xref: /freebsd/libexec/rtld-elf/rtld.c (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143     const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145     const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153     int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155     RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163     int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *, bool);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181     const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int  rtld_verify_versions(const Objlist *);
186 static int  rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int  object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191     struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194     const unsigned long);
195 
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198 
199 int __sys_openat(int, const char *, int, ...);
200 
201 /*
202  * Data declarations.
203  */
204 struct r_debug r_debug __exported;	/* for GDB; */
205 static bool libmap_disable;	/* Disable libmap */
206 static bool ld_loadfltr;	/* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust;		/* False for setuid and setgid programs */
209 static bool dangerous_ld_env;	/* True if environment variables have been
210 				   used to affect the libraries loaded */
211 bool ld_bind_not;		/* Disable PLT update */
212 static const char *ld_bind_now;	/* Environment variable for immediate binding */
213 static const char *ld_debug;	/* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 				       weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload;	/* Environment variable for libraries to
219 				   load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 				   descriptors */
222 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
223 static const char *ld_tracing;	/* Called from ldd to print libs */
224 static const char *ld_utrace;	/* Use utrace() to log events. */
225 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
226 static Obj_Entry *obj_main;	/* The main program shared object */
227 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
228 static unsigned int obj_count;	/* Number of objects in obj_list */
229 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 
268 int npagesizes;
269 static int osreldate;
270 size_t *pagesizes;
271 size_t page_size;
272 
273 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
274 static int max_stack_flags;
275 
276 /*
277  * Global declarations normally provided by crt1.  The dynamic linker is
278  * not built with crt1, so we have to provide them ourselves.
279  */
280 char *__progname;
281 char **environ;
282 
283 /*
284  * Used to pass argc, argv to init functions.
285  */
286 int main_argc;
287 char **main_argv;
288 
289 /*
290  * Globals to control TLS allocation.
291  */
292 size_t tls_last_offset;		/* Static TLS offset of last module */
293 size_t tls_last_size;		/* Static TLS size of last module */
294 size_t tls_static_space;	/* Static TLS space allocated */
295 static size_t tls_static_max_align;
296 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
297 int tls_max_index = 1;		/* Largest module index allocated */
298 
299 static bool ld_library_path_rpath = false;
300 bool ld_fast_sigblock = false;
301 
302 /*
303  * Globals for path names, and such
304  */
305 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
306 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
307 const char *ld_path_rtld = _PATH_RTLD;
308 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
309 const char *ld_env_prefix = LD_;
310 
311 static void (*rtld_exit_ptr)(void);
312 
313 /*
314  * Fill in a DoneList with an allocation large enough to hold all of
315  * the currently-loaded objects.  Keep this as a macro since it calls
316  * alloca and we want that to occur within the scope of the caller.
317  */
318 #define donelist_init(dlp)					\
319     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
320     assert((dlp)->objs != NULL),				\
321     (dlp)->num_alloc = obj_count,				\
322     (dlp)->num_used = 0)
323 
324 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
325 	if (ld_utrace != NULL)					\
326 		ld_utrace_log(e, h, mb, ms, r, n);		\
327 } while (0)
328 
329 static void
330 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
331     int refcnt, const char *name)
332 {
333 	struct utrace_rtld ut;
334 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
335 
336 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
337 	ut.event = event;
338 	ut.handle = handle;
339 	ut.mapbase = mapbase;
340 	ut.mapsize = mapsize;
341 	ut.refcnt = refcnt;
342 	bzero(ut.name, sizeof(ut.name));
343 	if (name)
344 		strlcpy(ut.name, name, sizeof(ut.name));
345 	utrace(&ut, sizeof(ut));
346 }
347 
348 enum {
349 	LD_BIND_NOW = 0,
350 	LD_PRELOAD,
351 	LD_LIBMAP,
352 	LD_LIBRARY_PATH,
353 	LD_LIBRARY_PATH_FDS,
354 	LD_LIBMAP_DISABLE,
355 	LD_BIND_NOT,
356 	LD_DEBUG,
357 	LD_ELF_HINTS_PATH,
358 	LD_LOADFLTR,
359 	LD_LIBRARY_PATH_RPATH,
360 	LD_PRELOAD_FDS,
361 	LD_DYNAMIC_WEAK,
362 	LD_TRACE_LOADED_OBJECTS,
363 	LD_UTRACE,
364 	LD_DUMP_REL_PRE,
365 	LD_DUMP_REL_POST,
366 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
367 	LD_TRACE_LOADED_OBJECTS_FMT1,
368 	LD_TRACE_LOADED_OBJECTS_FMT2,
369 	LD_TRACE_LOADED_OBJECTS_ALL,
370 	LD_SHOW_AUXV,
371 };
372 
373 struct ld_env_var_desc {
374 	const char * const n;
375 	const char *val;
376 	const bool unsecure;
377 };
378 #define LD_ENV_DESC(var, unsec) \
379     [LD_##var] = { .n = #var, .unsecure = unsec }
380 
381 static struct ld_env_var_desc ld_env_vars[] = {
382 	LD_ENV_DESC(BIND_NOW, false),
383 	LD_ENV_DESC(PRELOAD, true),
384 	LD_ENV_DESC(LIBMAP, true),
385 	LD_ENV_DESC(LIBRARY_PATH, true),
386 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
387 	LD_ENV_DESC(LIBMAP_DISABLE, true),
388 	LD_ENV_DESC(BIND_NOT, true),
389 	LD_ENV_DESC(DEBUG, true),
390 	LD_ENV_DESC(ELF_HINTS_PATH, true),
391 	LD_ENV_DESC(LOADFLTR, true),
392 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
393 	LD_ENV_DESC(PRELOAD_FDS, true),
394 	LD_ENV_DESC(DYNAMIC_WEAK, true),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
396 	LD_ENV_DESC(UTRACE, false),
397 	LD_ENV_DESC(DUMP_REL_PRE, false),
398 	LD_ENV_DESC(DUMP_REL_POST, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
402 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
403 	LD_ENV_DESC(SHOW_AUXV, false),
404 };
405 
406 static const char *
407 ld_get_env_var(int idx)
408 {
409 	return (ld_env_vars[idx].val);
410 }
411 
412 static const char *
413 rtld_get_env_val(char **env, const char *name, size_t name_len)
414 {
415 	char **m, *n, *v;
416 
417 	for (m = env; *m != NULL; m++) {
418 		n = *m;
419 		v = strchr(n, '=');
420 		if (v == NULL) {
421 			/* corrupt environment? */
422 			continue;
423 		}
424 		if (v - n == (ptrdiff_t)name_len &&
425 		    strncmp(name, n, name_len) == 0)
426 			return (v + 1);
427 	}
428 	return (NULL);
429 }
430 
431 static void
432 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
433 {
434 	struct ld_env_var_desc *lvd;
435 	size_t prefix_len, nlen;
436 	char **m, *n, *v;
437 	int i;
438 
439 	prefix_len = strlen(env_prefix);
440 	for (m = env; *m != NULL; m++) {
441 		n = *m;
442 		if (strncmp(env_prefix, n, prefix_len) != 0) {
443 			/* Not a rtld environment variable. */
444 			continue;
445 		}
446 		n += prefix_len;
447 		v = strchr(n, '=');
448 		if (v == NULL) {
449 			/* corrupt environment? */
450 			continue;
451 		}
452 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
453 			lvd = &ld_env_vars[i];
454 			if (lvd->val != NULL) {
455 				/* Saw higher-priority variable name already. */
456 				continue;
457 			}
458 			nlen = strlen(lvd->n);
459 			if (v - n == (ptrdiff_t)nlen &&
460 			    strncmp(lvd->n, n, nlen) == 0) {
461 				lvd->val = v + 1;
462 				break;
463 			}
464 		}
465 	}
466 }
467 
468 static void
469 rtld_init_env_vars(char **env)
470 {
471 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
472 }
473 
474 static void
475 set_ld_elf_hints_path(void)
476 {
477 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
478 		ld_elf_hints_path = ld_elf_hints_default;
479 }
480 
481 uintptr_t
482 rtld_round_page(uintptr_t x)
483 {
484 	return (roundup2(x, page_size));
485 }
486 
487 uintptr_t
488 rtld_trunc_page(uintptr_t x)
489 {
490 	return (rounddown2(x, page_size));
491 }
492 
493 /*
494  * Main entry point for dynamic linking.  The first argument is the
495  * stack pointer.  The stack is expected to be laid out as described
496  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
497  * Specifically, the stack pointer points to a word containing
498  * ARGC.  Following that in the stack is a null-terminated sequence
499  * of pointers to argument strings.  Then comes a null-terminated
500  * sequence of pointers to environment strings.  Finally, there is a
501  * sequence of "auxiliary vector" entries.
502  *
503  * The second argument points to a place to store the dynamic linker's
504  * exit procedure pointer and the third to a place to store the main
505  * program's object.
506  *
507  * The return value is the main program's entry point.
508  */
509 func_ptr_type
510 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
511 {
512     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
513     Objlist_Entry *entry;
514     Obj_Entry *last_interposer, *obj, *preload_tail;
515     const Elf_Phdr *phdr;
516     Objlist initlist;
517     RtldLockState lockstate;
518     struct stat st;
519     Elf_Addr *argcp;
520     char **argv, **env, **envp, *kexecpath;
521     const char *argv0, *binpath, *library_path_rpath;
522     struct ld_env_var_desc *lvd;
523     caddr_t imgentry;
524     char buf[MAXPATHLEN];
525     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
526     size_t sz;
527 #ifdef __powerpc__
528     int old_auxv_format = 1;
529 #endif
530     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
531 
532     /*
533      * On entry, the dynamic linker itself has not been relocated yet.
534      * Be very careful not to reference any global data until after
535      * init_rtld has returned.  It is OK to reference file-scope statics
536      * and string constants, and to call static and global functions.
537      */
538 
539     /* Find the auxiliary vector on the stack. */
540     argcp = sp;
541     argc = *sp++;
542     argv = (char **) sp;
543     sp += argc + 1;	/* Skip over arguments and NULL terminator */
544     env = (char **) sp;
545     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
546 	;
547     aux = (Elf_Auxinfo *) sp;
548 
549     /* Digest the auxiliary vector. */
550     for (i = 0;  i < AT_COUNT;  i++)
551 	aux_info[i] = NULL;
552     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
553 	if (auxp->a_type < AT_COUNT)
554 	    aux_info[auxp->a_type] = auxp;
555 #ifdef __powerpc__
556 	if (auxp->a_type == 23) /* AT_STACKPROT */
557 	    old_auxv_format = 0;
558 #endif
559     }
560 
561 #ifdef __powerpc__
562     if (old_auxv_format) {
563 	/* Remap from old-style auxv numbers. */
564 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
565 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
566 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
567 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
568 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
569 	aux_info[13] = NULL;		/* AT_GID */
570 
571 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
572 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
573 	aux_info[16] = aux_info[14];	/* AT_CANARY */
574 	aux_info[14] = NULL;		/* AT_EGID */
575     }
576 #endif
577 
578     /* Initialize and relocate ourselves. */
579     assert(aux_info[AT_BASE] != NULL);
580     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
581 
582     dlerror_dflt_init();
583 
584     __progname = obj_rtld.path;
585     argv0 = argv[0] != NULL ? argv[0] : "(null)";
586     environ = env;
587     main_argc = argc;
588     main_argv = argv;
589 
590     if (aux_info[AT_BSDFLAGS] != NULL &&
591 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
592 	    ld_fast_sigblock = true;
593 
594     trust = !issetugid();
595     direct_exec = false;
596 
597     md_abi_variant_hook(aux_info);
598     rtld_init_env_vars(env);
599 
600     fd = -1;
601     if (aux_info[AT_EXECFD] != NULL) {
602 	fd = aux_info[AT_EXECFD]->a_un.a_val;
603     } else {
604 	assert(aux_info[AT_PHDR] != NULL);
605 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
606 	if (phdr == obj_rtld.phdr) {
607 	    if (!trust) {
608 		_rtld_error("Tainted process refusing to run binary %s",
609 		    argv0);
610 		rtld_die();
611 	    }
612 	    direct_exec = true;
613 
614 	    dbg("opening main program in direct exec mode");
615 	    if (argc >= 2) {
616 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
617 		  &argv0, &dir_ignore);
618 		explicit_fd = (fd != -1);
619 		binpath = NULL;
620 		if (!explicit_fd)
621 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
622 		if (fstat(fd, &st) == -1) {
623 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
624 		      explicit_fd ? "user-provided descriptor" : argv0,
625 		      rtld_strerror(errno));
626 		    rtld_die();
627 		}
628 
629 		/*
630 		 * Rough emulation of the permission checks done by
631 		 * execve(2), only Unix DACs are checked, ACLs are
632 		 * ignored.  Preserve the semantic of disabling owner
633 		 * to execute if owner x bit is cleared, even if
634 		 * others x bit is enabled.
635 		 * mmap(2) does not allow to mmap with PROT_EXEC if
636 		 * binary' file comes from noexec mount.  We cannot
637 		 * set a text reference on the binary.
638 		 */
639 		dir_enable = false;
640 		if (st.st_uid == geteuid()) {
641 		    if ((st.st_mode & S_IXUSR) != 0)
642 			dir_enable = true;
643 		} else if (st.st_gid == getegid()) {
644 		    if ((st.st_mode & S_IXGRP) != 0)
645 			dir_enable = true;
646 		} else if ((st.st_mode & S_IXOTH) != 0) {
647 		    dir_enable = true;
648 		}
649 		if (!dir_enable && !dir_ignore) {
650 		    _rtld_error("No execute permission for binary %s",
651 		        argv0);
652 		    rtld_die();
653 		}
654 
655 		/*
656 		 * For direct exec mode, argv[0] is the interpreter
657 		 * name, we must remove it and shift arguments left
658 		 * before invoking binary main.  Since stack layout
659 		 * places environment pointers and aux vectors right
660 		 * after the terminating NULL, we must shift
661 		 * environment and aux as well.
662 		 */
663 		main_argc = argc - rtld_argc;
664 		for (i = 0; i <= main_argc; i++)
665 		    argv[i] = argv[i + rtld_argc];
666 		*argcp -= rtld_argc;
667 		environ = env = envp = argv + main_argc + 1;
668 		dbg("move env from %p to %p", envp + rtld_argc, envp);
669 		do {
670 		    *envp = *(envp + rtld_argc);
671 		}  while (*envp++ != NULL);
672 		aux = auxp = (Elf_Auxinfo *)envp;
673 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
674 		dbg("move aux from %p to %p", auxpf, aux);
675 		/* XXXKIB insert place for AT_EXECPATH if not present */
676 		for (;; auxp++, auxpf++) {
677 		    *auxp = *auxpf;
678 		    if (auxp->a_type == AT_NULL)
679 			    break;
680 		}
681 		/* Since the auxiliary vector has moved, redigest it. */
682 		for (i = 0;  i < AT_COUNT;  i++)
683 		    aux_info[i] = NULL;
684 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
685 		    if (auxp->a_type < AT_COUNT)
686 			aux_info[auxp->a_type] = auxp;
687 		}
688 
689 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
690 		if (binpath == NULL) {
691 		    aux_info[AT_EXECPATH] = NULL;
692 		} else {
693 		    if (aux_info[AT_EXECPATH] == NULL) {
694 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
695 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
696 		    }
697 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
698 		      binpath);
699 		}
700 	    } else {
701 		_rtld_error("No binary");
702 		rtld_die();
703 	    }
704 	}
705     }
706 
707     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
708 
709     /*
710      * If the process is tainted, then we un-set the dangerous environment
711      * variables.  The process will be marked as tainted until setuid(2)
712      * is called.  If any child process calls setuid(2) we do not want any
713      * future processes to honor the potentially un-safe variables.
714      */
715     if (!trust) {
716 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
717 		    lvd = &ld_env_vars[i];
718 		    if (lvd->unsecure)
719 			    lvd->val = NULL;
720 	    }
721     }
722 
723     ld_debug = ld_get_env_var(LD_DEBUG);
724     if (ld_bind_now == NULL)
725 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
726     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
727     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
728     libmap_override = ld_get_env_var(LD_LIBMAP);
729     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
730     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
731     ld_preload = ld_get_env_var(LD_PRELOAD);
732     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
733     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
734     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
735     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
736     if (library_path_rpath != NULL) {
737 	    if (library_path_rpath[0] == 'y' ||
738 		library_path_rpath[0] == 'Y' ||
739 		library_path_rpath[0] == '1')
740 		    ld_library_path_rpath = true;
741 	    else
742 		    ld_library_path_rpath = false;
743     }
744     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
745 	ld_library_path != NULL || ld_preload != NULL ||
746 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
747     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
748     ld_utrace = ld_get_env_var(LD_UTRACE);
749 
750     set_ld_elf_hints_path();
751     if (ld_debug != NULL && *ld_debug != '\0')
752 	debug = 1;
753     dbg("%s is initialized, base address = %p", __progname,
754 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
755     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
756     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
757 
758     dbg("initializing thread locks");
759     lockdflt_init();
760 
761     /*
762      * Load the main program, or process its program header if it is
763      * already loaded.
764      */
765     if (fd != -1) {	/* Load the main program. */
766 	dbg("loading main program");
767 	obj_main = map_object(fd, argv0, NULL);
768 	close(fd);
769 	if (obj_main == NULL)
770 	    rtld_die();
771 	max_stack_flags = obj_main->stack_flags;
772     } else {				/* Main program already loaded. */
773 	dbg("processing main program's program header");
774 	assert(aux_info[AT_PHDR] != NULL);
775 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
776 	assert(aux_info[AT_PHNUM] != NULL);
777 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
778 	assert(aux_info[AT_PHENT] != NULL);
779 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
780 	assert(aux_info[AT_ENTRY] != NULL);
781 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
782 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
783 	    rtld_die();
784     }
785 
786     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
787 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
788 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
789 	    if (kexecpath[0] == '/')
790 		    obj_main->path = kexecpath;
791 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
792 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
793 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
794 		    obj_main->path = xstrdup(argv0);
795 	    else
796 		    obj_main->path = xstrdup(buf);
797     } else {
798 	    dbg("No AT_EXECPATH or direct exec");
799 	    obj_main->path = xstrdup(argv0);
800     }
801     dbg("obj_main path %s", obj_main->path);
802     obj_main->mainprog = true;
803 
804     if (aux_info[AT_STACKPROT] != NULL &&
805       aux_info[AT_STACKPROT]->a_un.a_val != 0)
806 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
807 
808 #ifndef COMPAT_32BIT
809     /*
810      * Get the actual dynamic linker pathname from the executable if
811      * possible.  (It should always be possible.)  That ensures that
812      * gdb will find the right dynamic linker even if a non-standard
813      * one is being used.
814      */
815     if (obj_main->interp != NULL &&
816       strcmp(obj_main->interp, obj_rtld.path) != 0) {
817 	free(obj_rtld.path);
818 	obj_rtld.path = xstrdup(obj_main->interp);
819         __progname = obj_rtld.path;
820     }
821 #endif
822 
823     if (!digest_dynamic(obj_main, 0))
824 	rtld_die();
825     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
826 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
827 	obj_main->dynsymcount);
828 
829     linkmap_add(obj_main);
830     linkmap_add(&obj_rtld);
831 
832     /* Link the main program into the list of objects. */
833     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
834     obj_count++;
835     obj_loads++;
836 
837     /* Initialize a fake symbol for resolving undefined weak references. */
838     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
839     sym_zero.st_shndx = SHN_UNDEF;
840     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
841 
842     if (!libmap_disable)
843         libmap_disable = (bool)lm_init(libmap_override);
844 
845     if (aux_info[AT_KPRELOAD] != NULL &&
846       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
847 	dbg("loading kernel vdso");
848 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
849 	    rtld_die();
850     }
851 
852     dbg("loading LD_PRELOAD_FDS libraries");
853     if (load_preload_objects(ld_preload_fds, true) == -1)
854 	rtld_die();
855 
856     dbg("loading LD_PRELOAD libraries");
857     if (load_preload_objects(ld_preload, false) == -1)
858 	rtld_die();
859     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
860 
861     dbg("loading needed objects");
862     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
863       0) == -1)
864 	rtld_die();
865 
866     /* Make a list of all objects loaded at startup. */
867     last_interposer = obj_main;
868     TAILQ_FOREACH(obj, &obj_list, next) {
869 	if (obj->marker)
870 	    continue;
871 	if (obj->z_interpose && obj != obj_main) {
872 	    objlist_put_after(&list_main, last_interposer, obj);
873 	    last_interposer = obj;
874 	} else {
875 	    objlist_push_tail(&list_main, obj);
876 	}
877     	obj->refcount++;
878     }
879 
880     dbg("checking for required versions");
881     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
882 	rtld_die();
883 
884     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
885        dump_auxv(aux_info);
886 
887     if (ld_tracing) {		/* We're done */
888 	trace_loaded_objects(obj_main, true);
889 	exit(0);
890     }
891 
892     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
893        dump_relocations(obj_main);
894        exit (0);
895     }
896 
897     /*
898      * Processing tls relocations requires having the tls offsets
899      * initialized.  Prepare offsets before starting initial
900      * relocation processing.
901      */
902     dbg("initializing initial thread local storage offsets");
903     STAILQ_FOREACH(entry, &list_main, link) {
904 	/*
905 	 * Allocate all the initial objects out of the static TLS
906 	 * block even if they didn't ask for it.
907 	 */
908 	allocate_tls_offset(entry->obj);
909     }
910 
911     if (relocate_objects(obj_main,
912       ld_bind_now != NULL && *ld_bind_now != '\0',
913       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
914 	rtld_die();
915 
916     dbg("doing copy relocations");
917     if (do_copy_relocations(obj_main) == -1)
918 	rtld_die();
919 
920     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
921        dump_relocations(obj_main);
922        exit (0);
923     }
924 
925     ifunc_init(aux);
926 
927     /*
928      * Setup TLS for main thread.  This must be done after the
929      * relocations are processed, since tls initialization section
930      * might be the subject for relocations.
931      */
932     dbg("initializing initial thread local storage");
933     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
934 
935     dbg("initializing key program variables");
936     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
937     set_program_var("environ", env);
938     set_program_var("__elf_aux_vector", aux);
939 
940     /* Make a list of init functions to call. */
941     objlist_init(&initlist);
942     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
943       preload_tail, &initlist);
944 
945     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
946 
947     map_stacks_exec(NULL);
948 
949     if (!obj_main->crt_no_init) {
950 	/*
951 	 * Make sure we don't call the main program's init and fini
952 	 * functions for binaries linked with old crt1 which calls
953 	 * _init itself.
