xref: /freebsd/libexec/rtld-elf/rtld.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 
65 #ifndef COMPAT_32BIT
66 #define PATH_RTLD	"/libexec/ld-elf.so.1"
67 #else
68 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
69 #endif
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *basename(const char *);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103 static void unload_filtees(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *, int);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
107 static void map_stacks_exec(RtldLockState *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119 static int rtld_dirname(const char *, char *);
120 static int rtld_dirname_abs(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *, RtldLockState *);
124 static void set_program_var(const char *, const void *);
125 static int symlook_default(SymLook *, const Obj_Entry *refobj);
126 static int symlook_global(SymLook *, DoneList *);
127 static void symlook_init_from_req(SymLook *, const SymLook *);
128 static int symlook_list(SymLook *, const Objlist *, DoneList *);
129 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
130 static int symlook_obj1(SymLook *, const Obj_Entry *);
131 static void trace_loaded_objects(Obj_Entry *);
132 static void unlink_object(Obj_Entry *);
133 static void unload_object(Obj_Entry *);
134 static void unref_dag(Obj_Entry *);
135 static void ref_dag(Obj_Entry *);
136 static int origin_subst_one(char **, const char *, const char *,
137   const char *, char *);
138 static char *origin_subst(const char *, const char *);
139 static int  rtld_verify_versions(const Objlist *);
140 static int  rtld_verify_object_versions(Obj_Entry *);
141 static void object_add_name(Obj_Entry *, const char *);
142 static int  object_match_name(const Obj_Entry *, const char *);
143 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
144 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
145     struct dl_phdr_info *phdr_info);
146 
147 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
148 
149 /*
150  * Data declarations.
151  */
152 static char *error_message;	/* Message for dlerror(), or NULL */
153 struct r_debug r_debug;		/* for GDB; */
154 static bool libmap_disable;	/* Disable libmap */
155 static bool ld_loadfltr;	/* Immediate filters processing */
156 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
157 static bool trust;		/* False for setuid and setgid programs */
158 static bool dangerous_ld_env;	/* True if environment variables have been
159 				   used to affect the libraries loaded */
160 static char *ld_bind_now;	/* Environment variable for immediate binding */
161 static char *ld_debug;		/* Environment variable for debugging */
162 static char *ld_library_path;	/* Environment variable for search path */
163 static char *ld_preload;	/* Environment variable for libraries to
164 				   load first */
165 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
166 static char *ld_tracing;	/* Called from ldd to print libs */
167 static char *ld_utrace;		/* Use utrace() to log events. */
168 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
169 static Obj_Entry **obj_tail;	/* Link field of last object in list */
170 static Obj_Entry *obj_main;	/* The main program shared object */
171 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
172 static unsigned int obj_count;	/* Number of objects in obj_list */
173 static unsigned int obj_loads;	/* Number of objects in obj_list */
174 
175 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
176   STAILQ_HEAD_INITIALIZER(list_global);
177 static Objlist list_main =	/* Objects loaded at program startup */
178   STAILQ_HEAD_INITIALIZER(list_main);
179 static Objlist list_fini =	/* Objects needing fini() calls */
180   STAILQ_HEAD_INITIALIZER(list_fini);
181 
182 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
183 
184 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
185 
186 extern Elf_Dyn _DYNAMIC;
187 #pragma weak _DYNAMIC
188 #ifndef RTLD_IS_DYNAMIC
189 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
190 #endif
191 
192 int osreldate, pagesize;
193 
194 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
195 static int max_stack_flags;
196 
197 /*
198  * Global declarations normally provided by crt1.  The dynamic linker is
199  * not built with crt1, so we have to provide them ourselves.
200  */
201 char *__progname;
202 char **environ;
203 
204 /*
205  * Globals to control TLS allocation.
206  */
207 size_t tls_last_offset;		/* Static TLS offset of last module */
208 size_t tls_last_size;		/* Static TLS size of last module */
209 size_t tls_static_space;	/* Static TLS space allocated */
210 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
211 int tls_max_index = 1;		/* Largest module index allocated */
212 
213 /*
214  * Fill in a DoneList with an allocation large enough to hold all of
215  * the currently-loaded objects.  Keep this as a macro since it calls
216  * alloca and we want that to occur within the scope of the caller.
217  */
218 #define donelist_init(dlp)					\
219     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
220     assert((dlp)->objs != NULL),				\
221     (dlp)->num_alloc = obj_count,				\
222     (dlp)->num_used = 0)
223 
224 #define	UTRACE_DLOPEN_START		1
225 #define	UTRACE_DLOPEN_STOP		2
226 #define	UTRACE_DLCLOSE_START		3
227 #define	UTRACE_DLCLOSE_STOP		4
228 #define	UTRACE_LOAD_OBJECT		5
229 #define	UTRACE_UNLOAD_OBJECT		6
230 #define	UTRACE_ADD_RUNDEP		7
231 #define	UTRACE_PRELOAD_FINISHED		8
232 #define	UTRACE_INIT_CALL		9
233 #define	UTRACE_FINI_CALL		10
234 
235 struct utrace_rtld {
236 	char sig[4];			/* 'RTLD' */
237 	int event;
238 	void *handle;
239 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
240 	size_t mapsize;
241 	int refcnt;			/* Used for 'mode' */
242 	char name[MAXPATHLEN];
243 };
244 
245 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
246 	if (ld_utrace != NULL)					\
247 		ld_utrace_log(e, h, mb, ms, r, n);		\
248 } while (0)
249 
250 static void
251 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
252     int refcnt, const char *name)
253 {
254 	struct utrace_rtld ut;
255 
256 	ut.sig[0] = 'R';
257 	ut.sig[1] = 'T';
258 	ut.sig[2] = 'L';
259 	ut.sig[3] = 'D';
260 	ut.event = event;
261 	ut.handle = handle;
262 	ut.mapbase = mapbase;
263 	ut.mapsize = mapsize;
264 	ut.refcnt = refcnt;
265 	bzero(ut.name, sizeof(ut.name));
266 	if (name)
267 		strlcpy(ut.name, name, sizeof(ut.name));
268 	utrace(&ut, sizeof(ut));
269 }
270 
271 /*
272  * Main entry point for dynamic linking.  The first argument is the
273  * stack pointer.  The stack is expected to be laid out as described
274  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
275  * Specifically, the stack pointer points to a word containing
276  * ARGC.  Following that in the stack is a null-terminated sequence
277  * of pointers to argument strings.  Then comes a null-terminated
278  * sequence of pointers to environment strings.  Finally, there is a
279  * sequence of "auxiliary vector" entries.
280  *
281  * The second argument points to a place to store the dynamic linker's
282  * exit procedure pointer and the third to a place to store the main
283  * program's object.
284  *
285  * The return value is the main program's entry point.
286  */
287 func_ptr_type
288 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
289 {
290     Elf_Auxinfo *aux_info[AT_COUNT];
291     int i;
292     int argc;
293     char **argv;
294     char **env;
295     Elf_Auxinfo *aux;
296     Elf_Auxinfo *auxp;
297     const char *argv0;
298     Objlist_Entry *entry;
299     Obj_Entry *obj;
300     Obj_Entry **preload_tail;
301     Objlist initlist;
302     RtldLockState lockstate;
303 
304     /*
305      * On entry, the dynamic linker itself has not been relocated yet.
306      * Be very careful not to reference any global data until after
307      * init_rtld has returned.  It is OK to reference file-scope statics
308      * and string constants, and to call static and global functions.
309      */
310 
311     /* Find the auxiliary vector on the stack. */
312     argc = *sp++;
313     argv = (char **) sp;
314     sp += argc + 1;	/* Skip over arguments and NULL terminator */
315     env = (char **) sp;
316     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
317 	;
318     aux = (Elf_Auxinfo *) sp;
319 
320     /* Digest the auxiliary vector. */
321     for (i = 0;  i < AT_COUNT;  i++)
322 	aux_info[i] = NULL;
323     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
324 	if (auxp->a_type < AT_COUNT)
325 	    aux_info[auxp->a_type] = auxp;
326     }
327 
328     /* Initialize and relocate ourselves. */
329     assert(aux_info[AT_BASE] != NULL);
330     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
331 
332     __progname = obj_rtld.path;
333     argv0 = argv[0] != NULL ? argv[0] : "(null)";
334     environ = env;
335 
336     trust = !issetugid();
337 
338     ld_bind_now = getenv(LD_ "BIND_NOW");
339     /*
340      * If the process is tainted, then we un-set the dangerous environment
341      * variables.  The process will be marked as tainted until setuid(2)
342      * is called.  If any child process calls setuid(2) we do not want any
343      * future processes to honor the potentially un-safe variables.
344      */
345     if (!trust) {
346         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
347 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
348 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
349 	    unsetenv(LD_ "LOADFLTR")) {
350 		_rtld_error("environment corrupt; aborting");
351 		die();
352 	}
353     }
354     ld_debug = getenv(LD_ "DEBUG");
355     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
356     libmap_override = getenv(LD_ "LIBMAP");
357     ld_library_path = getenv(LD_ "LIBRARY_PATH");
358     ld_preload = getenv(LD_ "PRELOAD");
359     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
360     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
361     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
362 	(ld_library_path != NULL) || (ld_preload != NULL) ||
363 	(ld_elf_hints_path != NULL) || ld_loadfltr;
364     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
365     ld_utrace = getenv(LD_ "UTRACE");
366 
367     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
368 	ld_elf_hints_path = _PATH_ELF_HINTS;
369 
370     if (ld_debug != NULL && *ld_debug != '\0')
371 	debug = 1;
372     dbg("%s is initialized, base address = %p", __progname,
373 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
374     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
375     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
376 
377     dbg("initializing thread locks");
378     lockdflt_init();
379 
380     /*
381      * Load the main program, or process its program header if it is
382      * already loaded.
383      */
384     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
385 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
386 	dbg("loading main program");
387 	obj_main = map_object(fd, argv0, NULL);
388 	close(fd);
389 	if (obj_main == NULL)
390 	    die();
391 	max_stack_flags = obj->stack_flags;
392     } else {				/* Main program already loaded. */
393 	const Elf_Phdr *phdr;
394 	int phnum;
395 	caddr_t entry;
396 
397 	dbg("processing main program's program header");
398 	assert(aux_info[AT_PHDR] != NULL);
399 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
400 	assert(aux_info[AT_PHNUM] != NULL);
401 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
402 	assert(aux_info[AT_PHENT] != NULL);
403 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
404 	assert(aux_info[AT_ENTRY] != NULL);
405 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
406 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
407 	    die();
408     }
409 
410     if (aux_info[AT_EXECPATH] != 0) {
411 	    char *kexecpath;
412 	    char buf[MAXPATHLEN];
413 
414 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
415 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
416 	    if (kexecpath[0] == '/')
417 		    obj_main->path = kexecpath;
418 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
419 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
420 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
421 		    obj_main->path = xstrdup(argv0);
422 	    else
423 		    obj_main->path = xstrdup(buf);
424     } else {
425 	    dbg("No AT_EXECPATH");
426 	    obj_main->path = xstrdup(argv0);
427     }
428     dbg("obj_main path %s", obj_main->path);
429     obj_main->mainprog = true;
430 
431     if (aux_info[AT_STACKPROT] != NULL &&
432       aux_info[AT_STACKPROT]->a_un.a_val != 0)
433 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
434 
435     /*
436      * Get the actual dynamic linker pathname from the executable if
437      * possible.  (It should always be possible.)  That ensures that
438      * gdb will find the right dynamic linker even if a non-standard
439      * one is being used.
