		obj->runpath = origin_subst(obj, obj->runpath);
1467 	} else if (dyn_rpath != NULL) {
1468 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1469 		obj->rpath = origin_subst(obj, obj->rpath);
1470 	}
1471 	if (dyn_soname != NULL)
1472 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1473 	return (true);
1474 }
1475 
1476 static bool
1477 digest_dynamic(Obj_Entry *obj, int early)
1478 {
1479 	const Elf_Dyn *dyn_rpath;
1480 	const Elf_Dyn *dyn_soname;
1481 	const Elf_Dyn *dyn_runpath;
1482 
1483 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1484 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1485 }
1486 
1487 /*
1488  * Process a shared object's program header.  This is used only for the
1489  * main program, when the kernel has already loaded the main program
1490  * into memory before calling the dynamic linker.  It creates and
1491  * returns an Obj_Entry structure.
1492  */
1493 static Obj_Entry *
1494 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1495 {
1496     Obj_Entry *obj;
1497     const Elf_Phdr *phlimit = phdr + phnum;
1498     const Elf_Phdr *ph;
1499     Elf_Addr note_start, note_end;
1500     int nsegs = 0;
1501 
1502     obj = obj_new();
1503     for (ph = phdr;  ph < phlimit;  ph++) {
1504 	if (ph->p_type != PT_PHDR)
1505 	    continue;
1506 
1507 	obj->phdr = phdr;
1508 	obj->phsize = ph->p_memsz;
1509 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1510 	break;
1511     }
1512 
1513     obj->stack_flags = PF_X | PF_R | PF_W;
1514 
1515     for (ph = phdr;  ph < phlimit;  ph++) {
1516 	switch (ph->p_type) {
1517 
1518 	case PT_INTERP:
1519 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1520 	    break;
1521 
1522 	case PT_LOAD:
1523 	    if (nsegs == 0) {	/* First load segment */
1524 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1525 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1526 	    } else {		/* Last load segment */
1527 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1528 		  obj->vaddrbase;
1529 	    }
1530 	    nsegs++;
1531 	    break;
1532 
1533 	case PT_DYNAMIC:
1534 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1535 	    break;
1536 
1537 	case PT_TLS:
1538 	    obj->tlsindex = 1;
1539 	    obj->tlssize = ph->p_memsz;
1540 	    obj->tlsalign = ph->p_align;
1541 	    obj->tlsinitsize = ph->p_filesz;
1542 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1543 	    obj->tlspoffset = ph->p_offset;
1544 	    break;
1545 
1546 	case PT_GNU_STACK:
1547 	    obj->stack_flags = ph->p_flags;
1548 	    break;
1549 
1550 	case PT_GNU_RELRO:
1551 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1552 	    obj->relro_size = round_page(ph->p_memsz);
1553 	    break;
1554 
1555 	case PT_NOTE:
1556 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1557 	    note_end = note_start + ph->p_filesz;
1558 	    digest_notes(obj, note_start, note_end);
1559 	    break;
1560 	}
1561     }
1562     if (nsegs < 1) {
1563 	_rtld_error("%s: too few PT_LOAD segments", path);
1564 	return NULL;
1565     }
1566 
1567     obj->entry = entry;
1568     return obj;
1569 }
1570 
1571 void
1572 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1573 {
1574 	const Elf_Note *note;
1575 	const char *note_name;
1576 	uintptr_t p;
1577 
1578 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1579 	    note = (const Elf_Note *)((const char *)(note + 1) +
1580 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1581 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1582 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1583 		    note->n_descsz != sizeof(int32_t))
1584 			continue;
1585 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1586 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1587 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1588 			continue;
1589 		note_name = (const char *)(note + 1);
1590 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1591 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1592 			continue;
1593 		switch (note->n_type) {
1594 		case NT_FREEBSD_ABI_TAG:
1595 			/* FreeBSD osrel note */
1596 			p = (uintptr_t)(note + 1);
1597 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1598 			obj->osrel = *(const int32_t *)(p);
1599 			dbg("note osrel %d", obj->osrel);
1600 			break;
1601 		case NT_FREEBSD_FEATURE_CTL:
1602 			/* FreeBSD ABI feature control note */
1603 			p = (uintptr_t)(note + 1);
1604 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1605 			obj->fctl0 = *(const uint32_t *)(p);
1606 			dbg("note fctl0 %#x", obj->fctl0);
1607 			break;
1608 		case NT_FREEBSD_NOINIT_TAG:
1609 			/* FreeBSD 'crt does not call init' note */
1610 			obj->crt_no_init = true;
1611 			dbg("note crt_no_init");
1612 			break;
1613 		}
1614 	}
1615 }
1616 
1617 static Obj_Entry *
1618 dlcheck(void *handle)
1619 {
1620     Obj_Entry *obj;
1621 
1622     TAILQ_FOREACH(obj, &obj_list, next) {
1623 	if (obj == (Obj_Entry *) handle)
1624 	    break;
1625     }
1626 
1627     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1628 	_rtld_error("Invalid shared object handle %p", handle);
1629 	return NULL;
1630     }
1631     return obj;
1632 }
1633 
1634 /*
1635  * If the given object is already in the donelist, return true.  Otherwise
1636  * add the object to the list and return false.
1637  */
1638 static bool
1639 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1640 {
1641     unsigned int i;
1642 
1643     for (i = 0;  i < dlp->num_used;  i++)
1644 	if (dlp->objs[i] == obj)
1645 	    return true;
1646     /*
1647      * Our donelist allocation should always be sufficient.  But if
1648      * our threads locking isn't working properly, more shared objects
1649      * could have been loaded since we allocated the list.  That should
1650      * never happen, but we'll handle it properly just in case it does.
1651      */
1652     if (dlp->num_used < dlp->num_alloc)
1653 	dlp->objs[dlp->num_used++] = obj;
1654     return false;
1655 }
1656 
1657 /*
1658  * Hash function for symbol table lookup.  Don't even think about changing
1659  * this.  It is specified by the System V ABI.
1660  */
1661 unsigned long
1662 elf_hash(const char *name)
1663 {
1664     const unsigned char *p = (const unsigned char *) name;
1665     unsigned long h = 0;
1666     unsigned long g;
1667 
1668     while (*p != '\0') {
1669 	h = (h << 4) + *p++;
1670 	if ((g = h & 0xf0000000) != 0)
1671 	    h ^= g >> 24;
1672 	h &= ~g;
1673     }
1674     return h;
1675 }
1676 
1677 /*
1678  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1679  * unsigned in case it's implemented with a wider type.
1680  */
1681 static uint32_t
1682 gnu_hash(const char *s)
1683 {
1684 	uint32_t h;
1685 	unsigned char c;
1686 
1687 	h = 5381;
1688 	for (c = *s; c != '\0'; c = *++s)
1689 		h = h * 33 + c;
1690 	return (h & 0xffffffff);
1691 }
1692 
1693 
1694 /*
1695  * Find the library with the given name, and return its full pathname.
1696  * The returned string is dynamically allocated.  Generates an error
1697  * message and returns NULL if the library cannot be found.
1698  *
1699  * If the second argument is non-NULL, then it refers to an already-
1700  * loaded shared object, whose library search path will be searched.
1701  *
1702  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1703  * descriptor (which is close-on-exec) will be passed out via the third
1704  * argument.
1705  *
1706  * The search order is:
1707  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1708  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1709  *   LD_LIBRARY_PATH
1710  *   DT_RUNPATH in the referencing file
1711  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1712  *	 from list)
1713  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1714  *
1715  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1716  */
1717 static char *
1718 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1719 {
1720 	char *pathname, *refobj_path;
1721 	const char *name;
1722 	bool nodeflib, objgiven;
1723 
1724 	objgiven = refobj != NULL;
1725 
1726 	if (libmap_disable || !objgiven ||
1727 	    (name = lm_find(refobj->path, xname)) == NULL)
1728 		name = xname;
1729 
1730 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1731 		if (name[0] != '/' && !trust) {
1732 			_rtld_error("Absolute pathname required "
1733 			    "for shared object \"%s\"", name);
1734 			return (NULL);
1735 		}
1736 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1737 		    __DECONST(char *, name)));
1738 	}
1739 
1740 	dbg(" Searching for \"%s\"", name);
1741 	refobj_path = objgiven ? refobj->path : NULL;
1742 
1743 	/*
1744 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1745 	 * back to pre-conforming behaviour if user requested so with
1746 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1747 	 * nodeflib.
1748 	 */
1749 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1750 		pathname = search_library_path(name, ld_library_path,
1751 		    refobj_path, fdp);
1752 		if (pathname != NULL)
1753 			return (pathname);
1754 		if (refobj != NULL) {
1755 			pathname = search_library_path(name, refobj->rpath,
1756 			    refobj_path, fdp);
1757 			if (pathname != NULL)
1758 				return (pathname);
1759 		}
1760 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1761 		if (pathname != NULL)
1762 			return (pathname);
1763 		pathname = search_library_path(name, gethints(false),
1764 		    refobj_path, fdp);
1765 		if (pathname != NULL)
1766 			return (pathname);
1767 		pathname = search_library_path(name, ld_standard_library_path,
1768 		    refobj_path, fdp);
1769 		if (pathname != NULL)
1770 			return (pathname);
1771 	} else {
1772 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1773 		if (objgiven) {
1774 			pathname = search_library_path(name, refobj->rpath,
1775 			    refobj->path, fdp);
1776 			if (pathname != NULL)
1777 				return (pathname);
1778 		}
1779 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1780 			pathname = search_library_path(name, obj_main->rpath,
1781 			    refobj_path, fdp);
1782 			if (pathname != NULL)
1783 				return (pathname);
1784 		}
1785 		pathname = search_library_path(name, ld_library_path,
1786 		    refobj_path, fdp);
1787 		if (pathname != NULL)
1788 			return (pathname);
1789 		if (objgiven) {
1790 			pathname = search_library_path(name, refobj->runpath,
1791 			    refobj_path, fdp);
1792 			if (pathname != NULL)
1793 				return (pathname);
1794 		}
1795 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1796 		if (pathname != NULL)
1797 			return (pathname);
1798 		pathname = search_library_path(name, gethints(nodeflib),
1799 		    refobj_path, fdp);
1800 		if (pathname != NULL)
1801 			return (pathname);
1802 		if (objgiven && !nodeflib) {
1803 			pathname = search_library_path(name,
1804 			    ld_standard_library_path, refobj_path, fdp);
1805 			if (pathname != NULL)
1806 				return (pathname);
1807 		}
1808 	}
1809 
1810 	if (objgiven && refobj->path != NULL) {
1811 		_rtld_error("Shared object \"%s\" not found, "
1812 		    "required by \"%s\"", name, basename(refobj->path));
1813 	} else {
1814 		_rtld_error("Shared object \"%s\" not found", name);
1815 	}
1816 	return (NULL);
1817 }
1818 
1819 /*
1820  * Given a symbol number in a referencing object, find the corresponding
1821  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1822  * no definition was found.  Returns a pointer to the Obj_Entry of the
1823  * defining object via the reference parameter DEFOBJ_OUT.
1824  */
1825 const Elf_Sym *
1826 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1827     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1828     RtldLockState *lockstate)
1829 {
1830     const Elf_Sym *ref;
1831     const Elf_Sym *def;
1832     const Obj_Entry *defobj;
1833     const Ver_Entry *ve;
1834     SymLook req;
1835     const char *name;
1836     int res;
1837 
1838     /*
1839      * If we have already found this symbol, get the information from
1840      * the cache.
1841      */
1842     if (symnum >= refobj->dynsymcount)
1843 	return NULL;	/* Bad object */
1844     if (cache != NULL && cache[symnum].sym != NULL) {
1845 	*defobj_out = cache[symnum].obj;
1846 	return cache[symnum].sym;
1847     }
1848 
1849     ref = refobj->symtab + symnum;
1850     name = refobj->strtab + ref->st_name;
1851     def = NULL;
1852     defobj = NULL;
1853     ve = NULL;
1854 
1855     /*
1856      * We don't have to do a full scale lookup if the symbol is local.
1857      * We know it will bind to the instance in this load module; to
1858      * which we already have a pointer (ie ref). By not doing a lookup,
1859      * we not only improve performance, but it also avoids unresolvable
1860      * symbols when local symbols are not in the hash table. This has
1861      * been seen with the ia64 toolchain.
1862      */
1863     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1864 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1865 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1866 		symnum);
1867 	}
1868 	symlook_init(&req, name);
1869 	req.flags = flags;
1870 	ve = req.ventry = fetch_ventry(refobj, symnum);
1871 	req.lockstate = lockstate;
1872 	res = symlook_default(&req, refobj);
1873 	if (res == 0) {
1874 	    def = req.sym_out;
1875 	    defobj = req.defobj_out;
1876 	}
1877     } else {
1878 	def = ref;
1879 	defobj = refobj;
1880     }
1881 
1882     /*
1883      * If we found no definition and the reference is weak, treat the
1884      * symbol as having the value zero.
1885      */
1886     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1887 	def = &sym_zero;
1888 	defobj = obj_main;
1889     }
1890 
1891     if (def != NULL) {
1892 	*defobj_out = defobj;
1893 	/* Record the information in the cache to avoid subsequent lookups. */
1894 	if (cache != NULL) {
1895 	    cache[symnum].sym = def;
1896 	    cache[symnum].obj = defobj;
1897 	}
1898     } else {
1899 	if (refobj != &obj_rtld)
1900 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1901 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1902     }
1903     return def;
1904 }
1905 
1906 /*
1907  * Return the search path from the ldconfig hints file, reading it if
1908  * necessary.  If nostdlib is true, then the default search paths are
1909  * not added to result.
1910  *
1911  * Returns NULL if there are problems with the hints file,
1912  * or if the search path there is empty.
1913  */
1914 static const char *
1915 gethints(bool nostdlib)
1916 {
1917 	static char *filtered_path;
1918 	static const char *hints;
1919 	static struct elfhints_hdr hdr;
1920 	struct fill_search_info_args sargs, hargs;
1921 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1922 	struct dl_serpath *SLPpath, *hintpath;
1923 	char *p;
1924 	struct stat hint_stat;
1925 	unsigned int SLPndx, hintndx, fndx, fcount;
1926 	int fd;
1927 	size_t flen;
1928 	uint32_t dl;
1929 	bool skip;
1930 
1931 	/* First call, read the hints file */
1932 	if (hints == NULL) {
1933 		/* Keep from trying again in case the hints file is bad. */
1934 		hints = "";
1935 
1936 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1937 			return (NULL);
1938 
1939 		/*
1940 		 * Check of hdr.dirlistlen value against type limit
1941 		 * intends to pacify static analyzers.  Further
1942 		 * paranoia leads to checks that dirlist is fully
1943 		 * contained in the file range.
1944 		 */
1945 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1946 		    hdr.magic != ELFHINTS_MAGIC ||
1947 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1948 		    fstat(fd, &hint_stat) == -1) {
1949 cleanup1:
1950 			close(fd);
1951 			hdr.dirlistlen = 0;
1952 			return (NULL);
1953 		}
1954 		dl = hdr.strtab;
1955 		if (dl + hdr.dirlist < dl)
1956 			goto cleanup1;
1957 		dl += hdr.dirlist;
1958 		if (dl + hdr.dirlistlen < dl)
1959 			goto cleanup1;
1960 		dl += hdr.dirlistlen;
1961 		if (dl > hint_stat.st_size)
1962 			goto cleanup1;
1963 		p = xmalloc(hdr.dirlistlen + 1);
1964 		if (pread(fd, p, hdr.dirlistlen + 1,
1965 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1966 		    p[hdr.dirlistlen] != '\0') {
1967 			free(p);
1968 			goto cleanup1;
1969 		}
1970 		hints = p;
1971 		close(fd);
1972 	}
1973 
1974 	/*
1975 	 * If caller agreed to receive list which includes the default
1976 	 * paths, we are done. Otherwise, if we still did not
1977 	 * calculated filtered result, do it now.
1978 	 */
1979 	if (!nostdlib)
1980 		return (hints[0] != '\0' ? hints : NULL);
1981 	if (filtered_path != NULL)
1982 		goto filt_ret;
1983 
1984 	/*
1985 	 * Obtain the list of all configured search paths, and the
1986 	 * list of the default paths.
1987 	 *
1988 	 * First estimate the size of the results.
