xref: /freebsd/libexec/rtld-elf/rtld.c (revision 1fb62fb074788ca4713551be09d6569966a3abee)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "rtld_utrace.h"
63 #include "notes.h"
64 
65 /* Types. */
66 typedef void (*func_ptr_type)();
67 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68 
69 /*
70  * Function declarations.
71  */
72 static const char *basename(const char *);
73 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
74     const Elf_Dyn **, const Elf_Dyn **);
75 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
76     const Elf_Dyn *);
77 static void digest_dynamic(Obj_Entry *, int);
78 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
79 static Obj_Entry *dlcheck(void *);
80 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
81     int lo_flags, int mode, RtldLockState *lockstate);
82 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
83 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
84 static bool donelist_check(DoneList *, const Obj_Entry *);
85 static void errmsg_restore(char *);
86 static char *errmsg_save(void);
87 static void *fill_search_info(const char *, size_t, void *);
88 static char *find_library(const char *, const Obj_Entry *, int *);
89 static const char *gethints(bool);
90 static void init_dag(Obj_Entry *);
91 static void init_pagesizes(Elf_Auxinfo **aux_info);
92 static void init_rtld(caddr_t, Elf_Auxinfo **);
93 static void initlist_add_neededs(Needed_Entry *, Objlist *);
94 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
95 static void linkmap_add(Obj_Entry *);
96 static void linkmap_delete(Obj_Entry *);
97 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
98 static void unload_filtees(Obj_Entry *);
99 static int load_needed_objects(Obj_Entry *, int);
100 static int load_preload_objects(void);
101 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
102 static void map_stacks_exec(RtldLockState *);
103 static Obj_Entry *obj_from_addr(const void *);
104 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
105 static void objlist_call_init(Objlist *, RtldLockState *);
106 static void objlist_clear(Objlist *);
107 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
108 static void objlist_init(Objlist *);
109 static void objlist_push_head(Objlist *, Obj_Entry *);
110 static void objlist_push_tail(Objlist *, Obj_Entry *);
111 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
112 static void objlist_remove(Objlist *, Obj_Entry *);
113 static int parse_libdir(const char *);
114 static void *path_enumerate(const char *, path_enum_proc, void *);
115 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
116     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
117 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
118     int flags, RtldLockState *lockstate);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120     RtldLockState *);
121 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122     int flags, RtldLockState *lockstate);
123 static int rtld_dirname(const char *, char *);
124 static int rtld_dirname_abs(const char *, char *);
125 static void *rtld_dlopen(const char *name, int fd, int mode);
126 static void rtld_exit(void);
127 static char *search_library_path(const char *, const char *);
128 static char *search_library_pathfds(const char *, const char *, int *);
129 static const void **get_program_var_addr(const char *, RtldLockState *);
130 static void set_program_var(const char *, const void *);
131 static int symlook_default(SymLook *, const Obj_Entry *refobj);
132 static int symlook_global(SymLook *, DoneList *);
133 static void symlook_init_from_req(SymLook *, const SymLook *);
134 static int symlook_list(SymLook *, const Objlist *, DoneList *);
135 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
136 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
137 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
138 static void trace_loaded_objects(Obj_Entry *);
139 static void unlink_object(Obj_Entry *);
140 static void unload_object(Obj_Entry *);
141 static void unref_dag(Obj_Entry *);
142 static void ref_dag(Obj_Entry *);
143 static char *origin_subst_one(Obj_Entry *, char *, const char *,
144     const char *, bool);
145 static char *origin_subst(Obj_Entry *, char *);
146 static bool obj_resolve_origin(Obj_Entry *obj);
147 static void preinit_main(void);
148 static int  rtld_verify_versions(const Objlist *);
149 static int  rtld_verify_object_versions(Obj_Entry *);
150 static void object_add_name(Obj_Entry *, const char *);
151 static int  object_match_name(const Obj_Entry *, const char *);
152 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
153 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
154     struct dl_phdr_info *phdr_info);
155 static uint32_t gnu_hash(const char *);
156 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
157     const unsigned long);
158 
159 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
160 void _r_debug_postinit(struct link_map *) __noinline __exported;
161 
162 int __sys_openat(int, const char *, int, ...);
163 
164 /*
165  * Data declarations.
166  */
167 static char *error_message;	/* Message for dlerror(), or NULL */
168 struct r_debug r_debug __exported;	/* for GDB; */
169 static bool libmap_disable;	/* Disable libmap */
170 static bool ld_loadfltr;	/* Immediate filters processing */
171 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172 static bool trust;		/* False for setuid and setgid programs */
173 static bool dangerous_ld_env;	/* True if environment variables have been
174 				   used to affect the libraries loaded */
175 static char *ld_bind_now;	/* Environment variable for immediate binding */
176 static char *ld_debug;		/* Environment variable for debugging */
177 static char *ld_library_path;	/* Environment variable for search path */
178 static char *ld_library_dirs;	/* Environment variable for library descriptors */
179 static char *ld_preload;	/* Environment variable for libraries to
180 				   load first */
181 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182 static char *ld_tracing;	/* Called from ldd to print libs */
183 static char *ld_utrace;		/* Use utrace() to log events. */
184 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int dlclose(void *) __exported;
208 char *dlerror(void) __exported;
209 void *dlopen(const char *, int) __exported;
210 void *fdlopen(int, int) __exported;
211 void *dlsym(void *, const char *) __exported;
212 dlfunc_t dlfunc(void *, const char *) __exported;
213 void *dlvsym(void *, const char *, const char *) __exported;
214 int dladdr(const void *, Dl_info *) __exported;
215 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217 int dlinfo(void *, int , void *) __exported;
218 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220 int _rtld_get_stack_prot(void) __exported;
221 int _rtld_is_dlopened(void *) __exported;
222 void _rtld_error(const char *, ...) __exported;
223 
224 int npagesizes, osreldate;
225 size_t *pagesizes;
226 
227 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228 
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 static int max_stack_flags;
231 
232 /*
233  * Global declarations normally provided by crt1.  The dynamic linker is
234  * not built with crt1, so we have to provide them ourselves.
235  */
236 char *__progname;
237 char **environ;
238 
239 /*
240  * Used to pass argc, argv to init functions.
241  */
242 int main_argc;
243 char **main_argv;
244 
245 /*
246  * Globals to control TLS allocation.
247  */
248 size_t tls_last_offset;		/* Static TLS offset of last module */
249 size_t tls_last_size;		/* Static TLS size of last module */
250 size_t tls_static_space;	/* Static TLS space allocated */
251 size_t tls_static_max_align;
252 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253 int tls_max_index = 1;		/* Largest module index allocated */
254 
255 bool ld_library_path_rpath = false;
256 
257 /*
258  * Globals for path names, and such
259  */
260 char *ld_elf_hints_default = _PATH_ELF_HINTS;
261 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
262 char *ld_path_rtld = _PATH_RTLD;
263 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
264 char *ld_env_prefix = LD_;
265 
266 /*
267  * Fill in a DoneList with an allocation large enough to hold all of
268  * the currently-loaded objects.  Keep this as a macro since it calls
269  * alloca and we want that to occur within the scope of the caller.
270  */
271 #define donelist_init(dlp)					\
272     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
273     assert((dlp)->objs != NULL),				\
274     (dlp)->num_alloc = obj_count,				\
275     (dlp)->num_used = 0)
276 
277 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
278 	if (ld_utrace != NULL)					\
279 		ld_utrace_log(e, h, mb, ms, r, n);		\
280 } while (0)
281 
282 static void
283 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
284     int refcnt, const char *name)
285 {
286 	struct utrace_rtld ut;
287 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
288 
289 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
290 	ut.event = event;
291 	ut.handle = handle;
292 	ut.mapbase = mapbase;
293 	ut.mapsize = mapsize;
294 	ut.refcnt = refcnt;
295 	bzero(ut.name, sizeof(ut.name));
296 	if (name)
297 		strlcpy(ut.name, name, sizeof(ut.name));
298 	utrace(&ut, sizeof(ut));
299 }
300 
301 #ifdef RTLD_VARIANT_ENV_NAMES
302 /*
303  * construct the env variable based on the type of binary that's
304  * running.
305  */
306 static inline const char *
307 _LD(const char *var)
308 {
309 	static char buffer[128];
310 
311 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
312 	strlcat(buffer, var, sizeof(buffer));
313 	return (buffer);
314 }
315 #else
316 #define _LD(x)	LD_ x
317 #endif
318 
319 /*
320  * Main entry point for dynamic linking.  The first argument is the
321  * stack pointer.  The stack is expected to be laid out as described
322  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
323  * Specifically, the stack pointer points to a word containing
324  * ARGC.  Following that in the stack is a null-terminated sequence
325  * of pointers to argument strings.  Then comes a null-terminated
326  * sequence of pointers to environment strings.  Finally, there is a
327  * sequence of "auxiliary vector" entries.
328  *
329  * The second argument points to a place to store the dynamic linker's
330  * exit procedure pointer and the third to a place to store the main
331  * program's object.
332  *
333  * The return value is the main program's entry point.
334  */
335 func_ptr_type
336 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
337 {
338     Elf_Auxinfo *aux_info[AT_COUNT];
339     int i;
340     int argc;
341     char **argv;
342     char **env;
343     Elf_Auxinfo *aux;
344     Elf_Auxinfo *auxp;
345     const char *argv0;
346     Objlist_Entry *entry;
347     Obj_Entry *obj;
348     Obj_Entry *preload_tail;
349     Obj_Entry *last_interposer;
350     Objlist initlist;
351     RtldLockState lockstate;
352     char *library_path_rpath;
353     int mib[2];
354     size_t len;
355 
356     /*
357      * On entry, the dynamic linker itself has not been relocated yet.
358      * Be very careful not to reference any global data until after
359      * init_rtld has returned.  It is OK to reference file-scope statics
360      * and string constants, and to call static and global functions.
361      */
362 
363     /* Find the auxiliary vector on the stack. */
364     argc = *sp++;
365     argv = (char **) sp;
366     sp += argc + 1;	/* Skip over arguments and NULL terminator */
367     env = (char **) sp;
368     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
369 	;
370     aux = (Elf_Auxinfo *) sp;
371 
372     /* Digest the auxiliary vector. */
373     for (i = 0;  i < AT_COUNT;  i++)
374 	aux_info[i] = NULL;
375     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
376 	if (auxp->a_type < AT_COUNT)
377 	    aux_info[auxp->a_type] = auxp;
378     }
379 
380     /* Initialize and relocate ourselves. */
381     assert(aux_info[AT_BASE] != NULL);
382     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
383 
384     __progname = obj_rtld.path;
385     argv0 = argv[0] != NULL ? argv[0] : "(null)";
386     environ = env;
387     main_argc = argc;
388     main_argv = argv;
389 
390     if (aux_info[AT_CANARY] != NULL &&
391 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
392 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
393 	    if (i > sizeof(__stack_chk_guard))
394 		    i = sizeof(__stack_chk_guard);
395 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
396     } else {
397 	mib[0] = CTL_KERN;
398 	mib[1] = KERN_ARND;
399 
400 	len = sizeof(__stack_chk_guard);
401 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
402 	    len != sizeof(__stack_chk_guard)) {
403 		/* If sysctl was unsuccessful, use the "terminator canary". */
404 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
405 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
406 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
407 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
408 	}
409     }
410 
411     trust = !issetugid();
412 
413     md_abi_variant_hook(aux_info);
414 
415     ld_bind_now = getenv(_LD("BIND_NOW"));
416     /*
417      * If the process is tainted, then we un-set the dangerous environment
418      * variables.  The process will be marked as tainted until setuid(2)
419      * is called.  If any child process calls setuid(2) we do not want any
420      * future processes to honor the potentially un-safe variables.
421      */
422     if (!trust) {
423 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
424 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
425 	    unsetenv(_LD("LIBMAP_DISABLE")) ||
426 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
427 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
428 		_rtld_error("environment corrupt; aborting");
429 		rtld_die();
430 	}
431     }
432     ld_debug = getenv(_LD("DEBUG"));
433     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
434     libmap_override = getenv(_LD("LIBMAP"));
435     ld_library_path = getenv(_LD("LIBRARY_PATH"));
436     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
437     ld_preload = getenv(_LD("PRELOAD"));
438     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
439     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
440     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
441     if (library_path_rpath != NULL) {
442 	    if (library_path_rpath[0] == 'y' ||
443 		library_path_rpath[0] == 'Y' ||
444 		library_path_rpath[0] == '1')
445 		    ld_library_path_rpath = true;
446 	    else
447 		    ld_library_path_rpath = false;
448     }
449     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
450 	(ld_library_path != NULL) || (ld_preload != NULL) ||
451 	(ld_elf_hints_path != NULL) || ld_loadfltr;
452     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
453     ld_utrace = getenv(_LD("UTRACE"));
454 
455     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
456 	ld_elf_hints_path = ld_elf_hints_default;
457 
458     if (ld_debug != NULL && *ld_debug != '\0')
459 	debug = 1;
460     dbg("%s is initialized, base address = %p", __progname,
461 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
462     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
463     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
464 
465     dbg("initializing thread locks");
466     lockdflt_init();
467 
468     /*
469      * Load the main program, or process its program header if it is
470      * already loaded.
471      */
472     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
473 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
474 	dbg("loading main program");
475 	obj_main = map_object(fd, argv0, NULL);
476 	close(fd);
477 	if (obj_main == NULL)
478 	    rtld_die();
479 	max_stack_flags = obj->stack_flags;
480     } else {				/* Main program already loaded. */
481 	const Elf_Phdr *phdr;
482 	int phnum;
483 	caddr_t entry;
484 
485 	dbg("processing main program's program header");
486 	assert(aux_info[AT_PHDR] != NULL);
487 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
488 	assert(aux_info[AT_PHNUM] != NULL);
489 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
490 	assert(aux_info[AT_PHENT] != NULL);
491 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
492 	assert(aux_info[AT_ENTRY] != NULL);
493 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
494 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
495 	    rtld_die();
496     }
497 
498     if (aux_info[AT_EXECPATH] != NULL) {
499 	    char *kexecpath;
500 	    char buf[MAXPATHLEN];
501 
502 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
503 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
504 	    if (kexecpath[0] == '/')
505 		    obj_main->path = kexecpath;
506 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
507 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
508 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
509 		    obj_main->path = xstrdup(argv0);
510 	    else
511 		    obj_main->path = xstrdup(buf);
512     } else {
513 	    dbg("No AT_EXECPATH");
514 	    obj_main->path = xstrdup(argv0);
515     }
516     dbg("obj_main path %s", obj_main->path);
517     obj_main->mainprog = true;
518 
519     if (aux_info[AT_STACKPROT] != NULL &&
520       aux_info[AT_STACKPROT]->a_un.a_val != 0)
521 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
522 
523 #ifndef COMPAT_32BIT
524     /*
525      * Get the actual dynamic linker pathname from the executable if
526      * possible.  (It should always be possible.)  That ensures that
527      * gdb will find the right dynamic linker even if a non-standard
528      * one is being used.
529      */
530     if (obj_main->interp != NULL &&
531       strcmp(obj_main->interp, obj_rtld.path) != 0) {
532 	free(obj_rtld.path);
533 	obj_rtld.path = xstrdup(obj_main->interp);
534         __progname = obj_rtld.path;
535     }
536 #endif
537 
538     digest_dynamic(obj_main, 0);
539     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
540 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
541 	obj_main->dynsymcount);
542 
543     linkmap_add(obj_main);
544     linkmap_add(&obj_rtld);
545 
546     /* Link the main program into the list of objects. */
547     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
548     obj_count++;
549     obj_loads++;
550 
551     /* Initialize a fake symbol for resolving undefined weak references. */
552     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
553     sym_zero.st_shndx = SHN_UNDEF;
554     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
555 
556     if (!libmap_disable)
557         libmap_disable = (bool)lm_init(libmap_override);
558 
559     dbg("loading LD_PRELOAD libraries");
560     if (load_preload_objects() == -1)
561 	rtld_die();
562     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
563 
564     dbg("loading needed objects");
565     if (load_needed_objects(obj_main, 0) == -1)
566 	rtld_die();
567 
568     /* Make a list of all objects loaded at startup. */
569     last_interposer = obj_main;
570     TAILQ_FOREACH(obj, &obj_list, next) {
571 	if (obj->marker)
572 	    continue;
573 	if (obj->z_interpose && obj != obj_main) {
574 	    objlist_put_after(&list_main, last_interposer, obj);
575 	    last_interposer = obj;
576 	} else {
577 	    objlist_push_tail(&list_main, obj);
578 	}
579     	obj->refcount++;
580     }
581 
582     dbg("checking for required versions");
583     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
584 	rtld_die();
585 
586     if (ld_tracing) {		/* We're done */
587 	trace_loaded_objects(obj_main);
588 	exit(0);
589     }
590 
591     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
592        dump_relocations(obj_main);
593        exit (0);
594     }
595 
596     /*
597      * Processing tls relocations requires having the tls offsets
598      * initialized.  Prepare offsets before starting initial
599      * relocation processing.
600      */
601     dbg("initializing initial thread local storage offsets");
602     STAILQ_FOREACH(entry, &list_main, link) {
603 	/*
604 	 * Allocate all the initial objects out of the static TLS
605 	 * block even if they didn't ask for it.
606 	 */
607 	allocate_tls_offset(entry->obj);
608     }
609 
610     if (relocate_objects(obj_main,
611       ld_bind_now != NULL && *ld_bind_now != '\0',
612       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
613 	rtld_die();
614 
615     dbg("doing copy relocations");
616     if (do_copy_relocations(obj_main) == -1)
617 	rtld_die();
618 
619     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
620        dump_relocations(obj_main);
621        exit (0);
622     }
623 
624     /*
625      * Setup TLS for main thread.  This must be done after the
626      * relocations are processed, since tls initialization section
627      * might be the subject for relocations.
628      */
629     dbg("initializing initial thread local storage");
630     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
631 
632     dbg("initializing key program variables");
633     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
634     set_program_var("environ", env);
635     set_program_var("__elf_aux_vector", aux);
636 
637     /* Make a list of init functions to call. */
638     objlist_init(&initlist);
639     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
640       preload_tail, &initlist);
641 
642     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
643 
644     map_stacks_exec(NULL);
645     ifunc_init(aux);
646 
647     dbg("resolving ifuncs");
648     if (resolve_objects_ifunc(obj_main,
649       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
650       NULL) == -1)
651 	rtld_die();
652 
653     if (!obj_main->crt_no_init) {
654 	/*
655 	 * Make sure we don't call the main program's init and fini
656 	 * functions for binaries linked with old crt1 which calls
657 	 * _init itself.
