xref: /freebsd/libexec/rtld-elf/rtld.c (revision 12e69f96a2a352f64e7854efcc4152c4c990f045)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern char* __progname;
81 extern void (*__cleanup)(void);
82 
83 
84 /*
85  * Function declarations.
86  */
87 static const char *basename(const char *);
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **, const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
91     const Elf_Dyn *);
92 static void digest_dynamic(Obj_Entry *, int);
93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
94 static Obj_Entry *dlcheck(void *);
95 static int dlclose_locked(void *, RtldLockState *);
96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
97     int lo_flags, int mode, RtldLockState *lockstate);
98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
100 static bool donelist_check(DoneList *, const Obj_Entry *);
101 static void errmsg_restore(char *);
102 static char *errmsg_save(void);
103 static void *fill_search_info(const char *, size_t, void *);
104 static char *find_library(const char *, const Obj_Entry *, int *);
105 static const char *gethints(bool);
106 static void hold_object(Obj_Entry *);
107 static void unhold_object(Obj_Entry *);
108 static void init_dag(Obj_Entry *);
109 static void init_marker(Obj_Entry *);
110 static void init_pagesizes(Elf_Auxinfo **aux_info);
111 static void init_rtld(caddr_t, Elf_Auxinfo **);
112 static void initlist_add_neededs(Needed_Entry *, Objlist *);
113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
114 static void linkmap_add(Obj_Entry *);
115 static void linkmap_delete(Obj_Entry *);
116 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
117 static void unload_filtees(Obj_Entry *, RtldLockState *);
118 static int load_needed_objects(Obj_Entry *, int);
119 static int load_preload_objects(void);
120 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
121 static void map_stacks_exec(RtldLockState *);
122 static int obj_enforce_relro(Obj_Entry *);
123 static Obj_Entry *obj_from_addr(const void *);
124 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
125 static void objlist_call_init(Objlist *, RtldLockState *);
126 static void objlist_clear(Objlist *);
127 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
128 static void objlist_init(Objlist *);
129 static void objlist_push_head(Objlist *, Obj_Entry *);
130 static void objlist_push_tail(Objlist *, Obj_Entry *);
131 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
132 static void objlist_remove(Objlist *, Obj_Entry *);
133 static int open_binary_fd(const char *argv0, bool search_in_path);
134 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
135 static int parse_integer(const char *);
136 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
137 static void print_usage(const char *argv0);
138 static void release_object(Obj_Entry *);
139 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
140     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
141 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
142     int flags, RtldLockState *lockstate);
143 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
144     RtldLockState *);
145 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
146     int flags, RtldLockState *lockstate);
147 static int rtld_dirname(const char *, char *);
148 static int rtld_dirname_abs(const char *, char *);
149 static void *rtld_dlopen(const char *name, int fd, int mode);
150 static void rtld_exit(void);
151 static char *search_library_path(const char *, const char *, const char *,
152     int *);
153 static char *search_library_pathfds(const char *, const char *, int *);
154 static const void **get_program_var_addr(const char *, RtldLockState *);
155 static void set_program_var(const char *, const void *);
156 static int symlook_default(SymLook *, const Obj_Entry *refobj);
157 static int symlook_global(SymLook *, DoneList *);
158 static void symlook_init_from_req(SymLook *, const SymLook *);
159 static int symlook_list(SymLook *, const Objlist *, DoneList *);
160 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
161 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
162 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
163 static void trace_loaded_objects(Obj_Entry *);
164 static void unlink_object(Obj_Entry *);
165 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
166 static void unref_dag(Obj_Entry *);
167 static void ref_dag(Obj_Entry *);
168 static char *origin_subst_one(Obj_Entry *, char *, const char *,
169     const char *, bool);
170 static char *origin_subst(Obj_Entry *, const char *);
171 static bool obj_resolve_origin(Obj_Entry *obj);
172 static void preinit_main(void);
173 static int  rtld_verify_versions(const Objlist *);
174 static int  rtld_verify_object_versions(Obj_Entry *);
175 static void object_add_name(Obj_Entry *, const char *);
176 static int  object_match_name(const Obj_Entry *, const char *);
177 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
178 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
179     struct dl_phdr_info *phdr_info);
180 static uint32_t gnu_hash(const char *);
181 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
182     const unsigned long);
183 
184 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
185 void _r_debug_postinit(struct link_map *) __noinline __exported;
186 
187 int __sys_openat(int, const char *, int, ...);
188 
189 /*
190  * Data declarations.
191  */
192 static char *error_message;	/* Message for dlerror(), or NULL */
193 struct r_debug r_debug __exported;	/* for GDB; */
194 static bool libmap_disable;	/* Disable libmap */
195 static bool ld_loadfltr;	/* Immediate filters processing */
196 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
197 static bool trust;		/* False for setuid and setgid programs */
198 static bool dangerous_ld_env;	/* True if environment variables have been
199 				   used to affect the libraries loaded */
200 bool ld_bind_not;		/* Disable PLT update */
201 static char *ld_bind_now;	/* Environment variable for immediate binding */
202 static char *ld_debug;		/* Environment variable for debugging */
203 static char *ld_library_path;	/* Environment variable for search path */
204 static char *ld_library_dirs;	/* Environment variable for library descriptors */
205 static char *ld_preload;	/* Environment variable for libraries to
206 				   load first */
207 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
208 static const char *ld_tracing;	/* Called from ldd to print libs */
209 static char *ld_utrace;		/* Use utrace() to log events. */
210 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
211 static Obj_Entry *obj_main;	/* The main program shared object */
212 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
213 static unsigned int obj_count;	/* Number of objects in obj_list */
214 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
215 
216 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
217   STAILQ_HEAD_INITIALIZER(list_global);
218 static Objlist list_main =	/* Objects loaded at program startup */
219   STAILQ_HEAD_INITIALIZER(list_main);
220 static Objlist list_fini =	/* Objects needing fini() calls */
221   STAILQ_HEAD_INITIALIZER(list_fini);
222 
223 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
224 
225 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
226 
227 extern Elf_Dyn _DYNAMIC;
228 #pragma weak _DYNAMIC
229 
230 int dlclose(void *) __exported;
231 char *dlerror(void) __exported;
232 void *dlopen(const char *, int) __exported;
233 void *fdlopen(int, int) __exported;
234 void *dlsym(void *, const char *) __exported;
235 dlfunc_t dlfunc(void *, const char *) __exported;
236 void *dlvsym(void *, const char *, const char *) __exported;
237 int dladdr(const void *, Dl_info *) __exported;
238 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
239     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
240 int dlinfo(void *, int , void *) __exported;
241 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
242 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
243 int _rtld_get_stack_prot(void) __exported;
244 int _rtld_is_dlopened(void *) __exported;
245 void _rtld_error(const char *, ...) __exported;
246 
247 /* Only here to fix -Wmissing-prototypes warnings */
248 int __getosreldate(void);
249 void __pthread_cxa_finalize(struct dl_phdr_info *a);
250 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
251 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
252 
253 
254 int npagesizes;
255 static int osreldate;
256 size_t *pagesizes;
257 
258 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
259 static int max_stack_flags;
260 
261 /*
262  * Global declarations normally provided by crt1.  The dynamic linker is
263  * not built with crt1, so we have to provide them ourselves.
264  */
265 char *__progname;
266 char **environ;
267 
268 /*
269  * Used to pass argc, argv to init functions.
270  */
271 int main_argc;
272 char **main_argv;
273 
274 /*
275  * Globals to control TLS allocation.
276  */
277 size_t tls_last_offset;		/* Static TLS offset of last module */
278 size_t tls_last_size;		/* Static TLS size of last module */
279 size_t tls_static_space;	/* Static TLS space allocated */
280 static size_t tls_static_max_align;
281 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
282 int tls_max_index = 1;		/* Largest module index allocated */
283 
284 static bool ld_library_path_rpath = false;
285 
286 /*
287  * Globals for path names, and such
288  */
289 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
290 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
291 const char *ld_path_rtld = _PATH_RTLD;
292 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
293 const char *ld_env_prefix = LD_;
294 
295 /*
296  * Fill in a DoneList with an allocation large enough to hold all of
297  * the currently-loaded objects.  Keep this as a macro since it calls
298  * alloca and we want that to occur within the scope of the caller.
299  */
300 #define donelist_init(dlp)					\
301     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
302     assert((dlp)->objs != NULL),				\
303     (dlp)->num_alloc = obj_count,				\
304     (dlp)->num_used = 0)
305 
306 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
307 	if (ld_utrace != NULL)					\
308 		ld_utrace_log(e, h, mb, ms, r, n);		\
309 } while (0)
310 
311 static void
312 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
313     int refcnt, const char *name)
314 {
315 	struct utrace_rtld ut;
316 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
317 
318 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
319 	ut.event = event;
320 	ut.handle = handle;
321 	ut.mapbase = mapbase;
322 	ut.mapsize = mapsize;
323 	ut.refcnt = refcnt;
324 	bzero(ut.name, sizeof(ut.name));
325 	if (name)
326 		strlcpy(ut.name, name, sizeof(ut.name));
327 	utrace(&ut, sizeof(ut));
328 }
329 
330 #ifdef RTLD_VARIANT_ENV_NAMES
331 /*
332  * construct the env variable based on the type of binary that's
333  * running.
334  */
335 static inline const char *
336 _LD(const char *var)
337 {
338 	static char buffer[128];
339 
340 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
341 	strlcat(buffer, var, sizeof(buffer));
342 	return (buffer);
343 }
344 #else
345 #define _LD(x)	LD_ x
346 #endif
347 
348 /*
349  * Main entry point for dynamic linking.  The first argument is the
350  * stack pointer.  The stack is expected to be laid out as described
351  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
352  * Specifically, the stack pointer points to a word containing
353  * ARGC.  Following that in the stack is a null-terminated sequence
354  * of pointers to argument strings.  Then comes a null-terminated
355  * sequence of pointers to environment strings.  Finally, there is a
356  * sequence of "auxiliary vector" entries.
357  *
358  * The second argument points to a place to store the dynamic linker's
359  * exit procedure pointer and the third to a place to store the main
360  * program's object.
361  *
362  * The return value is the main program's entry point.
363  */
364 func_ptr_type
365 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
366 {
367     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
368     Objlist_Entry *entry;
369     Obj_Entry *last_interposer, *obj, *preload_tail;
370     const Elf_Phdr *phdr;
371     Objlist initlist;
372     RtldLockState lockstate;
373     struct stat st;
374     Elf_Addr *argcp;
375     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
376     const char *argv0;
377     caddr_t imgentry;
378     char buf[MAXPATHLEN];
379     int argc, fd, i, phnum, rtld_argc;
380     bool dir_enable, explicit_fd, search_in_path;
381 
382     /*
383      * On entry, the dynamic linker itself has not been relocated yet.
384      * Be very careful not to reference any global data until after
385      * init_rtld has returned.  It is OK to reference file-scope statics
386      * and string constants, and to call static and global functions.
387      */
388 
389     /* Find the auxiliary vector on the stack. */
390     argcp = sp;
391     argc = *sp++;
392     argv = (char **) sp;
393     sp += argc + 1;	/* Skip over arguments and NULL terminator */
394     env = (char **) sp;
395     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
396 	;
397     aux = (Elf_Auxinfo *) sp;
398 
399     /* Digest the auxiliary vector. */
400     for (i = 0;  i < AT_COUNT;  i++)
401 	aux_info[i] = NULL;
402     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
403 	if (auxp->a_type < AT_COUNT)
404 	    aux_info[auxp->a_type] = auxp;
405     }
406 
407     /* Initialize and relocate ourselves. */
408     assert(aux_info[AT_BASE] != NULL);
409     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
410 
411     __progname = obj_rtld.path;
412     argv0 = argv[0] != NULL ? argv[0] : "(null)";
413     environ = env;
414     main_argc = argc;
415     main_argv = argv;
416 
417     trust = !issetugid();
418 
419     md_abi_variant_hook(aux_info);
420 
421     fd = -1;
422     if (aux_info[AT_EXECFD] != NULL) {
423 	fd = aux_info[AT_EXECFD]->a_un.a_val;
424     } else {
425 	assert(aux_info[AT_PHDR] != NULL);
426 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
427 	if (phdr == obj_rtld.phdr) {
428 	    if (!trust) {
429 		_rtld_error("Tainted process refusing to run binary %s",
430 		    argv0);
431 		rtld_die();
432 	    }
433 	    dbg("opening main program in direct exec mode");
434 	    if (argc >= 2) {
435 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
436 		argv0 = argv[rtld_argc];
437 		explicit_fd = (fd != -1);
438 		if (!explicit_fd)
439 		    fd = open_binary_fd(argv0, search_in_path);
440 		if (fstat(fd, &st) == -1) {
441 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
442 		      explicit_fd ? "user-provided descriptor" : argv0,
443 		      rtld_strerror(errno));
444 		    rtld_die();
445 		}
446 
447 		/*
448 		 * Rough emulation of the permission checks done by
449 		 * execve(2), only Unix DACs are checked, ACLs are
450 		 * ignored.  Preserve the semantic of disabling owner
451 		 * to execute if owner x bit is cleared, even if
452 		 * others x bit is enabled.
453 		 * mmap(2) does not allow to mmap with PROT_EXEC if
454 		 * binary' file comes from noexec mount.  We cannot
455 		 * set VV_TEXT on the binary.
456 		 */
457 		dir_enable = false;
458 		if (st.st_uid == geteuid()) {
459 		    if ((st.st_mode & S_IXUSR) != 0)
460 			dir_enable = true;
461 		} else if (st.st_gid == getegid()) {
462 		    if ((st.st_mode & S_IXGRP) != 0)
463 			dir_enable = true;
464 		} else if ((st.st_mode & S_IXOTH) != 0) {
465 		    dir_enable = true;
466 		}
467 		if (!dir_enable) {
468 		    _rtld_error("No execute permission for binary %s",
469 		        argv0);
470 		    rtld_die();
471 		}
472 
473 		/*
474 		 * For direct exec mode, argv[0] is the interpreter
475 		 * name, we must remove it and shift arguments left
476 		 * before invoking binary main.  Since stack layout
477 		 * places environment pointers and aux vectors right
478 		 * after the terminating NULL, we must shift
479 		 * environment and aux as well.
480 		 */
481 		main_argc = argc - rtld_argc;
482 		for (i = 0; i <= main_argc; i++)
483 		    argv[i] = argv[i + rtld_argc];
484 		*argcp -= rtld_argc;
485 		environ = env = envp = argv + main_argc + 1;
486 		do {
487 		    *envp = *(envp + rtld_argc);
488 		    envp++;
489 		} while (*envp != NULL);
490 		aux = auxp = (Elf_Auxinfo *)envp;
491 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
492 		for (;; auxp++, auxpf++) {
493 		    *auxp = *auxpf;
494 		    if (auxp->a_type == AT_NULL)
495 			    break;
496 		}
497 	    } else {
498 		_rtld_error("No binary");
499 		rtld_die();
500 	    }
501 	}
502     }
503 
504     ld_bind_now = getenv(_LD("BIND_NOW"));
505 
506     /*
507      * If the process is tainted, then we un-set the dangerous environment
508      * variables.  The process will be marked as tainted until setuid(2)
509      * is called.  If any child process calls setuid(2) we do not want any
510      * future processes to honor the potentially un-safe variables.
511      */
512     if (!trust) {
513 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
514 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
515 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
516 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
517 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
518 		_rtld_error("environment corrupt; aborting");
519 		rtld_die();
520 	}
521     }
522     ld_debug = getenv(_LD("DEBUG"));
523     if (ld_bind_now == NULL)
524 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
525     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
526     libmap_override = getenv(_LD("LIBMAP"));
527     ld_library_path = getenv(_LD("LIBRARY_PATH"));
528     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
529     ld_preload = getenv(_LD("PRELOAD"));
530     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
531     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
532     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
533     if (library_path_rpath != NULL) {
534 	    if (library_path_rpath[0] == 'y' ||
535 		library_path_rpath[0] == 'Y' ||
536 		library_path_rpath[0] == '1')
537 		    ld_library_path_rpath = true;
538 	    else
539 		    ld_library_path_rpath = false;
540     }
541     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
542 	(ld_library_path != NULL) || (ld_preload != NULL) ||
543 	(ld_elf_hints_path != NULL) || ld_loadfltr;
544     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
545     ld_utrace = getenv(_LD("UTRACE"));
546 
547     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
548 	ld_elf_hints_path = ld_elf_hints_default;
549 
550     if (ld_debug != NULL && *ld_debug != '\0')
551 	debug = 1;
552     dbg("%s is initialized, base address = %p", __progname,
553 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
554     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
555     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
556 
557     dbg("initializing thread locks");
558     lockdflt_init();
559 
560     /*
561      * Load the main program, or process its program header if it is
562      * already loaded.
563      */
564     if (fd != -1) {	/* Load the main program. */
565 	dbg("loading main program");
566 	obj_main = map_object(fd, argv0, NULL);
567 	close(fd);
568 	if (obj_main == NULL)
569 	    rtld_die();
570 	max_stack_flags = obj_main->stack_flags;
571     } else {				/* Main program already loaded. */
572 	dbg("processing main program's program header");
573 	assert(aux_info[AT_PHDR] != NULL);
574 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
575 	assert(aux_info[AT_PHNUM] != NULL);
576 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
577 	assert(aux_info[AT_PHENT] != NULL);
578 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
579 	assert(aux_info[AT_ENTRY] != NULL);
580 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
581 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
582 	    rtld_die();
583     }
584 
585     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
586 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
587 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
588 	    if (kexecpath[0] == '/')
589 		    obj_main->path = kexecpath;
590 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
591 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
592 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
593 		    obj_main->path = xstrdup(argv0);
594 	    else
595 		    obj_main->path = xstrdup(buf);
596     } else {
597 	    dbg("No AT_EXECPATH or direct exec");
598 	    obj_main->path = xstrdup(argv0);
599     }
600     dbg("obj_main path %s", obj_main->path);
601     obj_main->mainprog = true;
602 
603     if (aux_info[AT_STACKPROT] != NULL &&
604       aux_info[AT_STACKPROT]->a_un.a_val != 0)
605 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
606 
607 #ifndef COMPAT_32BIT
608     /*
609      * Get the actual dynamic linker pathname from the executable if
610      * possible.  (It should always be possible.)  That ensures that
611      * gdb will find the right dynamic linker even if a non-standard
612      * one is being used.
613      */
614     if (obj_main->interp != NULL &&
615       strcmp(obj_main->interp, obj_rtld.path) != 0) {
616 	free(obj_rtld.path);
617 	obj_rtld.path = xstrdup(obj_main->interp);
618         __progname = obj_rtld.path;
619     }
620 #endif
621 
622     digest_dynamic(obj_main, 0);
623     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
624 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
625 	obj_main->dynsymcount);
626 
627     linkmap_add(obj_main);
628     linkmap_add(&obj_rtld);
629 
630     /* Link the main program into the list of objects. */
631     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
632     obj_count++;
633     obj_loads++;
634 
635     /* Initialize a fake symbol for resolving undefined weak references. */
636     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
637     sym_zero.st_shndx = SHN_UNDEF;
638     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
639 
640     if (!libmap_disable)
641         libmap_disable = (bool)lm_init(libmap_override);
642 
643     dbg("loading LD_PRELOAD libraries");
644     if (load_preload_objects() == -1)
645 	rtld_die();
646     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
647 
648     dbg("loading needed objects");
649     if (load_needed_objects(obj_main, 0) == -1)
650 	rtld_die();
651 
652     /* Make a list of all objects loaded at startup. */
653     last_interposer = obj_main;
654     TAILQ_FOREACH(obj, &obj_list, next) {
655 	if (obj->marker)
656 	    continue;
657 	if (obj->z_interpose && obj != obj_main) {
658 	    objlist_put_after(&list_main, last_interposer, obj);
659 	    last_interposer = obj;
660 	} else {
661 	    objlist_push_tail(&list_main, obj);
662 	}
663     	obj->refcount++;
664     }
665 
666     dbg("checking for required versions");
667     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
668 	rtld_die();
669 
670     if (ld_tracing) {		/* We're done */
671 	trace_loaded_objects(obj_main);
672 	exit(0);
673     }
674 
675     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
676        dump_relocations(obj_main);
677        exit (0);
678     }
679 
680     /*
681      * Processing tls relocations requires having the tls offsets
682      * initialized.  Prepare offsets before starting initial
683      * relocation processing.
684      */
685     dbg("initializing initial thread local storage offsets");
686     STAILQ_FOREACH(entry, &list_main, link) {
687 	/*
688 	 * Allocate all the initial objects out of the static TLS
689 	 * block even if they didn't ask for it.