1989 	 */
1990 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1991 	smeta.dls_cnt = 0;
1992 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1993 	hmeta.dls_cnt = 0;
1994 
1995 	sargs.request = RTLD_DI_SERINFOSIZE;
1996 	sargs.serinfo = &smeta;
1997 	hargs.request = RTLD_DI_SERINFOSIZE;
1998 	hargs.serinfo = &hmeta;
1999 
2000 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2001 	    &sargs);
2002 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2003 
2004 	SLPinfo = xmalloc(smeta.dls_size);
2005 	hintinfo = xmalloc(hmeta.dls_size);
2006 
2007 	/*
2008 	 * Next fetch both sets of paths.
2009 	 */
2010 	sargs.request = RTLD_DI_SERINFO;
2011 	sargs.serinfo = SLPinfo;
2012 	sargs.serpath = &SLPinfo->dls_serpath[0];
2013 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2014 
2015 	hargs.request = RTLD_DI_SERINFO;
2016 	hargs.serinfo = hintinfo;
2017 	hargs.serpath = &hintinfo->dls_serpath[0];
2018 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2019 
2020 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2021 	    &sargs);
2022 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2023 
2024 	/*
2025 	 * Now calculate the difference between two sets, by excluding
2026 	 * standard paths from the full set.
2027 	 */
2028 	fndx = 0;
2029 	fcount = 0;
2030 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2031 	hintpath = &hintinfo->dls_serpath[0];
2032 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2033 		skip = false;
2034 		SLPpath = &SLPinfo->dls_serpath[0];
2035 		/*
2036 		 * Check each standard path against current.
2037 		 */
2038 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2039 			/* matched, skip the path */
2040 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2041 				skip = true;
2042 				break;
2043 			}
2044 		}
2045 		if (skip)
2046 			continue;
2047 		/*
2048 		 * Not matched against any standard path, add the path
2049 		 * to result. Separate consequtive paths with ':'.
2050 		 */
2051 		if (fcount > 0) {
2052 			filtered_path[fndx] = ':';
2053 			fndx++;
2054 		}
2055 		fcount++;
2056 		flen = strlen(hintpath->dls_name);
2057 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2058 		fndx += flen;
2059 	}
2060 	filtered_path[fndx] = '\0';
2061 
2062 	free(SLPinfo);
2063 	free(hintinfo);
2064 
2065 filt_ret:
2066 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2067 }
2068 
2069 static void
2070 init_dag(Obj_Entry *root)
2071 {
2072     const Needed_Entry *needed;
2073     const Objlist_Entry *elm;
2074     DoneList donelist;
2075 
2076     if (root->dag_inited)
2077 	return;
2078     donelist_init(&donelist);
2079 
2080     /* Root object belongs to own DAG. */
2081     objlist_push_tail(&root->dldags, root);
2082     objlist_push_tail(&root->dagmembers, root);
2083     donelist_check(&donelist, root);
2084 
2085     /*
2086      * Add dependencies of root object to DAG in breadth order
2087      * by exploiting the fact that each new object get added
2088      * to the tail of the dagmembers list.
2089      */
2090     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2091 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2092 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2093 		continue;
2094 	    objlist_push_tail(&needed->obj->dldags, root);
2095 	    objlist_push_tail(&root->dagmembers, needed->obj);
2096 	}
2097     }
2098     root->dag_inited = true;
2099 }
2100 
2101 static void
2102 init_marker(Obj_Entry *marker)
2103 {
2104 
2105 	bzero(marker, sizeof(*marker));
2106 	marker->marker = true;
2107 }
2108 
2109 Obj_Entry *
2110 globallist_curr(const Obj_Entry *obj)
2111 {
2112 
2113 	for (;;) {
2114 		if (obj == NULL)
2115 			return (NULL);
2116 		if (!obj->marker)
2117 			return (__DECONST(Obj_Entry *, obj));
2118 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2119 	}
2120 }
2121 
2122 Obj_Entry *
2123 globallist_next(const Obj_Entry *obj)
2124 {
2125 
2126 	for (;;) {
2127 		obj = TAILQ_NEXT(obj, next);
2128 		if (obj == NULL)
2129 			return (NULL);
2130 		if (!obj->marker)
2131 			return (__DECONST(Obj_Entry *, obj));
2132 	}
2133 }
2134 
2135 /* Prevent the object from being unmapped while the bind lock is dropped. */
2136 static void
2137 hold_object(Obj_Entry *obj)
2138 {
2139 
2140 	obj->holdcount++;
2141 }
2142 
2143 static void
2144 unhold_object(Obj_Entry *obj)
2145 {
2146 
2147 	assert(obj->holdcount > 0);
2148 	if (--obj->holdcount == 0 && obj->unholdfree)
2149 		release_object(obj);
2150 }
2151 
2152 static void
2153 process_z(Obj_Entry *root)
2154 {
2155 	const Objlist_Entry *elm;
2156 	Obj_Entry *obj;
2157 
2158 	/*
2159 	 * Walk over object DAG and process every dependent object
2160 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2161 	 * to grow their own DAG.
2162 	 *
2163 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2164 	 * symlook_global() to work.
2165 	 *
2166 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2167 	 */
2168 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2169 		obj = elm->obj;
2170 		if (obj == NULL)
2171 			continue;
2172 		if (obj->z_nodelete && !obj->ref_nodel) {
2173 			dbg("obj %s -z nodelete", obj->path);
2174 			init_dag(obj);
2175 			ref_dag(obj);
2176 			obj->ref_nodel = true;
2177 		}
2178 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2179 			dbg("obj %s -z global", obj->path);
2180 			objlist_push_tail(&list_global, obj);
2181 			init_dag(obj);
2182 		}
2183 	}
2184 }
2185 /*
2186  * Initialize the dynamic linker.  The argument is the address at which
2187  * the dynamic linker has been mapped into memory.  The primary task of
2188  * this function is to relocate the dynamic linker.
2189  */
2190 static void
2191 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2192 {
2193     Obj_Entry objtmp;	/* Temporary rtld object */
2194     const Elf_Ehdr *ehdr;
2195     const Elf_Dyn *dyn_rpath;
2196     const Elf_Dyn *dyn_soname;
2197     const Elf_Dyn *dyn_runpath;
2198 
2199 #ifdef RTLD_INIT_PAGESIZES_EARLY
2200     /* The page size is required by the dynamic memory allocator. */
2201     init_pagesizes(aux_info);
2202 #endif
2203 
2204     /*
2205      * Conjure up an Obj_Entry structure for the dynamic linker.
2206      *
2207      * The "path" member can't be initialized yet because string constants
2208      * cannot yet be accessed. Below we will set it correctly.
2209      */
2210     memset(&objtmp, 0, sizeof(objtmp));
2211     objtmp.path = NULL;
2212     objtmp.rtld = true;
2213     objtmp.mapbase = mapbase;
2214 #ifdef PIC
2215     objtmp.relocbase = mapbase;
2216 #endif
2217 
2218     objtmp.dynamic = rtld_dynamic(&objtmp);
2219     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2220     assert(objtmp.needed == NULL);
2221 #if !defined(__mips__)
2222     /* MIPS has a bogus DT_TEXTREL. */
2223     assert(!objtmp.textrel);
2224 #endif
2225     /*
2226      * Temporarily put the dynamic linker entry into the object list, so
2227      * that symbols can be found.
2228      */
2229     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2230 
2231     ehdr = (Elf_Ehdr *)mapbase;
2232     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2233     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2234 
2235     /* Initialize the object list. */
2236     TAILQ_INIT(&obj_list);
2237 
2238     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2239     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2240 
2241 #ifndef RTLD_INIT_PAGESIZES_EARLY
2242     /* The page size is required by the dynamic memory allocator. */
2243     init_pagesizes(aux_info);
2244 #endif
2245 
2246     if (aux_info[AT_OSRELDATE] != NULL)
2247 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2248 
2249     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2250 
2251     /* Replace the path with a dynamically allocated copy. */
2252     obj_rtld.path = xstrdup(ld_path_rtld);
2253 
2254     r_debug.r_brk = r_debug_state;
2255     r_debug.r_state = RT_CONSISTENT;
2256 }
2257 
2258 /*
2259  * Retrieve the array of supported page sizes.  The kernel provides the page
2260  * sizes in increasing order.
2261  */
2262 static void
2263 init_pagesizes(Elf_Auxinfo **aux_info)
2264 {
2265 	static size_t psa[MAXPAGESIZES];
2266 	int mib[2];
2267 	size_t len, size;
2268 
2269 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2270 	    NULL) {
2271 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2272 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2273 	} else {
2274 		len = 2;
2275 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2276 			size = sizeof(psa);
2277 		else {
2278 			/* As a fallback, retrieve the base page size. */
2279 			size = sizeof(psa[0]);
2280 			if (aux_info[AT_PAGESZ] != NULL) {
2281 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2282 				goto psa_filled;
2283 			} else {
2284 				mib[0] = CTL_HW;
2285 				mib[1] = HW_PAGESIZE;
2286 				len = 2;
2287 			}
2288 		}
2289 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2290 			_rtld_error("sysctl for hw.pagesize(s) failed");
2291 			rtld_die();
2292 		}
2293 psa_filled:
2294 		pagesizes = psa;
2295 	}
2296 	npagesizes = size / sizeof(pagesizes[0]);
2297 	/* Discard any invalid entries at the end of the array. */
2298 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2299 		npagesizes--;
2300 }
2301 
2302 /*
2303  * Add the init functions from a needed object list (and its recursive
2304  * needed objects) to "list".  This is not used directly; it is a helper
2305  * function for initlist_add_objects().  The write lock must be held
2306  * when this function is called.
2307  */
2308 static void
2309 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2310 {
2311     /* Recursively process the successor needed objects. */
2312     if (needed->next != NULL)
2313 	initlist_add_neededs(needed->next, list);
2314 
2315     /* Process the current needed object. */
2316     if (needed->obj != NULL)
2317 	initlist_add_objects(needed->obj, needed->obj, list);
2318 }
2319 
2320 /*
2321  * Scan all of the DAGs rooted in the range of objects from "obj" to
2322  * "tail" and add their init functions to "list".  This recurses over
2323  * the DAGs and ensure the proper init ordering such that each object's
2324  * needed libraries are initialized before the object itself.  At the
2325  * same time, this function adds the objects to the global finalization
2326  * list "list_fini" in the opposite order.  The write lock must be
2327  * held when this function is called.
2328  */
2329 static void
2330 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2331 {
2332     Obj_Entry *nobj;
2333 
2334     if (obj->init_scanned || obj->init_done)
2335 	return;
2336     obj->init_scanned = true;
2337 
2338     /* Recursively process the successor objects. */
2339     nobj = globallist_next(obj);
2340     if (nobj != NULL && obj != tail)
2341 	initlist_add_objects(nobj, tail, list);
2342 
2343     /* Recursively process the needed objects. */
2344     if (obj->needed != NULL)
2345 	initlist_add_neededs(obj->needed, list);
2346     if (obj->needed_filtees != NULL)
2347 	initlist_add_neededs(obj->needed_filtees, list);
2348     if (obj->needed_aux_filtees != NULL)
2349 	initlist_add_neededs(obj->needed_aux_filtees, list);
2350 
2351     /* Add the object to the init list. */
2352     objlist_push_tail(list, obj);
2353 
2354     /* Add the object to the global fini list in the reverse order. */
2355     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2356       && !obj->on_fini_list) {
2357 	objlist_push_head(&list_fini, obj);
2358 	obj->on_fini_list = true;
2359     }
2360 }
2361 
2362 #ifndef FPTR_TARGET
2363 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2364 #endif
2365 
2366 static void
2367 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2368 {
2369     Needed_Entry *needed, *needed1;
2370 
2371     for (needed = n; needed != NULL; needed = needed->next) {
2372 	if (needed->obj != NULL) {
2373 	    dlclose_locked(needed->obj, lockstate);
2374 	    needed->obj = NULL;
2375 	}
2376     }
2377     for (needed = n; needed != NULL; needed = needed1) {
2378 	needed1 = needed->next;
2379 	free(needed);
2380     }
2381 }
2382 
2383 static void
2384 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2385 {
2386 
2387 	free_needed_filtees(obj->needed_filtees, lockstate);
2388 	obj->needed_filtees = NULL;
2389 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2390 	obj->needed_aux_filtees = NULL;
2391 	obj->filtees_loaded = false;
2392 }
2393 
2394 static void
2395 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2396     RtldLockState *lockstate)
2397 {
2398 
2399     for (; needed != NULL; needed = needed->next) {
2400 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2401 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2402 	  RTLD_LOCAL, lockstate);
2403     }
2404 }
2405 
2406 static void
2407 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2408 {
2409 
2410     lock_restart_for_upgrade(lockstate);
2411     if (!obj->filtees_loaded) {
2412 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2413 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2414 	obj->filtees_loaded = true;
2415     }
2416 }
2417 
2418 static int
2419 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2420 {
2421     Obj_Entry *obj1;
2422 
2423     for (; needed != NULL; needed = needed->next) {
2424 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2425 	  flags & ~RTLD_LO_NOLOAD);
2426 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2427 	    return (-1);
2428     }
2429     return (0);
2430 }
2431 
2432 /*
2433  * Given a shared object, traverse its list of needed objects, and load
2434  * each of them.  Returns 0 on success.  Generates an error message and
2435  * returns -1 on failure.
2436  */
2437 static int
2438 load_needed_objects(Obj_Entry *first, int flags)
2439 {
2440     Obj_Entry *obj;
2441 
2442     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2443 	if (obj->marker)
2444 	    continue;
2445 	if (process_needed(obj, obj->needed, flags) == -1)
2446 	    return (-1);
2447     }
2448     return (0);
2449 }
2450 
2451 static int
2452 load_preload_objects(void)
2453 {
2454     char *p = ld_preload;
2455     Obj_Entry *obj;
2456     static const char delim[] = " \t:;";
2457 
2458     if (p == NULL)
2459 	return 0;
2460 
2461     p += strspn(p, delim);
2462     while (*p != '\0') {
2463 	size_t len = strcspn(p, delim);
2464 	char savech;
2465 
2466 	savech = p[len];
2467 	p[len] = '\0';
2468 	obj = load_object(p, -1, NULL, 0);
2469 	if (obj == NULL)
2470 	    return -1;	/* XXX - cleanup */
2471 	obj->z_interpose = true;
2472 	p[len] = savech;
2473 	p += len;
2474 	p += strspn(p, delim);
2475     }
2476     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2477     return 0;
2478 }
2479 
2480 static const char *
2481 printable_path(const char *path)
2482 {
2483 
2484 	return (path == NULL ? "<unknown>" : path);
2485 }
2486 
2487 /*
2488  * Load a shared object into memory, if it is not already loaded.  The
2489  * object may be specified by name or by user-supplied file descriptor
2490  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2491  * duplicate is.
2492  *
2493  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2494  * on failure.
2495  */
2496 static Obj_Entry *
2497 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2498 {
2499     Obj_Entry *obj;
2500     int fd;
2501     struct stat sb;
2502     char *path;
2503 
2504     fd = -1;
2505     if (name != NULL) {
2506 	TAILQ_FOREACH(obj, &obj_list, next) {
2507 	    if (obj->marker || obj->doomed)
2508 		continue;
2509 	    if (object_match_name(obj, name))
2510 		return (obj);
2511 	}
2512 
2513 	path = find_library(name, refobj, &fd);
2514 	if (path == NULL)
2515 	    return (NULL);
2516     } else
2517 	path = NULL;
2518 
2519     if (fd >= 0) {
2520 	/*
2521 	 * search_library_pathfds() opens a fresh file descriptor for the
2522 	 * library, so there is no need to dup().
2523 	 */
2524     } else if (fd_u == -1) {
2525 	/*
2526 	 * If we didn't find a match by pathname, or the name is not
2527 	 * supplied, open the file and check again by device and inode.
2528 	 * This avoids false mismatches caused by multiple links or ".."
2529 	 * in pathnames.
2530 	 *
2531 	 * To avoid a race, we open the file and use fstat() rather than
2532 	 * using stat().