658 	 */
659 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
660 	obj_main->preinit_array = obj_main->init_array =
661 	    obj_main->fini_array = (Elf_Addr)NULL;
662     }
663 
664     wlock_acquire(rtld_bind_lock, &lockstate);
665     if (obj_main->crt_no_init)
666 	preinit_main();
667     objlist_call_init(&initlist, &lockstate);
668     _r_debug_postinit(&obj_main->linkmap);
669     objlist_clear(&initlist);
670     dbg("loading filtees");
671     TAILQ_FOREACH(obj, &obj_list, next) {
672 	if (obj->marker)
673 	    continue;
674 	if (ld_loadfltr || obj->z_loadfltr)
675 	    load_filtees(obj, 0, &lockstate);
676     }
677     lock_release(rtld_bind_lock, &lockstate);
678 
679     dbg("transferring control to program entry point = %p", obj_main->entry);
680 
681     /* Return the exit procedure and the program entry point. */
682     *exit_proc = rtld_exit;
683     *objp = obj_main;
684     return (func_ptr_type) obj_main->entry;
685 }
686 
687 void *
688 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
689 {
690 	void *ptr;
691 	Elf_Addr target;
692 
693 	ptr = (void *)make_function_pointer(def, obj);
694 	target = call_ifunc_resolver(ptr);
695 	return ((void *)target);
696 }
697 
698 /*
699  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
700  * Changes to this function should be applied there as well.
701  */
702 Elf_Addr
703 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
704 {
705     const Elf_Rel *rel;
706     const Elf_Sym *def;
707     const Obj_Entry *defobj;
708     Elf_Addr *where;
709     Elf_Addr target;
710     RtldLockState lockstate;
711 
712     rlock_acquire(rtld_bind_lock, &lockstate);
713     if (sigsetjmp(lockstate.env, 0) != 0)
714 	    lock_upgrade(rtld_bind_lock, &lockstate);
715     if (obj->pltrel)
716 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
717     else
718 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
719 
720     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
721     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
722 	NULL, &lockstate);
723     if (def == NULL)
724 	rtld_die();
725     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
726 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
727     else
728 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
729 
730     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
731       defobj->strtab + def->st_name, basename(obj->path),
732       (void *)target, basename(defobj->path));
733 
734     /*
735      * Write the new contents for the jmpslot. Note that depending on
736      * architecture, the value which we need to return back to the
737      * lazy binding trampoline may or may not be the target
738      * address. The value returned from reloc_jmpslot() is the value
739      * that the trampoline needs.
740      */
741     target = reloc_jmpslot(where, target, defobj, obj, rel);
742     lock_release(rtld_bind_lock, &lockstate);
743     return target;
744 }
745 
746 /*
747  * Error reporting function.  Use it like printf.  If formats the message
748  * into a buffer, and sets things up so that the next call to dlerror()
749  * will return the message.
750  */
751 void
752 _rtld_error(const char *fmt, ...)
753 {
754     static char buf[512];
755     va_list ap;
756 
757     va_start(ap, fmt);
758     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
759     error_message = buf;
760     va_end(ap);
761 }
762 
763 /*
764  * Return a dynamically-allocated copy of the current error message, if any.
765  */
766 static char *
767 errmsg_save(void)
768 {
769     return error_message == NULL ? NULL : xstrdup(error_message);
770 }
771 
772 /*
773  * Restore the current error message from a copy which was previously saved
774  * by errmsg_save().  The copy is freed.
775  */
776 static void
777 errmsg_restore(char *saved_msg)
778 {
779     if (saved_msg == NULL)
780 	error_message = NULL;
781     else {
782 	_rtld_error("%s", saved_msg);
783 	free(saved_msg);
784     }
785 }
786 
787 static const char *
788 basename(const char *name)
789 {
790     const char *p = strrchr(name, '/');
791     return p != NULL ? p + 1 : name;
792 }
793 
794 static struct utsname uts;
795 
796 static char *
797 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
798     const char *subst, bool may_free)
799 {
800 	char *p, *p1, *res, *resp;
801 	int subst_len, kw_len, subst_count, old_len, new_len;
802 
803 	kw_len = strlen(kw);
804 
805 	/*
806 	 * First, count the number of the keyword occurrences, to
807 	 * preallocate the final string.
808 	 */
809 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
810 		p1 = strstr(p, kw);
811 		if (p1 == NULL)
812 			break;
813 	}
814 
815 	/*
816 	 * If the keyword is not found, just return.
817 	 *
818 	 * Return non-substituted string if resolution failed.  We
819 	 * cannot do anything more reasonable, the failure mode of the
820 	 * caller is unresolved library anyway.
821 	 */
822 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
823 		return (may_free ? real : xstrdup(real));
824 	if (obj != NULL)
825 		subst = obj->origin_path;
826 
827 	/*
828 	 * There is indeed something to substitute.  Calculate the
829 	 * length of the resulting string, and allocate it.
830 	 */
831 	subst_len = strlen(subst);
832 	old_len = strlen(real);
833 	new_len = old_len + (subst_len - kw_len) * subst_count;
834 	res = xmalloc(new_len + 1);
835 
836 	/*
837 	 * Now, execute the substitution loop.
838 	 */
839 	for (p = real, resp = res, *resp = '\0';;) {
840 		p1 = strstr(p, kw);
841 		if (p1 != NULL) {
842 			/* Copy the prefix before keyword. */
843 			memcpy(resp, p, p1 - p);
844 			resp += p1 - p;
845 			/* Keyword replacement. */
846 			memcpy(resp, subst, subst_len);
847 			resp += subst_len;
848 			*resp = '\0';
849 			p = p1 + kw_len;
850 		} else
851 			break;
852 	}
853 
854 	/* Copy to the end of string and finish. */
855 	strcat(resp, p);
856 	if (may_free)
857 		free(real);
858 	return (res);
859 }
860 
861 static char *
862 origin_subst(Obj_Entry *obj, char *real)
863 {
864 	char *res1, *res2, *res3, *res4;
865 
866 	if (obj == NULL || !trust)
867 		return (xstrdup(real));
868 	if (uts.sysname[0] == '\0') {
869 		if (uname(&uts) != 0) {
870 			_rtld_error("utsname failed: %d", errno);
871 			return (NULL);
872 		}
873 	}
874 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
875 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
876 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
877 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
878 	return (res4);
879 }
880 
881 void
882 rtld_die(void)
883 {
884     const char *msg = dlerror();
885 
886     if (msg == NULL)
887 	msg = "Fatal error";
888     rtld_fdputstr(STDERR_FILENO, msg);
889     rtld_fdputchar(STDERR_FILENO, '\n');
890     _exit(1);
891 }
892 
893 /*
894  * Process a shared object's DYNAMIC section, and save the important
895  * information in its Obj_Entry structure.
896  */
897 static void
898 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
899     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
900 {
901     const Elf_Dyn *dynp;
902     Needed_Entry **needed_tail = &obj->needed;
903     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
904     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
905     const Elf_Hashelt *hashtab;
906     const Elf32_Word *hashval;
907     Elf32_Word bkt, nmaskwords;
908     int bloom_size32;
909     int plttype = DT_REL;
910 
911     *dyn_rpath = NULL;
912     *dyn_soname = NULL;
913     *dyn_runpath = NULL;
914 
915     obj->bind_now = false;
916     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
917 	switch (dynp->d_tag) {
918 
919 	case DT_REL:
920 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
921 	    break;
922 
923 	case DT_RELSZ:
924 	    obj->relsize = dynp->d_un.d_val;
925 	    break;
926 
927 	case DT_RELENT:
928 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
929 	    break;
930 
931 	case DT_JMPREL:
932 	    obj->pltrel = (const Elf_Rel *)
933 	      (obj->relocbase + dynp->d_un.d_ptr);
934 	    break;
935 
936 	case DT_PLTRELSZ:
937 	    obj->pltrelsize = dynp->d_un.d_val;
938 	    break;
939 
940 	case DT_RELA:
941 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
942 	    break;
943 
944 	case DT_RELASZ:
945 	    obj->relasize = dynp->d_un.d_val;
946 	    break;
947 
948 	case DT_RELAENT:
949 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
950 	    break;
951 
952 	case DT_PLTREL:
953 	    plttype = dynp->d_un.d_val;
954 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
955 	    break;
956 
957 	case DT_SYMTAB:
958 	    obj->symtab = (const Elf_Sym *)
959 	      (obj->relocbase + dynp->d_un.d_ptr);
960 	    break;
961 
962 	case DT_SYMENT:
963 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
964 	    break;
965 
966 	case DT_STRTAB:
967 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
968 	    break;
969 
970 	case DT_STRSZ:
971 	    obj->strsize = dynp->d_un.d_val;
972 	    break;
973 
974 	case DT_VERNEED:
975 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
976 		dynp->d_un.d_val);
977 	    break;
978 
979 	case DT_VERNEEDNUM:
980 	    obj->verneednum = dynp->d_un.d_val;
981 	    break;
982 
983 	case DT_VERDEF:
984 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
985 		dynp->d_un.d_val);
986 	    break;
987 
988 	case DT_VERDEFNUM:
989 	    obj->verdefnum = dynp->d_un.d_val;
990 	    break;
991 
992 	case DT_VERSYM:
993 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
994 		dynp->d_un.d_val);
995 	    break;
996 
997 	case DT_HASH:
998 	    {
999 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1000 		    dynp->d_un.d_ptr);
1001 		obj->nbuckets = hashtab[0];
1002 		obj->nchains = hashtab[1];
1003 		obj->buckets = hashtab + 2;
1004 		obj->chains = obj->buckets + obj->nbuckets;
1005 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1006 		  obj->buckets != NULL;
1007 	    }
1008 	    break;
1009 
1010 	case DT_GNU_HASH:
1011 	    {
1012 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1013 		    dynp->d_un.d_ptr);
1014 		obj->nbuckets_gnu = hashtab[0];
1015 		obj->symndx_gnu = hashtab[1];
1016 		nmaskwords = hashtab[2];
1017 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1018 		obj->maskwords_bm_gnu = nmaskwords - 1;
1019 		obj->shift2_gnu = hashtab[3];
1020 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1021 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1022 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1023 		  obj->symndx_gnu;
1024 		/* Number of bitmask words is required to be power of 2 */
1025 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1026 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1027 	    }
1028 	    break;
1029 
1030 	case DT_NEEDED:
1031 	    if (!obj->rtld) {
1032 		Needed_Entry *nep = NEW(Needed_Entry);
1033 		nep->name = dynp->d_un.d_val;
1034 		nep->obj = NULL;
1035 		nep->next = NULL;
1036 
1037 		*needed_tail = nep;
1038 		needed_tail = &nep->next;
1039 	    }
1040 	    break;
1041 
1042 	case DT_FILTER:
1043 	    if (!obj->rtld) {
1044 		Needed_Entry *nep = NEW(Needed_Entry);
1045 		nep->name = dynp->d_un.d_val;
1046 		nep->obj = NULL;
1047 		nep->next = NULL;
1048 
1049 		*needed_filtees_tail = nep;
1050 		needed_filtees_tail = &nep->next;
1051 	    }
1052 	    break;
1053 
1054 	case DT_AUXILIARY:
1055 	    if (!obj->rtld) {
1056 		Needed_Entry *nep = NEW(Needed_Entry);
1057 		nep->name = dynp->d_un.d_val;
1058 		nep->obj = NULL;
1059 		nep->next = NULL;
1060 
1061 		*needed_aux_filtees_tail = nep;
1062 		needed_aux_filtees_tail = &nep->next;
1063 	    }
1064 	    break;
1065 
1066 	case DT_PLTGOT:
1067 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_TEXTREL:
1071 	    obj->textrel = true;
1072 	    break;
1073 
1074 	case DT_SYMBOLIC:
1075 	    obj->symbolic = true;
1076 	    break;
1077 
1078 	case DT_RPATH:
1079 	    /*
1080 	     * We have to wait until later to process this, because we
1081 	     * might not have gotten the address of the string table yet.
1082 	     */
1083 	    *dyn_rpath = dynp;
1084 	    break;
1085 
1086 	case DT_SONAME:
1087 	    *dyn_soname = dynp;
1088 	    break;
1089 
1090 	case DT_RUNPATH:
1091 	    *dyn_runpath = dynp;
1092 	    break;
1093 
1094 	case DT_INIT:
1095 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_PREINIT_ARRAY:
1099 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1100 	    break;
1101 
1102 	case DT_PREINIT_ARRAYSZ:
1103 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1104 	    break;
1105 
1106 	case DT_INIT_ARRAY:
1107 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1108 	    break;
1109 
1110 	case DT_INIT_ARRAYSZ:
1111 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1112 	    break;
1113 
1114 	case DT_FINI:
1115 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1116 	    break;
1117 
1118 	case DT_FINI_ARRAY:
1119 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1120 	    break;
1121 
1122 	case DT_FINI_ARRAYSZ:
1123 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1124 	    break;
1125 
1126 	/*
1127 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1128 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1129 	 */
1130 
1131 #ifndef __mips__
1132 	case DT_DEBUG:
1133 	    if (!early)
1134 		dbg("Filling in DT_DEBUG entry");
1135 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1136 	    break;
1137 #endif
1138 
1139 	case DT_FLAGS:
1140 		if (dynp->d_un.d_val & DF_ORIGIN)
1141 		    obj->z_origin = true;
1142 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1143 		    obj->symbolic = true;
1144 		if (dynp->d_un.d_val & DF_TEXTREL)
1145 		    obj->textrel = true;
1146 		if (dynp->d_un.d_val & DF_BIND_NOW)
1147 		    obj->bind_now = true;
1148 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1149 		    ;*/
1150 	    break;
1151 #ifdef __mips__
1152 	case DT_MIPS_LOCAL_GOTNO:
1153 		obj->local_gotno = dynp->d_un.d_val;
1154 		break;
1155 
1156 	case DT_MIPS_SYMTABNO:
1157 		obj->symtabno = dynp->d_un.d_val;
1158 		break;
1159 
1160 	case DT_MIPS_GOTSYM:
1161 		obj->gotsym = dynp->d_un.d_val;
1162 		break;
1163 
1164 	case DT_MIPS_RLD_MAP:
1165 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1166 		break;
1167 #endif
1168 
1169 #ifdef __powerpc64__
1170 	case DT_PPC64_GLINK:
1171 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1172 		break;
1173 #endif
1174 
1175 	case DT_FLAGS_1:
1176 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1177 		    obj->z_noopen = true;
1178 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1179 		    obj->z_origin = true;
1180 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1181 		    obj->z_global = true;
1182 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1183 		    obj->bind_now = true;
1184 		if (dynp->d_un.d_val & DF_1_NODELETE)
1185 		    obj->z_nodelete = true;
1186 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1187 		    obj->z_loadfltr = true;
1188 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1189 		    obj->z_interpose = true;
1190 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1191 		    obj->z_nodeflib = true;
1192 	    break;
1193 
1194 	default:
1195 	    if (!early) {
1196 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1197 		    (long)dynp->d_tag);
1198 	    }
1199 	    break;
1200 	}
1201     }
1202 
1203     obj->traced = false;
1204 
1205     if (plttype == DT_RELA) {
1206 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1207 	obj->pltrel = NULL;
1208 	obj->pltrelasize = obj->pltrelsize;
1209 	obj->pltrelsize = 0;
1210     }
1211 
1212     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1213     if (obj->valid_hash_sysv)
1214 	obj->dynsymcount = obj->nchains;
1215     else if (obj->valid_hash_gnu) {
1216 	obj->dynsymcount = 0;
1217 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1218 	    if (obj->buckets_gnu[bkt] == 0)
1219 		continue;
1220 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1221 	    do
1222 		obj->dynsymcount++;
1223 	    while ((*hashval++ & 1u) == 0);
1224 	}
1225 	obj->dynsymcount += obj->symndx_gnu;
1226     }
1227 }
1228 
1229 static bool
1230 obj_resolve_origin(Obj_Entry *obj)
1231 {
1232 
1233 	if (obj->origin_path != NULL)
1234 		return (true);
1235 	obj->origin_path = xmalloc(PATH_MAX);
1236 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1237 }
1238 
1239 static void
1240 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1241     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1242 {
1243 
1244 	if (obj->z_origin && !obj_resolve_origin(obj))
1245 		rtld_die();
1246 
1247 	if (dyn_runpath != NULL) {
1248 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1249 		obj->runpath = origin_subst(obj, obj->runpath);
1250 	} else if (dyn_rpath != NULL) {
1251 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1252 		obj->rpath = origin_subst(obj, obj->rpath);
1253 	}
1254 	if (dyn_soname != NULL)
1255 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1256 }
1257 
1258 static void
1259 digest_dynamic(Obj_Entry *obj, int early)
1260 {
1261 	const Elf_Dyn *dyn_rpath;
1262 	const Elf_Dyn *dyn_soname;
1263 	const Elf_Dyn *dyn_runpath;
1264 
1265 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1266 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1267 }
1268 
1269 /*
1270  * Process a shared object's program header.  This is used only for the
1271  * main program, when the kernel has already loaded the main program
1272  * into memory before calling the dynamic linker.  It creates and
1273  * returns an Obj_Entry structure.
1274  */
1275 static Obj_Entry *
1276 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1277 {
1278     Obj_Entry *obj;
1279     const Elf_Phdr *phlimit = phdr + phnum;
1280     const Elf_Phdr *ph;
1281     Elf_Addr note_start, note_end;
1282     int nsegs = 0;
1283 
1284     obj = obj_new();
1285     for (ph = phdr;  ph < phlimit;  ph++) {
1286 	if (ph->p_type != PT_PHDR)
1287 	    continue;
1288 
1289 	obj->phdr = phdr;
1290 	obj->phsize = ph->p_memsz;
1291 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1292 	break;
1293     }
1294 
1295     obj->stack_flags = PF_X | PF_R | PF_W;
1296 
1297     for (ph = phdr;  ph < phlimit;  ph++) {
1298 	switch (ph->p_type) {
1299 
1300 	case PT_INTERP:
1301 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1302 	    break;
1303 
1304 	case PT_LOAD:
1305 	    if (nsegs == 0) {	/* First load segment */
1306 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1307 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1308 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1309 		  obj->vaddrbase;
1310 	    } else {		/* Last load segment */
1311 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1312 		  obj->vaddrbase;
1313 	    }
1314 	    nsegs++;
1315 	    break;
1316 
1317 	case PT_DYNAMIC:
1318 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1319 	    break;
1320 
1321 	case PT_TLS:
1322 	    obj->tlsindex = 1;
1323 	    obj->tlssize = ph->p_memsz;
1324 	    obj->tlsalign = ph->p_align;
1325 	    obj->tlsinitsize = ph->p_filesz;
1326 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1327 	    break;
1328 
1329 	case PT_GNU_STACK:
1330 	    obj->stack_flags = ph->p_flags;
1331 	    break;
1332 
1333 	case PT_GNU_RELRO:
1334 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1335 	    obj->relro_size = round_page(ph->p_memsz);
1336 	    break;
1337 
1338 	case PT_NOTE:
1339 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1340 	    note_end = note_start + ph->p_filesz;
1341 	    digest_notes(obj, note_start, note_end);
1342 	    break;
1343 	}
1344     }
1345     if (nsegs < 1) {
1346 	_rtld_error("%s: too few PT_LOAD segments", path);
1347 	return NULL;
1348     }
1349 
1350     obj->entry = entry;
1351     return obj;
1352 }
1353 
1354 void
1355 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1356 {
1357 	const Elf_Note *note;
1358 	const char *note_name;
1359 	uintptr_t p;
1360 
1361 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1362 	    note = (const Elf_Note *)((const char *)(note + 1) +
1363 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1364 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1365 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1366 		    note->n_descsz != sizeof(int32_t))
1367 			continue;
1368 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1369 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1370 			continue;
1371 		note_name = (const char *)(note + 1);
1372 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1373 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1374 			continue;
1375 		switch (note->n_type) {
1376 		case NT_FREEBSD_ABI_TAG:
1377 			/* FreeBSD osrel note */
1378 			p = (uintptr_t)(note + 1);
1379 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1380 			obj->osrel = *(const int32_t *)(p);
1381 			dbg("note osrel %d", obj->osrel);
1382 			break;
1383 		case NT_FREEBSD_NOINIT_TAG:
1384 			/* FreeBSD 'crt does not call init' note */
1385 			obj->crt_no_init = true;
1386 			dbg("note crt_no_init");
1387 			break;
1388 		}
1389 	}
1390 }
1391 
1392 static Obj_Entry *
1393 dlcheck(void *handle)
1394 {
1395     Obj_Entry *obj;
1396 
1397     TAILQ_FOREACH(obj, &obj_list, next) {
1398 	if (obj == (Obj_Entry *) handle)
1399 	    break;
1400     }
1401 
1402     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1403 	_rtld_error("Invalid shared object handle %p", handle);
1404 	return NULL;
1405     }
1406     return obj;
1407 }
1408 
1409 /*
1410  * If the given object is already in the donelist, return true.  Otherwise
1411  * add the object to the list and return false.