954 	 */
955 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
956 	obj_main->preinit_array = obj_main->init_array =
957 	    obj_main->fini_array = (Elf_Addr)NULL;
958     }
959 
960     if (direct_exec) {
961 	/* Set osrel for direct-execed binary */
962 	mib[0] = CTL_KERN;
963 	mib[1] = KERN_PROC;
964 	mib[2] = KERN_PROC_OSREL;
965 	mib[3] = getpid();
966 	osrel = obj_main->osrel;
967 	sz = sizeof(old_osrel);
968 	dbg("setting osrel to %d", osrel);
969 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
970     }
971 
972     wlock_acquire(rtld_bind_lock, &lockstate);
973 
974     dbg("resolving ifuncs");
975     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
976       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
977 	rtld_die();
978 
979     rtld_exit_ptr = rtld_exit;
980     if (obj_main->crt_no_init)
981 	preinit_main();
982     objlist_call_init(&initlist, &lockstate);
983     _r_debug_postinit(&obj_main->linkmap);
984     objlist_clear(&initlist);
985     dbg("loading filtees");
986     TAILQ_FOREACH(obj, &obj_list, next) {
987 	if (obj->marker)
988 	    continue;
989 	if (ld_loadfltr || obj->z_loadfltr)
990 	    load_filtees(obj, 0, &lockstate);
991     }
992 
993     dbg("enforcing main obj relro");
994     if (obj_enforce_relro(obj_main) == -1)
995 	rtld_die();
996 
997     lock_release(rtld_bind_lock, &lockstate);
998 
999     dbg("transferring control to program entry point = %p", obj_main->entry);
1000 
1001     /* Return the exit procedure and the program entry point. */
1002     *exit_proc = rtld_exit_ptr;
1003     *objp = obj_main;
1004     return ((func_ptr_type)obj_main->entry);
1005 }
1006 
1007 void *
1008 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1009 {
1010 	void *ptr;
1011 	Elf_Addr target;
1012 
1013 	ptr = (void *)make_function_pointer(def, obj);
1014 	target = call_ifunc_resolver(ptr);
1015 	return ((void *)target);
1016 }
1017 
1018 Elf_Addr
1019 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1020 {
1021     const Elf_Rel *rel;
1022     const Elf_Sym *def;
1023     const Obj_Entry *defobj;
1024     Elf_Addr *where;
1025     Elf_Addr target;
1026     RtldLockState lockstate;
1027 
1028     rlock_acquire(rtld_bind_lock, &lockstate);
1029     if (sigsetjmp(lockstate.env, 0) != 0)
1030 	    lock_upgrade(rtld_bind_lock, &lockstate);
1031     if (obj->pltrel)
1032 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1033     else
1034 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1035 
1036     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1037     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1038 	NULL, &lockstate);
1039     if (def == NULL)
1040 	rtld_die();
1041     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1042 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1043     else
1044 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1045 
1046     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1047       defobj->strtab + def->st_name,
1048       obj->path == NULL ? NULL : basename(obj->path),
1049       (void *)target,
1050       defobj->path == NULL ? NULL : basename(defobj->path));
1051 
1052     /*
1053      * Write the new contents for the jmpslot. Note that depending on
1054      * architecture, the value which we need to return back to the
1055      * lazy binding trampoline may or may not be the target
1056      * address. The value returned from reloc_jmpslot() is the value
1057      * that the trampoline needs.
1058      */
1059     target = reloc_jmpslot(where, target, defobj, obj, rel);
1060     lock_release(rtld_bind_lock, &lockstate);
1061     return (target);
1062 }
1063 
1064 /*
1065  * Error reporting function.  Use it like printf.  If formats the message
1066  * into a buffer, and sets things up so that the next call to dlerror()
1067  * will return the message.
1068  */
1069 void
1070 _rtld_error(const char *fmt, ...)
1071 {
1072 	va_list ap;
1073 
1074 	va_start(ap, fmt);
1075 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1076 	    fmt, ap);
1077 	va_end(ap);
1078 	*lockinfo.dlerror_seen() = 0;
1079 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1080 }
1081 
1082 /*
1083  * Return a dynamically-allocated copy of the current error message, if any.
1084  */
1085 static struct dlerror_save *
1086 errmsg_save(void)
1087 {
1088 	struct dlerror_save *res;
1089 
1090 	res = xmalloc(sizeof(*res));
1091 	res->seen = *lockinfo.dlerror_seen();
1092 	if (res->seen == 0)
1093 		res->msg = xstrdup(lockinfo.dlerror_loc());
1094 	return (res);
1095 }
1096 
1097 /*
1098  * Restore the current error message from a copy which was previously saved
1099  * by errmsg_save().  The copy is freed.
1100  */
1101 static void
1102 errmsg_restore(struct dlerror_save *saved_msg)
1103 {
1104 	if (saved_msg == NULL || saved_msg->seen == 1) {
1105 		*lockinfo.dlerror_seen() = 1;
1106 	} else {
1107 		*lockinfo.dlerror_seen() = 0;
1108 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1109 		    lockinfo.dlerror_loc_sz);
1110 		free(saved_msg->msg);
1111 	}
1112 	free(saved_msg);
1113 }
1114 
1115 static const char *
1116 basename(const char *name)
1117 {
1118 	const char *p;
1119 
1120 	p = strrchr(name, '/');
1121 	return (p != NULL ? p + 1 : name);
1122 }
1123 
1124 static struct utsname uts;
1125 
1126 static char *
1127 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1128     const char *subst, bool may_free)
1129 {
1130 	char *p, *p1, *res, *resp;
1131 	int subst_len, kw_len, subst_count, old_len, new_len;
1132 
1133 	kw_len = strlen(kw);
1134 
1135 	/*
1136 	 * First, count the number of the keyword occurrences, to
1137 	 * preallocate the final string.
1138 	 */
1139 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1140 		p1 = strstr(p, kw);
1141 		if (p1 == NULL)
1142 			break;
1143 	}
1144 
1145 	/*
1146 	 * If the keyword is not found, just return.
1147 	 *
1148 	 * Return non-substituted string if resolution failed.  We
1149 	 * cannot do anything more reasonable, the failure mode of the
1150 	 * caller is unresolved library anyway.
1151 	 */
1152 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1153 		return (may_free ? real : xstrdup(real));
1154 	if (obj != NULL)
1155 		subst = obj->origin_path;
1156 
1157 	/*
1158 	 * There is indeed something to substitute.  Calculate the
1159 	 * length of the resulting string, and allocate it.
1160 	 */
1161 	subst_len = strlen(subst);
1162 	old_len = strlen(real);
1163 	new_len = old_len + (subst_len - kw_len) * subst_count;
1164 	res = xmalloc(new_len + 1);
1165 
1166 	/*
1167 	 * Now, execute the substitution loop.
1168 	 */
1169 	for (p = real, resp = res, *resp = '\0';;) {
1170 		p1 = strstr(p, kw);
1171 		if (p1 != NULL) {
1172 			/* Copy the prefix before keyword. */
1173 			memcpy(resp, p, p1 - p);
1174 			resp += p1 - p;
1175 			/* Keyword replacement. */
1176 			memcpy(resp, subst, subst_len);
1177 			resp += subst_len;
1178 			*resp = '\0';
1179 			p = p1 + kw_len;
1180 		} else
1181 			break;
1182 	}
1183 
1184 	/* Copy to the end of string and finish. */
1185 	strcat(resp, p);
1186 	if (may_free)
1187 		free(real);
1188 	return (res);
1189 }
1190 
1191 static const struct {
1192 	const char *kw;
1193 	bool pass_obj;
1194 	const char *subst;
1195 } tokens[] = {
1196 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1197 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1198 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1199 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1200 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1201 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1202 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1203 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1204 };
1205 
1206 static char *
1207 origin_subst(Obj_Entry *obj, const char *real)
1208 {
1209 	char *res;
1210 	int i;
1211 
1212 	if (obj == NULL || !trust)
1213 		return (xstrdup(real));
1214 	if (uts.sysname[0] == '\0') {
1215 		if (uname(&uts) != 0) {
1216 			_rtld_error("utsname failed: %d", errno);
1217 			return (NULL);
1218 		}
1219 	}
1220 
1221 	/* __DECONST is safe here since without may_free real is unchanged */
1222 	res = __DECONST(char *, real);
1223 	for (i = 0; i < (int)nitems(tokens); i++) {
1224 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1225 		    res, tokens[i].kw, tokens[i].subst, i == 0);
1226 	}
1227 	return (res);
1228 }
1229 
1230 void
1231 rtld_die(void)
1232 {
1233     const char *msg = dlerror();
1234 
1235     if (msg == NULL)
1236 	msg = "Fatal error";
1237     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1238     rtld_fdputstr(STDERR_FILENO, msg);
1239     rtld_fdputchar(STDERR_FILENO, '\n');
1240     _exit(1);
1241 }
1242 
1243 /*
1244  * Process a shared object's DYNAMIC section, and save the important
1245  * information in its Obj_Entry structure.
1246  */
1247 static void
1248 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1249     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1250 {
1251     const Elf_Dyn *dynp;
1252     Needed_Entry **needed_tail = &obj->needed;
1253     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1254     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1255     const Elf_Hashelt *hashtab;
1256     const Elf32_Word *hashval;
1257     Elf32_Word bkt, nmaskwords;
1258     int bloom_size32;
1259     int plttype = DT_REL;
1260 
1261     *dyn_rpath = NULL;
1262     *dyn_soname = NULL;
1263     *dyn_runpath = NULL;
1264 
1265     obj->bind_now = false;
1266     dynp = obj->dynamic;
1267     if (dynp == NULL)
1268 	return;
1269     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1270 	switch (dynp->d_tag) {
1271 
1272 	case DT_REL:
1273 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1274 	    break;
1275 
1276 	case DT_RELSZ:
1277 	    obj->relsize = dynp->d_un.d_val;
1278 	    break;
1279 
1280 	case DT_RELENT:
1281 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1282 	    break;
1283 
1284 	case DT_JMPREL:
1285 	    obj->pltrel = (const Elf_Rel *)
1286 	      (obj->relocbase + dynp->d_un.d_ptr);
1287 	    break;
1288 
1289 	case DT_PLTRELSZ:
1290 	    obj->pltrelsize = dynp->d_un.d_val;
1291 	    break;
1292 
1293 	case DT_RELA:
1294 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1295 	    break;
1296 
1297 	case DT_RELASZ:
1298 	    obj->relasize = dynp->d_un.d_val;
1299 	    break;
1300 
1301 	case DT_RELAENT:
1302 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1303 	    break;
1304 
1305 	case DT_RELR:
1306 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1307 	    break;
1308 
1309 	case DT_RELRSZ:
1310 	    obj->relrsize = dynp->d_un.d_val;
1311 	    break;
1312 
1313 	case DT_RELRENT:
1314 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1315 	    break;
1316 
1317 	case DT_PLTREL:
1318 	    plttype = dynp->d_un.d_val;
1319 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1320 	    break;
1321 
1322 	case DT_SYMTAB:
1323 	    obj->symtab = (const Elf_Sym *)
1324 	      (obj->relocbase + dynp->d_un.d_ptr);
1325 	    break;
1326 
1327 	case DT_SYMENT:
1328 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1329 	    break;
1330 
1331 	case DT_STRTAB:
1332 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1333 	    break;
1334 
1335 	case DT_STRSZ:
1336 	    obj->strsize = dynp->d_un.d_val;
1337 	    break;
1338 
1339 	case DT_VERNEED:
1340 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1341 		dynp->d_un.d_val);
1342 	    break;
1343 
1344 	case DT_VERNEEDNUM:
1345 	    obj->verneednum = dynp->d_un.d_val;
1346 	    break;
1347 
1348 	case DT_VERDEF:
1349 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1350 		dynp->d_un.d_val);
1351 	    break;
1352 
1353 	case DT_VERDEFNUM:
1354 	    obj->verdefnum = dynp->d_un.d_val;
1355 	    break;
1356 
1357 	case DT_VERSYM:
1358 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1359 		dynp->d_un.d_val);
1360 	    break;
1361 
1362 	case DT_HASH:
1363 	    {
1364 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1365 		    dynp->d_un.d_ptr);
1366 		obj->nbuckets = hashtab[0];
1367 		obj->nchains = hashtab[1];
1368 		obj->buckets = hashtab + 2;
1369 		obj->chains = obj->buckets + obj->nbuckets;
1370 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1371 		  obj->buckets != NULL;
1372 	    }
1373 	    break;
1374 
1375 	case DT_GNU_HASH:
1376 	    {
1377 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1378 		    dynp->d_un.d_ptr);
1379 		obj->nbuckets_gnu = hashtab[0];
1380 		obj->symndx_gnu = hashtab[1];
1381 		nmaskwords = hashtab[2];
1382 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1383 		obj->maskwords_bm_gnu = nmaskwords - 1;
1384 		obj->shift2_gnu = hashtab[3];
1385 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1386 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1387 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1388 		  obj->symndx_gnu;
1389 		/* Number of bitmask words is required to be power of 2 */
1390 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1391 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1392 	    }
1393 	    break;
1394 
1395 	case DT_NEEDED:
1396 	    if (!obj->rtld) {
1397 		Needed_Entry *nep = NEW(Needed_Entry);
1398 		nep->name = dynp->d_un.d_val;
1399 		nep->obj = NULL;
1400 		nep->next = NULL;
1401 
1402 		*needed_tail = nep;
1403 		needed_tail = &nep->next;
1404 	    }
1405 	    break;
1406 
1407 	case DT_FILTER:
1408 	    if (!obj->rtld) {
1409 		Needed_Entry *nep = NEW(Needed_Entry);
1410 		nep->name = dynp->d_un.d_val;
1411 		nep->obj = NULL;
1412 		nep->next = NULL;
1413 
1414 		*needed_filtees_tail = nep;
1415 		needed_filtees_tail = &nep->next;
1416 
1417 		if (obj->linkmap.l_refname == NULL)
1418 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1419 	    }
1420 	    break;
1421 
1422 	case DT_AUXILIARY:
1423 	    if (!obj->rtld) {
1424 		Needed_Entry *nep = NEW(Needed_Entry);
1425 		nep->name = dynp->d_un.d_val;
1426 		nep->obj = NULL;
1427 		nep->next = NULL;
1428 
1429 		*needed_aux_filtees_tail = nep;
1430 		needed_aux_filtees_tail = &nep->next;
1431 	    }
1432 	    break;
1433 
1434 	case DT_PLTGOT:
1435 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1436 	    break;
1437 
1438 	case DT_TEXTREL:
1439 	    obj->textrel = true;
1440 	    break;
1441 
1442 	case DT_SYMBOLIC:
1443 	    obj->symbolic = true;
1444 	    break;
1445 
1446 	case DT_RPATH:
1447 	    /*
1448 	     * We have to wait until later to process this, because we
1449 	     * might not have gotten the address of the string table yet.
1450 	     */
1451 	    *dyn_rpath = dynp;
1452 	    break;
1453 
1454 	case DT_SONAME:
1455 	    *dyn_soname = dynp;
1456 	    break;
1457 
1458 	case DT_RUNPATH:
1459 	    *dyn_runpath = dynp;
1460 	    break;
1461 
1462 	case DT_INIT:
1463 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1464 	    break;
1465 
1466 	case DT_PREINIT_ARRAY:
1467 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1468 	    break;
1469 
1470 	case DT_PREINIT_ARRAYSZ:
1471 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1472 	    break;
1473 
1474 	case DT_INIT_ARRAY:
1475 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1476 	    break;
1477 
1478 	case DT_INIT_ARRAYSZ:
1479 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1480 	    break;
1481 
1482 	case DT_FINI:
1483 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1484 	    break;
1485 
1486 	case DT_FINI_ARRAY:
1487 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1488 	    break;
1489 
1490 	case DT_FINI_ARRAYSZ:
1491 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1492 	    break;
1493 
1494 	case DT_DEBUG:
1495 	    if (!early)
1496 		dbg("Filling in DT_DEBUG entry");
1497 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1498 	    break;
1499 
1500 	case DT_FLAGS:
1501 		if (dynp->d_un.d_val & DF_ORIGIN)
1502 		    obj->z_origin = true;
1503 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1504 		    obj->symbolic = true;
1505 		if (dynp->d_un.d_val & DF_TEXTREL)
1506 		    obj->textrel = true;
1507 		if (dynp->d_un.d_val & DF_BIND_NOW)
1508 		    obj->bind_now = true;
1509 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1510 		    obj->static_tls = true;
1511 	    break;
1512 
1513 #ifdef __powerpc__
1514 #ifdef __powerpc64__
1515 	case DT_PPC64_GLINK:
1516 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1517 		break;
1518 #else
1519 	case DT_PPC_GOT:
1520 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1521 		break;
1522 #endif
1523 #endif
1524 
1525 	case DT_FLAGS_1:
1526 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1527 		    obj->z_noopen = true;
1528 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1529 		    obj->z_origin = true;
1530 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1531 		    obj->z_global = true;
1532 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1533 		    obj->bind_now = true;
1534 		if (dynp->d_un.d_val & DF_1_NODELETE)
1535 		    obj->z_nodelete = true;
1536 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1537 		    obj->z_loadfltr = true;
1538 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1539 		    obj->z_interpose = true;
1540 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1541 		    obj->z_nodeflib = true;
1542 		if (dynp->d_un.d_val & DF_1_PIE)
1543 		    obj->z_pie = true;
1544 	    break;
1545 
1546 	default:
1547 	    if (!early) {
1548 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1549 		    (long)dynp->d_tag);
1550 	    }
1551 	    break;
1552 	}
1553     }
1554 
1555     obj->traced = false;
1556 
1557     if (plttype == DT_RELA) {
1558 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1559 	obj->pltrel = NULL;
1560 	obj->pltrelasize = obj->pltrelsize;
1561 	obj->pltrelsize = 0;
1562     }
1563 
1564     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1565     if (obj->valid_hash_sysv)
1566 	obj->dynsymcount = obj->nchains;
1567     else if (obj->valid_hash_gnu) {
1568 	obj->dynsymcount = 0;
1569 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1570 	    if (obj->buckets_gnu[bkt] == 0)
1571 		continue;
1572 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1573 	    do
1574 		obj->dynsymcount++;
1575 	    while ((*hashval++ & 1u) == 0);
1576 	}
1577 	obj->dynsymcount += obj->symndx_gnu;
1578     }
1579 
1580     if (obj->linkmap.l_refname != NULL)
1581 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1582 	  linkmap.l_refname;
1583 }
1584 
1585 static bool
1586 obj_resolve_origin(Obj_Entry *obj)
1587 {
1588 
1589 	if (obj->origin_path != NULL)
1590 		return (true);
1591 	obj->origin_path = xmalloc(PATH_MAX);
1592 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1593 }
1594 
1595 static bool
1596 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1597     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1598 {
1599 
1600 	if (obj->z_origin && !obj_resolve_origin(obj))
1601 		return (false);
1602 
1603 	if (dyn_runpath != NULL) {
1604 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1605 		obj->runpath = origin_subst(obj, obj->runpath);
1606 	} else if (dyn_rpath != NULL) {
1607 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1608 		obj->rpath = origin_subst(obj, obj->rpath);
1609 	}
1610 	if (dyn_soname != NULL)
1611 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1612 	return (true);
1613 }
1614 
1615 static bool
1616 digest_dynamic(Obj_Entry *obj, int early)
1617 {
1618 	const Elf_Dyn *dyn_rpath;
1619 	const Elf_Dyn *dyn_soname;
1620 	const Elf_Dyn *dyn_runpath;
1621 
1622 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1623 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1624 }
1625 
1626 /*
1627  * Process a shared object's program header.  This is used only for the
1628  * main program, when the kernel has already loaded the main program
1629  * into memory before calling the dynamic linker.  It creates and
1630  * returns an Obj_Entry structure.
1631  */
1632 static Obj_Entry *
1633 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1634 {
1635     Obj_Entry *obj;
1636     const Elf_Phdr *phlimit = phdr + phnum;
1637     const Elf_Phdr *ph;
1638     Elf_Addr note_start, note_end;
1639     int nsegs = 0;
1640 
1641     obj = obj_new();
1642     for (ph = phdr;  ph < phlimit;  ph++) {
1643 	if (ph->p_type != PT_PHDR)
1644 	    continue;
1645 
1646 	obj->phdr = phdr;
1647 	obj->phsize = ph->p_memsz;
1648 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1649 	break;
1650     }
1651 
1652     obj->stack_flags = PF_X | PF_R | PF_W;
1653 
1654     for (ph = phdr;  ph < phlimit;  ph++) {
1655 	switch (ph->p_type) {
1656 
1657 	case PT_INTERP:
1658 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1659 	    break;
1660 
1661 	case PT_LOAD:
1662 	    if (nsegs == 0) {	/* First load segment */
1663 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1664 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1665 	    } else {		/* Last load segment */
1666 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1667 		  obj->vaddrbase;
1668 	    }
1669 	    nsegs++;
1670 	    break;
1671 
1672 	case PT_DYNAMIC:
1673 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1674 	    break;
1675 
1676 	case PT_TLS:
1677 	    obj->tlsindex = 1;
1678 	    obj->tlssize = ph->p_memsz;
1679 	    obj->tlsalign = ph->p_align;
1680 	    obj->tlsinitsize = ph->p_filesz;
1681 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1682 	    obj->tlspoffset = ph->p_offset;
1683 	    break;
1684 
1685 	case PT_GNU_STACK:
1686 	    obj->stack_flags = ph->p_flags;
1687 	    break;
1688 
1689 	case PT_GNU_RELRO:
1690 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1691 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1692 	      rtld_trunc_page(ph->p_vaddr);
1693 	    break;
1694 
1695 	case PT_NOTE:
1696 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1697 	    note_end = note_start + ph->p_filesz;
1698 	    digest_notes(obj, note_start, note_end);
1699 	    break;
1700 	}
1701     }
1702     if (nsegs < 1) {
1703 	_rtld_error("%s: too few PT_LOAD segments", path);
1704 	return (NULL);
1705     }
1706 
1707     obj->entry = entry;
1708     return (obj);
1709 }
1710 
1711 void
1712 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1713 {
1714 	const Elf_Note *note;
1715 	const char *note_name;
1716 	uintptr_t p;
1717 
1718 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1719 	    note = (const Elf_Note *)((const char *)(note + 1) +
1720 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1721 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1722 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1723 		    note->n_descsz != sizeof(int32_t))
1724 			continue;
1725 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1726 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1727 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1728 			continue;
1729 		note_name = (const char *)(note + 1);
1730 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1731 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1732 			continue;
1733 		switch (note->n_type) {
1734 		case NT_FREEBSD_ABI_TAG:
1735 			/* FreeBSD osrel note */
1736 			p = (uintptr_t)(note + 1);
1737 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1738 			obj->osrel = *(const int32_t *)(p);
1739 			dbg("note osrel %d", obj->osrel);
1740 			break;
1741 		case NT_FREEBSD_FEATURE_CTL:
1742 			/* FreeBSD ABI feature control note */
1743 			p = (uintptr_t)(note + 1);
1744 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1745 			obj->fctl0 = *(const uint32_t *)(p);
1746 			dbg("note fctl0 %#x", obj->fctl0);
1747 			break;
1748 		case NT_FREEBSD_NOINIT_TAG:
1749 			/* FreeBSD 'crt does not call init' note */
1750 			obj->crt_no_init = true;
1751 			dbg("note crt_no_init");
1752 			break;
1753 		}
1754 	}
1755 }
1756 
1757 static Obj_Entry *
1758 dlcheck(void *handle)
1759 {
1760     Obj_Entry *obj;
1761 
1762     TAILQ_FOREACH(obj, &obj_list, next) {
1763 	if (obj == (Obj_Entry *) handle)
1764 	    break;
1765     }
1766 
1767     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1768 	_rtld_error("Invalid shared object handle %p", handle);
1769 	return (NULL);
1770     }
1771     return (obj);
1772 }
1773 
1774 /*
1775  * If the given object is already in the donelist, return true.  Otherwise
1776  * add the object to the list and return false.