690 	 */
691 	allocate_tls_offset(entry->obj);
692     }
693 
694     if (relocate_objects(obj_main,
695       ld_bind_now != NULL && *ld_bind_now != '\0',
696       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
697 	rtld_die();
698 
699     dbg("doing copy relocations");
700     if (do_copy_relocations(obj_main) == -1)
701 	rtld_die();
702 
703     dbg("enforcing main obj relro");
704     if (obj_enforce_relro(obj_main) == -1)
705 	rtld_die();
706 
707     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
708        dump_relocations(obj_main);
709        exit (0);
710     }
711 
712     ifunc_init(aux);
713 
714     /*
715      * Setup TLS for main thread.  This must be done after the
716      * relocations are processed, since tls initialization section
717      * might be the subject for relocations.
718      */
719     dbg("initializing initial thread local storage");
720     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
721 
722     dbg("initializing key program variables");
723     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
724     set_program_var("environ", env);
725     set_program_var("__elf_aux_vector", aux);
726 
727     /* Make a list of init functions to call. */
728     objlist_init(&initlist);
729     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
730       preload_tail, &initlist);
731 
732     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
733 
734     map_stacks_exec(NULL);
735 
736     dbg("resolving ifuncs");
737     if (resolve_objects_ifunc(obj_main,
738       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
739       NULL) == -1)
740 	rtld_die();
741 
742     if (!obj_main->crt_no_init) {
743 	/*
744 	 * Make sure we don't call the main program's init and fini
745 	 * functions for binaries linked with old crt1 which calls
746 	 * _init itself.
747 	 */
748 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
749 	obj_main->preinit_array = obj_main->init_array =
750 	    obj_main->fini_array = (Elf_Addr)NULL;
751     }
752 
753     /*
754      * Execute MD initializers required before we call the objects'
755      * init functions.
756      */
757     pre_init();
758 
759     wlock_acquire(rtld_bind_lock, &lockstate);
760     if (obj_main->crt_no_init)
761 	preinit_main();
762     objlist_call_init(&initlist, &lockstate);
763     _r_debug_postinit(&obj_main->linkmap);
764     objlist_clear(&initlist);
765     dbg("loading filtees");
766     TAILQ_FOREACH(obj, &obj_list, next) {
767 	if (obj->marker)
768 	    continue;
769 	if (ld_loadfltr || obj->z_loadfltr)
770 	    load_filtees(obj, 0, &lockstate);
771     }
772     lock_release(rtld_bind_lock, &lockstate);
773 
774     dbg("transferring control to program entry point = %p", obj_main->entry);
775 
776     /* Return the exit procedure and the program entry point. */
777     *exit_proc = rtld_exit;
778     *objp = obj_main;
779     return (func_ptr_type) obj_main->entry;
780 }
781 
782 void *
783 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
784 {
785 	void *ptr;
786 	Elf_Addr target;
787 
788 	ptr = (void *)make_function_pointer(def, obj);
789 	target = call_ifunc_resolver(ptr);
790 	return ((void *)target);
791 }
792 
793 /*
794  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
795  * Changes to this function should be applied there as well.
796  */
797 Elf_Addr
798 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
799 {
800     const Elf_Rel *rel;
801     const Elf_Sym *def;
802     const Obj_Entry *defobj;
803     Elf_Addr *where;
804     Elf_Addr target;
805     RtldLockState lockstate;
806 
807     rlock_acquire(rtld_bind_lock, &lockstate);
808     if (sigsetjmp(lockstate.env, 0) != 0)
809 	    lock_upgrade(rtld_bind_lock, &lockstate);
810     if (obj->pltrel)
811 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
812     else
813 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
814 
815     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
816     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
817 	NULL, &lockstate);
818     if (def == NULL)
819 	rtld_die();
820     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
821 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
822     else
823 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
824 
825     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
826       defobj->strtab + def->st_name, basename(obj->path),
827       (void *)target, basename(defobj->path));
828 
829     /*
830      * Write the new contents for the jmpslot. Note that depending on
831      * architecture, the value which we need to return back to the
832      * lazy binding trampoline may or may not be the target
833      * address. The value returned from reloc_jmpslot() is the value
834      * that the trampoline needs.
835      */
836     target = reloc_jmpslot(where, target, defobj, obj, rel);
837     lock_release(rtld_bind_lock, &lockstate);
838     return target;
839 }
840 
841 /*
842  * Error reporting function.  Use it like printf.  If formats the message
843  * into a buffer, and sets things up so that the next call to dlerror()
844  * will return the message.
845  */
846 void
847 _rtld_error(const char *fmt, ...)
848 {
849     static char buf[512];
850     va_list ap;
851 
852     va_start(ap, fmt);
853     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
854     error_message = buf;
855     va_end(ap);
856     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
857 }
858 
859 /*
860  * Return a dynamically-allocated copy of the current error message, if any.
861  */
862 static char *
863 errmsg_save(void)
864 {
865     return error_message == NULL ? NULL : xstrdup(error_message);
866 }
867 
868 /*
869  * Restore the current error message from a copy which was previously saved
870  * by errmsg_save().  The copy is freed.
871  */
872 static void
873 errmsg_restore(char *saved_msg)
874 {
875     if (saved_msg == NULL)
876 	error_message = NULL;
877     else {
878 	_rtld_error("%s", saved_msg);
879 	free(saved_msg);
880     }
881 }
882 
883 static const char *
884 basename(const char *name)
885 {
886     const char *p = strrchr(name, '/');
887     return p != NULL ? p + 1 : name;
888 }
889 
890 static struct utsname uts;
891 
892 static char *
893 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
894     const char *subst, bool may_free)
895 {
896 	char *p, *p1, *res, *resp;
897 	int subst_len, kw_len, subst_count, old_len, new_len;
898 
899 	kw_len = strlen(kw);
900 
901 	/*
902 	 * First, count the number of the keyword occurrences, to
903 	 * preallocate the final string.
904 	 */
905 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
906 		p1 = strstr(p, kw);
907 		if (p1 == NULL)
908 			break;
909 	}
910 
911 	/*
912 	 * If the keyword is not found, just return.
913 	 *
914 	 * Return non-substituted string if resolution failed.  We
915 	 * cannot do anything more reasonable, the failure mode of the
916 	 * caller is unresolved library anyway.
917 	 */
918 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
919 		return (may_free ? real : xstrdup(real));
920 	if (obj != NULL)
921 		subst = obj->origin_path;
922 
923 	/*
924 	 * There is indeed something to substitute.  Calculate the
925 	 * length of the resulting string, and allocate it.
926 	 */
927 	subst_len = strlen(subst);
928 	old_len = strlen(real);
929 	new_len = old_len + (subst_len - kw_len) * subst_count;
930 	res = xmalloc(new_len + 1);
931 
932 	/*
933 	 * Now, execute the substitution loop.
934 	 */
935 	for (p = real, resp = res, *resp = '\0';;) {
936 		p1 = strstr(p, kw);
937 		if (p1 != NULL) {
938 			/* Copy the prefix before keyword. */
939 			memcpy(resp, p, p1 - p);
940 			resp += p1 - p;
941 			/* Keyword replacement. */
942 			memcpy(resp, subst, subst_len);
943 			resp += subst_len;
944 			*resp = '\0';
945 			p = p1 + kw_len;
946 		} else
947 			break;
948 	}
949 
950 	/* Copy to the end of string and finish. */
951 	strcat(resp, p);
952 	if (may_free)
953 		free(real);
954 	return (res);
955 }
956 
957 static char *
958 origin_subst(Obj_Entry *obj, const char *real)
959 {
960 	char *res1, *res2, *res3, *res4;
961 
962 	if (obj == NULL || !trust)
963 		return (xstrdup(real));
964 	if (uts.sysname[0] == '\0') {
965 		if (uname(&uts) != 0) {
966 			_rtld_error("utsname failed: %d", errno);
967 			return (NULL);
968 		}
969 	}
970 	/* __DECONST is safe here since without may_free real is unchanged */
971 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
972 	    false);
973 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
974 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
975 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
976 	return (res4);
977 }
978 
979 void
980 rtld_die(void)
981 {
982     const char *msg = dlerror();
983 
984     if (msg == NULL)
985 	msg = "Fatal error";
986     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
987     rtld_fdputstr(STDERR_FILENO, msg);
988     rtld_fdputchar(STDERR_FILENO, '\n');
989     _exit(1);
990 }
991 
992 /*
993  * Process a shared object's DYNAMIC section, and save the important
994  * information in its Obj_Entry structure.
995  */
996 static void
997 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
998     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
999 {
1000     const Elf_Dyn *dynp;
1001     Needed_Entry **needed_tail = &obj->needed;
1002     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1003     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1004     const Elf_Hashelt *hashtab;
1005     const Elf32_Word *hashval;
1006     Elf32_Word bkt, nmaskwords;
1007     int bloom_size32;
1008     int plttype = DT_REL;
1009 
1010     *dyn_rpath = NULL;
1011     *dyn_soname = NULL;
1012     *dyn_runpath = NULL;
1013 
1014     obj->bind_now = false;
1015     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1016 	switch (dynp->d_tag) {
1017 
1018 	case DT_REL:
1019 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1020 	    break;
1021 
1022 	case DT_RELSZ:
1023 	    obj->relsize = dynp->d_un.d_val;
1024 	    break;
1025 
1026 	case DT_RELENT:
1027 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1028 	    break;
1029 
1030 	case DT_JMPREL:
1031 	    obj->pltrel = (const Elf_Rel *)
1032 	      (obj->relocbase + dynp->d_un.d_ptr);
1033 	    break;
1034 
1035 	case DT_PLTRELSZ:
1036 	    obj->pltrelsize = dynp->d_un.d_val;
1037 	    break;
1038 
1039 	case DT_RELA:
1040 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1041 	    break;
1042 
1043 	case DT_RELASZ:
1044 	    obj->relasize = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_RELAENT:
1048 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1049 	    break;
1050 
1051 	case DT_PLTREL:
1052 	    plttype = dynp->d_un.d_val;
1053 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1054 	    break;
1055 
1056 	case DT_SYMTAB:
1057 	    obj->symtab = (const Elf_Sym *)
1058 	      (obj->relocbase + dynp->d_un.d_ptr);
1059 	    break;
1060 
1061 	case DT_SYMENT:
1062 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1063 	    break;
1064 
1065 	case DT_STRTAB:
1066 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_STRSZ:
1070 	    obj->strsize = dynp->d_un.d_val;
1071 	    break;
1072 
1073 	case DT_VERNEED:
1074 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1075 		dynp->d_un.d_val);
1076 	    break;
1077 
1078 	case DT_VERNEEDNUM:
1079 	    obj->verneednum = dynp->d_un.d_val;
1080 	    break;
1081 
1082 	case DT_VERDEF:
1083 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1084 		dynp->d_un.d_val);
1085 	    break;
1086 
1087 	case DT_VERDEFNUM:
1088 	    obj->verdefnum = dynp->d_un.d_val;
1089 	    break;
1090 
1091 	case DT_VERSYM:
1092 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1093 		dynp->d_un.d_val);
1094 	    break;
1095 
1096 	case DT_HASH:
1097 	    {
1098 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1099 		    dynp->d_un.d_ptr);
1100 		obj->nbuckets = hashtab[0];
1101 		obj->nchains = hashtab[1];
1102 		obj->buckets = hashtab + 2;
1103 		obj->chains = obj->buckets + obj->nbuckets;
1104 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1105 		  obj->buckets != NULL;
1106 	    }
1107 	    break;
1108 
1109 	case DT_GNU_HASH:
1110 	    {
1111 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1112 		    dynp->d_un.d_ptr);
1113 		obj->nbuckets_gnu = hashtab[0];
1114 		obj->symndx_gnu = hashtab[1];
1115 		nmaskwords = hashtab[2];
1116 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1117 		obj->maskwords_bm_gnu = nmaskwords - 1;
1118 		obj->shift2_gnu = hashtab[3];
1119 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1120 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1121 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1122 		  obj->symndx_gnu;
1123 		/* Number of bitmask words is required to be power of 2 */
1124 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1125 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1126 	    }
1127 	    break;
1128 
1129 	case DT_NEEDED:
1130 	    if (!obj->rtld) {
1131 		Needed_Entry *nep = NEW(Needed_Entry);
1132 		nep->name = dynp->d_un.d_val;
1133 		nep->obj = NULL;
1134 		nep->next = NULL;
1135 
1136 		*needed_tail = nep;
1137 		needed_tail = &nep->next;
1138 	    }
1139 	    break;
1140 
1141 	case DT_FILTER:
1142 	    if (!obj->rtld) {
1143 		Needed_Entry *nep = NEW(Needed_Entry);
1144 		nep->name = dynp->d_un.d_val;
1145 		nep->obj = NULL;
1146 		nep->next = NULL;
1147 
1148 		*needed_filtees_tail = nep;
1149 		needed_filtees_tail = &nep->next;
1150 	    }
1151 	    break;
1152 
1153 	case DT_AUXILIARY:
1154 	    if (!obj->rtld) {
1155 		Needed_Entry *nep = NEW(Needed_Entry);
1156 		nep->name = dynp->d_un.d_val;
1157 		nep->obj = NULL;
1158 		nep->next = NULL;
1159 
1160 		*needed_aux_filtees_tail = nep;
1161 		needed_aux_filtees_tail = &nep->next;
1162 	    }
1163 	    break;
1164 
1165 	case DT_PLTGOT:
1166 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1167 	    break;
1168 
1169 	case DT_TEXTREL:
1170 	    obj->textrel = true;
1171 	    break;
1172 
1173 	case DT_SYMBOLIC:
1174 	    obj->symbolic = true;
1175 	    break;
1176 
1177 	case DT_RPATH:
1178 	    /*
1179 	     * We have to wait until later to process this, because we
1180 	     * might not have gotten the address of the string table yet.
1181 	     */
1182 	    *dyn_rpath = dynp;
1183 	    break;
1184 
1185 	case DT_SONAME:
1186 	    *dyn_soname = dynp;
1187 	    break;
1188 
1189 	case DT_RUNPATH:
1190 	    *dyn_runpath = dynp;
1191 	    break;
1192 
1193 	case DT_INIT:
1194 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1195 	    break;
1196 
1197 	case DT_PREINIT_ARRAY:
1198 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1199 	    break;
1200 
1201 	case DT_PREINIT_ARRAYSZ:
1202 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1203 	    break;
1204 
1205 	case DT_INIT_ARRAY:
1206 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1207 	    break;
1208 
1209 	case DT_INIT_ARRAYSZ:
1210 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1211 	    break;
1212 
1213 	case DT_FINI:
1214 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1215 	    break;
1216 
1217 	case DT_FINI_ARRAY:
1218 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1219 	    break;
1220 
1221 	case DT_FINI_ARRAYSZ:
1222 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1223 	    break;
1224 
1225 	/*
1226 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1227 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1228 	 */
1229 
1230 #ifndef __mips__
1231 	case DT_DEBUG:
1232 	    if (!early)
1233 		dbg("Filling in DT_DEBUG entry");
1234 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1235 	    break;
1236 #endif
1237 
1238 	case DT_FLAGS:
1239 		if (dynp->d_un.d_val & DF_ORIGIN)
1240 		    obj->z_origin = true;
1241 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1242 		    obj->symbolic = true;
1243 		if (dynp->d_un.d_val & DF_TEXTREL)
1244 		    obj->textrel = true;
1245 		if (dynp->d_un.d_val & DF_BIND_NOW)
1246 		    obj->bind_now = true;
1247 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1248 		    ;*/
1249 	    break;
1250 #ifdef __mips__
1251 	case DT_MIPS_LOCAL_GOTNO:
1252 		obj->local_gotno = dynp->d_un.d_val;
1253 		break;
1254 
1255 	case DT_MIPS_SYMTABNO:
1256 		obj->symtabno = dynp->d_un.d_val;
1257 		break;
1258 
1259 	case DT_MIPS_GOTSYM:
1260 		obj->gotsym = dynp->d_un.d_val;
1261 		break;
1262 
1263 	case DT_MIPS_RLD_MAP:
1264 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1265 		break;
1266 
1267 	case DT_MIPS_PLTGOT:
1268 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1269 		    dynp->d_un.d_ptr);
1270 		break;
1271 
1272 #endif
1273 
1274 #ifdef __powerpc64__
1275 	case DT_PPC64_GLINK:
1276 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1277 		break;
1278 #endif
1279 
1280 	case DT_FLAGS_1:
1281 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1282 		    obj->z_noopen = true;
1283 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1284 		    obj->z_origin = true;
1285 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1286 		    obj->z_global = true;
1287 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1288 		    obj->bind_now = true;
1289 		if (dynp->d_un.d_val & DF_1_NODELETE)
1290 		    obj->z_nodelete = true;
1291 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1292 		    obj->z_loadfltr = true;
1293 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1294 		    obj->z_interpose = true;
1295 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1296 		    obj->z_nodeflib = true;
1297 	    break;
1298 
1299 	default:
1300 	    if (!early) {
1301 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1302 		    (long)dynp->d_tag);
1303 	    }
1304 	    break;
1305 	}
1306     }
1307 
1308     obj->traced = false;
1309 
1310     if (plttype == DT_RELA) {
1311 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1312 	obj->pltrel = NULL;
1313 	obj->pltrelasize = obj->pltrelsize;
1314 	obj->pltrelsize = 0;
1315     }
1316 
1317     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1318     if (obj->valid_hash_sysv)
1319 	obj->dynsymcount = obj->nchains;
1320     else if (obj->valid_hash_gnu) {
1321 	obj->dynsymcount = 0;
1322 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1323 	    if (obj->buckets_gnu[bkt] == 0)
1324 		continue;
1325 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1326 	    do
1327 		obj->dynsymcount++;
1328 	    while ((*hashval++ & 1u) == 0);
1329 	}
1330 	obj->dynsymcount += obj->symndx_gnu;
1331     }
1332 }
1333 
1334 static bool
1335 obj_resolve_origin(Obj_Entry *obj)
1336 {
1337 
1338 	if (obj->origin_path != NULL)
1339 		return (true);
1340 	obj->origin_path = xmalloc(PATH_MAX);
1341 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1342 }
1343 
1344 static void
1345 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1346     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1347 {
1348 
1349 	if (obj->z_origin && !obj_resolve_origin(obj))
1350 		rtld_die();
1351 
1352 	if (dyn_runpath != NULL) {
1353 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1354 		obj->runpath = origin_subst(obj, obj->runpath);
1355 	} else if (dyn_rpath != NULL) {
1356 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1357 		obj->rpath = origin_subst(obj, obj->rpath);
1358 	}
1359 	if (dyn_soname != NULL)
1360 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1361 }
1362 
1363 static void
1364 digest_dynamic(Obj_Entry *obj, int early)
1365 {
1366 	const Elf_Dyn *dyn_rpath;
1367 	const Elf_Dyn *dyn_soname;
1368 	const Elf_Dyn *dyn_runpath;
1369 
1370 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1371 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1372 }
1373 
1374 /*
1375  * Process a shared object's program header.  This is used only for the
1376  * main program, when the kernel has already loaded the main program
1377  * into memory before calling the dynamic linker.  It creates and
1378  * returns an Obj_Entry structure.