1412  */
1413 static bool
1414 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1415 {
1416     unsigned int i;
1417 
1418     for (i = 0;  i < dlp->num_used;  i++)
1419 	if (dlp->objs[i] == obj)
1420 	    return true;
1421     /*
1422      * Our donelist allocation should always be sufficient.  But if
1423      * our threads locking isn't working properly, more shared objects
1424      * could have been loaded since we allocated the list.  That should
1425      * never happen, but we'll handle it properly just in case it does.
1426      */
1427     if (dlp->num_used < dlp->num_alloc)
1428 	dlp->objs[dlp->num_used++] = obj;
1429     return false;
1430 }
1431 
1432 /*
1433  * Hash function for symbol table lookup.  Don't even think about changing
1434  * this.  It is specified by the System V ABI.
1435  */
1436 unsigned long
1437 elf_hash(const char *name)
1438 {
1439     const unsigned char *p = (const unsigned char *) name;
1440     unsigned long h = 0;
1441     unsigned long g;
1442 
1443     while (*p != '\0') {
1444 	h = (h << 4) + *p++;
1445 	if ((g = h & 0xf0000000) != 0)
1446 	    h ^= g >> 24;
1447 	h &= ~g;
1448     }
1449     return h;
1450 }
1451 
1452 /*
1453  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1454  * unsigned in case it's implemented with a wider type.
1455  */
1456 static uint32_t
1457 gnu_hash(const char *s)
1458 {
1459 	uint32_t h;
1460 	unsigned char c;
1461 
1462 	h = 5381;
1463 	for (c = *s; c != '\0'; c = *++s)
1464 		h = h * 33 + c;
1465 	return (h & 0xffffffff);
1466 }
1467 
1468 
1469 /*
1470  * Find the library with the given name, and return its full pathname.
1471  * The returned string is dynamically allocated.  Generates an error
1472  * message and returns NULL if the library cannot be found.
1473  *
1474  * If the second argument is non-NULL, then it refers to an already-
1475  * loaded shared object, whose library search path will be searched.
1476  *
1477  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1478  * descriptor (which is close-on-exec) will be passed out via the third
1479  * argument.
1480  *
1481  * The search order is:
1482  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1483  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1484  *   LD_LIBRARY_PATH
1485  *   DT_RUNPATH in the referencing file
1486  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1487  *	 from list)
1488  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1489  *
1490  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1491  */
1492 static char *
1493 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1494 {
1495     char *pathname;
1496     char *name;
1497     bool nodeflib, objgiven;
1498 
1499     objgiven = refobj != NULL;
1500     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1501 	if (xname[0] != '/' && !trust) {
1502 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1503 	      xname);
1504 	    return NULL;
1505 	}
1506 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1507 	  __DECONST(char *, xname)));
1508     }
1509 
1510     if (libmap_disable || !objgiven ||
1511 	(name = lm_find(refobj->path, xname)) == NULL)
1512 	name = (char *)xname;
1513 
1514     dbg(" Searching for \"%s\"", name);
1515 
1516     /*
1517      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1518      * back to pre-conforming behaviour if user requested so with
1519      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1520      * nodeflib.
1521      */
1522     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1523 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1524 	  (refobj != NULL &&
1525 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1526 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1527           (pathname = search_library_path(name, gethints(false))) != NULL ||
1528 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1529 	    return (pathname);
1530     } else {
1531 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1532 	if ((objgiven &&
1533 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1534 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1535 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1536 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1537 	  (objgiven &&
1538 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1539 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1540 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1541 	  (objgiven && !nodeflib &&
1542 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1543 	    return (pathname);
1544     }
1545 
1546     if (objgiven && refobj->path != NULL) {
1547 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1548 	  name, basename(refobj->path));
1549     } else {
1550 	_rtld_error("Shared object \"%s\" not found", name);
1551     }
1552     return NULL;
1553 }
1554 
1555 /*
1556  * Given a symbol number in a referencing object, find the corresponding
1557  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1558  * no definition was found.  Returns a pointer to the Obj_Entry of the
1559  * defining object via the reference parameter DEFOBJ_OUT.
1560  */
1561 const Elf_Sym *
1562 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1563     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1564     RtldLockState *lockstate)
1565 {
1566     const Elf_Sym *ref;
1567     const Elf_Sym *def;
1568     const Obj_Entry *defobj;
1569     SymLook req;
1570     const char *name;
1571     int res;
1572 
1573     /*
1574      * If we have already found this symbol, get the information from
1575      * the cache.
1576      */
1577     if (symnum >= refobj->dynsymcount)
1578 	return NULL;	/* Bad object */
1579     if (cache != NULL && cache[symnum].sym != NULL) {
1580 	*defobj_out = cache[symnum].obj;
1581 	return cache[symnum].sym;
1582     }
1583 
1584     ref = refobj->symtab + symnum;
1585     name = refobj->strtab + ref->st_name;
1586     def = NULL;
1587     defobj = NULL;
1588 
1589     /*
1590      * We don't have to do a full scale lookup if the symbol is local.
1591      * We know it will bind to the instance in this load module; to
1592      * which we already have a pointer (ie ref). By not doing a lookup,
1593      * we not only improve performance, but it also avoids unresolvable
1594      * symbols when local symbols are not in the hash table. This has
1595      * been seen with the ia64 toolchain.
1596      */
1597     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1598 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1599 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1600 		symnum);
1601 	}
1602 	symlook_init(&req, name);
1603 	req.flags = flags;
1604 	req.ventry = fetch_ventry(refobj, symnum);
1605 	req.lockstate = lockstate;
1606 	res = symlook_default(&req, refobj);
1607 	if (res == 0) {
1608 	    def = req.sym_out;
1609 	    defobj = req.defobj_out;
1610 	}
1611     } else {
1612 	def = ref;
1613 	defobj = refobj;
1614     }
1615 
1616     /*
1617      * If we found no definition and the reference is weak, treat the
1618      * symbol as having the value zero.
1619      */
1620     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1621 	def = &sym_zero;
1622 	defobj = obj_main;
1623     }
1624 
1625     if (def != NULL) {
1626 	*defobj_out = defobj;
1627 	/* Record the information in the cache to avoid subsequent lookups. */
1628 	if (cache != NULL) {
1629 	    cache[symnum].sym = def;
1630 	    cache[symnum].obj = defobj;
1631 	}
1632     } else {
1633 	if (refobj != &obj_rtld)
1634 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1635     }
1636     return def;
1637 }
1638 
1639 /*
1640  * Return the search path from the ldconfig hints file, reading it if
1641  * necessary.  If nostdlib is true, then the default search paths are
1642  * not added to result.
1643  *
1644  * Returns NULL if there are problems with the hints file,
1645  * or if the search path there is empty.
1646  */
1647 static const char *
1648 gethints(bool nostdlib)
1649 {
1650 	static char *hints, *filtered_path;
1651 	static struct elfhints_hdr hdr;
1652 	struct fill_search_info_args sargs, hargs;
1653 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1654 	struct dl_serpath *SLPpath, *hintpath;
1655 	char *p;
1656 	struct stat hint_stat;
1657 	unsigned int SLPndx, hintndx, fndx, fcount;
1658 	int fd;
1659 	size_t flen;
1660 	uint32_t dl;
1661 	bool skip;
1662 
1663 	/* First call, read the hints file */
1664 	if (hints == NULL) {
1665 		/* Keep from trying again in case the hints file is bad. */
1666 		hints = "";
1667 
1668 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1669 			return (NULL);
1670 
1671 		/*
1672 		 * Check of hdr.dirlistlen value against type limit
1673 		 * intends to pacify static analyzers.  Further
1674 		 * paranoia leads to checks that dirlist is fully
1675 		 * contained in the file range.
1676 		 */
1677 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1678 		    hdr.magic != ELFHINTS_MAGIC ||
1679 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1680 		    fstat(fd, &hint_stat) == -1) {
1681 cleanup1:
1682 			close(fd);
1683 			hdr.dirlistlen = 0;
1684 			return (NULL);
1685 		}
1686 		dl = hdr.strtab;
1687 		if (dl + hdr.dirlist < dl)
1688 			goto cleanup1;
1689 		dl += hdr.dirlist;
1690 		if (dl + hdr.dirlistlen < dl)
1691 			goto cleanup1;
1692 		dl += hdr.dirlistlen;
1693 		if (dl > hint_stat.st_size)
1694 			goto cleanup1;
1695 		p = xmalloc(hdr.dirlistlen + 1);
1696 
1697 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1698 		    read(fd, p, hdr.dirlistlen + 1) !=
1699 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1700 			free(p);
1701 			goto cleanup1;
1702 		}
1703 		hints = p;
1704 		close(fd);
1705 	}
1706 
1707 	/*
1708 	 * If caller agreed to receive list which includes the default
1709 	 * paths, we are done. Otherwise, if we still did not
1710 	 * calculated filtered result, do it now.
1711 	 */
1712 	if (!nostdlib)
1713 		return (hints[0] != '\0' ? hints : NULL);
1714 	if (filtered_path != NULL)
1715 		goto filt_ret;
1716 
1717 	/*
1718 	 * Obtain the list of all configured search paths, and the
1719 	 * list of the default paths.
1720 	 *
1721 	 * First estimate the size of the results.
1722 	 */
1723 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1724 	smeta.dls_cnt = 0;
1725 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1726 	hmeta.dls_cnt = 0;
1727 
1728 	sargs.request = RTLD_DI_SERINFOSIZE;
1729 	sargs.serinfo = &smeta;
1730 	hargs.request = RTLD_DI_SERINFOSIZE;
1731 	hargs.serinfo = &hmeta;
1732 
1733 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1734 	path_enumerate(hints, fill_search_info, &hargs);
1735 
1736 	SLPinfo = xmalloc(smeta.dls_size);
1737 	hintinfo = xmalloc(hmeta.dls_size);
1738 
1739 	/*
1740 	 * Next fetch both sets of paths.
1741 	 */
1742 	sargs.request = RTLD_DI_SERINFO;
1743 	sargs.serinfo = SLPinfo;
1744 	sargs.serpath = &SLPinfo->dls_serpath[0];
1745 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1746 
1747 	hargs.request = RTLD_DI_SERINFO;
1748 	hargs.serinfo = hintinfo;
1749 	hargs.serpath = &hintinfo->dls_serpath[0];
1750 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1751 
1752 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1753 	path_enumerate(hints, fill_search_info, &hargs);
1754 
1755 	/*
1756 	 * Now calculate the difference between two sets, by excluding
1757 	 * standard paths from the full set.
1758 	 */
1759 	fndx = 0;
1760 	fcount = 0;
1761 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1762 	hintpath = &hintinfo->dls_serpath[0];
1763 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1764 		skip = false;
1765 		SLPpath = &SLPinfo->dls_serpath[0];
1766 		/*
1767 		 * Check each standard path against current.
1768 		 */
1769 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1770 			/* matched, skip the path */
1771 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1772 				skip = true;
1773 				break;
1774 			}
1775 		}
1776 		if (skip)
1777 			continue;
1778 		/*
1779 		 * Not matched against any standard path, add the path
1780 		 * to result. Separate consequtive paths with ':'.
1781 		 */
1782 		if (fcount > 0) {
1783 			filtered_path[fndx] = ':';
1784 			fndx++;
1785 		}
1786 		fcount++;
1787 		flen = strlen(hintpath->dls_name);
1788 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1789 		fndx += flen;
1790 	}
1791 	filtered_path[fndx] = '\0';
1792 
1793 	free(SLPinfo);
1794 	free(hintinfo);
1795 
1796 filt_ret:
1797 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1798 }
1799 
1800 static void
1801 init_dag(Obj_Entry *root)
1802 {
1803     const Needed_Entry *needed;
1804     const Objlist_Entry *elm;
1805     DoneList donelist;
1806 
1807     if (root->dag_inited)
1808 	return;
1809     donelist_init(&donelist);
1810 
1811     /* Root object belongs to own DAG. */
1812     objlist_push_tail(&root->dldags, root);
1813     objlist_push_tail(&root->dagmembers, root);
1814     donelist_check(&donelist, root);
1815 
1816     /*
1817      * Add dependencies of root object to DAG in breadth order
1818      * by exploiting the fact that each new object get added
1819      * to the tail of the dagmembers list.
1820      */
1821     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1822 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1823 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1824 		continue;
1825 	    objlist_push_tail(&needed->obj->dldags, root);
1826 	    objlist_push_tail(&root->dagmembers, needed->obj);
1827 	}
1828     }
1829     root->dag_inited = true;
1830 }
1831 
1832 Obj_Entry *
1833 globallist_curr(const Obj_Entry *obj)
1834 {
1835 
1836 	for (;;) {
1837 		if (obj == NULL)
1838 			return (NULL);
1839 		if (!obj->marker)
1840 			return (__DECONST(Obj_Entry *, obj));
1841 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1842 	}
1843 }
1844 
1845 Obj_Entry *
1846 globallist_next(const Obj_Entry *obj)
1847 {
1848 
1849 	for (;;) {
1850 		obj = TAILQ_NEXT(obj, next);
1851 		if (obj == NULL)
1852 			return (NULL);
1853 		if (!obj->marker)
1854 			return (__DECONST(Obj_Entry *, obj));
1855 	}
1856 }
1857 
1858 static void
1859 process_z(Obj_Entry *root)
1860 {
1861 	const Objlist_Entry *elm;
1862 	Obj_Entry *obj;
1863 
1864 	/*
1865 	 * Walk over object DAG and process every dependent object
1866 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1867 	 * to grow their own DAG.
1868 	 *
1869 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1870 	 * symlook_global() to work.
1871 	 *
1872 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1873 	 */
1874 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1875 		obj = elm->obj;
1876 		if (obj == NULL)
1877 			continue;
1878 		if (obj->z_nodelete && !obj->ref_nodel) {
1879 			dbg("obj %s -z nodelete", obj->path);
1880 			init_dag(obj);
1881 			ref_dag(obj);
1882 			obj->ref_nodel = true;
1883 		}
1884 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1885 			dbg("obj %s -z global", obj->path);
1886 			objlist_push_tail(&list_global, obj);
1887 			init_dag(obj);
1888 		}
1889 	}
1890 }
1891 /*
1892  * Initialize the dynamic linker.  The argument is the address at which
1893  * the dynamic linker has been mapped into memory.  The primary task of
1894  * this function is to relocate the dynamic linker.
1895  */
1896 static void
1897 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1898 {
1899     Obj_Entry objtmp;	/* Temporary rtld object */
1900     const Elf_Ehdr *ehdr;
1901     const Elf_Dyn *dyn_rpath;
1902     const Elf_Dyn *dyn_soname;
1903     const Elf_Dyn *dyn_runpath;
1904 
1905 #ifdef RTLD_INIT_PAGESIZES_EARLY
1906     /* The page size is required by the dynamic memory allocator. */
1907     init_pagesizes(aux_info);
1908 #endif
1909 
1910     /*
1911      * Conjure up an Obj_Entry structure for the dynamic linker.
1912      *
1913      * The "path" member can't be initialized yet because string constants
1914      * cannot yet be accessed. Below we will set it correctly.
1915      */
1916     memset(&objtmp, 0, sizeof(objtmp));
1917     objtmp.path = NULL;
1918     objtmp.rtld = true;
1919     objtmp.mapbase = mapbase;
1920 #ifdef PIC
1921     objtmp.relocbase = mapbase;
1922 #endif
1923     if (RTLD_IS_DYNAMIC()) {
1924 	objtmp.dynamic = rtld_dynamic(&objtmp);
1925 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1926 	assert(objtmp.needed == NULL);
1927 #if !defined(__mips__)
1928 	/* MIPS has a bogus DT_TEXTREL. */
1929 	assert(!objtmp.textrel);
1930 #endif
1931 
1932 	/*
1933 	 * Temporarily put the dynamic linker entry into the object list, so
1934 	 * that symbols can be found.
1935 	 */
1936 
1937 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1938     }
1939     ehdr = (Elf_Ehdr *)mapbase;
1940     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1941     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1942 
1943     /* Initialize the object list. */
1944     TAILQ_INIT(&obj_list);
1945 
1946     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1947     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1948 
1949 #ifndef RTLD_INIT_PAGESIZES_EARLY
1950     /* The page size is required by the dynamic memory allocator. */
1951     init_pagesizes(aux_info);
1952 #endif
1953 
1954     if (aux_info[AT_OSRELDATE] != NULL)
1955 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1956 
1957     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1958 
1959     /* Replace the path with a dynamically allocated copy. */
1960     obj_rtld.path = xstrdup(ld_path_rtld);
1961 
1962     r_debug.r_brk = r_debug_state;
1963     r_debug.r_state = RT_CONSISTENT;
1964 }
1965 
1966 /*
1967  * Retrieve the array of supported page sizes.  The kernel provides the page
1968  * sizes in increasing order.
1969  */
1970 static void
1971 init_pagesizes(Elf_Auxinfo **aux_info)
1972 {
1973 	static size_t psa[MAXPAGESIZES];
1974 	int mib[2];
1975 	size_t len, size;
1976 
1977 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1978 	    NULL) {
1979 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1980 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1981 	} else {
1982 		len = 2;
1983 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1984 			size = sizeof(psa);
1985 		else {
1986 			/* As a fallback, retrieve the base page size. */
1987 			size = sizeof(psa[0]);
1988 			if (aux_info[AT_PAGESZ] != NULL) {
1989 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1990 				goto psa_filled;
1991 			} else {
1992 				mib[0] = CTL_HW;
1993 				mib[1] = HW_PAGESIZE;
1994 				len = 2;
1995 			}
1996 		}
1997 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1998 			_rtld_error("sysctl for hw.pagesize(s) failed");
1999 			rtld_die();
2000 		}
2001 psa_filled:
2002 		pagesizes = psa;
2003 	}
2004 	npagesizes = size / sizeof(pagesizes[0]);
2005 	/* Discard any invalid entries at the end of the array. */
2006 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2007 		npagesizes--;
2008 }
2009 
2010 /*
2011  * Add the init functions from a needed object list (and its recursive
2012  * needed objects) to "list".  This is not used directly; it is a helper
2013  * function for initlist_add_objects().  The write lock must be held
2014  * when this function is called.