1777  */
1778 static bool
1779 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1780 {
1781     unsigned int i;
1782 
1783     for (i = 0;  i < dlp->num_used;  i++)
1784 	if (dlp->objs[i] == obj)
1785 	    return (true);
1786     /*
1787      * Our donelist allocation should always be sufficient.  But if
1788      * our threads locking isn't working properly, more shared objects
1789      * could have been loaded since we allocated the list.  That should
1790      * never happen, but we'll handle it properly just in case it does.
1791      */
1792     if (dlp->num_used < dlp->num_alloc)
1793 	dlp->objs[dlp->num_used++] = obj;
1794     return (false);
1795 }
1796 
1797 /*
1798  * Hash function for symbol table lookup.  Don't even think about changing
1799  * this.  It is specified by the System V ABI.
1800  */
1801 unsigned long
1802 elf_hash(const char *name)
1803 {
1804     const unsigned char *p = (const unsigned char *) name;
1805     unsigned long h = 0;
1806     unsigned long g;
1807 
1808     while (*p != '\0') {
1809 	h = (h << 4) + *p++;
1810 	if ((g = h & 0xf0000000) != 0)
1811 	    h ^= g >> 24;
1812 	h &= ~g;
1813     }
1814     return (h);
1815 }
1816 
1817 /*
1818  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1819  * unsigned in case it's implemented with a wider type.
1820  */
1821 static uint32_t
1822 gnu_hash(const char *s)
1823 {
1824 	uint32_t h;
1825 	unsigned char c;
1826 
1827 	h = 5381;
1828 	for (c = *s; c != '\0'; c = *++s)
1829 		h = h * 33 + c;
1830 	return (h & 0xffffffff);
1831 }
1832 
1833 
1834 /*
1835  * Find the library with the given name, and return its full pathname.
1836  * The returned string is dynamically allocated.  Generates an error
1837  * message and returns NULL if the library cannot be found.
1838  *
1839  * If the second argument is non-NULL, then it refers to an already-
1840  * loaded shared object, whose library search path will be searched.
1841  *
1842  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1843  * descriptor (which is close-on-exec) will be passed out via the third
1844  * argument.
1845  *
1846  * The search order is:
1847  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1848  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1849  *   LD_LIBRARY_PATH
1850  *   DT_RUNPATH in the referencing file
1851  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1852  *	 from list)
1853  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1854  *
1855  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1856  */
1857 static char *
1858 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1859 {
1860 	char *pathname, *refobj_path;
1861 	const char *name;
1862 	bool nodeflib, objgiven;
1863 
1864 	objgiven = refobj != NULL;
1865 
1866 	if (libmap_disable || !objgiven ||
1867 	    (name = lm_find(refobj->path, xname)) == NULL)
1868 		name = xname;
1869 
1870 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1871 		if (name[0] != '/' && !trust) {
1872 			_rtld_error("Absolute pathname required "
1873 			    "for shared object \"%s\"", name);
1874 			return (NULL);
1875 		}
1876 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1877 		    __DECONST(char *, name)));
1878 	}
1879 
1880 	dbg(" Searching for \"%s\"", name);
1881 	refobj_path = objgiven ? refobj->path : NULL;
1882 
1883 	/*
1884 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1885 	 * back to pre-conforming behaviour if user requested so with
1886 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1887 	 * nodeflib.
1888 	 */
1889 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1890 		pathname = search_library_path(name, ld_library_path,
1891 		    refobj_path, fdp);
1892 		if (pathname != NULL)
1893 			return (pathname);
1894 		if (refobj != NULL) {
1895 			pathname = search_library_path(name, refobj->rpath,
1896 			    refobj_path, fdp);
1897 			if (pathname != NULL)
1898 				return (pathname);
1899 		}
1900 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1901 		if (pathname != NULL)
1902 			return (pathname);
1903 		pathname = search_library_path(name, gethints(false),
1904 		    refobj_path, fdp);
1905 		if (pathname != NULL)
1906 			return (pathname);
1907 		pathname = search_library_path(name, ld_standard_library_path,
1908 		    refobj_path, fdp);
1909 		if (pathname != NULL)
1910 			return (pathname);
1911 	} else {
1912 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1913 		if (objgiven) {
1914 			pathname = search_library_path(name, refobj->rpath,
1915 			    refobj->path, fdp);
1916 			if (pathname != NULL)
1917 				return (pathname);
1918 		}
1919 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1920 			pathname = search_library_path(name, obj_main->rpath,
1921 			    refobj_path, fdp);
1922 			if (pathname != NULL)
1923 				return (pathname);
1924 		}
1925 		pathname = search_library_path(name, ld_library_path,
1926 		    refobj_path, fdp);
1927 		if (pathname != NULL)
1928 			return (pathname);
1929 		if (objgiven) {
1930 			pathname = search_library_path(name, refobj->runpath,
1931 			    refobj_path, fdp);
1932 			if (pathname != NULL)
1933 				return (pathname);
1934 		}
1935 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1936 		if (pathname != NULL)
1937 			return (pathname);
1938 		pathname = search_library_path(name, gethints(nodeflib),
1939 		    refobj_path, fdp);
1940 		if (pathname != NULL)
1941 			return (pathname);
1942 		if (objgiven && !nodeflib) {
1943 			pathname = search_library_path(name,
1944 			    ld_standard_library_path, refobj_path, fdp);
1945 			if (pathname != NULL)
1946 				return (pathname);
1947 		}
1948 	}
1949 
1950 	if (objgiven && refobj->path != NULL) {
1951 		_rtld_error("Shared object \"%s\" not found, "
1952 		    "required by \"%s\"", name, basename(refobj->path));
1953 	} else {
1954 		_rtld_error("Shared object \"%s\" not found", name);
1955 	}
1956 	return (NULL);
1957 }
1958 
1959 /*
1960  * Given a symbol number in a referencing object, find the corresponding
1961  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1962  * no definition was found.  Returns a pointer to the Obj_Entry of the
1963  * defining object via the reference parameter DEFOBJ_OUT.
1964  */
1965 const Elf_Sym *
1966 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1967     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1968     RtldLockState *lockstate)
1969 {
1970     const Elf_Sym *ref;
1971     const Elf_Sym *def;
1972     const Obj_Entry *defobj;
1973     const Ver_Entry *ve;
1974     SymLook req;
1975     const char *name;
1976     int res;
1977 
1978     /*
1979      * If we have already found this symbol, get the information from
1980      * the cache.
1981      */
1982     if (symnum >= refobj->dynsymcount)
1983 	return (NULL);	/* Bad object */
1984     if (cache != NULL && cache[symnum].sym != NULL) {
1985 	*defobj_out = cache[symnum].obj;
1986 	return (cache[symnum].sym);
1987     }
1988 
1989     ref = refobj->symtab + symnum;
1990     name = refobj->strtab + ref->st_name;
1991     def = NULL;
1992     defobj = NULL;
1993     ve = NULL;
1994 
1995     /*
1996      * We don't have to do a full scale lookup if the symbol is local.
1997      * We know it will bind to the instance in this load module; to
1998      * which we already have a pointer (ie ref). By not doing a lookup,
1999      * we not only improve performance, but it also avoids unresolvable
2000      * symbols when local symbols are not in the hash table. This has
2001      * been seen with the ia64 toolchain.
2002      */
2003     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2004 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2005 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2006 		symnum);
2007 	}
2008 	symlook_init(&req, name);
2009 	req.flags = flags;
2010 	ve = req.ventry = fetch_ventry(refobj, symnum);
2011 	req.lockstate = lockstate;
2012 	res = symlook_default(&req, refobj);
2013 	if (res == 0) {
2014 	    def = req.sym_out;
2015 	    defobj = req.defobj_out;
2016 	}
2017     } else {
2018 	def = ref;
2019 	defobj = refobj;
2020     }
2021 
2022     /*
2023      * If we found no definition and the reference is weak, treat the
2024      * symbol as having the value zero.
2025      */
2026     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2027 	def = &sym_zero;
2028 	defobj = obj_main;
2029     }
2030 
2031     if (def != NULL) {
2032 	*defobj_out = defobj;
2033 	/* Record the information in the cache to avoid subsequent lookups. */
2034 	if (cache != NULL) {
2035 	    cache[symnum].sym = def;
2036 	    cache[symnum].obj = defobj;
2037 	}
2038     } else {
2039 	if (refobj != &obj_rtld)
2040 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2041 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2042     }
2043     return (def);
2044 }
2045 
2046 /*
2047  * Return the search path from the ldconfig hints file, reading it if
2048  * necessary.  If nostdlib is true, then the default search paths are
2049  * not added to result.
2050  *
2051  * Returns NULL if there are problems with the hints file,
2052  * or if the search path there is empty.
2053  */
2054 static const char *
2055 gethints(bool nostdlib)
2056 {
2057 	static char *filtered_path;
2058 	static const char *hints;
2059 	static struct elfhints_hdr hdr;
2060 	struct fill_search_info_args sargs, hargs;
2061 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2062 	struct dl_serpath *SLPpath, *hintpath;
2063 	char *p;
2064 	struct stat hint_stat;
2065 	unsigned int SLPndx, hintndx, fndx, fcount;
2066 	int fd;
2067 	size_t flen;
2068 	uint32_t dl;
2069 	bool skip;
2070 
2071 	/* First call, read the hints file */
2072 	if (hints == NULL) {
2073 		/* Keep from trying again in case the hints file is bad. */
2074 		hints = "";
2075 
2076 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2077 			return (NULL);
2078 
2079 		/*
2080 		 * Check of hdr.dirlistlen value against type limit
2081 		 * intends to pacify static analyzers.  Further
2082 		 * paranoia leads to checks that dirlist is fully
2083 		 * contained in the file range.
2084 		 */
2085 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2086 		    hdr.magic != ELFHINTS_MAGIC ||
2087 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2088 		    fstat(fd, &hint_stat) == -1) {
2089 cleanup1:
2090 			close(fd);
2091 			hdr.dirlistlen = 0;
2092 			return (NULL);
2093 		}
2094 		dl = hdr.strtab;
2095 		if (dl + hdr.dirlist < dl)
2096 			goto cleanup1;
2097 		dl += hdr.dirlist;
2098 		if (dl + hdr.dirlistlen < dl)
2099 			goto cleanup1;
2100 		dl += hdr.dirlistlen;
2101 		if (dl > hint_stat.st_size)
2102 			goto cleanup1;
2103 		p = xmalloc(hdr.dirlistlen + 1);
2104 		if (pread(fd, p, hdr.dirlistlen + 1,
2105 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2106 		    p[hdr.dirlistlen] != '\0') {
2107 			free(p);
2108 			goto cleanup1;
2109 		}
2110 		hints = p;
2111 		close(fd);
2112 	}
2113 
2114 	/*
2115 	 * If caller agreed to receive list which includes the default
2116 	 * paths, we are done. Otherwise, if we still did not
2117 	 * calculated filtered result, do it now.
2118 	 */
2119 	if (!nostdlib)
2120 		return (hints[0] != '\0' ? hints : NULL);
2121 	if (filtered_path != NULL)
2122 		goto filt_ret;
2123 
2124 	/*
2125 	 * Obtain the list of all configured search paths, and the
2126 	 * list of the default paths.
2127 	 *
2128 	 * First estimate the size of the results.
2129 	 */
2130 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2131 	smeta.dls_cnt = 0;
2132 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2133 	hmeta.dls_cnt = 0;
2134 
2135 	sargs.request = RTLD_DI_SERINFOSIZE;
2136 	sargs.serinfo = &smeta;
2137 	hargs.request = RTLD_DI_SERINFOSIZE;
2138 	hargs.serinfo = &hmeta;
2139 
2140 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2141 	    &sargs);
2142 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2143 
2144 	SLPinfo = xmalloc(smeta.dls_size);
2145 	hintinfo = xmalloc(hmeta.dls_size);
2146 
2147 	/*
2148 	 * Next fetch both sets of paths.
2149 	 */
2150 	sargs.request = RTLD_DI_SERINFO;
2151 	sargs.serinfo = SLPinfo;
2152 	sargs.serpath = &SLPinfo->dls_serpath[0];
2153 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2154 
2155 	hargs.request = RTLD_DI_SERINFO;
2156 	hargs.serinfo = hintinfo;
2157 	hargs.serpath = &hintinfo->dls_serpath[0];
2158 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2159 
2160 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2161 	    &sargs);
2162 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2163 
2164 	/*
2165 	 * Now calculate the difference between two sets, by excluding
2166 	 * standard paths from the full set.
2167 	 */
2168 	fndx = 0;
2169 	fcount = 0;
2170 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2171 	hintpath = &hintinfo->dls_serpath[0];
2172 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2173 		skip = false;
2174 		SLPpath = &SLPinfo->dls_serpath[0];
2175 		/*
2176 		 * Check each standard path against current.
2177 		 */
2178 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2179 			/* matched, skip the path */
2180 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2181 				skip = true;
2182 				break;
2183 			}
2184 		}
2185 		if (skip)
2186 			continue;
2187 		/*
2188 		 * Not matched against any standard path, add the path
2189 		 * to result. Separate consequtive paths with ':'.
2190 		 */
2191 		if (fcount > 0) {
2192 			filtered_path[fndx] = ':';
2193 			fndx++;
2194 		}
2195 		fcount++;
2196 		flen = strlen(hintpath->dls_name);
2197 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2198 		fndx += flen;
2199 	}
2200 	filtered_path[fndx] = '\0';
2201 
2202 	free(SLPinfo);
2203 	free(hintinfo);
2204 
2205 filt_ret:
2206 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2207 }
2208 
2209 static void
2210 init_dag(Obj_Entry *root)
2211 {
2212     const Needed_Entry *needed;
2213     const Objlist_Entry *elm;
2214     DoneList donelist;
2215 
2216     if (root->dag_inited)
2217 	return;
2218     donelist_init(&donelist);
2219 
2220     /* Root object belongs to own DAG. */
2221     objlist_push_tail(&root->dldags, root);
2222     objlist_push_tail(&root->dagmembers, root);
2223     donelist_check(&donelist, root);
2224 
2225     /*
2226      * Add dependencies of root object to DAG in breadth order
2227      * by exploiting the fact that each new object get added
2228      * to the tail of the dagmembers list.
2229      */
2230     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2231 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2232 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2233 		continue;
2234 	    objlist_push_tail(&needed->obj->dldags, root);
2235 	    objlist_push_tail(&root->dagmembers, needed->obj);
2236 	}
2237     }
2238     root->dag_inited = true;
2239 }
2240 
2241 static void
2242 init_marker(Obj_Entry *marker)
2243 {
2244 
2245 	bzero(marker, sizeof(*marker));
2246 	marker->marker = true;
2247 }
2248 
2249 Obj_Entry *
2250 globallist_curr(const Obj_Entry *obj)
2251 {
2252 
2253 	for (;;) {
2254 		if (obj == NULL)
2255 			return (NULL);
2256 		if (!obj->marker)
2257 			return (__DECONST(Obj_Entry *, obj));
2258 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2259 	}
2260 }
2261 
2262 Obj_Entry *
2263 globallist_next(const Obj_Entry *obj)
2264 {
2265 
2266 	for (;;) {
2267 		obj = TAILQ_NEXT(obj, next);
2268 		if (obj == NULL)
2269 			return (NULL);
2270 		if (!obj->marker)
2271 			return (__DECONST(Obj_Entry *, obj));
2272 	}
2273 }
2274 
2275 /* Prevent the object from being unmapped while the bind lock is dropped. */
2276 static void
2277 hold_object(Obj_Entry *obj)
2278 {
2279 
2280 	obj->holdcount++;
2281 }
2282 
2283 static void
2284 unhold_object(Obj_Entry *obj)
2285 {
2286 
2287 	assert(obj->holdcount > 0);
2288 	if (--obj->holdcount == 0 && obj->unholdfree)
2289 		release_object(obj);
2290 }
2291 
2292 static void
2293 process_z(Obj_Entry *root)
2294 {
2295 	const Objlist_Entry *elm;
2296 	Obj_Entry *obj;
2297 
2298 	/*
2299 	 * Walk over object DAG and process every dependent object
2300 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2301 	 * to grow their own DAG.
2302 	 *
2303 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2304 	 * symlook_global() to work.
2305 	 *
2306 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2307 	 */
2308 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2309 		obj = elm->obj;
2310 		if (obj == NULL)
2311 			continue;
2312 		if (obj->z_nodelete && !obj->ref_nodel) {
2313 			dbg("obj %s -z nodelete", obj->path);
2314 			init_dag(obj);
2315 			ref_dag(obj);
2316 			obj->ref_nodel = true;
2317 		}
2318 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2319 			dbg("obj %s -z global", obj->path);
2320 			objlist_push_tail(&list_global, obj);
2321 			init_dag(obj);
2322 		}
2323 	}
2324 }
2325 
2326 static void
2327 parse_rtld_phdr(Obj_Entry *obj)
2328 {
2329 	const Elf_Phdr *ph;
2330 	Elf_Addr note_start, note_end;
2331 
2332 	obj->stack_flags = PF_X | PF_R | PF_W;
2333 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2334 	    obj->phsize; ph++) {
2335 		switch (ph->p_type) {
2336 		case PT_GNU_STACK:
2337 			obj->stack_flags = ph->p_flags;
2338 			break;
2339 		case PT_GNU_RELRO:
2340 			obj->relro_page = obj->relocbase +
2341 			    rtld_trunc_page(ph->p_vaddr);
2342 			obj->relro_size = rtld_round_page(ph->p_memsz);
2343 			break;
2344 		case PT_NOTE:
2345 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2346 			note_end = note_start + ph->p_filesz;
2347 			digest_notes(obj, note_start, note_end);
2348 			break;
2349 		}
2350 	}
2351 }
2352 
2353 /*
2354  * Initialize the dynamic linker.  The argument is the address at which
2355  * the dynamic linker has been mapped into memory.  The primary task of
2356  * this function is to relocate the dynamic linker.
2357  */
2358 static void
2359 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2360 {
2361     Obj_Entry objtmp;	/* Temporary rtld object */
2362     const Elf_Ehdr *ehdr;
2363     const Elf_Dyn *dyn_rpath;
2364     const Elf_Dyn *dyn_soname;
2365     const Elf_Dyn *dyn_runpath;
2366 
2367 #ifdef RTLD_INIT_PAGESIZES_EARLY
2368     /* The page size is required by the dynamic memory allocator. */
2369     init_pagesizes(aux_info);
2370 #endif
2371 
2372     /*
2373      * Conjure up an Obj_Entry structure for the dynamic linker.
2374      *
2375      * The "path" member can't be initialized yet because string constants
2376      * cannot yet be accessed. Below we will set it correctly.
2377      */
2378     memset(&objtmp, 0, sizeof(objtmp));
2379     objtmp.path = NULL;
2380     objtmp.rtld = true;
2381     objtmp.mapbase = mapbase;
2382 #ifdef PIC
2383     objtmp.relocbase = mapbase;
2384 #endif
2385 
2386     objtmp.dynamic = rtld_dynamic(&objtmp);
2387     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2388     assert(objtmp.needed == NULL);
2389     assert(!objtmp.textrel);
2390     /*
2391      * Temporarily put the dynamic linker entry into the object list, so
2392      * that symbols can be found.
2393      */
2394     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2395 
2396     ehdr = (Elf_Ehdr *)mapbase;
2397     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2398     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2399 
2400     /* Initialize the object list. */
2401     TAILQ_INIT(&obj_list);
2402 
2403     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2404     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2405 
2406 #ifndef RTLD_INIT_PAGESIZES_EARLY
2407     /* The page size is required by the dynamic memory allocator. */
2408     init_pagesizes(aux_info);
2409 #endif
2410 
2411     if (aux_info[AT_OSRELDATE] != NULL)
2412 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2413 
2414     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2415 
2416     /* Replace the path with a dynamically allocated copy. */
2417     obj_rtld.path = xstrdup(ld_path_rtld);
2418 
2419     parse_rtld_phdr(&obj_rtld);
2420     if (obj_enforce_relro(&obj_rtld) == -1)
2421 	rtld_die();
2422 
2423     r_debug.r_version = R_DEBUG_VERSION;
2424     r_debug.r_brk = r_debug_state;
2425     r_debug.r_state = RT_CONSISTENT;
2426     r_debug.r_ldbase = obj_rtld.relocbase;
2427 }
2428 
2429 /*
2430  * Retrieve the array of supported page sizes.  The kernel provides the page
2431  * sizes in increasing order.
2432  */
2433 static void
2434 init_pagesizes(Elf_Auxinfo **aux_info)
2435 {
2436 	static size_t psa[MAXPAGESIZES];
2437 	int mib[2];
2438 	size_t len, size;
2439 
2440 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2441 	    NULL) {
2442 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2443 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2444 	} else {
2445 		len = 2;
2446 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2447 			size = sizeof(psa);
2448 		else {
2449 			/* As a fallback, retrieve the base page size. */
2450 			size = sizeof(psa[0]);
2451 			if (aux_info[AT_PAGESZ] != NULL) {
2452 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2453 				goto psa_filled;
2454 			} else {
2455 				mib[0] = CTL_HW;
2456 				mib[1] = HW_PAGESIZE;
2457 				len = 2;
2458 			}
2459 		}
2460 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2461 			_rtld_error("sysctl for hw.pagesize(s) failed");
2462 			rtld_die();
2463 		}
2464 psa_filled:
2465 		pagesizes = psa;
2466 	}
2467 	npagesizes = size / sizeof(pagesizes[0]);
2468 	/* Discard any invalid entries at the end of the array. */
2469 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2470 		npagesizes--;
2471 
2472 	page_size = pagesizes[0];
2473 }
2474 
2475 /*
2476  * Add the init functions from a needed object list (and its recursive
2477  * needed objects) to "list".  This is not used directly; it is a helper
2478  * function for initlist_add_objects().  The write lock must be held
2479  * when this function is called.