440      */
441     if (obj_main->interp != NULL &&
442       strcmp(obj_main->interp, obj_rtld.path) != 0) {
443 	free(obj_rtld.path);
444 	obj_rtld.path = xstrdup(obj_main->interp);
445         __progname = obj_rtld.path;
446     }
447 
448     digest_dynamic(obj_main, 0);
449 
450     linkmap_add(obj_main);
451     linkmap_add(&obj_rtld);
452 
453     /* Link the main program into the list of objects. */
454     *obj_tail = obj_main;
455     obj_tail = &obj_main->next;
456     obj_count++;
457     obj_loads++;
458     /* Make sure we don't call the main program's init and fini functions. */
459     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
460 
461     /* Initialize a fake symbol for resolving undefined weak references. */
462     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
463     sym_zero.st_shndx = SHN_UNDEF;
464     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
465 
466     if (!libmap_disable)
467         libmap_disable = (bool)lm_init(libmap_override);
468 
469     dbg("loading LD_PRELOAD libraries");
470     if (load_preload_objects() == -1)
471 	die();
472     preload_tail = obj_tail;
473 
474     dbg("loading needed objects");
475     if (load_needed_objects(obj_main, 0) == -1)
476 	die();
477 
478     /* Make a list of all objects loaded at startup. */
479     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
480 	objlist_push_tail(&list_main, obj);
481     	obj->refcount++;
482     }
483 
484     dbg("checking for required versions");
485     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
486 	die();
487 
488     if (ld_tracing) {		/* We're done */
489 	trace_loaded_objects(obj_main);
490 	exit(0);
491     }
492 
493     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
494        dump_relocations(obj_main);
495        exit (0);
496     }
497 
498     /*
499      * Processing tls relocations requires having the tls offsets
500      * initialized.  Prepare offsets before starting initial
501      * relocation processing.
502      */
503     dbg("initializing initial thread local storage offsets");
504     STAILQ_FOREACH(entry, &list_main, link) {
505 	/*
506 	 * Allocate all the initial objects out of the static TLS
507 	 * block even if they didn't ask for it.
508 	 */
509 	allocate_tls_offset(entry->obj);
510     }
511 
512     if (relocate_objects(obj_main,
513       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
514 	die();
515 
516     dbg("doing copy relocations");
517     if (do_copy_relocations(obj_main) == -1)
518 	die();
519 
520     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
521        dump_relocations(obj_main);
522        exit (0);
523     }
524 
525     /*
526      * Setup TLS for main thread.  This must be done after the
527      * relocations are processed, since tls initialization section
528      * might be the subject for relocations.
529      */
530     dbg("initializing initial thread local storage");
531     allocate_initial_tls(obj_list);
532 
533     dbg("initializing key program variables");
534     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
535     set_program_var("environ", env);
536     set_program_var("__elf_aux_vector", aux);
537 
538     /* Make a list of init functions to call. */
539     objlist_init(&initlist);
540     initlist_add_objects(obj_list, preload_tail, &initlist);
541 
542     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
543 
544     map_stacks_exec(NULL);
545 
546     wlock_acquire(rtld_bind_lock, &lockstate);
547     objlist_call_init(&initlist, &lockstate);
548     objlist_clear(&initlist);
549     dbg("loading filtees");
550     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
551 	if (ld_loadfltr || obj->z_loadfltr)
552 	    load_filtees(obj, 0, &lockstate);
553     }
554     lock_release(rtld_bind_lock, &lockstate);
555 
556     dbg("transferring control to program entry point = %p", obj_main->entry);
557 
558     /* Return the exit procedure and the program entry point. */
559     *exit_proc = rtld_exit;
560     *objp = obj_main;
561     return (func_ptr_type) obj_main->entry;
562 }
563 
564 Elf_Addr
565 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
566 {
567     const Elf_Rel *rel;
568     const Elf_Sym *def;
569     const Obj_Entry *defobj;
570     Elf_Addr *where;
571     Elf_Addr target;
572     RtldLockState lockstate;
573 
574     rlock_acquire(rtld_bind_lock, &lockstate);
575     if (sigsetjmp(lockstate.env, 0) != 0)
576 	    lock_upgrade(rtld_bind_lock, &lockstate);
577     if (obj->pltrel)
578 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
579     else
580 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
581 
582     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
583     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
584 	&lockstate);
585     if (def == NULL)
586 	die();
587 
588     target = (Elf_Addr)(defobj->relocbase + def->st_value);
589 
590     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
591       defobj->strtab + def->st_name, basename(obj->path),
592       (void *)target, basename(defobj->path));
593 
594     /*
595      * Write the new contents for the jmpslot. Note that depending on
596      * architecture, the value which we need to return back to the
597      * lazy binding trampoline may or may not be the target
598      * address. The value returned from reloc_jmpslot() is the value
599      * that the trampoline needs.
600      */
601     target = reloc_jmpslot(where, target, defobj, obj, rel);
602     lock_release(rtld_bind_lock, &lockstate);
603     return target;
604 }
605 
606 /*
607  * Error reporting function.  Use it like printf.  If formats the message
608  * into a buffer, and sets things up so that the next call to dlerror()
609  * will return the message.
610  */
611 void
612 _rtld_error(const char *fmt, ...)
613 {
614     static char buf[512];
615     va_list ap;
616 
617     va_start(ap, fmt);
618     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
619     error_message = buf;
620     va_end(ap);
621 }
622 
623 /*
624  * Return a dynamically-allocated copy of the current error message, if any.
625  */
626 static char *
627 errmsg_save(void)
628 {
629     return error_message == NULL ? NULL : xstrdup(error_message);
630 }
631 
632 /*
633  * Restore the current error message from a copy which was previously saved
634  * by errmsg_save().  The copy is freed.
635  */
636 static void
637 errmsg_restore(char *saved_msg)
638 {
639     if (saved_msg == NULL)
640 	error_message = NULL;
641     else {
642 	_rtld_error("%s", saved_msg);
643 	free(saved_msg);
644     }
645 }
646 
647 static const char *
648 basename(const char *name)
649 {
650     const char *p = strrchr(name, '/');
651     return p != NULL ? p + 1 : name;
652 }
653 
654 static struct utsname uts;
655 
656 static int
657 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
658     char *may_free)
659 {
660     const char *p, *p1;
661     char *res1;
662     int subst_len;
663     int kw_len;
664 
665     res1 = *res = NULL;
666     p = real;
667     subst_len = kw_len = 0;
668     for (;;) {
669 	 p1 = strstr(p, kw);
670 	 if (p1 != NULL) {
671 	     if (subst_len == 0) {
672 		 subst_len = strlen(subst);
673 		 kw_len = strlen(kw);
674 	     }
675 	     if (*res == NULL) {
676 		 *res = xmalloc(PATH_MAX);
677 		 res1 = *res;
678 	     }
679 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
680 		 _rtld_error("Substitution of %s in %s cannot be performed",
681 		     kw, real);
682 		 if (may_free != NULL)
683 		     free(may_free);
684 		 free(res);
685 		 return (false);
686 	     }
687 	     memcpy(res1, p, p1 - p);
688 	     res1 += p1 - p;
689 	     memcpy(res1, subst, subst_len);
690 	     res1 += subst_len;
691 	     p = p1 + kw_len;
692 	 } else {
693 	    if (*res == NULL) {
694 		if (may_free != NULL)
695 		    *res = may_free;
696 		else
697 		    *res = xstrdup(real);
698 		return (true);
699 	    }
700 	    *res1 = '\0';
701 	    if (may_free != NULL)
702 		free(may_free);
703 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
704 		free(res);
705 		return (false);
706 	    }
707 	    return (true);
708 	 }
709     }
710 }
711 
712 static char *
713 origin_subst(const char *real, const char *origin_path)
714 {
715     char *res1, *res2, *res3, *res4;
716 
717     if (uts.sysname[0] == '\0') {
718 	if (uname(&uts) != 0) {
719 	    _rtld_error("utsname failed: %d", errno);
720 	    return (NULL);
721 	}
722     }
723     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
724 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
725 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
726 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
727 	    return (NULL);
728     return (res4);
729 }
730 
731 static void
732 die(void)
733 {
734     const char *msg = dlerror();
735 
736     if (msg == NULL)
737 	msg = "Fatal error";
738     rtld_fdputstr(STDERR_FILENO, msg);
739     _exit(1);
740 }
741 
742 /*
743  * Process a shared object's DYNAMIC section, and save the important
744  * information in its Obj_Entry structure.
745  */
746 static void
747 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
748     const Elf_Dyn **dyn_soname)
749 {
750     const Elf_Dyn *dynp;
751     Needed_Entry **needed_tail = &obj->needed;
752     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
753     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
754     int plttype = DT_REL;
755 
756     *dyn_rpath = NULL;
757     *dyn_soname = NULL;
758 
759     obj->bind_now = false;
760     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
761 	switch (dynp->d_tag) {
762 
763 	case DT_REL:
764 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
765 	    break;
766 
767 	case DT_RELSZ:
768 	    obj->relsize = dynp->d_un.d_val;
769 	    break;
770 
771 	case DT_RELENT:
772 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
773 	    break;
774 
775 	case DT_JMPREL:
776 	    obj->pltrel = (const Elf_Rel *)
777 	      (obj->relocbase + dynp->d_un.d_ptr);
778 	    break;
779 
780 	case DT_PLTRELSZ:
781 	    obj->pltrelsize = dynp->d_un.d_val;
782 	    break;
783 
784 	case DT_RELA:
785 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
786 	    break;
787 
788 	case DT_RELASZ:
789 	    obj->relasize = dynp->d_un.d_val;
790 	    break;
791 
792 	case DT_RELAENT:
793 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
794 	    break;
795 
796 	case DT_PLTREL:
797 	    plttype = dynp->d_un.d_val;
798 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
799 	    break;
800 
801 	case DT_SYMTAB:
802 	    obj->symtab = (const Elf_Sym *)
803 	      (obj->relocbase + dynp->d_un.d_ptr);
804 	    break;
805 
806 	case DT_SYMENT:
807 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
808 	    break;
809 
810 	case DT_STRTAB:
811 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
812 	    break;
813 
814 	case DT_STRSZ:
815 	    obj->strsize = dynp->d_un.d_val;
816 	    break;
817 
818 	case DT_VERNEED:
819 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
820 		dynp->d_un.d_val);
821 	    break;
822 
823 	case DT_VERNEEDNUM:
824 	    obj->verneednum = dynp->d_un.d_val;
825 	    break;
826 
827 	case DT_VERDEF:
828 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
829 		dynp->d_un.d_val);
830 	    break;
831 
832 	case DT_VERDEFNUM:
833 	    obj->verdefnum = dynp->d_un.d_val;
834 	    break;
835 
836 	case DT_VERSYM:
837 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
838 		dynp->d_un.d_val);
839 	    break;
840 
841 	case DT_HASH:
842 	    {
843 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
844 		  (obj->relocbase + dynp->d_un.d_ptr);
845 		obj->nbuckets = hashtab[0];
846 		obj->nchains = hashtab[1];
847 		obj->buckets = hashtab + 2;
848 		obj->chains = obj->buckets + obj->nbuckets;
849 	    }
850 	    break;
851 
852 	case DT_NEEDED:
853 	    if (!obj->rtld) {
854 		Needed_Entry *nep = NEW(Needed_Entry);
855 		nep->name = dynp->d_un.d_val;
856 		nep->obj = NULL;
857 		nep->next = NULL;
858 
859 		*needed_tail = nep;
860 		needed_tail = &nep->next;
861 	    }
862 	    break;
863 
864 	case DT_FILTER:
865 	    if (!obj->rtld) {
866 		Needed_Entry *nep = NEW(Needed_Entry);
867 		nep->name = dynp->d_un.d_val;
868 		nep->obj = NULL;
869 		nep->next = NULL;
870 
871 		*needed_filtees_tail = nep;
872 		needed_filtees_tail = &nep->next;
873 	    }
874 	    break;
875 
876 	case DT_AUXILIARY:
877 	    if (!obj->rtld) {
878 		Needed_Entry *nep = NEW(Needed_Entry);
879 		nep->name = dynp->d_un.d_val;
880 		nep->obj = NULL;
881 		nep->next = NULL;
882 
883 		*needed_aux_filtees_tail = nep;
884 		needed_aux_filtees_tail = &nep->next;
885 	    }
886 	    break;
887 
888 	case DT_PLTGOT:
889 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
890 	    break;
891 
892 	case DT_TEXTREL:
893 	    obj->textrel = true;
894 	    break;
895 
896 	case DT_SYMBOLIC:
897 	    obj->symbolic = true;
898 	    break;
899 
900 	case DT_RPATH:
901 	case DT_RUNPATH:	/* XXX: process separately */
902 	    /*
903 	     * We have to wait until later to process this, because we
904 	     * might not have gotten the address of the string table yet.