2015  */
2016 static void
2017 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2018 {
2019     /* Recursively process the successor needed objects. */
2020     if (needed->next != NULL)
2021 	initlist_add_neededs(needed->next, list);
2022 
2023     /* Process the current needed object. */
2024     if (needed->obj != NULL)
2025 	initlist_add_objects(needed->obj, needed->obj, list);
2026 }
2027 
2028 /*
2029  * Scan all of the DAGs rooted in the range of objects from "obj" to
2030  * "tail" and add their init functions to "list".  This recurses over
2031  * the DAGs and ensure the proper init ordering such that each object's
2032  * needed libraries are initialized before the object itself.  At the
2033  * same time, this function adds the objects to the global finalization
2034  * list "list_fini" in the opposite order.  The write lock must be
2035  * held when this function is called.
2036  */
2037 static void
2038 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2039 {
2040     Obj_Entry *nobj;
2041 
2042     if (obj->init_scanned || obj->init_done)
2043 	return;
2044     obj->init_scanned = true;
2045 
2046     /* Recursively process the successor objects. */
2047     nobj = globallist_next(obj);
2048     if (nobj != NULL && obj != tail)
2049 	initlist_add_objects(nobj, tail, list);
2050 
2051     /* Recursively process the needed objects. */
2052     if (obj->needed != NULL)
2053 	initlist_add_neededs(obj->needed, list);
2054     if (obj->needed_filtees != NULL)
2055 	initlist_add_neededs(obj->needed_filtees, list);
2056     if (obj->needed_aux_filtees != NULL)
2057 	initlist_add_neededs(obj->needed_aux_filtees, list);
2058 
2059     /* Add the object to the init list. */
2060     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2061       obj->init_array != (Elf_Addr)NULL)
2062 	objlist_push_tail(list, obj);
2063 
2064     /* Add the object to the global fini list in the reverse order. */
2065     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2066       && !obj->on_fini_list) {
2067 	objlist_push_head(&list_fini, obj);
2068 	obj->on_fini_list = true;
2069     }
2070 }
2071 
2072 #ifndef FPTR_TARGET
2073 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2074 #endif
2075 
2076 static void
2077 free_needed_filtees(Needed_Entry *n)
2078 {
2079     Needed_Entry *needed, *needed1;
2080 
2081     for (needed = n; needed != NULL; needed = needed->next) {
2082 	if (needed->obj != NULL) {
2083 	    dlclose(needed->obj);
2084 	    needed->obj = NULL;
2085 	}
2086     }
2087     for (needed = n; needed != NULL; needed = needed1) {
2088 	needed1 = needed->next;
2089 	free(needed);
2090     }
2091 }
2092 
2093 static void
2094 unload_filtees(Obj_Entry *obj)
2095 {
2096 
2097     free_needed_filtees(obj->needed_filtees);
2098     obj->needed_filtees = NULL;
2099     free_needed_filtees(obj->needed_aux_filtees);
2100     obj->needed_aux_filtees = NULL;
2101     obj->filtees_loaded = false;
2102 }
2103 
2104 static void
2105 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2106     RtldLockState *lockstate)
2107 {
2108 
2109     for (; needed != NULL; needed = needed->next) {
2110 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2111 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2112 	  RTLD_LOCAL, lockstate);
2113     }
2114 }
2115 
2116 static void
2117 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2118 {
2119 
2120     lock_restart_for_upgrade(lockstate);
2121     if (!obj->filtees_loaded) {
2122 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2123 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2124 	obj->filtees_loaded = true;
2125     }
2126 }
2127 
2128 static int
2129 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2130 {
2131     Obj_Entry *obj1;
2132 
2133     for (; needed != NULL; needed = needed->next) {
2134 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2135 	  flags & ~RTLD_LO_NOLOAD);
2136 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2137 	    return (-1);
2138     }
2139     return (0);
2140 }
2141 
2142 /*
2143  * Given a shared object, traverse its list of needed objects, and load
2144  * each of them.  Returns 0 on success.  Generates an error message and
2145  * returns -1 on failure.
2146  */
2147 static int
2148 load_needed_objects(Obj_Entry *first, int flags)
2149 {
2150     Obj_Entry *obj;
2151 
2152     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2153 	if (obj->marker)
2154 	    continue;
2155 	if (process_needed(obj, obj->needed, flags) == -1)
2156 	    return (-1);
2157     }
2158     return (0);
2159 }
2160 
2161 static int
2162 load_preload_objects(void)
2163 {
2164     char *p = ld_preload;
2165     Obj_Entry *obj;
2166     static const char delim[] = " \t:;";
2167 
2168     if (p == NULL)
2169 	return 0;
2170 
2171     p += strspn(p, delim);
2172     while (*p != '\0') {
2173 	size_t len = strcspn(p, delim);
2174 	char savech;
2175 
2176 	savech = p[len];
2177 	p[len] = '\0';
2178 	obj = load_object(p, -1, NULL, 0);
2179 	if (obj == NULL)
2180 	    return -1;	/* XXX - cleanup */
2181 	obj->z_interpose = true;
2182 	p[len] = savech;
2183 	p += len;
2184 	p += strspn(p, delim);
2185     }
2186     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2187     return 0;
2188 }
2189 
2190 static const char *
2191 printable_path(const char *path)
2192 {
2193 
2194 	return (path == NULL ? "<unknown>" : path);
2195 }
2196 
2197 /*
2198  * Load a shared object into memory, if it is not already loaded.  The
2199  * object may be specified by name or by user-supplied file descriptor
2200  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2201  * duplicate is.
2202  *
2203  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2204  * on failure.
2205  */
2206 static Obj_Entry *
2207 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2208 {
2209     Obj_Entry *obj;
2210     int fd;
2211     struct stat sb;
2212     char *path;
2213 
2214     fd = -1;
2215     if (name != NULL) {
2216 	TAILQ_FOREACH(obj, &obj_list, next) {
2217 	    if (obj->marker)
2218 		continue;
2219 	    if (object_match_name(obj, name))
2220 		return (obj);
2221 	}
2222 
2223 	path = find_library(name, refobj, &fd);
2224 	if (path == NULL)
2225 	    return (NULL);
2226     } else
2227 	path = NULL;
2228 
2229     if (fd >= 0) {
2230 	/*
2231 	 * search_library_pathfds() opens a fresh file descriptor for the
2232 	 * library, so there is no need to dup().
2233 	 */
2234     } else if (fd_u == -1) {
2235 	/*
2236 	 * If we didn't find a match by pathname, or the name is not
2237 	 * supplied, open the file and check again by device and inode.
2238 	 * This avoids false mismatches caused by multiple links or ".."
2239 	 * in pathnames.
2240 	 *
2241 	 * To avoid a race, we open the file and use fstat() rather than
2242 	 * using stat().
2243 	 */
2244 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2245 	    _rtld_error("Cannot open \"%s\"", path);
2246 	    free(path);
2247 	    return (NULL);
2248 	}
2249     } else {
2250 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2251 	if (fd == -1) {
2252 	    _rtld_error("Cannot dup fd");
2253 	    free(path);
2254 	    return (NULL);
2255 	}
2256     }
2257     if (fstat(fd, &sb) == -1) {
2258 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2259 	close(fd);
2260 	free(path);
2261 	return NULL;
2262     }
2263     TAILQ_FOREACH(obj, &obj_list, next) {
2264 	if (obj->marker)
2265 	    continue;
2266 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2267 	    break;
2268     }
2269     if (obj != NULL && name != NULL) {
2270 	object_add_name(obj, name);
2271 	free(path);
2272 	close(fd);
2273 	return obj;
2274     }
2275     if (flags & RTLD_LO_NOLOAD) {
2276 	free(path);
2277 	close(fd);
2278 	return (NULL);
2279     }
2280 
2281     /* First use of this object, so we must map it in */
2282     obj = do_load_object(fd, name, path, &sb, flags);
2283     if (obj == NULL)
2284 	free(path);
2285     close(fd);
2286 
2287     return obj;
2288 }
2289 
2290 static Obj_Entry *
2291 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2292   int flags)
2293 {
2294     Obj_Entry *obj;
2295     struct statfs fs;
2296 
2297     /*
2298      * but first, make sure that environment variables haven't been
2299      * used to circumvent the noexec flag on a filesystem.
2300      */
2301     if (dangerous_ld_env) {
2302 	if (fstatfs(fd, &fs) != 0) {
2303 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2304 	    return NULL;
2305 	}
2306 	if (fs.f_flags & MNT_NOEXEC) {
2307 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2308 	    return NULL;
2309 	}
2310     }
2311     dbg("loading \"%s\"", printable_path(path));
2312     obj = map_object(fd, printable_path(path), sbp);
2313     if (obj == NULL)
2314         return NULL;
2315 
2316     /*
2317      * If DT_SONAME is present in the object, digest_dynamic2 already
2318      * added it to the object names.
2319      */
2320     if (name != NULL)
2321 	object_add_name(obj, name);
2322     obj->path = path;
2323     digest_dynamic(obj, 0);
2324     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2325 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2326     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2327       RTLD_LO_DLOPEN) {
2328 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2329 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2330 	munmap(obj->mapbase, obj->mapsize);
2331 	obj_free(obj);
2332 	return (NULL);
2333     }
2334 
2335     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2336     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2337     obj_count++;
2338     obj_loads++;
2339     linkmap_add(obj);	/* for GDB & dlinfo() */
2340     max_stack_flags |= obj->stack_flags;
2341 
2342     dbg("  %p .. %p: %s", obj->mapbase,
2343          obj->mapbase + obj->mapsize - 1, obj->path);
2344     if (obj->textrel)
2345 	dbg("  WARNING: %s has impure text", obj->path);
2346     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2347 	obj->path);
2348 
2349     return obj;
2350 }
2351 
2352 static Obj_Entry *
2353 obj_from_addr(const void *addr)
2354 {
2355     Obj_Entry *obj;
2356 
2357     TAILQ_FOREACH(obj, &obj_list, next) {
2358 	if (obj->marker)
2359 	    continue;
2360 	if (addr < (void *) obj->mapbase)
2361 	    continue;
2362 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2363 	    return obj;
2364     }
2365     return NULL;
2366 }
2367 
2368 static void
2369 preinit_main(void)
2370 {
2371     Elf_Addr *preinit_addr;
2372     int index;
2373 
2374     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2375     if (preinit_addr == NULL)
2376 	return;
2377 
2378     for (index = 0; index < obj_main->preinit_array_num; index++) {
2379 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2380 	    dbg("calling preinit function for %s at %p", obj_main->path,
2381 	      (void *)preinit_addr[index]);
2382 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2383 	      0, 0, obj_main->path);
2384 	    call_init_pointer(obj_main, preinit_addr[index]);
2385 	}
2386     }
2387 }
2388 
2389 /*
2390  * Call the finalization functions for each of the objects in "list"
2391  * belonging to the DAG of "root" and referenced once. If NULL "root"
2392  * is specified, every finalization function will be called regardless
2393  * of the reference count and the list elements won't be freed. All of
2394  * the objects are expected to have non-NULL fini functions.
2395  */
2396 static void
2397 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2398 {
2399     Objlist_Entry *elm;
2400     char *saved_msg;
2401     Elf_Addr *fini_addr;
2402     int index;
2403 
2404     assert(root == NULL || root->refcount == 1);
2405 
2406     /*
2407      * Preserve the current error message since a fini function might
2408      * call into the dynamic linker and overwrite it.
2409      */
2410     saved_msg = errmsg_save();
2411     do {
2412 	STAILQ_FOREACH(elm, list, link) {
2413 	    if (root != NULL && (elm->obj->refcount != 1 ||
2414 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2415 		continue;
2416 	    /* Remove object from fini list to prevent recursive invocation. */
2417 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2418 	    /*
2419 	     * XXX: If a dlopen() call references an object while the
2420 	     * fini function is in progress, we might end up trying to
2421 	     * unload the referenced object in dlclose() or the object
2422 	     * won't be unloaded although its fini function has been
2423 	     * called.
2424 	     */
2425 	    lock_release(rtld_bind_lock, lockstate);
2426 
2427 	    /*
2428 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2429 	     * When this happens, DT_FINI_ARRAY is processed first.
2430 	     */
2431 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2432 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2433 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2434 		  index--) {
2435 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2436 			dbg("calling fini function for %s at %p",
2437 			    elm->obj->path, (void *)fini_addr[index]);
2438 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2439 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2440 			call_initfini_pointer(elm->obj, fini_addr[index]);
2441 		    }
2442 		}
2443 	    }
2444 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2445 		dbg("calling fini function for %s at %p", elm->obj->path,
2446 		    (void *)elm->obj->fini);
2447 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2448 		    0, 0, elm->obj->path);
2449 		call_initfini_pointer(elm->obj, elm->obj->fini);
2450 	    }
2451 	    wlock_acquire(rtld_bind_lock, lockstate);
2452 	    /* No need to free anything if process is going down. */
2453 	    if (root != NULL)
2454 	    	free(elm);
2455 	    /*
2456 	     * We must restart the list traversal after every fini call
2457 	     * because a dlclose() call from the fini function or from
2458 	     * another thread might have modified the reference counts.
2459 	     */
2460 	    break;
2461 	}
2462     } while (elm != NULL);
2463     errmsg_restore(saved_msg);
2464 }
2465 
2466 /*
2467  * Call the initialization functions for each of the objects in
2468  * "list".  All of the objects are expected to have non-NULL init
2469  * functions.
2470  */
2471 static void
2472 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2473 {
2474     Objlist_Entry *elm;
2475     Obj_Entry *obj;
2476     char *saved_msg;
2477     Elf_Addr *init_addr;
2478     int index;
2479 
2480     /*
2481      * Clean init_scanned flag so that objects can be rechecked and
2482      * possibly initialized earlier if any of vectors called below
2483      * cause the change by using dlopen.
2484      */
2485     TAILQ_FOREACH(obj, &obj_list, next) {
2486 	if (obj->marker)
2487 	    continue;
2488 	obj->init_scanned = false;
2489     }
2490 
2491     /*
2492      * Preserve the current error message since an init function might
2493      * call into the dynamic linker and overwrite it.
2494      */
2495     saved_msg = errmsg_save();
2496     STAILQ_FOREACH(elm, list, link) {
2497 	if (elm->obj->init_done) /* Initialized early. */
2498 	    continue;
2499 	/*
2500 	 * Race: other thread might try to use this object before current
2501 	 * one completes the initilization. Not much can be done here
2502 	 * without better locking.
2503 	 */
2504 	elm->obj->init_done = true;
2505 	lock_release(rtld_bind_lock, lockstate);
2506 
2507         /*
2508          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2509          * When this happens, DT_INIT is processed first.
2510          */
2511 	if (elm->obj->init != (Elf_Addr)NULL) {
2512 	    dbg("calling init function for %s at %p", elm->obj->path,
2513 	        (void *)elm->obj->init);
2514 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2515 	        0, 0, elm->obj->path);
2516 	    call_initfini_pointer(elm->obj, elm->obj->init);
2517 	}
2518 	init_addr = (Elf_Addr *)elm->obj->init_array;
2519 	if (init_addr != NULL) {
2520 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2521 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2522 		    dbg("calling init function for %s at %p", elm->obj->path,
2523 			(void *)init_addr[index]);
2524 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2525 			(void *)init_addr[index], 0, 0, elm->obj->path);
2526 		    call_init_pointer(elm->obj, init_addr[index]);
2527 		}
2528 	    }
2529 	}
2530 	wlock_acquire(rtld_bind_lock, lockstate);
2531     }
2532     errmsg_restore(saved_msg);
2533 }
2534 
2535 static void
2536 objlist_clear(Objlist *list)
2537 {
2538     Objlist_Entry *elm;
2539 
2540     while (!STAILQ_EMPTY(list)) {
2541 	elm = STAILQ_FIRST(list);
2542 	STAILQ_REMOVE_HEAD(list, link);
2543 	free(elm);
2544     }
2545 }
2546 
2547 static Objlist_Entry *
2548 objlist_find(Objlist *list, const Obj_Entry *obj)
2549 {
2550     Objlist_Entry *elm;
2551 
2552     STAILQ_FOREACH(elm, list, link)
2553 	if (elm->obj == obj)
2554 	    return elm;
2555     return NULL;
2556 }
2557 
2558 static void
2559 objlist_init(Objlist *list)
2560 {
2561     STAILQ_INIT(list);
2562 }
2563 
2564 static void
2565 objlist_push_head(Objlist *list, Obj_Entry *obj)
2566 {
2567     Objlist_Entry *elm;
2568 
2569     elm = NEW(Objlist_Entry);
2570     elm->obj = obj;
2571     STAILQ_INSERT_HEAD(list, elm, link);
2572 }
2573 
2574 static void
2575 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2576 {
2577     Objlist_Entry *elm;
2578 
2579     elm = NEW(Objlist_Entry);
2580     elm->obj = obj;
2581     STAILQ_INSERT_TAIL(list, elm, link);
2582 }
2583 
2584 static void
2585 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2586 {
2587 	Objlist_Entry *elm, *listelm;
2588 
2589 	STAILQ_FOREACH(listelm, list, link) {
2590 		if (listelm->obj == listobj)
2591 			break;
2592 	}
2593 	elm = NEW(Objlist_Entry);
2594 	elm->obj = obj;
2595 	if (listelm != NULL)
2596 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2597 	else
2598 		STAILQ_INSERT_TAIL(list, elm, link);
2599 }
2600 
2601 static void
2602 objlist_remove(Objlist *list, Obj_Entry *obj)
2603 {
2604     Objlist_Entry *elm;
2605 
2606     if ((elm = objlist_find(list, obj)) != NULL) {
2607 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2608 	free(elm);
2609     }
2610 }
2611 
2612 /*
2613  * Relocate dag rooted in the specified object.
2614  * Returns 0 on success, or -1 on failure.
2615  */
2616 
2617 static int
2618 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2619     int flags, RtldLockState *lockstate)
2620 {
2621 	Objlist_Entry *elm;
2622 	int error;
2623 
2624 	error = 0;
2625 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2626 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2627 		    lockstate);
2628 		if (error == -1)
2629 			break;
2630 	}
2631 	return (error);
2632 }
2633 
2634 /*
2635  * Prepare for, or clean after, relocating an object marked with
2636  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2637  * segments are remapped read-write.  After relocations are done, the
2638  * segment's permissions are returned back to the modes specified in
2639  * the phdrs.  If any relocation happened, or always for wired
2640  * program, COW is triggered.