2480  */
2481 static void
2482 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2483 {
2484     /* Recursively process the successor needed objects. */
2485     if (needed->next != NULL)
2486 	initlist_add_neededs(needed->next, list);
2487 
2488     /* Process the current needed object. */
2489     if (needed->obj != NULL)
2490 	initlist_add_objects(needed->obj, needed->obj, list);
2491 }
2492 
2493 /*
2494  * Scan all of the DAGs rooted in the range of objects from "obj" to
2495  * "tail" and add their init functions to "list".  This recurses over
2496  * the DAGs and ensure the proper init ordering such that each object's
2497  * needed libraries are initialized before the object itself.  At the
2498  * same time, this function adds the objects to the global finalization
2499  * list "list_fini" in the opposite order.  The write lock must be
2500  * held when this function is called.
2501  */
2502 static void
2503 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2504 {
2505     Obj_Entry *nobj;
2506 
2507     if (obj->init_scanned || obj->init_done)
2508 	return;
2509     obj->init_scanned = true;
2510 
2511     /* Recursively process the successor objects. */
2512     nobj = globallist_next(obj);
2513     if (nobj != NULL && obj != tail)
2514 	initlist_add_objects(nobj, tail, list);
2515 
2516     /* Recursively process the needed objects. */
2517     if (obj->needed != NULL)
2518 	initlist_add_neededs(obj->needed, list);
2519     if (obj->needed_filtees != NULL)
2520 	initlist_add_neededs(obj->needed_filtees, list);
2521     if (obj->needed_aux_filtees != NULL)
2522 	initlist_add_neededs(obj->needed_aux_filtees, list);
2523 
2524     /* Add the object to the init list. */
2525     objlist_push_tail(list, obj);
2526 
2527     /* Add the object to the global fini list in the reverse order. */
2528     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2529       && !obj->on_fini_list) {
2530 	objlist_push_head(&list_fini, obj);
2531 	obj->on_fini_list = true;
2532     }
2533 }
2534 
2535 #ifndef FPTR_TARGET
2536 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2537 #endif
2538 
2539 static void
2540 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2541 {
2542     Needed_Entry *needed, *needed1;
2543 
2544     for (needed = n; needed != NULL; needed = needed->next) {
2545 	if (needed->obj != NULL) {
2546 	    dlclose_locked(needed->obj, lockstate);
2547 	    needed->obj = NULL;
2548 	}
2549     }
2550     for (needed = n; needed != NULL; needed = needed1) {
2551 	needed1 = needed->next;
2552 	free(needed);
2553     }
2554 }
2555 
2556 static void
2557 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2558 {
2559 
2560 	free_needed_filtees(obj->needed_filtees, lockstate);
2561 	obj->needed_filtees = NULL;
2562 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2563 	obj->needed_aux_filtees = NULL;
2564 	obj->filtees_loaded = false;
2565 }
2566 
2567 static void
2568 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2569     RtldLockState *lockstate)
2570 {
2571 
2572     for (; needed != NULL; needed = needed->next) {
2573 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2574 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2575 	  RTLD_LOCAL, lockstate);
2576     }
2577 }
2578 
2579 static void
2580 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2581 {
2582 
2583     lock_restart_for_upgrade(lockstate);
2584     if (!obj->filtees_loaded) {
2585 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2586 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2587 	obj->filtees_loaded = true;
2588     }
2589 }
2590 
2591 static int
2592 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2593 {
2594     Obj_Entry *obj1;
2595 
2596     for (; needed != NULL; needed = needed->next) {
2597 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2598 	  flags & ~RTLD_LO_NOLOAD);
2599 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2600 	    return (-1);
2601     }
2602     return (0);
2603 }
2604 
2605 /*
2606  * Given a shared object, traverse its list of needed objects, and load
2607  * each of them.  Returns 0 on success.  Generates an error message and
2608  * returns -1 on failure.
2609  */
2610 static int
2611 load_needed_objects(Obj_Entry *first, int flags)
2612 {
2613     Obj_Entry *obj;
2614 
2615     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2616 	if (obj->marker)
2617 	    continue;
2618 	if (process_needed(obj, obj->needed, flags) == -1)
2619 	    return (-1);
2620     }
2621     return (0);
2622 }
2623 
2624 static int
2625 load_preload_objects(const char *penv, bool isfd)
2626 {
2627 	Obj_Entry *obj;
2628 	const char *name;
2629 	size_t len;
2630 	char savech, *p, *psave;
2631 	int fd;
2632 	static const char delim[] = " \t:;";
2633 
2634 	if (penv == NULL)
2635 		return (0);
2636 
2637 	p = psave = xstrdup(penv);
2638 	p += strspn(p, delim);
2639 	while (*p != '\0') {
2640 		len = strcspn(p, delim);
2641 
2642 		savech = p[len];
2643 		p[len] = '\0';
2644 		if (isfd) {
2645 			name = NULL;
2646 			fd = parse_integer(p);
2647 			if (fd == -1) {
2648 				free(psave);
2649 				return (-1);
2650 			}
2651 		} else {
2652 			name = p;
2653 			fd = -1;
2654 		}
2655 
2656 		obj = load_object(name, fd, NULL, 0);
2657 		if (obj == NULL) {
2658 			free(psave);
2659 			return (-1);	/* XXX - cleanup */
2660 		}
2661 		obj->z_interpose = true;
2662 		p[len] = savech;
2663 		p += len;
2664 		p += strspn(p, delim);
2665 	}
2666 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2667 
2668 	free(psave);
2669 	return (0);
2670 }
2671 
2672 static const char *
2673 printable_path(const char *path)
2674 {
2675 
2676 	return (path == NULL ? "<unknown>" : path);
2677 }
2678 
2679 /*
2680  * Load a shared object into memory, if it is not already loaded.  The
2681  * object may be specified by name or by user-supplied file descriptor
2682  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2683  * duplicate is.
2684  *
2685  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2686  * on failure.
2687  */
2688 static Obj_Entry *
2689 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2690 {
2691     Obj_Entry *obj;
2692     int fd;
2693     struct stat sb;
2694     char *path;
2695 
2696     fd = -1;
2697     if (name != NULL) {
2698 	TAILQ_FOREACH(obj, &obj_list, next) {
2699 	    if (obj->marker || obj->doomed)
2700 		continue;
2701 	    if (object_match_name(obj, name))
2702 		return (obj);
2703 	}
2704 
2705 	path = find_library(name, refobj, &fd);
2706 	if (path == NULL)
2707 	    return (NULL);
2708     } else
2709 	path = NULL;
2710 
2711     if (fd >= 0) {
2712 	/*
2713 	 * search_library_pathfds() opens a fresh file descriptor for the
2714 	 * library, so there is no need to dup().
2715 	 */
2716     } else if (fd_u == -1) {
2717 	/*
2718 	 * If we didn't find a match by pathname, or the name is not
2719 	 * supplied, open the file and check again by device and inode.
2720 	 * This avoids false mismatches caused by multiple links or ".."
2721 	 * in pathnames.
2722 	 *
2723 	 * To avoid a race, we open the file and use fstat() rather than
2724 	 * using stat().
2725 	 */
2726 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2727 	    _rtld_error("Cannot open \"%s\"", path);
2728 	    free(path);
2729 	    return (NULL);
2730 	}
2731     } else {
2732 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2733 	if (fd == -1) {
2734 	    _rtld_error("Cannot dup fd");
2735 	    free(path);
2736 	    return (NULL);
2737 	}
2738     }
2739     if (fstat(fd, &sb) == -1) {
2740 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2741 	close(fd);
2742 	free(path);
2743 	return (NULL);
2744     }
2745     TAILQ_FOREACH(obj, &obj_list, next) {
2746 	if (obj->marker || obj->doomed)
2747 	    continue;
2748 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2749 	    break;
2750     }
2751     if (obj != NULL && name != NULL) {
2752 	object_add_name(obj, name);
2753 	free(path);
2754 	close(fd);
2755 	return (obj);
2756     }
2757     if (flags & RTLD_LO_NOLOAD) {
2758 	free(path);
2759 	close(fd);
2760 	return (NULL);
2761     }
2762 
2763     /* First use of this object, so we must map it in */
2764     obj = do_load_object(fd, name, path, &sb, flags);
2765     if (obj == NULL)
2766 	free(path);
2767     close(fd);
2768 
2769     return (obj);
2770 }
2771 
2772 static Obj_Entry *
2773 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2774   int flags)
2775 {
2776     Obj_Entry *obj;
2777     struct statfs fs;
2778 
2779     /*
2780      * First, make sure that environment variables haven't been
2781      * used to circumvent the noexec flag on a filesystem.
2782      * We ignore fstatfs(2) failures, since fd might reference
2783      * not a file, e.g. shmfd.
2784      */
2785     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2786 	(fs.f_flags & MNT_NOEXEC) != 0) {
2787 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2788 	    return (NULL);
2789     }
2790 
2791     dbg("loading \"%s\"", printable_path(path));
2792     obj = map_object(fd, printable_path(path), sbp);
2793     if (obj == NULL)
2794         return (NULL);
2795 
2796     /*
2797      * If DT_SONAME is present in the object, digest_dynamic2 already
2798      * added it to the object names.
2799      */
2800     if (name != NULL)
2801 	object_add_name(obj, name);
2802     obj->path = path;
2803     if (!digest_dynamic(obj, 0))
2804 	goto errp;
2805     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2806 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2807     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2808 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2809 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2810 	goto errp;
2811     }
2812     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2813       RTLD_LO_DLOPEN) {
2814 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2815 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2816 	goto errp;
2817     }
2818 
2819     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2820     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2821     obj_count++;
2822     obj_loads++;
2823     linkmap_add(obj);	/* for GDB & dlinfo() */
2824     max_stack_flags |= obj->stack_flags;
2825 
2826     dbg("  %p .. %p: %s", obj->mapbase,
2827          obj->mapbase + obj->mapsize - 1, obj->path);
2828     if (obj->textrel)
2829 	dbg("  WARNING: %s has impure text", obj->path);
2830     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2831 	obj->path);
2832 
2833     return (obj);
2834 
2835 errp:
2836     munmap(obj->mapbase, obj->mapsize);
2837     obj_free(obj);
2838     return (NULL);
2839 }
2840 
2841 static int
2842 load_kpreload(const void *addr)
2843 {
2844 	Obj_Entry *obj;
2845 	const Elf_Ehdr *ehdr;
2846 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2847 	static const char kname[] = "[vdso]";
2848 
2849 	ehdr = addr;
2850 	if (!check_elf_headers(ehdr, "kpreload"))
2851 		return (-1);
2852 	obj = obj_new();
2853 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2854 	obj->phdr = phdr;
2855 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2856 	phlimit = phdr + ehdr->e_phnum;
2857 	seg0 = segn = NULL;
2858 
2859 	for (; phdr < phlimit; phdr++) {
2860 		switch (phdr->p_type) {
2861 		case PT_DYNAMIC:
2862 			phdyn = phdr;
2863 			break;
2864 		case PT_GNU_STACK:
2865 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2866 			obj->stack_flags = phdr->p_flags;
2867 			break;
2868 		case PT_LOAD:
2869 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2870 				seg0 = phdr;
2871 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2872 			    phdr->p_vaddr + phdr->p_memsz)
2873 				segn = phdr;
2874 			break;
2875 		}
2876 	}
2877 
2878 	obj->mapbase = __DECONST(caddr_t, addr);
2879 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2880 	obj->vaddrbase = 0;
2881 	obj->relocbase = obj->mapbase;
2882 
2883 	object_add_name(obj, kname);
2884 	obj->path = xstrdup(kname);
2885 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2886 
2887 	if (!digest_dynamic(obj, 0)) {
2888 		obj_free(obj);
2889 		return (-1);
2890 	}
2891 
2892 	/*
2893 	 * We assume that kernel-preloaded object does not need
2894 	 * relocation.  It is currently written into read-only page,
2895 	 * handling relocations would mean we need to allocate at
2896 	 * least one additional page per AS.
2897 	 */
2898 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2899 	    obj->path, obj->mapbase, obj->phdr, seg0,
2900 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2901 
2902 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2903 	obj_count++;
2904 	obj_loads++;
2905 	linkmap_add(obj);	/* for GDB & dlinfo() */
2906 	max_stack_flags |= obj->stack_flags;
2907 
2908 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2909 	return (0);
2910 }
2911 
2912 Obj_Entry *
2913 obj_from_addr(const void *addr)
2914 {
2915     Obj_Entry *obj;
2916 
2917     TAILQ_FOREACH(obj, &obj_list, next) {
2918 	if (obj->marker)
2919 	    continue;
2920 	if (addr < (void *) obj->mapbase)
2921 	    continue;
2922 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2923 	    return obj;
2924     }
2925     return (NULL);
2926 }
2927 
2928 static void
2929 preinit_main(void)
2930 {
2931     Elf_Addr *preinit_addr;
2932     int index;
2933 
2934     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2935     if (preinit_addr == NULL)
2936 	return;
2937 
2938     for (index = 0; index < obj_main->preinit_array_num; index++) {
2939 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2940 	    dbg("calling preinit function for %s at %p", obj_main->path,
2941 	      (void *)preinit_addr[index]);
2942 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2943 	      0, 0, obj_main->path);
2944 	    call_init_pointer(obj_main, preinit_addr[index]);
2945 	}
2946     }
2947 }
2948 
2949 /*
2950  * Call the finalization functions for each of the objects in "list"
2951  * belonging to the DAG of "root" and referenced once. If NULL "root"
2952  * is specified, every finalization function will be called regardless
2953  * of the reference count and the list elements won't be freed. All of
2954  * the objects are expected to have non-NULL fini functions.
2955  */
2956 static void
2957 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2958 {
2959     Objlist_Entry *elm;
2960     struct dlerror_save *saved_msg;
2961     Elf_Addr *fini_addr;
2962     int index;
2963 
2964     assert(root == NULL || root->refcount == 1);
2965 
2966     if (root != NULL)
2967 	root->doomed = true;
2968 
2969     /*
2970      * Preserve the current error message since a fini function might
2971      * call into the dynamic linker and overwrite it.
2972      */
2973     saved_msg = errmsg_save();
2974     do {
2975 	STAILQ_FOREACH(elm, list, link) {
2976 	    if (root != NULL && (elm->obj->refcount != 1 ||
2977 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2978 		continue;
2979 	    /* Remove object from fini list to prevent recursive invocation. */
2980 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2981 	    /* Ensure that new references cannot be acquired. */
2982 	    elm->obj->doomed = true;
2983 
2984 	    hold_object(elm->obj);
2985 	    lock_release(rtld_bind_lock, lockstate);
2986 	    /*
2987 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2988 	     * When this happens, DT_FINI_ARRAY is processed first.
2989 	     */
2990 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2991 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2992 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2993 		  index--) {
2994 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2995 			dbg("calling fini function for %s at %p",
2996 			    elm->obj->path, (void *)fini_addr[index]);
2997 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2998 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2999 			call_initfini_pointer(elm->obj, fini_addr[index]);
3000 		    }
3001 		}
3002 	    }
3003 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3004 		dbg("calling fini function for %s at %p", elm->obj->path,
3005 		    (void *)elm->obj->fini);
3006 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3007 		    0, 0, elm->obj->path);
3008 		call_initfini_pointer(elm->obj, elm->obj->fini);
3009 	    }
3010 	    wlock_acquire(rtld_bind_lock, lockstate);
3011 	    unhold_object(elm->obj);
3012 	    /* No need to free anything if process is going down. */
3013 	    if (root != NULL)
3014 	    	free(elm);
3015 	    /*
3016 	     * We must restart the list traversal after every fini call
3017 	     * because a dlclose() call from the fini function or from
3018 	     * another thread might have modified the reference counts.
3019 	     */
3020 	    break;
3021 	}
3022     } while (elm != NULL);
3023     errmsg_restore(saved_msg);
3024 }
3025 
3026 /*
3027  * Call the initialization functions for each of the objects in
3028  * "list".  All of the objects are expected to have non-NULL init
3029  * functions.
3030  */
3031 static void
3032 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3033 {
3034     Objlist_Entry *elm;
3035     Obj_Entry *obj;
3036     struct dlerror_save *saved_msg;
3037     Elf_Addr *init_addr;
3038     void (*reg)(void (*)(void));
3039     int index;
3040 
3041     /*
3042      * Clean init_scanned flag so that objects can be rechecked and
3043      * possibly initialized earlier if any of vectors called below
3044      * cause the change by using dlopen.
3045      */
3046     TAILQ_FOREACH(obj, &obj_list, next) {
3047 	if (obj->marker)
3048 	    continue;
3049 	obj->init_scanned = false;
3050     }
3051 
3052     /*
3053      * Preserve the current error message since an init function might
3054      * call into the dynamic linker and overwrite it.
3055      */
3056     saved_msg = errmsg_save();
3057     STAILQ_FOREACH(elm, list, link) {
3058 	if (elm->obj->init_done) /* Initialized early. */
3059 	    continue;
3060 	/*
3061 	 * Race: other thread might try to use this object before current
3062 	 * one completes the initialization. Not much can be done here
3063 	 * without better locking.
3064 	 */
3065 	elm->obj->init_done = true;
3066 	hold_object(elm->obj);
3067 	reg = NULL;
3068 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3069 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3070 		    "__libc_atexit", lockstate);
3071 	}
3072 	lock_release(rtld_bind_lock, lockstate);
3073 	if (reg != NULL) {
3074 		reg(rtld_exit);
3075 		rtld_exit_ptr = rtld_nop_exit;
3076 	}
3077 
3078         /*
3079          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3080          * When this happens, DT_INIT is processed first.
3081          */
3082 	if (elm->obj->init != (Elf_Addr)NULL) {
3083 	    dbg("calling init function for %s at %p", elm->obj->path,
3084 	        (void *)elm->obj->init);
3085 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3086 	        0, 0, elm->obj->path);
3087 	    call_init_pointer(elm->obj, elm->obj->init);
3088 	}
3089 	init_addr = (Elf_Addr *)elm->obj->init_array;
3090 	if (init_addr != NULL) {
3091 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3092 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3093 		    dbg("calling init function for %s at %p", elm->obj->path,
3094 			(void *)init_addr[index]);
3095 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3096 			(void *)init_addr[index], 0, 0, elm->obj->path);
3097 		    call_init_pointer(elm->obj, init_addr[index]);
3098 		}
3099 	    }
3100 	}
3101 	wlock_acquire(rtld_bind_lock, lockstate);
3102 	unhold_object(elm->obj);
3103     }
3104     errmsg_restore(saved_msg);
3105 }
3106 
3107 static void
3108 objlist_clear(Objlist *list)
3109 {
3110     Objlist_Entry *elm;
3111 
3112     while (!STAILQ_EMPTY(list)) {
3113 	elm = STAILQ_FIRST(list);
3114 	STAILQ_REMOVE_HEAD(list, link);
3115 	free(elm);
3116     }
3117 }
3118 
3119 static Objlist_Entry *
3120 objlist_find(Objlist *list, const Obj_Entry *obj)
3121 {
3122     Objlist_Entry *elm;
3123 
3124     STAILQ_FOREACH(elm, list, link)
3125 	if (elm->obj == obj)
3126 	    return elm;
3127     return (NULL);
3128 }
3129 
3130 static void
3131 objlist_init(Objlist *list)
3132 {
3133     STAILQ_INIT(list);
3134 }
3135 
3136 static void
3137 objlist_push_head(Objlist *list, Obj_Entry *obj)
3138 {
3139     Objlist_Entry *elm;
3140 
3141     elm = NEW(Objlist_Entry);
3142     elm->obj = obj;
3143     STAILQ_INSERT_HEAD(list, elm, link);
3144 }
3145 
3146 static void
3147 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3148 {
3149     Objlist_Entry *elm;
3150 
3151     elm = NEW(Objlist_Entry);
3152     elm->obj = obj;
3153     STAILQ_INSERT_TAIL(list, elm, link);
3154 }
3155 
3156 static void
3157 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3158 {
3159 	Objlist_Entry *elm, *listelm;
3160 
3161 	STAILQ_FOREACH(listelm, list, link) {
3162 		if (listelm->obj == listobj)
3163 			break;
3164 	}
3165 	elm = NEW(Objlist_Entry);
3166 	elm->obj = obj;
3167 	if (listelm != NULL)
3168 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3169 	else
3170 		STAILQ_INSERT_TAIL(list, elm, link);
3171 }
3172 
3173 static void
3174 objlist_remove(Objlist *list, Obj_Entry *obj)
3175 {
3176     Objlist_Entry *elm;
3177 
3178     if ((elm = objlist_find(list, obj)) != NULL) {
3179 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3180 	free(elm);
3181     }
3182 }
3183 
3184 /*
3185  * Relocate dag rooted in the specified object.
3186  * Returns 0 on success, or -1 on failure.
3187  */
3188 
3189 static int
3190 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3191     int flags, RtldLockState *lockstate)
3192 {
3193 	Objlist_Entry *elm;
3194 	int error;
3195 
3196 	error = 0;
3197 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3198 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3199 		    lockstate);
3200 		if (error == -1)
3201 			break;
3202 	}
3203 	return (error);
3204 }
3205 
3206 /*
3207  * Prepare for, or clean after, relocating an object marked with
3208  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3209  * segments are remapped read-write.  After relocations are done, the
3210  * segment's permissions are returned back to the modes specified in
3211  * the phdrs.  If any relocation happened, or always for wired
3212  * program, COW is triggered.
3213  */
3214 static int
3215 reloc_textrel_prot(Obj_Entry *obj, bool before)
3216 {
3217 	const Elf_Phdr *ph;
3218 	void *base;
3219 	size_t l, sz;
3220 	int prot;
3221 
3222 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3223 	    l--, ph++) {
3224 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3225 			continue;
3226 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3227 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3228 		    rtld_trunc_page(ph->p_vaddr);
3229 		prot = before ? (PROT_READ | PROT_WRITE) :
3230 		    convert_prot(ph->p_flags);
3231 		if (mprotect(base, sz, prot) == -1) {
3232 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3233 			    obj->path, before ? "en" : "dis",
3234 			    rtld_strerror(errno));
3235 			return (-1);
3236 		}
3237 	}
3238 	return (0);
3239 }
3240 
3241 /* Process RELR relative relocations. */
3242 static void
3243 reloc_relr(Obj_Entry *obj)
3244 {
3245 	const Elf_Relr *relr, *relrlim;
3246 	Elf_Addr *where;
3247 
3248 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3249 	for (relr = obj->relr; relr < relrlim; relr++) {
3250 	    Elf_Relr entry = *relr;
3251 
3252 	    if ((entry & 1) == 0) {
3253 		where = (Elf_Addr *)(obj->relocbase + entry);
3254 		*where++ += (Elf_Addr)obj->relocbase;
3255 	    } else {
3256 		for (long i = 0; (entry >>= 1) != 0; i++)
3257 		    if ((entry & 1) != 0)
3258 			where[i] += (Elf_Addr)obj->relocbase;
3259 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3260 	    }
3261 	}
3262 }
3263 
3264 /*
3265  * Relocate single object.
3266  * Returns 0 on success, or -1 on failure.