905 	     */
906 	    *dyn_rpath = dynp;
907 	    break;
908 
909 	case DT_SONAME:
910 	    *dyn_soname = dynp;
911 	    break;
912 
913 	case DT_INIT:
914 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
915 	    break;
916 
917 	case DT_FINI:
918 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
919 	    break;
920 
921 	/*
922 	 * Don't process DT_DEBUG on MIPS as the dynamic section
923 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
924 	 */
925 
926 #ifndef __mips__
927 	case DT_DEBUG:
928 	    /* XXX - not implemented yet */
929 	    if (!early)
930 		dbg("Filling in DT_DEBUG entry");
931 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
932 	    break;
933 #endif
934 
935 	case DT_FLAGS:
936 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
937 		    obj->z_origin = true;
938 		if (dynp->d_un.d_val & DF_SYMBOLIC)
939 		    obj->symbolic = true;
940 		if (dynp->d_un.d_val & DF_TEXTREL)
941 		    obj->textrel = true;
942 		if (dynp->d_un.d_val & DF_BIND_NOW)
943 		    obj->bind_now = true;
944 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
945 		    ;*/
946 	    break;
947 #ifdef __mips__
948 	case DT_MIPS_LOCAL_GOTNO:
949 		obj->local_gotno = dynp->d_un.d_val;
950 	    break;
951 
952 	case DT_MIPS_SYMTABNO:
953 		obj->symtabno = dynp->d_un.d_val;
954 		break;
955 
956 	case DT_MIPS_GOTSYM:
957 		obj->gotsym = dynp->d_un.d_val;
958 		break;
959 
960 	case DT_MIPS_RLD_MAP:
961 #ifdef notyet
962 		if (!early)
963 			dbg("Filling in DT_DEBUG entry");
964 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
965 #endif
966 		break;
967 #endif
968 
969 	case DT_FLAGS_1:
970 		if (dynp->d_un.d_val & DF_1_NOOPEN)
971 		    obj->z_noopen = true;
972 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
973 		    obj->z_origin = true;
974 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
975 		    XXX ;*/
976 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
977 		    obj->bind_now = true;
978 		if (dynp->d_un.d_val & DF_1_NODELETE)
979 		    obj->z_nodelete = true;
980 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
981 		    obj->z_loadfltr = true;
982 	    break;
983 
984 	default:
985 	    if (!early) {
986 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
987 		    (long)dynp->d_tag);
988 	    }
989 	    break;
990 	}
991     }
992 
993     obj->traced = false;
994 
995     if (plttype == DT_RELA) {
996 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
997 	obj->pltrel = NULL;
998 	obj->pltrelasize = obj->pltrelsize;
999 	obj->pltrelsize = 0;
1000     }
1001 }
1002 
1003 static void
1004 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1005     const Elf_Dyn *dyn_soname)
1006 {
1007 
1008     if (obj->z_origin && obj->origin_path == NULL) {
1009 	obj->origin_path = xmalloc(PATH_MAX);
1010 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1011 	    die();
1012     }
1013 
1014     if (dyn_rpath != NULL) {
1015 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1016 	if (obj->z_origin)
1017 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1018     }
1019 
1020     if (dyn_soname != NULL)
1021 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1022 }
1023 
1024 static void
1025 digest_dynamic(Obj_Entry *obj, int early)
1026 {
1027 	const Elf_Dyn *dyn_rpath;
1028 	const Elf_Dyn *dyn_soname;
1029 
1030 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1031 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1032 }
1033 
1034 /*
1035  * Process a shared object's program header.  This is used only for the
1036  * main program, when the kernel has already loaded the main program
1037  * into memory before calling the dynamic linker.  It creates and
1038  * returns an Obj_Entry structure.
1039  */
1040 static Obj_Entry *
1041 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1042 {
1043     Obj_Entry *obj;
1044     const Elf_Phdr *phlimit = phdr + phnum;
1045     const Elf_Phdr *ph;
1046     int nsegs = 0;
1047 
1048     obj = obj_new();
1049     for (ph = phdr;  ph < phlimit;  ph++) {
1050 	if (ph->p_type != PT_PHDR)
1051 	    continue;
1052 
1053 	obj->phdr = phdr;
1054 	obj->phsize = ph->p_memsz;
1055 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1056 	break;
1057     }
1058 
1059     obj->stack_flags = PF_X | PF_R | PF_W;
1060 
1061     for (ph = phdr;  ph < phlimit;  ph++) {
1062 	switch (ph->p_type) {
1063 
1064 	case PT_INTERP:
1065 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1066 	    break;
1067 
1068 	case PT_LOAD:
1069 	    if (nsegs == 0) {	/* First load segment */
1070 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1071 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1072 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1073 		  obj->vaddrbase;
1074 	    } else {		/* Last load segment */
1075 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1076 		  obj->vaddrbase;
1077 	    }
1078 	    nsegs++;
1079 	    break;
1080 
1081 	case PT_DYNAMIC:
1082 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1083 	    break;
1084 
1085 	case PT_TLS:
1086 	    obj->tlsindex = 1;
1087 	    obj->tlssize = ph->p_memsz;
1088 	    obj->tlsalign = ph->p_align;
1089 	    obj->tlsinitsize = ph->p_filesz;
1090 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1091 	    break;
1092 
1093 	case PT_GNU_STACK:
1094 	    obj->stack_flags = ph->p_flags;
1095 	    break;
1096 	}
1097     }
1098     if (nsegs < 1) {
1099 	_rtld_error("%s: too few PT_LOAD segments", path);
1100 	return NULL;
1101     }
1102 
1103     obj->entry = entry;
1104     return obj;
1105 }
1106 
1107 static Obj_Entry *
1108 dlcheck(void *handle)
1109 {
1110     Obj_Entry *obj;
1111 
1112     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1113 	if (obj == (Obj_Entry *) handle)
1114 	    break;
1115 
1116     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1117 	_rtld_error("Invalid shared object handle %p", handle);
1118 	return NULL;
1119     }
1120     return obj;
1121 }
1122 
1123 /*
1124  * If the given object is already in the donelist, return true.  Otherwise
1125  * add the object to the list and return false.
1126  */
1127 static bool
1128 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1129 {
1130     unsigned int i;
1131 
1132     for (i = 0;  i < dlp->num_used;  i++)
1133 	if (dlp->objs[i] == obj)
1134 	    return true;
1135     /*
1136      * Our donelist allocation should always be sufficient.  But if
1137      * our threads locking isn't working properly, more shared objects
1138      * could have been loaded since we allocated the list.  That should
1139      * never happen, but we'll handle it properly just in case it does.
1140      */
1141     if (dlp->num_used < dlp->num_alloc)
1142 	dlp->objs[dlp->num_used++] = obj;
1143     return false;
1144 }
1145 
1146 /*
1147  * Hash function for symbol table lookup.  Don't even think about changing
1148  * this.  It is specified by the System V ABI.
1149  */
1150 unsigned long
1151 elf_hash(const char *name)
1152 {
1153     const unsigned char *p = (const unsigned char *) name;
1154     unsigned long h = 0;
1155     unsigned long g;
1156 
1157     while (*p != '\0') {
1158 	h = (h << 4) + *p++;
1159 	if ((g = h & 0xf0000000) != 0)
1160 	    h ^= g >> 24;
1161 	h &= ~g;
1162     }
1163     return h;
1164 }
1165 
1166 /*
1167  * Find the library with the given name, and return its full pathname.
1168  * The returned string is dynamically allocated.  Generates an error
1169  * message and returns NULL if the library cannot be found.
1170  *
1171  * If the second argument is non-NULL, then it refers to an already-
1172  * loaded shared object, whose library search path will be searched.
1173  *
1174  * The search order is:
1175  *   LD_LIBRARY_PATH
1176  *   rpath in the referencing file
1177  *   ldconfig hints
1178  *   /lib:/usr/lib
1179  */
1180 static char *
1181 find_library(const char *xname, const Obj_Entry *refobj)
1182 {
1183     char *pathname;
1184     char *name;
1185 
1186     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1187 	if (xname[0] != '/' && !trust) {
1188 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1189 	      xname);
1190 	    return NULL;
1191 	}
1192 	if (refobj != NULL && refobj->z_origin)
1193 	    return origin_subst(xname, refobj->origin_path);
1194 	else
1195 	    return xstrdup(xname);
1196     }
1197 
1198     if (libmap_disable || (refobj == NULL) ||
1199 	(name = lm_find(refobj->path, xname)) == NULL)
1200 	name = (char *)xname;
1201 
1202     dbg(" Searching for \"%s\"", name);
1203 
1204     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1205       (refobj != NULL &&
1206       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1207       (pathname = search_library_path(name, gethints())) != NULL ||
1208       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1209 	return pathname;
1210 
1211     if(refobj != NULL && refobj->path != NULL) {
1212 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1213 	  name, basename(refobj->path));
1214     } else {
1215 	_rtld_error("Shared object \"%s\" not found", name);
1216     }
1217     return NULL;
1218 }
1219 
1220 /*
1221  * Given a symbol number in a referencing object, find the corresponding
1222  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1223  * no definition was found.  Returns a pointer to the Obj_Entry of the
1224  * defining object via the reference parameter DEFOBJ_OUT.
1225  */
1226 const Elf_Sym *
1227 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1228     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1229     RtldLockState *lockstate)
1230 {
1231     const Elf_Sym *ref;
1232     const Elf_Sym *def;
1233     const Obj_Entry *defobj;
1234     SymLook req;
1235     const char *name;
1236     int res;
1237 
1238     /*
1239      * If we have already found this symbol, get the information from
1240      * the cache.
1241      */
1242     if (symnum >= refobj->nchains)
1243 	return NULL;	/* Bad object */
1244     if (cache != NULL && cache[symnum].sym != NULL) {
1245 	*defobj_out = cache[symnum].obj;
1246 	return cache[symnum].sym;
1247     }
1248 
1249     ref = refobj->symtab + symnum;
1250     name = refobj->strtab + ref->st_name;
1251     def = NULL;
1252     defobj = NULL;
1253 
1254     /*
1255      * We don't have to do a full scale lookup if the symbol is local.