2641  */
2642 static int
2643 reloc_textrel_prot(Obj_Entry *obj, bool before)
2644 {
2645 	const Elf_Phdr *ph;
2646 	void *base;
2647 	size_t l, sz;
2648 	int prot;
2649 
2650 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2651 	    l--, ph++) {
2652 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2653 			continue;
2654 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2655 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2656 		    trunc_page(ph->p_vaddr);
2657 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2658 		if (mprotect(base, sz, prot) == -1) {
2659 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2660 			    obj->path, before ? "en" : "dis",
2661 			    rtld_strerror(errno));
2662 			return (-1);
2663 		}
2664 	}
2665 	return (0);
2666 }
2667 
2668 /*
2669  * Relocate single object.
2670  * Returns 0 on success, or -1 on failure.
2671  */
2672 static int
2673 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2674     int flags, RtldLockState *lockstate)
2675 {
2676 
2677 	if (obj->relocated)
2678 		return (0);
2679 	obj->relocated = true;
2680 	if (obj != rtldobj)
2681 		dbg("relocating \"%s\"", obj->path);
2682 
2683 	if (obj->symtab == NULL || obj->strtab == NULL ||
2684 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2685 		_rtld_error("%s: Shared object has no run-time symbol table",
2686 			    obj->path);
2687 		return (-1);
2688 	}
2689 
2690 	/* There are relocations to the write-protected text segment. */
2691 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2692 		return (-1);
2693 
2694 	/* Process the non-PLT non-IFUNC relocations. */
2695 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2696 		return (-1);
2697 
2698 	/* Re-protected the text segment. */
2699 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2700 		return (-1);
2701 
2702 	/* Set the special PLT or GOT entries. */
2703 	init_pltgot(obj);
2704 
2705 	/* Process the PLT relocations. */
2706 	if (reloc_plt(obj) == -1)
2707 		return (-1);
2708 	/* Relocate the jump slots if we are doing immediate binding. */
2709 	if (obj->bind_now || bind_now)
2710 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2711 			return (-1);
2712 
2713 	/*
2714 	 * Process the non-PLT IFUNC relocations.  The relocations are
2715 	 * processed in two phases, because IFUNC resolvers may
2716 	 * reference other symbols, which must be readily processed
2717 	 * before resolvers are called.
2718 	 */
2719 	if (obj->non_plt_gnu_ifunc &&
2720 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2721 		return (-1);
2722 
2723 	if (obj->relro_size > 0) {
2724 		if (mprotect(obj->relro_page, obj->relro_size,
2725 		    PROT_READ) == -1) {
2726 			_rtld_error("%s: Cannot enforce relro protection: %s",
2727 			    obj->path, rtld_strerror(errno));
2728 			return (-1);
2729 		}
2730 	}
2731 
2732 	/*
2733 	 * Set up the magic number and version in the Obj_Entry.  These
2734 	 * were checked in the crt1.o from the original ElfKit, so we
2735 	 * set them for backward compatibility.
2736 	 */
2737 	obj->magic = RTLD_MAGIC;
2738 	obj->version = RTLD_VERSION;
2739 
2740 	return (0);
2741 }
2742 
2743 /*
2744  * Relocate newly-loaded shared objects.  The argument is a pointer to
2745  * the Obj_Entry for the first such object.  All objects from the first
2746  * to the end of the list of objects are relocated.  Returns 0 on success,
2747  * or -1 on failure.
2748  */
2749 static int
2750 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2751     int flags, RtldLockState *lockstate)
2752 {
2753 	Obj_Entry *obj;
2754 	int error;
2755 
2756 	for (error = 0, obj = first;  obj != NULL;
2757 	    obj = TAILQ_NEXT(obj, next)) {
2758 		if (obj->marker)
2759 			continue;
2760 		error = relocate_object(obj, bind_now, rtldobj, flags,
2761 		    lockstate);
2762 		if (error == -1)
2763 			break;
2764 	}
2765 	return (error);
2766 }
2767 
2768 /*
2769  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2770  * referencing STT_GNU_IFUNC symbols is postponed till the other
2771  * relocations are done.  The indirect functions specified as
2772  * ifunc are allowed to call other symbols, so we need to have
2773  * objects relocated before asking for resolution from indirects.
2774  *
2775  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2776  * instead of the usual lazy handling of PLT slots.  It is
2777  * consistent with how GNU does it.
2778  */
2779 static int
2780 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2781     RtldLockState *lockstate)
2782 {
2783 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2784 		return (-1);
2785 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2786 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2787 		return (-1);
2788 	return (0);
2789 }
2790 
2791 static int
2792 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2793     RtldLockState *lockstate)
2794 {
2795 	Obj_Entry *obj;
2796 
2797 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2798 		if (obj->marker)
2799 			continue;
2800 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2801 			return (-1);
2802 	}
2803 	return (0);
2804 }
2805 
2806 static int
2807 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2808     RtldLockState *lockstate)
2809 {
2810 	Objlist_Entry *elm;
2811 
2812 	STAILQ_FOREACH(elm, list, link) {
2813 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2814 		    lockstate) == -1)
2815 			return (-1);
2816 	}
2817 	return (0);
2818 }
2819 
2820 /*
2821  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2822  * before the process exits.
2823  */
2824 static void
2825 rtld_exit(void)
2826 {
2827     RtldLockState lockstate;
2828 
2829     wlock_acquire(rtld_bind_lock, &lockstate);
2830     dbg("rtld_exit()");
2831     objlist_call_fini(&list_fini, NULL, &lockstate);
2832     /* No need to remove the items from the list, since we are exiting. */
2833     if (!libmap_disable)
2834         lm_fini();
2835     lock_release(rtld_bind_lock, &lockstate);
2836 }
2837 
2838 /*
2839  * Iterate over a search path, translate each element, and invoke the
2840  * callback on the result.
2841  */
2842 static void *
2843 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2844 {
2845     const char *trans;
2846     if (path == NULL)
2847 	return (NULL);
2848 
2849     path += strspn(path, ":;");
2850     while (*path != '\0') {
2851 	size_t len;
2852 	char  *res;
2853 
2854 	len = strcspn(path, ":;");
2855 	trans = lm_findn(NULL, path, len);
2856 	if (trans)
2857 	    res = callback(trans, strlen(trans), arg);
2858 	else
2859 	    res = callback(path, len, arg);
2860 
2861 	if (res != NULL)
2862 	    return (res);
2863 
2864 	path += len;
2865 	path += strspn(path, ":;");
2866     }
2867 
2868     return (NULL);
2869 }
2870 
2871 struct try_library_args {
2872     const char	*name;
2873     size_t	 namelen;
2874     char	*buffer;
2875     size_t	 buflen;
2876 };
2877 
2878 static void *
2879 try_library_path(const char *dir, size_t dirlen, void *param)
2880 {
2881     struct try_library_args *arg;
2882 
2883     arg = param;
2884     if (*dir == '/' || trust) {
2885 	char *pathname;
2886 
2887 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2888 		return (NULL);
2889 
2890 	pathname = arg->buffer;
2891 	strncpy(pathname, dir, dirlen);
2892 	pathname[dirlen] = '/';
2893 	strcpy(pathname + dirlen + 1, arg->name);
2894 
2895 	dbg("  Trying \"%s\"", pathname);
2896 	if (access(pathname, F_OK) == 0) {		/* We found it */
2897 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2898 	    strcpy(pathname, arg->buffer);
2899 	    return (pathname);
2900 	}
2901     }
2902     return (NULL);
2903 }
2904 
2905 static char *
2906 search_library_path(const char *name, const char *path)
2907 {
2908     char *p;
2909     struct try_library_args arg;
2910 
2911     if (path == NULL)
2912 	return NULL;
2913 
2914     arg.name = name;
2915     arg.namelen = strlen(name);
2916     arg.buffer = xmalloc(PATH_MAX);
2917     arg.buflen = PATH_MAX;
2918 
2919     p = path_enumerate(path, try_library_path, &arg);
2920 
2921     free(arg.buffer);
2922 
2923     return (p);
2924 }
2925 
2926 
2927 /*
2928  * Finds the library with the given name using the directory descriptors
2929  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2930  *
2931  * Returns a freshly-opened close-on-exec file descriptor for the library,
2932  * or -1 if the library cannot be found.
2933  */
2934 static char *
2935 search_library_pathfds(const char *name, const char *path, int *fdp)
2936 {
2937 	char *envcopy, *fdstr, *found, *last_token;
2938 	size_t len;
2939 	int dirfd, fd;
2940 
2941 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2942 
2943 	/* Don't load from user-specified libdirs into setuid binaries. */
2944 	if (!trust)
2945 		return (NULL);
2946 
2947 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2948 	if (path == NULL)
2949 		return (NULL);
2950 
2951 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2952 	if (name[0] == '/') {
2953 		dbg("Absolute path (%s) passed to %s", name, __func__);
2954 		return (NULL);
2955 	}
2956 
2957 	/*
2958 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2959 	 * copy of the path, as strtok_r rewrites separator tokens
2960 	 * with '\0'.
2961 	 */
2962 	found = NULL;
2963 	envcopy = xstrdup(path);
2964 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2965 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2966 		dirfd = parse_libdir(fdstr);
2967 		if (dirfd < 0)
2968 			break;
2969 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2970 		if (fd >= 0) {
2971 			*fdp = fd;
2972 			len = strlen(fdstr) + strlen(name) + 3;
2973 			found = xmalloc(len);
2974 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2975 				_rtld_error("error generating '%d/%s'",
2976 				    dirfd, name);
2977 				rtld_die();
2978 			}
2979 			dbg("open('%s') => %d", found, fd);
2980 			break;
2981 		}
2982 	}
2983 	free(envcopy);
2984 
2985 	return (found);
2986 }
2987 
2988 
2989 int
2990 dlclose(void *handle)
2991 {
2992     Obj_Entry *root;
2993     RtldLockState lockstate;
2994 
2995     wlock_acquire(rtld_bind_lock, &lockstate);
2996     root = dlcheck(handle);
2997     if (root == NULL) {
2998 	lock_release(rtld_bind_lock, &lockstate);
2999 	return -1;
3000     }
3001     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3002 	root->path);
3003 
3004     /* Unreference the object and its dependencies. */
3005     root->dl_refcount--;
3006 
3007     if (root->refcount == 1) {
3008 	/*
3009 	 * The object will be no longer referenced, so we must unload it.
3010 	 * First, call the fini functions.
3011 	 */
3012 	objlist_call_fini(&list_fini, root, &lockstate);
3013 
3014 	unref_dag(root);
3015 
3016 	/* Finish cleaning up the newly-unreferenced objects. */
3017 	GDB_STATE(RT_DELETE,&root->linkmap);
3018 	unload_object(root);
3019 	GDB_STATE(RT_CONSISTENT,NULL);
3020     } else
3021 	unref_dag(root);
3022 
3023     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3024     lock_release(rtld_bind_lock, &lockstate);
3025     return 0;
3026 }
3027 
3028 char *
3029 dlerror(void)
3030 {
3031     char *msg = error_message;
3032     error_message = NULL;
3033     return msg;
3034 }
3035 
3036 /*
3037  * This function is deprecated and has no effect.
3038  */
3039 void
3040 dllockinit(void *context,
3041 	   void *(*lock_create)(void *context),
3042            void (*rlock_acquire)(void *lock),
3043            void (*wlock_acquire)(void *lock),
3044            void (*lock_release)(void *lock),
3045            void (*lock_destroy)(void *lock),
3046 	   void (*context_destroy)(void *context))
3047 {
3048     static void *cur_context;
3049     static void (*cur_context_destroy)(void *);
3050 
3051     /* Just destroy the context from the previous call, if necessary. */
3052     if (cur_context_destroy != NULL)
3053 	cur_context_destroy(cur_context);
3054     cur_context = context;
3055     cur_context_destroy = context_destroy;
3056 }
3057 
3058 void *
3059 dlopen(const char *name, int mode)
3060 {
3061 
3062 	return (rtld_dlopen(name, -1, mode));
3063 }
3064 
3065 void *
3066 fdlopen(int fd, int mode)
3067 {
3068 
3069 	return (rtld_dlopen(NULL, fd, mode));
3070 }
3071 
3072 static void *
3073 rtld_dlopen(const char *name, int fd, int mode)
3074 {
3075     RtldLockState lockstate;
3076     int lo_flags;
3077 
3078     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3079     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3080     if (ld_tracing != NULL) {
3081 	rlock_acquire(rtld_bind_lock, &lockstate);
3082 	if (sigsetjmp(lockstate.env, 0) != 0)
3083 	    lock_upgrade(rtld_bind_lock, &lockstate);
3084 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3085 	lock_release(rtld_bind_lock, &lockstate);
3086     }
3087     lo_flags = RTLD_LO_DLOPEN;
3088     if (mode & RTLD_NODELETE)
3089 	    lo_flags |= RTLD_LO_NODELETE;
3090     if (mode & RTLD_NOLOAD)
3091 	    lo_flags |= RTLD_LO_NOLOAD;
3092     if (ld_tracing != NULL)
3093 	    lo_flags |= RTLD_LO_TRACE;
3094 
3095     return (dlopen_object(name, fd, obj_main, lo_flags,
3096       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3097 }
3098 
3099 static void
3100 dlopen_cleanup(Obj_Entry *obj)
3101 {
3102 
3103 	obj->dl_refcount--;
3104 	unref_dag(obj);
3105 	if (obj->refcount == 0)
3106 		unload_object(obj);
3107 }
3108 
3109 static Obj_Entry *
3110 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3111     int mode, RtldLockState *lockstate)
3112 {
3113     Obj_Entry *old_obj_tail;
3114     Obj_Entry *obj;
3115     Objlist initlist;
3116     RtldLockState mlockstate;
3117     int result;
3118 
3119     objlist_init(&initlist);
3120 
3121     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3122 	wlock_acquire(rtld_bind_lock, &mlockstate);
3123 	lockstate = &mlockstate;
3124     }
3125     GDB_STATE(RT_ADD,NULL);
3126 
3127     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3128     obj = NULL;
3129     if (name == NULL && fd == -1) {
3130 	obj = obj_main;
3131 	obj->refcount++;
3132     } else {
3133 	obj = load_object(name, fd, refobj, lo_flags);
3134     }
3135 
3136     if (obj) {
3137 	obj->dl_refcount++;
3138 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3139 	    objlist_push_tail(&list_global, obj);
3140 	if (globallist_next(old_obj_tail) != NULL) {
3141 	    /* We loaded something new. */
3142 	    assert(globallist_next(old_obj_tail) == obj);
3143 	    result = load_needed_objects(obj,
3144 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3145 	    init_dag(obj);
3146 	    ref_dag(obj);
3147 	    if (result != -1)
3148 		result = rtld_verify_versions(&obj->dagmembers);
3149 	    if (result != -1 && ld_tracing)
3150 		goto trace;
3151 	    if (result == -1 || relocate_object_dag(obj,
3152 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3153 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3154 	      lockstate) == -1) {
3155 		dlopen_cleanup(obj);
3156 		obj = NULL;
3157 	    } else if (lo_flags & RTLD_LO_EARLY) {
3158 		/*
3159 		 * Do not call the init functions for early loaded
3160 		 * filtees.  The image is still not initialized enough
3161 		 * for them to work.
3162 		 *
3163 		 * Our object is found by the global object list and
3164 		 * will be ordered among all init calls done right
3165 		 * before transferring control to main.
3166 		 */
3167 	    } else {
3168 		/* Make list of init functions to call. */
3169 		initlist_add_objects(obj, obj, &initlist);
3170 	    }
3171 	    /*
3172 	     * Process all no_delete or global objects here, given
3173 	     * them own DAGs to prevent their dependencies from being
3174 	     * unloaded.  This has to be done after we have loaded all
3175 	     * of the dependencies, so that we do not miss any.
3176 	     */
3177 	    if (obj != NULL)
3178 		process_z(obj);
3179 	} else {
3180 	    /*
3181 	     * Bump the reference counts for objects on this DAG.  If
3182 	     * this is the first dlopen() call for the object that was
3183 	     * already loaded as a dependency, initialize the dag
3184 	     * starting at it.
3185 	     */
3186 	    init_dag(obj);
3187 	    ref_dag(obj);
3188 
3189 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3190 		goto trace;
3191 	}
3192 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3193 	  obj->z_nodelete) && !obj->ref_nodel) {
3194 	    dbg("obj %s nodelete", obj->path);
3195 	    ref_dag(obj);
3196 	    obj->z_nodelete = obj->ref_nodel = true;
3197 	}
3198     }
3199 
3200     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3201 	name);
3202     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3203 
3204     if (!(lo_flags & RTLD_LO_EARLY)) {
3205 	map_stacks_exec(lockstate);
3206     }
3207 
3208     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3209       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3210       lockstate) == -1) {
3211 	objlist_clear(&initlist);
3212 	dlopen_cleanup(obj);
3213 	if (lockstate == &mlockstate)
3214 	    lock_release(rtld_bind_lock, lockstate);
3215 	return (NULL);
3216     }
3217 
3218     if (!(lo_flags & RTLD_LO_EARLY)) {
3219 	/* Call the init functions. */
3220 	objlist_call_init(&initlist, lockstate);
3221     }
3222     objlist_clear(&initlist);
3223     if (lockstate == &mlockstate)
3224 	lock_release(rtld_bind_lock, lockstate);
3225     return obj;
3226 trace:
3227     trace_loaded_objects(obj);
3228     if (lockstate == &mlockstate)
3229 	lock_release(rtld_bind_lock, lockstate);
3230     exit(0);
3231 }
3232 
3233 static void *
3234 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3235     int flags)
3236 {
3237     DoneList donelist;
3238     const Obj_Entry *obj, *defobj;
3239     const Elf_Sym *def;
3240     SymLook req;
3241     RtldLockState lockstate;
3242     tls_index ti;
3243     void *sym;
3244     int res;
3245 
3246     def = NULL;
3247     defobj = NULL;
3248     symlook_init(&req, name);
3249     req.ventry = ve;
3250     req.flags = flags | SYMLOOK_IN_PLT;
3251     req.lockstate = &lockstate;
3252 
3253     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3254     rlock_acquire(rtld_bind_lock, &lockstate);
3255     if (sigsetjmp(lockstate.env, 0) != 0)
3256 	    lock_upgrade(rtld_bind_lock, &lockstate);
3257     if (handle == NULL || handle == RTLD_NEXT ||
3258 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3259 
3260 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3261 	    _rtld_error("Cannot determine caller's shared object");
3262 	    lock_release(rtld_bind_lock, &lockstate);
3263 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3264 	    return NULL;
3265 	}
3266 	if (handle == NULL) {	/* Just the caller's shared object. */
3267 	    res = symlook_obj(&req, obj);
3268 	    if (res == 0) {
3269 		def = req.sym_out;
3270 		defobj = req.defobj_out;
3271 	    }
3272 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3273 		   handle == RTLD_SELF) { /* ... caller included */
3274 	    if (handle == RTLD_NEXT)
3275 		obj = globallist_next(obj);
3276 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3277 		if (obj->marker)
3278 		    continue;
3279 		res = symlook_obj(&req, obj);
3280 		if (res == 0) {
3281 		    if (def == NULL ||
3282 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3283 			def = req.sym_out;
3284 			defobj = req.defobj_out;
3285 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3286 			    break;
3287 		    }
3288 		}
3289 	    }
3290 	    /*
3291 	     * Search the dynamic linker itself, and possibly resolve the
3292 	     * symbol from there.  This is how the application links to
3293 	     * dynamic linker services such as dlopen.