1379  */
1380 static Obj_Entry *
1381 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1382 {
1383     Obj_Entry *obj;
1384     const Elf_Phdr *phlimit = phdr + phnum;
1385     const Elf_Phdr *ph;
1386     Elf_Addr note_start, note_end;
1387     int nsegs = 0;
1388 
1389     obj = obj_new();
1390     for (ph = phdr;  ph < phlimit;  ph++) {
1391 	if (ph->p_type != PT_PHDR)
1392 	    continue;
1393 
1394 	obj->phdr = phdr;
1395 	obj->phsize = ph->p_memsz;
1396 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1397 	break;
1398     }
1399 
1400     obj->stack_flags = PF_X | PF_R | PF_W;
1401 
1402     for (ph = phdr;  ph < phlimit;  ph++) {
1403 	switch (ph->p_type) {
1404 
1405 	case PT_INTERP:
1406 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1407 	    break;
1408 
1409 	case PT_LOAD:
1410 	    if (nsegs == 0) {	/* First load segment */
1411 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1412 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1413 	    } else {		/* Last load segment */
1414 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1415 		  obj->vaddrbase;
1416 	    }
1417 	    nsegs++;
1418 	    if ((ph->p_flags & PF_X) == PF_X) {
1419 		obj->textsize = MAX(obj->textsize,
1420 		    round_page(ph->p_vaddr + ph->p_memsz) - obj->vaddrbase);
1421 	    }
1422 	    break;
1423 
1424 	case PT_DYNAMIC:
1425 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1426 	    break;
1427 
1428 	case PT_TLS:
1429 	    obj->tlsindex = 1;
1430 	    obj->tlssize = ph->p_memsz;
1431 	    obj->tlsalign = ph->p_align;
1432 	    obj->tlsinitsize = ph->p_filesz;
1433 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1434 	    break;
1435 
1436 	case PT_GNU_STACK:
1437 	    obj->stack_flags = ph->p_flags;
1438 	    break;
1439 
1440 	case PT_GNU_RELRO:
1441 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1442 	    obj->relro_size = round_page(ph->p_memsz);
1443 	    break;
1444 
1445 	case PT_NOTE:
1446 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1447 	    note_end = note_start + ph->p_filesz;
1448 	    digest_notes(obj, note_start, note_end);
1449 	    break;
1450 	}
1451     }
1452     if (nsegs < 1) {
1453 	_rtld_error("%s: too few PT_LOAD segments", path);
1454 	return NULL;
1455     }
1456 
1457     obj->entry = entry;
1458     return obj;
1459 }
1460 
1461 void
1462 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1463 {
1464 	const Elf_Note *note;
1465 	const char *note_name;
1466 	uintptr_t p;
1467 
1468 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1469 	    note = (const Elf_Note *)((const char *)(note + 1) +
1470 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1471 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1472 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1473 		    note->n_descsz != sizeof(int32_t))
1474 			continue;
1475 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1476 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1477 			continue;
1478 		note_name = (const char *)(note + 1);
1479 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1480 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1481 			continue;
1482 		switch (note->n_type) {
1483 		case NT_FREEBSD_ABI_TAG:
1484 			/* FreeBSD osrel note */
1485 			p = (uintptr_t)(note + 1);
1486 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1487 			obj->osrel = *(const int32_t *)(p);
1488 			dbg("note osrel %d", obj->osrel);
1489 			break;
1490 		case NT_FREEBSD_NOINIT_TAG:
1491 			/* FreeBSD 'crt does not call init' note */
1492 			obj->crt_no_init = true;
1493 			dbg("note crt_no_init");
1494 			break;
1495 		}
1496 	}
1497 }
1498 
1499 static Obj_Entry *
1500 dlcheck(void *handle)
1501 {
1502     Obj_Entry *obj;
1503 
1504     TAILQ_FOREACH(obj, &obj_list, next) {
1505 	if (obj == (Obj_Entry *) handle)
1506 	    break;
1507     }
1508 
1509     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1510 	_rtld_error("Invalid shared object handle %p", handle);
1511 	return NULL;
1512     }
1513     return obj;
1514 }
1515 
1516 /*
1517  * If the given object is already in the donelist, return true.  Otherwise
1518  * add the object to the list and return false.
1519  */
1520 static bool
1521 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1522 {
1523     unsigned int i;
1524 
1525     for (i = 0;  i < dlp->num_used;  i++)
1526 	if (dlp->objs[i] == obj)
1527 	    return true;
1528     /*
1529      * Our donelist allocation should always be sufficient.  But if
1530      * our threads locking isn't working properly, more shared objects
1531      * could have been loaded since we allocated the list.  That should
1532      * never happen, but we'll handle it properly just in case it does.
1533      */
1534     if (dlp->num_used < dlp->num_alloc)
1535 	dlp->objs[dlp->num_used++] = obj;
1536     return false;
1537 }
1538 
1539 /*
1540  * Hash function for symbol table lookup.  Don't even think about changing
1541  * this.  It is specified by the System V ABI.
1542  */
1543 unsigned long
1544 elf_hash(const char *name)
1545 {
1546     const unsigned char *p = (const unsigned char *) name;
1547     unsigned long h = 0;
1548     unsigned long g;
1549 
1550     while (*p != '\0') {
1551 	h = (h << 4) + *p++;
1552 	if ((g = h & 0xf0000000) != 0)
1553 	    h ^= g >> 24;
1554 	h &= ~g;
1555     }
1556     return h;
1557 }
1558 
1559 /*
1560  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1561  * unsigned in case it's implemented with a wider type.
1562  */
1563 static uint32_t
1564 gnu_hash(const char *s)
1565 {
1566 	uint32_t h;
1567 	unsigned char c;
1568 
1569 	h = 5381;
1570 	for (c = *s; c != '\0'; c = *++s)
1571 		h = h * 33 + c;
1572 	return (h & 0xffffffff);
1573 }
1574 
1575 
1576 /*
1577  * Find the library with the given name, and return its full pathname.
1578  * The returned string is dynamically allocated.  Generates an error
1579  * message and returns NULL if the library cannot be found.
1580  *
1581  * If the second argument is non-NULL, then it refers to an already-
1582  * loaded shared object, whose library search path will be searched.
1583  *
1584  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1585  * descriptor (which is close-on-exec) will be passed out via the third
1586  * argument.
1587  *
1588  * The search order is:
1589  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1590  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1591  *   LD_LIBRARY_PATH
1592  *   DT_RUNPATH in the referencing file
1593  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1594  *	 from list)
1595  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1596  *
1597  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1598  */
1599 static char *
1600 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1601 {
1602 	char *pathname, *refobj_path;
1603 	const char *name;
1604 	bool nodeflib, objgiven;
1605 
1606 	objgiven = refobj != NULL;
1607 
1608 	if (libmap_disable || !objgiven ||
1609 	    (name = lm_find(refobj->path, xname)) == NULL)
1610 		name = xname;
1611 
1612 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1613 		if (name[0] != '/' && !trust) {
1614 			_rtld_error("Absolute pathname required "
1615 			    "for shared object \"%s\"", name);
1616 			return (NULL);
1617 		}
1618 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1619 		    __DECONST(char *, name)));
1620 	}
1621 
1622 	dbg(" Searching for \"%s\"", name);
1623 	refobj_path = objgiven ? refobj->path : NULL;
1624 
1625 	/*
1626 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1627 	 * back to pre-conforming behaviour if user requested so with
1628 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1629 	 * nodeflib.
1630 	 */
1631 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1632 		pathname = search_library_path(name, ld_library_path,
1633 		    refobj_path, fdp);
1634 		if (pathname != NULL)
1635 			return (pathname);
1636 		if (refobj != NULL) {
1637 			pathname = search_library_path(name, refobj->rpath,
1638 			    refobj_path, fdp);
1639 			if (pathname != NULL)
1640 				return (pathname);
1641 		}
1642 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1643 		if (pathname != NULL)
1644 			return (pathname);
1645 		pathname = search_library_path(name, gethints(false),
1646 		    refobj_path, fdp);
1647 		if (pathname != NULL)
1648 			return (pathname);
1649 		pathname = search_library_path(name, ld_standard_library_path,
1650 		    refobj_path, fdp);
1651 		if (pathname != NULL)
1652 			return (pathname);
1653 	} else {
1654 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1655 		if (objgiven) {
1656 			pathname = search_library_path(name, refobj->rpath,
1657 			    refobj->path, fdp);
1658 			if (pathname != NULL)
1659 				return (pathname);
1660 		}
1661 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1662 			pathname = search_library_path(name, obj_main->rpath,
1663 			    refobj_path, fdp);
1664 			if (pathname != NULL)
1665 				return (pathname);
1666 		}
1667 		pathname = search_library_path(name, ld_library_path,
1668 		    refobj_path, fdp);
1669 		if (pathname != NULL)
1670 			return (pathname);
1671 		if (objgiven) {
1672 			pathname = search_library_path(name, refobj->runpath,
1673 			    refobj_path, fdp);
1674 			if (pathname != NULL)
1675 				return (pathname);
1676 		}
1677 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1678 		if (pathname != NULL)
1679 			return (pathname);
1680 		pathname = search_library_path(name, gethints(nodeflib),
1681 		    refobj_path, fdp);
1682 		if (pathname != NULL)
1683 			return (pathname);
1684 		if (objgiven && !nodeflib) {
1685 			pathname = search_library_path(name,
1686 			    ld_standard_library_path, refobj_path, fdp);
1687 			if (pathname != NULL)
1688 				return (pathname);
1689 		}
1690 	}
1691 
1692 	if (objgiven && refobj->path != NULL) {
1693 		_rtld_error("Shared object \"%s\" not found, "
1694 		    "required by \"%s\"", name, basename(refobj->path));
1695 	} else {
1696 		_rtld_error("Shared object \"%s\" not found", name);
1697 	}
1698 	return (NULL);
1699 }
1700 
1701 /*
1702  * Given a symbol number in a referencing object, find the corresponding
1703  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1704  * no definition was found.  Returns a pointer to the Obj_Entry of the
1705  * defining object via the reference parameter DEFOBJ_OUT.
1706  */
1707 const Elf_Sym *
1708 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1709     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1710     RtldLockState *lockstate)
1711 {
1712     const Elf_Sym *ref;
1713     const Elf_Sym *def;
1714     const Obj_Entry *defobj;
1715     const Ver_Entry *ve;
1716     SymLook req;
1717     const char *name;
1718     int res;
1719 
1720     /*
1721      * If we have already found this symbol, get the information from
1722      * the cache.
1723      */
1724     if (symnum >= refobj->dynsymcount)
1725 	return NULL;	/* Bad object */
1726     if (cache != NULL && cache[symnum].sym != NULL) {
1727 	*defobj_out = cache[symnum].obj;
1728 	return cache[symnum].sym;
1729     }
1730 
1731     ref = refobj->symtab + symnum;
1732     name = refobj->strtab + ref->st_name;
1733     def = NULL;
1734     defobj = NULL;
1735     ve = NULL;
1736 
1737     /*
1738      * We don't have to do a full scale lookup if the symbol is local.
1739      * We know it will bind to the instance in this load module; to
1740      * which we already have a pointer (ie ref). By not doing a lookup,
1741      * we not only improve performance, but it also avoids unresolvable
1742      * symbols when local symbols are not in the hash table. This has
1743      * been seen with the ia64 toolchain.
1744      */
1745     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1746 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1747 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1748 		symnum);
1749 	}
1750 	symlook_init(&req, name);
1751 	req.flags = flags;
1752 	ve = req.ventry = fetch_ventry(refobj, symnum);
1753 	req.lockstate = lockstate;
1754 	res = symlook_default(&req, refobj);
1755 	if (res == 0) {
1756 	    def = req.sym_out;
1757 	    defobj = req.defobj_out;
1758 	}
1759     } else {
1760 	def = ref;
1761 	defobj = refobj;
1762     }
1763 
1764     /*
1765      * If we found no definition and the reference is weak, treat the
1766      * symbol as having the value zero.
1767      */
1768     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1769 	def = &sym_zero;
1770 	defobj = obj_main;
1771     }
1772 
1773     if (def != NULL) {
1774 	*defobj_out = defobj;
1775 	/* Record the information in the cache to avoid subsequent lookups. */
1776 	if (cache != NULL) {
1777 	    cache[symnum].sym = def;
1778 	    cache[symnum].obj = defobj;
1779 	}
1780     } else {
1781 	if (refobj != &obj_rtld)
1782 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1783 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1784     }
1785     return def;
1786 }
1787 
1788 /*
1789  * Return the search path from the ldconfig hints file, reading it if
1790  * necessary.  If nostdlib is true, then the default search paths are
1791  * not added to result.
1792  *
1793  * Returns NULL if there are problems with the hints file,
1794  * or if the search path there is empty.
1795  */
1796 static const char *
1797 gethints(bool nostdlib)
1798 {
1799 	static char *filtered_path;
1800 	static const char *hints;
1801 	static struct elfhints_hdr hdr;
1802 	struct fill_search_info_args sargs, hargs;
1803 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1804 	struct dl_serpath *SLPpath, *hintpath;
1805 	char *p;
1806 	struct stat hint_stat;
1807 	unsigned int SLPndx, hintndx, fndx, fcount;
1808 	int fd;
1809 	size_t flen;
1810 	uint32_t dl;
1811 	bool skip;
1812 
1813 	/* First call, read the hints file */
1814 	if (hints == NULL) {
1815 		/* Keep from trying again in case the hints file is bad. */
1816 		hints = "";
1817 
1818 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1819 			return (NULL);
1820 
1821 		/*
1822 		 * Check of hdr.dirlistlen value against type limit
1823 		 * intends to pacify static analyzers.  Further
1824 		 * paranoia leads to checks that dirlist is fully
1825 		 * contained in the file range.
1826 		 */
1827 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1828 		    hdr.magic != ELFHINTS_MAGIC ||
1829 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1830 		    fstat(fd, &hint_stat) == -1) {
1831 cleanup1:
1832 			close(fd);
1833 			hdr.dirlistlen = 0;
1834 			return (NULL);
1835 		}
1836 		dl = hdr.strtab;
1837 		if (dl + hdr.dirlist < dl)
1838 			goto cleanup1;
1839 		dl += hdr.dirlist;
1840 		if (dl + hdr.dirlistlen < dl)
1841 			goto cleanup1;
1842 		dl += hdr.dirlistlen;
1843 		if (dl > hint_stat.st_size)
1844 			goto cleanup1;
1845 		p = xmalloc(hdr.dirlistlen + 1);
1846 		if (pread(fd, p, hdr.dirlistlen + 1,
1847 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1848 		    p[hdr.dirlistlen] != '\0') {
1849 			free(p);
1850 			goto cleanup1;
1851 		}
1852 		hints = p;
1853 		close(fd);
1854 	}
1855 
1856 	/*
1857 	 * If caller agreed to receive list which includes the default
1858 	 * paths, we are done. Otherwise, if we still did not
1859 	 * calculated filtered result, do it now.
1860 	 */
1861 	if (!nostdlib)
1862 		return (hints[0] != '\0' ? hints : NULL);
1863 	if (filtered_path != NULL)
1864 		goto filt_ret;
1865 
1866 	/*
1867 	 * Obtain the list of all configured search paths, and the
1868 	 * list of the default paths.
1869 	 *
1870 	 * First estimate the size of the results.
1871 	 */
1872 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1873 	smeta.dls_cnt = 0;
1874 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1875 	hmeta.dls_cnt = 0;
1876 
1877 	sargs.request = RTLD_DI_SERINFOSIZE;
1878 	sargs.serinfo = &smeta;
1879 	hargs.request = RTLD_DI_SERINFOSIZE;
1880 	hargs.serinfo = &hmeta;
1881 
1882 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1883 	    &sargs);
1884 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1885 
1886 	SLPinfo = xmalloc(smeta.dls_size);
1887 	hintinfo = xmalloc(hmeta.dls_size);
1888 
1889 	/*
1890 	 * Next fetch both sets of paths.
1891 	 */
1892 	sargs.request = RTLD_DI_SERINFO;
1893 	sargs.serinfo = SLPinfo;
1894 	sargs.serpath = &SLPinfo->dls_serpath[0];
1895 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1896 
1897 	hargs.request = RTLD_DI_SERINFO;
1898 	hargs.serinfo = hintinfo;
1899 	hargs.serpath = &hintinfo->dls_serpath[0];
1900 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1901 
1902 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1903 	    &sargs);
1904 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1905 
1906 	/*
1907 	 * Now calculate the difference between two sets, by excluding
1908 	 * standard paths from the full set.
1909 	 */
1910 	fndx = 0;
1911 	fcount = 0;
1912 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1913 	hintpath = &hintinfo->dls_serpath[0];
1914 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1915 		skip = false;
1916 		SLPpath = &SLPinfo->dls_serpath[0];
1917 		/*
1918 		 * Check each standard path against current.
1919 		 */
1920 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1921 			/* matched, skip the path */
1922 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1923 				skip = true;
1924 				break;
1925 			}
1926 		}
1927 		if (skip)
1928 			continue;
1929 		/*
1930 		 * Not matched against any standard path, add the path
1931 		 * to result. Separate consequtive paths with ':'.
1932 		 */
1933 		if (fcount > 0) {
1934 			filtered_path[fndx] = ':';
1935 			fndx++;
1936 		}
1937 		fcount++;
1938 		flen = strlen(hintpath->dls_name);
1939 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1940 		fndx += flen;
1941 	}
1942 	filtered_path[fndx] = '\0';
1943 
1944 	free(SLPinfo);
1945 	free(hintinfo);
1946 
1947 filt_ret:
1948 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1949 }
1950 
1951 static void
1952 init_dag(Obj_Entry *root)
1953 {
1954     const Needed_Entry *needed;
1955     const Objlist_Entry *elm;
1956     DoneList donelist;
1957 
1958     if (root->dag_inited)
1959 	return;
1960     donelist_init(&donelist);
1961 
1962     /* Root object belongs to own DAG. */
1963     objlist_push_tail(&root->dldags, root);
1964     objlist_push_tail(&root->dagmembers, root);
1965     donelist_check(&donelist, root);
1966 
1967     /*
1968      * Add dependencies of root object to DAG in breadth order
1969      * by exploiting the fact that each new object get added
1970      * to the tail of the dagmembers list.
1971      */
1972     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1973 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1974 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1975 		continue;
1976 	    objlist_push_tail(&needed->obj->dldags, root);
1977 	    objlist_push_tail(&root->dagmembers, needed->obj);
1978 	}
1979     }
1980     root->dag_inited = true;
1981 }
1982 
1983 static void
1984 init_marker(Obj_Entry *marker)
1985 {
1986 
1987 	bzero(marker, sizeof(*marker));
1988 	marker->marker = true;
1989 }
1990 
1991 Obj_Entry *
1992 globallist_curr(const Obj_Entry *obj)
1993 {
1994 
1995 	for (;;) {
1996 		if (obj == NULL)
1997 			return (NULL);
1998 		if (!obj->marker)
1999 			return (__DECONST(Obj_Entry *, obj));
2000 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2001 	}
2002 }
2003 
2004 Obj_Entry *
2005 globallist_next(const Obj_Entry *obj)
2006 {
2007 
2008 	for (;;) {
2009 		obj = TAILQ_NEXT(obj, next);
2010 		if (obj == NULL)
2011 			return (NULL);
2012 		if (!obj->marker)
2013 			return (__DECONST(Obj_Entry *, obj));
2014 	}
2015 }
2016 
2017 /* Prevent the object from being unmapped while the bind lock is dropped. */
2018 static void
2019 hold_object(Obj_Entry *obj)
2020 {
2021 
2022 	obj->holdcount++;
2023 }
2024 
2025 static void
2026 unhold_object(Obj_Entry *obj)
2027 {
2028 
2029 	assert(obj->holdcount > 0);
2030 	if (--obj->holdcount == 0 && obj->unholdfree)
2031 		release_object(obj);
2032 }
2033 
2034 static void
2035 process_z(Obj_Entry *root)
2036 {
2037 	const Objlist_Entry *elm;
2038 	Obj_Entry *obj;
2039 
2040 	/*
2041 	 * Walk over object DAG and process every dependent object
2042 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2043 	 * to grow their own DAG.
2044 	 *
2045 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2046 	 * symlook_global() to work.
2047 	 *
2048 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2049 	 */
2050 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2051 		obj = elm->obj;
2052 		if (obj == NULL)
2053 			continue;
2054 		if (obj->z_nodelete && !obj->ref_nodel) {
2055 			dbg("obj %s -z nodelete", obj->path);
2056 			init_dag(obj);
2057 			ref_dag(obj);
2058 			obj->ref_nodel = true;
2059 		}
2060 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2061 			dbg("obj %s -z global", obj->path);
2062 			objlist_push_tail(&list_global, obj);
2063 			init_dag(obj);
2064 		}
2065 	}
2066 }
2067 /*
2068  * Initialize the dynamic linker.  The argument is the address at which
2069  * the dynamic linker has been mapped into memory.  The primary task of
2070  * this function is to relocate the dynamic linker.
2071  */
2072 static void
2073 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2074 {
2075     Obj_Entry objtmp;	/* Temporary rtld object */
2076     const Elf_Ehdr *ehdr;
2077     const Elf_Dyn *dyn_rpath;
2078     const Elf_Dyn *dyn_soname;
2079     const Elf_Dyn *dyn_runpath;
2080 
2081 #ifdef RTLD_INIT_PAGESIZES_EARLY
2082     /* The page size is required by the dynamic memory allocator. */
2083     init_pagesizes(aux_info);
2084 #endif
2085 
2086     /*
2087      * Conjure up an Obj_Entry structure for the dynamic linker.
2088      *
2089      * The "path" member can't be initialized yet because string constants
2090      * cannot yet be accessed. Below we will set it correctly.
2091      */
2092     memset(&objtmp, 0, sizeof(objtmp));
2093     objtmp.path = NULL;
2094     objtmp.rtld = true;
2095     objtmp.mapbase = mapbase;
2096 #ifdef PIC
2097     objtmp.relocbase = mapbase;
2098 #endif
2099 
2100     objtmp.dynamic = rtld_dynamic(&objtmp);
2101     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2102     assert(objtmp.needed == NULL);
2103 #if !defined(__mips__)
2104     /* MIPS has a bogus DT_TEXTREL. */
2105     assert(!objtmp.textrel);
2106 #endif
2107     /*
2108      * Temporarily put the dynamic linker entry into the object list, so
2109      * that symbols can be found.