2533 	 */
2534 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2535 	    _rtld_error("Cannot open \"%s\"", path);
2536 	    free(path);
2537 	    return (NULL);
2538 	}
2539     } else {
2540 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2541 	if (fd == -1) {
2542 	    _rtld_error("Cannot dup fd");
2543 	    free(path);
2544 	    return (NULL);
2545 	}
2546     }
2547     if (fstat(fd, &sb) == -1) {
2548 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2549 	close(fd);
2550 	free(path);
2551 	return NULL;
2552     }
2553     TAILQ_FOREACH(obj, &obj_list, next) {
2554 	if (obj->marker || obj->doomed)
2555 	    continue;
2556 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2557 	    break;
2558     }
2559     if (obj != NULL && name != NULL) {
2560 	object_add_name(obj, name);
2561 	free(path);
2562 	close(fd);
2563 	return obj;
2564     }
2565     if (flags & RTLD_LO_NOLOAD) {
2566 	free(path);
2567 	close(fd);
2568 	return (NULL);
2569     }
2570 
2571     /* First use of this object, so we must map it in */
2572     obj = do_load_object(fd, name, path, &sb, flags);
2573     if (obj == NULL)
2574 	free(path);
2575     close(fd);
2576 
2577     return obj;
2578 }
2579 
2580 static Obj_Entry *
2581 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2582   int flags)
2583 {
2584     Obj_Entry *obj;
2585     struct statfs fs;
2586 
2587     /*
2588      * but first, make sure that environment variables haven't been
2589      * used to circumvent the noexec flag on a filesystem.
2590      */
2591     if (dangerous_ld_env) {
2592 	if (fstatfs(fd, &fs) != 0) {
2593 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2594 	    return NULL;
2595 	}
2596 	if (fs.f_flags & MNT_NOEXEC) {
2597 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2598 	    return NULL;
2599 	}
2600     }
2601     dbg("loading \"%s\"", printable_path(path));
2602     obj = map_object(fd, printable_path(path), sbp);
2603     if (obj == NULL)
2604         return NULL;
2605 
2606     /*
2607      * If DT_SONAME is present in the object, digest_dynamic2 already
2608      * added it to the object names.
2609      */
2610     if (name != NULL)
2611 	object_add_name(obj, name);
2612     obj->path = path;
2613     if (!digest_dynamic(obj, 0))
2614 	goto errp;
2615     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2616 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2617     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2618 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2619 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2620 	goto errp;
2621     }
2622     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2623       RTLD_LO_DLOPEN) {
2624 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2625 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2626 	goto errp;
2627     }
2628 
2629     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2630     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2631     obj_count++;
2632     obj_loads++;
2633     linkmap_add(obj);	/* for GDB & dlinfo() */
2634     max_stack_flags |= obj->stack_flags;
2635 
2636     dbg("  %p .. %p: %s", obj->mapbase,
2637          obj->mapbase + obj->mapsize - 1, obj->path);
2638     if (obj->textrel)
2639 	dbg("  WARNING: %s has impure text", obj->path);
2640     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2641 	obj->path);
2642 
2643     return (obj);
2644 
2645 errp:
2646     munmap(obj->mapbase, obj->mapsize);
2647     obj_free(obj);
2648     return (NULL);
2649 }
2650 
2651 static Obj_Entry *
2652 obj_from_addr(const void *addr)
2653 {
2654     Obj_Entry *obj;
2655 
2656     TAILQ_FOREACH(obj, &obj_list, next) {
2657 	if (obj->marker)
2658 	    continue;
2659 	if (addr < (void *) obj->mapbase)
2660 	    continue;
2661 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2662 	    return obj;
2663     }
2664     return NULL;
2665 }
2666 
2667 static void
2668 preinit_main(void)
2669 {
2670     Elf_Addr *preinit_addr;
2671     int index;
2672 
2673     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2674     if (preinit_addr == NULL)
2675 	return;
2676 
2677     for (index = 0; index < obj_main->preinit_array_num; index++) {
2678 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2679 	    dbg("calling preinit function for %s at %p", obj_main->path,
2680 	      (void *)preinit_addr[index]);
2681 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2682 	      0, 0, obj_main->path);
2683 	    call_init_pointer(obj_main, preinit_addr[index]);
2684 	}
2685     }
2686 }
2687 
2688 /*
2689  * Call the finalization functions for each of the objects in "list"
2690  * belonging to the DAG of "root" and referenced once. If NULL "root"
2691  * is specified, every finalization function will be called regardless
2692  * of the reference count and the list elements won't be freed. All of
2693  * the objects are expected to have non-NULL fini functions.
2694  */
2695 static void
2696 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2697 {
2698     Objlist_Entry *elm;
2699     char *saved_msg;
2700     Elf_Addr *fini_addr;
2701     int index;
2702 
2703     assert(root == NULL || root->refcount == 1);
2704 
2705     if (root != NULL)
2706 	root->doomed = true;
2707 
2708     /*
2709      * Preserve the current error message since a fini function might
2710      * call into the dynamic linker and overwrite it.
2711      */
2712     saved_msg = errmsg_save();
2713     do {
2714 	STAILQ_FOREACH(elm, list, link) {
2715 	    if (root != NULL && (elm->obj->refcount != 1 ||
2716 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2717 		continue;
2718 	    /* Remove object from fini list to prevent recursive invocation. */
2719 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2720 	    /* Ensure that new references cannot be acquired. */
2721 	    elm->obj->doomed = true;
2722 
2723 	    hold_object(elm->obj);
2724 	    lock_release(rtld_bind_lock, lockstate);
2725 	    /*
2726 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2727 	     * When this happens, DT_FINI_ARRAY is processed first.
2728 	     */
2729 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2730 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2731 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2732 		  index--) {
2733 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2734 			dbg("calling fini function for %s at %p",
2735 			    elm->obj->path, (void *)fini_addr[index]);
2736 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2737 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2738 			call_initfini_pointer(elm->obj, fini_addr[index]);
2739 		    }
2740 		}
2741 	    }
2742 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2743 		dbg("calling fini function for %s at %p", elm->obj->path,
2744 		    (void *)elm->obj->fini);
2745 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2746 		    0, 0, elm->obj->path);
2747 		call_initfini_pointer(elm->obj, elm->obj->fini);
2748 	    }
2749 	    wlock_acquire(rtld_bind_lock, lockstate);
2750 	    unhold_object(elm->obj);
2751 	    /* No need to free anything if process is going down. */
2752 	    if (root != NULL)
2753 	    	free(elm);
2754 	    /*
2755 	     * We must restart the list traversal after every fini call
2756 	     * because a dlclose() call from the fini function or from
2757 	     * another thread might have modified the reference counts.
2758 	     */
2759 	    break;
2760 	}
2761     } while (elm != NULL);
2762     errmsg_restore(saved_msg);
2763 }
2764 
2765 /*
2766  * Call the initialization functions for each of the objects in
2767  * "list".  All of the objects are expected to have non-NULL init
2768  * functions.
2769  */
2770 static void
2771 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2772 {
2773     Objlist_Entry *elm;
2774     Obj_Entry *obj;
2775     char *saved_msg;
2776     Elf_Addr *init_addr;
2777     void (*reg)(void (*)(void));
2778     int index;
2779 
2780     /*
2781      * Clean init_scanned flag so that objects can be rechecked and
2782      * possibly initialized earlier if any of vectors called below
2783      * cause the change by using dlopen.
2784      */
2785     TAILQ_FOREACH(obj, &obj_list, next) {
2786 	if (obj->marker)
2787 	    continue;
2788 	obj->init_scanned = false;
2789     }
2790 
2791     /*
2792      * Preserve the current error message since an init function might
2793      * call into the dynamic linker and overwrite it.
2794      */
2795     saved_msg = errmsg_save();
2796     STAILQ_FOREACH(elm, list, link) {
2797 	if (elm->obj->init_done) /* Initialized early. */
2798 	    continue;
2799 	/*
2800 	 * Race: other thread might try to use this object before current
2801 	 * one completes the initialization. Not much can be done here
2802 	 * without better locking.
2803 	 */
2804 	elm->obj->init_done = true;
2805 	hold_object(elm->obj);
2806 	reg = NULL;
2807 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2808 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2809 		    "__libc_atexit", lockstate);
2810 	}
2811 	lock_release(rtld_bind_lock, lockstate);
2812 	if (reg != NULL) {
2813 		reg(rtld_exit);
2814 		rtld_exit_ptr = rtld_nop_exit;
2815 	}
2816 
2817         /*
2818          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2819          * When this happens, DT_INIT is processed first.
2820          */
2821 	if (elm->obj->init != (Elf_Addr)NULL) {
2822 	    dbg("calling init function for %s at %p", elm->obj->path,
2823 	        (void *)elm->obj->init);
2824 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2825 	        0, 0, elm->obj->path);
2826 	    call_initfini_pointer(elm->obj, elm->obj->init);
2827 	}
2828 	init_addr = (Elf_Addr *)elm->obj->init_array;
2829 	if (init_addr != NULL) {
2830 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2831 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2832 		    dbg("calling init function for %s at %p", elm->obj->path,
2833 			(void *)init_addr[index]);
2834 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2835 			(void *)init_addr[index], 0, 0, elm->obj->path);
2836 		    call_init_pointer(elm->obj, init_addr[index]);
2837 		}
2838 	    }
2839 	}
2840 	wlock_acquire(rtld_bind_lock, lockstate);
2841 	unhold_object(elm->obj);
2842     }
2843     errmsg_restore(saved_msg);
2844 }
2845 
2846 static void
2847 objlist_clear(Objlist *list)
2848 {
2849     Objlist_Entry *elm;
2850 
2851     while (!STAILQ_EMPTY(list)) {
2852 	elm = STAILQ_FIRST(list);
2853 	STAILQ_REMOVE_HEAD(list, link);
2854 	free(elm);
2855     }
2856 }
2857 
2858 static Objlist_Entry *
2859 objlist_find(Objlist *list, const Obj_Entry *obj)
2860 {
2861     Objlist_Entry *elm;
2862 
2863     STAILQ_FOREACH(elm, list, link)
2864 	if (elm->obj == obj)
2865 	    return elm;
2866     return NULL;
2867 }
2868 
2869 static void
2870 objlist_init(Objlist *list)
2871 {
2872     STAILQ_INIT(list);
2873 }
2874 
2875 static void
2876 objlist_push_head(Objlist *list, Obj_Entry *obj)
2877 {
2878     Objlist_Entry *elm;
2879 
2880     elm = NEW(Objlist_Entry);
2881     elm->obj = obj;
2882     STAILQ_INSERT_HEAD(list, elm, link);
2883 }
2884 
2885 static void
2886 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2887 {
2888     Objlist_Entry *elm;
2889 
2890     elm = NEW(Objlist_Entry);
2891     elm->obj = obj;
2892     STAILQ_INSERT_TAIL(list, elm, link);
2893 }
2894 
2895 static void
2896 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2897 {
2898 	Objlist_Entry *elm, *listelm;
2899 
2900 	STAILQ_FOREACH(listelm, list, link) {
2901 		if (listelm->obj == listobj)
2902 			break;
2903 	}
2904 	elm = NEW(Objlist_Entry);
2905 	elm->obj = obj;
2906 	if (listelm != NULL)
2907 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2908 	else
2909 		STAILQ_INSERT_TAIL(list, elm, link);
2910 }
2911 
2912 static void
2913 objlist_remove(Objlist *list, Obj_Entry *obj)
2914 {
2915     Objlist_Entry *elm;
2916 
2917     if ((elm = objlist_find(list, obj)) != NULL) {
2918 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2919 	free(elm);
2920     }
2921 }
2922 
2923 /*
2924  * Relocate dag rooted in the specified object.
2925  * Returns 0 on success, or -1 on failure.
2926  */
2927 
2928 static int
2929 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2930     int flags, RtldLockState *lockstate)
2931 {
2932 	Objlist_Entry *elm;
2933 	int error;
2934 
2935 	error = 0;
2936 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2937 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2938 		    lockstate);
2939 		if (error == -1)
2940 			break;
2941 	}
2942 	return (error);
2943 }
2944 
2945 /*
2946  * Prepare for, or clean after, relocating an object marked with
2947  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2948  * segments are remapped read-write.  After relocations are done, the
2949  * segment's permissions are returned back to the modes specified in
2950  * the phdrs.  If any relocation happened, or always for wired
2951  * program, COW is triggered.
2952  */
2953 static int
2954 reloc_textrel_prot(Obj_Entry *obj, bool before)
2955 {
2956 	const Elf_Phdr *ph;
2957 	void *base;
2958 	size_t l, sz;
2959 	int prot;
2960 
2961 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2962 	    l--, ph++) {
2963 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2964 			continue;
2965 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2966 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2967 		    trunc_page(ph->p_vaddr);
2968 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2969 		if (mprotect(base, sz, prot) == -1) {
2970 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2971 			    obj->path, before ? "en" : "dis",
2972 			    rtld_strerror(errno));
2973 			return (-1);
2974 		}
2975 	}
2976 	return (0);
2977 }
2978 
2979 /*
2980  * Relocate single object.
2981  * Returns 0 on success, or -1 on failure.
2982  */
2983 static int
2984 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2985     int flags, RtldLockState *lockstate)
2986 {
2987 
2988 	if (obj->relocated)
2989 		return (0);
2990 	obj->relocated = true;
2991 	if (obj != rtldobj)
2992 		dbg("relocating \"%s\"", obj->path);
2993 
2994 	if (obj->symtab == NULL || obj->strtab == NULL ||
2995 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2996 		_rtld_error("%s: Shared object has no run-time symbol table",
2997 			    obj->path);
2998 		return (-1);
2999 	}
3000 
3001 	/* There are relocations to the write-protected text segment. */
3002 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3003 		return (-1);
3004 
3005 	/* Process the non-PLT non-IFUNC relocations. */
3006 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3007 		return (-1);
3008 
3009 	/* Re-protected the text segment. */
3010 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3011 		return (-1);
3012 
3013 	/* Set the special PLT or GOT entries. */
3014 	init_pltgot(obj);
3015 
3016 	/* Process the PLT relocations. */
3017 	if (reloc_plt(obj, flags, lockstate) == -1)
3018 		return (-1);
3019 	/* Relocate the jump slots if we are doing immediate binding. */
3020 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3021 	    lockstate) == -1)
3022 		return (-1);
3023 
3024 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3025 		return (-1);
3026 
3027 	/*
3028 	 * Set up the magic number and version in the Obj_Entry.  These
3029 	 * were checked in the crt1.o from the original ElfKit, so we
3030 	 * set them for backward compatibility.
3031 	 */
3032 	obj->magic = RTLD_MAGIC;
3033 	obj->version = RTLD_VERSION;
3034 
3035 	return (0);
3036 }
3037 
3038 /*
3039  * Relocate newly-loaded shared objects.  The argument is a pointer to
3040  * the Obj_Entry for the first such object.  All objects from the first
3041  * to the end of the list of objects are relocated.  Returns 0 on success,
3042  * or -1 on failure.
3043  */
3044 static int
3045 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3046     int flags, RtldLockState *lockstate)
3047 {
3048 	Obj_Entry *obj;
3049 	int error;
3050 
3051 	for (error = 0, obj = first;  obj != NULL;
3052 	    obj = TAILQ_NEXT(obj, next)) {
3053 		if (obj->marker)
3054 			continue;
3055 		error = relocate_object(obj, bind_now, rtldobj, flags,
3056 		    lockstate);
3057 		if (error == -1)
3058 			break;
3059 	}
3060 	return (error);
3061 }
3062 
3063 /*
3064  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3065  * referencing STT_GNU_IFUNC symbols is postponed till the other
3066  * relocations are done.  The indirect functions specified as
3067  * ifunc are allowed to call other symbols, so we need to have
3068  * objects relocated before asking for resolution from indirects.
3069  *
3070  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3071  * instead of the usual lazy handling of PLT slots.  It is
3072  * consistent with how GNU does it.
3073  */
3074 static int
3075 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3076     RtldLockState *lockstate)
3077 {
3078 
3079 	if (obj->ifuncs_resolved)
3080 		return (0);
3081 	obj->ifuncs_resolved = true;
3082 	if (!obj->irelative && !obj->irelative_nonplt &&
3083 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3084 		return (0);
3085 	if (obj_disable_relro(obj) == -1 ||
3086 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3087 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3088 	    lockstate) == -1) ||
3089 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3090 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3091 	    obj_enforce_relro(obj) == -1)
3092 		return (-1);
3093 	return (0);
3094 }
3095 
3096 static int
3097 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3098     RtldLockState *lockstate)
3099 {
3100 	Objlist_Entry *elm;
3101 	Obj_Entry *obj;
3102 
3103 	STAILQ_FOREACH(elm, list, link) {
3104 		obj = elm->obj;
3105 		if (obj->marker)
3106 			continue;
3107 		if (resolve_object_ifunc(obj, bind_now, flags,
3108 		    lockstate) == -1)
3109 			return (-1);
3110 	}
3111 	return (0);
3112 }
3113 
3114 /*
3115  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3116  * before the process exits.