1256      * We know it will bind to the instance in this load module; to
1257      * which we already have a pointer (ie ref). By not doing a lookup,
1258      * we not only improve performance, but it also avoids unresolvable
1259      * symbols when local symbols are not in the hash table. This has
1260      * been seen with the ia64 toolchain.
1261      */
1262     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1263 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1264 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1265 		symnum);
1266 	}
1267 	symlook_init(&req, name);
1268 	req.flags = flags;
1269 	req.ventry = fetch_ventry(refobj, symnum);
1270 	req.lockstate = lockstate;
1271 	res = symlook_default(&req, refobj);
1272 	if (res == 0) {
1273 	    def = req.sym_out;
1274 	    defobj = req.defobj_out;
1275 	}
1276     } else {
1277 	def = ref;
1278 	defobj = refobj;
1279     }
1280 
1281     /*
1282      * If we found no definition and the reference is weak, treat the
1283      * symbol as having the value zero.
1284      */
1285     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1286 	def = &sym_zero;
1287 	defobj = obj_main;
1288     }
1289 
1290     if (def != NULL) {
1291 	*defobj_out = defobj;
1292 	/* Record the information in the cache to avoid subsequent lookups. */
1293 	if (cache != NULL) {
1294 	    cache[symnum].sym = def;
1295 	    cache[symnum].obj = defobj;
1296 	}
1297     } else {
1298 	if (refobj != &obj_rtld)
1299 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1300     }
1301     return def;
1302 }
1303 
1304 /*
1305  * Return the search path from the ldconfig hints file, reading it if
1306  * necessary.  Returns NULL if there are problems with the hints file,
1307  * or if the search path there is empty.
1308  */
1309 static const char *
1310 gethints(void)
1311 {
1312     static char *hints;
1313 
1314     if (hints == NULL) {
1315 	int fd;
1316 	struct elfhints_hdr hdr;
1317 	char *p;
1318 
1319 	/* Keep from trying again in case the hints file is bad. */
1320 	hints = "";
1321 
1322 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1323 	    return NULL;
1324 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1325 	  hdr.magic != ELFHINTS_MAGIC ||
1326 	  hdr.version != 1) {
1327 	    close(fd);
1328 	    return NULL;
1329 	}
1330 	p = xmalloc(hdr.dirlistlen + 1);
1331 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1332 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1333 	    free(p);
1334 	    close(fd);
1335 	    return NULL;
1336 	}
1337 	hints = p;
1338 	close(fd);
1339     }
1340     return hints[0] != '\0' ? hints : NULL;
1341 }
1342 
1343 static void
1344 init_dag(Obj_Entry *root)
1345 {
1346     const Needed_Entry *needed;
1347     const Objlist_Entry *elm;
1348     DoneList donelist;
1349 
1350     if (root->dag_inited)
1351 	return;
1352     donelist_init(&donelist);
1353 
1354     /* Root object belongs to own DAG. */
1355     objlist_push_tail(&root->dldags, root);
1356     objlist_push_tail(&root->dagmembers, root);
1357     donelist_check(&donelist, root);
1358 
1359     /*
1360      * Add dependencies of root object to DAG in breadth order
1361      * by exploiting the fact that each new object get added
1362      * to the tail of the dagmembers list.
1363      */
1364     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1365 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1366 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1367 		continue;
1368 	    objlist_push_tail(&needed->obj->dldags, root);
1369 	    objlist_push_tail(&root->dagmembers, needed->obj);
1370 	}
1371     }
1372     root->dag_inited = true;
1373 }
1374 
1375 /*
1376  * Initialize the dynamic linker.  The argument is the address at which
1377  * the dynamic linker has been mapped into memory.  The primary task of
1378  * this function is to relocate the dynamic linker.
1379  */
1380 static void
1381 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1382 {
1383     Obj_Entry objtmp;	/* Temporary rtld object */
1384     const Elf_Dyn *dyn_rpath;
1385     const Elf_Dyn *dyn_soname;
1386 
1387     /*
1388      * Conjure up an Obj_Entry structure for the dynamic linker.
1389      *
1390      * The "path" member can't be initialized yet because string constants
1391      * cannot yet be accessed. Below we will set it correctly.
1392      */
1393     memset(&objtmp, 0, sizeof(objtmp));
1394     objtmp.path = NULL;
1395     objtmp.rtld = true;
1396     objtmp.mapbase = mapbase;
1397 #ifdef PIC
1398     objtmp.relocbase = mapbase;
1399 #endif
1400     if (RTLD_IS_DYNAMIC()) {
1401 	objtmp.dynamic = rtld_dynamic(&objtmp);
1402 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1403 	assert(objtmp.needed == NULL);
1404 #if !defined(__mips__)
1405 	/* MIPS has a bogus DT_TEXTREL. */
1406 	assert(!objtmp.textrel);
1407 #endif
1408 
1409 	/*
1410 	 * Temporarily put the dynamic linker entry into the object list, so
1411 	 * that symbols can be found.
1412 	 */
1413 
1414 	relocate_objects(&objtmp, true, &objtmp, NULL);
1415     }
1416 
1417     /* Initialize the object list. */
1418     obj_tail = &obj_list;
1419 
1420     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1421     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1422 
1423     if (aux_info[AT_PAGESZ] != NULL)
1424 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1425     if (aux_info[AT_OSRELDATE] != NULL)
1426 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1427 
1428     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1429 
1430     /* Replace the path with a dynamically allocated copy. */
1431     obj_rtld.path = xstrdup(PATH_RTLD);
1432 
1433     r_debug.r_brk = r_debug_state;
1434     r_debug.r_state = RT_CONSISTENT;
1435 }
1436 
1437 /*
1438  * Add the init functions from a needed object list (and its recursive
1439  * needed objects) to "list".  This is not used directly; it is a helper
1440  * function for initlist_add_objects().  The write lock must be held
1441  * when this function is called.
1442  */
1443 static void
1444 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1445 {
1446     /* Recursively process the successor needed objects. */
1447     if (needed->next != NULL)
1448 	initlist_add_neededs(needed->next, list);
1449 
1450     /* Process the current needed object. */
1451     if (needed->obj != NULL)
1452 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1453 }
1454 
1455 /*
1456  * Scan all of the DAGs rooted in the range of objects from "obj" to
1457  * "tail" and add their init functions to "list".  This recurses over
1458  * the DAGs and ensure the proper init ordering such that each object's
1459  * needed libraries are initialized before the object itself.  At the
1460  * same time, this function adds the objects to the global finalization
1461  * list "list_fini" in the opposite order.  The write lock must be
1462  * held when this function is called.
1463  */
1464 static void
1465 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1466 {
1467     if (obj->init_scanned || obj->init_done)
1468 	return;
1469     obj->init_scanned = true;
1470 
1471     /* Recursively process the successor objects. */
1472     if (&obj->next != tail)
1473 	initlist_add_objects(obj->next, tail, list);
1474 
1475     /* Recursively process the needed objects. */
1476     if (obj->needed != NULL)
1477 	initlist_add_neededs(obj->needed, list);
1478 
1479     /* Add the object to the init list. */
1480     if (obj->init != (Elf_Addr)NULL)
1481 	objlist_push_tail(list, obj);
1482 
1483     /* Add the object to the global fini list in the reverse order. */
1484     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1485 	objlist_push_head(&list_fini, obj);
1486 	obj->on_fini_list = true;
1487     }
1488 }
1489 
1490 #ifndef FPTR_TARGET
1491 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1492 #endif
1493 
1494 static void
1495 free_needed_filtees(Needed_Entry *n)
1496 {
1497     Needed_Entry *needed, *needed1;
1498 
1499     for (needed = n; needed != NULL; needed = needed->next) {
1500 	if (needed->obj != NULL) {
1501 	    dlclose(needed->obj);
1502 	    needed->obj = NULL;
1503 	}
1504     }
1505     for (needed = n; needed != NULL; needed = needed1) {
1506 	needed1 = needed->next;
1507 	free(needed);
1508     }
1509 }
1510 
1511 static void
1512 unload_filtees(Obj_Entry *obj)
1513 {
1514 
1515     free_needed_filtees(obj->needed_filtees);
1516     obj->needed_filtees = NULL;
1517     free_needed_filtees(obj->needed_aux_filtees);
1518     obj->needed_aux_filtees = NULL;
1519     obj->filtees_loaded = false;
1520 }
1521 
1522 static void
1523 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1524 {
1525 
1526     for (; needed != NULL; needed = needed->next) {
1527 	needed->obj = dlopen_object(obj->strtab + needed->name, obj,
1528 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1529 	  RTLD_LOCAL);
1530     }
1531 }
1532 
1533 static void
1534 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1535 {
1536 
1537     lock_restart_for_upgrade(lockstate);
1538     if (!obj->filtees_loaded) {
1539 	load_filtee1(obj, obj->needed_filtees, flags);
1540 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1541 	obj->filtees_loaded = true;
1542     }
1543 }
1544 
1545 static int
1546 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1547 {
1548     Obj_Entry *obj1;
1549 
1550     for (; needed != NULL; needed = needed->next) {
1551 	obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1552 	  flags & ~RTLD_LO_NOLOAD);
1553 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1554 	    return (-1);
1555 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1556 	    dbg("obj %s nodelete", obj1->path);
1557 	    init_dag(obj1);
1558 	    ref_dag(obj1);
1559 	    obj1->ref_nodel = true;
1560 	}
1561     }
1562     return (0);
1563 }
1564 
1565 /*
1566  * Given a shared object, traverse its list of needed objects, and load
1567  * each of them.  Returns 0 on success.  Generates an error message and
1568  * returns -1 on failure.
1569  */
1570 static int
1571 load_needed_objects(Obj_Entry *first, int flags)
1572 {
1573     Obj_Entry *obj;
1574 
1575     for (obj = first;  obj != NULL;  obj = obj->next) {
1576 	if (process_needed(obj, obj->needed, flags) == -1)
1577 	    return (-1);
1578     }
1579     return (0);
1580 }
1581 
1582 static int
1583 load_preload_objects(void)
1584 {
1585     char *p = ld_preload;
1586     static const char delim[] = " \t:;";
1587 
1588     if (p == NULL)
1589 	return 0;
1590 
1591     p += strspn(p, delim);
1592     while (*p != '\0') {
1593 	size_t len = strcspn(p, delim);
1594 	char savech;
1595 
1596 	savech = p[len];
1597 	p[len] = '\0';
1598 	if (load_object(p, NULL, 0) == NULL)
1599 	    return -1;	/* XXX - cleanup */
1600 	p[len] = savech;
1601 	p += len;
1602 	p += strspn(p, delim);
1603     }
1604     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1605     return 0;
1606 }
1607 
1608 /*
1609  * Load a shared object into memory, if it is not already loaded.
1610  *
1611  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1612  * on failure.
1613  */
1614 static Obj_Entry *
1615 load_object(const char *name, const Obj_Entry *refobj, int flags)
1616 {
1617     Obj_Entry *obj;
1618     int fd = -1;
1619     struct stat sb;
1620     char *path;
1621 
1622     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1623 	if (object_match_name(obj, name))
1624 	    return obj;
1625 
1626     path = find_library(name, refobj);
1627     if (path == NULL)
1628 	return NULL;
1629 
1630     /*
1631      * If we didn't find a match by pathname, open the file and check
1632      * again by device and inode.  This avoids false mismatches caused
1633      * by multiple links or ".." in pathnames.