2110      */
2111     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2112 
2113     ehdr = (Elf_Ehdr *)mapbase;
2114     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2115     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2116 
2117     /* Initialize the object list. */
2118     TAILQ_INIT(&obj_list);
2119 
2120     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2121     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2122 
2123 #ifndef RTLD_INIT_PAGESIZES_EARLY
2124     /* The page size is required by the dynamic memory allocator. */
2125     init_pagesizes(aux_info);
2126 #endif
2127 
2128     if (aux_info[AT_OSRELDATE] != NULL)
2129 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2130 
2131     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2132 
2133     /* Replace the path with a dynamically allocated copy. */
2134     obj_rtld.path = xstrdup(ld_path_rtld);
2135 
2136     r_debug.r_brk = r_debug_state;
2137     r_debug.r_state = RT_CONSISTENT;
2138 }
2139 
2140 /*
2141  * Retrieve the array of supported page sizes.  The kernel provides the page
2142  * sizes in increasing order.
2143  */
2144 static void
2145 init_pagesizes(Elf_Auxinfo **aux_info)
2146 {
2147 	static size_t psa[MAXPAGESIZES];
2148 	int mib[2];
2149 	size_t len, size;
2150 
2151 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2152 	    NULL) {
2153 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2154 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2155 	} else {
2156 		len = 2;
2157 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2158 			size = sizeof(psa);
2159 		else {
2160 			/* As a fallback, retrieve the base page size. */
2161 			size = sizeof(psa[0]);
2162 			if (aux_info[AT_PAGESZ] != NULL) {
2163 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2164 				goto psa_filled;
2165 			} else {
2166 				mib[0] = CTL_HW;
2167 				mib[1] = HW_PAGESIZE;
2168 				len = 2;
2169 			}
2170 		}
2171 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2172 			_rtld_error("sysctl for hw.pagesize(s) failed");
2173 			rtld_die();
2174 		}
2175 psa_filled:
2176 		pagesizes = psa;
2177 	}
2178 	npagesizes = size / sizeof(pagesizes[0]);
2179 	/* Discard any invalid entries at the end of the array. */
2180 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2181 		npagesizes--;
2182 }
2183 
2184 /*
2185  * Add the init functions from a needed object list (and its recursive
2186  * needed objects) to "list".  This is not used directly; it is a helper
2187  * function for initlist_add_objects().  The write lock must be held
2188  * when this function is called.
2189  */
2190 static void
2191 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2192 {
2193     /* Recursively process the successor needed objects. */
2194     if (needed->next != NULL)
2195 	initlist_add_neededs(needed->next, list);
2196 
2197     /* Process the current needed object. */
2198     if (needed->obj != NULL)
2199 	initlist_add_objects(needed->obj, needed->obj, list);
2200 }
2201 
2202 /*
2203  * Scan all of the DAGs rooted in the range of objects from "obj" to
2204  * "tail" and add their init functions to "list".  This recurses over
2205  * the DAGs and ensure the proper init ordering such that each object's
2206  * needed libraries are initialized before the object itself.  At the
2207  * same time, this function adds the objects to the global finalization
2208  * list "list_fini" in the opposite order.  The write lock must be
2209  * held when this function is called.
2210  */
2211 static void
2212 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2213 {
2214     Obj_Entry *nobj;
2215 
2216     if (obj->init_scanned || obj->init_done)
2217 	return;
2218     obj->init_scanned = true;
2219 
2220     /* Recursively process the successor objects. */
2221     nobj = globallist_next(obj);
2222     if (nobj != NULL && obj != tail)
2223 	initlist_add_objects(nobj, tail, list);
2224 
2225     /* Recursively process the needed objects. */
2226     if (obj->needed != NULL)
2227 	initlist_add_neededs(obj->needed, list);
2228     if (obj->needed_filtees != NULL)
2229 	initlist_add_neededs(obj->needed_filtees, list);
2230     if (obj->needed_aux_filtees != NULL)
2231 	initlist_add_neededs(obj->needed_aux_filtees, list);
2232 
2233     /* Add the object to the init list. */
2234     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2235       obj->init_array != (Elf_Addr)NULL)
2236 	objlist_push_tail(list, obj);
2237 
2238     /* Add the object to the global fini list in the reverse order. */
2239     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2240       && !obj->on_fini_list) {
2241 	objlist_push_head(&list_fini, obj);
2242 	obj->on_fini_list = true;
2243     }
2244 }
2245 
2246 #ifndef FPTR_TARGET
2247 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2248 #endif
2249 
2250 static void
2251 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2252 {
2253     Needed_Entry *needed, *needed1;
2254 
2255     for (needed = n; needed != NULL; needed = needed->next) {
2256 	if (needed->obj != NULL) {
2257 	    dlclose_locked(needed->obj, lockstate);
2258 	    needed->obj = NULL;
2259 	}
2260     }
2261     for (needed = n; needed != NULL; needed = needed1) {
2262 	needed1 = needed->next;
2263 	free(needed);
2264     }
2265 }
2266 
2267 static void
2268 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2269 {
2270 
2271 	free_needed_filtees(obj->needed_filtees, lockstate);
2272 	obj->needed_filtees = NULL;
2273 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2274 	obj->needed_aux_filtees = NULL;
2275 	obj->filtees_loaded = false;
2276 }
2277 
2278 static void
2279 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2280     RtldLockState *lockstate)
2281 {
2282 
2283     for (; needed != NULL; needed = needed->next) {
2284 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2285 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2286 	  RTLD_LOCAL, lockstate);
2287     }
2288 }
2289 
2290 static void
2291 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2292 {
2293 
2294     lock_restart_for_upgrade(lockstate);
2295     if (!obj->filtees_loaded) {
2296 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2297 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2298 	obj->filtees_loaded = true;
2299     }
2300 }
2301 
2302 static int
2303 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2304 {
2305     Obj_Entry *obj1;
2306 
2307     for (; needed != NULL; needed = needed->next) {
2308 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2309 	  flags & ~RTLD_LO_NOLOAD);
2310 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2311 	    return (-1);
2312     }
2313     return (0);
2314 }
2315 
2316 /*
2317  * Given a shared object, traverse its list of needed objects, and load
2318  * each of them.  Returns 0 on success.  Generates an error message and
2319  * returns -1 on failure.
2320  */
2321 static int
2322 load_needed_objects(Obj_Entry *first, int flags)
2323 {
2324     Obj_Entry *obj;
2325 
2326     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2327 	if (obj->marker)
2328 	    continue;
2329 	if (process_needed(obj, obj->needed, flags) == -1)
2330 	    return (-1);
2331     }
2332     return (0);
2333 }
2334 
2335 static int
2336 load_preload_objects(void)
2337 {
2338     char *p = ld_preload;
2339     Obj_Entry *obj;
2340     static const char delim[] = " \t:;";
2341 
2342     if (p == NULL)
2343 	return 0;
2344 
2345     p += strspn(p, delim);
2346     while (*p != '\0') {
2347 	size_t len = strcspn(p, delim);
2348 	char savech;
2349 
2350 	savech = p[len];
2351 	p[len] = '\0';
2352 	obj = load_object(p, -1, NULL, 0);
2353 	if (obj == NULL)
2354 	    return -1;	/* XXX - cleanup */
2355 	obj->z_interpose = true;
2356 	p[len] = savech;
2357 	p += len;
2358 	p += strspn(p, delim);
2359     }
2360     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2361     return 0;
2362 }
2363 
2364 static const char *
2365 printable_path(const char *path)
2366 {
2367 
2368 	return (path == NULL ? "<unknown>" : path);
2369 }
2370 
2371 /*
2372  * Load a shared object into memory, if it is not already loaded.  The
2373  * object may be specified by name or by user-supplied file descriptor
2374  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2375  * duplicate is.
2376  *
2377  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2378  * on failure.
2379  */
2380 static Obj_Entry *
2381 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2382 {
2383     Obj_Entry *obj;
2384     int fd;
2385     struct stat sb;
2386     char *path;
2387 
2388     fd = -1;
2389     if (name != NULL) {
2390 	TAILQ_FOREACH(obj, &obj_list, next) {
2391 	    if (obj->marker || obj->doomed)
2392 		continue;
2393 	    if (object_match_name(obj, name))
2394 		return (obj);
2395 	}
2396 
2397 	path = find_library(name, refobj, &fd);
2398 	if (path == NULL)
2399 	    return (NULL);
2400     } else
2401 	path = NULL;
2402 
2403     if (fd >= 0) {
2404 	/*
2405 	 * search_library_pathfds() opens a fresh file descriptor for the
2406 	 * library, so there is no need to dup().
2407 	 */
2408     } else if (fd_u == -1) {
2409 	/*
2410 	 * If we didn't find a match by pathname, or the name is not
2411 	 * supplied, open the file and check again by device and inode.
2412 	 * This avoids false mismatches caused by multiple links or ".."
2413 	 * in pathnames.
2414 	 *
2415 	 * To avoid a race, we open the file and use fstat() rather than
2416 	 * using stat().
2417 	 */
2418 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2419 	    _rtld_error("Cannot open \"%s\"", path);
2420 	    free(path);
2421 	    return (NULL);
2422 	}
2423     } else {
2424 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2425 	if (fd == -1) {
2426 	    _rtld_error("Cannot dup fd");
2427 	    free(path);
2428 	    return (NULL);
2429 	}
2430     }
2431     if (fstat(fd, &sb) == -1) {
2432 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2433 	close(fd);
2434 	free(path);
2435 	return NULL;
2436     }
2437     TAILQ_FOREACH(obj, &obj_list, next) {
2438 	if (obj->marker || obj->doomed)
2439 	    continue;
2440 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2441 	    break;
2442     }
2443     if (obj != NULL && name != NULL) {
2444 	object_add_name(obj, name);
2445 	free(path);
2446 	close(fd);
2447 	return obj;
2448     }
2449     if (flags & RTLD_LO_NOLOAD) {
2450 	free(path);
2451 	close(fd);
2452 	return (NULL);
2453     }
2454 
2455     /* First use of this object, so we must map it in */
2456     obj = do_load_object(fd, name, path, &sb, flags);
2457     if (obj == NULL)
2458 	free(path);
2459     close(fd);
2460 
2461     return obj;
2462 }
2463 
2464 static Obj_Entry *
2465 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2466   int flags)
2467 {
2468     Obj_Entry *obj;
2469     struct statfs fs;
2470 
2471     /*
2472      * but first, make sure that environment variables haven't been
2473      * used to circumvent the noexec flag on a filesystem.
2474      */
2475     if (dangerous_ld_env) {
2476 	if (fstatfs(fd, &fs) != 0) {
2477 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2478 	    return NULL;
2479 	}
2480 	if (fs.f_flags & MNT_NOEXEC) {
2481 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2482 	    return NULL;
2483 	}
2484     }
2485     dbg("loading \"%s\"", printable_path(path));
2486     obj = map_object(fd, printable_path(path), sbp);
2487     if (obj == NULL)
2488         return NULL;
2489 
2490     /*
2491      * If DT_SONAME is present in the object, digest_dynamic2 already
2492      * added it to the object names.
2493      */
2494     if (name != NULL)
2495 	object_add_name(obj, name);
2496     obj->path = path;
2497     digest_dynamic(obj, 0);
2498     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2499 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2500     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2501       RTLD_LO_DLOPEN) {
2502 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2503 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2504 	munmap(obj->mapbase, obj->mapsize);
2505 	obj_free(obj);
2506 	return (NULL);
2507     }
2508 
2509     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2510     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2511     obj_count++;
2512     obj_loads++;
2513     linkmap_add(obj);	/* for GDB & dlinfo() */
2514     max_stack_flags |= obj->stack_flags;
2515 
2516     dbg("  %p .. %p: %s", obj->mapbase,
2517          obj->mapbase + obj->mapsize - 1, obj->path);
2518     if (obj->textrel)
2519 	dbg("  WARNING: %s has impure text", obj->path);
2520     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2521 	obj->path);
2522 
2523     return obj;
2524 }
2525 
2526 static Obj_Entry *
2527 obj_from_addr(const void *addr)
2528 {
2529     Obj_Entry *obj;
2530 
2531     TAILQ_FOREACH(obj, &obj_list, next) {
2532 	if (obj->marker)
2533 	    continue;
2534 	if (addr < (void *) obj->mapbase)
2535 	    continue;
2536 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2537 	    return obj;
2538     }
2539     return NULL;
2540 }
2541 
2542 static void
2543 preinit_main(void)
2544 {
2545     Elf_Addr *preinit_addr;
2546     int index;
2547 
2548     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2549     if (preinit_addr == NULL)
2550 	return;
2551 
2552     for (index = 0; index < obj_main->preinit_array_num; index++) {
2553 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2554 	    dbg("calling preinit function for %s at %p", obj_main->path,
2555 	      (void *)preinit_addr[index]);
2556 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2557 	      0, 0, obj_main->path);
2558 	    call_init_pointer(obj_main, preinit_addr[index]);
2559 	}
2560     }
2561 }
2562 
2563 /*
2564  * Call the finalization functions for each of the objects in "list"
2565  * belonging to the DAG of "root" and referenced once. If NULL "root"
2566  * is specified, every finalization function will be called regardless
2567  * of the reference count and the list elements won't be freed. All of
2568  * the objects are expected to have non-NULL fini functions.
2569  */
2570 static void
2571 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2572 {
2573     Objlist_Entry *elm;
2574     char *saved_msg;
2575     Elf_Addr *fini_addr;
2576     int index;
2577 
2578     assert(root == NULL || root->refcount == 1);
2579 
2580     if (root != NULL)
2581 	root->doomed = true;
2582 
2583     /*
2584      * Preserve the current error message since a fini function might
2585      * call into the dynamic linker and overwrite it.
2586      */
2587     saved_msg = errmsg_save();
2588     do {
2589 	STAILQ_FOREACH(elm, list, link) {
2590 	    if (root != NULL && (elm->obj->refcount != 1 ||
2591 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2592 		continue;
2593 	    /* Remove object from fini list to prevent recursive invocation. */
2594 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2595 	    /* Ensure that new references cannot be acquired. */
2596 	    elm->obj->doomed = true;
2597 
2598 	    hold_object(elm->obj);
2599 	    lock_release(rtld_bind_lock, lockstate);
2600 	    /*
2601 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2602 	     * When this happens, DT_FINI_ARRAY is processed first.
2603 	     */
2604 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2605 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2606 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2607 		  index--) {
2608 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2609 			dbg("calling fini function for %s at %p",
2610 			    elm->obj->path, (void *)fini_addr[index]);
2611 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2612 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2613 			call_initfini_pointer(elm->obj, fini_addr[index]);
2614 		    }
2615 		}
2616 	    }
2617 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2618 		dbg("calling fini function for %s at %p", elm->obj->path,
2619 		    (void *)elm->obj->fini);
2620 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2621 		    0, 0, elm->obj->path);
2622 		call_initfini_pointer(elm->obj, elm->obj->fini);
2623 	    }
2624 	    wlock_acquire(rtld_bind_lock, lockstate);
2625 	    unhold_object(elm->obj);
2626 	    /* No need to free anything if process is going down. */
2627 	    if (root != NULL)
2628 	    	free(elm);
2629 	    /*
2630 	     * We must restart the list traversal after every fini call
2631 	     * because a dlclose() call from the fini function or from
2632 	     * another thread might have modified the reference counts.
2633 	     */
2634 	    break;
2635 	}
2636     } while (elm != NULL);
2637     errmsg_restore(saved_msg);
2638 }
2639 
2640 /*
2641  * Call the initialization functions for each of the objects in
2642  * "list".  All of the objects are expected to have non-NULL init
2643  * functions.
2644  */
2645 static void
2646 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2647 {
2648     Objlist_Entry *elm;
2649     Obj_Entry *obj;
2650     char *saved_msg;
2651     Elf_Addr *init_addr;
2652     int index;
2653 
2654     /*
2655      * Clean init_scanned flag so that objects can be rechecked and
2656      * possibly initialized earlier if any of vectors called below
2657      * cause the change by using dlopen.
2658      */
2659     TAILQ_FOREACH(obj, &obj_list, next) {
2660 	if (obj->marker)
2661 	    continue;
2662 	obj->init_scanned = false;
2663     }
2664 
2665     /*
2666      * Preserve the current error message since an init function might
2667      * call into the dynamic linker and overwrite it.
2668      */
2669     saved_msg = errmsg_save();
2670     STAILQ_FOREACH(elm, list, link) {
2671 	if (elm->obj->init_done) /* Initialized early. */
2672 	    continue;
2673 	/*
2674 	 * Race: other thread might try to use this object before current
2675 	 * one completes the initialization. Not much can be done here
2676 	 * without better locking.
2677 	 */
2678 	elm->obj->init_done = true;
2679 	hold_object(elm->obj);
2680 	lock_release(rtld_bind_lock, lockstate);
2681 
2682         /*
2683          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2684          * When this happens, DT_INIT is processed first.
2685          */
2686 	if (elm->obj->init != (Elf_Addr)NULL) {
2687 	    dbg("calling init function for %s at %p", elm->obj->path,
2688 	        (void *)elm->obj->init);
2689 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2690 	        0, 0, elm->obj->path);
2691 	    call_initfini_pointer(elm->obj, elm->obj->init);
2692 	}
2693 	init_addr = (Elf_Addr *)elm->obj->init_array;
2694 	if (init_addr != NULL) {
2695 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2696 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2697 		    dbg("calling init function for %s at %p", elm->obj->path,
2698 			(void *)init_addr[index]);
2699 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2700 			(void *)init_addr[index], 0, 0, elm->obj->path);
2701 		    call_init_pointer(elm->obj, init_addr[index]);
2702 		}
2703 	    }
2704 	}
2705 	wlock_acquire(rtld_bind_lock, lockstate);
2706 	unhold_object(elm->obj);
2707     }
2708     errmsg_restore(saved_msg);
2709 }
2710 
2711 static void
2712 objlist_clear(Objlist *list)
2713 {
2714     Objlist_Entry *elm;
2715 
2716     while (!STAILQ_EMPTY(list)) {
2717 	elm = STAILQ_FIRST(list);
2718 	STAILQ_REMOVE_HEAD(list, link);
2719 	free(elm);
2720     }
2721 }
2722 
2723 static Objlist_Entry *
2724 objlist_find(Objlist *list, const Obj_Entry *obj)
2725 {
2726     Objlist_Entry *elm;
2727 
2728     STAILQ_FOREACH(elm, list, link)
2729 	if (elm->obj == obj)
2730 	    return elm;
2731     return NULL;
2732 }
2733 
2734 static void
2735 objlist_init(Objlist *list)
2736 {
2737     STAILQ_INIT(list);
2738 }
2739 
2740 static void
2741 objlist_push_head(Objlist *list, Obj_Entry *obj)
2742 {
2743     Objlist_Entry *elm;
2744 
2745     elm = NEW(Objlist_Entry);
2746     elm->obj = obj;
2747     STAILQ_INSERT_HEAD(list, elm, link);
2748 }
2749 
2750 static void
2751 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2752 {
2753     Objlist_Entry *elm;
2754 
2755     elm = NEW(Objlist_Entry);
2756     elm->obj = obj;
2757     STAILQ_INSERT_TAIL(list, elm, link);
2758 }
2759 
2760 static void
2761 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2762 {
2763 	Objlist_Entry *elm, *listelm;
2764 
2765 	STAILQ_FOREACH(listelm, list, link) {
2766 		if (listelm->obj == listobj)
2767 			break;
2768 	}
2769 	elm = NEW(Objlist_Entry);
2770 	elm->obj = obj;
2771 	if (listelm != NULL)
2772 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2773 	else
2774 		STAILQ_INSERT_TAIL(list, elm, link);
2775 }
2776 
2777 static void
2778 objlist_remove(Objlist *list, Obj_Entry *obj)
2779 {
2780     Objlist_Entry *elm;
2781 
2782     if ((elm = objlist_find(list, obj)) != NULL) {
2783 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2784 	free(elm);
2785     }
2786 }
2787 
2788 /*
2789  * Relocate dag rooted in the specified object.
2790  * Returns 0 on success, or -1 on failure.
2791  */
2792 
2793 static int
2794 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2795     int flags, RtldLockState *lockstate)
2796 {
2797 	Objlist_Entry *elm;
2798 	int error;
2799 
2800 	error = 0;
2801 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2802 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2803 		    lockstate);
2804 		if (error == -1)
2805 			break;
2806 	}
2807 	return (error);
2808 }
2809 
2810 /*
2811  * Prepare for, or clean after, relocating an object marked with
2812  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2813  * segments are remapped read-write.  After relocations are done, the
2814  * segment's permissions are returned back to the modes specified in
2815  * the phdrs.  If any relocation happened, or always for wired
2816  * program, COW is triggered.