3117  */
3118 static void
3119 rtld_exit(void)
3120 {
3121     RtldLockState lockstate;
3122 
3123     wlock_acquire(rtld_bind_lock, &lockstate);
3124     dbg("rtld_exit()");
3125     objlist_call_fini(&list_fini, NULL, &lockstate);
3126     /* No need to remove the items from the list, since we are exiting. */
3127     if (!libmap_disable)
3128         lm_fini();
3129     lock_release(rtld_bind_lock, &lockstate);
3130 }
3131 
3132 static void
3133 rtld_nop_exit(void)
3134 {
3135 }
3136 
3137 /*
3138  * Iterate over a search path, translate each element, and invoke the
3139  * callback on the result.
3140  */
3141 static void *
3142 path_enumerate(const char *path, path_enum_proc callback,
3143     const char *refobj_path, void *arg)
3144 {
3145     const char *trans;
3146     if (path == NULL)
3147 	return (NULL);
3148 
3149     path += strspn(path, ":;");
3150     while (*path != '\0') {
3151 	size_t len;
3152 	char  *res;
3153 
3154 	len = strcspn(path, ":;");
3155 	trans = lm_findn(refobj_path, path, len);
3156 	if (trans)
3157 	    res = callback(trans, strlen(trans), arg);
3158 	else
3159 	    res = callback(path, len, arg);
3160 
3161 	if (res != NULL)
3162 	    return (res);
3163 
3164 	path += len;
3165 	path += strspn(path, ":;");
3166     }
3167 
3168     return (NULL);
3169 }
3170 
3171 struct try_library_args {
3172     const char	*name;
3173     size_t	 namelen;
3174     char	*buffer;
3175     size_t	 buflen;
3176     int		 fd;
3177 };
3178 
3179 static void *
3180 try_library_path(const char *dir, size_t dirlen, void *param)
3181 {
3182     struct try_library_args *arg;
3183     int fd;
3184 
3185     arg = param;
3186     if (*dir == '/' || trust) {
3187 	char *pathname;
3188 
3189 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3190 		return (NULL);
3191 
3192 	pathname = arg->buffer;
3193 	strncpy(pathname, dir, dirlen);
3194 	pathname[dirlen] = '/';
3195 	strcpy(pathname + dirlen + 1, arg->name);
3196 
3197 	dbg("  Trying \"%s\"", pathname);
3198 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3199 	if (fd >= 0) {
3200 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3201 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3202 	    strcpy(pathname, arg->buffer);
3203 	    arg->fd = fd;
3204 	    return (pathname);
3205 	} else {
3206 	    dbg("  Failed to open \"%s\": %s",
3207 		pathname, rtld_strerror(errno));
3208 	}
3209     }
3210     return (NULL);
3211 }
3212 
3213 static char *
3214 search_library_path(const char *name, const char *path,
3215     const char *refobj_path, int *fdp)
3216 {
3217     char *p;
3218     struct try_library_args arg;
3219 
3220     if (path == NULL)
3221 	return NULL;
3222 
3223     arg.name = name;
3224     arg.namelen = strlen(name);
3225     arg.buffer = xmalloc(PATH_MAX);
3226     arg.buflen = PATH_MAX;
3227     arg.fd = -1;
3228 
3229     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3230     *fdp = arg.fd;
3231 
3232     free(arg.buffer);
3233 
3234     return (p);
3235 }
3236 
3237 
3238 /*
3239  * Finds the library with the given name using the directory descriptors
3240  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3241  *
3242  * Returns a freshly-opened close-on-exec file descriptor for the library,
3243  * or -1 if the library cannot be found.
3244  */
3245 static char *
3246 search_library_pathfds(const char *name, const char *path, int *fdp)
3247 {
3248 	char *envcopy, *fdstr, *found, *last_token;
3249 	size_t len;
3250 	int dirfd, fd;
3251 
3252 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3253 
3254 	/* Don't load from user-specified libdirs into setuid binaries. */
3255 	if (!trust)
3256 		return (NULL);
3257 
3258 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3259 	if (path == NULL)
3260 		return (NULL);
3261 
3262 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3263 	if (name[0] == '/') {
3264 		dbg("Absolute path (%s) passed to %s", name, __func__);
3265 		return (NULL);
3266 	}
3267 
3268 	/*
3269 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3270 	 * copy of the path, as strtok_r rewrites separator tokens
3271 	 * with '\0'.
3272 	 */
3273 	found = NULL;
3274 	envcopy = xstrdup(path);
3275 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3276 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3277 		dirfd = parse_integer(fdstr);
3278 		if (dirfd < 0) {
3279 			_rtld_error("failed to parse directory FD: '%s'",
3280 				fdstr);
3281 			break;
3282 		}
3283 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3284 		if (fd >= 0) {
3285 			*fdp = fd;
3286 			len = strlen(fdstr) + strlen(name) + 3;
3287 			found = xmalloc(len);
3288 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3289 				_rtld_error("error generating '%d/%s'",
3290 				    dirfd, name);
3291 				rtld_die();
3292 			}
3293 			dbg("open('%s') => %d", found, fd);
3294 			break;
3295 		}
3296 	}
3297 	free(envcopy);
3298 
3299 	return (found);
3300 }
3301 
3302 
3303 int
3304 dlclose(void *handle)
3305 {
3306 	RtldLockState lockstate;
3307 	int error;
3308 
3309 	wlock_acquire(rtld_bind_lock, &lockstate);
3310 	error = dlclose_locked(handle, &lockstate);
3311 	lock_release(rtld_bind_lock, &lockstate);
3312 	return (error);
3313 }
3314 
3315 static int
3316 dlclose_locked(void *handle, RtldLockState *lockstate)
3317 {
3318     Obj_Entry *root;
3319 
3320     root = dlcheck(handle);
3321     if (root == NULL)
3322 	return -1;
3323     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3324 	root->path);
3325 
3326     /* Unreference the object and its dependencies. */
3327     root->dl_refcount--;
3328 
3329     if (root->refcount == 1) {
3330 	/*
3331 	 * The object will be no longer referenced, so we must unload it.
3332 	 * First, call the fini functions.
3333 	 */
3334 	objlist_call_fini(&list_fini, root, lockstate);
3335 
3336 	unref_dag(root);
3337 
3338 	/* Finish cleaning up the newly-unreferenced objects. */
3339 	GDB_STATE(RT_DELETE,&root->linkmap);
3340 	unload_object(root, lockstate);
3341 	GDB_STATE(RT_CONSISTENT,NULL);
3342     } else
3343 	unref_dag(root);
3344 
3345     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3346     return 0;
3347 }
3348 
3349 char *
3350 dlerror(void)
3351 {
3352     char *msg = error_message;
3353     error_message = NULL;
3354     return msg;
3355 }
3356 
3357 /*
3358  * This function is deprecated and has no effect.
3359  */
3360 void
3361 dllockinit(void *context,
3362     void *(*_lock_create)(void *context) __unused,
3363     void (*_rlock_acquire)(void *lock) __unused,
3364     void (*_wlock_acquire)(void *lock)  __unused,
3365     void (*_lock_release)(void *lock) __unused,
3366     void (*_lock_destroy)(void *lock) __unused,
3367     void (*context_destroy)(void *context))
3368 {
3369     static void *cur_context;
3370     static void (*cur_context_destroy)(void *);
3371 
3372     /* Just destroy the context from the previous call, if necessary. */
3373     if (cur_context_destroy != NULL)
3374 	cur_context_destroy(cur_context);
3375     cur_context = context;
3376     cur_context_destroy = context_destroy;
3377 }
3378 
3379 void *
3380 dlopen(const char *name, int mode)
3381 {
3382 
3383 	return (rtld_dlopen(name, -1, mode));
3384 }
3385 
3386 void *
3387 fdlopen(int fd, int mode)
3388 {
3389 
3390 	return (rtld_dlopen(NULL, fd, mode));
3391 }
3392 
3393 static void *
3394 rtld_dlopen(const char *name, int fd, int mode)
3395 {
3396     RtldLockState lockstate;
3397     int lo_flags;
3398 
3399     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3400     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3401     if (ld_tracing != NULL) {
3402 	rlock_acquire(rtld_bind_lock, &lockstate);
3403 	if (sigsetjmp(lockstate.env, 0) != 0)
3404 	    lock_upgrade(rtld_bind_lock, &lockstate);
3405 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3406 	lock_release(rtld_bind_lock, &lockstate);
3407     }
3408     lo_flags = RTLD_LO_DLOPEN;
3409     if (mode & RTLD_NODELETE)
3410 	    lo_flags |= RTLD_LO_NODELETE;
3411     if (mode & RTLD_NOLOAD)
3412 	    lo_flags |= RTLD_LO_NOLOAD;
3413     if (mode & RTLD_DEEPBIND)
3414 	    lo_flags |= RTLD_LO_DEEPBIND;
3415     if (ld_tracing != NULL)
3416 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3417 
3418     return (dlopen_object(name, fd, obj_main, lo_flags,
3419       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3420 }
3421 
3422 static void
3423 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3424 {
3425 
3426 	obj->dl_refcount--;
3427 	unref_dag(obj);
3428 	if (obj->refcount == 0)
3429 		unload_object(obj, lockstate);
3430 }
3431 
3432 static Obj_Entry *
3433 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3434     int mode, RtldLockState *lockstate)
3435 {
3436     Obj_Entry *old_obj_tail;
3437     Obj_Entry *obj;
3438     Objlist initlist;
3439     RtldLockState mlockstate;
3440     int result;
3441 
3442     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3443       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3444       refobj->path, lo_flags, mode);
3445     objlist_init(&initlist);
3446 
3447     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3448 	wlock_acquire(rtld_bind_lock, &mlockstate);
3449 	lockstate = &mlockstate;
3450     }
3451     GDB_STATE(RT_ADD,NULL);
3452 
3453     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3454     obj = NULL;
3455     if (name == NULL && fd == -1) {
3456 	obj = obj_main;
3457 	obj->refcount++;
3458     } else {
3459 	obj = load_object(name, fd, refobj, lo_flags);
3460     }
3461 
3462     if (obj) {
3463 	obj->dl_refcount++;
3464 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3465 	    objlist_push_tail(&list_global, obj);
3466 	if (globallist_next(old_obj_tail) != NULL) {
3467 	    /* We loaded something new. */
3468 	    assert(globallist_next(old_obj_tail) == obj);
3469 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3470 		obj->symbolic = true;
3471 	    result = 0;
3472 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3473 	      obj->static_tls && !allocate_tls_offset(obj)) {
3474 		_rtld_error("%s: No space available "
3475 		  "for static Thread Local Storage", obj->path);
3476 		result = -1;
3477 	    }
3478 	    if (result != -1)
3479 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3480 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3481 	    init_dag(obj);
3482 	    ref_dag(obj);
3483 	    if (result != -1)
3484 		result = rtld_verify_versions(&obj->dagmembers);
3485 	    if (result != -1 && ld_tracing)
3486 		goto trace;
3487 	    if (result == -1 || relocate_object_dag(obj,
3488 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3489 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3490 	      lockstate) == -1) {
3491 		dlopen_cleanup(obj, lockstate);
3492 		obj = NULL;
3493 	    } else if (lo_flags & RTLD_LO_EARLY) {
3494 		/*
3495 		 * Do not call the init functions for early loaded
3496 		 * filtees.  The image is still not initialized enough
3497 		 * for them to work.
3498 		 *
3499 		 * Our object is found by the global object list and
3500 		 * will be ordered among all init calls done right
3501 		 * before transferring control to main.
3502 		 */
3503 	    } else {
3504 		/* Make list of init functions to call. */
3505 		initlist_add_objects(obj, obj, &initlist);
3506 	    }
3507 	    /*
3508 	     * Process all no_delete or global objects here, given
3509 	     * them own DAGs to prevent their dependencies from being
3510 	     * unloaded.  This has to be done after we have loaded all
3511 	     * of the dependencies, so that we do not miss any.
3512 	     */
3513 	    if (obj != NULL)
3514 		process_z(obj);
3515 	} else {
3516 	    /*
3517 	     * Bump the reference counts for objects on this DAG.  If
3518 	     * this is the first dlopen() call for the object that was
3519 	     * already loaded as a dependency, initialize the dag
3520 	     * starting at it.
3521 	     */
3522 	    init_dag(obj);
3523 	    ref_dag(obj);
3524 
3525 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3526 		goto trace;
3527 	}
3528 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3529 	  obj->z_nodelete) && !obj->ref_nodel) {
3530 	    dbg("obj %s nodelete", obj->path);
3531 	    ref_dag(obj);
3532 	    obj->z_nodelete = obj->ref_nodel = true;
3533 	}
3534     }
3535 
3536     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3537 	name);
3538     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3539 
3540     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3541 	map_stacks_exec(lockstate);
3542 	if (obj != NULL)
3543 	    distribute_static_tls(&initlist, lockstate);
3544     }
3545 
3546     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3547       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3548       lockstate) == -1) {
3549 	objlist_clear(&initlist);
3550 	dlopen_cleanup(obj, lockstate);
3551 	if (lockstate == &mlockstate)
3552 	    lock_release(rtld_bind_lock, lockstate);
3553 	return (NULL);
3554     }
3555 
3556     if (!(lo_flags & RTLD_LO_EARLY)) {
3557 	/* Call the init functions. */
3558 	objlist_call_init(&initlist, lockstate);
3559     }
3560     objlist_clear(&initlist);
3561     if (lockstate == &mlockstate)
3562 	lock_release(rtld_bind_lock, lockstate);
3563     return obj;
3564 trace:
3565     trace_loaded_objects(obj);
3566     if (lockstate == &mlockstate)
3567 	lock_release(rtld_bind_lock, lockstate);
3568     exit(0);
3569 }
3570 
3571 static void *
3572 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3573     int flags)
3574 {
3575     DoneList donelist;
3576     const Obj_Entry *obj, *defobj;
3577     const Elf_Sym *def;
3578     SymLook req;
3579     RtldLockState lockstate;
3580     tls_index ti;
3581     void *sym;
3582     int res;
3583 
3584     def = NULL;
3585     defobj = NULL;
3586     symlook_init(&req, name);
3587     req.ventry = ve;
3588     req.flags = flags | SYMLOOK_IN_PLT;
3589     req.lockstate = &lockstate;
3590 
3591     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3592     rlock_acquire(rtld_bind_lock, &lockstate);
3593     if (sigsetjmp(lockstate.env, 0) != 0)
3594 	    lock_upgrade(rtld_bind_lock, &lockstate);
3595     if (handle == NULL || handle == RTLD_NEXT ||
3596 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3597 
3598 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3599 	    _rtld_error("Cannot determine caller's shared object");
3600 	    lock_release(rtld_bind_lock, &lockstate);
3601 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3602 	    return NULL;
3603 	}
3604 	if (handle == NULL) {	/* Just the caller's shared object. */
3605 	    res = symlook_obj(&req, obj);
3606 	    if (res == 0) {
3607 		def = req.sym_out;
3608 		defobj = req.defobj_out;
3609 	    }
3610 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3611 		   handle == RTLD_SELF) { /* ... caller included */
3612 	    if (handle == RTLD_NEXT)
3613 		obj = globallist_next(obj);
3614 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3615 		if (obj->marker)
3616 		    continue;
3617 		res = symlook_obj(&req, obj);
3618 		if (res == 0) {
3619 		    if (def == NULL ||
3620 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3621 			def = req.sym_out;
3622 			defobj = req.defobj_out;
3623 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3624 			    break;
3625 		    }
3626 		}
3627 	    }
3628 	    /*
3629 	     * Search the dynamic linker itself, and possibly resolve the
3630 	     * symbol from there.  This is how the application links to
3631 	     * dynamic linker services such as dlopen.
3632 	     */
3633 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3634 		res = symlook_obj(&req, &obj_rtld);
3635 		if (res == 0) {
3636 		    def = req.sym_out;
3637 		    defobj = req.defobj_out;
3638 		}
3639 	    }
3640 	} else {
3641 	    assert(handle == RTLD_DEFAULT);
3642 	    res = symlook_default(&req, obj);
3643 	    if (res == 0) {
3644 		defobj = req.defobj_out;
3645 		def = req.sym_out;
3646 	    }
3647 	}
3648     } else {
3649 	if ((obj = dlcheck(handle)) == NULL) {
3650 	    lock_release(rtld_bind_lock, &lockstate);
3651 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3652 	    return NULL;
3653 	}
3654 
3655 	donelist_init(&donelist);
3656 	if (obj->mainprog) {
3657             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3658 	    res = symlook_global(&req, &donelist);
3659 	    if (res == 0) {
3660 		def = req.sym_out;
3661 		defobj = req.defobj_out;
3662 	    }
3663 	    /*
3664 	     * Search the dynamic linker itself, and possibly resolve the
3665 	     * symbol from there.  This is how the application links to
3666 	     * dynamic linker services such as dlopen.