3294 	     */
3295 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3296 		res = symlook_obj(&req, &obj_rtld);
3297 		if (res == 0) {
3298 		    def = req.sym_out;
3299 		    defobj = req.defobj_out;
3300 		}
3301 	    }
3302 	} else {
3303 	    assert(handle == RTLD_DEFAULT);
3304 	    res = symlook_default(&req, obj);
3305 	    if (res == 0) {
3306 		defobj = req.defobj_out;
3307 		def = req.sym_out;
3308 	    }
3309 	}
3310     } else {
3311 	if ((obj = dlcheck(handle)) == NULL) {
3312 	    lock_release(rtld_bind_lock, &lockstate);
3313 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3314 	    return NULL;
3315 	}
3316 
3317 	donelist_init(&donelist);
3318 	if (obj->mainprog) {
3319             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3320 	    res = symlook_global(&req, &donelist);
3321 	    if (res == 0) {
3322 		def = req.sym_out;
3323 		defobj = req.defobj_out;
3324 	    }
3325 	    /*
3326 	     * Search the dynamic linker itself, and possibly resolve the
3327 	     * symbol from there.  This is how the application links to
3328 	     * dynamic linker services such as dlopen.
3329 	     */
3330 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3331 		res = symlook_obj(&req, &obj_rtld);
3332 		if (res == 0) {
3333 		    def = req.sym_out;
3334 		    defobj = req.defobj_out;
3335 		}
3336 	    }
3337 	}
3338 	else {
3339 	    /* Search the whole DAG rooted at the given object. */
3340 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3341 	    if (res == 0) {
3342 		def = req.sym_out;
3343 		defobj = req.defobj_out;
3344 	    }
3345 	}
3346     }
3347 
3348     if (def != NULL) {
3349 	lock_release(rtld_bind_lock, &lockstate);
3350 
3351 	/*
3352 	 * The value required by the caller is derived from the value
3353 	 * of the symbol. this is simply the relocated value of the
3354 	 * symbol.
3355 	 */
3356 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3357 	    sym = make_function_pointer(def, defobj);
3358 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3359 	    sym = rtld_resolve_ifunc(defobj, def);
3360 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3361 	    ti.ti_module = defobj->tlsindex;
3362 	    ti.ti_offset = def->st_value;
3363 	    sym = __tls_get_addr(&ti);
3364 	} else
3365 	    sym = defobj->relocbase + def->st_value;
3366 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3367 	return (sym);
3368     }
3369 
3370     _rtld_error("Undefined symbol \"%s\"", name);
3371     lock_release(rtld_bind_lock, &lockstate);
3372     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3373     return NULL;
3374 }
3375 
3376 void *
3377 dlsym(void *handle, const char *name)
3378 {
3379 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3380 	    SYMLOOK_DLSYM);
3381 }
3382 
3383 dlfunc_t
3384 dlfunc(void *handle, const char *name)
3385 {
3386 	union {
3387 		void *d;
3388 		dlfunc_t f;
3389 	} rv;
3390 
3391 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3392 	    SYMLOOK_DLSYM);
3393 	return (rv.f);
3394 }
3395 
3396 void *
3397 dlvsym(void *handle, const char *name, const char *version)
3398 {
3399 	Ver_Entry ventry;
3400 
3401 	ventry.name = version;
3402 	ventry.file = NULL;
3403 	ventry.hash = elf_hash(version);
3404 	ventry.flags= 0;
3405 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3406 	    SYMLOOK_DLSYM);
3407 }
3408 
3409 int
3410 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3411 {
3412     const Obj_Entry *obj;
3413     RtldLockState lockstate;
3414 
3415     rlock_acquire(rtld_bind_lock, &lockstate);
3416     obj = obj_from_addr(addr);
3417     if (obj == NULL) {
3418         _rtld_error("No shared object contains address");
3419 	lock_release(rtld_bind_lock, &lockstate);
3420         return (0);
3421     }
3422     rtld_fill_dl_phdr_info(obj, phdr_info);
3423     lock_release(rtld_bind_lock, &lockstate);
3424     return (1);
3425 }
3426 
3427 int
3428 dladdr(const void *addr, Dl_info *info)
3429 {
3430     const Obj_Entry *obj;
3431     const Elf_Sym *def;
3432     void *symbol_addr;
3433     unsigned long symoffset;
3434     RtldLockState lockstate;
3435 
3436     rlock_acquire(rtld_bind_lock, &lockstate);
3437     obj = obj_from_addr(addr);
3438     if (obj == NULL) {
3439         _rtld_error("No shared object contains address");
3440 	lock_release(rtld_bind_lock, &lockstate);
3441         return 0;
3442     }
3443     info->dli_fname = obj->path;
3444     info->dli_fbase = obj->mapbase;
3445     info->dli_saddr = (void *)0;
3446     info->dli_sname = NULL;
3447 
3448     /*
3449      * Walk the symbol list looking for the symbol whose address is
3450      * closest to the address sent in.
3451      */
3452     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3453         def = obj->symtab + symoffset;
3454 
3455         /*
3456          * For skip the symbol if st_shndx is either SHN_UNDEF or
3457          * SHN_COMMON.
3458          */
3459         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3460             continue;
3461 
3462         /*
3463          * If the symbol is greater than the specified address, or if it
3464          * is further away from addr than the current nearest symbol,
3465          * then reject it.
3466          */
3467         symbol_addr = obj->relocbase + def->st_value;
3468         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3469             continue;
3470 
3471         /* Update our idea of the nearest symbol. */
3472         info->dli_sname = obj->strtab + def->st_name;
3473         info->dli_saddr = symbol_addr;
3474 
3475         /* Exact match? */
3476         if (info->dli_saddr == addr)
3477             break;
3478     }
3479     lock_release(rtld_bind_lock, &lockstate);
3480     return 1;
3481 }
3482 
3483 int
3484 dlinfo(void *handle, int request, void *p)
3485 {
3486     const Obj_Entry *obj;
3487     RtldLockState lockstate;
3488     int error;
3489 
3490     rlock_acquire(rtld_bind_lock, &lockstate);
3491 
3492     if (handle == NULL || handle == RTLD_SELF) {
3493 	void *retaddr;
3494 
3495 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3496 	if ((obj = obj_from_addr(retaddr)) == NULL)
3497 	    _rtld_error("Cannot determine caller's shared object");
3498     } else
3499 	obj = dlcheck(handle);
3500 
3501     if (obj == NULL) {
3502 	lock_release(rtld_bind_lock, &lockstate);
3503 	return (-1);
3504     }
3505 
3506     error = 0;
3507     switch (request) {
3508     case RTLD_DI_LINKMAP:
3509 	*((struct link_map const **)p) = &obj->linkmap;
3510 	break;
3511     case RTLD_DI_ORIGIN:
3512 	error = rtld_dirname(obj->path, p);
3513 	break;
3514 
3515     case RTLD_DI_SERINFOSIZE:
3516     case RTLD_DI_SERINFO:
3517 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3518 	break;
3519 
3520     default:
3521 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3522 	error = -1;
3523     }
3524 
3525     lock_release(rtld_bind_lock, &lockstate);
3526 
3527     return (error);
3528 }
3529 
3530 static void
3531 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3532 {
3533 
3534 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3535 	phdr_info->dlpi_name = obj->path;
3536 	phdr_info->dlpi_phdr = obj->phdr;
3537 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3538 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3539 	phdr_info->dlpi_tls_data = obj->tlsinit;
3540 	phdr_info->dlpi_adds = obj_loads;
3541 	phdr_info->dlpi_subs = obj_loads - obj_count;
3542 }
3543 
3544 int
3545 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3546 {
3547 	struct dl_phdr_info phdr_info;
3548 	Obj_Entry *obj, marker;
3549 	RtldLockState bind_lockstate, phdr_lockstate;
3550 	int error;
3551 
3552 	bzero(&marker, sizeof(marker));
3553 	marker.marker = true;
3554 	error = 0;
3555 
3556 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3557 	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3558 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3559 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3560 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3561 		lock_release(rtld_bind_lock, &bind_lockstate);
3562 
3563 		error = callback(&phdr_info, sizeof phdr_info, param);
3564 
3565 		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3566 		obj = globallist_next(&marker);
3567 		TAILQ_REMOVE(&obj_list, &marker, next);
3568 		if (error != 0) {
3569 			lock_release(rtld_bind_lock, &bind_lockstate);
3570 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3571 			return (error);
3572 		}
3573 	}
3574 
3575 	if (error == 0) {
3576 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3577 		lock_release(rtld_bind_lock, &bind_lockstate);
3578 		error = callback(&phdr_info, sizeof(phdr_info), param);
3579 	}
3580 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3581 	return (error);
3582 }
3583 
3584 static void *
3585 fill_search_info(const char *dir, size_t dirlen, void *param)
3586 {
3587     struct fill_search_info_args *arg;
3588 
3589     arg = param;
3590 
3591     if (arg->request == RTLD_DI_SERINFOSIZE) {
3592 	arg->serinfo->dls_cnt ++;
3593 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3594     } else {
3595 	struct dl_serpath *s_entry;
3596 
3597 	s_entry = arg->serpath;
3598 	s_entry->dls_name  = arg->strspace;
3599 	s_entry->dls_flags = arg->flags;
3600 
3601 	strncpy(arg->strspace, dir, dirlen);
3602 	arg->strspace[dirlen] = '\0';
3603 
3604 	arg->strspace += dirlen + 1;
3605 	arg->serpath++;
3606     }
3607 
3608     return (NULL);
3609 }
3610 
3611 static int
3612 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3613 {
3614     struct dl_serinfo _info;
3615     struct fill_search_info_args args;
3616 
3617     args.request = RTLD_DI_SERINFOSIZE;
3618     args.serinfo = &_info;
3619 
3620     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3621     _info.dls_cnt  = 0;
3622 
3623     path_enumerate(obj->rpath, fill_search_info, &args);
3624     path_enumerate(ld_library_path, fill_search_info, &args);
3625     path_enumerate(obj->runpath, fill_search_info, &args);
3626     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3627     if (!obj->z_nodeflib)
3628       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3629 
3630 
3631     if (request == RTLD_DI_SERINFOSIZE) {
3632 	info->dls_size = _info.dls_size;
3633 	info->dls_cnt = _info.dls_cnt;
3634 	return (0);
3635     }
3636 
3637     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3638 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3639 	return (-1);
3640     }
3641 
3642     args.request  = RTLD_DI_SERINFO;
3643     args.serinfo  = info;
3644     args.serpath  = &info->dls_serpath[0];
3645     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3646 
3647     args.flags = LA_SER_RUNPATH;
3648     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3649 	return (-1);
3650 
3651     args.flags = LA_SER_LIBPATH;
3652     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3653 	return (-1);
3654 
3655     args.flags = LA_SER_RUNPATH;
3656     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3657 	return (-1);
3658 
3659     args.flags = LA_SER_CONFIG;
3660     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3661       != NULL)
3662 	return (-1);
3663 
3664     args.flags = LA_SER_DEFAULT;
3665     if (!obj->z_nodeflib &&
3666       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3667 	return (-1);
3668     return (0);
3669 }
3670 
3671 static int
3672 rtld_dirname(const char *path, char *bname)
3673 {
3674     const char *endp;
3675 
3676     /* Empty or NULL string gets treated as "." */
3677     if (path == NULL || *path == '\0') {
3678 	bname[0] = '.';
3679 	bname[1] = '\0';
3680 	return (0);
3681     }
3682 
3683     /* Strip trailing slashes */
3684     endp = path + strlen(path) - 1;
3685     while (endp > path && *endp == '/')
3686 	endp--;
3687 
3688     /* Find the start of the dir */
3689     while (endp > path && *endp != '/')
3690 	endp--;
3691 
3692     /* Either the dir is "/" or there are no slashes */
3693     if (endp == path) {
3694 	bname[0] = *endp == '/' ? '/' : '.';
3695 	bname[1] = '\0';
3696 	return (0);
3697     } else {
3698 	do {
3699 	    endp--;
3700 	} while (endp > path && *endp == '/');
3701     }
3702 
3703     if (endp - path + 2 > PATH_MAX)
3704     {
3705 	_rtld_error("Filename is too long: %s", path);
3706 	return(-1);
3707     }
3708 
3709     strncpy(bname, path, endp - path + 1);
3710     bname[endp - path + 1] = '\0';
3711     return (0);
3712 }
3713 
3714 static int
3715 rtld_dirname_abs(const char *path, char *base)
3716 {
3717 	char *last;
3718 
3719 	if (realpath(path, base) == NULL)
3720 		return (-1);
3721 	dbg("%s -> %s", path, base);
3722 	last = strrchr(base, '/');
3723 	if (last == NULL)
3724 		return (-1);
3725 	if (last != base)
3726 		*last = '\0';
3727 	return (0);
3728 }
3729 
3730 static void
3731 linkmap_add(Obj_Entry *obj)
3732 {
3733     struct link_map *l = &obj->linkmap;
3734     struct link_map *prev;
3735 
3736     obj->linkmap.l_name = obj->path;
3737     obj->linkmap.l_addr = obj->mapbase;
3738     obj->linkmap.l_ld = obj->dynamic;
3739 #ifdef __mips__
3740     /* GDB needs load offset on MIPS to use the symbols */
3741     obj->linkmap.l_offs = obj->relocbase;
3742 #endif
3743 
3744     if (r_debug.r_map == NULL) {
3745 	r_debug.r_map = l;
3746 	return;
3747     }
3748 
3749     /*
3750      * Scan to the end of the list, but not past the entry for the
3751      * dynamic linker, which we want to keep at the very end.
3752      */
3753     for (prev = r_debug.r_map;
3754       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3755       prev = prev->l_next)
3756 	;
3757 
3758     /* Link in the new entry. */
3759     l->l_prev = prev;
3760     l->l_next = prev->l_next;
3761     if (l->l_next != NULL)
3762 	l->l_next->l_prev = l;
3763     prev->l_next = l;
3764 }
3765 
3766 static void
3767 linkmap_delete(Obj_Entry *obj)
3768 {
3769     struct link_map *l = &obj->linkmap;
3770 
3771     if (l->l_prev == NULL) {
3772 	if ((r_debug.r_map = l->l_next) != NULL)
3773 	    l->l_next->l_prev = NULL;
3774 	return;
3775     }
3776 
3777     if ((l->l_prev->l_next = l->l_next) != NULL)
3778 	l->l_next->l_prev = l->l_prev;
3779 }
3780 
3781 /*
3782  * Function for the debugger to set a breakpoint on to gain control.
3783  *
3784  * The two parameters allow the debugger to easily find and determine
3785  * what the runtime loader is doing and to whom it is doing it.
3786  *
3787  * When the loadhook trap is hit (r_debug_state, set at program
3788  * initialization), the arguments can be found on the stack:
3789  *
3790  *  +8   struct link_map *m
3791  *  +4   struct r_debug  *rd
3792  *  +0   RetAddr
3793  */
3794 void
3795 r_debug_state(struct r_debug* rd, struct link_map *m)
3796 {
3797     /*
3798      * The following is a hack to force the compiler to emit calls to
3799      * this function, even when optimizing.  If the function is empty,
3800      * the compiler is not obliged to emit any code for calls to it,
3801      * even when marked __noinline.  However, gdb depends on those
3802      * calls being made.
3803      */
3804     __compiler_membar();
3805 }
3806 
3807 /*
3808  * A function called after init routines have completed. This can be used to
3809  * break before a program's entry routine is called, and can be used when
3810  * main is not available in the symbol table.
3811  */
3812 void
3813 _r_debug_postinit(struct link_map *m)
3814 {
3815 
3816 	/* See r_debug_state(). */
3817 	__compiler_membar();
3818 }
3819 
3820 /*
3821  * Get address of the pointer variable in the main program.
3822  * Prefer non-weak symbol over the weak one.
3823  */
3824 static const void **
3825 get_program_var_addr(const char *name, RtldLockState *lockstate)
3826 {
3827     SymLook req;
3828     DoneList donelist;
3829 
3830     symlook_init(&req, name);
3831     req.lockstate = lockstate;
3832     donelist_init(&donelist);
3833     if (symlook_global(&req, &donelist) != 0)
3834 	return (NULL);
3835     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3836 	return ((const void **)make_function_pointer(req.sym_out,
3837 	  req.defobj_out));
3838     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3839 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3840     else
3841 	return ((const void **)(req.defobj_out->relocbase +
3842 	  req.sym_out->st_value));
3843 }
3844 
3845 /*
3846  * Set a pointer variable in the main program to the given value.  This
3847  * is used to set key variables such as "environ" before any of the
3848  * init functions are called.
3849  */
3850 static void
3851 set_program_var(const char *name, const void *value)
3852 {
3853     const void **addr;
3854 
3855     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3856 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3857 	*addr = value;
3858     }
3859 }
3860 
3861 /*
3862  * Search the global objects, including dependencies and main object,
3863  * for the given symbol.
3864  */
3865 static int
3866 symlook_global(SymLook *req, DoneList *donelist)
3867 {
3868     SymLook req1;
3869     const Objlist_Entry *elm;
3870     int res;
3871 
3872     symlook_init_from_req(&req1, req);
3873 
3874     /* Search all objects loaded at program start up. */
3875     if (req->defobj_out == NULL ||
3876       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3877 	res = symlook_list(&req1, &list_main, donelist);
3878 	if (res == 0 && (req->defobj_out == NULL ||
3879 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3880 	    req->sym_out = req1.sym_out;
3881 	    req->defobj_out = req1.defobj_out;
3882 	    assert(req->defobj_out != NULL);
3883 	}
3884     }
3885 
3886     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3887     STAILQ_FOREACH(elm, &list_global, link) {
3888 	if (req->defobj_out != NULL &&
3889 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3890 	    break;
3891 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3892 	if (res == 0 && (req->defobj_out == NULL ||
3893 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3894 	    req->sym_out = req1.sym_out;
3895 	    req->defobj_out = req1.defobj_out;
3896 	    assert(req->defobj_out != NULL);
3897 	}
3898     }
3899 
3900     return (req->sym_out != NULL ? 0 : ESRCH);
3901 }
3902 
3903 /*
3904  * Given a symbol name in a referencing object, find the corresponding
3905  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3906  * no definition was found.  Returns a pointer to the Obj_Entry of the
3907  * defining object via the reference parameter DEFOBJ_OUT.