3267  */
3268 static int
3269 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3270     int flags, RtldLockState *lockstate)
3271 {
3272 
3273 	if (obj->relocated)
3274 		return (0);
3275 	obj->relocated = true;
3276 	if (obj != rtldobj)
3277 		dbg("relocating \"%s\"", obj->path);
3278 
3279 	if (obj->symtab == NULL || obj->strtab == NULL ||
3280 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3281 		dbg("object %s has no run-time symbol table", obj->path);
3282 
3283 	/* There are relocations to the write-protected text segment. */
3284 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3285 		return (-1);
3286 
3287 	/* Process the non-PLT non-IFUNC relocations. */
3288 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3289 		return (-1);
3290 	reloc_relr(obj);
3291 
3292 	/* Re-protected the text segment. */
3293 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3294 		return (-1);
3295 
3296 	/* Set the special PLT or GOT entries. */
3297 	init_pltgot(obj);
3298 
3299 	/* Process the PLT relocations. */
3300 	if (reloc_plt(obj, flags, lockstate) == -1)
3301 		return (-1);
3302 	/* Relocate the jump slots if we are doing immediate binding. */
3303 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3304 	    lockstate) == -1)
3305 		return (-1);
3306 
3307 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3308 		return (-1);
3309 
3310 	/*
3311 	 * Set up the magic number and version in the Obj_Entry.  These
3312 	 * were checked in the crt1.o from the original ElfKit, so we
3313 	 * set them for backward compatibility.
3314 	 */
3315 	obj->magic = RTLD_MAGIC;
3316 	obj->version = RTLD_VERSION;
3317 
3318 	return (0);
3319 }
3320 
3321 /*
3322  * Relocate newly-loaded shared objects.  The argument is a pointer to
3323  * the Obj_Entry for the first such object.  All objects from the first
3324  * to the end of the list of objects are relocated.  Returns 0 on success,
3325  * or -1 on failure.
3326  */
3327 static int
3328 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3329     int flags, RtldLockState *lockstate)
3330 {
3331 	Obj_Entry *obj;
3332 	int error;
3333 
3334 	for (error = 0, obj = first;  obj != NULL;
3335 	    obj = TAILQ_NEXT(obj, next)) {
3336 		if (obj->marker)
3337 			continue;
3338 		error = relocate_object(obj, bind_now, rtldobj, flags,
3339 		    lockstate);
3340 		if (error == -1)
3341 			break;
3342 	}
3343 	return (error);
3344 }
3345 
3346 /*
3347  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3348  * referencing STT_GNU_IFUNC symbols is postponed till the other
3349  * relocations are done.  The indirect functions specified as
3350  * ifunc are allowed to call other symbols, so we need to have
3351  * objects relocated before asking for resolution from indirects.
3352  *
3353  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3354  * instead of the usual lazy handling of PLT slots.  It is
3355  * consistent with how GNU does it.
3356  */
3357 static int
3358 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3359     RtldLockState *lockstate)
3360 {
3361 
3362 	if (obj->ifuncs_resolved)
3363 		return (0);
3364 	obj->ifuncs_resolved = true;
3365 	if (!obj->irelative && !obj->irelative_nonplt &&
3366 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3367 	    !obj->non_plt_gnu_ifunc)
3368 		return (0);
3369 	if (obj_disable_relro(obj) == -1 ||
3370 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3371 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3372 	    lockstate) == -1) ||
3373 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3374 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3375 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3376 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3377 	    obj_enforce_relro(obj) == -1)
3378 		return (-1);
3379 	return (0);
3380 }
3381 
3382 static int
3383 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3384     RtldLockState *lockstate)
3385 {
3386 	Objlist_Entry *elm;
3387 	Obj_Entry *obj;
3388 
3389 	STAILQ_FOREACH(elm, list, link) {
3390 		obj = elm->obj;
3391 		if (obj->marker)
3392 			continue;
3393 		if (resolve_object_ifunc(obj, bind_now, flags,
3394 		    lockstate) == -1)
3395 			return (-1);
3396 	}
3397 	return (0);
3398 }
3399 
3400 /*
3401  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3402  * before the process exits.
3403  */
3404 static void
3405 rtld_exit(void)
3406 {
3407     RtldLockState lockstate;
3408 
3409     wlock_acquire(rtld_bind_lock, &lockstate);
3410     dbg("rtld_exit()");
3411     objlist_call_fini(&list_fini, NULL, &lockstate);
3412     /* No need to remove the items from the list, since we are exiting. */
3413     if (!libmap_disable)
3414         lm_fini();
3415     lock_release(rtld_bind_lock, &lockstate);
3416 }
3417 
3418 static void
3419 rtld_nop_exit(void)
3420 {
3421 }
3422 
3423 /*
3424  * Iterate over a search path, translate each element, and invoke the
3425  * callback on the result.
3426  */
3427 static void *
3428 path_enumerate(const char *path, path_enum_proc callback,
3429     const char *refobj_path, void *arg)
3430 {
3431     const char *trans;
3432     if (path == NULL)
3433 	return (NULL);
3434 
3435     path += strspn(path, ":;");
3436     while (*path != '\0') {
3437 	size_t len;
3438 	char  *res;
3439 
3440 	len = strcspn(path, ":;");
3441 	trans = lm_findn(refobj_path, path, len);
3442 	if (trans)
3443 	    res = callback(trans, strlen(trans), arg);
3444 	else
3445 	    res = callback(path, len, arg);
3446 
3447 	if (res != NULL)
3448 	    return (res);
3449 
3450 	path += len;
3451 	path += strspn(path, ":;");
3452     }
3453 
3454     return (NULL);
3455 }
3456 
3457 struct try_library_args {
3458     const char	*name;
3459     size_t	 namelen;
3460     char	*buffer;
3461     size_t	 buflen;
3462     int		 fd;
3463 };
3464 
3465 static void *
3466 try_library_path(const char *dir, size_t dirlen, void *param)
3467 {
3468     struct try_library_args *arg;
3469     int fd;
3470 
3471     arg = param;
3472     if (*dir == '/' || trust) {
3473 	char *pathname;
3474 
3475 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3476 		return (NULL);
3477 
3478 	pathname = arg->buffer;
3479 	strncpy(pathname, dir, dirlen);
3480 	pathname[dirlen] = '/';
3481 	strcpy(pathname + dirlen + 1, arg->name);
3482 
3483 	dbg("  Trying \"%s\"", pathname);
3484 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3485 	if (fd >= 0) {
3486 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3487 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3488 	    strcpy(pathname, arg->buffer);
3489 	    arg->fd = fd;
3490 	    return (pathname);
3491 	} else {
3492 	    dbg("  Failed to open \"%s\": %s",
3493 		pathname, rtld_strerror(errno));
3494 	}
3495     }
3496     return (NULL);
3497 }
3498 
3499 static char *
3500 search_library_path(const char *name, const char *path,
3501     const char *refobj_path, int *fdp)
3502 {
3503     char *p;
3504     struct try_library_args arg;
3505 
3506     if (path == NULL)
3507 	return (NULL);
3508 
3509     arg.name = name;
3510     arg.namelen = strlen(name);
3511     arg.buffer = xmalloc(PATH_MAX);
3512     arg.buflen = PATH_MAX;
3513     arg.fd = -1;
3514 
3515     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3516     *fdp = arg.fd;
3517 
3518     free(arg.buffer);
3519 
3520     return (p);
3521 }
3522 
3523 
3524 /*
3525  * Finds the library with the given name using the directory descriptors
3526  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3527  *
3528  * Returns a freshly-opened close-on-exec file descriptor for the library,
3529  * or -1 if the library cannot be found.
3530  */
3531 static char *
3532 search_library_pathfds(const char *name, const char *path, int *fdp)
3533 {
3534 	char *envcopy, *fdstr, *found, *last_token;
3535 	size_t len;
3536 	int dirfd, fd;
3537 
3538 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3539 
3540 	/* Don't load from user-specified libdirs into setuid binaries. */
3541 	if (!trust)
3542 		return (NULL);
3543 
3544 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3545 	if (path == NULL)
3546 		return (NULL);
3547 
3548 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3549 	if (name[0] == '/') {
3550 		dbg("Absolute path (%s) passed to %s", name, __func__);
3551 		return (NULL);
3552 	}
3553 
3554 	/*
3555 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3556 	 * copy of the path, as strtok_r rewrites separator tokens
3557 	 * with '\0'.
3558 	 */
3559 	found = NULL;
3560 	envcopy = xstrdup(path);
3561 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3562 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3563 		dirfd = parse_integer(fdstr);
3564 		if (dirfd < 0) {
3565 			_rtld_error("failed to parse directory FD: '%s'",
3566 				fdstr);
3567 			break;
3568 		}
3569 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3570 		if (fd >= 0) {
3571 			*fdp = fd;
3572 			len = strlen(fdstr) + strlen(name) + 3;
3573 			found = xmalloc(len);
3574 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3575 				_rtld_error("error generating '%d/%s'",
3576 				    dirfd, name);
3577 				rtld_die();
3578 			}
3579 			dbg("open('%s') => %d", found, fd);
3580 			break;
3581 		}
3582 	}
3583 	free(envcopy);
3584 
3585 	return (found);
3586 }
3587 
3588 
3589 int
3590 dlclose(void *handle)
3591 {
3592 	RtldLockState lockstate;
3593 	int error;
3594 
3595 	wlock_acquire(rtld_bind_lock, &lockstate);
3596 	error = dlclose_locked(handle, &lockstate);
3597 	lock_release(rtld_bind_lock, &lockstate);
3598 	return (error);
3599 }
3600 
3601 static int
3602 dlclose_locked(void *handle, RtldLockState *lockstate)
3603 {
3604     Obj_Entry *root;
3605 
3606     root = dlcheck(handle);
3607     if (root == NULL)
3608 	return (-1);
3609     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3610 	root->path);
3611 
3612     /* Unreference the object and its dependencies. */
3613     root->dl_refcount--;
3614 
3615     if (root->refcount == 1) {
3616 	/*
3617 	 * The object will be no longer referenced, so we must unload it.
3618 	 * First, call the fini functions.
3619 	 */
3620 	objlist_call_fini(&list_fini, root, lockstate);
3621 
3622 	unref_dag(root);
3623 
3624 	/* Finish cleaning up the newly-unreferenced objects. */
3625 	GDB_STATE(RT_DELETE,&root->linkmap);
3626 	unload_object(root, lockstate);
3627 	GDB_STATE(RT_CONSISTENT,NULL);
3628     } else
3629 	unref_dag(root);
3630 
3631     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3632     return (0);
3633 }
3634 
3635 char *
3636 dlerror(void)
3637 {
3638 	if (*(lockinfo.dlerror_seen()) != 0)
3639 		return (NULL);
3640 	*lockinfo.dlerror_seen() = 1;
3641 	return (lockinfo.dlerror_loc());
3642 }
3643 
3644 /*
3645  * This function is deprecated and has no effect.
3646  */
3647 void
3648 dllockinit(void *context,
3649     void *(*_lock_create)(void *context) __unused,
3650     void (*_rlock_acquire)(void *lock) __unused,
3651     void (*_wlock_acquire)(void *lock)  __unused,
3652     void (*_lock_release)(void *lock) __unused,
3653     void (*_lock_destroy)(void *lock) __unused,
3654     void (*context_destroy)(void *context))
3655 {
3656     static void *cur_context;
3657     static void (*cur_context_destroy)(void *);
3658 
3659     /* Just destroy the context from the previous call, if necessary. */
3660     if (cur_context_destroy != NULL)
3661 	cur_context_destroy(cur_context);
3662     cur_context = context;
3663     cur_context_destroy = context_destroy;
3664 }
3665 
3666 void *
3667 dlopen(const char *name, int mode)
3668 {
3669 
3670 	return (rtld_dlopen(name, -1, mode));
3671 }
3672 
3673 void *
3674 fdlopen(int fd, int mode)
3675 {
3676 
3677 	return (rtld_dlopen(NULL, fd, mode));
3678 }
3679 
3680 static void *
3681 rtld_dlopen(const char *name, int fd, int mode)
3682 {
3683     RtldLockState lockstate;
3684     int lo_flags;
3685 
3686     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3687     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3688     if (ld_tracing != NULL) {
3689 	rlock_acquire(rtld_bind_lock, &lockstate);
3690 	if (sigsetjmp(lockstate.env, 0) != 0)
3691 	    lock_upgrade(rtld_bind_lock, &lockstate);
3692 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3693 	lock_release(rtld_bind_lock, &lockstate);
3694     }
3695     lo_flags = RTLD_LO_DLOPEN;
3696     if (mode & RTLD_NODELETE)
3697 	    lo_flags |= RTLD_LO_NODELETE;
3698     if (mode & RTLD_NOLOAD)
3699 	    lo_flags |= RTLD_LO_NOLOAD;
3700     if (mode & RTLD_DEEPBIND)
3701 	    lo_flags |= RTLD_LO_DEEPBIND;
3702     if (ld_tracing != NULL)
3703 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3704 
3705     return (dlopen_object(name, fd, obj_main, lo_flags,
3706       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3707 }
3708 
3709 static void
3710 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3711 {
3712 
3713 	obj->dl_refcount--;
3714 	unref_dag(obj);
3715 	if (obj->refcount == 0)
3716 		unload_object(obj, lockstate);
3717 }
3718 
3719 static Obj_Entry *
3720 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3721     int mode, RtldLockState *lockstate)
3722 {
3723     Obj_Entry *old_obj_tail;
3724     Obj_Entry *obj;
3725     Objlist initlist;
3726     RtldLockState mlockstate;
3727     int result;
3728 
3729     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3730       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3731       refobj->path, lo_flags, mode);
3732     objlist_init(&initlist);
3733 
3734     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3735 	wlock_acquire(rtld_bind_lock, &mlockstate);
3736 	lockstate = &mlockstate;
3737     }
3738     GDB_STATE(RT_ADD,NULL);
3739 
3740     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3741     obj = NULL;
3742     if (name == NULL && fd == -1) {
3743 	obj = obj_main;
3744 	obj->refcount++;
3745     } else {
3746 	obj = load_object(name, fd, refobj, lo_flags);
3747     }
3748 
3749     if (obj) {
3750 	obj->dl_refcount++;
3751 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3752 	    objlist_push_tail(&list_global, obj);
3753 	if (globallist_next(old_obj_tail) != NULL) {
3754 	    /* We loaded something new. */
3755 	    assert(globallist_next(old_obj_tail) == obj);
3756 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3757 		obj->symbolic = true;
3758 	    result = 0;
3759 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3760 	      obj->static_tls && !allocate_tls_offset(obj)) {
3761 		_rtld_error("%s: No space available "
3762 		  "for static Thread Local Storage", obj->path);
3763 		result = -1;
3764 	    }
3765 	    if (result != -1)
3766 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3767 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3768 	    init_dag(obj);
3769 	    ref_dag(obj);
3770 	    if (result != -1)
3771 		result = rtld_verify_versions(&obj->dagmembers);
3772 	    if (result != -1 && ld_tracing)
3773 		goto trace;
3774 	    if (result == -1 || relocate_object_dag(obj,
3775 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3776 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3777 	      lockstate) == -1) {
3778 		dlopen_cleanup(obj, lockstate);
3779 		obj = NULL;
3780 	    } else if (lo_flags & RTLD_LO_EARLY) {
3781 		/*
3782 		 * Do not call the init functions for early loaded
3783 		 * filtees.  The image is still not initialized enough
3784 		 * for them to work.
3785 		 *
3786 		 * Our object is found by the global object list and
3787 		 * will be ordered among all init calls done right
3788 		 * before transferring control to main.
3789 		 */
3790 	    } else {
3791 		/* Make list of init functions to call. */
3792 		initlist_add_objects(obj, obj, &initlist);
3793 	    }
3794 	    /*
3795 	     * Process all no_delete or global objects here, given
3796 	     * them own DAGs to prevent their dependencies from being
3797 	     * unloaded.  This has to be done after we have loaded all
3798 	     * of the dependencies, so that we do not miss any.
3799 	     */
3800 	    if (obj != NULL)
3801 		process_z(obj);
3802 	} else {
3803 	    /*
3804 	     * Bump the reference counts for objects on this DAG.  If
3805 	     * this is the first dlopen() call for the object that was
3806 	     * already loaded as a dependency, initialize the dag
3807 	     * starting at it.
3808 	     */
3809 	    init_dag(obj);
3810 	    ref_dag(obj);
3811 
3812 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3813 		goto trace;
3814 	}
3815 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3816 	  obj->z_nodelete) && !obj->ref_nodel) {
3817 	    dbg("obj %s nodelete", obj->path);
3818 	    ref_dag(obj);
3819 	    obj->z_nodelete = obj->ref_nodel = true;
3820 	}
3821     }
3822 
3823     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3824 	name);
3825     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3826 
3827     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3828 	map_stacks_exec(lockstate);
3829 	if (obj != NULL)
3830 	    distribute_static_tls(&initlist, lockstate);
3831     }
3832 
3833     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3834       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3835       lockstate) == -1) {
3836 	objlist_clear(&initlist);
3837 	dlopen_cleanup(obj, lockstate);
3838 	if (lockstate == &mlockstate)
3839 	    lock_release(rtld_bind_lock, lockstate);
3840 	return (NULL);
3841     }
3842 
3843     if (!(lo_flags & RTLD_LO_EARLY)) {
3844 	/* Call the init functions. */
3845 	objlist_call_init(&initlist, lockstate);
3846     }
3847     objlist_clear(&initlist);
3848     if (lockstate == &mlockstate)
3849 	lock_release(rtld_bind_lock, lockstate);
3850     return (obj);
3851 trace:
3852     trace_loaded_objects(obj, false);
3853     if (lockstate == &mlockstate)
3854 	lock_release(rtld_bind_lock, lockstate);
3855     exit(0);
3856 }
3857 
3858 static void *
3859 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3860     int flags)
3861 {
3862     DoneList donelist;
3863     const Obj_Entry *obj, *defobj;
3864     const Elf_Sym *def;
3865     SymLook req;
3866     RtldLockState lockstate;
3867     tls_index ti;
3868     void *sym;
3869     int res;
3870 
3871     def = NULL;
3872     defobj = NULL;
3873     symlook_init(&req, name);
3874     req.ventry = ve;
3875     req.flags = flags | SYMLOOK_IN_PLT;
3876     req.lockstate = &lockstate;
3877 
3878     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3879     rlock_acquire(rtld_bind_lock, &lockstate);
3880     if (sigsetjmp(lockstate.env, 0) != 0)
3881 	    lock_upgrade(rtld_bind_lock, &lockstate);
3882     if (handle == NULL || handle == RTLD_NEXT ||
3883 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3884 
3885 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3886 	    _rtld_error("Cannot determine caller's shared object");
3887 	    lock_release(rtld_bind_lock, &lockstate);
3888 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3889 	    return (NULL);
3890 	}
3891 	if (handle == NULL) {	/* Just the caller's shared object. */
3892 	    res = symlook_obj(&req, obj);
3893 	    if (res == 0) {
3894 		def = req.sym_out;
3895 		defobj = req.defobj_out;
3896 	    }
3897 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3898 		   handle == RTLD_SELF) { /* ... caller included */
3899 	    if (handle == RTLD_NEXT)
3900 		obj = globallist_next(obj);
3901 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3902 		if (obj->marker)
3903 		    continue;
3904 		res = symlook_obj(&req, obj);
3905 		if (res == 0) {
3906 		    if (def == NULL || (ld_dynamic_weak &&
3907                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3908 			def = req.sym_out;
3909 			defobj = req.defobj_out;
3910 			if (!ld_dynamic_weak ||
3911 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3912 			    break;
3913 		    }
3914 		}
3915 	    }
3916 	    /*
3917 	     * Search the dynamic linker itself, and possibly resolve the
3918 	     * symbol from there.  This is how the application links to
3919 	     * dynamic linker services such as dlopen.
3920 	     * Note that we ignore ld_dynamic_weak == false case,
3921 	     * always overriding weak symbols by rtld definitions.
3922 	     */
3923 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3924 		res = symlook_obj(&req, &obj_rtld);
3925 		if (res == 0) {
3926 		    def = req.sym_out;
3927 		    defobj = req.defobj_out;
3928 		}
3929 	    }
3930 	} else {
3931 	    assert(handle == RTLD_DEFAULT);
3932 	    res = symlook_default(&req, obj);
3933 	    if (res == 0) {
3934 		defobj = req.defobj_out;
3935 		def = req.sym_out;
3936 	    }
3937 	}
3938     } else {
3939 	if ((obj = dlcheck(handle)) == NULL) {
3940 	    lock_release(rtld_bind_lock, &lockstate);
3941 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3942 	    return (NULL);
3943 	}
3944 
3945 	donelist_init(&donelist);
3946 	if (obj->mainprog) {
3947             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3948 	    res = symlook_global(&req, &donelist);
3949 	    if (res == 0) {
3950 		def = req.sym_out;
3951 		defobj = req.defobj_out;
3952 	    }
3953 	    /*
3954 	     * Search the dynamic linker itself, and possibly resolve the
3955 	     * symbol from there.  This is how the application links to
3956 	     * dynamic linker services such as dlopen.
3957 	     */
3958 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3959 		res = symlook_obj(&req, &obj_rtld);
3960 		if (res == 0) {
3961 		    def = req.sym_out;
3962 		    defobj = req.defobj_out;
3963 		}
3964 	    }
3965 	}
3966 	else {
3967 	    /* Search the whole DAG rooted at the given object. */
3968 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3969 	    if (res == 0) {
3970 		def = req.sym_out;
3971 		defobj = req.defobj_out;
3972 	    }
3973 	}
3974     }
3975 
3976     if (def != NULL) {
3977 	lock_release(rtld_bind_lock, &lockstate);
3978 
3979 	/*
3980 	 * The value required by the caller is derived from the value
3981 	 * of the symbol. this is simply the relocated value of the
3982 	 * symbol.