3667 	     */
3668 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3669 		res = symlook_obj(&req, &obj_rtld);
3670 		if (res == 0) {
3671 		    def = req.sym_out;
3672 		    defobj = req.defobj_out;
3673 		}
3674 	    }
3675 	}
3676 	else {
3677 	    /* Search the whole DAG rooted at the given object. */
3678 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3679 	    if (res == 0) {
3680 		def = req.sym_out;
3681 		defobj = req.defobj_out;
3682 	    }
3683 	}
3684     }
3685 
3686     if (def != NULL) {
3687 	lock_release(rtld_bind_lock, &lockstate);
3688 
3689 	/*
3690 	 * The value required by the caller is derived from the value
3691 	 * of the symbol. this is simply the relocated value of the
3692 	 * symbol.
3693 	 */
3694 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3695 	    sym = make_function_pointer(def, defobj);
3696 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3697 	    sym = rtld_resolve_ifunc(defobj, def);
3698 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3699 	    ti.ti_module = defobj->tlsindex;
3700 	    ti.ti_offset = def->st_value;
3701 	    sym = __tls_get_addr(&ti);
3702 	} else
3703 	    sym = defobj->relocbase + def->st_value;
3704 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3705 	return (sym);
3706     }
3707 
3708     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3709       ve != NULL ? ve->name : "");
3710     lock_release(rtld_bind_lock, &lockstate);
3711     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3712     return NULL;
3713 }
3714 
3715 void *
3716 dlsym(void *handle, const char *name)
3717 {
3718 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3719 	    SYMLOOK_DLSYM);
3720 }
3721 
3722 dlfunc_t
3723 dlfunc(void *handle, const char *name)
3724 {
3725 	union {
3726 		void *d;
3727 		dlfunc_t f;
3728 	} rv;
3729 
3730 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3731 	    SYMLOOK_DLSYM);
3732 	return (rv.f);
3733 }
3734 
3735 void *
3736 dlvsym(void *handle, const char *name, const char *version)
3737 {
3738 	Ver_Entry ventry;
3739 
3740 	ventry.name = version;
3741 	ventry.file = NULL;
3742 	ventry.hash = elf_hash(version);
3743 	ventry.flags= 0;
3744 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3745 	    SYMLOOK_DLSYM);
3746 }
3747 
3748 int
3749 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3750 {
3751     const Obj_Entry *obj;
3752     RtldLockState lockstate;
3753 
3754     rlock_acquire(rtld_bind_lock, &lockstate);
3755     obj = obj_from_addr(addr);
3756     if (obj == NULL) {
3757         _rtld_error("No shared object contains address");
3758 	lock_release(rtld_bind_lock, &lockstate);
3759         return (0);
3760     }
3761     rtld_fill_dl_phdr_info(obj, phdr_info);
3762     lock_release(rtld_bind_lock, &lockstate);
3763     return (1);
3764 }
3765 
3766 int
3767 dladdr(const void *addr, Dl_info *info)
3768 {
3769     const Obj_Entry *obj;
3770     const Elf_Sym *def;
3771     void *symbol_addr;
3772     unsigned long symoffset;
3773     RtldLockState lockstate;
3774 
3775     rlock_acquire(rtld_bind_lock, &lockstate);
3776     obj = obj_from_addr(addr);
3777     if (obj == NULL) {
3778         _rtld_error("No shared object contains address");
3779 	lock_release(rtld_bind_lock, &lockstate);
3780         return 0;
3781     }
3782     info->dli_fname = obj->path;
3783     info->dli_fbase = obj->mapbase;
3784     info->dli_saddr = (void *)0;
3785     info->dli_sname = NULL;
3786 
3787     /*
3788      * Walk the symbol list looking for the symbol whose address is
3789      * closest to the address sent in.
3790      */
3791     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3792         def = obj->symtab + symoffset;
3793 
3794         /*
3795          * For skip the symbol if st_shndx is either SHN_UNDEF or
3796          * SHN_COMMON.
3797          */
3798         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3799             continue;
3800 
3801         /*
3802          * If the symbol is greater than the specified address, or if it
3803          * is further away from addr than the current nearest symbol,
3804          * then reject it.
3805          */
3806         symbol_addr = obj->relocbase + def->st_value;
3807         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3808             continue;
3809 
3810         /* Update our idea of the nearest symbol. */
3811         info->dli_sname = obj->strtab + def->st_name;
3812         info->dli_saddr = symbol_addr;
3813 
3814         /* Exact match? */
3815         if (info->dli_saddr == addr)
3816             break;
3817     }
3818     lock_release(rtld_bind_lock, &lockstate);
3819     return 1;
3820 }
3821 
3822 int
3823 dlinfo(void *handle, int request, void *p)
3824 {
3825     const Obj_Entry *obj;
3826     RtldLockState lockstate;
3827     int error;
3828 
3829     rlock_acquire(rtld_bind_lock, &lockstate);
3830 
3831     if (handle == NULL || handle == RTLD_SELF) {
3832 	void *retaddr;
3833 
3834 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3835 	if ((obj = obj_from_addr(retaddr)) == NULL)
3836 	    _rtld_error("Cannot determine caller's shared object");
3837     } else
3838 	obj = dlcheck(handle);
3839 
3840     if (obj == NULL) {
3841 	lock_release(rtld_bind_lock, &lockstate);
3842 	return (-1);
3843     }
3844 
3845     error = 0;
3846     switch (request) {
3847     case RTLD_DI_LINKMAP:
3848 	*((struct link_map const **)p) = &obj->linkmap;
3849 	break;
3850     case RTLD_DI_ORIGIN:
3851 	error = rtld_dirname(obj->path, p);
3852 	break;
3853 
3854     case RTLD_DI_SERINFOSIZE:
3855     case RTLD_DI_SERINFO:
3856 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3857 	break;
3858 
3859     default:
3860 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3861 	error = -1;
3862     }
3863 
3864     lock_release(rtld_bind_lock, &lockstate);
3865 
3866     return (error);
3867 }
3868 
3869 static void
3870 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3871 {
3872 
3873 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3874 	phdr_info->dlpi_name = obj->path;
3875 	phdr_info->dlpi_phdr = obj->phdr;
3876 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3877 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3878 	phdr_info->dlpi_tls_data = obj->tlsinit;
3879 	phdr_info->dlpi_adds = obj_loads;
3880 	phdr_info->dlpi_subs = obj_loads - obj_count;
3881 }
3882 
3883 int
3884 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3885 {
3886 	struct dl_phdr_info phdr_info;
3887 	Obj_Entry *obj, marker;
3888 	RtldLockState bind_lockstate, phdr_lockstate;
3889 	int error;
3890 
3891 	init_marker(&marker);
3892 	error = 0;
3893 
3894 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3895 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3896 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3897 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3898 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3899 		hold_object(obj);
3900 		lock_release(rtld_bind_lock, &bind_lockstate);
3901 
3902 		error = callback(&phdr_info, sizeof phdr_info, param);
3903 
3904 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3905 		unhold_object(obj);
3906 		obj = globallist_next(&marker);
3907 		TAILQ_REMOVE(&obj_list, &marker, next);
3908 		if (error != 0) {
3909 			lock_release(rtld_bind_lock, &bind_lockstate);
3910 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3911 			return (error);
3912 		}
3913 	}
3914 
3915 	if (error == 0) {
3916 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3917 		lock_release(rtld_bind_lock, &bind_lockstate);
3918 		error = callback(&phdr_info, sizeof(phdr_info), param);
3919 	}
3920 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3921 	return (error);
3922 }
3923 
3924 static void *
3925 fill_search_info(const char *dir, size_t dirlen, void *param)
3926 {
3927     struct fill_search_info_args *arg;
3928 
3929     arg = param;
3930 
3931     if (arg->request == RTLD_DI_SERINFOSIZE) {
3932 	arg->serinfo->dls_cnt ++;
3933 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3934     } else {
3935 	struct dl_serpath *s_entry;
3936 
3937 	s_entry = arg->serpath;
3938 	s_entry->dls_name  = arg->strspace;
3939 	s_entry->dls_flags = arg->flags;
3940 
3941 	strncpy(arg->strspace, dir, dirlen);
3942 	arg->strspace[dirlen] = '\0';
3943 
3944 	arg->strspace += dirlen + 1;
3945 	arg->serpath++;
3946     }
3947 
3948     return (NULL);
3949 }
3950 
3951 static int
3952 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3953 {
3954     struct dl_serinfo _info;
3955     struct fill_search_info_args args;
3956 
3957     args.request = RTLD_DI_SERINFOSIZE;
3958     args.serinfo = &_info;
3959 
3960     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3961     _info.dls_cnt  = 0;
3962 
3963     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3964     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3965     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3966     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3967     if (!obj->z_nodeflib)
3968       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3969 
3970 
3971     if (request == RTLD_DI_SERINFOSIZE) {
3972 	info->dls_size = _info.dls_size;
3973 	info->dls_cnt = _info.dls_cnt;
3974 	return (0);
3975     }
3976 
3977     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3978 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3979 	return (-1);
3980     }
3981 
3982     args.request  = RTLD_DI_SERINFO;
3983     args.serinfo  = info;
3984     args.serpath  = &info->dls_serpath[0];
3985     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3986 
3987     args.flags = LA_SER_RUNPATH;
3988     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3989 	return (-1);
3990 
3991     args.flags = LA_SER_LIBPATH;
3992     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3993 	return (-1);
3994 
3995     args.flags = LA_SER_RUNPATH;
3996     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3997 	return (-1);
3998 
3999     args.flags = LA_SER_CONFIG;
4000     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4001       != NULL)
4002 	return (-1);
4003 
4004     args.flags = LA_SER_DEFAULT;
4005     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4006       fill_search_info, NULL, &args) != NULL)
4007 	return (-1);
4008     return (0);
4009 }
4010 
4011 static int
4012 rtld_dirname(const char *path, char *bname)
4013 {
4014     const char *endp;
4015 
4016     /* Empty or NULL string gets treated as "." */
4017     if (path == NULL || *path == '\0') {
4018 	bname[0] = '.';
4019 	bname[1] = '\0';
4020 	return (0);
4021     }
4022 
4023     /* Strip trailing slashes */
4024     endp = path + strlen(path) - 1;
4025     while (endp > path && *endp == '/')
4026 	endp--;
4027 
4028     /* Find the start of the dir */
4029     while (endp > path && *endp != '/')
4030 	endp--;
4031 
4032     /* Either the dir is "/" or there are no slashes */
4033     if (endp == path) {
4034 	bname[0] = *endp == '/' ? '/' : '.';
4035 	bname[1] = '\0';
4036 	return (0);
4037     } else {
4038 	do {
4039 	    endp--;
4040 	} while (endp > path && *endp == '/');
4041     }
4042 
4043     if (endp - path + 2 > PATH_MAX)
4044     {
4045 	_rtld_error("Filename is too long: %s", path);
4046 	return(-1);
4047     }
4048 
4049     strncpy(bname, path, endp - path + 1);
4050     bname[endp - path + 1] = '\0';
4051     return (0);
4052 }
4053 
4054 static int
4055 rtld_dirname_abs(const char *path, char *base)
4056 {
4057 	char *last;
4058 
4059 	if (realpath(path, base) == NULL) {
4060 		_rtld_error("realpath \"%s\" failed (%s)", path,
4061 		    rtld_strerror(errno));
4062 		return (-1);
4063 	}
4064 	dbg("%s -> %s", path, base);
4065 	last = strrchr(base, '/');
4066 	if (last == NULL) {
4067 		_rtld_error("non-abs result from realpath \"%s\"", path);
4068 		return (-1);
4069 	}
4070 	if (last != base)
4071 		*last = '\0';
4072 	return (0);
4073 }
4074 
4075 static void
4076 linkmap_add(Obj_Entry *obj)
4077 {
4078 	struct link_map *l, *prev;
4079 
4080 	l = &obj->linkmap;
4081 	l->l_name = obj->path;
4082 	l->l_base = obj->mapbase;
4083 	l->l_ld = obj->dynamic;
4084 	l->l_addr = obj->relocbase;
4085 
4086 	if (r_debug.r_map == NULL) {
4087 		r_debug.r_map = l;
4088 		return;
4089 	}
4090 
4091 	/*
4092 	 * Scan to the end of the list, but not past the entry for the
4093 	 * dynamic linker, which we want to keep at the very end.
4094 	 */
4095 	for (prev = r_debug.r_map;
4096 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4097 	     prev = prev->l_next)
4098 		;
4099 
4100 	/* Link in the new entry. */
4101 	l->l_prev = prev;
4102 	l->l_next = prev->l_next;
4103 	if (l->l_next != NULL)
4104 		l->l_next->l_prev = l;
4105 	prev->l_next = l;
4106 }
4107 
4108 static void
4109 linkmap_delete(Obj_Entry *obj)
4110 {
4111 	struct link_map *l;
4112 
4113 	l = &obj->linkmap;
4114 	if (l->l_prev == NULL) {
4115 		if ((r_debug.r_map = l->l_next) != NULL)
4116 			l->l_next->l_prev = NULL;
4117 		return;
4118 	}
4119 
4120 	if ((l->l_prev->l_next = l->l_next) != NULL)
4121 		l->l_next->l_prev = l->l_prev;
4122 }
4123 
4124 /*
4125  * Function for the debugger to set a breakpoint on to gain control.
4126  *
4127  * The two parameters allow the debugger to easily find and determine
4128  * what the runtime loader is doing and to whom it is doing it.
4129  *
4130  * When the loadhook trap is hit (r_debug_state, set at program
4131  * initialization), the arguments can be found on the stack:
4132  *
4133  *  +8   struct link_map *m
4134  *  +4   struct r_debug  *rd
4135  *  +0   RetAddr
4136  */
4137 void
4138 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4139 {
4140     /*
4141      * The following is a hack to force the compiler to emit calls to
4142      * this function, even when optimizing.  If the function is empty,
4143      * the compiler is not obliged to emit any code for calls to it,
4144      * even when marked __noinline.  However, gdb depends on those
4145      * calls being made.
4146      */
4147     __compiler_membar();
4148 }
4149 
4150 /*
4151  * A function called after init routines have completed. This can be used to
4152  * break before a program's entry routine is called, and can be used when
4153  * main is not available in the symbol table.
4154  */
4155 void
4156 _r_debug_postinit(struct link_map *m __unused)
4157 {
4158 
4159 	/* See r_debug_state(). */
4160 	__compiler_membar();
4161 }
4162 
4163 static void
4164 release_object(Obj_Entry *obj)
4165 {
4166 
4167 	if (obj->holdcount > 0) {
4168 		obj->unholdfree = true;
4169 		return;
4170 	}
4171 	munmap(obj->mapbase, obj->mapsize);
4172 	linkmap_delete(obj);
4173 	obj_free(obj);
4174 }
4175 
4176 /*
4177  * Get address of the pointer variable in the main program.
4178  * Prefer non-weak symbol over the weak one.
4179  */
4180 static const void **
4181 get_program_var_addr(const char *name, RtldLockState *lockstate)
4182 {
4183     SymLook req;
4184     DoneList donelist;
4185 
4186     symlook_init(&req, name);
4187     req.lockstate = lockstate;
4188     donelist_init(&donelist);
4189     if (symlook_global(&req, &donelist) != 0)
4190 	return (NULL);
4191     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4192 	return ((const void **)make_function_pointer(req.sym_out,
4193 	  req.defobj_out));
4194     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4195 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4196     else
4197 	return ((const void **)(req.defobj_out->relocbase +
4198 	  req.sym_out->st_value));
4199 }
4200 
4201 /*
4202  * Set a pointer variable in the main program to the given value.  This
4203  * is used to set key variables such as "environ" before any of the
4204  * init functions are called.
4205  */
4206 static void
4207 set_program_var(const char *name, const void *value)
4208 {
4209     const void **addr;
4210 
4211     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4212 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4213 	*addr = value;
4214     }
4215 }
4216 
4217 /*
4218  * Search the global objects, including dependencies and main object,
4219  * for the given symbol.