3908  */
3909 static int
3910 symlook_default(SymLook *req, const Obj_Entry *refobj)
3911 {
3912     DoneList donelist;
3913     const Objlist_Entry *elm;
3914     SymLook req1;
3915     int res;
3916 
3917     donelist_init(&donelist);
3918     symlook_init_from_req(&req1, req);
3919 
3920     /* Look first in the referencing object if linked symbolically. */
3921     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3922 	res = symlook_obj(&req1, refobj);
3923 	if (res == 0) {
3924 	    req->sym_out = req1.sym_out;
3925 	    req->defobj_out = req1.defobj_out;
3926 	    assert(req->defobj_out != NULL);
3927 	}
3928     }
3929 
3930     symlook_global(req, &donelist);
3931 
3932     /* Search all dlopened DAGs containing the referencing object. */
3933     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3934 	if (req->sym_out != NULL &&
3935 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3936 	    break;
3937 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3938 	if (res == 0 && (req->sym_out == NULL ||
3939 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3940 	    req->sym_out = req1.sym_out;
3941 	    req->defobj_out = req1.defobj_out;
3942 	    assert(req->defobj_out != NULL);
3943 	}
3944     }
3945 
3946     /*
3947      * Search the dynamic linker itself, and possibly resolve the
3948      * symbol from there.  This is how the application links to
3949      * dynamic linker services such as dlopen.
3950      */
3951     if (req->sym_out == NULL ||
3952       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3953 	res = symlook_obj(&req1, &obj_rtld);
3954 	if (res == 0) {
3955 	    req->sym_out = req1.sym_out;
3956 	    req->defobj_out = req1.defobj_out;
3957 	    assert(req->defobj_out != NULL);
3958 	}
3959     }
3960 
3961     return (req->sym_out != NULL ? 0 : ESRCH);
3962 }
3963 
3964 static int
3965 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3966 {
3967     const Elf_Sym *def;
3968     const Obj_Entry *defobj;
3969     const Objlist_Entry *elm;
3970     SymLook req1;
3971     int res;
3972 
3973     def = NULL;
3974     defobj = NULL;
3975     STAILQ_FOREACH(elm, objlist, link) {
3976 	if (donelist_check(dlp, elm->obj))
3977 	    continue;
3978 	symlook_init_from_req(&req1, req);
3979 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3980 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3981 		def = req1.sym_out;
3982 		defobj = req1.defobj_out;
3983 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3984 		    break;
3985 	    }
3986 	}
3987     }
3988     if (def != NULL) {
3989 	req->sym_out = def;
3990 	req->defobj_out = defobj;
3991 	return (0);
3992     }
3993     return (ESRCH);
3994 }
3995 
3996 /*
3997  * Search the chain of DAGS cointed to by the given Needed_Entry
3998  * for a symbol of the given name.  Each DAG is scanned completely
3999  * before advancing to the next one.  Returns a pointer to the symbol,
4000  * or NULL if no definition was found.
4001  */
4002 static int
4003 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4004 {
4005     const Elf_Sym *def;
4006     const Needed_Entry *n;
4007     const Obj_Entry *defobj;
4008     SymLook req1;
4009     int res;
4010 
4011     def = NULL;
4012     defobj = NULL;
4013     symlook_init_from_req(&req1, req);
4014     for (n = needed; n != NULL; n = n->next) {
4015 	if (n->obj == NULL ||
4016 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4017 	    continue;
4018 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4019 	    def = req1.sym_out;
4020 	    defobj = req1.defobj_out;
4021 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4022 		break;
4023 	}
4024     }
4025     if (def != NULL) {
4026 	req->sym_out = def;
4027 	req->defobj_out = defobj;
4028 	return (0);
4029     }
4030     return (ESRCH);
4031 }
4032 
4033 /*
4034  * Search the symbol table of a single shared object for a symbol of
4035  * the given name and version, if requested.  Returns a pointer to the
4036  * symbol, or NULL if no definition was found.  If the object is
4037  * filter, return filtered symbol from filtee.
4038  *
4039  * The symbol's hash value is passed in for efficiency reasons; that
4040  * eliminates many recomputations of the hash value.
4041  */
4042 int
4043 symlook_obj(SymLook *req, const Obj_Entry *obj)
4044 {
4045     DoneList donelist;
4046     SymLook req1;
4047     int flags, res, mres;
4048 
4049     /*
4050      * If there is at least one valid hash at this point, we prefer to
4051      * use the faster GNU version if available.
4052      */
4053     if (obj->valid_hash_gnu)
4054 	mres = symlook_obj1_gnu(req, obj);
4055     else if (obj->valid_hash_sysv)
4056 	mres = symlook_obj1_sysv(req, obj);
4057     else
4058 	return (EINVAL);
4059 
4060     if (mres == 0) {
4061 	if (obj->needed_filtees != NULL) {
4062 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4063 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4064 	    donelist_init(&donelist);
4065 	    symlook_init_from_req(&req1, req);
4066 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4067 	    if (res == 0) {
4068 		req->sym_out = req1.sym_out;
4069 		req->defobj_out = req1.defobj_out;
4070 	    }
4071 	    return (res);
4072 	}
4073 	if (obj->needed_aux_filtees != NULL) {
4074 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4075 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4076 	    donelist_init(&donelist);
4077 	    symlook_init_from_req(&req1, req);
4078 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4079 	    if (res == 0) {
4080 		req->sym_out = req1.sym_out;
4081 		req->defobj_out = req1.defobj_out;
4082 		return (res);
4083 	    }
4084 	}
4085     }
4086     return (mres);
4087 }
4088 
4089 /* Symbol match routine common to both hash functions */
4090 static bool
4091 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4092     const unsigned long symnum)
4093 {
4094 	Elf_Versym verndx;
4095 	const Elf_Sym *symp;
4096 	const char *strp;
4097 
4098 	symp = obj->symtab + symnum;
4099 	strp = obj->strtab + symp->st_name;
4100 
4101 	switch (ELF_ST_TYPE(symp->st_info)) {
4102 	case STT_FUNC:
4103 	case STT_NOTYPE:
4104 	case STT_OBJECT:
4105 	case STT_COMMON:
4106 	case STT_GNU_IFUNC:
4107 		if (symp->st_value == 0)
4108 			return (false);
4109 		/* fallthrough */
4110 	case STT_TLS:
4111 		if (symp->st_shndx != SHN_UNDEF)
4112 			break;
4113 #ifndef __mips__
4114 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4115 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4116 			break;
4117 		/* fallthrough */
4118 #endif
4119 	default:
4120 		return (false);
4121 	}
4122 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4123 		return (false);
4124 
4125 	if (req->ventry == NULL) {
4126 		if (obj->versyms != NULL) {
4127 			verndx = VER_NDX(obj->versyms[symnum]);
4128 			if (verndx > obj->vernum) {
4129 				_rtld_error(
4130 				    "%s: symbol %s references wrong version %d",
4131 				    obj->path, obj->strtab + symnum, verndx);
4132 				return (false);
4133 			}
4134 			/*
4135 			 * If we are not called from dlsym (i.e. this
4136 			 * is a normal relocation from unversioned
4137 			 * binary), accept the symbol immediately if
4138 			 * it happens to have first version after this
4139 			 * shared object became versioned.  Otherwise,
4140 			 * if symbol is versioned and not hidden,
4141 			 * remember it. If it is the only symbol with
4142 			 * this name exported by the shared object, it
4143 			 * will be returned as a match by the calling
4144 			 * function. If symbol is global (verndx < 2)
4145 			 * accept it unconditionally.
4146 			 */
4147 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4148 			    verndx == VER_NDX_GIVEN) {
4149 				result->sym_out = symp;
4150 				return (true);
4151 			}
4152 			else if (verndx >= VER_NDX_GIVEN) {
4153 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4154 				    == 0) {
4155 					if (result->vsymp == NULL)
4156 						result->vsymp = symp;
4157 					result->vcount++;
4158 				}
4159 				return (false);
4160 			}
4161 		}
4162 		result->sym_out = symp;
4163 		return (true);
4164 	}
4165 	if (obj->versyms == NULL) {
4166 		if (object_match_name(obj, req->ventry->name)) {
4167 			_rtld_error("%s: object %s should provide version %s "
4168 			    "for symbol %s", obj_rtld.path, obj->path,
4169 			    req->ventry->name, obj->strtab + symnum);
4170 			return (false);
4171 		}
4172 	} else {
4173 		verndx = VER_NDX(obj->versyms[symnum]);
4174 		if (verndx > obj->vernum) {
4175 			_rtld_error("%s: symbol %s references wrong version %d",
4176 			    obj->path, obj->strtab + symnum, verndx);
4177 			return (false);
4178 		}
4179 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4180 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4181 			/*
4182 			 * Version does not match. Look if this is a
4183 			 * global symbol and if it is not hidden. If
4184 			 * global symbol (verndx < 2) is available,
4185 			 * use it. Do not return symbol if we are
4186 			 * called by dlvsym, because dlvsym looks for
4187 			 * a specific version and default one is not
4188 			 * what dlvsym wants.
4189 			 */
4190 			if ((req->flags & SYMLOOK_DLSYM) ||
4191 			    (verndx >= VER_NDX_GIVEN) ||
4192 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4193 				return (false);
4194 		}
4195 	}
4196 	result->sym_out = symp;
4197 	return (true);
4198 }
4199 
4200 /*
4201  * Search for symbol using SysV hash function.
4202  * obj->buckets is known not to be NULL at this point; the test for this was
4203  * performed with the obj->valid_hash_sysv assignment.
4204  */
4205 static int
4206 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4207 {
4208 	unsigned long symnum;
4209 	Sym_Match_Result matchres;
4210 
4211 	matchres.sym_out = NULL;
4212 	matchres.vsymp = NULL;
4213 	matchres.vcount = 0;
4214 
4215 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4216 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4217 		if (symnum >= obj->nchains)
4218 			return (ESRCH);	/* Bad object */
4219 
4220 		if (matched_symbol(req, obj, &matchres, symnum)) {
4221 			req->sym_out = matchres.sym_out;
4222 			req->defobj_out = obj;
4223 			return (0);
4224 		}
4225 	}
4226 	if (matchres.vcount == 1) {
4227 		req->sym_out = matchres.vsymp;
4228 		req->defobj_out = obj;
4229 		return (0);
4230 	}
4231 	return (ESRCH);
4232 }
4233 
4234 /* Search for symbol using GNU hash function */
4235 static int
4236 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4237 {
4238 	Elf_Addr bloom_word;
4239 	const Elf32_Word *hashval;
4240 	Elf32_Word bucket;
4241 	Sym_Match_Result matchres;
4242 	unsigned int h1, h2;
4243 	unsigned long symnum;
4244 
4245 	matchres.sym_out = NULL;
4246 	matchres.vsymp = NULL;
4247 	matchres.vcount = 0;
4248 
4249 	/* Pick right bitmask word from Bloom filter array */
4250 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4251 	    obj->maskwords_bm_gnu];
4252 
4253 	/* Calculate modulus word size of gnu hash and its derivative */
4254 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4255 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4256 
4257 	/* Filter out the "definitely not in set" queries */
4258 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4259 		return (ESRCH);
4260 
4261 	/* Locate hash chain and corresponding value element*/
4262 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4263 	if (bucket == 0)
4264 		return (ESRCH);
4265 	hashval = &obj->chain_zero_gnu[bucket];
4266 	do {
4267 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4268 			symnum = hashval - obj->chain_zero_gnu;
4269 			if (matched_symbol(req, obj, &matchres, symnum)) {
4270 				req->sym_out = matchres.sym_out;
4271 				req->defobj_out = obj;
4272 				return (0);
4273 			}
4274 		}
4275 	} while ((*hashval++ & 1) == 0);
4276 	if (matchres.vcount == 1) {
4277 		req->sym_out = matchres.vsymp;
4278 		req->defobj_out = obj;
4279 		return (0);
4280 	}
4281 	return (ESRCH);
4282 }
4283 
4284 static void
4285 trace_loaded_objects(Obj_Entry *obj)
4286 {
4287     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4288     int		c;
4289 
4290     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4291 	main_local = "";
4292 
4293     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4294 	fmt1 = "\t%o => %p (%x)\n";
4295 
4296     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4297 	fmt2 = "\t%o (%x)\n";
4298 
4299     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4300 
4301     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4302 	Needed_Entry		*needed;
4303 	char			*name, *path;
4304 	bool			is_lib;
4305 
4306 	if (obj->marker)
4307 	    continue;
4308 	if (list_containers && obj->needed != NULL)
4309 	    rtld_printf("%s:\n", obj->path);
4310 	for (needed = obj->needed; needed; needed = needed->next) {
4311 	    if (needed->obj != NULL) {
4312 		if (needed->obj->traced && !list_containers)
4313 		    continue;
4314 		needed->obj->traced = true;
4315 		path = needed->obj->path;
4316 	    } else
4317 		path = "not found";
4318 
4319 	    name = (char *)obj->strtab + needed->name;
4320 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4321 
4322 	    fmt = is_lib ? fmt1 : fmt2;
4323 	    while ((c = *fmt++) != '\0') {
4324 		switch (c) {
4325 		default:
4326 		    rtld_putchar(c);
4327 		    continue;
4328 		case '\\':
4329 		    switch (c = *fmt) {
4330 		    case '\0':
4331 			continue;
4332 		    case 'n':
4333 			rtld_putchar('\n');
4334 			break;
4335 		    case 't':
4336 			rtld_putchar('\t');
4337 			break;
4338 		    }
4339 		    break;
4340 		case '%':
4341 		    switch (c = *fmt) {
4342 		    case '\0':
4343 			continue;
4344 		    case '%':
4345 		    default:
4346 			rtld_putchar(c);
4347 			break;
4348 		    case 'A':
4349 			rtld_putstr(main_local);
4350 			break;
4351 		    case 'a':
4352 			rtld_putstr(obj_main->path);
4353 			break;
4354 		    case 'o':
4355 			rtld_putstr(name);
4356 			break;
4357 #if 0
4358 		    case 'm':
4359 			rtld_printf("%d", sodp->sod_major);
4360 			break;
4361 		    case 'n':
4362 			rtld_printf("%d", sodp->sod_minor);
4363 			break;
4364 #endif
4365 		    case 'p':
4366 			rtld_putstr(path);
4367 			break;
4368 		    case 'x':
4369 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4370 			  0);
4371 			break;
4372 		    }
4373 		    break;
4374 		}
4375 		++fmt;
4376 	    }
4377 	}
4378     }
4379 }
4380 
4381 /*
4382  * Unload a dlopened object and its dependencies from memory and from
4383  * our data structures.  It is assumed that the DAG rooted in the
4384  * object has already been unreferenced, and that the object has a
4385  * reference count of 0.
4386  */
4387 static void
4388 unload_object(Obj_Entry *root)
4389 {
4390 	Obj_Entry *obj, *obj1;
4391 
4392 	assert(root->refcount == 0);
4393 
4394 	/*
4395 	 * Pass over the DAG removing unreferenced objects from
4396 	 * appropriate lists.
4397 	 */
4398 	unlink_object(root);
4399 
4400 	/* Unmap all objects that are no longer referenced. */
4401 	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4402 		if (obj->marker || obj->refcount != 0)
4403 			continue;
4404 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4405 		    obj->mapsize, 0, obj->path);
4406 		dbg("unloading \"%s\"", obj->path);
4407 		unload_filtees(root);
4408 		munmap(obj->mapbase, obj->mapsize);
4409 		linkmap_delete(obj);
4410 		TAILQ_REMOVE(&obj_list, obj, next);
4411 		obj_count--;
4412 		obj_free(obj);
4413 	}
4414 }
4415 
4416 static void
4417 unlink_object(Obj_Entry *root)
4418 {
4419     Objlist_Entry *elm;
4420 
4421     if (root->refcount == 0) {
4422 	/* Remove the object from the RTLD_GLOBAL list. */
4423 	objlist_remove(&list_global, root);
4424 
4425     	/* Remove the object from all objects' DAG lists. */
4426     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4427 	    objlist_remove(&elm->obj->dldags, root);
4428 	    if (elm->obj != root)
4429 		unlink_object(elm->obj);
4430 	}
4431     }
4432 }
4433 
4434 static void
4435 ref_dag(Obj_Entry *root)
4436 {
4437     Objlist_Entry *elm;
4438 
4439     assert(root->dag_inited);
4440     STAILQ_FOREACH(elm, &root->dagmembers, link)
4441 	elm->obj->refcount++;
4442 }
4443 
4444 static void
4445 unref_dag(Obj_Entry *root)
4446 {
4447     Objlist_Entry *elm;
4448 
4449     assert(root->dag_inited);
4450     STAILQ_FOREACH(elm, &root->dagmembers, link)
4451 	elm->obj->refcount--;
4452 }
4453 
4454 /*
4455  * Common code for MD __tls_get_addr().
4456  */
4457 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4458 static void *
4459 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4460 {
4461     Elf_Addr *newdtv, *dtv;
4462     RtldLockState lockstate;
4463     int to_copy;
4464 
4465     dtv = *dtvp;
4466     /* Check dtv generation in case new modules have arrived */
4467     if (dtv[0] != tls_dtv_generation) {
4468 	wlock_acquire(rtld_bind_lock, &lockstate);
4469 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4470 	to_copy = dtv[1];
4471 	if (to_copy > tls_max_index)
4472 	    to_copy = tls_max_index;
4473 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4474 	newdtv[0] = tls_dtv_generation;
4475 	newdtv[1] = tls_max_index;
4476 	free(dtv);
4477 	lock_release(rtld_bind_lock, &lockstate);
4478 	dtv = *dtvp = newdtv;
4479     }
4480 
4481     /* Dynamically allocate module TLS if necessary */
4482     if (dtv[index + 1] == 0) {
4483 	/* Signal safe, wlock will block out signals. */
4484 	wlock_acquire(rtld_bind_lock, &lockstate);
4485 	if (!dtv[index + 1])
4486 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4487 	lock_release(rtld_bind_lock, &lockstate);
4488     }
4489     return ((void *)(dtv[index + 1] + offset));
4490 }
4491 
4492 void *
4493 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4494 {
4495 	Elf_Addr *dtv;
4496 
4497 	dtv = *dtvp;
4498 	/* Check dtv generation in case new modules have arrived */
4499 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4500 	    dtv[index + 1] != 0))
4501 		return ((void *)(dtv[index + 1] + offset));
4502 	return (tls_get_addr_slow(dtvp, index, offset));
4503 }
4504 
4505 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4506     defined(__powerpc__) || defined(__riscv__)
4507 
4508 /*
4509  * Allocate Static TLS using the Variant I method.