1634      *
1635      * To avoid a race, we open the file and use fstat() rather than
1636      * using stat().
1637      */
1638     if ((fd = open(path, O_RDONLY)) == -1) {
1639 	_rtld_error("Cannot open \"%s\"", path);
1640 	free(path);
1641 	return NULL;
1642     }
1643     if (fstat(fd, &sb) == -1) {
1644 	_rtld_error("Cannot fstat \"%s\"", path);
1645 	close(fd);
1646 	free(path);
1647 	return NULL;
1648     }
1649     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1650 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1651 	    break;
1652     if (obj != NULL) {
1653 	object_add_name(obj, name);
1654 	free(path);
1655 	close(fd);
1656 	return obj;
1657     }
1658     if (flags & RTLD_LO_NOLOAD) {
1659 	free(path);
1660 	return (NULL);
1661     }
1662 
1663     /* First use of this object, so we must map it in */
1664     obj = do_load_object(fd, name, path, &sb, flags);
1665     if (obj == NULL)
1666 	free(path);
1667     close(fd);
1668 
1669     return obj;
1670 }
1671 
1672 static Obj_Entry *
1673 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1674   int flags)
1675 {
1676     Obj_Entry *obj;
1677     struct statfs fs;
1678 
1679     /*
1680      * but first, make sure that environment variables haven't been
1681      * used to circumvent the noexec flag on a filesystem.
1682      */
1683     if (dangerous_ld_env) {
1684 	if (fstatfs(fd, &fs) != 0) {
1685 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1686 		return NULL;
1687 	}
1688 	if (fs.f_flags & MNT_NOEXEC) {
1689 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1690 	    return NULL;
1691 	}
1692     }
1693     dbg("loading \"%s\"", path);
1694     obj = map_object(fd, path, sbp);
1695     if (obj == NULL)
1696         return NULL;
1697 
1698     object_add_name(obj, name);
1699     obj->path = path;
1700     digest_dynamic(obj, 0);
1701     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1702       RTLD_LO_DLOPEN) {
1703 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1704 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1705 	munmap(obj->mapbase, obj->mapsize);
1706 	obj_free(obj);
1707 	return (NULL);
1708     }
1709 
1710     *obj_tail = obj;
1711     obj_tail = &obj->next;
1712     obj_count++;
1713     obj_loads++;
1714     linkmap_add(obj);	/* for GDB & dlinfo() */
1715     max_stack_flags |= obj->stack_flags;
1716 
1717     dbg("  %p .. %p: %s", obj->mapbase,
1718          obj->mapbase + obj->mapsize - 1, obj->path);
1719     if (obj->textrel)
1720 	dbg("  WARNING: %s has impure text", obj->path);
1721     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1722 	obj->path);
1723 
1724     return obj;
1725 }
1726 
1727 static Obj_Entry *
1728 obj_from_addr(const void *addr)
1729 {
1730     Obj_Entry *obj;
1731 
1732     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1733 	if (addr < (void *) obj->mapbase)
1734 	    continue;
1735 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1736 	    return obj;
1737     }
1738     return NULL;
1739 }
1740 
1741 /*
1742  * Call the finalization functions for each of the objects in "list"
1743  * belonging to the DAG of "root" and referenced once. If NULL "root"
1744  * is specified, every finalization function will be called regardless
1745  * of the reference count and the list elements won't be freed. All of
1746  * the objects are expected to have non-NULL fini functions.
1747  */
1748 static void
1749 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1750 {
1751     Objlist_Entry *elm;
1752     char *saved_msg;
1753 
1754     assert(root == NULL || root->refcount == 1);
1755 
1756     /*
1757      * Preserve the current error message since a fini function might
1758      * call into the dynamic linker and overwrite it.
1759      */
1760     saved_msg = errmsg_save();
1761     do {
1762 	STAILQ_FOREACH(elm, list, link) {
1763 	    if (root != NULL && (elm->obj->refcount != 1 ||
1764 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1765 		continue;
1766 	    dbg("calling fini function for %s at %p", elm->obj->path,
1767 	        (void *)elm->obj->fini);
1768 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1769 		elm->obj->path);
1770 	    /* Remove object from fini list to prevent recursive invocation. */
1771 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1772 	    /*
1773 	     * XXX: If a dlopen() call references an object while the
1774 	     * fini function is in progress, we might end up trying to
1775 	     * unload the referenced object in dlclose() or the object
1776 	     * won't be unloaded although its fini function has been
1777 	     * called.
1778 	     */
1779 	    lock_release(rtld_bind_lock, lockstate);
1780 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1781 	    wlock_acquire(rtld_bind_lock, lockstate);
1782 	    /* No need to free anything if process is going down. */
1783 	    if (root != NULL)
1784 	    	free(elm);
1785 	    /*
1786 	     * We must restart the list traversal after every fini call
1787 	     * because a dlclose() call from the fini function or from
1788 	     * another thread might have modified the reference counts.
1789 	     */
1790 	    break;
1791 	}
1792     } while (elm != NULL);
1793     errmsg_restore(saved_msg);
1794 }
1795 
1796 /*
1797  * Call the initialization functions for each of the objects in
1798  * "list".  All of the objects are expected to have non-NULL init
1799  * functions.
1800  */
1801 static void
1802 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1803 {
1804     Objlist_Entry *elm;
1805     Obj_Entry *obj;
1806     char *saved_msg;
1807 
1808     /*
1809      * Clean init_scanned flag so that objects can be rechecked and
1810      * possibly initialized earlier if any of vectors called below
1811      * cause the change by using dlopen.
1812      */
1813     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1814 	obj->init_scanned = false;
1815 
1816     /*
1817      * Preserve the current error message since an init function might
1818      * call into the dynamic linker and overwrite it.
1819      */
1820     saved_msg = errmsg_save();
1821     STAILQ_FOREACH(elm, list, link) {
1822 	if (elm->obj->init_done) /* Initialized early. */
1823 	    continue;
1824 	dbg("calling init function for %s at %p", elm->obj->path,
1825 	    (void *)elm->obj->init);
1826 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1827 	    elm->obj->path);
1828 	/*
1829 	 * Race: other thread might try to use this object before current
1830 	 * one completes the initilization. Not much can be done here
1831 	 * without better locking.
1832 	 */
1833 	elm->obj->init_done = true;
1834 	lock_release(rtld_bind_lock, lockstate);
1835 	call_initfini_pointer(elm->obj, elm->obj->init);
1836 	wlock_acquire(rtld_bind_lock, lockstate);
1837     }
1838     errmsg_restore(saved_msg);
1839 }
1840 
1841 static void
1842 objlist_clear(Objlist *list)
1843 {
1844     Objlist_Entry *elm;
1845 
1846     while (!STAILQ_EMPTY(list)) {
1847 	elm = STAILQ_FIRST(list);
1848 	STAILQ_REMOVE_HEAD(list, link);
1849 	free(elm);
1850     }
1851 }
1852 
1853 static Objlist_Entry *
1854 objlist_find(Objlist *list, const Obj_Entry *obj)
1855 {
1856     Objlist_Entry *elm;
1857 
1858     STAILQ_FOREACH(elm, list, link)
1859 	if (elm->obj == obj)
1860 	    return elm;
1861     return NULL;
1862 }
1863 
1864 static void
1865 objlist_init(Objlist *list)
1866 {
1867     STAILQ_INIT(list);
1868 }
1869 
1870 static void
1871 objlist_push_head(Objlist *list, Obj_Entry *obj)
1872 {
1873     Objlist_Entry *elm;
1874 
1875     elm = NEW(Objlist_Entry);
1876     elm->obj = obj;
1877     STAILQ_INSERT_HEAD(list, elm, link);
1878 }
1879 
1880 static void
1881 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1882 {
1883     Objlist_Entry *elm;
1884 
1885     elm = NEW(Objlist_Entry);
1886     elm->obj = obj;
1887     STAILQ_INSERT_TAIL(list, elm, link);
1888 }
1889 
1890 static void
1891 objlist_remove(Objlist *list, Obj_Entry *obj)
1892 {
1893     Objlist_Entry *elm;
1894 
1895     if ((elm = objlist_find(list, obj)) != NULL) {
1896 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1897 	free(elm);
1898     }
1899 }
1900 
1901 /*
1902  * Relocate newly-loaded shared objects.  The argument is a pointer to
1903  * the Obj_Entry for the first such object.  All objects from the first
1904  * to the end of the list of objects are relocated.  Returns 0 on success,
1905  * or -1 on failure.
1906  */
1907 static int
1908 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1909     RtldLockState *lockstate)
1910 {
1911     Obj_Entry *obj;
1912 
1913     for (obj = first;  obj != NULL;  obj = obj->next) {
1914 	if (obj != rtldobj)
1915 	    dbg("relocating \"%s\"", obj->path);
1916 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1917 	    obj->symtab == NULL || obj->strtab == NULL) {
1918 	    _rtld_error("%s: Shared object has no run-time symbol table",
1919 	      obj->path);
1920 	    return -1;
1921 	}
1922 
1923 	if (obj->textrel) {
1924 	    /* There are relocations to the write-protected text segment. */
1925 	    if (mprotect(obj->mapbase, obj->textsize,
1926 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1927 		_rtld_error("%s: Cannot write-enable text segment: %s",
1928 		  obj->path, strerror(errno));
1929 		return -1;
1930 	    }
1931 	}
1932 
1933 	/* Process the non-PLT relocations. */
1934 	if (reloc_non_plt(obj, rtldobj, lockstate))
1935 		return -1;
1936 
1937 	if (obj->textrel) {	/* Re-protected the text segment. */
1938 	    if (mprotect(obj->mapbase, obj->textsize,
1939 	      PROT_READ|PROT_EXEC) == -1) {
1940 		_rtld_error("%s: Cannot write-protect text segment: %s",
1941 		  obj->path, strerror(errno));
1942 		return -1;
1943 	    }
1944 	}
1945 
1946 	/* Process the PLT relocations. */
1947 	if (reloc_plt(obj) == -1)
1948 	    return -1;
1949 	/* Relocate the jump slots if we are doing immediate binding. */
1950 	if (obj->bind_now || bind_now)
1951 	    if (reloc_jmpslots(obj, lockstate) == -1)
1952 		return -1;
1953 
1954 
1955 	/*
1956 	 * Set up the magic number and version in the Obj_Entry.  These
1957 	 * were checked in the crt1.o from the original ElfKit, so we
1958 	 * set them for backward compatibility.
1959 	 */
1960 	obj->magic = RTLD_MAGIC;
1961 	obj->version = RTLD_VERSION;
1962 
1963 	/* Set the special PLT or GOT entries. */
1964 	init_pltgot(obj);
1965     }
1966 
1967     return 0;
1968 }
1969 
1970 /*
1971  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1972  * before the process exits.