4220  */
4221 static int
4222 symlook_global(SymLook *req, DoneList *donelist)
4223 {
4224     SymLook req1;
4225     const Objlist_Entry *elm;
4226     int res;
4227 
4228     symlook_init_from_req(&req1, req);
4229 
4230     /* Search all objects loaded at program start up. */
4231     if (req->defobj_out == NULL ||
4232       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4233 	res = symlook_list(&req1, &list_main, donelist);
4234 	if (res == 0 && (req->defobj_out == NULL ||
4235 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4236 	    req->sym_out = req1.sym_out;
4237 	    req->defobj_out = req1.defobj_out;
4238 	    assert(req->defobj_out != NULL);
4239 	}
4240     }
4241 
4242     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4243     STAILQ_FOREACH(elm, &list_global, link) {
4244 	if (req->defobj_out != NULL &&
4245 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4246 	    break;
4247 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4248 	if (res == 0 && (req->defobj_out == NULL ||
4249 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4250 	    req->sym_out = req1.sym_out;
4251 	    req->defobj_out = req1.defobj_out;
4252 	    assert(req->defobj_out != NULL);
4253 	}
4254     }
4255 
4256     return (req->sym_out != NULL ? 0 : ESRCH);
4257 }
4258 
4259 /*
4260  * Given a symbol name in a referencing object, find the corresponding
4261  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4262  * no definition was found.  Returns a pointer to the Obj_Entry of the
4263  * defining object via the reference parameter DEFOBJ_OUT.
4264  */
4265 static int
4266 symlook_default(SymLook *req, const Obj_Entry *refobj)
4267 {
4268     DoneList donelist;
4269     const Objlist_Entry *elm;
4270     SymLook req1;
4271     int res;
4272 
4273     donelist_init(&donelist);
4274     symlook_init_from_req(&req1, req);
4275 
4276     /*
4277      * Look first in the referencing object if linked symbolically,
4278      * and similarly handle protected symbols.
4279      */
4280     res = symlook_obj(&req1, refobj);
4281     if (res == 0 && (refobj->symbolic ||
4282       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4283 	req->sym_out = req1.sym_out;
4284 	req->defobj_out = req1.defobj_out;
4285 	assert(req->defobj_out != NULL);
4286     }
4287     if (refobj->symbolic || req->defobj_out != NULL)
4288 	donelist_check(&donelist, refobj);
4289 
4290     symlook_global(req, &donelist);
4291 
4292     /* Search all dlopened DAGs containing the referencing object. */
4293     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4294 	if (req->sym_out != NULL &&
4295 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4296 	    break;
4297 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4298 	if (res == 0 && (req->sym_out == NULL ||
4299 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4300 	    req->sym_out = req1.sym_out;
4301 	    req->defobj_out = req1.defobj_out;
4302 	    assert(req->defobj_out != NULL);
4303 	}
4304     }
4305 
4306     /*
4307      * Search the dynamic linker itself, and possibly resolve the
4308      * symbol from there.  This is how the application links to
4309      * dynamic linker services such as dlopen.
4310      */
4311     if (req->sym_out == NULL ||
4312       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4313 	res = symlook_obj(&req1, &obj_rtld);
4314 	if (res == 0) {
4315 	    req->sym_out = req1.sym_out;
4316 	    req->defobj_out = req1.defobj_out;
4317 	    assert(req->defobj_out != NULL);
4318 	}
4319     }
4320 
4321     return (req->sym_out != NULL ? 0 : ESRCH);
4322 }
4323 
4324 static int
4325 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4326 {
4327     const Elf_Sym *def;
4328     const Obj_Entry *defobj;
4329     const Objlist_Entry *elm;
4330     SymLook req1;
4331     int res;
4332 
4333     def = NULL;
4334     defobj = NULL;
4335     STAILQ_FOREACH(elm, objlist, link) {
4336 	if (donelist_check(dlp, elm->obj))
4337 	    continue;
4338 	symlook_init_from_req(&req1, req);
4339 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4340 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4341 		def = req1.sym_out;
4342 		defobj = req1.defobj_out;
4343 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4344 		    break;
4345 	    }
4346 	}
4347     }
4348     if (def != NULL) {
4349 	req->sym_out = def;
4350 	req->defobj_out = defobj;
4351 	return (0);
4352     }
4353     return (ESRCH);
4354 }
4355 
4356 /*
4357  * Search the chain of DAGS cointed to by the given Needed_Entry
4358  * for a symbol of the given name.  Each DAG is scanned completely
4359  * before advancing to the next one.  Returns a pointer to the symbol,
4360  * or NULL if no definition was found.
4361  */
4362 static int
4363 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4364 {
4365     const Elf_Sym *def;
4366     const Needed_Entry *n;
4367     const Obj_Entry *defobj;
4368     SymLook req1;
4369     int res;
4370 
4371     def = NULL;
4372     defobj = NULL;
4373     symlook_init_from_req(&req1, req);
4374     for (n = needed; n != NULL; n = n->next) {
4375 	if (n->obj == NULL ||
4376 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4377 	    continue;
4378 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4379 	    def = req1.sym_out;
4380 	    defobj = req1.defobj_out;
4381 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4382 		break;
4383 	}
4384     }
4385     if (def != NULL) {
4386 	req->sym_out = def;
4387 	req->defobj_out = defobj;
4388 	return (0);
4389     }
4390     return (ESRCH);
4391 }
4392 
4393 /*
4394  * Search the symbol table of a single shared object for a symbol of
4395  * the given name and version, if requested.  Returns a pointer to the
4396  * symbol, or NULL if no definition was found.  If the object is
4397  * filter, return filtered symbol from filtee.
4398  *
4399  * The symbol's hash value is passed in for efficiency reasons; that
4400  * eliminates many recomputations of the hash value.
4401  */
4402 int
4403 symlook_obj(SymLook *req, const Obj_Entry *obj)
4404 {
4405     DoneList donelist;
4406     SymLook req1;
4407     int flags, res, mres;
4408 
4409     /*
4410      * If there is at least one valid hash at this point, we prefer to
4411      * use the faster GNU version if available.
4412      */
4413     if (obj->valid_hash_gnu)
4414 	mres = symlook_obj1_gnu(req, obj);
4415     else if (obj->valid_hash_sysv)
4416 	mres = symlook_obj1_sysv(req, obj);
4417     else
4418 	return (EINVAL);
4419 
4420     if (mres == 0) {
4421 	if (obj->needed_filtees != NULL) {
4422 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4423 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4424 	    donelist_init(&donelist);
4425 	    symlook_init_from_req(&req1, req);
4426 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4427 	    if (res == 0) {
4428 		req->sym_out = req1.sym_out;
4429 		req->defobj_out = req1.defobj_out;
4430 	    }
4431 	    return (res);
4432 	}
4433 	if (obj->needed_aux_filtees != NULL) {
4434 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4435 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4436 	    donelist_init(&donelist);
4437 	    symlook_init_from_req(&req1, req);
4438 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4439 	    if (res == 0) {
4440 		req->sym_out = req1.sym_out;
4441 		req->defobj_out = req1.defobj_out;
4442 		return (res);
4443 	    }
4444 	}
4445     }
4446     return (mres);
4447 }
4448 
4449 /* Symbol match routine common to both hash functions */
4450 static bool
4451 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4452     const unsigned long symnum)
4453 {
4454 	Elf_Versym verndx;
4455 	const Elf_Sym *symp;
4456 	const char *strp;
4457 
4458 	symp = obj->symtab + symnum;
4459 	strp = obj->strtab + symp->st_name;
4460 
4461 	switch (ELF_ST_TYPE(symp->st_info)) {
4462 	case STT_FUNC:
4463 	case STT_NOTYPE:
4464 	case STT_OBJECT:
4465 	case STT_COMMON:
4466 	case STT_GNU_IFUNC:
4467 		if (symp->st_value == 0)
4468 			return (false);
4469 		/* fallthrough */
4470 	case STT_TLS:
4471 		if (symp->st_shndx != SHN_UNDEF)
4472 			break;
4473 #ifndef __mips__
4474 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4475 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4476 			break;
4477 #endif
4478 		/* fallthrough */
4479 	default:
4480 		return (false);
4481 	}
4482 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4483 		return (false);
4484 
4485 	if (req->ventry == NULL) {
4486 		if (obj->versyms != NULL) {
4487 			verndx = VER_NDX(obj->versyms[symnum]);
4488 			if (verndx > obj->vernum) {
4489 				_rtld_error(
4490 				    "%s: symbol %s references wrong version %d",
4491 				    obj->path, obj->strtab + symnum, verndx);
4492 				return (false);
4493 			}
4494 			/*
4495 			 * If we are not called from dlsym (i.e. this
4496 			 * is a normal relocation from unversioned
4497 			 * binary), accept the symbol immediately if
4498 			 * it happens to have first version after this
4499 			 * shared object became versioned.  Otherwise,
4500 			 * if symbol is versioned and not hidden,
4501 			 * remember it. If it is the only symbol with
4502 			 * this name exported by the shared object, it
4503 			 * will be returned as a match by the calling
4504 			 * function. If symbol is global (verndx < 2)
4505 			 * accept it unconditionally.
4506 			 */
4507 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4508 			    verndx == VER_NDX_GIVEN) {
4509 				result->sym_out = symp;
4510 				return (true);
4511 			}
4512 			else if (verndx >= VER_NDX_GIVEN) {
4513 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4514 				    == 0) {
4515 					if (result->vsymp == NULL)
4516 						result->vsymp = symp;
4517 					result->vcount++;
4518 				}
4519 				return (false);
4520 			}
4521 		}
4522 		result->sym_out = symp;
4523 		return (true);
4524 	}
4525 	if (obj->versyms == NULL) {
4526 		if (object_match_name(obj, req->ventry->name)) {
4527 			_rtld_error("%s: object %s should provide version %s "
4528 			    "for symbol %s", obj_rtld.path, obj->path,
4529 			    req->ventry->name, obj->strtab + symnum);
4530 			return (false);
4531 		}
4532 	} else {
4533 		verndx = VER_NDX(obj->versyms[symnum]);
4534 		if (verndx > obj->vernum) {
4535 			_rtld_error("%s: symbol %s references wrong version %d",
4536 			    obj->path, obj->strtab + symnum, verndx);
4537 			return (false);
4538 		}
4539 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4540 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4541 			/*
4542 			 * Version does not match. Look if this is a
4543 			 * global symbol and if it is not hidden. If
4544 			 * global symbol (verndx < 2) is available,
4545 			 * use it. Do not return symbol if we are
4546 			 * called by dlvsym, because dlvsym looks for
4547 			 * a specific version and default one is not
4548 			 * what dlvsym wants.
4549 			 */
4550 			if ((req->flags & SYMLOOK_DLSYM) ||
4551 			    (verndx >= VER_NDX_GIVEN) ||
4552 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4553 				return (false);
4554 		}
4555 	}
4556 	result->sym_out = symp;
4557 	return (true);
4558 }
4559 
4560 /*
4561  * Search for symbol using SysV hash function.
4562  * obj->buckets is known not to be NULL at this point; the test for this was
4563  * performed with the obj->valid_hash_sysv assignment.
4564  */
4565 static int
4566 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4567 {
4568 	unsigned long symnum;
4569 	Sym_Match_Result matchres;
4570 
4571 	matchres.sym_out = NULL;
4572 	matchres.vsymp = NULL;
4573 	matchres.vcount = 0;
4574 
4575 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4576 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4577 		if (symnum >= obj->nchains)
4578 			return (ESRCH);	/* Bad object */
4579 
4580 		if (matched_symbol(req, obj, &matchres, symnum)) {
4581 			req->sym_out = matchres.sym_out;
4582 			req->defobj_out = obj;
4583 			return (0);
4584 		}
4585 	}
4586 	if (matchres.vcount == 1) {
4587 		req->sym_out = matchres.vsymp;
4588 		req->defobj_out = obj;
4589 		return (0);
4590 	}
4591 	return (ESRCH);
4592 }
4593 
4594 /* Search for symbol using GNU hash function */
4595 static int
4596 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4597 {
4598 	Elf_Addr bloom_word;
4599 	const Elf32_Word *hashval;
4600 	Elf32_Word bucket;
4601 	Sym_Match_Result matchres;
4602 	unsigned int h1, h2;
4603 	unsigned long symnum;
4604 
4605 	matchres.sym_out = NULL;
4606 	matchres.vsymp = NULL;
4607 	matchres.vcount = 0;
4608 
4609 	/* Pick right bitmask word from Bloom filter array */
4610 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4611 	    obj->maskwords_bm_gnu];
4612 
4613 	/* Calculate modulus word size of gnu hash and its derivative */
4614 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4615 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4616 
4617 	/* Filter out the "definitely not in set" queries */
4618 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4619 		return (ESRCH);
4620 
4621 	/* Locate hash chain and corresponding value element*/
4622 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4623 	if (bucket == 0)
4624 		return (ESRCH);
4625 	hashval = &obj->chain_zero_gnu[bucket];
4626 	do {
4627 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4628 			symnum = hashval - obj->chain_zero_gnu;
4629 			if (matched_symbol(req, obj, &matchres, symnum)) {
4630 				req->sym_out = matchres.sym_out;
4631 				req->defobj_out = obj;
4632 				return (0);
4633 			}
4634 		}
4635 	} while ((*hashval++ & 1) == 0);
4636 	if (matchres.vcount == 1) {
4637 		req->sym_out = matchres.vsymp;
4638 		req->defobj_out = obj;
4639 		return (0);
4640 	}
4641 	return (ESRCH);
4642 }
4643 
4644 static void
4645 trace_loaded_objects(Obj_Entry *obj)
4646 {
4647     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4648     int c;
4649 
4650     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4651 	main_local = "";
4652 
4653     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4654 	fmt1 = "\t%o => %p (%x)\n";
4655 
4656     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4657 	fmt2 = "\t%o (%x)\n";
4658 
4659     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4660 
4661     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4662 	Needed_Entry *needed;
4663 	const char *name, *path;
4664 	bool is_lib;
4665 
4666 	if (obj->marker)
4667 	    continue;
4668 	if (list_containers && obj->needed != NULL)
4669 	    rtld_printf("%s:\n", obj->path);
4670 	for (needed = obj->needed; needed; needed = needed->next) {
4671 	    if (needed->obj != NULL) {
4672 		if (needed->obj->traced && !list_containers)
4673 		    continue;
4674 		needed->obj->traced = true;
4675 		path = needed->obj->path;
4676 	    } else
4677 		path = "not found";
4678 
4679 	    name = obj->strtab + needed->name;
4680 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4681 
4682 	    fmt = is_lib ? fmt1 : fmt2;
4683 	    while ((c = *fmt++) != '\0') {
4684 		switch (c) {
4685 		default:
4686 		    rtld_putchar(c);
4687 		    continue;
4688 		case '\\':
4689 		    switch (c = *fmt) {
4690 		    case '\0':
4691 			continue;
4692 		    case 'n':
4693 			rtld_putchar('\n');
4694 			break;
4695 		    case 't':
4696 			rtld_putchar('\t');
4697 			break;
4698 		    }
4699 		    break;
4700 		case '%':
4701 		    switch (c = *fmt) {
4702 		    case '\0':
4703 			continue;
4704 		    case '%':
4705 		    default:
4706 			rtld_putchar(c);
4707 			break;
4708 		    case 'A':
4709 			rtld_putstr(main_local);
4710 			break;
4711 		    case 'a':
4712 			rtld_putstr(obj_main->path);
4713 			break;
4714 		    case 'o':
4715 			rtld_putstr(name);
4716 			break;
4717 #if 0
4718 		    case 'm':
4719 			rtld_printf("%d", sodp->sod_major);
4720 			break;
4721 		    case 'n':
4722 			rtld_printf("%d", sodp->sod_minor);
4723 			break;
4724 #endif
4725 		    case 'p':
4726 			rtld_putstr(path);
4727 			break;
4728 		    case 'x':
4729 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4730 			  0);
4731 			break;
4732 		    }
4733 		    break;
4734 		}
4735 		++fmt;
4736 	    }
4737 	}
4738     }
4739 }
4740 
4741 /*
4742  * Unload a dlopened object and its dependencies from memory and from
4743  * our data structures.  It is assumed that the DAG rooted in the
4744  * object has already been unreferenced, and that the object has a
4745  * reference count of 0.