2817  */
2818 static int
2819 reloc_textrel_prot(Obj_Entry *obj, bool before)
2820 {
2821 	const Elf_Phdr *ph;
2822 	void *base;
2823 	size_t l, sz;
2824 	int prot;
2825 
2826 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2827 	    l--, ph++) {
2828 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2829 			continue;
2830 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2831 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2832 		    trunc_page(ph->p_vaddr);
2833 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2834 		if (mprotect(base, sz, prot) == -1) {
2835 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2836 			    obj->path, before ? "en" : "dis",
2837 			    rtld_strerror(errno));
2838 			return (-1);
2839 		}
2840 	}
2841 	return (0);
2842 }
2843 
2844 /*
2845  * Relocate single object.
2846  * Returns 0 on success, or -1 on failure.
2847  */
2848 static int
2849 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2850     int flags, RtldLockState *lockstate)
2851 {
2852 
2853 	if (obj->relocated)
2854 		return (0);
2855 	obj->relocated = true;
2856 	if (obj != rtldobj)
2857 		dbg("relocating \"%s\"", obj->path);
2858 
2859 	if (obj->symtab == NULL || obj->strtab == NULL ||
2860 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2861 		_rtld_error("%s: Shared object has no run-time symbol table",
2862 			    obj->path);
2863 		return (-1);
2864 	}
2865 
2866 	/* There are relocations to the write-protected text segment. */
2867 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2868 		return (-1);
2869 
2870 	/* Process the non-PLT non-IFUNC relocations. */
2871 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2872 		return (-1);
2873 
2874 	/* Re-protected the text segment. */
2875 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2876 		return (-1);
2877 
2878 	/* Set the special PLT or GOT entries. */
2879 	init_pltgot(obj);
2880 
2881 	/* Process the PLT relocations. */
2882 	if (reloc_plt(obj) == -1)
2883 		return (-1);
2884 	/* Relocate the jump slots if we are doing immediate binding. */
2885 	if (obj->bind_now || bind_now)
2886 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2887 			return (-1);
2888 
2889 	/*
2890 	 * Process the non-PLT IFUNC relocations.  The relocations are
2891 	 * processed in two phases, because IFUNC resolvers may
2892 	 * reference other symbols, which must be readily processed
2893 	 * before resolvers are called.
2894 	 */
2895 	if (obj->non_plt_gnu_ifunc &&
2896 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2897 		return (-1);
2898 
2899 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2900 		return (-1);
2901 
2902 	/*
2903 	 * Set up the magic number and version in the Obj_Entry.  These
2904 	 * were checked in the crt1.o from the original ElfKit, so we
2905 	 * set them for backward compatibility.
2906 	 */
2907 	obj->magic = RTLD_MAGIC;
2908 	obj->version = RTLD_VERSION;
2909 
2910 	return (0);
2911 }
2912 
2913 /*
2914  * Relocate newly-loaded shared objects.  The argument is a pointer to
2915  * the Obj_Entry for the first such object.  All objects from the first
2916  * to the end of the list of objects are relocated.  Returns 0 on success,
2917  * or -1 on failure.
2918  */
2919 static int
2920 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2921     int flags, RtldLockState *lockstate)
2922 {
2923 	Obj_Entry *obj;
2924 	int error;
2925 
2926 	for (error = 0, obj = first;  obj != NULL;
2927 	    obj = TAILQ_NEXT(obj, next)) {
2928 		if (obj->marker)
2929 			continue;
2930 		error = relocate_object(obj, bind_now, rtldobj, flags,
2931 		    lockstate);
2932 		if (error == -1)
2933 			break;
2934 	}
2935 	return (error);
2936 }
2937 
2938 /*
2939  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2940  * referencing STT_GNU_IFUNC symbols is postponed till the other
2941  * relocations are done.  The indirect functions specified as
2942  * ifunc are allowed to call other symbols, so we need to have
2943  * objects relocated before asking for resolution from indirects.
2944  *
2945  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2946  * instead of the usual lazy handling of PLT slots.  It is
2947  * consistent with how GNU does it.
2948  */
2949 static int
2950 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2951     RtldLockState *lockstate)
2952 {
2953 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2954 		return (-1);
2955 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2956 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2957 		return (-1);
2958 	return (0);
2959 }
2960 
2961 static int
2962 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2963     RtldLockState *lockstate)
2964 {
2965 	Obj_Entry *obj;
2966 
2967 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2968 		if (obj->marker)
2969 			continue;
2970 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2971 			return (-1);
2972 	}
2973 	return (0);
2974 }
2975 
2976 static int
2977 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2978     RtldLockState *lockstate)
2979 {
2980 	Objlist_Entry *elm;
2981 
2982 	STAILQ_FOREACH(elm, list, link) {
2983 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2984 		    lockstate) == -1)
2985 			return (-1);
2986 	}
2987 	return (0);
2988 }
2989 
2990 /*
2991  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2992  * before the process exits.
2993  */
2994 static void
2995 rtld_exit(void)
2996 {
2997     RtldLockState lockstate;
2998 
2999     wlock_acquire(rtld_bind_lock, &lockstate);
3000     dbg("rtld_exit()");
3001     objlist_call_fini(&list_fini, NULL, &lockstate);
3002     /* No need to remove the items from the list, since we are exiting. */
3003     if (!libmap_disable)
3004         lm_fini();
3005     lock_release(rtld_bind_lock, &lockstate);
3006 }
3007 
3008 /*
3009  * Iterate over a search path, translate each element, and invoke the
3010  * callback on the result.
3011  */
3012 static void *
3013 path_enumerate(const char *path, path_enum_proc callback,
3014     const char *refobj_path, void *arg)
3015 {
3016     const char *trans;
3017     if (path == NULL)
3018 	return (NULL);
3019 
3020     path += strspn(path, ":;");
3021     while (*path != '\0') {
3022 	size_t len;
3023 	char  *res;
3024 
3025 	len = strcspn(path, ":;");
3026 	trans = lm_findn(refobj_path, path, len);
3027 	if (trans)
3028 	    res = callback(trans, strlen(trans), arg);
3029 	else
3030 	    res = callback(path, len, arg);
3031 
3032 	if (res != NULL)
3033 	    return (res);
3034 
3035 	path += len;
3036 	path += strspn(path, ":;");
3037     }
3038 
3039     return (NULL);
3040 }
3041 
3042 struct try_library_args {
3043     const char	*name;
3044     size_t	 namelen;
3045     char	*buffer;
3046     size_t	 buflen;
3047     int		 fd;
3048 };
3049 
3050 static void *
3051 try_library_path(const char *dir, size_t dirlen, void *param)
3052 {
3053     struct try_library_args *arg;
3054     int fd;
3055 
3056     arg = param;
3057     if (*dir == '/' || trust) {
3058 	char *pathname;
3059 
3060 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3061 		return (NULL);
3062 
3063 	pathname = arg->buffer;
3064 	strncpy(pathname, dir, dirlen);
3065 	pathname[dirlen] = '/';
3066 	strcpy(pathname + dirlen + 1, arg->name);
3067 
3068 	dbg("  Trying \"%s\"", pathname);
3069 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3070 	if (fd >= 0) {
3071 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3072 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3073 	    strcpy(pathname, arg->buffer);
3074 	    arg->fd = fd;
3075 	    return (pathname);
3076 	} else {
3077 	    dbg("  Failed to open \"%s\": %s",
3078 		pathname, rtld_strerror(errno));
3079 	}
3080     }
3081     return (NULL);
3082 }
3083 
3084 static char *
3085 search_library_path(const char *name, const char *path,
3086     const char *refobj_path, int *fdp)
3087 {
3088     char *p;
3089     struct try_library_args arg;
3090 
3091     if (path == NULL)
3092 	return NULL;
3093 
3094     arg.name = name;
3095     arg.namelen = strlen(name);
3096     arg.buffer = xmalloc(PATH_MAX);
3097     arg.buflen = PATH_MAX;
3098     arg.fd = -1;
3099 
3100     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3101     *fdp = arg.fd;
3102 
3103     free(arg.buffer);
3104 
3105     return (p);
3106 }
3107 
3108 
3109 /*
3110  * Finds the library with the given name using the directory descriptors
3111  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3112  *
3113  * Returns a freshly-opened close-on-exec file descriptor for the library,
3114  * or -1 if the library cannot be found.
3115  */
3116 static char *
3117 search_library_pathfds(const char *name, const char *path, int *fdp)
3118 {
3119 	char *envcopy, *fdstr, *found, *last_token;
3120 	size_t len;
3121 	int dirfd, fd;
3122 
3123 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3124 
3125 	/* Don't load from user-specified libdirs into setuid binaries. */
3126 	if (!trust)
3127 		return (NULL);
3128 
3129 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3130 	if (path == NULL)
3131 		return (NULL);
3132 
3133 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3134 	if (name[0] == '/') {
3135 		dbg("Absolute path (%s) passed to %s", name, __func__);
3136 		return (NULL);
3137 	}
3138 
3139 	/*
3140 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3141 	 * copy of the path, as strtok_r rewrites separator tokens
3142 	 * with '\0'.
3143 	 */
3144 	found = NULL;
3145 	envcopy = xstrdup(path);
3146 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3147 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3148 		dirfd = parse_integer(fdstr);
3149 		if (dirfd < 0) {
3150 			_rtld_error("failed to parse directory FD: '%s'",
3151 				fdstr);
3152 			break;
3153 		}
3154 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3155 		if (fd >= 0) {
3156 			*fdp = fd;
3157 			len = strlen(fdstr) + strlen(name) + 3;
3158 			found = xmalloc(len);
3159 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3160 				_rtld_error("error generating '%d/%s'",
3161 				    dirfd, name);
3162 				rtld_die();
3163 			}
3164 			dbg("open('%s') => %d", found, fd);
3165 			break;
3166 		}
3167 	}
3168 	free(envcopy);
3169 
3170 	return (found);
3171 }
3172 
3173 
3174 int
3175 dlclose(void *handle)
3176 {
3177 	RtldLockState lockstate;
3178 	int error;
3179 
3180 	wlock_acquire(rtld_bind_lock, &lockstate);
3181 	error = dlclose_locked(handle, &lockstate);
3182 	lock_release(rtld_bind_lock, &lockstate);
3183 	return (error);
3184 }
3185 
3186 static int
3187 dlclose_locked(void *handle, RtldLockState *lockstate)
3188 {
3189     Obj_Entry *root;
3190 
3191     root = dlcheck(handle);
3192     if (root == NULL)
3193 	return -1;
3194     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3195 	root->path);
3196 
3197     /* Unreference the object and its dependencies. */
3198     root->dl_refcount--;
3199 
3200     if (root->refcount == 1) {
3201 	/*
3202 	 * The object will be no longer referenced, so we must unload it.
3203 	 * First, call the fini functions.
3204 	 */
3205 	objlist_call_fini(&list_fini, root, lockstate);
3206 
3207 	unref_dag(root);
3208 
3209 	/* Finish cleaning up the newly-unreferenced objects. */
3210 	GDB_STATE(RT_DELETE,&root->linkmap);
3211 	unload_object(root, lockstate);
3212 	GDB_STATE(RT_CONSISTENT,NULL);
3213     } else
3214 	unref_dag(root);
3215 
3216     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3217     return 0;
3218 }
3219 
3220 char *
3221 dlerror(void)
3222 {
3223     char *msg = error_message;
3224     error_message = NULL;
3225     return msg;
3226 }
3227 
3228 /*
3229  * This function is deprecated and has no effect.
3230  */
3231 void
3232 dllockinit(void *context,
3233     void *(*_lock_create)(void *context) __unused,
3234     void (*_rlock_acquire)(void *lock) __unused,
3235     void (*_wlock_acquire)(void *lock)  __unused,
3236     void (*_lock_release)(void *lock) __unused,
3237     void (*_lock_destroy)(void *lock) __unused,
3238     void (*context_destroy)(void *context))
3239 {
3240     static void *cur_context;
3241     static void (*cur_context_destroy)(void *);
3242 
3243     /* Just destroy the context from the previous call, if necessary. */
3244     if (cur_context_destroy != NULL)
3245 	cur_context_destroy(cur_context);
3246     cur_context = context;
3247     cur_context_destroy = context_destroy;
3248 }
3249 
3250 void *
3251 dlopen(const char *name, int mode)
3252 {
3253 
3254 	return (rtld_dlopen(name, -1, mode));
3255 }
3256 
3257 void *
3258 fdlopen(int fd, int mode)
3259 {
3260 
3261 	return (rtld_dlopen(NULL, fd, mode));
3262 }
3263 
3264 static void *
3265 rtld_dlopen(const char *name, int fd, int mode)
3266 {
3267     RtldLockState lockstate;
3268     int lo_flags;
3269 
3270     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3271     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3272     if (ld_tracing != NULL) {
3273 	rlock_acquire(rtld_bind_lock, &lockstate);
3274 	if (sigsetjmp(lockstate.env, 0) != 0)
3275 	    lock_upgrade(rtld_bind_lock, &lockstate);
3276 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3277 	lock_release(rtld_bind_lock, &lockstate);
3278     }
3279     lo_flags = RTLD_LO_DLOPEN;
3280     if (mode & RTLD_NODELETE)
3281 	    lo_flags |= RTLD_LO_NODELETE;
3282     if (mode & RTLD_NOLOAD)
3283 	    lo_flags |= RTLD_LO_NOLOAD;
3284     if (ld_tracing != NULL)
3285 	    lo_flags |= RTLD_LO_TRACE;
3286 
3287     return (dlopen_object(name, fd, obj_main, lo_flags,
3288       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3289 }
3290 
3291 static void
3292 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3293 {
3294 
3295 	obj->dl_refcount--;
3296 	unref_dag(obj);
3297 	if (obj->refcount == 0)
3298 		unload_object(obj, lockstate);
3299 }
3300 
3301 static Obj_Entry *
3302 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3303     int mode, RtldLockState *lockstate)
3304 {
3305     Obj_Entry *old_obj_tail;
3306     Obj_Entry *obj;
3307     Objlist initlist;
3308     RtldLockState mlockstate;
3309     int result;
3310 
3311     objlist_init(&initlist);
3312 
3313     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3314 	wlock_acquire(rtld_bind_lock, &mlockstate);
3315 	lockstate = &mlockstate;
3316     }
3317     GDB_STATE(RT_ADD,NULL);
3318 
3319     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3320     obj = NULL;
3321     if (name == NULL && fd == -1) {
3322 	obj = obj_main;
3323 	obj->refcount++;
3324     } else {
3325 	obj = load_object(name, fd, refobj, lo_flags);
3326     }
3327 
3328     if (obj) {
3329 	obj->dl_refcount++;
3330 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3331 	    objlist_push_tail(&list_global, obj);
3332 	if (globallist_next(old_obj_tail) != NULL) {
3333 	    /* We loaded something new. */
3334 	    assert(globallist_next(old_obj_tail) == obj);
3335 	    result = load_needed_objects(obj,
3336 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3337 	    init_dag(obj);
3338 	    ref_dag(obj);
3339 	    if (result != -1)
3340 		result = rtld_verify_versions(&obj->dagmembers);
3341 	    if (result != -1 && ld_tracing)
3342 		goto trace;
3343 	    if (result == -1 || relocate_object_dag(obj,
3344 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3345 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3346 	      lockstate) == -1) {
3347 		dlopen_cleanup(obj, lockstate);
3348 		obj = NULL;
3349 	    } else if (lo_flags & RTLD_LO_EARLY) {
3350 		/*
3351 		 * Do not call the init functions for early loaded
3352 		 * filtees.  The image is still not initialized enough
3353 		 * for them to work.
3354 		 *
3355 		 * Our object is found by the global object list and
3356 		 * will be ordered among all init calls done right
3357 		 * before transferring control to main.
3358 		 */
3359 	    } else {
3360 		/* Make list of init functions to call. */
3361 		initlist_add_objects(obj, obj, &initlist);
3362 	    }
3363 	    /*
3364 	     * Process all no_delete or global objects here, given
3365 	     * them own DAGs to prevent their dependencies from being
3366 	     * unloaded.  This has to be done after we have loaded all
3367 	     * of the dependencies, so that we do not miss any.
3368 	     */
3369 	    if (obj != NULL)
3370 		process_z(obj);
3371 	} else {
3372 	    /*
3373 	     * Bump the reference counts for objects on this DAG.  If
3374 	     * this is the first dlopen() call for the object that was
3375 	     * already loaded as a dependency, initialize the dag
3376 	     * starting at it.
3377 	     */
3378 	    init_dag(obj);
3379 	    ref_dag(obj);
3380 
3381 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3382 		goto trace;
3383 	}
3384 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3385 	  obj->z_nodelete) && !obj->ref_nodel) {
3386 	    dbg("obj %s nodelete", obj->path);
3387 	    ref_dag(obj);
3388 	    obj->z_nodelete = obj->ref_nodel = true;
3389 	}
3390     }
3391 
3392     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3393 	name);
3394     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3395 
3396     if (!(lo_flags & RTLD_LO_EARLY)) {
3397 	map_stacks_exec(lockstate);
3398     }
3399 
3400     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3401       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3402       lockstate) == -1) {
3403 	objlist_clear(&initlist);
3404 	dlopen_cleanup(obj, lockstate);
3405 	if (lockstate == &mlockstate)
3406 	    lock_release(rtld_bind_lock, lockstate);
3407 	return (NULL);
3408     }
3409 
3410     if (!(lo_flags & RTLD_LO_EARLY)) {
3411 	/* Call the init functions. */
3412 	objlist_call_init(&initlist, lockstate);
3413     }
3414     objlist_clear(&initlist);
3415     if (lockstate == &mlockstate)
3416 	lock_release(rtld_bind_lock, lockstate);
3417     return obj;
3418 trace:
3419     trace_loaded_objects(obj);
3420     if (lockstate == &mlockstate)
3421 	lock_release(rtld_bind_lock, lockstate);
3422     exit(0);
3423 }
3424 
3425 static void *
3426 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3427     int flags)
3428 {
3429     DoneList donelist;
3430     const Obj_Entry *obj, *defobj;
3431     const Elf_Sym *def;
3432     SymLook req;
3433     RtldLockState lockstate;
3434     tls_index ti;
3435     void *sym;
3436     int res;
3437 
3438     def = NULL;
3439     defobj = NULL;
3440     symlook_init(&req, name);
3441     req.ventry = ve;
3442     req.flags = flags | SYMLOOK_IN_PLT;
3443     req.lockstate = &lockstate;
3444 
3445     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3446     rlock_acquire(rtld_bind_lock, &lockstate);
3447     if (sigsetjmp(lockstate.env, 0) != 0)
3448 	    lock_upgrade(rtld_bind_lock, &lockstate);
3449     if (handle == NULL || handle == RTLD_NEXT ||
3450 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3451 
3452 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3453 	    _rtld_error("Cannot determine caller's shared object");
3454 	    lock_release(rtld_bind_lock, &lockstate);
3455 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3456 	    return NULL;
3457 	}
3458 	if (handle == NULL) {	/* Just the caller's shared object. */
3459 	    res = symlook_obj(&req, obj);
3460 	    if (res == 0) {
3461 		def = req.sym_out;
3462 		defobj = req.defobj_out;
3463 	    }
3464 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3465 		   handle == RTLD_SELF) { /* ... caller included */
3466 	    if (handle == RTLD_NEXT)
3467 		obj = globallist_next(obj);
3468 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3469 		if (obj->marker)
3470 		    continue;
3471 		res = symlook_obj(&req, obj);
3472 		if (res == 0) {
3473 		    if (def == NULL ||
3474 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3475 			def = req.sym_out;
3476 			defobj = req.defobj_out;
3477 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3478 			    break;
3479 		    }
3480 		}
3481 	    }
3482 	    /*
3483 	     * Search the dynamic linker itself, and possibly resolve the
3484 	     * symbol from there.  This is how the application links to
3485 	     * dynamic linker services such as dlopen.
3486 	     */
3487 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3488 		res = symlook_obj(&req, &obj_rtld);
3489 		if (res == 0) {
3490 		    def = req.sym_out;
3491 		    defobj = req.defobj_out;
3492 		}
3493 	    }
3494 	} else {
3495 	    assert(handle == RTLD_DEFAULT);
3496 	    res = symlook_default(&req, obj);
3497 	    if (res == 0) {
3498 		defobj = req.defobj_out;
3499 		def = req.sym_out;
3500 	    }
3501 	}
3502     } else {
3503 	if ((obj = dlcheck(handle)) == NULL) {
3504 	    lock_release(rtld_bind_lock, &lockstate);
3505 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3506 	    return NULL;
3507 	}
3508 
3509 	donelist_init(&donelist);
3510 	if (obj->mainprog) {
3511             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3512 	    res = symlook_global(&req, &donelist);
3513 	    if (res == 0) {
3514 		def = req.sym_out;
3515 		defobj = req.defobj_out;
3516 	    }
3517 	    /*
3518 	     * Search the dynamic linker itself, and possibly resolve the
3519 	     * symbol from there.  This is how the application links to
3520 	     * dynamic linker services such as dlopen.