3983 	 */
3984 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3985 	    sym = make_function_pointer(def, defobj);
3986 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3987 	    sym = rtld_resolve_ifunc(defobj, def);
3988 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3989 	    ti.ti_module = defobj->tlsindex;
3990 	    ti.ti_offset = def->st_value;
3991 	    sym = __tls_get_addr(&ti);
3992 	} else
3993 	    sym = defobj->relocbase + def->st_value;
3994 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3995 	return (sym);
3996     }
3997 
3998     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3999       ve != NULL ? ve->name : "");
4000     lock_release(rtld_bind_lock, &lockstate);
4001     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4002     return (NULL);
4003 }
4004 
4005 void *
4006 dlsym(void *handle, const char *name)
4007 {
4008 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4009 	    SYMLOOK_DLSYM));
4010 }
4011 
4012 dlfunc_t
4013 dlfunc(void *handle, const char *name)
4014 {
4015 	union {
4016 		void *d;
4017 		dlfunc_t f;
4018 	} rv;
4019 
4020 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4021 	    SYMLOOK_DLSYM);
4022 	return (rv.f);
4023 }
4024 
4025 void *
4026 dlvsym(void *handle, const char *name, const char *version)
4027 {
4028 	Ver_Entry ventry;
4029 
4030 	ventry.name = version;
4031 	ventry.file = NULL;
4032 	ventry.hash = elf_hash(version);
4033 	ventry.flags= 0;
4034 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4035 	    SYMLOOK_DLSYM));
4036 }
4037 
4038 int
4039 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4040 {
4041     const Obj_Entry *obj;
4042     RtldLockState lockstate;
4043 
4044     rlock_acquire(rtld_bind_lock, &lockstate);
4045     obj = obj_from_addr(addr);
4046     if (obj == NULL) {
4047         _rtld_error("No shared object contains address");
4048 	lock_release(rtld_bind_lock, &lockstate);
4049         return (0);
4050     }
4051     rtld_fill_dl_phdr_info(obj, phdr_info);
4052     lock_release(rtld_bind_lock, &lockstate);
4053     return (1);
4054 }
4055 
4056 int
4057 dladdr(const void *addr, Dl_info *info)
4058 {
4059     const Obj_Entry *obj;
4060     const Elf_Sym *def;
4061     void *symbol_addr;
4062     unsigned long symoffset;
4063     RtldLockState lockstate;
4064 
4065     rlock_acquire(rtld_bind_lock, &lockstate);
4066     obj = obj_from_addr(addr);
4067     if (obj == NULL) {
4068         _rtld_error("No shared object contains address");
4069 	lock_release(rtld_bind_lock, &lockstate);
4070         return (0);
4071     }
4072     info->dli_fname = obj->path;
4073     info->dli_fbase = obj->mapbase;
4074     info->dli_saddr = (void *)0;
4075     info->dli_sname = NULL;
4076 
4077     /*
4078      * Walk the symbol list looking for the symbol whose address is
4079      * closest to the address sent in.
4080      */
4081     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4082         def = obj->symtab + symoffset;
4083 
4084         /*
4085          * For skip the symbol if st_shndx is either SHN_UNDEF or
4086          * SHN_COMMON.
4087          */
4088         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4089             continue;
4090 
4091         /*
4092          * If the symbol is greater than the specified address, or if it
4093          * is further away from addr than the current nearest symbol,
4094          * then reject it.
4095          */
4096         symbol_addr = obj->relocbase + def->st_value;
4097         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4098             continue;
4099 
4100         /* Update our idea of the nearest symbol. */
4101         info->dli_sname = obj->strtab + def->st_name;
4102         info->dli_saddr = symbol_addr;
4103 
4104         /* Exact match? */
4105         if (info->dli_saddr == addr)
4106             break;
4107     }
4108     lock_release(rtld_bind_lock, &lockstate);
4109     return (1);
4110 }
4111 
4112 int
4113 dlinfo(void *handle, int request, void *p)
4114 {
4115     const Obj_Entry *obj;
4116     RtldLockState lockstate;
4117     int error;
4118 
4119     rlock_acquire(rtld_bind_lock, &lockstate);
4120 
4121     if (handle == NULL || handle == RTLD_SELF) {
4122 	void *retaddr;
4123 
4124 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4125 	if ((obj = obj_from_addr(retaddr)) == NULL)
4126 	    _rtld_error("Cannot determine caller's shared object");
4127     } else
4128 	obj = dlcheck(handle);
4129 
4130     if (obj == NULL) {
4131 	lock_release(rtld_bind_lock, &lockstate);
4132 	return (-1);
4133     }
4134 
4135     error = 0;
4136     switch (request) {
4137     case RTLD_DI_LINKMAP:
4138 	*((struct link_map const **)p) = &obj->linkmap;
4139 	break;
4140     case RTLD_DI_ORIGIN:
4141 	error = rtld_dirname(obj->path, p);
4142 	break;
4143 
4144     case RTLD_DI_SERINFOSIZE:
4145     case RTLD_DI_SERINFO:
4146 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4147 	break;
4148 
4149     default:
4150 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4151 	error = -1;
4152     }
4153 
4154     lock_release(rtld_bind_lock, &lockstate);
4155 
4156     return (error);
4157 }
4158 
4159 static void
4160 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4161 {
4162 	uintptr_t **dtvp;
4163 
4164 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4165 	phdr_info->dlpi_name = obj->path;
4166 	phdr_info->dlpi_phdr = obj->phdr;
4167 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4168 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4169 	dtvp = &_tcb_get()->tcb_dtv;
4170 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4171 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4172 	phdr_info->dlpi_adds = obj_loads;
4173 	phdr_info->dlpi_subs = obj_loads - obj_count;
4174 }
4175 
4176 int
4177 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4178 {
4179 	struct dl_phdr_info phdr_info;
4180 	Obj_Entry *obj, marker;
4181 	RtldLockState bind_lockstate, phdr_lockstate;
4182 	int error;
4183 
4184 	init_marker(&marker);
4185 	error = 0;
4186 
4187 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4188 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4189 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4190 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4191 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4192 		hold_object(obj);
4193 		lock_release(rtld_bind_lock, &bind_lockstate);
4194 
4195 		error = callback(&phdr_info, sizeof phdr_info, param);
4196 
4197 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4198 		unhold_object(obj);
4199 		obj = globallist_next(&marker);
4200 		TAILQ_REMOVE(&obj_list, &marker, next);
4201 		if (error != 0) {
4202 			lock_release(rtld_bind_lock, &bind_lockstate);
4203 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4204 			return (error);
4205 		}
4206 	}
4207 
4208 	if (error == 0) {
4209 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4210 		lock_release(rtld_bind_lock, &bind_lockstate);
4211 		error = callback(&phdr_info, sizeof(phdr_info), param);
4212 	}
4213 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4214 	return (error);
4215 }
4216 
4217 static void *
4218 fill_search_info(const char *dir, size_t dirlen, void *param)
4219 {
4220     struct fill_search_info_args *arg;
4221 
4222     arg = param;
4223 
4224     if (arg->request == RTLD_DI_SERINFOSIZE) {
4225 	arg->serinfo->dls_cnt ++;
4226 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4227     } else {
4228 	struct dl_serpath *s_entry;
4229 
4230 	s_entry = arg->serpath;
4231 	s_entry->dls_name  = arg->strspace;
4232 	s_entry->dls_flags = arg->flags;
4233 
4234 	strncpy(arg->strspace, dir, dirlen);
4235 	arg->strspace[dirlen] = '\0';
4236 
4237 	arg->strspace += dirlen + 1;
4238 	arg->serpath++;
4239     }
4240 
4241     return (NULL);
4242 }
4243 
4244 static int
4245 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4246 {
4247     struct dl_serinfo _info;
4248     struct fill_search_info_args args;
4249 
4250     args.request = RTLD_DI_SERINFOSIZE;
4251     args.serinfo = &_info;
4252 
4253     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4254     _info.dls_cnt  = 0;
4255 
4256     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4257     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4258     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4259     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4260     if (!obj->z_nodeflib)
4261       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4262 
4263 
4264     if (request == RTLD_DI_SERINFOSIZE) {
4265 	info->dls_size = _info.dls_size;
4266 	info->dls_cnt = _info.dls_cnt;
4267 	return (0);
4268     }
4269 
4270     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4271 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4272 	return (-1);
4273     }
4274 
4275     args.request  = RTLD_DI_SERINFO;
4276     args.serinfo  = info;
4277     args.serpath  = &info->dls_serpath[0];
4278     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4279 
4280     args.flags = LA_SER_RUNPATH;
4281     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4282 	return (-1);
4283 
4284     args.flags = LA_SER_LIBPATH;
4285     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4286 	return (-1);
4287 
4288     args.flags = LA_SER_RUNPATH;
4289     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4290 	return (-1);
4291 
4292     args.flags = LA_SER_CONFIG;
4293     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4294       != NULL)
4295 	return (-1);
4296 
4297     args.flags = LA_SER_DEFAULT;
4298     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4299       fill_search_info, NULL, &args) != NULL)
4300 	return (-1);
4301     return (0);
4302 }
4303 
4304 static int
4305 rtld_dirname(const char *path, char *bname)
4306 {
4307     const char *endp;
4308 
4309     /* Empty or NULL string gets treated as "." */
4310     if (path == NULL || *path == '\0') {
4311 	bname[0] = '.';
4312 	bname[1] = '\0';
4313 	return (0);
4314     }
4315 
4316     /* Strip trailing slashes */
4317     endp = path + strlen(path) - 1;
4318     while (endp > path && *endp == '/')
4319 	endp--;
4320 
4321     /* Find the start of the dir */
4322     while (endp > path && *endp != '/')
4323 	endp--;
4324 
4325     /* Either the dir is "/" or there are no slashes */
4326     if (endp == path) {
4327 	bname[0] = *endp == '/' ? '/' : '.';
4328 	bname[1] = '\0';
4329 	return (0);
4330     } else {
4331 	do {
4332 	    endp--;
4333 	} while (endp > path && *endp == '/');
4334     }
4335 
4336     if (endp - path + 2 > PATH_MAX)
4337     {
4338 	_rtld_error("Filename is too long: %s", path);
4339 	return(-1);
4340     }
4341 
4342     strncpy(bname, path, endp - path + 1);
4343     bname[endp - path + 1] = '\0';
4344     return (0);
4345 }
4346 
4347 static int
4348 rtld_dirname_abs(const char *path, char *base)
4349 {
4350 	char *last;
4351 
4352 	if (realpath(path, base) == NULL) {
4353 		_rtld_error("realpath \"%s\" failed (%s)", path,
4354 		    rtld_strerror(errno));
4355 		return (-1);
4356 	}
4357 	dbg("%s -> %s", path, base);
4358 	last = strrchr(base, '/');
4359 	if (last == NULL) {
4360 		_rtld_error("non-abs result from realpath \"%s\"", path);
4361 		return (-1);
4362 	}
4363 	if (last != base)
4364 		*last = '\0';
4365 	return (0);
4366 }
4367 
4368 static void
4369 linkmap_add(Obj_Entry *obj)
4370 {
4371 	struct link_map *l, *prev;
4372 
4373 	l = &obj->linkmap;
4374 	l->l_name = obj->path;
4375 	l->l_base = obj->mapbase;
4376 	l->l_ld = obj->dynamic;
4377 	l->l_addr = obj->relocbase;
4378 
4379 	if (r_debug.r_map == NULL) {
4380 		r_debug.r_map = l;
4381 		return;
4382 	}
4383 
4384 	/*
4385 	 * Scan to the end of the list, but not past the entry for the
4386 	 * dynamic linker, which we want to keep at the very end.
4387 	 */
4388 	for (prev = r_debug.r_map;
4389 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4390 	     prev = prev->l_next)
4391 		;
4392 
4393 	/* Link in the new entry. */
4394 	l->l_prev = prev;
4395 	l->l_next = prev->l_next;
4396 	if (l->l_next != NULL)
4397 		l->l_next->l_prev = l;
4398 	prev->l_next = l;
4399 }
4400 
4401 static void
4402 linkmap_delete(Obj_Entry *obj)
4403 {
4404 	struct link_map *l;
4405 
4406 	l = &obj->linkmap;
4407 	if (l->l_prev == NULL) {
4408 		if ((r_debug.r_map = l->l_next) != NULL)
4409 			l->l_next->l_prev = NULL;
4410 		return;
4411 	}
4412 
4413 	if ((l->l_prev->l_next = l->l_next) != NULL)
4414 		l->l_next->l_prev = l->l_prev;
4415 }
4416 
4417 /*
4418  * Function for the debugger to set a breakpoint on to gain control.
4419  *
4420  * The two parameters allow the debugger to easily find and determine
4421  * what the runtime loader is doing and to whom it is doing it.
4422  *
4423  * When the loadhook trap is hit (r_debug_state, set at program
4424  * initialization), the arguments can be found on the stack:
4425  *
4426  *  +8   struct link_map *m
4427  *  +4   struct r_debug  *rd
4428  *  +0   RetAddr
4429  */
4430 void
4431 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4432 {
4433     /*
4434      * The following is a hack to force the compiler to emit calls to
4435      * this function, even when optimizing.  If the function is empty,
4436      * the compiler is not obliged to emit any code for calls to it,
4437      * even when marked __noinline.  However, gdb depends on those
4438      * calls being made.
4439      */
4440     __compiler_membar();
4441 }
4442 
4443 /*
4444  * A function called after init routines have completed. This can be used to
4445  * break before a program's entry routine is called, and can be used when
4446  * main is not available in the symbol table.
4447  */
4448 void
4449 _r_debug_postinit(struct link_map *m __unused)
4450 {
4451 
4452 	/* See r_debug_state(). */
4453 	__compiler_membar();
4454 }
4455 
4456 static void
4457 release_object(Obj_Entry *obj)
4458 {
4459 
4460 	if (obj->holdcount > 0) {
4461 		obj->unholdfree = true;
4462 		return;
4463 	}
4464 	munmap(obj->mapbase, obj->mapsize);
4465 	linkmap_delete(obj);
4466 	obj_free(obj);
4467 }
4468 
4469 /*
4470  * Get address of the pointer variable in the main program.
4471  * Prefer non-weak symbol over the weak one.
4472  */
4473 static const void **
4474 get_program_var_addr(const char *name, RtldLockState *lockstate)
4475 {
4476     SymLook req;
4477     DoneList donelist;
4478 
4479     symlook_init(&req, name);
4480     req.lockstate = lockstate;
4481     donelist_init(&donelist);
4482     if (symlook_global(&req, &donelist) != 0)
4483 	return (NULL);
4484     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4485 	return ((const void **)make_function_pointer(req.sym_out,
4486 	  req.defobj_out));
4487     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4488 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4489     else
4490 	return ((const void **)(req.defobj_out->relocbase +
4491 	  req.sym_out->st_value));
4492 }
4493 
4494 /*
4495  * Set a pointer variable in the main program to the given value.  This
4496  * is used to set key variables such as "environ" before any of the
4497  * init functions are called.
4498  */
4499 static void
4500 set_program_var(const char *name, const void *value)
4501 {
4502     const void **addr;
4503 
4504     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4505 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4506 	*addr = value;
4507     }
4508 }
4509 
4510 /*
4511  * Search the global objects, including dependencies and main object,
4512  * for the given symbol.
4513  */
4514 static int
4515 symlook_global(SymLook *req, DoneList *donelist)
4516 {
4517     SymLook req1;
4518     const Objlist_Entry *elm;
4519     int res;
4520 
4521     symlook_init_from_req(&req1, req);
4522 
4523     /* Search all objects loaded at program start up. */
4524     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4525       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4526 	res = symlook_list(&req1, &list_main, donelist);
4527 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4528 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4529 	    req->sym_out = req1.sym_out;
4530 	    req->defobj_out = req1.defobj_out;
4531 	    assert(req->defobj_out != NULL);
4532 	}
4533     }
4534 
4535     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4536     STAILQ_FOREACH(elm, &list_global, link) {
4537 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4538           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4539 	    break;
4540 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4541 	if (res == 0 && (req->defobj_out == NULL ||
4542 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4543 	    req->sym_out = req1.sym_out;
4544 	    req->defobj_out = req1.defobj_out;
4545 	    assert(req->defobj_out != NULL);
4546 	}
4547     }
4548 
4549     return (req->sym_out != NULL ? 0 : ESRCH);
4550 }
4551 
4552 /*
4553  * Given a symbol name in a referencing object, find the corresponding
4554  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4555  * no definition was found.  Returns a pointer to the Obj_Entry of the
4556  * defining object via the reference parameter DEFOBJ_OUT.
4557  */
4558 static int
4559 symlook_default(SymLook *req, const Obj_Entry *refobj)
4560 {
4561     DoneList donelist;
4562     const Objlist_Entry *elm;
4563     SymLook req1;
4564     int res;
4565 
4566     donelist_init(&donelist);
4567     symlook_init_from_req(&req1, req);
4568 
4569     /*
4570      * Look first in the referencing object if linked symbolically,
4571      * and similarly handle protected symbols.
4572      */
4573     res = symlook_obj(&req1, refobj);
4574     if (res == 0 && (refobj->symbolic ||
4575       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4576 	req->sym_out = req1.sym_out;
4577 	req->defobj_out = req1.defobj_out;
4578 	assert(req->defobj_out != NULL);
4579     }
4580     if (refobj->symbolic || req->defobj_out != NULL)
4581 	donelist_check(&donelist, refobj);
4582 
4583     symlook_global(req, &donelist);
4584 
4585     /* Search all dlopened DAGs containing the referencing object. */
4586     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4587 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4588           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4589 	    break;
4590 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4591 	if (res == 0 && (req->sym_out == NULL ||
4592 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4593 	    req->sym_out = req1.sym_out;
4594 	    req->defobj_out = req1.defobj_out;
4595 	    assert(req->defobj_out != NULL);
4596 	}
4597     }
4598 
4599     /*
4600      * Search the dynamic linker itself, and possibly resolve the
4601      * symbol from there.  This is how the application links to
4602      * dynamic linker services such as dlopen.
4603      */
4604     if (req->sym_out == NULL ||
4605       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4606 	res = symlook_obj(&req1, &obj_rtld);
4607 	if (res == 0) {
4608 	    req->sym_out = req1.sym_out;
4609 	    req->defobj_out = req1.defobj_out;
4610 	    assert(req->defobj_out != NULL);
4611 	}
4612     }
4613 
4614     return (req->sym_out != NULL ? 0 : ESRCH);
4615 }
4616 
4617 static int
4618 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4619 {
4620     const Elf_Sym *def;
4621     const Obj_Entry *defobj;
4622     const Objlist_Entry *elm;
4623     SymLook req1;
4624     int res;
4625 
4626     def = NULL;
4627     defobj = NULL;
4628     STAILQ_FOREACH(elm, objlist, link) {
4629 	if (donelist_check(dlp, elm->obj))
4630 	    continue;
4631 	symlook_init_from_req(&req1, req);
4632 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4633 	    if (def == NULL || (ld_dynamic_weak &&
4634               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4635 		def = req1.sym_out;
4636 		defobj = req1.defobj_out;
4637 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4638 		    break;
4639 	    }
4640 	}
4641     }
4642     if (def != NULL) {
4643 	req->sym_out = def;
4644 	req->defobj_out = defobj;
4645 	return (0);
4646     }
4647     return (ESRCH);
4648 }
4649 
4650 /*
4651  * Search the chain of DAGS cointed to by the given Needed_Entry
4652  * for a symbol of the given name.  Each DAG is scanned completely
4653  * before advancing to the next one.  Returns a pointer to the symbol,
4654  * or NULL if no definition was found.
4655  */
4656 static int
4657 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4658 {
4659     const Elf_Sym *def;
4660     const Needed_Entry *n;
4661     const Obj_Entry *defobj;
4662     SymLook req1;
4663     int res;
4664 
4665     def = NULL;
4666     defobj = NULL;
4667     symlook_init_from_req(&req1, req);
4668     for (n = needed; n != NULL; n = n->next) {
4669 	if (n->obj == NULL ||
4670 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4671 	    continue;
4672 	if (def == NULL || (ld_dynamic_weak &&
4673           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4674 	    def = req1.sym_out;
4675 	    defobj = req1.defobj_out;
4676 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4677 		break;
4678 	}
4679     }
4680     if (def != NULL) {
4681 	req->sym_out = def;
4682 	req->defobj_out = defobj;
4683 	return (0);
4684     }
4685     return (ESRCH);
4686 }
4687 
4688 /*
4689  * Search the symbol table of a single shared object for a symbol of
4690  * the given name and version, if requested.  Returns a pointer to the
4691  * symbol, or NULL if no definition was found.  If the object is
4692  * filter, return filtered symbol from filtee.
4693  *
4694  * The symbol's hash value is passed in for efficiency reasons; that
4695  * eliminates many recomputations of the hash value.
4696  */
4697 int
4698 symlook_obj(SymLook *req, const Obj_Entry *obj)
4699 {
4700     DoneList donelist;
4701     SymLook req1;
4702     int flags, res, mres;
4703 
4704     /*
4705      * If there is at least one valid hash at this point, we prefer to
4706      * use the faster GNU version if available.
4707      */
4708     if (obj->valid_hash_gnu)
4709 	mres = symlook_obj1_gnu(req, obj);
4710     else if (obj->valid_hash_sysv)
4711 	mres = symlook_obj1_sysv(req, obj);
4712     else
4713 	return (EINVAL);
4714 
4715     if (mres == 0) {
4716 	if (obj->needed_filtees != NULL) {
4717 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4718 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4719 	    donelist_init(&donelist);
4720 	    symlook_init_from_req(&req1, req);
4721 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4722 	    if (res == 0) {
4723 		req->sym_out = req1.sym_out;
4724 		req->defobj_out = req1.defobj_out;
4725 	    }
4726 	    return (res);
4727 	}
4728 	if (obj->needed_aux_filtees != NULL) {
4729 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4730 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4731 	    donelist_init(&donelist);
4732 	    symlook_init_from_req(&req1, req);
4733 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4734 	    if (res == 0) {
4735 		req->sym_out = req1.sym_out;
4736 		req->defobj_out = req1.defobj_out;
4737 		return (res);
4738 	    }
4739 	}
4740     }
4741     return (mres);
4742 }
4743 
4744 /* Symbol match routine common to both hash functions */
4745 static bool
4746 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4747     const unsigned long symnum)
4748 {
4749 	Elf_Versym verndx;
4750 	const Elf_Sym *symp;
4751 	const char *strp;
4752 
4753 	symp = obj->symtab + symnum;
4754 	strp = obj->strtab + symp->st_name;
4755 
4756 	switch (ELF_ST_TYPE(symp->st_info)) {
4757 	case STT_FUNC:
4758 	case STT_NOTYPE:
4759 	case STT_OBJECT:
4760 	case STT_COMMON:
4761 	case STT_GNU_IFUNC:
4762 		if (symp->st_value == 0)
4763 			return (false);
4764 		/* fallthrough */
4765 	case STT_TLS:
4766 		if (symp->st_shndx != SHN_UNDEF)
4767 			break;
4768 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4769 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4770 			break;
4771 		/* fallthrough */
4772 	default:
4773 		return (false);
4774 	}
4775 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4776 		return (false);
4777 
4778 	if (req->ventry == NULL) {
4779 		if (obj->versyms != NULL) {
4780 			verndx = VER_NDX(obj->versyms[symnum]);
4781 			if (verndx > obj->vernum) {
4782 				_rtld_error(
4783 				    "%s: symbol %s references wrong version %d",
4784 				    obj->path, obj->strtab + symnum, verndx);
4785 				return (false);
4786 			}
4787 			/*
4788 			 * If we are not called from dlsym (i.e. this
4789 			 * is a normal relocation from unversioned
4790 			 * binary), accept the symbol immediately if
4791 			 * it happens to have first version after this
4792 			 * shared object became versioned.  Otherwise,
4793 			 * if symbol is versioned and not hidden,
4794 			 * remember it. If it is the only symbol with
4795 			 * this name exported by the shared object, it
4796 			 * will be returned as a match by the calling
4797 			 * function. If symbol is global (verndx < 2)
4798 			 * accept it unconditionally.