4746  */
4747 static void
4748 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4749 {
4750 	Obj_Entry marker, *obj, *next;
4751 
4752 	assert(root->refcount == 0);
4753 
4754 	/*
4755 	 * Pass over the DAG removing unreferenced objects from
4756 	 * appropriate lists.
4757 	 */
4758 	unlink_object(root);
4759 
4760 	/* Unmap all objects that are no longer referenced. */
4761 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4762 		next = TAILQ_NEXT(obj, next);
4763 		if (obj->marker || obj->refcount != 0)
4764 			continue;
4765 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4766 		    obj->mapsize, 0, obj->path);
4767 		dbg("unloading \"%s\"", obj->path);
4768 		/*
4769 		 * Unlink the object now to prevent new references from
4770 		 * being acquired while the bind lock is dropped in
4771 		 * recursive dlclose() invocations.
4772 		 */
4773 		TAILQ_REMOVE(&obj_list, obj, next);
4774 		obj_count--;
4775 
4776 		if (obj->filtees_loaded) {
4777 			if (next != NULL) {
4778 				init_marker(&marker);
4779 				TAILQ_INSERT_BEFORE(next, &marker, next);
4780 				unload_filtees(obj, lockstate);
4781 				next = TAILQ_NEXT(&marker, next);
4782 				TAILQ_REMOVE(&obj_list, &marker, next);
4783 			} else
4784 				unload_filtees(obj, lockstate);
4785 		}
4786 		release_object(obj);
4787 	}
4788 }
4789 
4790 static void
4791 unlink_object(Obj_Entry *root)
4792 {
4793     Objlist_Entry *elm;
4794 
4795     if (root->refcount == 0) {
4796 	/* Remove the object from the RTLD_GLOBAL list. */
4797 	objlist_remove(&list_global, root);
4798 
4799     	/* Remove the object from all objects' DAG lists. */
4800     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4801 	    objlist_remove(&elm->obj->dldags, root);
4802 	    if (elm->obj != root)
4803 		unlink_object(elm->obj);
4804 	}
4805     }
4806 }
4807 
4808 static void
4809 ref_dag(Obj_Entry *root)
4810 {
4811     Objlist_Entry *elm;
4812 
4813     assert(root->dag_inited);
4814     STAILQ_FOREACH(elm, &root->dagmembers, link)
4815 	elm->obj->refcount++;
4816 }
4817 
4818 static void
4819 unref_dag(Obj_Entry *root)
4820 {
4821     Objlist_Entry *elm;
4822 
4823     assert(root->dag_inited);
4824     STAILQ_FOREACH(elm, &root->dagmembers, link)
4825 	elm->obj->refcount--;
4826 }
4827 
4828 /*
4829  * Common code for MD __tls_get_addr().
4830  */
4831 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4832 static void *
4833 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4834 {
4835     Elf_Addr *newdtv, *dtv;
4836     RtldLockState lockstate;
4837     int to_copy;
4838 
4839     dtv = *dtvp;
4840     /* Check dtv generation in case new modules have arrived */
4841     if (dtv[0] != tls_dtv_generation) {
4842 	wlock_acquire(rtld_bind_lock, &lockstate);
4843 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4844 	to_copy = dtv[1];
4845 	if (to_copy > tls_max_index)
4846 	    to_copy = tls_max_index;
4847 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4848 	newdtv[0] = tls_dtv_generation;
4849 	newdtv[1] = tls_max_index;
4850 	free(dtv);
4851 	lock_release(rtld_bind_lock, &lockstate);
4852 	dtv = *dtvp = newdtv;
4853     }
4854 
4855     /* Dynamically allocate module TLS if necessary */
4856     if (dtv[index + 1] == 0) {
4857 	/* Signal safe, wlock will block out signals. */
4858 	wlock_acquire(rtld_bind_lock, &lockstate);
4859 	if (!dtv[index + 1])
4860 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4861 	lock_release(rtld_bind_lock, &lockstate);
4862     }
4863     return ((void *)(dtv[index + 1] + offset));
4864 }
4865 
4866 void *
4867 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4868 {
4869 	Elf_Addr *dtv;
4870 
4871 	dtv = *dtvp;
4872 	/* Check dtv generation in case new modules have arrived */
4873 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4874 	    dtv[index + 1] != 0))
4875 		return ((void *)(dtv[index + 1] + offset));
4876 	return (tls_get_addr_slow(dtvp, index, offset));
4877 }
4878 
4879 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4880     defined(__powerpc__) || defined(__riscv)
4881 
4882 /*
4883  * Return pointer to allocated TLS block
4884  */
4885 static void *
4886 get_tls_block_ptr(void *tcb, size_t tcbsize)
4887 {
4888     size_t extra_size, post_size, pre_size, tls_block_size;
4889     size_t tls_init_align;
4890 
4891     tls_init_align = MAX(obj_main->tlsalign, 1);
4892 
4893     /* Compute fragments sizes. */
4894     extra_size = tcbsize - TLS_TCB_SIZE;
4895     post_size = calculate_tls_post_size(tls_init_align);
4896     tls_block_size = tcbsize + post_size;
4897     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4898 
4899     return ((char *)tcb - pre_size - extra_size);
4900 }
4901 
4902 /*
4903  * Allocate Static TLS using the Variant I method.
4904  *
4905  * For details on the layout, see lib/libc/gen/tls.c.
4906  *
4907  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4908  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4909  *     offsets, whereas libc's tls_static_space is just the executable's static
4910  *     TLS segment.
4911  */
4912 void *
4913 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4914 {
4915     Obj_Entry *obj;
4916     char *tls_block;
4917     Elf_Addr *dtv, **tcb;
4918     Elf_Addr addr;
4919     Elf_Addr i;
4920     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4921     size_t tls_init_align, tls_init_offset;
4922 
4923     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4924 	return (oldtcb);
4925 
4926     assert(tcbsize >= TLS_TCB_SIZE);
4927     maxalign = MAX(tcbalign, tls_static_max_align);
4928     tls_init_align = MAX(obj_main->tlsalign, 1);
4929 
4930     /* Compute fragmets sizes. */
4931     extra_size = tcbsize - TLS_TCB_SIZE;
4932     post_size = calculate_tls_post_size(tls_init_align);
4933     tls_block_size = tcbsize + post_size;
4934     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4935     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4936 
4937     /* Allocate whole TLS block */
4938     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4939     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4940 
4941     if (oldtcb != NULL) {
4942 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4943 	    tls_static_space);
4944 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4945 
4946 	/* Adjust the DTV. */
4947 	dtv = tcb[0];
4948 	for (i = 0; i < dtv[1]; i++) {
4949 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4950 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4951 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4952 	    }
4953 	}
4954     } else {
4955 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4956 	tcb[0] = dtv;
4957 	dtv[0] = tls_dtv_generation;
4958 	dtv[1] = tls_max_index;
4959 
4960 	for (obj = globallist_curr(objs); obj != NULL;
4961 	  obj = globallist_next(obj)) {
4962 	    if (obj->tlsoffset == 0)
4963 		continue;
4964 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4965 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4966 	    if (tls_init_offset > 0)
4967 		memset((void *)addr, 0, tls_init_offset);
4968 	    if (obj->tlsinitsize > 0) {
4969 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4970 		    obj->tlsinitsize);
4971 	    }
4972 	    if (obj->tlssize > obj->tlsinitsize) {
4973 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4974 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4975 	    }
4976 	    dtv[obj->tlsindex + 1] = addr;
4977 	}
4978     }
4979 
4980     return (tcb);
4981 }
4982 
4983 void
4984 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4985 {
4986     Elf_Addr *dtv;
4987     Elf_Addr tlsstart, tlsend;
4988     size_t post_size;
4989     size_t dtvsize, i, tls_init_align;
4990 
4991     assert(tcbsize >= TLS_TCB_SIZE);
4992     tls_init_align = MAX(obj_main->tlsalign, 1);
4993 
4994     /* Compute fragments sizes. */
4995     post_size = calculate_tls_post_size(tls_init_align);
4996 
4997     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4998     tlsend = (Elf_Addr)tcb + tls_static_space;
4999 
5000     dtv = *(Elf_Addr **)tcb;
5001     dtvsize = dtv[1];
5002     for (i = 0; i < dtvsize; i++) {
5003 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5004 	    free((void*)dtv[i+2]);
5005 	}
5006     }
5007     free(dtv);
5008     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5009 }
5010 
5011 #endif
5012 
5013 #if defined(__i386__) || defined(__amd64__)
5014 
5015 /*
5016  * Allocate Static TLS using the Variant II method.
5017  */
5018 void *
5019 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5020 {
5021     Obj_Entry *obj;
5022     size_t size, ralign;
5023     char *tls;
5024     Elf_Addr *dtv, *olddtv;
5025     Elf_Addr segbase, oldsegbase, addr;
5026     size_t i;
5027 
5028     ralign = tcbalign;
5029     if (tls_static_max_align > ralign)
5030 	    ralign = tls_static_max_align;
5031     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5032 
5033     assert(tcbsize >= 2*sizeof(Elf_Addr));
5034     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5035     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5036 
5037     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5038     ((Elf_Addr*)segbase)[0] = segbase;
5039     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5040 
5041     dtv[0] = tls_dtv_generation;
5042     dtv[1] = tls_max_index;
5043 
5044     if (oldtls) {
5045 	/*
5046 	 * Copy the static TLS block over whole.
5047 	 */
5048 	oldsegbase = (Elf_Addr) oldtls;
5049 	memcpy((void *)(segbase - tls_static_space),
5050 	       (const void *)(oldsegbase - tls_static_space),
5051 	       tls_static_space);
5052 
5053 	/*
5054 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5055 	 * move them over.
5056 	 */
5057 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5058 	for (i = 0; i < olddtv[1]; i++) {
5059 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5060 		dtv[i+2] = olddtv[i+2];
5061 		olddtv[i+2] = 0;
5062 	    }
5063 	}
5064 
5065 	/*
5066 	 * We assume that this block was the one we created with
5067 	 * allocate_initial_tls().
5068 	 */
5069 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5070     } else {
5071 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5072 		if (obj->marker || obj->tlsoffset == 0)
5073 			continue;
5074 		addr = segbase - obj->tlsoffset;
5075 		memset((void*)(addr + obj->tlsinitsize),
5076 		       0, obj->tlssize - obj->tlsinitsize);
5077 		if (obj->tlsinit) {
5078 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5079 		    obj->static_tls_copied = true;
5080 		}
5081 		dtv[obj->tlsindex + 1] = addr;
5082 	}
5083     }
5084 
5085     return (void*) segbase;
5086 }
5087 
5088 void
5089 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5090 {
5091     Elf_Addr* dtv;
5092     size_t size, ralign;
5093     int dtvsize, i;
5094     Elf_Addr tlsstart, tlsend;
5095 
5096     /*
5097      * Figure out the size of the initial TLS block so that we can
5098      * find stuff which ___tls_get_addr() allocated dynamically.
5099      */
5100     ralign = tcbalign;
5101     if (tls_static_max_align > ralign)
5102 	    ralign = tls_static_max_align;
5103     size = roundup(tls_static_space, ralign);
5104 
5105     dtv = ((Elf_Addr**)tls)[1];
5106     dtvsize = dtv[1];
5107     tlsend = (Elf_Addr) tls;
5108     tlsstart = tlsend - size;
5109     for (i = 0; i < dtvsize; i++) {
5110 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5111 		free_aligned((void *)dtv[i + 2]);
5112 	}
5113     }
5114 
5115     free_aligned((void *)tlsstart);
5116     free((void*) dtv);
5117 }
5118 
5119 #endif
5120 
5121 /*
5122  * Allocate TLS block for module with given index.
5123  */
5124 void *
5125 allocate_module_tls(int index)
5126 {
5127 	Obj_Entry *obj;
5128 	char *p;
5129 
5130 	TAILQ_FOREACH(obj, &obj_list, next) {
5131 		if (obj->marker)
5132 			continue;
5133 		if (obj->tlsindex == index)
5134 			break;
5135 	}
5136 	if (obj == NULL) {
5137 		_rtld_error("Can't find module with TLS index %d", index);
5138 		rtld_die();
5139 	}
5140 
5141 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5142 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5143 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5144 	return (p);
5145 }
5146 
5147 bool
5148 allocate_tls_offset(Obj_Entry *obj)
5149 {
5150     size_t off;
5151 
5152     if (obj->tls_done)
5153 	return true;
5154 
5155     if (obj->tlssize == 0) {
5156 	obj->tls_done = true;
5157 	return true;
5158     }
5159 
5160     if (tls_last_offset == 0)
5161 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5162 	  obj->tlspoffset);
5163     else
5164 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5165 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5166 
5167     /*
5168      * If we have already fixed the size of the static TLS block, we
5169      * must stay within that size. When allocating the static TLS, we
5170      * leave a small amount of space spare to be used for dynamically
5171      * loading modules which use static TLS.
5172      */
5173     if (tls_static_space != 0) {
5174 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5175 	    return false;
5176     } else if (obj->tlsalign > tls_static_max_align) {
5177 	    tls_static_max_align = obj->tlsalign;
5178     }
5179 
5180     tls_last_offset = obj->tlsoffset = off;
5181     tls_last_size = obj->tlssize;
5182     obj->tls_done = true;
5183 
5184     return true;
5185 }
5186 
5187 void
5188 free_tls_offset(Obj_Entry *obj)
5189 {
5190 
5191     /*
5192      * If we were the last thing to allocate out of the static TLS
5193      * block, we give our space back to the 'allocator'. This is a
5194      * simplistic workaround to allow libGL.so.1 to be loaded and
5195      * unloaded multiple times.
5196      */
5197     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5198 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5199 	tls_last_offset -= obj->tlssize;
5200 	tls_last_size = 0;
5201     }
5202 }
5203 
5204 void *
5205 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5206 {
5207     void *ret;
5208     RtldLockState lockstate;
5209 
5210     wlock_acquire(rtld_bind_lock, &lockstate);
5211     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5212       tcbsize, tcbalign);
5213     lock_release(rtld_bind_lock, &lockstate);
5214     return (ret);
5215 }
5216 
5217 void
5218 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5219 {
5220     RtldLockState lockstate;
5221 
5222     wlock_acquire(rtld_bind_lock, &lockstate);
5223     free_tls(tcb, tcbsize, tcbalign);
5224     lock_release(rtld_bind_lock, &lockstate);
5225 }
5226 
5227 static void
5228 object_add_name(Obj_Entry *obj, const char *name)
5229 {
5230     Name_Entry *entry;
5231     size_t len;
5232 
5233     len = strlen(name);
5234     entry = malloc(sizeof(Name_Entry) + len);
5235 
5236     if (entry != NULL) {
5237 	strcpy(entry->name, name);
5238 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5239     }
5240 }
5241 
5242 static int
5243 object_match_name(const Obj_Entry *obj, const char *name)
5244 {
5245     Name_Entry *entry;
5246 
5247     STAILQ_FOREACH(entry, &obj->names, link) {
5248 	if (strcmp(name, entry->name) == 0)
5249 	    return (1);
5250     }
5251     return (0);
5252 }
5253 
5254 static Obj_Entry *
5255 locate_dependency(const Obj_Entry *obj, const char *name)
5256 {
5257     const Objlist_Entry *entry;
5258     const Needed_Entry *needed;
5259 
5260     STAILQ_FOREACH(entry, &list_main, link) {
5261 	if (object_match_name(entry->obj, name))
5262 	    return entry->obj;
5263     }
5264 
5265     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5266 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5267 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5268 	    /*
5269 	     * If there is DT_NEEDED for the name we are looking for,
5270 	     * we are all set.  Note that object might not be found if
5271 	     * dependency was not loaded yet, so the function can
5272 	     * return NULL here.  This is expected and handled
5273 	     * properly by the caller.