3521 	     */
3522 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3523 		res = symlook_obj(&req, &obj_rtld);
3524 		if (res == 0) {
3525 		    def = req.sym_out;
3526 		    defobj = req.defobj_out;
3527 		}
3528 	    }
3529 	}
3530 	else {
3531 	    /* Search the whole DAG rooted at the given object. */
3532 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3533 	    if (res == 0) {
3534 		def = req.sym_out;
3535 		defobj = req.defobj_out;
3536 	    }
3537 	}
3538     }
3539 
3540     if (def != NULL) {
3541 	lock_release(rtld_bind_lock, &lockstate);
3542 
3543 	/*
3544 	 * The value required by the caller is derived from the value
3545 	 * of the symbol. this is simply the relocated value of the
3546 	 * symbol.
3547 	 */
3548 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3549 	    sym = make_function_pointer(def, defobj);
3550 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3551 	    sym = rtld_resolve_ifunc(defobj, def);
3552 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3553 	    ti.ti_module = defobj->tlsindex;
3554 	    ti.ti_offset = def->st_value;
3555 	    sym = __tls_get_addr(&ti);
3556 	} else
3557 	    sym = defobj->relocbase + def->st_value;
3558 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3559 	return (sym);
3560     }
3561 
3562     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3563       ve != NULL ? ve->name : "");
3564     lock_release(rtld_bind_lock, &lockstate);
3565     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3566     return NULL;
3567 }
3568 
3569 void *
3570 dlsym(void *handle, const char *name)
3571 {
3572 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3573 	    SYMLOOK_DLSYM);
3574 }
3575 
3576 dlfunc_t
3577 dlfunc(void *handle, const char *name)
3578 {
3579 	union {
3580 		void *d;
3581 		dlfunc_t f;
3582 	} rv;
3583 
3584 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3585 	    SYMLOOK_DLSYM);
3586 	return (rv.f);
3587 }
3588 
3589 void *
3590 dlvsym(void *handle, const char *name, const char *version)
3591 {
3592 	Ver_Entry ventry;
3593 
3594 	ventry.name = version;
3595 	ventry.file = NULL;
3596 	ventry.hash = elf_hash(version);
3597 	ventry.flags= 0;
3598 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3599 	    SYMLOOK_DLSYM);
3600 }
3601 
3602 int
3603 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3604 {
3605     const Obj_Entry *obj;
3606     RtldLockState lockstate;
3607 
3608     rlock_acquire(rtld_bind_lock, &lockstate);
3609     obj = obj_from_addr(addr);
3610     if (obj == NULL) {
3611         _rtld_error("No shared object contains address");
3612 	lock_release(rtld_bind_lock, &lockstate);
3613         return (0);
3614     }
3615     rtld_fill_dl_phdr_info(obj, phdr_info);
3616     lock_release(rtld_bind_lock, &lockstate);
3617     return (1);
3618 }
3619 
3620 int
3621 dladdr(const void *addr, Dl_info *info)
3622 {
3623     const Obj_Entry *obj;
3624     const Elf_Sym *def;
3625     void *symbol_addr;
3626     unsigned long symoffset;
3627     RtldLockState lockstate;
3628 
3629     rlock_acquire(rtld_bind_lock, &lockstate);
3630     obj = obj_from_addr(addr);
3631     if (obj == NULL) {
3632         _rtld_error("No shared object contains address");
3633 	lock_release(rtld_bind_lock, &lockstate);
3634         return 0;
3635     }
3636     info->dli_fname = obj->path;
3637     info->dli_fbase = obj->mapbase;
3638     info->dli_saddr = (void *)0;
3639     info->dli_sname = NULL;
3640 
3641     /*
3642      * Walk the symbol list looking for the symbol whose address is
3643      * closest to the address sent in.
3644      */
3645     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3646         def = obj->symtab + symoffset;
3647 
3648         /*
3649          * For skip the symbol if st_shndx is either SHN_UNDEF or
3650          * SHN_COMMON.
3651          */
3652         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3653             continue;
3654 
3655         /*
3656          * If the symbol is greater than the specified address, or if it
3657          * is further away from addr than the current nearest symbol,
3658          * then reject it.
3659          */
3660         symbol_addr = obj->relocbase + def->st_value;
3661         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3662             continue;
3663 
3664         /* Update our idea of the nearest symbol. */
3665         info->dli_sname = obj->strtab + def->st_name;
3666         info->dli_saddr = symbol_addr;
3667 
3668         /* Exact match? */
3669         if (info->dli_saddr == addr)
3670             break;
3671     }
3672     lock_release(rtld_bind_lock, &lockstate);
3673     return 1;
3674 }
3675 
3676 int
3677 dlinfo(void *handle, int request, void *p)
3678 {
3679     const Obj_Entry *obj;
3680     RtldLockState lockstate;
3681     int error;
3682 
3683     rlock_acquire(rtld_bind_lock, &lockstate);
3684 
3685     if (handle == NULL || handle == RTLD_SELF) {
3686 	void *retaddr;
3687 
3688 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3689 	if ((obj = obj_from_addr(retaddr)) == NULL)
3690 	    _rtld_error("Cannot determine caller's shared object");
3691     } else
3692 	obj = dlcheck(handle);
3693 
3694     if (obj == NULL) {
3695 	lock_release(rtld_bind_lock, &lockstate);
3696 	return (-1);
3697     }
3698 
3699     error = 0;
3700     switch (request) {
3701     case RTLD_DI_LINKMAP:
3702 	*((struct link_map const **)p) = &obj->linkmap;
3703 	break;
3704     case RTLD_DI_ORIGIN:
3705 	error = rtld_dirname(obj->path, p);
3706 	break;
3707 
3708     case RTLD_DI_SERINFOSIZE:
3709     case RTLD_DI_SERINFO:
3710 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3711 	break;
3712 
3713     default:
3714 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3715 	error = -1;
3716     }
3717 
3718     lock_release(rtld_bind_lock, &lockstate);
3719 
3720     return (error);
3721 }
3722 
3723 static void
3724 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3725 {
3726 
3727 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3728 	phdr_info->dlpi_name = obj->path;
3729 	phdr_info->dlpi_phdr = obj->phdr;
3730 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3731 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3732 	phdr_info->dlpi_tls_data = obj->tlsinit;
3733 	phdr_info->dlpi_adds = obj_loads;
3734 	phdr_info->dlpi_subs = obj_loads - obj_count;
3735 }
3736 
3737 int
3738 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3739 {
3740 	struct dl_phdr_info phdr_info;
3741 	Obj_Entry *obj, marker;
3742 	RtldLockState bind_lockstate, phdr_lockstate;
3743 	int error;
3744 
3745 	init_marker(&marker);
3746 	error = 0;
3747 
3748 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3749 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3750 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3751 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3752 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3753 		hold_object(obj);
3754 		lock_release(rtld_bind_lock, &bind_lockstate);
3755 
3756 		error = callback(&phdr_info, sizeof phdr_info, param);
3757 
3758 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3759 		unhold_object(obj);
3760 		obj = globallist_next(&marker);
3761 		TAILQ_REMOVE(&obj_list, &marker, next);
3762 		if (error != 0) {
3763 			lock_release(rtld_bind_lock, &bind_lockstate);
3764 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3765 			return (error);
3766 		}
3767 	}
3768 
3769 	if (error == 0) {
3770 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3771 		lock_release(rtld_bind_lock, &bind_lockstate);
3772 		error = callback(&phdr_info, sizeof(phdr_info), param);
3773 	}
3774 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3775 	return (error);
3776 }
3777 
3778 static void *
3779 fill_search_info(const char *dir, size_t dirlen, void *param)
3780 {
3781     struct fill_search_info_args *arg;
3782 
3783     arg = param;
3784 
3785     if (arg->request == RTLD_DI_SERINFOSIZE) {
3786 	arg->serinfo->dls_cnt ++;
3787 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3788     } else {
3789 	struct dl_serpath *s_entry;
3790 
3791 	s_entry = arg->serpath;
3792 	s_entry->dls_name  = arg->strspace;
3793 	s_entry->dls_flags = arg->flags;
3794 
3795 	strncpy(arg->strspace, dir, dirlen);
3796 	arg->strspace[dirlen] = '\0';
3797 
3798 	arg->strspace += dirlen + 1;
3799 	arg->serpath++;
3800     }
3801 
3802     return (NULL);
3803 }
3804 
3805 static int
3806 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3807 {
3808     struct dl_serinfo _info;
3809     struct fill_search_info_args args;
3810 
3811     args.request = RTLD_DI_SERINFOSIZE;
3812     args.serinfo = &_info;
3813 
3814     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3815     _info.dls_cnt  = 0;
3816 
3817     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3818     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3819     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3820     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3821     if (!obj->z_nodeflib)
3822       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3823 
3824 
3825     if (request == RTLD_DI_SERINFOSIZE) {
3826 	info->dls_size = _info.dls_size;
3827 	info->dls_cnt = _info.dls_cnt;
3828 	return (0);
3829     }
3830 
3831     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3832 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3833 	return (-1);
3834     }
3835 
3836     args.request  = RTLD_DI_SERINFO;
3837     args.serinfo  = info;
3838     args.serpath  = &info->dls_serpath[0];
3839     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3840 
3841     args.flags = LA_SER_RUNPATH;
3842     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3843 	return (-1);
3844 
3845     args.flags = LA_SER_LIBPATH;
3846     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3847 	return (-1);
3848 
3849     args.flags = LA_SER_RUNPATH;
3850     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3851 	return (-1);
3852 
3853     args.flags = LA_SER_CONFIG;
3854     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3855       != NULL)
3856 	return (-1);
3857 
3858     args.flags = LA_SER_DEFAULT;
3859     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3860       fill_search_info, NULL, &args) != NULL)
3861 	return (-1);
3862     return (0);
3863 }
3864 
3865 static int
3866 rtld_dirname(const char *path, char *bname)
3867 {
3868     const char *endp;
3869 
3870     /* Empty or NULL string gets treated as "." */
3871     if (path == NULL || *path == '\0') {
3872 	bname[0] = '.';
3873 	bname[1] = '\0';
3874 	return (0);
3875     }
3876 
3877     /* Strip trailing slashes */
3878     endp = path + strlen(path) - 1;
3879     while (endp > path && *endp == '/')
3880 	endp--;
3881 
3882     /* Find the start of the dir */
3883     while (endp > path && *endp != '/')
3884 	endp--;
3885 
3886     /* Either the dir is "/" or there are no slashes */
3887     if (endp == path) {
3888 	bname[0] = *endp == '/' ? '/' : '.';
3889 	bname[1] = '\0';
3890 	return (0);
3891     } else {
3892 	do {
3893 	    endp--;
3894 	} while (endp > path && *endp == '/');
3895     }
3896 
3897     if (endp - path + 2 > PATH_MAX)
3898     {
3899 	_rtld_error("Filename is too long: %s", path);
3900 	return(-1);
3901     }
3902 
3903     strncpy(bname, path, endp - path + 1);
3904     bname[endp - path + 1] = '\0';
3905     return (0);
3906 }
3907 
3908 static int
3909 rtld_dirname_abs(const char *path, char *base)
3910 {
3911 	char *last;
3912 
3913 	if (realpath(path, base) == NULL)
3914 		return (-1);
3915 	dbg("%s -> %s", path, base);
3916 	last = strrchr(base, '/');
3917 	if (last == NULL)
3918 		return (-1);
3919 	if (last != base)
3920 		*last = '\0';
3921 	return (0);
3922 }
3923 
3924 static void
3925 linkmap_add(Obj_Entry *obj)
3926 {
3927     struct link_map *l = &obj->linkmap;
3928     struct link_map *prev;
3929 
3930     obj->linkmap.l_name = obj->path;
3931     obj->linkmap.l_addr = obj->mapbase;
3932     obj->linkmap.l_ld = obj->dynamic;
3933 #ifdef __mips__
3934     /* GDB needs load offset on MIPS to use the symbols */
3935     obj->linkmap.l_offs = obj->relocbase;
3936 #endif
3937 
3938     if (r_debug.r_map == NULL) {
3939 	r_debug.r_map = l;
3940 	return;
3941     }
3942 
3943     /*
3944      * Scan to the end of the list, but not past the entry for the
3945      * dynamic linker, which we want to keep at the very end.
3946      */
3947     for (prev = r_debug.r_map;
3948       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3949       prev = prev->l_next)
3950 	;
3951 
3952     /* Link in the new entry. */
3953     l->l_prev = prev;
3954     l->l_next = prev->l_next;
3955     if (l->l_next != NULL)
3956 	l->l_next->l_prev = l;
3957     prev->l_next = l;
3958 }
3959 
3960 static void
3961 linkmap_delete(Obj_Entry *obj)
3962 {
3963     struct link_map *l = &obj->linkmap;
3964 
3965     if (l->l_prev == NULL) {
3966 	if ((r_debug.r_map = l->l_next) != NULL)
3967 	    l->l_next->l_prev = NULL;
3968 	return;
3969     }
3970 
3971     if ((l->l_prev->l_next = l->l_next) != NULL)
3972 	l->l_next->l_prev = l->l_prev;
3973 }
3974 
3975 /*
3976  * Function for the debugger to set a breakpoint on to gain control.
3977  *
3978  * The two parameters allow the debugger to easily find and determine
3979  * what the runtime loader is doing and to whom it is doing it.
3980  *
3981  * When the loadhook trap is hit (r_debug_state, set at program
3982  * initialization), the arguments can be found on the stack:
3983  *
3984  *  +8   struct link_map *m
3985  *  +4   struct r_debug  *rd
3986  *  +0   RetAddr
3987  */
3988 void
3989 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
3990 {
3991     /*
3992      * The following is a hack to force the compiler to emit calls to
3993      * this function, even when optimizing.  If the function is empty,
3994      * the compiler is not obliged to emit any code for calls to it,
3995      * even when marked __noinline.  However, gdb depends on those
3996      * calls being made.
3997      */
3998     __compiler_membar();
3999 }
4000 
4001 /*
4002  * A function called after init routines have completed. This can be used to
4003  * break before a program's entry routine is called, and can be used when
4004  * main is not available in the symbol table.
4005  */
4006 void
4007 _r_debug_postinit(struct link_map *m __unused)
4008 {
4009 
4010 	/* See r_debug_state(). */
4011 	__compiler_membar();
4012 }
4013 
4014 static void
4015 release_object(Obj_Entry *obj)
4016 {
4017 
4018 	if (obj->holdcount > 0) {
4019 		obj->unholdfree = true;
4020 		return;
4021 	}
4022 	munmap(obj->mapbase, obj->mapsize);
4023 	linkmap_delete(obj);
4024 	obj_free(obj);
4025 }
4026 
4027 /*
4028  * Get address of the pointer variable in the main program.
4029  * Prefer non-weak symbol over the weak one.
4030  */
4031 static const void **
4032 get_program_var_addr(const char *name, RtldLockState *lockstate)
4033 {
4034     SymLook req;
4035     DoneList donelist;
4036 
4037     symlook_init(&req, name);
4038     req.lockstate = lockstate;
4039     donelist_init(&donelist);
4040     if (symlook_global(&req, &donelist) != 0)
4041 	return (NULL);
4042     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4043 	return ((const void **)make_function_pointer(req.sym_out,
4044 	  req.defobj_out));
4045     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4046 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4047     else
4048 	return ((const void **)(req.defobj_out->relocbase +
4049 	  req.sym_out->st_value));
4050 }
4051 
4052 /*
4053  * Set a pointer variable in the main program to the given value.  This
4054  * is used to set key variables such as "environ" before any of the
4055  * init functions are called.
4056  */
4057 static void
4058 set_program_var(const char *name, const void *value)
4059 {
4060     const void **addr;
4061 
4062     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4063 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4064 	*addr = value;
4065     }
4066 }
4067 
4068 /*
4069  * Search the global objects, including dependencies and main object,
4070  * for the given symbol.
4071  */
4072 static int
4073 symlook_global(SymLook *req, DoneList *donelist)
4074 {
4075     SymLook req1;
4076     const Objlist_Entry *elm;
4077     int res;
4078 
4079     symlook_init_from_req(&req1, req);
4080 
4081     /* Search all objects loaded at program start up. */
4082     if (req->defobj_out == NULL ||
4083       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4084 	res = symlook_list(&req1, &list_main, donelist);
4085 	if (res == 0 && (req->defobj_out == NULL ||
4086 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4087 	    req->sym_out = req1.sym_out;
4088 	    req->defobj_out = req1.defobj_out;
4089 	    assert(req->defobj_out != NULL);
4090 	}
4091     }
4092 
4093     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4094     STAILQ_FOREACH(elm, &list_global, link) {
4095 	if (req->defobj_out != NULL &&
4096 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4097 	    break;
4098 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4099 	if (res == 0 && (req->defobj_out == NULL ||
4100 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4101 	    req->sym_out = req1.sym_out;
4102 	    req->defobj_out = req1.defobj_out;
4103 	    assert(req->defobj_out != NULL);
4104 	}
4105     }
4106 
4107     return (req->sym_out != NULL ? 0 : ESRCH);
4108 }
4109 
4110 /*
4111  * Given a symbol name in a referencing object, find the corresponding
4112  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4113  * no definition was found.  Returns a pointer to the Obj_Entry of the
4114  * defining object via the reference parameter DEFOBJ_OUT.
4115  */
4116 static int
4117 symlook_default(SymLook *req, const Obj_Entry *refobj)
4118 {
4119     DoneList donelist;
4120     const Objlist_Entry *elm;
4121     SymLook req1;
4122     int res;
4123 
4124     donelist_init(&donelist);
4125     symlook_init_from_req(&req1, req);
4126 
4127     /*
4128      * Look first in the referencing object if linked symbolically,
4129      * and similarly handle protected symbols.
4130      */
4131     res = symlook_obj(&req1, refobj);
4132     if (res == 0 && (refobj->symbolic ||
4133       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4134 	req->sym_out = req1.sym_out;
4135 	req->defobj_out = req1.defobj_out;
4136 	assert(req->defobj_out != NULL);
4137     }
4138     if (refobj->symbolic || req->defobj_out != NULL)
4139 	donelist_check(&donelist, refobj);
4140 
4141     symlook_global(req, &donelist);
4142 
4143     /* Search all dlopened DAGs containing the referencing object. */
4144     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4145 	if (req->sym_out != NULL &&
4146 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4147 	    break;
4148 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4149 	if (res == 0 && (req->sym_out == NULL ||
4150 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4151 	    req->sym_out = req1.sym_out;
4152 	    req->defobj_out = req1.defobj_out;
4153 	    assert(req->defobj_out != NULL);
4154 	}
4155     }
4156 
4157     /*
4158      * Search the dynamic linker itself, and possibly resolve the
4159      * symbol from there.  This is how the application links to
4160      * dynamic linker services such as dlopen.
4161      */
4162     if (req->sym_out == NULL ||
4163       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4164 	res = symlook_obj(&req1, &obj_rtld);
4165 	if (res == 0) {
4166 	    req->sym_out = req1.sym_out;
4167 	    req->defobj_out = req1.defobj_out;
4168 	    assert(req->defobj_out != NULL);
4169 	}
4170     }
4171 
4172     return (req->sym_out != NULL ? 0 : ESRCH);
4173 }
4174 
4175 static int
4176 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4177 {
4178     const Elf_Sym *def;
4179     const Obj_Entry *defobj;
4180     const Objlist_Entry *elm;
4181     SymLook req1;
4182     int res;
4183 
4184     def = NULL;
4185     defobj = NULL;
4186     STAILQ_FOREACH(elm, objlist, link) {
4187 	if (donelist_check(dlp, elm->obj))
4188 	    continue;
4189 	symlook_init_from_req(&req1, req);
4190 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4191 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4192 		def = req1.sym_out;
4193 		defobj = req1.defobj_out;
4194 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4195 		    break;
4196 	    }
4197 	}
4198     }
4199     if (def != NULL) {
4200 	req->sym_out = def;
4201 	req->defobj_out = defobj;
4202 	return (0);
4203     }
4204     return (ESRCH);
4205 }
4206 
4207 /*
4208  * Search the chain of DAGS cointed to by the given Needed_Entry
4209  * for a symbol of the given name.  Each DAG is scanned completely
4210  * before advancing to the next one.  Returns a pointer to the symbol,
4211  * or NULL if no definition was found.