4510  */
4511 void *
4512 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4513 {
4514     Obj_Entry *obj;
4515     char *tcb;
4516     Elf_Addr **tls;
4517     Elf_Addr *dtv;
4518     Elf_Addr addr;
4519     int i;
4520 
4521     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4522 	return (oldtcb);
4523 
4524     assert(tcbsize >= TLS_TCB_SIZE);
4525     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4526     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4527 
4528     if (oldtcb != NULL) {
4529 	memcpy(tls, oldtcb, tls_static_space);
4530 	free(oldtcb);
4531 
4532 	/* Adjust the DTV. */
4533 	dtv = tls[0];
4534 	for (i = 0; i < dtv[1]; i++) {
4535 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4536 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4537 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4538 	    }
4539 	}
4540     } else {
4541 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4542 	tls[0] = dtv;
4543 	dtv[0] = tls_dtv_generation;
4544 	dtv[1] = tls_max_index;
4545 
4546 	for (obj = globallist_curr(objs); obj != NULL;
4547 	  obj = globallist_next(obj)) {
4548 	    if (obj->tlsoffset > 0) {
4549 		addr = (Elf_Addr)tls + obj->tlsoffset;
4550 		if (obj->tlsinitsize > 0)
4551 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4552 		if (obj->tlssize > obj->tlsinitsize)
4553 		    memset((void*) (addr + obj->tlsinitsize), 0,
4554 			   obj->tlssize - obj->tlsinitsize);
4555 		dtv[obj->tlsindex + 1] = addr;
4556 	    }
4557 	}
4558     }
4559 
4560     return (tcb);
4561 }
4562 
4563 void
4564 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4565 {
4566     Elf_Addr *dtv;
4567     Elf_Addr tlsstart, tlsend;
4568     int dtvsize, i;
4569 
4570     assert(tcbsize >= TLS_TCB_SIZE);
4571 
4572     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4573     tlsend = tlsstart + tls_static_space;
4574 
4575     dtv = *(Elf_Addr **)tlsstart;
4576     dtvsize = dtv[1];
4577     for (i = 0; i < dtvsize; i++) {
4578 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4579 	    free((void*)dtv[i+2]);
4580 	}
4581     }
4582     free(dtv);
4583     free(tcb);
4584 }
4585 
4586 #endif
4587 
4588 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4589 
4590 /*
4591  * Allocate Static TLS using the Variant II method.
4592  */
4593 void *
4594 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4595 {
4596     Obj_Entry *obj;
4597     size_t size, ralign;
4598     char *tls;
4599     Elf_Addr *dtv, *olddtv;
4600     Elf_Addr segbase, oldsegbase, addr;
4601     int i;
4602 
4603     ralign = tcbalign;
4604     if (tls_static_max_align > ralign)
4605 	    ralign = tls_static_max_align;
4606     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4607 
4608     assert(tcbsize >= 2*sizeof(Elf_Addr));
4609     tls = malloc_aligned(size, ralign);
4610     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4611 
4612     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4613     ((Elf_Addr*)segbase)[0] = segbase;
4614     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4615 
4616     dtv[0] = tls_dtv_generation;
4617     dtv[1] = tls_max_index;
4618 
4619     if (oldtls) {
4620 	/*
4621 	 * Copy the static TLS block over whole.
4622 	 */
4623 	oldsegbase = (Elf_Addr) oldtls;
4624 	memcpy((void *)(segbase - tls_static_space),
4625 	       (const void *)(oldsegbase - tls_static_space),
4626 	       tls_static_space);
4627 
4628 	/*
4629 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4630 	 * move them over.
4631 	 */
4632 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4633 	for (i = 0; i < olddtv[1]; i++) {
4634 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4635 		dtv[i+2] = olddtv[i+2];
4636 		olddtv[i+2] = 0;
4637 	    }
4638 	}
4639 
4640 	/*
4641 	 * We assume that this block was the one we created with
4642 	 * allocate_initial_tls().
4643 	 */
4644 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4645     } else {
4646 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4647 		if (obj->marker || obj->tlsoffset == 0)
4648 			continue;
4649 		addr = segbase - obj->tlsoffset;
4650 		memset((void*) (addr + obj->tlsinitsize),
4651 		       0, obj->tlssize - obj->tlsinitsize);
4652 		if (obj->tlsinit)
4653 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4654 		dtv[obj->tlsindex + 1] = addr;
4655 	}
4656     }
4657 
4658     return (void*) segbase;
4659 }
4660 
4661 void
4662 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4663 {
4664     Elf_Addr* dtv;
4665     size_t size, ralign;
4666     int dtvsize, i;
4667     Elf_Addr tlsstart, tlsend;
4668 
4669     /*
4670      * Figure out the size of the initial TLS block so that we can
4671      * find stuff which ___tls_get_addr() allocated dynamically.
4672      */
4673     ralign = tcbalign;
4674     if (tls_static_max_align > ralign)
4675 	    ralign = tls_static_max_align;
4676     size = round(tls_static_space, ralign);
4677 
4678     dtv = ((Elf_Addr**)tls)[1];
4679     dtvsize = dtv[1];
4680     tlsend = (Elf_Addr) tls;
4681     tlsstart = tlsend - size;
4682     for (i = 0; i < dtvsize; i++) {
4683 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4684 		free_aligned((void *)dtv[i + 2]);
4685 	}
4686     }
4687 
4688     free_aligned((void *)tlsstart);
4689     free((void*) dtv);
4690 }
4691 
4692 #endif
4693 
4694 /*
4695  * Allocate TLS block for module with given index.
4696  */
4697 void *
4698 allocate_module_tls(int index)
4699 {
4700     Obj_Entry* obj;
4701     char* p;
4702 
4703     TAILQ_FOREACH(obj, &obj_list, next) {
4704 	if (obj->marker)
4705 	    continue;
4706 	if (obj->tlsindex == index)
4707 	    break;
4708     }
4709     if (!obj) {
4710 	_rtld_error("Can't find module with TLS index %d", index);
4711 	rtld_die();
4712     }
4713 
4714     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4715     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4716     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4717 
4718     return p;
4719 }
4720 
4721 bool
4722 allocate_tls_offset(Obj_Entry *obj)
4723 {
4724     size_t off;
4725 
4726     if (obj->tls_done)
4727 	return true;
4728 
4729     if (obj->tlssize == 0) {
4730 	obj->tls_done = true;
4731 	return true;
4732     }
4733 
4734     if (tls_last_offset == 0)
4735 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4736     else
4737 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4738 				   obj->tlssize, obj->tlsalign);
4739 
4740     /*
4741      * If we have already fixed the size of the static TLS block, we
4742      * must stay within that size. When allocating the static TLS, we
4743      * leave a small amount of space spare to be used for dynamically
4744      * loading modules which use static TLS.
4745      */
4746     if (tls_static_space != 0) {
4747 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4748 	    return false;
4749     } else if (obj->tlsalign > tls_static_max_align) {
4750 	    tls_static_max_align = obj->tlsalign;
4751     }
4752 
4753     tls_last_offset = obj->tlsoffset = off;
4754     tls_last_size = obj->tlssize;
4755     obj->tls_done = true;
4756 
4757     return true;
4758 }
4759 
4760 void
4761 free_tls_offset(Obj_Entry *obj)
4762 {
4763 
4764     /*
4765      * If we were the last thing to allocate out of the static TLS
4766      * block, we give our space back to the 'allocator'. This is a
4767      * simplistic workaround to allow libGL.so.1 to be loaded and
4768      * unloaded multiple times.
4769      */
4770     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4771 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4772 	tls_last_offset -= obj->tlssize;
4773 	tls_last_size = 0;
4774     }
4775 }
4776 
4777 void *
4778 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4779 {
4780     void *ret;
4781     RtldLockState lockstate;
4782 
4783     wlock_acquire(rtld_bind_lock, &lockstate);
4784     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4785       tcbsize, tcbalign);
4786     lock_release(rtld_bind_lock, &lockstate);
4787     return (ret);
4788 }
4789 
4790 void
4791 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4792 {
4793     RtldLockState lockstate;
4794 
4795     wlock_acquire(rtld_bind_lock, &lockstate);
4796     free_tls(tcb, tcbsize, tcbalign);
4797     lock_release(rtld_bind_lock, &lockstate);
4798 }
4799 
4800 static void
4801 object_add_name(Obj_Entry *obj, const char *name)
4802 {
4803     Name_Entry *entry;
4804     size_t len;
4805 
4806     len = strlen(name);
4807     entry = malloc(sizeof(Name_Entry) + len);
4808 
4809     if (entry != NULL) {
4810 	strcpy(entry->name, name);
4811 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4812     }
4813 }
4814 
4815 static int
4816 object_match_name(const Obj_Entry *obj, const char *name)
4817 {
4818     Name_Entry *entry;
4819 
4820     STAILQ_FOREACH(entry, &obj->names, link) {
4821 	if (strcmp(name, entry->name) == 0)
4822 	    return (1);
4823     }
4824     return (0);
4825 }
4826 
4827 static Obj_Entry *
4828 locate_dependency(const Obj_Entry *obj, const char *name)
4829 {
4830     const Objlist_Entry *entry;
4831     const Needed_Entry *needed;
4832 
4833     STAILQ_FOREACH(entry, &list_main, link) {
4834 	if (object_match_name(entry->obj, name))
4835 	    return entry->obj;
4836     }
4837 
4838     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4839 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4840 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4841 	    /*
4842 	     * If there is DT_NEEDED for the name we are looking for,
4843 	     * we are all set.  Note that object might not be found if
4844 	     * dependency was not loaded yet, so the function can
4845 	     * return NULL here.  This is expected and handled
4846 	     * properly by the caller.
4847 	     */
4848 	    return (needed->obj);
4849 	}
4850     }
4851     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4852 	obj->path, name);
4853     rtld_die();
4854 }
4855 
4856 static int
4857 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4858     const Elf_Vernaux *vna)
4859 {
4860     const Elf_Verdef *vd;
4861     const char *vername;
4862 
4863     vername = refobj->strtab + vna->vna_name;
4864     vd = depobj->verdef;
4865     if (vd == NULL) {
4866 	_rtld_error("%s: version %s required by %s not defined",
4867 	    depobj->path, vername, refobj->path);
4868 	return (-1);
4869     }
4870     for (;;) {
4871 	if (vd->vd_version != VER_DEF_CURRENT) {
4872 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4873 		depobj->path, vd->vd_version);
4874 	    return (-1);
4875 	}
4876 	if (vna->vna_hash == vd->vd_hash) {
4877 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4878 		((char *)vd + vd->vd_aux);
4879 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4880 		return (0);
4881 	}
4882 	if (vd->vd_next == 0)
4883 	    break;
4884 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4885     }
4886     if (vna->vna_flags & VER_FLG_WEAK)
4887 	return (0);
4888     _rtld_error("%s: version %s required by %s not found",
4889 	depobj->path, vername, refobj->path);
4890     return (-1);
4891 }
4892 
4893 static int
4894 rtld_verify_object_versions(Obj_Entry *obj)
4895 {
4896     const Elf_Verneed *vn;
4897     const Elf_Verdef  *vd;
4898     const Elf_Verdaux *vda;
4899     const Elf_Vernaux *vna;
4900     const Obj_Entry *depobj;
4901     int maxvernum, vernum;
4902 
4903     if (obj->ver_checked)
4904 	return (0);
4905     obj->ver_checked = true;
4906 
4907     maxvernum = 0;
4908     /*
4909      * Walk over defined and required version records and figure out
4910      * max index used by any of them. Do very basic sanity checking
4911      * while there.
4912      */
4913     vn = obj->verneed;
4914     while (vn != NULL) {
4915 	if (vn->vn_version != VER_NEED_CURRENT) {
4916 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4917 		obj->path, vn->vn_version);
4918 	    return (-1);
4919 	}
4920 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4921 	for (;;) {
4922 	    vernum = VER_NEED_IDX(vna->vna_other);
4923 	    if (vernum > maxvernum)
4924 		maxvernum = vernum;
4925 	    if (vna->vna_next == 0)
4926 		 break;
4927 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4928 	}
4929 	if (vn->vn_next == 0)
4930 	    break;
4931 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4932     }
4933 
4934     vd = obj->verdef;
4935     while (vd != NULL) {
4936 	if (vd->vd_version != VER_DEF_CURRENT) {
4937 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4938 		obj->path, vd->vd_version);
4939 	    return (-1);
4940 	}
4941 	vernum = VER_DEF_IDX(vd->vd_ndx);
4942 	if (vernum > maxvernum)
4943 		maxvernum = vernum;
4944 	if (vd->vd_next == 0)
4945 	    break;
4946 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4947     }
4948 
4949     if (maxvernum == 0)
4950 	return (0);
4951 
4952     /*
4953      * Store version information in array indexable by version index.
4954      * Verify that object version requirements are satisfied along the
4955      * way.
4956      */
4957     obj->vernum = maxvernum + 1;
4958     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4959 
4960     vd = obj->verdef;
4961     while (vd != NULL) {
4962 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4963 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4964 	    assert(vernum <= maxvernum);
4965 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4966 	    obj->vertab[vernum].hash = vd->vd_hash;
4967 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4968 	    obj->vertab[vernum].file = NULL;
4969 	    obj->vertab[vernum].flags = 0;
4970 	}
4971 	if (vd->vd_next == 0)
4972 	    break;
4973 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4974     }
4975 
4976     vn = obj->verneed;
4977     while (vn != NULL) {
4978 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4979 	if (depobj == NULL)
4980 	    return (-1);
4981 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4982 	for (;;) {
4983 	    if (check_object_provided_version(obj, depobj, vna))
4984 		return (-1);
4985 	    vernum = VER_NEED_IDX(vna->vna_other);
4986 	    assert(vernum <= maxvernum);
4987 	    obj->vertab[vernum].hash = vna->vna_hash;
4988 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4989 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4990 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4991 		VER_INFO_HIDDEN : 0;
4992 	    if (vna->vna_next == 0)
4993 		 break;
4994 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4995 	}
4996 	if (vn->vn_next == 0)
4997 	    break;
4998 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4999     }
5000     return 0;
5001 }
5002 
5003 static int
5004 rtld_verify_versions(const Objlist *objlist)
5005 {
5006     Objlist_Entry *entry;
5007     int rc;
5008 
5009     rc = 0;
5010     STAILQ_FOREACH(entry, objlist, link) {
5011 	/*
5012 	 * Skip dummy objects or objects that have their version requirements
5013 	 * already checked.
5014 	 */
5015 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5016 	    continue;
5017 	if (rtld_verify_object_versions(entry->obj) == -1) {
5018 	    rc = -1;
5019 	    if (ld_tracing == NULL)
5020 		break;
5021 	}
5022     }
5023     if (rc == 0 || ld_tracing != NULL)
5024     	rc = rtld_verify_object_versions(&obj_rtld);
5025     return rc;
5026 }
5027 
5028 const Ver_Entry *
5029 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5030 {
5031     Elf_Versym vernum;
5032 
5033     if (obj->vertab) {
5034 	vernum = VER_NDX(obj->versyms[symnum]);
5035 	if (vernum >= obj->vernum) {
5036 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5037 		obj->path, obj->strtab + symnum, vernum);
5038 	} else if (obj->vertab[vernum].hash != 0) {
5039 	    return &obj->vertab[vernum];
5040 	}
5041     }
5042     return NULL;
5043 }
5044 
5045 int
5046 _rtld_get_stack_prot(void)
5047 {
5048 
5049 	return (stack_prot);
5050 }
5051 
5052 int
5053 _rtld_is_dlopened(void *arg)
5054 {
5055 	Obj_Entry *obj;
5056 	RtldLockState lockstate;
5057 	int res;
5058 
5059 	rlock_acquire(rtld_bind_lock, &lockstate);
5060 	obj = dlcheck(arg);
5061 	if (obj == NULL)
5062 		obj = obj_from_addr(arg);
5063 	if (obj == NULL) {
5064 		_rtld_error("No shared object contains address");
5065 		lock_release(rtld_bind_lock, &lockstate);
5066 		return (-1);
5067 	}
5068 	res = obj->dlopened ? 1 : 0;
5069 	lock_release(rtld_bind_lock, &lockstate);
5070 	return (res);
5071 }
5072 
5073 static void
5074 map_stacks_exec(RtldLockState *lockstate)
5075 {
5076 	void (*thr_map_stacks_exec)(void);
5077 
5078 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5079 		return;
5080 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5081 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5082 	if (thr_map_stacks_exec != NULL) {
5083 		stack_prot |= PROT_EXEC;
5084 		thr_map_stacks_exec();
5085 	}
5086 }
5087 
5088 void
5089 symlook_init(SymLook *dst, const char *name)
5090 {
5091 
5092 	bzero(dst, sizeof(*dst));
5093 	dst->name = name;
5094 	dst->hash = elf_hash(name);
5095 	dst->hash_gnu = gnu_hash(name);
5096 }
5097 
5098 static void
5099 symlook_init_from_req(SymLook *dst, const SymLook *src)
5100 {
5101 
5102 	dst->name = src->name;
5103 	dst->hash = src->hash;
5104 	dst->hash_gnu = src->hash_gnu;
5105 	dst->ventry = src->ventry;
5106 	dst->flags = src->flags;
5107 	dst->defobj_out = NULL;
5108 	dst->sym_out = NULL;
5109 	dst->lockstate = src->lockstate;
5110 }
5111 
5112 
5113 /*
5114  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5115  */
5116 static int
5117 parse_libdir(const char *str)
5118 {
5119 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5120 	const char *orig;
5121 	int fd;
5122 	char c;
5123 
5124 	orig = str;
5125 	fd = 0;
5126 	for (c = *str; c != '\0'; c = *++str) {
5127 		if (c < '0' || c > '9')
5128 			return (-1);
5129 
5130 		fd *= RADIX;
5131 		fd += c - '0';
5132 	}
5133 
5134 	/* Make sure we actually parsed something. */
5135 	if (str == orig) {
5136 		_rtld_error("failed to parse directory FD from '%s'", str);
5137 		return (-1);
5138 	}
5139 	return (fd);
5140 }
5141 
5142 /*
5143  * Overrides for libc_pic-provided functions.
5144  */
5145 
5146 int
5147 __getosreldate(void)
5148 {
5149 	size_t len;
5150 	int oid[2];
5151 	int error, osrel;
5152 
5153 	if (osreldate != 0)
5154 		return (osreldate);
5155 
5156 	oid[0] = CTL_KERN;
5157 	oid[1] = KERN_OSRELDATE;
5158 	osrel = 0;
5159 	len = sizeof(osrel);
5160 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5161 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5162 		osreldate = osrel;
5163 	return (osreldate);
5164 }
5165 
5166 void
5167 exit(int status)
5168 {
5169 
5170 	_exit(status);
5171 }
5172 
5173 void (*__cleanup)(void);
5174 int __isthreaded = 0;
5175 int _thread_autoinit_dummy_decl = 1;
5176 
5177 /*
5178  * No unresolved symbols for rtld.
5179  */
5180 void
5181 __pthread_cxa_finalize(struct dl_phdr_info *a)
5182 {
5183 }
5184 
5185 void
5186 __stack_chk_fail(void)
5187 {
5188 
5189 	_rtld_error("stack overflow detected; terminated");
5190 	rtld_die();
5191 }
5192 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5193 
5194 void
5195 __chk_fail(void)
5196 {
5197 
5198 	_rtld_error("buffer overflow detected; terminated");
5199 	rtld_die();
5200 }
5201 
5202 const char *
5203 rtld_strerror(int errnum)
5204 {
5205 
5206 	if (errnum < 0 || errnum >= sys_nerr)
5207 		return ("Unknown error");
5208 	return (sys_errlist[errnum]);
5209 }
5210