4799 			 */
4800 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4801 			    verndx == VER_NDX_GIVEN) {
4802 				result->sym_out = symp;
4803 				return (true);
4804 			}
4805 			else if (verndx >= VER_NDX_GIVEN) {
4806 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4807 				    == 0) {
4808 					if (result->vsymp == NULL)
4809 						result->vsymp = symp;
4810 					result->vcount++;
4811 				}
4812 				return (false);
4813 			}
4814 		}
4815 		result->sym_out = symp;
4816 		return (true);
4817 	}
4818 	if (obj->versyms == NULL) {
4819 		if (object_match_name(obj, req->ventry->name)) {
4820 			_rtld_error("%s: object %s should provide version %s "
4821 			    "for symbol %s", obj_rtld.path, obj->path,
4822 			    req->ventry->name, obj->strtab + symnum);
4823 			return (false);
4824 		}
4825 	} else {
4826 		verndx = VER_NDX(obj->versyms[symnum]);
4827 		if (verndx > obj->vernum) {
4828 			_rtld_error("%s: symbol %s references wrong version %d",
4829 			    obj->path, obj->strtab + symnum, verndx);
4830 			return (false);
4831 		}
4832 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4833 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4834 			/*
4835 			 * Version does not match. Look if this is a
4836 			 * global symbol and if it is not hidden. If
4837 			 * global symbol (verndx < 2) is available,
4838 			 * use it. Do not return symbol if we are
4839 			 * called by dlvsym, because dlvsym looks for
4840 			 * a specific version and default one is not
4841 			 * what dlvsym wants.
4842 			 */
4843 			if ((req->flags & SYMLOOK_DLSYM) ||
4844 			    (verndx >= VER_NDX_GIVEN) ||
4845 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4846 				return (false);
4847 		}
4848 	}
4849 	result->sym_out = symp;
4850 	return (true);
4851 }
4852 
4853 /*
4854  * Search for symbol using SysV hash function.
4855  * obj->buckets is known not to be NULL at this point; the test for this was
4856  * performed with the obj->valid_hash_sysv assignment.
4857  */
4858 static int
4859 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4860 {
4861 	unsigned long symnum;
4862 	Sym_Match_Result matchres;
4863 
4864 	matchres.sym_out = NULL;
4865 	matchres.vsymp = NULL;
4866 	matchres.vcount = 0;
4867 
4868 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4869 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4870 		if (symnum >= obj->nchains)
4871 			return (ESRCH);	/* Bad object */
4872 
4873 		if (matched_symbol(req, obj, &matchres, symnum)) {
4874 			req->sym_out = matchres.sym_out;
4875 			req->defobj_out = obj;
4876 			return (0);
4877 		}
4878 	}
4879 	if (matchres.vcount == 1) {
4880 		req->sym_out = matchres.vsymp;
4881 		req->defobj_out = obj;
4882 		return (0);
4883 	}
4884 	return (ESRCH);
4885 }
4886 
4887 /* Search for symbol using GNU hash function */
4888 static int
4889 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4890 {
4891 	Elf_Addr bloom_word;
4892 	const Elf32_Word *hashval;
4893 	Elf32_Word bucket;
4894 	Sym_Match_Result matchres;
4895 	unsigned int h1, h2;
4896 	unsigned long symnum;
4897 
4898 	matchres.sym_out = NULL;
4899 	matchres.vsymp = NULL;
4900 	matchres.vcount = 0;
4901 
4902 	/* Pick right bitmask word from Bloom filter array */
4903 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4904 	    obj->maskwords_bm_gnu];
4905 
4906 	/* Calculate modulus word size of gnu hash and its derivative */
4907 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4908 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4909 
4910 	/* Filter out the "definitely not in set" queries */
4911 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4912 		return (ESRCH);
4913 
4914 	/* Locate hash chain and corresponding value element*/
4915 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4916 	if (bucket == 0)
4917 		return (ESRCH);
4918 	hashval = &obj->chain_zero_gnu[bucket];
4919 	do {
4920 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4921 			symnum = hashval - obj->chain_zero_gnu;
4922 			if (matched_symbol(req, obj, &matchres, symnum)) {
4923 				req->sym_out = matchres.sym_out;
4924 				req->defobj_out = obj;
4925 				return (0);
4926 			}
4927 		}
4928 	} while ((*hashval++ & 1) == 0);
4929 	if (matchres.vcount == 1) {
4930 		req->sym_out = matchres.vsymp;
4931 		req->defobj_out = obj;
4932 		return (0);
4933 	}
4934 	return (ESRCH);
4935 }
4936 
4937 static void
4938 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4939 {
4940 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4941 	if (*main_local == NULL)
4942 		*main_local = "";
4943 
4944 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4945 	if (*fmt1 == NULL)
4946 		*fmt1 = "\t%o => %p (%x)\n";
4947 
4948 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4949 	if (*fmt2 == NULL)
4950 		*fmt2 = "\t%o (%x)\n";
4951 }
4952 
4953 static void
4954 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4955     const char *main_local, const char *fmt1, const char *fmt2)
4956 {
4957 	const char *fmt;
4958 	int c;
4959 
4960 	fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;	/* XXX bogus */
4961 	while ((c = *fmt++) != '\0') {
4962 		switch (c) {
4963 		default:
4964 			rtld_putchar(c);
4965 			continue;
4966 		case '\\':
4967 			switch (c = *fmt) {
4968 			case '\0':
4969 				continue;
4970 			case 'n':
4971 				rtld_putchar('\n');
4972 				break;
4973 			case 't':
4974 				rtld_putchar('\t');
4975 				break;
4976 			}
4977 			break;
4978 		case '%':
4979 			switch (c = *fmt) {
4980 			case '\0':
4981 				continue;
4982 			case '%':
4983 			default:
4984 				rtld_putchar(c);
4985 				break;
4986 			case 'A':
4987 				rtld_putstr(main_local);
4988 				break;
4989 			case 'a':
4990 				rtld_putstr(obj_main->path);
4991 				break;
4992 			case 'o':
4993 				rtld_putstr(name);
4994 				break;
4995 			case 'p':
4996 				rtld_putstr(path);
4997 				break;
4998 			case 'x':
4999 				rtld_printf("%p", obj != NULL ?
5000 				    obj->mapbase : NULL);
5001 				break;
5002 			}
5003 			break;
5004 		}
5005 		++fmt;
5006 	}
5007 }
5008 
5009 static void
5010 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5011 {
5012 	const char *fmt1, *fmt2, *main_local;
5013 	const char *name, *path;
5014 	bool first_spurious, list_containers;
5015 
5016 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5017 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5018 
5019 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5020 		Needed_Entry *needed;
5021 
5022 		if (obj->marker)
5023 			continue;
5024 		if (list_containers && obj->needed != NULL)
5025 			rtld_printf("%s:\n", obj->path);
5026 		for (needed = obj->needed; needed; needed = needed->next) {
5027 			if (needed->obj != NULL) {
5028 				if (needed->obj->traced && !list_containers)
5029 					continue;
5030 				needed->obj->traced = true;
5031 				path = needed->obj->path;
5032 			} else
5033 				path = "not found";
5034 
5035 			name = obj->strtab + needed->name;
5036 			trace_print_obj(obj, name, path, main_local,
5037 			    fmt1, fmt2);
5038 		}
5039 	}
5040 
5041 	if (show_preload) {
5042 		first_spurious = true;
5043 		TAILQ_FOREACH(obj, &obj_list, next) {
5044 			if (obj->marker || obj == obj_main || obj->traced)
5045 				continue;
5046 
5047 			if (first_spurious) {
5048 				rtld_printf("[preloaded]\n");
5049 				first_spurious = false;
5050 			}
5051 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5052 			name = fname == NULL ? "<unknown>" : fname->name;
5053 			trace_print_obj(obj, name, obj->path, main_local,
5054 			    fmt1, fmt2);
5055 		}
5056 	}
5057 }
5058 
5059 /*
5060  * Unload a dlopened object and its dependencies from memory and from
5061  * our data structures.  It is assumed that the DAG rooted in the
5062  * object has already been unreferenced, and that the object has a
5063  * reference count of 0.
5064  */
5065 static void
5066 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5067 {
5068 	Obj_Entry marker, *obj, *next;
5069 
5070 	assert(root->refcount == 0);
5071 
5072 	/*
5073 	 * Pass over the DAG removing unreferenced objects from
5074 	 * appropriate lists.
5075 	 */
5076 	unlink_object(root);
5077 
5078 	/* Unmap all objects that are no longer referenced. */
5079 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5080 		next = TAILQ_NEXT(obj, next);
5081 		if (obj->marker || obj->refcount != 0)
5082 			continue;
5083 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5084 		    obj->mapsize, 0, obj->path);
5085 		dbg("unloading \"%s\"", obj->path);
5086 		/*
5087 		 * Unlink the object now to prevent new references from
5088 		 * being acquired while the bind lock is dropped in
5089 		 * recursive dlclose() invocations.
5090 		 */
5091 		TAILQ_REMOVE(&obj_list, obj, next);
5092 		obj_count--;
5093 
5094 		if (obj->filtees_loaded) {
5095 			if (next != NULL) {
5096 				init_marker(&marker);
5097 				TAILQ_INSERT_BEFORE(next, &marker, next);
5098 				unload_filtees(obj, lockstate);
5099 				next = TAILQ_NEXT(&marker, next);
5100 				TAILQ_REMOVE(&obj_list, &marker, next);
5101 			} else
5102 				unload_filtees(obj, lockstate);
5103 		}
5104 		release_object(obj);
5105 	}
5106 }
5107 
5108 static void
5109 unlink_object(Obj_Entry *root)
5110 {
5111     Objlist_Entry *elm;
5112 
5113     if (root->refcount == 0) {
5114 	/* Remove the object from the RTLD_GLOBAL list. */
5115 	objlist_remove(&list_global, root);
5116 
5117     	/* Remove the object from all objects' DAG lists. */
5118     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5119 	    objlist_remove(&elm->obj->dldags, root);
5120 	    if (elm->obj != root)
5121 		unlink_object(elm->obj);
5122 	}
5123     }
5124 }
5125 
5126 static void
5127 ref_dag(Obj_Entry *root)
5128 {
5129     Objlist_Entry *elm;
5130 
5131     assert(root->dag_inited);
5132     STAILQ_FOREACH(elm, &root->dagmembers, link)
5133 	elm->obj->refcount++;
5134 }
5135 
5136 static void
5137 unref_dag(Obj_Entry *root)
5138 {
5139     Objlist_Entry *elm;
5140 
5141     assert(root->dag_inited);
5142     STAILQ_FOREACH(elm, &root->dagmembers, link)
5143 	elm->obj->refcount--;
5144 }
5145 
5146 /*
5147  * Common code for MD __tls_get_addr().
5148  */
5149 static void *
5150 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5151 {
5152 	Elf_Addr *newdtv, *dtv;
5153 	RtldLockState lockstate;
5154 	int to_copy;
5155 
5156 	dtv = *dtvp;
5157 	/* Check dtv generation in case new modules have arrived */
5158 	if (dtv[0] != tls_dtv_generation) {
5159 		if (!locked)
5160 			wlock_acquire(rtld_bind_lock, &lockstate);
5161 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5162 		to_copy = dtv[1];
5163 		if (to_copy > tls_max_index)
5164 			to_copy = tls_max_index;
5165 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5166 		newdtv[0] = tls_dtv_generation;
5167 		newdtv[1] = tls_max_index;
5168 		free(dtv);
5169 		if (!locked)
5170 			lock_release(rtld_bind_lock, &lockstate);
5171 		dtv = *dtvp = newdtv;
5172 	}
5173 
5174 	/* Dynamically allocate module TLS if necessary */
5175 	if (dtv[index + 1] == 0) {
5176 		/* Signal safe, wlock will block out signals. */
5177 		if (!locked)
5178 			wlock_acquire(rtld_bind_lock, &lockstate);
5179 		if (!dtv[index + 1])
5180 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5181 		if (!locked)
5182 			lock_release(rtld_bind_lock, &lockstate);
5183 	}
5184 	return ((void *)(dtv[index + 1] + offset));
5185 }
5186 
5187 void *
5188 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5189 {
5190 	uintptr_t *dtv;
5191 
5192 	dtv = *dtvp;
5193 	/* Check dtv generation in case new modules have arrived */
5194 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5195 	    dtv[index + 1] != 0))
5196 		return ((void *)(dtv[index + 1] + offset));
5197 	return (tls_get_addr_slow(dtvp, index, offset, false));
5198 }
5199 
5200 #ifdef TLS_VARIANT_I
5201 
5202 /*
5203  * Return pointer to allocated TLS block
5204  */
5205 static void *
5206 get_tls_block_ptr(void *tcb, size_t tcbsize)
5207 {
5208     size_t extra_size, post_size, pre_size, tls_block_size;
5209     size_t tls_init_align;
5210 
5211     tls_init_align = MAX(obj_main->tlsalign, 1);
5212 
5213     /* Compute fragments sizes. */
5214     extra_size = tcbsize - TLS_TCB_SIZE;
5215     post_size = calculate_tls_post_size(tls_init_align);
5216     tls_block_size = tcbsize + post_size;
5217     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5218 
5219     return ((char *)tcb - pre_size - extra_size);
5220 }
5221 
5222 /*
5223  * Allocate Static TLS using the Variant I method.
5224  *
5225  * For details on the layout, see lib/libc/gen/tls.c.
5226  *
5227  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5228  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5229  *     offsets, whereas libc's tls_static_space is just the executable's static
5230  *     TLS segment.
5231  */
5232 void *
5233 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5234 {
5235     Obj_Entry *obj;
5236     char *tls_block;
5237     Elf_Addr *dtv, **tcb;
5238     Elf_Addr addr;
5239     Elf_Addr i;
5240     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5241     size_t tls_init_align, tls_init_offset;
5242 
5243     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5244 	return (oldtcb);
5245 
5246     assert(tcbsize >= TLS_TCB_SIZE);
5247     maxalign = MAX(tcbalign, tls_static_max_align);
5248     tls_init_align = MAX(obj_main->tlsalign, 1);
5249 
5250     /* Compute fragmets sizes. */
5251     extra_size = tcbsize - TLS_TCB_SIZE;
5252     post_size = calculate_tls_post_size(tls_init_align);
5253     tls_block_size = tcbsize + post_size;
5254     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5255     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5256 
5257     /* Allocate whole TLS block */
5258     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5259     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5260 
5261     if (oldtcb != NULL) {
5262 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5263 	    tls_static_space);
5264 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5265 
5266 	/* Adjust the DTV. */
5267 	dtv = tcb[0];
5268 	for (i = 0; i < dtv[1]; i++) {
5269 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5270 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5271 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5272 	    }
5273 	}
5274     } else {
5275 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5276 	tcb[0] = dtv;
5277 	dtv[0] = tls_dtv_generation;
5278 	dtv[1] = tls_max_index;
5279 
5280 	for (obj = globallist_curr(objs); obj != NULL;
5281 	  obj = globallist_next(obj)) {
5282 	    if (obj->tlsoffset == 0)
5283 		continue;
5284 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5285 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5286 	    if (tls_init_offset > 0)
5287 		memset((void *)addr, 0, tls_init_offset);
5288 	    if (obj->tlsinitsize > 0) {
5289 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5290 		    obj->tlsinitsize);
5291 	    }
5292 	    if (obj->tlssize > obj->tlsinitsize) {
5293 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5294 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5295 	    }
5296 	    dtv[obj->tlsindex + 1] = addr;
5297 	}
5298     }
5299 
5300     return (tcb);
5301 }
5302 
5303 void
5304 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5305 {
5306     Elf_Addr *dtv;
5307     Elf_Addr tlsstart, tlsend;
5308     size_t post_size;
5309     size_t dtvsize, i, tls_init_align;
5310 
5311     assert(tcbsize >= TLS_TCB_SIZE);
5312     tls_init_align = MAX(obj_main->tlsalign, 1);
5313 
5314     /* Compute fragments sizes. */
5315     post_size = calculate_tls_post_size(tls_init_align);
5316 
5317     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5318     tlsend = (Elf_Addr)tcb + tls_static_space;
5319 
5320     dtv = *(Elf_Addr **)tcb;
5321     dtvsize = dtv[1];
5322     for (i = 0; i < dtvsize; i++) {
5323 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5324 	    free((void*)dtv[i+2]);
5325 	}
5326     }
5327     free(dtv);
5328     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5329 }
5330 
5331 #endif	/* TLS_VARIANT_I */
5332 
5333 #ifdef TLS_VARIANT_II
5334 
5335 /*
5336  * Allocate Static TLS using the Variant II method.
5337  */
5338 void *
5339 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5340 {
5341     Obj_Entry *obj;
5342     size_t size, ralign;
5343     char *tls;
5344     Elf_Addr *dtv, *olddtv;
5345     Elf_Addr segbase, oldsegbase, addr;
5346     size_t i;
5347 
5348     ralign = tcbalign;
5349     if (tls_static_max_align > ralign)
5350 	    ralign = tls_static_max_align;
5351     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5352 
5353     assert(tcbsize >= 2*sizeof(Elf_Addr));
5354     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5355     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5356 
5357     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5358     ((Elf_Addr *)segbase)[0] = segbase;
5359     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5360 
5361     dtv[0] = tls_dtv_generation;
5362     dtv[1] = tls_max_index;
5363 
5364     if (oldtls) {
5365 	/*
5366 	 * Copy the static TLS block over whole.
5367 	 */
5368 	oldsegbase = (Elf_Addr) oldtls;
5369 	memcpy((void *)(segbase - tls_static_space),
5370 	   (const void *)(oldsegbase - tls_static_space),
5371 	   tls_static_space);
5372 
5373 	/*
5374 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5375 	 * move them over.
5376 	 */
5377 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5378 	for (i = 0; i < olddtv[1]; i++) {
5379 	    if (olddtv[i + 2] < oldsegbase - size ||
5380 		olddtv[i + 2] > oldsegbase) {
5381 		    dtv[i + 2] = olddtv[i + 2];
5382 		    olddtv[i + 2] = 0;
5383 	    }
5384 	}
5385 
5386 	/*
5387 	 * We assume that this block was the one we created with
5388 	 * allocate_initial_tls().
5389 	 */
5390 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5391     } else {
5392 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5393 		if (obj->marker || obj->tlsoffset == 0)
5394 			continue;
5395 		addr = segbase - obj->tlsoffset;
5396 		memset((void *)(addr + obj->tlsinitsize),
5397 		    0, obj->tlssize - obj->tlsinitsize);
5398 		if (obj->tlsinit) {
5399 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5400 			obj->static_tls_copied = true;
5401 		}
5402 		dtv[obj->tlsindex + 1] = addr;
5403 	}
5404     }
5405 
5406     return ((void *)segbase);
5407 }
5408 
5409 void
5410 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5411 {
5412     Elf_Addr* dtv;
5413     size_t size, ralign;
5414     int dtvsize, i;
5415     Elf_Addr tlsstart, tlsend;
5416 
5417     /*
5418      * Figure out the size of the initial TLS block so that we can
5419      * find stuff which ___tls_get_addr() allocated dynamically.
5420      */
5421     ralign = tcbalign;
5422     if (tls_static_max_align > ralign)
5423 	    ralign = tls_static_max_align;
5424     size = roundup(tls_static_space, ralign);
5425 
5426     dtv = ((Elf_Addr **)tls)[1];
5427     dtvsize = dtv[1];
5428     tlsend = (Elf_Addr)tls;
5429     tlsstart = tlsend - size;
5430     for (i = 0; i < dtvsize; i++) {
5431 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5432 	        dtv[i + 2] > tlsend)) {
5433 		    free_aligned((void *)dtv[i + 2]);
5434 	}
5435     }
5436 
5437     free_aligned((void *)tlsstart);
5438     free((void *)dtv);
5439 }
5440 
5441 #endif	/* TLS_VARIANT_II */
5442 
5443 /*
5444  * Allocate TLS block for module with given index.
5445  */
5446 void *
5447 allocate_module_tls(int index)
5448 {
5449 	Obj_Entry *obj;
5450 	char *p;
5451 
5452 	TAILQ_FOREACH(obj, &obj_list, next) {
5453 		if (obj->marker)
5454 			continue;
5455 		if (obj->tlsindex == index)
5456 			break;
5457 	}
5458 	if (obj == NULL) {
5459 		_rtld_error("Can't find module with TLS index %d", index);
5460 		rtld_die();
5461 	}
5462 
5463 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5464 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5465 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5466 	return (p);
5467 }
5468 
5469 bool
5470 allocate_tls_offset(Obj_Entry *obj)
5471 {
5472     size_t off;
5473 
5474     if (obj->tls_done)
5475 	return (true);
5476 
5477     if (obj->tlssize == 0) {
5478 	obj->tls_done = true;
5479 	return (true);
5480     }
5481 
5482     if (tls_last_offset == 0)
5483 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5484 	  obj->tlspoffset);
5485     else
5486 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5487 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5488 
5489     obj->tlsoffset = off;
5490 #ifdef TLS_VARIANT_I
5491     off += obj->tlssize;
5492 #endif
5493 
5494     /*
5495      * If we have already fixed the size of the static TLS block, we
5496      * must stay within that size. When allocating the static TLS, we
5497      * leave a small amount of space spare to be used for dynamically
5498      * loading modules which use static TLS.
5499      */
5500     if (tls_static_space != 0) {
5501 	if (off > tls_static_space)
5502 	    return (false);
5503     } else if (obj->tlsalign > tls_static_max_align) {
5504 	    tls_static_max_align = obj->tlsalign;
5505     }
5506 
5507     tls_last_offset = off;
5508     tls_last_size = obj->tlssize;
5509     obj->tls_done = true;
5510 
5511     return (true);
5512 }
5513 
5514 void
5515 free_tls_offset(Obj_Entry *obj)
5516 {
5517 
5518     /*
5519      * If we were the last thing to allocate out of the static TLS
5520      * block, we give our space back to the 'allocator'. This is a
5521      * simplistic workaround to allow libGL.so.1 to be loaded and
5522      * unloaded multiple times.