4212  */
4213 static int
4214 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4215 {
4216     const Elf_Sym *def;
4217     const Needed_Entry *n;
4218     const Obj_Entry *defobj;
4219     SymLook req1;
4220     int res;
4221 
4222     def = NULL;
4223     defobj = NULL;
4224     symlook_init_from_req(&req1, req);
4225     for (n = needed; n != NULL; n = n->next) {
4226 	if (n->obj == NULL ||
4227 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4228 	    continue;
4229 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4230 	    def = req1.sym_out;
4231 	    defobj = req1.defobj_out;
4232 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4233 		break;
4234 	}
4235     }
4236     if (def != NULL) {
4237 	req->sym_out = def;
4238 	req->defobj_out = defobj;
4239 	return (0);
4240     }
4241     return (ESRCH);
4242 }
4243 
4244 /*
4245  * Search the symbol table of a single shared object for a symbol of
4246  * the given name and version, if requested.  Returns a pointer to the
4247  * symbol, or NULL if no definition was found.  If the object is
4248  * filter, return filtered symbol from filtee.
4249  *
4250  * The symbol's hash value is passed in for efficiency reasons; that
4251  * eliminates many recomputations of the hash value.
4252  */
4253 int
4254 symlook_obj(SymLook *req, const Obj_Entry *obj)
4255 {
4256     DoneList donelist;
4257     SymLook req1;
4258     int flags, res, mres;
4259 
4260     /*
4261      * If there is at least one valid hash at this point, we prefer to
4262      * use the faster GNU version if available.
4263      */
4264     if (obj->valid_hash_gnu)
4265 	mres = symlook_obj1_gnu(req, obj);
4266     else if (obj->valid_hash_sysv)
4267 	mres = symlook_obj1_sysv(req, obj);
4268     else
4269 	return (EINVAL);
4270 
4271     if (mres == 0) {
4272 	if (obj->needed_filtees != NULL) {
4273 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4274 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4275 	    donelist_init(&donelist);
4276 	    symlook_init_from_req(&req1, req);
4277 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4278 	    if (res == 0) {
4279 		req->sym_out = req1.sym_out;
4280 		req->defobj_out = req1.defobj_out;
4281 	    }
4282 	    return (res);
4283 	}
4284 	if (obj->needed_aux_filtees != NULL) {
4285 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4286 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4287 	    donelist_init(&donelist);
4288 	    symlook_init_from_req(&req1, req);
4289 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4290 	    if (res == 0) {
4291 		req->sym_out = req1.sym_out;
4292 		req->defobj_out = req1.defobj_out;
4293 		return (res);
4294 	    }
4295 	}
4296     }
4297     return (mres);
4298 }
4299 
4300 /* Symbol match routine common to both hash functions */
4301 static bool
4302 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4303     const unsigned long symnum)
4304 {
4305 	Elf_Versym verndx;
4306 	const Elf_Sym *symp;
4307 	const char *strp;
4308 
4309 	symp = obj->symtab + symnum;
4310 	strp = obj->strtab + symp->st_name;
4311 
4312 	switch (ELF_ST_TYPE(symp->st_info)) {
4313 	case STT_FUNC:
4314 	case STT_NOTYPE:
4315 	case STT_OBJECT:
4316 	case STT_COMMON:
4317 	case STT_GNU_IFUNC:
4318 		if (symp->st_value == 0)
4319 			return (false);
4320 		/* fallthrough */
4321 	case STT_TLS:
4322 		if (symp->st_shndx != SHN_UNDEF)
4323 			break;
4324 #ifndef __mips__
4325 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4326 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4327 			break;
4328 #endif
4329 		/* fallthrough */
4330 	default:
4331 		return (false);
4332 	}
4333 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4334 		return (false);
4335 
4336 	if (req->ventry == NULL) {
4337 		if (obj->versyms != NULL) {
4338 			verndx = VER_NDX(obj->versyms[symnum]);
4339 			if (verndx > obj->vernum) {
4340 				_rtld_error(
4341 				    "%s: symbol %s references wrong version %d",
4342 				    obj->path, obj->strtab + symnum, verndx);
4343 				return (false);
4344 			}
4345 			/*
4346 			 * If we are not called from dlsym (i.e. this
4347 			 * is a normal relocation from unversioned
4348 			 * binary), accept the symbol immediately if
4349 			 * it happens to have first version after this
4350 			 * shared object became versioned.  Otherwise,
4351 			 * if symbol is versioned and not hidden,
4352 			 * remember it. If it is the only symbol with
4353 			 * this name exported by the shared object, it
4354 			 * will be returned as a match by the calling
4355 			 * function. If symbol is global (verndx < 2)
4356 			 * accept it unconditionally.
4357 			 */
4358 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4359 			    verndx == VER_NDX_GIVEN) {
4360 				result->sym_out = symp;
4361 				return (true);
4362 			}
4363 			else if (verndx >= VER_NDX_GIVEN) {
4364 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4365 				    == 0) {
4366 					if (result->vsymp == NULL)
4367 						result->vsymp = symp;
4368 					result->vcount++;
4369 				}
4370 				return (false);
4371 			}
4372 		}
4373 		result->sym_out = symp;
4374 		return (true);
4375 	}
4376 	if (obj->versyms == NULL) {
4377 		if (object_match_name(obj, req->ventry->name)) {
4378 			_rtld_error("%s: object %s should provide version %s "
4379 			    "for symbol %s", obj_rtld.path, obj->path,
4380 			    req->ventry->name, obj->strtab + symnum);
4381 			return (false);
4382 		}
4383 	} else {
4384 		verndx = VER_NDX(obj->versyms[symnum]);
4385 		if (verndx > obj->vernum) {
4386 			_rtld_error("%s: symbol %s references wrong version %d",
4387 			    obj->path, obj->strtab + symnum, verndx);
4388 			return (false);
4389 		}
4390 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4391 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4392 			/*
4393 			 * Version does not match. Look if this is a
4394 			 * global symbol and if it is not hidden. If
4395 			 * global symbol (verndx < 2) is available,
4396 			 * use it. Do not return symbol if we are
4397 			 * called by dlvsym, because dlvsym looks for
4398 			 * a specific version and default one is not
4399 			 * what dlvsym wants.
4400 			 */
4401 			if ((req->flags & SYMLOOK_DLSYM) ||
4402 			    (verndx >= VER_NDX_GIVEN) ||
4403 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4404 				return (false);
4405 		}
4406 	}
4407 	result->sym_out = symp;
4408 	return (true);
4409 }
4410 
4411 /*
4412  * Search for symbol using SysV hash function.
4413  * obj->buckets is known not to be NULL at this point; the test for this was
4414  * performed with the obj->valid_hash_sysv assignment.
4415  */
4416 static int
4417 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4418 {
4419 	unsigned long symnum;
4420 	Sym_Match_Result matchres;
4421 
4422 	matchres.sym_out = NULL;
4423 	matchres.vsymp = NULL;
4424 	matchres.vcount = 0;
4425 
4426 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4427 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4428 		if (symnum >= obj->nchains)
4429 			return (ESRCH);	/* Bad object */
4430 
4431 		if (matched_symbol(req, obj, &matchres, symnum)) {
4432 			req->sym_out = matchres.sym_out;
4433 			req->defobj_out = obj;
4434 			return (0);
4435 		}
4436 	}
4437 	if (matchres.vcount == 1) {
4438 		req->sym_out = matchres.vsymp;
4439 		req->defobj_out = obj;
4440 		return (0);
4441 	}
4442 	return (ESRCH);
4443 }
4444 
4445 /* Search for symbol using GNU hash function */
4446 static int
4447 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4448 {
4449 	Elf_Addr bloom_word;
4450 	const Elf32_Word *hashval;
4451 	Elf32_Word bucket;
4452 	Sym_Match_Result matchres;
4453 	unsigned int h1, h2;
4454 	unsigned long symnum;
4455 
4456 	matchres.sym_out = NULL;
4457 	matchres.vsymp = NULL;
4458 	matchres.vcount = 0;
4459 
4460 	/* Pick right bitmask word from Bloom filter array */
4461 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4462 	    obj->maskwords_bm_gnu];
4463 
4464 	/* Calculate modulus word size of gnu hash and its derivative */
4465 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4466 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4467 
4468 	/* Filter out the "definitely not in set" queries */
4469 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4470 		return (ESRCH);
4471 
4472 	/* Locate hash chain and corresponding value element*/
4473 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4474 	if (bucket == 0)
4475 		return (ESRCH);
4476 	hashval = &obj->chain_zero_gnu[bucket];
4477 	do {
4478 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4479 			symnum = hashval - obj->chain_zero_gnu;
4480 			if (matched_symbol(req, obj, &matchres, symnum)) {
4481 				req->sym_out = matchres.sym_out;
4482 				req->defobj_out = obj;
4483 				return (0);
4484 			}
4485 		}
4486 	} while ((*hashval++ & 1) == 0);
4487 	if (matchres.vcount == 1) {
4488 		req->sym_out = matchres.vsymp;
4489 		req->defobj_out = obj;
4490 		return (0);
4491 	}
4492 	return (ESRCH);
4493 }
4494 
4495 static void
4496 trace_loaded_objects(Obj_Entry *obj)
4497 {
4498     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4499     int c;
4500 
4501     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4502 	main_local = "";
4503 
4504     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4505 	fmt1 = "\t%o => %p (%x)\n";
4506 
4507     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4508 	fmt2 = "\t%o (%x)\n";
4509 
4510     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4511 
4512     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4513 	Needed_Entry *needed;
4514 	const char *name, *path;
4515 	bool is_lib;
4516 
4517 	if (obj->marker)
4518 	    continue;
4519 	if (list_containers && obj->needed != NULL)
4520 	    rtld_printf("%s:\n", obj->path);
4521 	for (needed = obj->needed; needed; needed = needed->next) {
4522 	    if (needed->obj != NULL) {
4523 		if (needed->obj->traced && !list_containers)
4524 		    continue;
4525 		needed->obj->traced = true;
4526 		path = needed->obj->path;
4527 	    } else
4528 		path = "not found";
4529 
4530 	    name = obj->strtab + needed->name;
4531 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4532 
4533 	    fmt = is_lib ? fmt1 : fmt2;
4534 	    while ((c = *fmt++) != '\0') {
4535 		switch (c) {
4536 		default:
4537 		    rtld_putchar(c);
4538 		    continue;
4539 		case '\\':
4540 		    switch (c = *fmt) {
4541 		    case '\0':
4542 			continue;
4543 		    case 'n':
4544 			rtld_putchar('\n');
4545 			break;
4546 		    case 't':
4547 			rtld_putchar('\t');
4548 			break;
4549 		    }
4550 		    break;
4551 		case '%':
4552 		    switch (c = *fmt) {
4553 		    case '\0':
4554 			continue;
4555 		    case '%':
4556 		    default:
4557 			rtld_putchar(c);
4558 			break;
4559 		    case 'A':
4560 			rtld_putstr(main_local);
4561 			break;
4562 		    case 'a':
4563 			rtld_putstr(obj_main->path);
4564 			break;
4565 		    case 'o':
4566 			rtld_putstr(name);
4567 			break;
4568 #if 0
4569 		    case 'm':
4570 			rtld_printf("%d", sodp->sod_major);
4571 			break;
4572 		    case 'n':
4573 			rtld_printf("%d", sodp->sod_minor);
4574 			break;
4575 #endif
4576 		    case 'p':
4577 			rtld_putstr(path);
4578 			break;
4579 		    case 'x':
4580 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4581 			  0);
4582 			break;
4583 		    }
4584 		    break;
4585 		}
4586 		++fmt;
4587 	    }
4588 	}
4589     }
4590 }
4591 
4592 /*
4593  * Unload a dlopened object and its dependencies from memory and from
4594  * our data structures.  It is assumed that the DAG rooted in the
4595  * object has already been unreferenced, and that the object has a
4596  * reference count of 0.
4597  */
4598 static void
4599 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4600 {
4601 	Obj_Entry marker, *obj, *next;
4602 
4603 	assert(root->refcount == 0);
4604 
4605 	/*
4606 	 * Pass over the DAG removing unreferenced objects from
4607 	 * appropriate lists.
4608 	 */
4609 	unlink_object(root);
4610 
4611 	/* Unmap all objects that are no longer referenced. */
4612 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4613 		next = TAILQ_NEXT(obj, next);
4614 		if (obj->marker || obj->refcount != 0)
4615 			continue;
4616 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4617 		    obj->mapsize, 0, obj->path);
4618 		dbg("unloading \"%s\"", obj->path);
4619 		/*
4620 		 * Unlink the object now to prevent new references from
4621 		 * being acquired while the bind lock is dropped in
4622 		 * recursive dlclose() invocations.
4623 		 */
4624 		TAILQ_REMOVE(&obj_list, obj, next);
4625 		obj_count--;
4626 
4627 		if (obj->filtees_loaded) {
4628 			if (next != NULL) {
4629 				init_marker(&marker);
4630 				TAILQ_INSERT_BEFORE(next, &marker, next);
4631 				unload_filtees(obj, lockstate);
4632 				next = TAILQ_NEXT(&marker, next);
4633 				TAILQ_REMOVE(&obj_list, &marker, next);
4634 			} else
4635 				unload_filtees(obj, lockstate);
4636 		}
4637 		release_object(obj);
4638 	}
4639 }
4640 
4641 static void
4642 unlink_object(Obj_Entry *root)
4643 {
4644     Objlist_Entry *elm;
4645 
4646     if (root->refcount == 0) {
4647 	/* Remove the object from the RTLD_GLOBAL list. */
4648 	objlist_remove(&list_global, root);
4649 
4650     	/* Remove the object from all objects' DAG lists. */
4651     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4652 	    objlist_remove(&elm->obj->dldags, root);
4653 	    if (elm->obj != root)
4654 		unlink_object(elm->obj);
4655 	}
4656     }
4657 }
4658 
4659 static void
4660 ref_dag(Obj_Entry *root)
4661 {
4662     Objlist_Entry *elm;
4663 
4664     assert(root->dag_inited);
4665     STAILQ_FOREACH(elm, &root->dagmembers, link)
4666 	elm->obj->refcount++;
4667 }
4668 
4669 static void
4670 unref_dag(Obj_Entry *root)
4671 {
4672     Objlist_Entry *elm;
4673 
4674     assert(root->dag_inited);
4675     STAILQ_FOREACH(elm, &root->dagmembers, link)
4676 	elm->obj->refcount--;
4677 }
4678 
4679 /*
4680  * Common code for MD __tls_get_addr().
4681  */
4682 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4683 static void *
4684 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4685 {
4686     Elf_Addr *newdtv, *dtv;
4687     RtldLockState lockstate;
4688     int to_copy;
4689 
4690     dtv = *dtvp;
4691     /* Check dtv generation in case new modules have arrived */
4692     if (dtv[0] != tls_dtv_generation) {
4693 	wlock_acquire(rtld_bind_lock, &lockstate);
4694 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4695 	to_copy = dtv[1];
4696 	if (to_copy > tls_max_index)
4697 	    to_copy = tls_max_index;
4698 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4699 	newdtv[0] = tls_dtv_generation;
4700 	newdtv[1] = tls_max_index;
4701 	free(dtv);
4702 	lock_release(rtld_bind_lock, &lockstate);
4703 	dtv = *dtvp = newdtv;
4704     }
4705 
4706     /* Dynamically allocate module TLS if necessary */
4707     if (dtv[index + 1] == 0) {
4708 	/* Signal safe, wlock will block out signals. */
4709 	wlock_acquire(rtld_bind_lock, &lockstate);
4710 	if (!dtv[index + 1])
4711 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4712 	lock_release(rtld_bind_lock, &lockstate);
4713     }
4714     return ((void *)(dtv[index + 1] + offset));
4715 }
4716 
4717 void *
4718 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4719 {
4720 	Elf_Addr *dtv;
4721 
4722 	dtv = *dtvp;
4723 	/* Check dtv generation in case new modules have arrived */
4724 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4725 	    dtv[index + 1] != 0))
4726 		return ((void *)(dtv[index + 1] + offset));
4727 	return (tls_get_addr_slow(dtvp, index, offset));
4728 }
4729 
4730 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4731     defined(__powerpc__) || defined(__riscv)
4732 
4733 /*
4734  * Return pointer to allocated TLS block
4735  */
4736 static void *
4737 get_tls_block_ptr(void *tcb, size_t tcbsize)
4738 {
4739     size_t extra_size, post_size, pre_size, tls_block_size;
4740     size_t tls_init_align;
4741 
4742     tls_init_align = MAX(obj_main->tlsalign, 1);
4743 
4744     /* Compute fragments sizes. */
4745     extra_size = tcbsize - TLS_TCB_SIZE;
4746     post_size = calculate_tls_post_size(tls_init_align);
4747     tls_block_size = tcbsize + post_size;
4748     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4749 
4750     return ((char *)tcb - pre_size - extra_size);
4751 }
4752 
4753 /*
4754  * Allocate Static TLS using the Variant I method.
4755  *
4756  * For details on the layout, see lib/libc/gen/tls.c.
4757  *
4758  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4759  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4760  *     offsets, whereas libc's tls_static_space is just the executable's static
4761  *     TLS segment.
4762  */
4763 void *
4764 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4765 {
4766     Obj_Entry *obj;
4767     char *tls_block;
4768     Elf_Addr *dtv, **tcb;
4769     Elf_Addr addr;
4770     Elf_Addr i;
4771     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4772     size_t tls_init_align;
4773 
4774     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4775 	return (oldtcb);
4776 
4777     assert(tcbsize >= TLS_TCB_SIZE);
4778     maxalign = MAX(tcbalign, tls_static_max_align);
4779     tls_init_align = MAX(obj_main->tlsalign, 1);
4780 
4781     /* Compute fragmets sizes. */
4782     extra_size = tcbsize - TLS_TCB_SIZE;
4783     post_size = calculate_tls_post_size(tls_init_align);
4784     tls_block_size = tcbsize + post_size;
4785     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4786     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4787 
4788     /* Allocate whole TLS block */
4789     tls_block = malloc_aligned(tls_block_size, maxalign);
4790     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4791 
4792     if (oldtcb != NULL) {
4793 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4794 	    tls_static_space);
4795 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4796 
4797 	/* Adjust the DTV. */
4798 	dtv = tcb[0];
4799 	for (i = 0; i < dtv[1]; i++) {
4800 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4801 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4802 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4803 	    }
4804 	}
4805     } else {
4806 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4807 	tcb[0] = dtv;
4808 	dtv[0] = tls_dtv_generation;
4809 	dtv[1] = tls_max_index;
4810 
4811 	for (obj = globallist_curr(objs); obj != NULL;
4812 	  obj = globallist_next(obj)) {
4813 	    if (obj->tlsoffset > 0) {
4814 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4815 		if (obj->tlsinitsize > 0)
4816 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4817 		if (obj->tlssize > obj->tlsinitsize)
4818 		    memset((void*)(addr + obj->tlsinitsize), 0,
4819 			   obj->tlssize - obj->tlsinitsize);
4820 		dtv[obj->tlsindex + 1] = addr;
4821 	    }
4822 	}
4823     }
4824 
4825     return (tcb);
4826 }
4827 
4828 void
4829 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4830 {
4831     Elf_Addr *dtv;
4832     Elf_Addr tlsstart, tlsend;
4833     size_t post_size;
4834     size_t dtvsize, i, tls_init_align;
4835 
4836     assert(tcbsize >= TLS_TCB_SIZE);
4837     tls_init_align = MAX(obj_main->tlsalign, 1);
4838 
4839     /* Compute fragments sizes. */
4840     post_size = calculate_tls_post_size(tls_init_align);
4841 
4842     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4843     tlsend = (Elf_Addr)tcb + tls_static_space;
4844 
4845     dtv = *(Elf_Addr **)tcb;
4846     dtvsize = dtv[1];
4847     for (i = 0; i < dtvsize; i++) {
4848 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4849 	    free((void*)dtv[i+2]);
4850 	}
4851     }
4852     free(dtv);
4853     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4854 }
4855 
4856 #endif
4857 
4858 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4859 
4860 /*
4861  * Allocate Static TLS using the Variant II method.
4862  */
4863 void *
4864 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4865 {
4866     Obj_Entry *obj;
4867     size_t size, ralign;
4868     char *tls;
4869     Elf_Addr *dtv, *olddtv;
4870     Elf_Addr segbase, oldsegbase, addr;
4871     size_t i;
4872 
4873     ralign = tcbalign;
4874     if (tls_static_max_align > ralign)
4875 	    ralign = tls_static_max_align;
4876     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4877 
4878     assert(tcbsize >= 2*sizeof(Elf_Addr));
4879     tls = malloc_aligned(size, ralign);
4880     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4881 
4882     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4883     ((Elf_Addr*)segbase)[0] = segbase;
4884     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4885 
4886     dtv[0] = tls_dtv_generation;
4887     dtv[1] = tls_max_index;
4888 
4889     if (oldtls) {
4890 	/*
4891 	 * Copy the static TLS block over whole.