1973  */
1974 static void
1975 rtld_exit(void)
1976 {
1977     RtldLockState lockstate;
1978 
1979     wlock_acquire(rtld_bind_lock, &lockstate);
1980     dbg("rtld_exit()");
1981     objlist_call_fini(&list_fini, NULL, &lockstate);
1982     /* No need to remove the items from the list, since we are exiting. */
1983     if (!libmap_disable)
1984         lm_fini();
1985     lock_release(rtld_bind_lock, &lockstate);
1986 }
1987 
1988 static void *
1989 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1990 {
1991 #ifdef COMPAT_32BIT
1992     const char *trans;
1993 #endif
1994     if (path == NULL)
1995 	return (NULL);
1996 
1997     path += strspn(path, ":;");
1998     while (*path != '\0') {
1999 	size_t len;
2000 	char  *res;
2001 
2002 	len = strcspn(path, ":;");
2003 #ifdef COMPAT_32BIT
2004 	trans = lm_findn(NULL, path, len);
2005 	if (trans)
2006 	    res = callback(trans, strlen(trans), arg);
2007 	else
2008 #endif
2009 	res = callback(path, len, arg);
2010 
2011 	if (res != NULL)
2012 	    return (res);
2013 
2014 	path += len;
2015 	path += strspn(path, ":;");
2016     }
2017 
2018     return (NULL);
2019 }
2020 
2021 struct try_library_args {
2022     const char	*name;
2023     size_t	 namelen;
2024     char	*buffer;
2025     size_t	 buflen;
2026 };
2027 
2028 static void *
2029 try_library_path(const char *dir, size_t dirlen, void *param)
2030 {
2031     struct try_library_args *arg;
2032 
2033     arg = param;
2034     if (*dir == '/' || trust) {
2035 	char *pathname;
2036 
2037 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2038 		return (NULL);
2039 
2040 	pathname = arg->buffer;
2041 	strncpy(pathname, dir, dirlen);
2042 	pathname[dirlen] = '/';
2043 	strcpy(pathname + dirlen + 1, arg->name);
2044 
2045 	dbg("  Trying \"%s\"", pathname);
2046 	if (access(pathname, F_OK) == 0) {		/* We found it */
2047 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2048 	    strcpy(pathname, arg->buffer);
2049 	    return (pathname);
2050 	}
2051     }
2052     return (NULL);
2053 }
2054 
2055 static char *
2056 search_library_path(const char *name, const char *path)
2057 {
2058     char *p;
2059     struct try_library_args arg;
2060 
2061     if (path == NULL)
2062 	return NULL;
2063 
2064     arg.name = name;
2065     arg.namelen = strlen(name);
2066     arg.buffer = xmalloc(PATH_MAX);
2067     arg.buflen = PATH_MAX;
2068 
2069     p = path_enumerate(path, try_library_path, &arg);
2070 
2071     free(arg.buffer);
2072 
2073     return (p);
2074 }
2075 
2076 int
2077 dlclose(void *handle)
2078 {
2079     Obj_Entry *root;
2080     RtldLockState lockstate;
2081 
2082     wlock_acquire(rtld_bind_lock, &lockstate);
2083     root = dlcheck(handle);
2084     if (root == NULL) {
2085 	lock_release(rtld_bind_lock, &lockstate);
2086 	return -1;
2087     }
2088     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2089 	root->path);
2090 
2091     /* Unreference the object and its dependencies. */
2092     root->dl_refcount--;
2093 
2094     if (root->refcount == 1) {
2095 	/*
2096 	 * The object will be no longer referenced, so we must unload it.
2097 	 * First, call the fini functions.
2098 	 */
2099 	objlist_call_fini(&list_fini, root, &lockstate);
2100 
2101 	unref_dag(root);
2102 
2103 	/* Finish cleaning up the newly-unreferenced objects. */
2104 	GDB_STATE(RT_DELETE,&root->linkmap);
2105 	unload_object(root);
2106 	GDB_STATE(RT_CONSISTENT,NULL);
2107     } else
2108 	unref_dag(root);
2109 
2110     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2111     lock_release(rtld_bind_lock, &lockstate);
2112     return 0;
2113 }
2114 
2115 char *
2116 dlerror(void)
2117 {
2118     char *msg = error_message;
2119     error_message = NULL;
2120     return msg;
2121 }
2122 
2123 /*
2124  * This function is deprecated and has no effect.
2125  */
2126 void
2127 dllockinit(void *context,
2128 	   void *(*lock_create)(void *context),
2129            void (*rlock_acquire)(void *lock),
2130            void (*wlock_acquire)(void *lock),
2131            void (*lock_release)(void *lock),
2132            void (*lock_destroy)(void *lock),
2133 	   void (*context_destroy)(void *context))
2134 {
2135     static void *cur_context;
2136     static void (*cur_context_destroy)(void *);
2137 
2138     /* Just destroy the context from the previous call, if necessary. */
2139     if (cur_context_destroy != NULL)
2140 	cur_context_destroy(cur_context);
2141     cur_context = context;
2142     cur_context_destroy = context_destroy;
2143 }
2144 
2145 void *
2146 dlopen(const char *name, int mode)
2147 {
2148     RtldLockState lockstate;
2149     int lo_flags;
2150 
2151     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2152     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2153     if (ld_tracing != NULL) {
2154 	rlock_acquire(rtld_bind_lock, &lockstate);
2155 	if (sigsetjmp(lockstate.env, 0) != 0)
2156 	    lock_upgrade(rtld_bind_lock, &lockstate);
2157 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2158 	lock_release(rtld_bind_lock, &lockstate);
2159     }
2160     lo_flags = RTLD_LO_DLOPEN;
2161     if (mode & RTLD_NODELETE)
2162 	    lo_flags |= RTLD_LO_NODELETE;
2163     if (mode & RTLD_NOLOAD)
2164 	    lo_flags |= RTLD_LO_NOLOAD;
2165     if (ld_tracing != NULL)
2166 	    lo_flags |= RTLD_LO_TRACE;
2167 
2168     return (dlopen_object(name, obj_main, lo_flags,
2169       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2170 }
2171 
2172 static Obj_Entry *
2173 dlopen_object(const char *name, Obj_Entry *refobj, int lo_flags, int mode)
2174 {
2175     Obj_Entry **old_obj_tail;
2176     Obj_Entry *obj;
2177     Objlist initlist;
2178     RtldLockState lockstate;
2179     int result;
2180 
2181     objlist_init(&initlist);
2182 
2183     wlock_acquire(rtld_bind_lock, &lockstate);
2184     GDB_STATE(RT_ADD,NULL);
2185 
2186     old_obj_tail = obj_tail;
2187     obj = NULL;
2188     if (name == NULL) {
2189 	obj = obj_main;
2190 	obj->refcount++;
2191     } else {
2192 	obj = load_object(name, refobj, lo_flags);
2193     }
2194 
2195     if (obj) {
2196 	obj->dl_refcount++;
2197 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2198 	    objlist_push_tail(&list_global, obj);
2199 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2200 	    assert(*old_obj_tail == obj);
2201 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2202 	    init_dag(obj);
2203 	    ref_dag(obj);
2204 	    if (result != -1)
2205 		result = rtld_verify_versions(&obj->dagmembers);
2206 	    if (result != -1 && ld_tracing)
2207 		goto trace;
2208 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2209 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2210 		obj->dl_refcount--;
2211 		unref_dag(obj);
2212 		if (obj->refcount == 0)
2213 		    unload_object(obj);
2214 		obj = NULL;
2215 	    } else {
2216 		/* Make list of init functions to call. */
2217 		initlist_add_objects(obj, &obj->next, &initlist);
2218 	    }
2219 	} else {
2220 
2221 	    /*
2222 	     * Bump the reference counts for objects on this DAG.  If
2223 	     * this is the first dlopen() call for the object that was
2224 	     * already loaded as a dependency, initialize the dag
2225 	     * starting at it.
2226 	     */
2227 	    init_dag(obj);
2228 	    ref_dag(obj);
2229 
2230 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2231 		goto trace;
2232 	}
2233 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2234 	  obj->z_nodelete) && !obj->ref_nodel) {
2235 	    dbg("obj %s nodelete", obj->path);
2236 	    ref_dag(obj);
2237 	    obj->z_nodelete = obj->ref_nodel = true;
2238 	}
2239     }
2240 
2241     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2242 	name);
2243     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2244 
2245     map_stacks_exec(&lockstate);
2246 
2247     /* Call the init functions. */
2248     objlist_call_init(&initlist, &lockstate);
2249     objlist_clear(&initlist);
2250     lock_release(rtld_bind_lock, &lockstate);
2251     return obj;
2252 trace:
2253     trace_loaded_objects(obj);
2254     lock_release(rtld_bind_lock, &lockstate);
2255     exit(0);
2256 }
2257 
2258 static void *
2259 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2260     int flags)
2261 {
2262     DoneList donelist;
2263     const Obj_Entry *obj, *defobj;
2264     const Elf_Sym *def;
2265     SymLook req;
2266     RtldLockState lockstate;
2267     int res;
2268 
2269     def = NULL;
2270     defobj = NULL;
2271     symlook_init(&req, name);
2272     req.ventry = ve;
2273     req.flags = flags | SYMLOOK_IN_PLT;
2274     req.lockstate = &lockstate;
2275 
2276     rlock_acquire(rtld_bind_lock, &lockstate);
2277     if (sigsetjmp(lockstate.env, 0) != 0)
2278 	    lock_upgrade(rtld_bind_lock, &lockstate);
2279     if (handle == NULL || handle == RTLD_NEXT ||
2280 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2281 
2282 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2283 	    _rtld_error("Cannot determine caller's shared object");
2284 	    lock_release(rtld_bind_lock, &lockstate);
2285 	    return NULL;
2286 	}
2287 	if (handle == NULL) {	/* Just the caller's shared object. */
2288 	    res = symlook_obj(&req, obj);
2289 	    if (res == 0) {
2290 		def = req.sym_out;
2291 		defobj = req.defobj_out;
2292 	    }
2293 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2294 		   handle == RTLD_SELF) { /* ... caller included */
2295 	    if (handle == RTLD_NEXT)
2296 		obj = obj->next;
2297 	    for (; obj != NULL; obj = obj->next) {
2298 		res = symlook_obj(&req, obj);
2299 		if (res == 0) {
2300 		    if (def == NULL ||
2301 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2302 			def = req.sym_out;
2303 			defobj = req.defobj_out;
2304 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2305 			    break;
2306 		    }
2307 		}
2308 	    }
2309 	    /*
2310 	     * Search the dynamic linker itself, and possibly resolve the
2311 	     * symbol from there.  This is how the application links to
2312 	     * dynamic linker services such as dlopen.
2313 	     */
2314 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2315 		res = symlook_obj(&req, &obj_rtld);
2316 		if (res == 0) {
2317 		    def = req.sym_out;
2318 		    defobj = req.defobj_out;
2319 		}
2320 	    }
2321 	} else {
2322 	    assert(handle == RTLD_DEFAULT);
2323 	    res = symlook_default(&req, obj);
2324 	    if (res == 0) {
2325 		defobj = req.defobj_out;
2326 		def = req.sym_out;
2327 	    }
2328 	}
2329     } else {
2330 	if ((obj = dlcheck(handle)) == NULL) {
2331 	    lock_release(rtld_bind_lock, &lockstate);
2332 	    return NULL;
2333 	}
2334 
2335 	donelist_init(&donelist);
2336 	if (obj->mainprog) {
2337             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2338 	    res = symlook_global(&req, &donelist);
2339 	    if (res == 0) {
2340 		def = req.sym_out;
2341 		defobj = req.defobj_out;
2342 	    }
2343 	    /*
2344 	     * Search the dynamic linker itself, and possibly resolve the
2345 	     * symbol from there.  This is how the application links to
2346 	     * dynamic linker services such as dlopen.