5274 	     */
5275 	    return (needed->obj);
5276 	}
5277     }
5278     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5279 	obj->path, name);
5280     rtld_die();
5281 }
5282 
5283 static int
5284 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5285     const Elf_Vernaux *vna)
5286 {
5287     const Elf_Verdef *vd;
5288     const char *vername;
5289 
5290     vername = refobj->strtab + vna->vna_name;
5291     vd = depobj->verdef;
5292     if (vd == NULL) {
5293 	_rtld_error("%s: version %s required by %s not defined",
5294 	    depobj->path, vername, refobj->path);
5295 	return (-1);
5296     }
5297     for (;;) {
5298 	if (vd->vd_version != VER_DEF_CURRENT) {
5299 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5300 		depobj->path, vd->vd_version);
5301 	    return (-1);
5302 	}
5303 	if (vna->vna_hash == vd->vd_hash) {
5304 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5305 		((const char *)vd + vd->vd_aux);
5306 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5307 		return (0);
5308 	}
5309 	if (vd->vd_next == 0)
5310 	    break;
5311 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5312     }
5313     if (vna->vna_flags & VER_FLG_WEAK)
5314 	return (0);
5315     _rtld_error("%s: version %s required by %s not found",
5316 	depobj->path, vername, refobj->path);
5317     return (-1);
5318 }
5319 
5320 static int
5321 rtld_verify_object_versions(Obj_Entry *obj)
5322 {
5323     const Elf_Verneed *vn;
5324     const Elf_Verdef  *vd;
5325     const Elf_Verdaux *vda;
5326     const Elf_Vernaux *vna;
5327     const Obj_Entry *depobj;
5328     int maxvernum, vernum;
5329 
5330     if (obj->ver_checked)
5331 	return (0);
5332     obj->ver_checked = true;
5333 
5334     maxvernum = 0;
5335     /*
5336      * Walk over defined and required version records and figure out
5337      * max index used by any of them. Do very basic sanity checking
5338      * while there.
5339      */
5340     vn = obj->verneed;
5341     while (vn != NULL) {
5342 	if (vn->vn_version != VER_NEED_CURRENT) {
5343 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5344 		obj->path, vn->vn_version);
5345 	    return (-1);
5346 	}
5347 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5348 	for (;;) {
5349 	    vernum = VER_NEED_IDX(vna->vna_other);
5350 	    if (vernum > maxvernum)
5351 		maxvernum = vernum;
5352 	    if (vna->vna_next == 0)
5353 		 break;
5354 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5355 	}
5356 	if (vn->vn_next == 0)
5357 	    break;
5358 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5359     }
5360 
5361     vd = obj->verdef;
5362     while (vd != NULL) {
5363 	if (vd->vd_version != VER_DEF_CURRENT) {
5364 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5365 		obj->path, vd->vd_version);
5366 	    return (-1);
5367 	}
5368 	vernum = VER_DEF_IDX(vd->vd_ndx);
5369 	if (vernum > maxvernum)
5370 		maxvernum = vernum;
5371 	if (vd->vd_next == 0)
5372 	    break;
5373 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5374     }
5375 
5376     if (maxvernum == 0)
5377 	return (0);
5378 
5379     /*
5380      * Store version information in array indexable by version index.
5381      * Verify that object version requirements are satisfied along the
5382      * way.
5383      */
5384     obj->vernum = maxvernum + 1;
5385     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5386 
5387     vd = obj->verdef;
5388     while (vd != NULL) {
5389 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5390 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5391 	    assert(vernum <= maxvernum);
5392 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5393 	    obj->vertab[vernum].hash = vd->vd_hash;
5394 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5395 	    obj->vertab[vernum].file = NULL;
5396 	    obj->vertab[vernum].flags = 0;
5397 	}
5398 	if (vd->vd_next == 0)
5399 	    break;
5400 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5401     }
5402 
5403     vn = obj->verneed;
5404     while (vn != NULL) {
5405 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5406 	if (depobj == NULL)
5407 	    return (-1);
5408 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5409 	for (;;) {
5410 	    if (check_object_provided_version(obj, depobj, vna))
5411 		return (-1);
5412 	    vernum = VER_NEED_IDX(vna->vna_other);
5413 	    assert(vernum <= maxvernum);
5414 	    obj->vertab[vernum].hash = vna->vna_hash;
5415 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5416 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5417 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5418 		VER_INFO_HIDDEN : 0;
5419 	    if (vna->vna_next == 0)
5420 		 break;
5421 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5422 	}
5423 	if (vn->vn_next == 0)
5424 	    break;
5425 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5426     }
5427     return 0;
5428 }
5429 
5430 static int
5431 rtld_verify_versions(const Objlist *objlist)
5432 {
5433     Objlist_Entry *entry;
5434     int rc;
5435 
5436     rc = 0;
5437     STAILQ_FOREACH(entry, objlist, link) {
5438 	/*
5439 	 * Skip dummy objects or objects that have their version requirements
5440 	 * already checked.
5441 	 */
5442 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5443 	    continue;
5444 	if (rtld_verify_object_versions(entry->obj) == -1) {
5445 	    rc = -1;
5446 	    if (ld_tracing == NULL)
5447 		break;
5448 	}
5449     }
5450     if (rc == 0 || ld_tracing != NULL)
5451     	rc = rtld_verify_object_versions(&obj_rtld);
5452     return rc;
5453 }
5454 
5455 const Ver_Entry *
5456 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5457 {
5458     Elf_Versym vernum;
5459 
5460     if (obj->vertab) {
5461 	vernum = VER_NDX(obj->versyms[symnum]);
5462 	if (vernum >= obj->vernum) {
5463 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5464 		obj->path, obj->strtab + symnum, vernum);
5465 	} else if (obj->vertab[vernum].hash != 0) {
5466 	    return &obj->vertab[vernum];
5467 	}
5468     }
5469     return NULL;
5470 }
5471 
5472 int
5473 _rtld_get_stack_prot(void)
5474 {
5475 
5476 	return (stack_prot);
5477 }
5478 
5479 int
5480 _rtld_is_dlopened(void *arg)
5481 {
5482 	Obj_Entry *obj;
5483 	RtldLockState lockstate;
5484 	int res;
5485 
5486 	rlock_acquire(rtld_bind_lock, &lockstate);
5487 	obj = dlcheck(arg);
5488 	if (obj == NULL)
5489 		obj = obj_from_addr(arg);
5490 	if (obj == NULL) {
5491 		_rtld_error("No shared object contains address");
5492 		lock_release(rtld_bind_lock, &lockstate);
5493 		return (-1);
5494 	}
5495 	res = obj->dlopened ? 1 : 0;
5496 	lock_release(rtld_bind_lock, &lockstate);
5497 	return (res);
5498 }
5499 
5500 static int
5501 obj_remap_relro(Obj_Entry *obj, int prot)
5502 {
5503 
5504 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5505 	    prot) == -1) {
5506 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5507 		    obj->path, prot, rtld_strerror(errno));
5508 		return (-1);
5509 	}
5510 	return (0);
5511 }
5512 
5513 static int
5514 obj_disable_relro(Obj_Entry *obj)
5515 {
5516 
5517 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5518 }
5519 
5520 static int
5521 obj_enforce_relro(Obj_Entry *obj)
5522 {
5523 
5524 	return (obj_remap_relro(obj, PROT_READ));
5525 }
5526 
5527 static void
5528 map_stacks_exec(RtldLockState *lockstate)
5529 {
5530 	void (*thr_map_stacks_exec)(void);
5531 
5532 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5533 		return;
5534 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5535 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5536 	if (thr_map_stacks_exec != NULL) {
5537 		stack_prot |= PROT_EXEC;
5538 		thr_map_stacks_exec();
5539 	}
5540 }
5541 
5542 static void
5543 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5544 {
5545 	Objlist_Entry *elm;
5546 	Obj_Entry *obj;
5547 	void (*distrib)(size_t, void *, size_t, size_t);
5548 
5549 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5550 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5551 	if (distrib == NULL)
5552 		return;
5553 	STAILQ_FOREACH(elm, list, link) {
5554 		obj = elm->obj;
5555 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5556 			continue;
5557 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5558 		    obj->tlssize);
5559 		obj->static_tls_copied = true;
5560 	}
5561 }
5562 
5563 void
5564 symlook_init(SymLook *dst, const char *name)
5565 {
5566 
5567 	bzero(dst, sizeof(*dst));
5568 	dst->name = name;
5569 	dst->hash = elf_hash(name);
5570 	dst->hash_gnu = gnu_hash(name);
5571 }
5572 
5573 static void
5574 symlook_init_from_req(SymLook *dst, const SymLook *src)
5575 {
5576 
5577 	dst->name = src->name;
5578 	dst->hash = src->hash;
5579 	dst->hash_gnu = src->hash_gnu;
5580 	dst->ventry = src->ventry;
5581 	dst->flags = src->flags;
5582 	dst->defobj_out = NULL;
5583 	dst->sym_out = NULL;
5584 	dst->lockstate = src->lockstate;
5585 }
5586 
5587 static int
5588 open_binary_fd(const char *argv0, bool search_in_path,
5589     const char **binpath_res)
5590 {
5591 	char *binpath, *pathenv, *pe, *res1;
5592 	const char *res;
5593 	int fd;
5594 
5595 	binpath = NULL;
5596 	res = NULL;
5597 	if (search_in_path && strchr(argv0, '/') == NULL) {
5598 		binpath = xmalloc(PATH_MAX);
5599 		pathenv = getenv("PATH");
5600 		if (pathenv == NULL) {
5601 			_rtld_error("-p and no PATH environment variable");
5602 			rtld_die();
5603 		}
5604 		pathenv = strdup(pathenv);
5605 		if (pathenv == NULL) {
5606 			_rtld_error("Cannot allocate memory");
5607 			rtld_die();
5608 		}
5609 		fd = -1;
5610 		errno = ENOENT;
5611 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5612 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5613 				continue;
5614 			if (binpath[0] != '\0' &&
5615 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5616 				continue;
5617 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5618 				continue;
5619 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5620 			if (fd != -1 || errno != ENOENT) {
5621 				res = binpath;
5622 				break;
5623 			}
5624 		}
5625 		free(pathenv);
5626 	} else {
5627 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5628 		res = argv0;
5629 	}
5630 
5631 	if (fd == -1) {
5632 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5633 		rtld_die();
5634 	}
5635 	if (res != NULL && res[0] != '/') {
5636 		res1 = xmalloc(PATH_MAX);
5637 		if (realpath(res, res1) != NULL) {
5638 			if (res != argv0)
5639 				free(__DECONST(char *, res));
5640 			res = res1;
5641 		} else {
5642 			free(res1);
5643 		}
5644 	}
5645 	*binpath_res = res;
5646 	return (fd);
5647 }
5648 
5649 /*
5650  * Parse a set of command-line arguments.
5651  */
5652 static int
5653 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5654     const char **argv0)
5655 {
5656 	const char *arg;
5657 	char machine[64];
5658 	size_t sz;
5659 	int arglen, fd, i, j, mib[2];
5660 	char opt;
5661 	bool seen_b, seen_f;
5662 
5663 	dbg("Parsing command-line arguments");
5664 	*use_pathp = false;
5665 	*fdp = -1;
5666 	seen_b = seen_f = false;
5667 
5668 	for (i = 1; i < argc; i++ ) {
5669 		arg = argv[i];
5670 		dbg("argv[%d]: '%s'", i, arg);
5671 
5672 		/*
5673 		 * rtld arguments end with an explicit "--" or with the first
5674 		 * non-prefixed argument.
5675 		 */
5676 		if (strcmp(arg, "--") == 0) {
5677 			i++;
5678 			break;
5679 		}
5680 		if (arg[0] != '-')
5681 			break;
5682 
5683 		/*
5684 		 * All other arguments are single-character options that can
5685 		 * be combined, so we need to search through `arg` for them.
5686 		 */
5687 		arglen = strlen(arg);
5688 		for (j = 1; j < arglen; j++) {
5689 			opt = arg[j];
5690 			if (opt == 'h') {
5691 				print_usage(argv[0]);
5692 				_exit(0);
5693 			} else if (opt == 'b') {
5694 				if (seen_f) {
5695 					_rtld_error("Both -b and -f specified");
5696 					rtld_die();
5697 				}
5698 				i++;
5699 				*argv0 = argv[i];
5700 				seen_b = true;
5701 				break;
5702 			} else if (opt == 'f') {
5703 				if (seen_b) {
5704 					_rtld_error("Both -b and -f specified");
5705 					rtld_die();
5706 				}
5707 
5708 				/*
5709 				 * -f XX can be used to specify a
5710 				 * descriptor for the binary named at
5711 				 * the command line (i.e., the later
5712 				 * argument will specify the process
5713 				 * name but the descriptor is what
5714 				 * will actually be executed).
5715 				 *
5716 				 * -f must be the last option in, e.g., -abcf.
5717 				 */
5718 				if (j != arglen - 1) {
5719 					_rtld_error("Invalid options: %s", arg);
5720 					rtld_die();
5721 				}
5722 				i++;
5723 				fd = parse_integer(argv[i]);
5724 				if (fd == -1) {
5725 					_rtld_error(
5726 					    "Invalid file descriptor: '%s'",
5727 					    argv[i]);
5728 					rtld_die();
5729 				}
5730 				*fdp = fd;
5731 				seen_f = true;
5732 				break;
5733 			} else if (opt == 'p') {
5734 				*use_pathp = true;
5735 			} else if (opt == 'v') {
5736 				machine[0] = '\0';
5737 				mib[0] = CTL_HW;
5738 				mib[1] = HW_MACHINE;
5739 				sz = sizeof(machine);
5740 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5741 				rtld_printf(
5742 				    "FreeBSD ld-elf.so.1 %s\n"
5743 				    "FreeBSD_version %d\n"
5744 				    "Default lib path %s\n"
5745 				    "Env prefix %s\n"
5746 				    "Hint file %s\n"
5747 				    "libmap file %s\n",
5748 				    machine,
5749 				    __FreeBSD_version, ld_standard_library_path,
5750 				    ld_env_prefix, ld_elf_hints_default,
5751 				    ld_path_libmap_conf);
5752 				_exit(0);
5753 			} else {
5754 				_rtld_error("Invalid argument: '%s'", arg);
5755 				print_usage(argv[0]);
5756 				rtld_die();
5757 			}
5758 		}
5759 	}
5760 
5761 	if (!seen_b)
5762 		*argv0 = argv[i];
5763 	return (i);
5764 }
5765 
5766 /*
5767  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5768  */
5769 static int
5770 parse_integer(const char *str)
5771 {
5772 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5773 	const char *orig;
5774 	int n;
5775 	char c;
5776 
5777 	orig = str;
5778 	n = 0;
5779 	for (c = *str; c != '\0'; c = *++str) {
5780 		if (c < '0' || c > '9')
5781 			return (-1);
5782 
5783 		n *= RADIX;
5784 		n += c - '0';
5785 	}
5786 
5787 	/* Make sure we actually parsed something. */
5788 	if (str == orig)
5789 		return (-1);
5790 	return (n);
5791 }
5792 
5793 static void
5794 print_usage(const char *argv0)
5795 {
5796 
5797 	rtld_printf(
5798 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5799 	    "\n"
5800 	    "Options:\n"
5801 	    "  -h        Display this help message\n"
5802 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5803 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5804 	    "  -p        Search in PATH for named binary\n"
5805 	    "  -v        Display identification information\n"
5806 	    "  --        End of RTLD options\n"
5807 	    "  <binary>  Name of process to execute\n"
5808 	    "  <args>    Arguments to the executed process\n", argv0);
5809 }
5810 
5811 /*
5812  * Overrides for libc_pic-provided functions.
5813  */
5814 
5815 int
5816 __getosreldate(void)
5817 {
5818 	size_t len;
5819 	int oid[2];
5820 	int error, osrel;
5821 
5822 	if (osreldate != 0)
5823 		return (osreldate);
5824 
5825 	oid[0] = CTL_KERN;
5826 	oid[1] = KERN_OSRELDATE;
5827 	osrel = 0;
5828 	len = sizeof(osrel);
5829 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5830 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5831 		osreldate = osrel;
5832 	return (osreldate);
5833 }
5834 const char *
5835 rtld_strerror(int errnum)
5836 {
5837 
5838 	if (errnum < 0 || errnum >= sys_nerr)
5839 		return ("Unknown error");
5840 	return (sys_errlist[errnum]);
5841 }
5842 
5843 /* malloc */
5844 void *
5845 malloc(size_t nbytes)
5846 {
5847 
5848 	return (__crt_malloc(nbytes));
5849 }
5850 
5851 void *
5852 calloc(size_t num, size_t size)
5853 {
5854 
5855 	return (__crt_calloc(num, size));
5856 }
5857 
5858 void
5859 free(void *cp)
5860 {
5861 
5862 	__crt_free(cp);
5863 }
5864 
5865 void *
5866 realloc(void *cp, size_t nbytes)
5867 {
5868 
5869 	return (__crt_realloc(cp, nbytes));
5870 }
5871 
5872 extern int _rtld_version__FreeBSD_version __exported;
5873 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5874 
5875 extern char _rtld_version_laddr_offset __exported;
5876 char _rtld_version_laddr_offset;
5877