4892 	 */
4893 	oldsegbase = (Elf_Addr) oldtls;
4894 	memcpy((void *)(segbase - tls_static_space),
4895 	       (const void *)(oldsegbase - tls_static_space),
4896 	       tls_static_space);
4897 
4898 	/*
4899 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4900 	 * move them over.
4901 	 */
4902 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4903 	for (i = 0; i < olddtv[1]; i++) {
4904 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4905 		dtv[i+2] = olddtv[i+2];
4906 		olddtv[i+2] = 0;
4907 	    }
4908 	}
4909 
4910 	/*
4911 	 * We assume that this block was the one we created with
4912 	 * allocate_initial_tls().
4913 	 */
4914 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4915     } else {
4916 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4917 		if (obj->marker || obj->tlsoffset == 0)
4918 			continue;
4919 		addr = segbase - obj->tlsoffset;
4920 		memset((void*)(addr + obj->tlsinitsize),
4921 		       0, obj->tlssize - obj->tlsinitsize);
4922 		if (obj->tlsinit)
4923 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4924 		dtv[obj->tlsindex + 1] = addr;
4925 	}
4926     }
4927 
4928     return (void*) segbase;
4929 }
4930 
4931 void
4932 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4933 {
4934     Elf_Addr* dtv;
4935     size_t size, ralign;
4936     int dtvsize, i;
4937     Elf_Addr tlsstart, tlsend;
4938 
4939     /*
4940      * Figure out the size of the initial TLS block so that we can
4941      * find stuff which ___tls_get_addr() allocated dynamically.
4942      */
4943     ralign = tcbalign;
4944     if (tls_static_max_align > ralign)
4945 	    ralign = tls_static_max_align;
4946     size = round(tls_static_space, ralign);
4947 
4948     dtv = ((Elf_Addr**)tls)[1];
4949     dtvsize = dtv[1];
4950     tlsend = (Elf_Addr) tls;
4951     tlsstart = tlsend - size;
4952     for (i = 0; i < dtvsize; i++) {
4953 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4954 		free_aligned((void *)dtv[i + 2]);
4955 	}
4956     }
4957 
4958     free_aligned((void *)tlsstart);
4959     free((void*) dtv);
4960 }
4961 
4962 #endif
4963 
4964 /*
4965  * Allocate TLS block for module with given index.
4966  */
4967 void *
4968 allocate_module_tls(int index)
4969 {
4970     Obj_Entry* obj;
4971     char* p;
4972 
4973     TAILQ_FOREACH(obj, &obj_list, next) {
4974 	if (obj->marker)
4975 	    continue;
4976 	if (obj->tlsindex == index)
4977 	    break;
4978     }
4979     if (!obj) {
4980 	_rtld_error("Can't find module with TLS index %d", index);
4981 	rtld_die();
4982     }
4983 
4984     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4985     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4986     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4987 
4988     return p;
4989 }
4990 
4991 bool
4992 allocate_tls_offset(Obj_Entry *obj)
4993 {
4994     size_t off;
4995 
4996     if (obj->tls_done)
4997 	return true;
4998 
4999     if (obj->tlssize == 0) {
5000 	obj->tls_done = true;
5001 	return true;
5002     }
5003 
5004     if (tls_last_offset == 0)
5005 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5006     else
5007 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5008 				   obj->tlssize, obj->tlsalign);
5009 
5010     /*
5011      * If we have already fixed the size of the static TLS block, we
5012      * must stay within that size. When allocating the static TLS, we
5013      * leave a small amount of space spare to be used for dynamically
5014      * loading modules which use static TLS.
5015      */
5016     if (tls_static_space != 0) {
5017 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5018 	    return false;
5019     } else if (obj->tlsalign > tls_static_max_align) {
5020 	    tls_static_max_align = obj->tlsalign;
5021     }
5022 
5023     tls_last_offset = obj->tlsoffset = off;
5024     tls_last_size = obj->tlssize;
5025     obj->tls_done = true;
5026 
5027     return true;
5028 }
5029 
5030 void
5031 free_tls_offset(Obj_Entry *obj)
5032 {
5033 
5034     /*
5035      * If we were the last thing to allocate out of the static TLS
5036      * block, we give our space back to the 'allocator'. This is a
5037      * simplistic workaround to allow libGL.so.1 to be loaded and
5038      * unloaded multiple times.
5039      */
5040     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5041 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5042 	tls_last_offset -= obj->tlssize;
5043 	tls_last_size = 0;
5044     }
5045 }
5046 
5047 void *
5048 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5049 {
5050     void *ret;
5051     RtldLockState lockstate;
5052 
5053     wlock_acquire(rtld_bind_lock, &lockstate);
5054     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5055       tcbsize, tcbalign);
5056     lock_release(rtld_bind_lock, &lockstate);
5057     return (ret);
5058 }
5059 
5060 void
5061 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5062 {
5063     RtldLockState lockstate;
5064 
5065     wlock_acquire(rtld_bind_lock, &lockstate);
5066     free_tls(tcb, tcbsize, tcbalign);
5067     lock_release(rtld_bind_lock, &lockstate);
5068 }
5069 
5070 static void
5071 object_add_name(Obj_Entry *obj, const char *name)
5072 {
5073     Name_Entry *entry;
5074     size_t len;
5075 
5076     len = strlen(name);
5077     entry = malloc(sizeof(Name_Entry) + len);
5078 
5079     if (entry != NULL) {
5080 	strcpy(entry->name, name);
5081 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5082     }
5083 }
5084 
5085 static int
5086 object_match_name(const Obj_Entry *obj, const char *name)
5087 {
5088     Name_Entry *entry;
5089 
5090     STAILQ_FOREACH(entry, &obj->names, link) {
5091 	if (strcmp(name, entry->name) == 0)
5092 	    return (1);
5093     }
5094     return (0);
5095 }
5096 
5097 static Obj_Entry *
5098 locate_dependency(const Obj_Entry *obj, const char *name)
5099 {
5100     const Objlist_Entry *entry;
5101     const Needed_Entry *needed;
5102 
5103     STAILQ_FOREACH(entry, &list_main, link) {
5104 	if (object_match_name(entry->obj, name))
5105 	    return entry->obj;
5106     }
5107 
5108     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5109 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5110 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5111 	    /*
5112 	     * If there is DT_NEEDED for the name we are looking for,
5113 	     * we are all set.  Note that object might not be found if
5114 	     * dependency was not loaded yet, so the function can
5115 	     * return NULL here.  This is expected and handled
5116 	     * properly by the caller.
5117 	     */
5118 	    return (needed->obj);
5119 	}
5120     }
5121     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5122 	obj->path, name);
5123     rtld_die();
5124 }
5125 
5126 static int
5127 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5128     const Elf_Vernaux *vna)
5129 {
5130     const Elf_Verdef *vd;
5131     const char *vername;
5132 
5133     vername = refobj->strtab + vna->vna_name;
5134     vd = depobj->verdef;
5135     if (vd == NULL) {
5136 	_rtld_error("%s: version %s required by %s not defined",
5137 	    depobj->path, vername, refobj->path);
5138 	return (-1);
5139     }
5140     for (;;) {
5141 	if (vd->vd_version != VER_DEF_CURRENT) {
5142 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5143 		depobj->path, vd->vd_version);
5144 	    return (-1);
5145 	}
5146 	if (vna->vna_hash == vd->vd_hash) {
5147 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5148 		((const char *)vd + vd->vd_aux);
5149 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5150 		return (0);
5151 	}
5152 	if (vd->vd_next == 0)
5153 	    break;
5154 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5155     }
5156     if (vna->vna_flags & VER_FLG_WEAK)
5157 	return (0);
5158     _rtld_error("%s: version %s required by %s not found",
5159 	depobj->path, vername, refobj->path);
5160     return (-1);
5161 }
5162 
5163 static int
5164 rtld_verify_object_versions(Obj_Entry *obj)
5165 {
5166     const Elf_Verneed *vn;
5167     const Elf_Verdef  *vd;
5168     const Elf_Verdaux *vda;
5169     const Elf_Vernaux *vna;
5170     const Obj_Entry *depobj;
5171     int maxvernum, vernum;
5172 
5173     if (obj->ver_checked)
5174 	return (0);
5175     obj->ver_checked = true;
5176 
5177     maxvernum = 0;
5178     /*
5179      * Walk over defined and required version records and figure out
5180      * max index used by any of them. Do very basic sanity checking
5181      * while there.
5182      */
5183     vn = obj->verneed;
5184     while (vn != NULL) {
5185 	if (vn->vn_version != VER_NEED_CURRENT) {
5186 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5187 		obj->path, vn->vn_version);
5188 	    return (-1);
5189 	}
5190 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5191 	for (;;) {
5192 	    vernum = VER_NEED_IDX(vna->vna_other);
5193 	    if (vernum > maxvernum)
5194 		maxvernum = vernum;
5195 	    if (vna->vna_next == 0)
5196 		 break;
5197 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5198 	}
5199 	if (vn->vn_next == 0)
5200 	    break;
5201 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5202     }
5203 
5204     vd = obj->verdef;
5205     while (vd != NULL) {
5206 	if (vd->vd_version != VER_DEF_CURRENT) {
5207 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5208 		obj->path, vd->vd_version);
5209 	    return (-1);
5210 	}
5211 	vernum = VER_DEF_IDX(vd->vd_ndx);
5212 	if (vernum > maxvernum)
5213 		maxvernum = vernum;
5214 	if (vd->vd_next == 0)
5215 	    break;
5216 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5217     }
5218 
5219     if (maxvernum == 0)
5220 	return (0);
5221 
5222     /*
5223      * Store version information in array indexable by version index.
5224      * Verify that object version requirements are satisfied along the
5225      * way.
5226      */
5227     obj->vernum = maxvernum + 1;
5228     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5229 
5230     vd = obj->verdef;
5231     while (vd != NULL) {
5232 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5233 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5234 	    assert(vernum <= maxvernum);
5235 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5236 	    obj->vertab[vernum].hash = vd->vd_hash;
5237 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5238 	    obj->vertab[vernum].file = NULL;
5239 	    obj->vertab[vernum].flags = 0;
5240 	}
5241 	if (vd->vd_next == 0)
5242 	    break;
5243 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5244     }
5245 
5246     vn = obj->verneed;
5247     while (vn != NULL) {
5248 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5249 	if (depobj == NULL)
5250 	    return (-1);
5251 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5252 	for (;;) {
5253 	    if (check_object_provided_version(obj, depobj, vna))
5254 		return (-1);
5255 	    vernum = VER_NEED_IDX(vna->vna_other);
5256 	    assert(vernum <= maxvernum);
5257 	    obj->vertab[vernum].hash = vna->vna_hash;
5258 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5259 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5260 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5261 		VER_INFO_HIDDEN : 0;
5262 	    if (vna->vna_next == 0)
5263 		 break;
5264 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5265 	}
5266 	if (vn->vn_next == 0)
5267 	    break;
5268 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5269     }
5270     return 0;
5271 }
5272 
5273 static int
5274 rtld_verify_versions(const Objlist *objlist)
5275 {
5276     Objlist_Entry *entry;
5277     int rc;
5278 
5279     rc = 0;
5280     STAILQ_FOREACH(entry, objlist, link) {
5281 	/*
5282 	 * Skip dummy objects or objects that have their version requirements
5283 	 * already checked.
5284 	 */
5285 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5286 	    continue;
5287 	if (rtld_verify_object_versions(entry->obj) == -1) {
5288 	    rc = -1;
5289 	    if (ld_tracing == NULL)
5290 		break;
5291 	}
5292     }
5293     if (rc == 0 || ld_tracing != NULL)
5294     	rc = rtld_verify_object_versions(&obj_rtld);
5295     return rc;
5296 }
5297 
5298 const Ver_Entry *
5299 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5300 {
5301     Elf_Versym vernum;
5302 
5303     if (obj->vertab) {
5304 	vernum = VER_NDX(obj->versyms[symnum]);
5305 	if (vernum >= obj->vernum) {
5306 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5307 		obj->path, obj->strtab + symnum, vernum);
5308 	} else if (obj->vertab[vernum].hash != 0) {
5309 	    return &obj->vertab[vernum];
5310 	}
5311     }
5312     return NULL;
5313 }
5314 
5315 int
5316 _rtld_get_stack_prot(void)
5317 {
5318 
5319 	return (stack_prot);
5320 }
5321 
5322 int
5323 _rtld_is_dlopened(void *arg)
5324 {
5325 	Obj_Entry *obj;
5326 	RtldLockState lockstate;
5327 	int res;
5328 
5329 	rlock_acquire(rtld_bind_lock, &lockstate);
5330 	obj = dlcheck(arg);
5331 	if (obj == NULL)
5332 		obj = obj_from_addr(arg);
5333 	if (obj == NULL) {
5334 		_rtld_error("No shared object contains address");
5335 		lock_release(rtld_bind_lock, &lockstate);
5336 		return (-1);
5337 	}
5338 	res = obj->dlopened ? 1 : 0;
5339 	lock_release(rtld_bind_lock, &lockstate);
5340 	return (res);
5341 }
5342 
5343 int
5344 obj_enforce_relro(Obj_Entry *obj)
5345 {
5346 
5347 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5348 	    PROT_READ) == -1) {
5349 		_rtld_error("%s: Cannot enforce relro protection: %s",
5350 		    obj->path, rtld_strerror(errno));
5351 		return (-1);
5352 	}
5353 	return (0);
5354 }
5355 
5356 static void
5357 map_stacks_exec(RtldLockState *lockstate)
5358 {
5359 	void (*thr_map_stacks_exec)(void);
5360 
5361 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5362 		return;
5363 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5364 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5365 	if (thr_map_stacks_exec != NULL) {
5366 		stack_prot |= PROT_EXEC;
5367 		thr_map_stacks_exec();
5368 	}
5369 }
5370 
5371 void
5372 symlook_init(SymLook *dst, const char *name)
5373 {
5374 
5375 	bzero(dst, sizeof(*dst));
5376 	dst->name = name;
5377 	dst->hash = elf_hash(name);
5378 	dst->hash_gnu = gnu_hash(name);
5379 }
5380 
5381 static void
5382 symlook_init_from_req(SymLook *dst, const SymLook *src)
5383 {
5384 
5385 	dst->name = src->name;
5386 	dst->hash = src->hash;
5387 	dst->hash_gnu = src->hash_gnu;
5388 	dst->ventry = src->ventry;
5389 	dst->flags = src->flags;
5390 	dst->defobj_out = NULL;
5391 	dst->sym_out = NULL;
5392 	dst->lockstate = src->lockstate;
5393 }
5394 
5395 static int
5396 open_binary_fd(const char *argv0, bool search_in_path)
5397 {
5398 	char *pathenv, *pe, binpath[PATH_MAX];
5399 	int fd;
5400 
5401 	if (search_in_path && strchr(argv0, '/') == NULL) {
5402 		pathenv = getenv("PATH");
5403 		if (pathenv == NULL) {
5404 			_rtld_error("-p and no PATH environment variable");
5405 			rtld_die();
5406 		}
5407 		pathenv = strdup(pathenv);
5408 		if (pathenv == NULL) {
5409 			_rtld_error("Cannot allocate memory");
5410 			rtld_die();
5411 		}
5412 		fd = -1;
5413 		errno = ENOENT;
5414 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5415 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5416 			    sizeof(binpath))
5417 				continue;
5418 			if (binpath[0] != '\0' &&
5419 			    strlcat(binpath, "/", sizeof(binpath)) >=
5420 			    sizeof(binpath))
5421 				continue;
5422 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5423 			    sizeof(binpath))
5424 				continue;
5425 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5426 			if (fd != -1 || errno != ENOENT)
5427 				break;
5428 		}
5429 		free(pathenv);
5430 	} else {
5431 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5432 	}
5433 
5434 	if (fd == -1) {
5435 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5436 		rtld_die();
5437 	}
5438 	return (fd);
5439 }
5440 
5441 /*
5442  * Parse a set of command-line arguments.
5443  */
5444 static int
5445 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5446 {
5447 	const char *arg;
5448 	int fd, i, j, arglen;
5449 	char opt;
5450 
5451 	dbg("Parsing command-line arguments");
5452 	*use_pathp = false;
5453 	*fdp = -1;
5454 
5455 	for (i = 1; i < argc; i++ ) {
5456 		arg = argv[i];
5457 		dbg("argv[%d]: '%s'", i, arg);
5458 
5459 		/*
5460 		 * rtld arguments end with an explicit "--" or with the first
5461 		 * non-prefixed argument.
5462 		 */
5463 		if (strcmp(arg, "--") == 0) {
5464 			i++;
5465 			break;
5466 		}
5467 		if (arg[0] != '-')
5468 			break;
5469 
5470 		/*
5471 		 * All other arguments are single-character options that can
5472 		 * be combined, so we need to search through `arg` for them.
5473 		 */
5474 		arglen = strlen(arg);
5475 		for (j = 1; j < arglen; j++) {
5476 			opt = arg[j];
5477 			if (opt == 'h') {
5478 				print_usage(argv[0]);
5479 				_exit(0);
5480 			} else if (opt == 'f') {
5481 			/*
5482 			 * -f XX can be used to specify a descriptor for the
5483 			 * binary named at the command line (i.e., the later
5484 			 * argument will specify the process name but the
5485 			 * descriptor is what will actually be executed)
5486 			 */
5487 			if (j != arglen - 1) {
5488 				/* -f must be the last option in, e.g., -abcf */
5489 				_rtld_error("Invalid options: %s", arg);
5490 				rtld_die();
5491 			}
5492 			i++;
5493 			fd = parse_integer(argv[i]);
5494 			if (fd == -1) {
5495 				_rtld_error("Invalid file descriptor: '%s'",
5496 				    argv[i]);
5497 				rtld_die();
5498 			}
5499 			*fdp = fd;
5500 			break;
5501 			} else if (opt == 'p') {
5502 				*use_pathp = true;
5503 			} else {
5504 				_rtld_error("Invalid argument: '%s'", arg);
5505 				print_usage(argv[0]);
5506 				rtld_die();
5507 			}
5508 		}
5509 	}
5510 
5511 	return (i);
5512 }
5513 
5514 /*
5515  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5516  */
5517 static int
5518 parse_integer(const char *str)
5519 {
5520 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5521 	const char *orig;
5522 	int n;
5523 	char c;
5524 
5525 	orig = str;
5526 	n = 0;
5527 	for (c = *str; c != '\0'; c = *++str) {
5528 		if (c < '0' || c > '9')
5529 			return (-1);
5530 
5531 		n *= RADIX;
5532 		n += c - '0';
5533 	}
5534 
5535 	/* Make sure we actually parsed something. */
5536 	if (str == orig)
5537 		return (-1);
5538 	return (n);
5539 }
5540 
5541 static void
5542 print_usage(const char *argv0)
5543 {
5544 
5545 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5546 		"\n"
5547 		"Options:\n"
5548 		"  -h        Display this help message\n"
5549 		"  -p        Search in PATH for named binary\n"
5550 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5551 		"  --        End of RTLD options\n"
5552 		"  <binary>  Name of process to execute\n"
5553 		"  <args>    Arguments to the executed process\n", argv0);
5554 }
5555 
5556 /*
5557  * Overrides for libc_pic-provided functions.
5558  */
5559 
5560 int
5561 __getosreldate(void)
5562 {
5563 	size_t len;
5564 	int oid[2];
5565 	int error, osrel;
5566 
5567 	if (osreldate != 0)
5568 		return (osreldate);
5569 
5570 	oid[0] = CTL_KERN;
5571 	oid[1] = KERN_OSRELDATE;
5572 	osrel = 0;
5573 	len = sizeof(osrel);
5574 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5575 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5576 		osreldate = osrel;
5577 	return (osreldate);
5578 }
5579 
5580 void
5581 exit(int status)
5582 {
5583 
5584 	_exit(status);
5585 }
5586 
5587 void (*__cleanup)(void);
5588 int __isthreaded = 0;
5589 int _thread_autoinit_dummy_decl = 1;
5590 
5591 /*
5592  * No unresolved symbols for rtld.
5593  */
5594 void
5595 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5596 {
5597 }
5598 
5599 const char *
5600 rtld_strerror(int errnum)
5601 {
5602 
5603 	if (errnum < 0 || errnum >= sys_nerr)
5604 		return ("Unknown error");
5605 	return (sys_errlist[errnum]);
5606 }
5607