2347 	     */
2348 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2349 		res = symlook_obj(&req, &obj_rtld);
2350 		if (res == 0) {
2351 		    def = req.sym_out;
2352 		    defobj = req.defobj_out;
2353 		}
2354 	    }
2355 	}
2356 	else {
2357 	    /* Search the whole DAG rooted at the given object. */
2358 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2359 	    if (res == 0) {
2360 		def = req.sym_out;
2361 		defobj = req.defobj_out;
2362 	    }
2363 	}
2364     }
2365 
2366     if (def != NULL) {
2367 	lock_release(rtld_bind_lock, &lockstate);
2368 
2369 	/*
2370 	 * The value required by the caller is derived from the value
2371 	 * of the symbol. For the ia64 architecture, we need to
2372 	 * construct a function descriptor which the caller can use to
2373 	 * call the function with the right 'gp' value. For other
2374 	 * architectures and for non-functions, the value is simply
2375 	 * the relocated value of the symbol.
2376 	 */
2377 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2378 	    return make_function_pointer(def, defobj);
2379 	else
2380 	    return defobj->relocbase + def->st_value;
2381     }
2382 
2383     _rtld_error("Undefined symbol \"%s\"", name);
2384     lock_release(rtld_bind_lock, &lockstate);
2385     return NULL;
2386 }
2387 
2388 void *
2389 dlsym(void *handle, const char *name)
2390 {
2391 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2392 	    SYMLOOK_DLSYM);
2393 }
2394 
2395 dlfunc_t
2396 dlfunc(void *handle, const char *name)
2397 {
2398 	union {
2399 		void *d;
2400 		dlfunc_t f;
2401 	} rv;
2402 
2403 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2404 	    SYMLOOK_DLSYM);
2405 	return (rv.f);
2406 }
2407 
2408 void *
2409 dlvsym(void *handle, const char *name, const char *version)
2410 {
2411 	Ver_Entry ventry;
2412 
2413 	ventry.name = version;
2414 	ventry.file = NULL;
2415 	ventry.hash = elf_hash(version);
2416 	ventry.flags= 0;
2417 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2418 	    SYMLOOK_DLSYM);
2419 }
2420 
2421 int
2422 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2423 {
2424     const Obj_Entry *obj;
2425     RtldLockState lockstate;
2426 
2427     rlock_acquire(rtld_bind_lock, &lockstate);
2428     obj = obj_from_addr(addr);
2429     if (obj == NULL) {
2430         _rtld_error("No shared object contains address");
2431 	lock_release(rtld_bind_lock, &lockstate);
2432         return (0);
2433     }
2434     rtld_fill_dl_phdr_info(obj, phdr_info);
2435     lock_release(rtld_bind_lock, &lockstate);
2436     return (1);
2437 }
2438 
2439 int
2440 dladdr(const void *addr, Dl_info *info)
2441 {
2442     const Obj_Entry *obj;
2443     const Elf_Sym *def;
2444     void *symbol_addr;
2445     unsigned long symoffset;
2446     RtldLockState lockstate;
2447 
2448     rlock_acquire(rtld_bind_lock, &lockstate);
2449     obj = obj_from_addr(addr);
2450     if (obj == NULL) {
2451         _rtld_error("No shared object contains address");
2452 	lock_release(rtld_bind_lock, &lockstate);
2453         return 0;
2454     }
2455     info->dli_fname = obj->path;
2456     info->dli_fbase = obj->mapbase;
2457     info->dli_saddr = (void *)0;
2458     info->dli_sname = NULL;
2459 
2460     /*
2461      * Walk the symbol list looking for the symbol whose address is
2462      * closest to the address sent in.
2463      */
2464     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2465         def = obj->symtab + symoffset;
2466 
2467         /*
2468          * For skip the symbol if st_shndx is either SHN_UNDEF or
2469          * SHN_COMMON.
2470          */
2471         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2472             continue;
2473 
2474         /*
2475          * If the symbol is greater than the specified address, or if it
2476          * is further away from addr than the current nearest symbol,
2477          * then reject it.
2478          */
2479         symbol_addr = obj->relocbase + def->st_value;
2480         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2481             continue;
2482 
2483         /* Update our idea of the nearest symbol. */
2484         info->dli_sname = obj->strtab + def->st_name;
2485         info->dli_saddr = symbol_addr;
2486 
2487         /* Exact match? */
2488         if (info->dli_saddr == addr)
2489             break;
2490     }
2491     lock_release(rtld_bind_lock, &lockstate);
2492     return 1;
2493 }
2494 
2495 int
2496 dlinfo(void *handle, int request, void *p)
2497 {
2498     const Obj_Entry *obj;
2499     RtldLockState lockstate;
2500     int error;
2501 
2502     rlock_acquire(rtld_bind_lock, &lockstate);
2503 
2504     if (handle == NULL || handle == RTLD_SELF) {
2505 	void *retaddr;
2506 
2507 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2508 	if ((obj = obj_from_addr(retaddr)) == NULL)
2509 	    _rtld_error("Cannot determine caller's shared object");
2510     } else
2511 	obj = dlcheck(handle);
2512 
2513     if (obj == NULL) {
2514 	lock_release(rtld_bind_lock, &lockstate);
2515 	return (-1);
2516     }
2517 
2518     error = 0;
2519     switch (request) {
2520     case RTLD_DI_LINKMAP:
2521 	*((struct link_map const **)p) = &obj->linkmap;
2522 	break;
2523     case RTLD_DI_ORIGIN:
2524 	error = rtld_dirname(obj->path, p);
2525 	break;
2526 
2527     case RTLD_DI_SERINFOSIZE:
2528     case RTLD_DI_SERINFO:
2529 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2530 	break;
2531 
2532     default:
2533 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2534 	error = -1;
2535     }
2536 
2537     lock_release(rtld_bind_lock, &lockstate);
2538 
2539     return (error);
2540 }
2541 
2542 static void
2543 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2544 {
2545 
2546 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2547 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2548 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2549 	phdr_info->dlpi_phdr = obj->phdr;
2550 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2551 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2552 	phdr_info->dlpi_tls_data = obj->tlsinit;
2553 	phdr_info->dlpi_adds = obj_loads;
2554 	phdr_info->dlpi_subs = obj_loads - obj_count;
2555 }
2556 
2557 int
2558 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2559 {
2560     struct dl_phdr_info phdr_info;
2561     const Obj_Entry *obj;
2562     RtldLockState bind_lockstate, phdr_lockstate;
2563     int error;
2564 
2565     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2566     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2567 
2568     error = 0;
2569 
2570     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2571 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2572 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2573 		break;
2574 
2575     }
2576     lock_release(rtld_bind_lock, &bind_lockstate);
2577     lock_release(rtld_phdr_lock, &phdr_lockstate);
2578 
2579     return (error);
2580 }
2581 
2582 struct fill_search_info_args {
2583     int		 request;
2584     unsigned int flags;
2585     Dl_serinfo  *serinfo;
2586     Dl_serpath  *serpath;
2587     char	*strspace;
2588 };
2589 
2590 static void *
2591 fill_search_info(const char *dir, size_t dirlen, void *param)
2592 {
2593     struct fill_search_info_args *arg;
2594 
2595     arg = param;
2596 
2597     if (arg->request == RTLD_DI_SERINFOSIZE) {
2598 	arg->serinfo->dls_cnt ++;
2599 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2600     } else {
2601 	struct dl_serpath *s_entry;
2602 
2603 	s_entry = arg->serpath;
2604 	s_entry->dls_name  = arg->strspace;
2605 	s_entry->dls_flags = arg->flags;
2606 
2607 	strncpy(arg->strspace, dir, dirlen);
2608 	arg->strspace[dirlen] = '\0';
2609 
2610 	arg->strspace += dirlen + 1;
2611 	arg->serpath++;
2612     }
2613 
2614     return (NULL);
2615 }
2616 
2617 static int
2618 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2619 {
2620     struct dl_serinfo _info;
2621     struct fill_search_info_args args;
2622 
2623     args.request = RTLD_DI_SERINFOSIZE;
2624     args.serinfo = &_info;
2625 
2626     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2627     _info.dls_cnt  = 0;
2628 
2629     path_enumerate(ld_library_path, fill_search_info, &args);
2630     path_enumerate(obj->rpath, fill_search_info, &args);
2631     path_enumerate(gethints(), fill_search_info, &args);
2632     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2633 
2634 
2635     if (request == RTLD_DI_SERINFOSIZE) {
2636 	info->dls_size = _info.dls_size;
2637 	info->dls_cnt = _info.dls_cnt;
2638 	return (0);
2639     }
2640 
2641     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2642 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2643 	return (-1);
2644     }
2645 
2646     args.request  = RTLD_DI_SERINFO;
2647     args.serinfo  = info;
2648     args.serpath  = &info->dls_serpath[0];
2649     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2650 
2651     args.flags = LA_SER_LIBPATH;
2652     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2653 	return (-1);
2654 
2655     args.flags = LA_SER_RUNPATH;
2656     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2657 	return (-1);
2658 
2659     args.flags = LA_SER_CONFIG;
2660     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2661 	return (-1);
2662 
2663     args.flags = LA_SER_DEFAULT;
2664     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2665 	return (-1);
2666     return (0);
2667 }
2668 
2669 static int
2670 rtld_dirname(const char *path, char *bname)
2671 {
2672     const char *endp;
2673 
2674     /* Empty or NULL string gets treated as "." */
2675     if (path == NULL || *path == '\0') {
2676 	bname[0] = '.';
2677 	bname[1] = '\0';
2678 	return (0);
2679     }
2680 
2681     /* Strip trailing slashes */
2682     endp = path + strlen(path) - 1;
2683     while (endp > path && *endp == '/')
2684 	endp--;
2685 
2686     /* Find the start of the dir */
2687     while (endp > path && *endp != '/')
2688 	endp--;
2689 
2690     /* Either the dir is "/" or there are no slashes */
2691     if (endp == path) {
2692 	bname[0] = *endp == '/' ? '/' : '.';
2693 	bname[1] = '\0';
2694 	return (0);
2695     } else {
2696 	do {
2697 	    endp--;
2698 	} while (endp > path && *endp == '/');
2699     }
2700 
2701     if (endp - path + 2 > PATH_MAX)
2702     {
2703 	_rtld_error("Filename is too long: %s", path);
2704 	return(-1);
2705     }
2706 
2707     strncpy(bname, path, endp - path + 1);
2708     bname[endp - path + 1] = '\0';
2709     return (0);
2710 }
2711 
2712 static int
2713 rtld_dirname_abs(const char *path, char *base)
2714 {
2715 	char base_rel[PATH_MAX];
2716 
2717 	if (rtld_dirname(path, base) == -1)
2718 		return (-1);
2719 	if (base[0] == '/')
2720 		return (0);
2721 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2722 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2723 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2724 		return (-1);
2725 	strcpy(base, base_rel);
2726 	return (0);
2727 }
2728 
2729 static void
2730 linkmap_add(Obj_Entry *obj)
2731 {
2732     struct link_map *l = &obj->linkmap;
2733     struct link_map *prev;
2734 
2735     obj->linkmap.l_name = obj->path;
2736     obj->linkmap.l_addr = obj->mapbase;
2737     obj->linkmap.l_ld = obj->dynamic;
2738 #ifdef __mips__
2739     /* GDB needs load offset on MIPS to use the symbols */
2740     obj->linkmap.l_offs = obj->relocbase;
2741 #endif
2742 
2743     if (r_debug.r_map == NULL) {
2744 	r_debug.r_map = l;
2745 	return;
2746     }
2747 
2748     /*
2749      * Scan to the end of the list, but not past the entry for the
2750      * dynamic linker, which we want to keep at the very end.