5523      */
5524     size_t off = obj->tlsoffset;
5525 #ifdef TLS_VARIANT_I
5526     off += obj->tlssize;
5527 #endif
5528     if (off == tls_last_offset) {
5529 	tls_last_offset -= obj->tlssize;
5530 	tls_last_size = 0;
5531     }
5532 }
5533 
5534 void *
5535 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5536 {
5537     void *ret;
5538     RtldLockState lockstate;
5539 
5540     wlock_acquire(rtld_bind_lock, &lockstate);
5541     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5542       tcbsize, tcbalign);
5543     lock_release(rtld_bind_lock, &lockstate);
5544     return (ret);
5545 }
5546 
5547 void
5548 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5549 {
5550     RtldLockState lockstate;
5551 
5552     wlock_acquire(rtld_bind_lock, &lockstate);
5553     free_tls(tcb, tcbsize, tcbalign);
5554     lock_release(rtld_bind_lock, &lockstate);
5555 }
5556 
5557 static void
5558 object_add_name(Obj_Entry *obj, const char *name)
5559 {
5560     Name_Entry *entry;
5561     size_t len;
5562 
5563     len = strlen(name);
5564     entry = malloc(sizeof(Name_Entry) + len);
5565 
5566     if (entry != NULL) {
5567 	strcpy(entry->name, name);
5568 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5569     }
5570 }
5571 
5572 static int
5573 object_match_name(const Obj_Entry *obj, const char *name)
5574 {
5575     Name_Entry *entry;
5576 
5577     STAILQ_FOREACH(entry, &obj->names, link) {
5578 	if (strcmp(name, entry->name) == 0)
5579 	    return (1);
5580     }
5581     return (0);
5582 }
5583 
5584 static Obj_Entry *
5585 locate_dependency(const Obj_Entry *obj, const char *name)
5586 {
5587     const Objlist_Entry *entry;
5588     const Needed_Entry *needed;
5589 
5590     STAILQ_FOREACH(entry, &list_main, link) {
5591 	if (object_match_name(entry->obj, name))
5592 	    return (entry->obj);
5593     }
5594 
5595     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5596 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5597 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5598 	    /*
5599 	     * If there is DT_NEEDED for the name we are looking for,
5600 	     * we are all set.  Note that object might not be found if
5601 	     * dependency was not loaded yet, so the function can
5602 	     * return NULL here.  This is expected and handled
5603 	     * properly by the caller.
5604 	     */
5605 	    return (needed->obj);
5606 	}
5607     }
5608     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5609 	obj->path, name);
5610     rtld_die();
5611 }
5612 
5613 static int
5614 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5615     const Elf_Vernaux *vna)
5616 {
5617     const Elf_Verdef *vd;
5618     const char *vername;
5619 
5620     vername = refobj->strtab + vna->vna_name;
5621     vd = depobj->verdef;
5622     if (vd == NULL) {
5623 	_rtld_error("%s: version %s required by %s not defined",
5624 	    depobj->path, vername, refobj->path);
5625 	return (-1);
5626     }
5627     for (;;) {
5628 	if (vd->vd_version != VER_DEF_CURRENT) {
5629 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5630 		depobj->path, vd->vd_version);
5631 	    return (-1);
5632 	}
5633 	if (vna->vna_hash == vd->vd_hash) {
5634 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5635 		((const char *)vd + vd->vd_aux);
5636 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5637 		return (0);
5638 	}
5639 	if (vd->vd_next == 0)
5640 	    break;
5641 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5642     }
5643     if (vna->vna_flags & VER_FLG_WEAK)
5644 	return (0);
5645     _rtld_error("%s: version %s required by %s not found",
5646 	depobj->path, vername, refobj->path);
5647     return (-1);
5648 }
5649 
5650 static int
5651 rtld_verify_object_versions(Obj_Entry *obj)
5652 {
5653     const Elf_Verneed *vn;
5654     const Elf_Verdef  *vd;
5655     const Elf_Verdaux *vda;
5656     const Elf_Vernaux *vna;
5657     const Obj_Entry *depobj;
5658     int maxvernum, vernum;
5659 
5660     if (obj->ver_checked)
5661 	return (0);
5662     obj->ver_checked = true;
5663 
5664     maxvernum = 0;
5665     /*
5666      * Walk over defined and required version records and figure out
5667      * max index used by any of them. Do very basic sanity checking
5668      * while there.
5669      */
5670     vn = obj->verneed;
5671     while (vn != NULL) {
5672 	if (vn->vn_version != VER_NEED_CURRENT) {
5673 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5674 		obj->path, vn->vn_version);
5675 	    return (-1);
5676 	}
5677 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5678 	for (;;) {
5679 	    vernum = VER_NEED_IDX(vna->vna_other);
5680 	    if (vernum > maxvernum)
5681 		maxvernum = vernum;
5682 	    if (vna->vna_next == 0)
5683 		 break;
5684 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5685 	}
5686 	if (vn->vn_next == 0)
5687 	    break;
5688 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5689     }
5690 
5691     vd = obj->verdef;
5692     while (vd != NULL) {
5693 	if (vd->vd_version != VER_DEF_CURRENT) {
5694 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5695 		obj->path, vd->vd_version);
5696 	    return (-1);
5697 	}
5698 	vernum = VER_DEF_IDX(vd->vd_ndx);
5699 	if (vernum > maxvernum)
5700 		maxvernum = vernum;
5701 	if (vd->vd_next == 0)
5702 	    break;
5703 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5704     }
5705 
5706     if (maxvernum == 0)
5707 	return (0);
5708 
5709     /*
5710      * Store version information in array indexable by version index.
5711      * Verify that object version requirements are satisfied along the
5712      * way.
5713      */
5714     obj->vernum = maxvernum + 1;
5715     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5716 
5717     vd = obj->verdef;
5718     while (vd != NULL) {
5719 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5720 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5721 	    assert(vernum <= maxvernum);
5722 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5723 	    obj->vertab[vernum].hash = vd->vd_hash;
5724 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5725 	    obj->vertab[vernum].file = NULL;
5726 	    obj->vertab[vernum].flags = 0;
5727 	}
5728 	if (vd->vd_next == 0)
5729 	    break;
5730 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5731     }
5732 
5733     vn = obj->verneed;
5734     while (vn != NULL) {
5735 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5736 	if (depobj == NULL)
5737 	    return (-1);
5738 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5739 	for (;;) {
5740 	    if (check_object_provided_version(obj, depobj, vna))
5741 		return (-1);
5742 	    vernum = VER_NEED_IDX(vna->vna_other);
5743 	    assert(vernum <= maxvernum);
5744 	    obj->vertab[vernum].hash = vna->vna_hash;
5745 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5746 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5747 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5748 		VER_INFO_HIDDEN : 0;
5749 	    if (vna->vna_next == 0)
5750 		 break;
5751 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5752 	}
5753 	if (vn->vn_next == 0)
5754 	    break;
5755 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5756     }
5757     return (0);
5758 }
5759 
5760 static int
5761 rtld_verify_versions(const Objlist *objlist)
5762 {
5763     Objlist_Entry *entry;
5764     int rc;
5765 
5766     rc = 0;
5767     STAILQ_FOREACH(entry, objlist, link) {
5768 	/*
5769 	 * Skip dummy objects or objects that have their version requirements
5770 	 * already checked.
5771 	 */
5772 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5773 	    continue;
5774 	if (rtld_verify_object_versions(entry->obj) == -1) {
5775 	    rc = -1;
5776 	    if (ld_tracing == NULL)
5777 		break;
5778 	}
5779     }
5780     if (rc == 0 || ld_tracing != NULL)
5781     	rc = rtld_verify_object_versions(&obj_rtld);
5782     return (rc);
5783 }
5784 
5785 const Ver_Entry *
5786 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5787 {
5788     Elf_Versym vernum;
5789 
5790     if (obj->vertab) {
5791 	vernum = VER_NDX(obj->versyms[symnum]);
5792 	if (vernum >= obj->vernum) {
5793 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5794 		obj->path, obj->strtab + symnum, vernum);
5795 	} else if (obj->vertab[vernum].hash != 0) {
5796 	    return (&obj->vertab[vernum]);
5797 	}
5798     }
5799     return (NULL);
5800 }
5801 
5802 int
5803 _rtld_get_stack_prot(void)
5804 {
5805 
5806 	return (stack_prot);
5807 }
5808 
5809 int
5810 _rtld_is_dlopened(void *arg)
5811 {
5812 	Obj_Entry *obj;
5813 	RtldLockState lockstate;
5814 	int res;
5815 
5816 	rlock_acquire(rtld_bind_lock, &lockstate);
5817 	obj = dlcheck(arg);
5818 	if (obj == NULL)
5819 		obj = obj_from_addr(arg);
5820 	if (obj == NULL) {
5821 		_rtld_error("No shared object contains address");
5822 		lock_release(rtld_bind_lock, &lockstate);
5823 		return (-1);
5824 	}
5825 	res = obj->dlopened ? 1 : 0;
5826 	lock_release(rtld_bind_lock, &lockstate);
5827 	return (res);
5828 }
5829 
5830 static int
5831 obj_remap_relro(Obj_Entry *obj, int prot)
5832 {
5833 
5834 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5835 	    prot) == -1) {
5836 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5837 		    obj->path, prot, rtld_strerror(errno));
5838 		return (-1);
5839 	}
5840 	return (0);
5841 }
5842 
5843 static int
5844 obj_disable_relro(Obj_Entry *obj)
5845 {
5846 
5847 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5848 }
5849 
5850 static int
5851 obj_enforce_relro(Obj_Entry *obj)
5852 {
5853 
5854 	return (obj_remap_relro(obj, PROT_READ));
5855 }
5856 
5857 static void
5858 map_stacks_exec(RtldLockState *lockstate)
5859 {
5860 	void (*thr_map_stacks_exec)(void);
5861 
5862 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5863 		return;
5864 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5865 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5866 	if (thr_map_stacks_exec != NULL) {
5867 		stack_prot |= PROT_EXEC;
5868 		thr_map_stacks_exec();
5869 	}
5870 }
5871 
5872 static void
5873 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5874 {
5875 	Objlist_Entry *elm;
5876 	Obj_Entry *obj;
5877 	void (*distrib)(size_t, void *, size_t, size_t);
5878 
5879 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5880 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5881 	if (distrib == NULL)
5882 		return;
5883 	STAILQ_FOREACH(elm, list, link) {
5884 		obj = elm->obj;
5885 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5886 			continue;
5887 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5888 		    obj->tlssize);
5889 		obj->static_tls_copied = true;
5890 	}
5891 }
5892 
5893 void
5894 symlook_init(SymLook *dst, const char *name)
5895 {
5896 
5897 	bzero(dst, sizeof(*dst));
5898 	dst->name = name;
5899 	dst->hash = elf_hash(name);
5900 	dst->hash_gnu = gnu_hash(name);
5901 }
5902 
5903 static void
5904 symlook_init_from_req(SymLook *dst, const SymLook *src)
5905 {
5906 
5907 	dst->name = src->name;
5908 	dst->hash = src->hash;
5909 	dst->hash_gnu = src->hash_gnu;
5910 	dst->ventry = src->ventry;
5911 	dst->flags = src->flags;
5912 	dst->defobj_out = NULL;
5913 	dst->sym_out = NULL;
5914 	dst->lockstate = src->lockstate;
5915 }
5916 
5917 static int
5918 open_binary_fd(const char *argv0, bool search_in_path,
5919     const char **binpath_res)
5920 {
5921 	char *binpath, *pathenv, *pe, *res1;
5922 	const char *res;
5923 	int fd;
5924 
5925 	binpath = NULL;
5926 	res = NULL;
5927 	if (search_in_path && strchr(argv0, '/') == NULL) {
5928 		binpath = xmalloc(PATH_MAX);
5929 		pathenv = getenv("PATH");
5930 		if (pathenv == NULL) {
5931 			_rtld_error("-p and no PATH environment variable");
5932 			rtld_die();
5933 		}
5934 		pathenv = strdup(pathenv);
5935 		if (pathenv == NULL) {
5936 			_rtld_error("Cannot allocate memory");
5937 			rtld_die();
5938 		}
5939 		fd = -1;
5940 		errno = ENOENT;
5941 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5942 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5943 				continue;
5944 			if (binpath[0] != '\0' &&
5945 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5946 				continue;
5947 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5948 				continue;
5949 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5950 			if (fd != -1 || errno != ENOENT) {
5951 				res = binpath;
5952 				break;
5953 			}
5954 		}
5955 		free(pathenv);
5956 	} else {
5957 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5958 		res = argv0;
5959 	}
5960 
5961 	if (fd == -1) {
5962 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5963 		rtld_die();
5964 	}
5965 	if (res != NULL && res[0] != '/') {
5966 		res1 = xmalloc(PATH_MAX);
5967 		if (realpath(res, res1) != NULL) {
5968 			if (res != argv0)
5969 				free(__DECONST(char *, res));
5970 			res = res1;
5971 		} else {
5972 			free(res1);
5973 		}
5974 	}
5975 	*binpath_res = res;
5976 	return (fd);
5977 }
5978 
5979 /*
5980  * Parse a set of command-line arguments.
5981  */
5982 static int
5983 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5984     const char **argv0, bool *dir_ignore)
5985 {
5986 	const char *arg;
5987 	char machine[64];
5988 	size_t sz;
5989 	int arglen, fd, i, j, mib[2];
5990 	char opt;
5991 	bool seen_b, seen_f;
5992 
5993 	dbg("Parsing command-line arguments");
5994 	*use_pathp = false;
5995 	*fdp = -1;
5996 	*dir_ignore = false;
5997 	seen_b = seen_f = false;
5998 
5999 	for (i = 1; i < argc; i++ ) {
6000 		arg = argv[i];
6001 		dbg("argv[%d]: '%s'", i, arg);
6002 
6003 		/*
6004 		 * rtld arguments end with an explicit "--" or with the first
6005 		 * non-prefixed argument.
6006 		 */
6007 		if (strcmp(arg, "--") == 0) {
6008 			i++;
6009 			break;
6010 		}
6011 		if (arg[0] != '-')
6012 			break;
6013 
6014 		/*
6015 		 * All other arguments are single-character options that can
6016 		 * be combined, so we need to search through `arg` for them.
6017 		 */
6018 		arglen = strlen(arg);
6019 		for (j = 1; j < arglen; j++) {
6020 			opt = arg[j];
6021 			if (opt == 'h') {
6022 				print_usage(argv[0]);
6023 				_exit(0);
6024 			} else if (opt == 'b') {
6025 				if (seen_f) {
6026 					_rtld_error("Both -b and -f specified");
6027 					rtld_die();
6028 				}
6029 				i++;
6030 				*argv0 = argv[i];
6031 				seen_b = true;
6032 				break;
6033 			} else if (opt == 'd') {
6034 				*dir_ignore = true;
6035 				break;
6036 			} else if (opt == 'f') {
6037 				if (seen_b) {
6038 					_rtld_error("Both -b and -f specified");
6039 					rtld_die();
6040 				}
6041 
6042 				/*
6043 				 * -f XX can be used to specify a
6044 				 * descriptor for the binary named at
6045 				 * the command line (i.e., the later
6046 				 * argument will specify the process
6047 				 * name but the descriptor is what
6048 				 * will actually be executed).
6049 				 *
6050 				 * -f must be the last option in, e.g., -abcf.
6051 				 */
6052 				if (j != arglen - 1) {
6053 					_rtld_error("Invalid options: %s", arg);
6054 					rtld_die();
6055 				}
6056 				i++;
6057 				fd = parse_integer(argv[i]);
6058 				if (fd == -1) {
6059 					_rtld_error(
6060 					    "Invalid file descriptor: '%s'",
6061 					    argv[i]);
6062 					rtld_die();
6063 				}
6064 				*fdp = fd;
6065 				seen_f = true;
6066 				break;
6067 			} else if (opt == 'p') {
6068 				*use_pathp = true;
6069 			} else if (opt == 'u') {
6070 				trust = false;
6071 			} else if (opt == 'v') {
6072 				machine[0] = '\0';
6073 				mib[0] = CTL_HW;
6074 				mib[1] = HW_MACHINE;
6075 				sz = sizeof(machine);
6076 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6077 				ld_elf_hints_path = ld_get_env_var(
6078 				    LD_ELF_HINTS_PATH);
6079 				set_ld_elf_hints_path();
6080 				rtld_printf(
6081 				    "FreeBSD ld-elf.so.1 %s\n"
6082 				    "FreeBSD_version %d\n"
6083 				    "Default lib path %s\n"
6084 				    "Hints lib path %s\n"
6085 				    "Env prefix %s\n"
6086 				    "Default hint file %s\n"
6087 				    "Hint file %s\n"
6088 				    "libmap file %s\n",
6089 				    machine,
6090 				    __FreeBSD_version, ld_standard_library_path,
6091 				    gethints(false),
6092 				    ld_env_prefix, ld_elf_hints_default,
6093 				    ld_elf_hints_path,
6094 				    ld_path_libmap_conf);
6095 				_exit(0);
6096 			} else {
6097 				_rtld_error("Invalid argument: '%s'", arg);
6098 				print_usage(argv[0]);
6099 				rtld_die();
6100 			}
6101 		}
6102 	}
6103 
6104 	if (!seen_b)
6105 		*argv0 = argv[i];
6106 	return (i);
6107 }
6108 
6109 /*
6110  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6111  */
6112 static int
6113 parse_integer(const char *str)
6114 {
6115 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6116 	const char *orig;
6117 	int n;
6118 	char c;
6119 
6120 	orig = str;
6121 	n = 0;
6122 	for (c = *str; c != '\0'; c = *++str) {
6123 		if (c < '0' || c > '9')
6124 			return (-1);
6125 
6126 		n *= RADIX;
6127 		n += c - '0';
6128 	}
6129 
6130 	/* Make sure we actually parsed something. */
6131 	if (str == orig)
6132 		return (-1);
6133 	return (n);
6134 }
6135 
6136 static void
6137 print_usage(const char *argv0)
6138 {
6139 
6140 	rtld_printf(
6141 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6142 	    "\n"
6143 	    "Options:\n"
6144 	    "  -h        Display this help message\n"
6145 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6146 	    "  -d        Ignore lack of exec permissions for the binary\n"
6147 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6148 	    "  -p        Search in PATH for named binary\n"
6149 	    "  -u        Ignore LD_ environment variables\n"
6150 	    "  -v        Display identification information\n"
6151 	    "  --        End of RTLD options\n"
6152 	    "  <binary>  Name of process to execute\n"
6153 	    "  <args>    Arguments to the executed process\n", argv0);
6154 }
6155 
6156 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6157 static const struct auxfmt {
6158 	const char *name;
6159 	const char *fmt;
6160 } auxfmts[] = {
6161 	AUXFMT(AT_NULL, NULL),
6162 	AUXFMT(AT_IGNORE, NULL),
6163 	AUXFMT(AT_EXECFD, "%ld"),
6164 	AUXFMT(AT_PHDR, "%p"),
6165 	AUXFMT(AT_PHENT, "%lu"),
6166 	AUXFMT(AT_PHNUM, "%lu"),
6167 	AUXFMT(AT_PAGESZ, "%lu"),
6168 	AUXFMT(AT_BASE, "%#lx"),
6169 	AUXFMT(AT_FLAGS, "%#lx"),
6170 	AUXFMT(AT_ENTRY, "%p"),
6171 	AUXFMT(AT_NOTELF, NULL),
6172 	AUXFMT(AT_UID, "%ld"),
6173 	AUXFMT(AT_EUID, "%ld"),
6174 	AUXFMT(AT_GID, "%ld"),
6175 	AUXFMT(AT_EGID, "%ld"),
6176 	AUXFMT(AT_EXECPATH, "%s"),
6177 	AUXFMT(AT_CANARY, "%p"),
6178 	AUXFMT(AT_CANARYLEN, "%lu"),
6179 	AUXFMT(AT_OSRELDATE, "%lu"),
6180 	AUXFMT(AT_NCPUS, "%lu"),
6181 	AUXFMT(AT_PAGESIZES, "%p"),
6182 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6183 	AUXFMT(AT_TIMEKEEP, "%p"),
6184 	AUXFMT(AT_STACKPROT, "%#lx"),
6185 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6186 	AUXFMT(AT_HWCAP, "%#lx"),
6187 	AUXFMT(AT_HWCAP2, "%#lx"),
6188 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6189 	AUXFMT(AT_ARGC, "%lu"),
6190 	AUXFMT(AT_ARGV, "%p"),
6191 	AUXFMT(AT_ENVC, "%p"),
6192 	AUXFMT(AT_ENVV, "%p"),
6193 	AUXFMT(AT_PS_STRINGS, "%p"),
6194 	AUXFMT(AT_FXRNG, "%p"),
6195 	AUXFMT(AT_KPRELOAD, "%p"),
6196 };
6197 
6198 static bool
6199 is_ptr_fmt(const char *fmt)
6200 {
6201 	char last;
6202 
6203 	last = fmt[strlen(fmt) - 1];
6204 	return (last == 'p' || last == 's');
6205 }
6206 
6207 static void
6208 dump_auxv(Elf_Auxinfo **aux_info)
6209 {
6210 	Elf_Auxinfo *auxp;
6211 	const struct auxfmt *fmt;
6212 	int i;
6213 
6214 	for (i = 0; i < AT_COUNT; i++) {
6215 		auxp = aux_info[i];
6216 		if (auxp == NULL)
6217 			continue;
6218 		fmt = &auxfmts[i];
6219 		if (fmt->fmt == NULL)
6220 			continue;
6221 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6222 		if (is_ptr_fmt(fmt->fmt)) {
6223 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6224 			    auxp->a_un.a_ptr);
6225 		} else {
6226 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6227 			    auxp->a_un.a_val);
6228 		}
6229 		rtld_fdprintf(STDOUT_FILENO, "\n");
6230 	}
6231 }
6232 
6233 /*
6234  * Overrides for libc_pic-provided functions.
6235  */
6236 
6237 int
6238 __getosreldate(void)
6239 {
6240 	size_t len;
6241 	int oid[2];
6242 	int error, osrel;
6243 
6244 	if (osreldate != 0)
6245 		return (osreldate);
6246 
6247 	oid[0] = CTL_KERN;
6248 	oid[1] = KERN_OSRELDATE;
6249 	osrel = 0;
6250 	len = sizeof(osrel);
6251 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6252 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6253 		osreldate = osrel;
6254 	return (osreldate);
6255 }
6256 const char *
6257 rtld_strerror(int errnum)
6258 {
6259 
6260 	if (errnum < 0 || errnum >= sys_nerr)
6261 		return ("Unknown error");
6262 	return (sys_errlist[errnum]);
6263 }
6264 
6265 char *
6266 getenv(const char *name)
6267 {
6268 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6269 	    strlen(name))));
6270 }
6271 
6272 /* malloc */
6273 void *
6274 malloc(size_t nbytes)
6275 {
6276 
6277 	return (__crt_malloc(nbytes));
6278 }
6279 
6280 void *
6281 calloc(size_t num, size_t size)
6282 {
6283 
6284 	return (__crt_calloc(num, size));
6285 }
6286 
6287 void
6288 free(void *cp)
6289 {
6290 
6291 	__crt_free(cp);
6292 }
6293 
6294 void *
6295 realloc(void *cp, size_t nbytes)
6296 {
6297 
6298 	return (__crt_realloc(cp, nbytes));
6299 }
6300 
6301 extern int _rtld_version__FreeBSD_version __exported;
6302 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6303 
6304 extern char _rtld_version_laddr_offset __exported;
6305 char _rtld_version_laddr_offset;
6306 
6307 extern char _rtld_version_dlpi_tls_data __exported;
6308 char _rtld_version_dlpi_tls_data;
6309