2751      */
2752     for (prev = r_debug.r_map;
2753       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2754       prev = prev->l_next)
2755 	;
2756 
2757     /* Link in the new entry. */
2758     l->l_prev = prev;
2759     l->l_next = prev->l_next;
2760     if (l->l_next != NULL)
2761 	l->l_next->l_prev = l;
2762     prev->l_next = l;
2763 }
2764 
2765 static void
2766 linkmap_delete(Obj_Entry *obj)
2767 {
2768     struct link_map *l = &obj->linkmap;
2769 
2770     if (l->l_prev == NULL) {
2771 	if ((r_debug.r_map = l->l_next) != NULL)
2772 	    l->l_next->l_prev = NULL;
2773 	return;
2774     }
2775 
2776     if ((l->l_prev->l_next = l->l_next) != NULL)
2777 	l->l_next->l_prev = l->l_prev;
2778 }
2779 
2780 /*
2781  * Function for the debugger to set a breakpoint on to gain control.
2782  *
2783  * The two parameters allow the debugger to easily find and determine
2784  * what the runtime loader is doing and to whom it is doing it.
2785  *
2786  * When the loadhook trap is hit (r_debug_state, set at program
2787  * initialization), the arguments can be found on the stack:
2788  *
2789  *  +8   struct link_map *m
2790  *  +4   struct r_debug  *rd
2791  *  +0   RetAddr
2792  */
2793 void
2794 r_debug_state(struct r_debug* rd, struct link_map *m)
2795 {
2796     /*
2797      * The following is a hack to force the compiler to emit calls to
2798      * this function, even when optimizing.  If the function is empty,
2799      * the compiler is not obliged to emit any code for calls to it,
2800      * even when marked __noinline.  However, gdb depends on those
2801      * calls being made.
2802      */
2803     __asm __volatile("" : : : "memory");
2804 }
2805 
2806 /*
2807  * Get address of the pointer variable in the main program.
2808  * Prefer non-weak symbol over the weak one.
2809  */
2810 static const void **
2811 get_program_var_addr(const char *name, RtldLockState *lockstate)
2812 {
2813     SymLook req;
2814     DoneList donelist;
2815 
2816     symlook_init(&req, name);
2817     req.lockstate = lockstate;
2818     donelist_init(&donelist);
2819     if (symlook_global(&req, &donelist) != 0)
2820 	return (NULL);
2821     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2822 	return ((const void **)make_function_pointer(req.sym_out,
2823 	  req.defobj_out));
2824     else
2825 	return ((const void **)(req.defobj_out->relocbase +
2826 	  req.sym_out->st_value));
2827 }
2828 
2829 /*
2830  * Set a pointer variable in the main program to the given value.  This
2831  * is used to set key variables such as "environ" before any of the
2832  * init functions are called.
2833  */
2834 static void
2835 set_program_var(const char *name, const void *value)
2836 {
2837     const void **addr;
2838 
2839     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2840 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2841 	*addr = value;
2842     }
2843 }
2844 
2845 /*
2846  * Search the global objects, including dependencies and main object,
2847  * for the given symbol.
2848  */
2849 static int
2850 symlook_global(SymLook *req, DoneList *donelist)
2851 {
2852     SymLook req1;
2853     const Objlist_Entry *elm;
2854     int res;
2855 
2856     symlook_init_from_req(&req1, req);
2857 
2858     /* Search all objects loaded at program start up. */
2859     if (req->defobj_out == NULL ||
2860       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2861 	res = symlook_list(&req1, &list_main, donelist);
2862 	if (res == 0 && (req->defobj_out == NULL ||
2863 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2864 	    req->sym_out = req1.sym_out;
2865 	    req->defobj_out = req1.defobj_out;
2866 	    assert(req->defobj_out != NULL);
2867 	}
2868     }
2869 
2870     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2871     STAILQ_FOREACH(elm, &list_global, link) {
2872 	if (req->defobj_out != NULL &&
2873 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2874 	    break;
2875 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
2876 	if (res == 0 && (req->defobj_out == NULL ||
2877 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2878 	    req->sym_out = req1.sym_out;
2879 	    req->defobj_out = req1.defobj_out;
2880 	    assert(req->defobj_out != NULL);
2881 	}
2882     }
2883 
2884     return (req->sym_out != NULL ? 0 : ESRCH);
2885 }
2886 
2887 /*
2888  * Given a symbol name in a referencing object, find the corresponding
2889  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2890  * no definition was found.  Returns a pointer to the Obj_Entry of the
2891  * defining object via the reference parameter DEFOBJ_OUT.
2892  */
2893 static int
2894 symlook_default(SymLook *req, const Obj_Entry *refobj)
2895 {
2896     DoneList donelist;
2897     const Objlist_Entry *elm;
2898     SymLook req1;
2899     int res;
2900 
2901     donelist_init(&donelist);
2902     symlook_init_from_req(&req1, req);
2903 
2904     /* Look first in the referencing object if linked symbolically. */
2905     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2906 	res = symlook_obj(&req1, refobj);
2907 	if (res == 0) {
2908 	    req->sym_out = req1.sym_out;
2909 	    req->defobj_out = req1.defobj_out;
2910 	    assert(req->defobj_out != NULL);
2911 	}
2912     }
2913 
2914     symlook_global(req, &donelist);
2915 
2916     /* Search all dlopened DAGs containing the referencing object. */
2917     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2918 	if (req->sym_out != NULL &&
2919 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2920 	    break;
2921 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
2922 	if (res == 0 && (req->sym_out == NULL ||
2923 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2924 	    req->sym_out = req1.sym_out;
2925 	    req->defobj_out = req1.defobj_out;
2926 	    assert(req->defobj_out != NULL);
2927 	}
2928     }
2929 
2930     /*
2931      * Search the dynamic linker itself, and possibly resolve the
2932      * symbol from there.  This is how the application links to
2933      * dynamic linker services such as dlopen.
2934      */
2935     if (req->sym_out == NULL ||
2936       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2937 	res = symlook_obj(&req1, &obj_rtld);
2938 	if (res == 0) {
2939 	    req->sym_out = req1.sym_out;
2940 	    req->defobj_out = req1.defobj_out;
2941 	    assert(req->defobj_out != NULL);
2942 	}
2943     }
2944 
2945     return (req->sym_out != NULL ? 0 : ESRCH);
2946 }
2947 
2948 static int
2949 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
2950 {
2951     const Elf_Sym *def;
2952     const Obj_Entry *defobj;
2953     const Objlist_Entry *elm;
2954     SymLook req1;
2955     int res;
2956 
2957     def = NULL;
2958     defobj = NULL;
2959     STAILQ_FOREACH(elm, objlist, link) {
2960 	if (donelist_check(dlp, elm->obj))
2961 	    continue;
2962 	symlook_init_from_req(&req1, req);
2963 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
2964 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
2965 		def = req1.sym_out;
2966 		defobj = req1.defobj_out;
2967 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2968 		    break;
2969 	    }
2970 	}
2971     }
2972     if (def != NULL) {
2973 	req->sym_out = def;
2974 	req->defobj_out = defobj;
2975 	return (0);
2976     }
2977     return (ESRCH);
2978 }
2979 
2980 /*
2981  * Search the chain of DAGS cointed to by the given Needed_Entry
2982  * for a symbol of the given name.  Each DAG is scanned completely
2983  * before advancing to the next one.  Returns a pointer to the symbol,
2984  * or NULL if no definition was found.
2985  */
2986 static int
2987 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
2988 {
2989     const Elf_Sym *def;
2990     const Needed_Entry *n;
2991     const Obj_Entry *defobj;
2992     SymLook req1;
2993     int res;
2994 
2995     def = NULL;
2996     defobj = NULL;
2997     symlook_init_from_req(&req1, req);
2998     for (n = needed; n != NULL; n = n->next) {
2999 	if (n->obj == NULL ||
3000 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3001 	    continue;
3002 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3003 	    def = req1.sym_out;
3004 	    defobj = req1.defobj_out;
3005 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3006 		break;
3007 	}
3008     }
3009     if (def != NULL) {
3010 	req->sym_out = def;
3011 	req->defobj_out = defobj;
3012 	return (0);
3013     }
3014     return (ESRCH);
3015 }
3016 
3017 /*
3018  * Search the symbol table of a single shared object for a symbol of
3019  * the given name and version, if requested.  Returns a pointer to the
3020  * symbol, or NULL if no definition was found.  If the object is
3021  * filter, return filtered symbol from filtee.
3022  *
3023  * The symbol's hash value is passed in for efficiency reasons; that
3024  * eliminates many recomputations of the hash value.
3025  */
3026 int
3027 symlook_obj(SymLook *req, const Obj_Entry *obj)
3028 {
3029     DoneList donelist;
3030     SymLook req1;
3031     int res, mres;
3032 
3033     mres = symlook_obj1(req, obj);
3034     if (mres == 0) {
3035 	if (obj->needed_filtees != NULL) {
3036 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3037 	    donelist_init(&donelist);
3038 	    symlook_init_from_req(&req1, req);
3039 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3040 	    if (res == 0) {
3041 		req->sym_out = req1.sym_out;
3042 		req->defobj_out = req1.defobj_out;
3043 	    }
3044 	    return (res);
3045 	}
3046 	if (obj->needed_aux_filtees != NULL) {
3047 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3048 	    donelist_init(&donelist);
3049 	    symlook_init_from_req(&req1, req);
3050 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3051 	    if (res == 0) {
3052 		req->sym_out = req1.sym_out;
3053 		req->defobj_out = req1.defobj_out;
3054 		return (res);
3055 	    }
3056 	}
3057     }
3058     return (mres);
3059 }
3060 
3061 static int
3062 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3063 {
3064     unsigned long symnum;
3065     const Elf_Sym *vsymp;
3066     Elf_Versym verndx;
3067     int vcount;
3068 
3069     if (obj->buckets == NULL)
3070 	return (ESRCH);
3071 
3072     vsymp = NULL;
3073     vcount = 0;
3074     symnum = obj->buckets[req->hash % obj->nbuckets];
3075 
3076     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3077 	const Elf_Sym *symp;
3078 	const char *strp;
3079 
3080 	if (symnum >= obj->nchains)
3081 	    return (ESRCH);	/* Bad object */
3082 
3083 	symp = obj->symtab + symnum;
3084 	strp = obj->strtab + symp->st_name;
3085 
3086 	switch (ELF_ST_TYPE(symp->st_info)) {
3087 	case STT_FUNC:
3088 	case STT_NOTYPE:
3089 	case STT_OBJECT:
3090 	    if (symp->st_value == 0)
3091 		continue;
3092 		/* fallthrough */
3093 	case STT_TLS:
3094 	    if (symp->st_shndx != SHN_UNDEF)
3095 		break;
3096 #ifndef __mips__
3097 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3098 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3099 		break;
3100 		/* fallthrough */
3101 #endif
3102 	default:
3103 	    continue;
3104 	}
3105 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3106 	    continue;
3107 
3108 	if (req->ventry == NULL) {
3109 	    if (obj->versyms != NULL) {
3110 		verndx = VER_NDX(obj->versyms[symnum]);
3111 		if (verndx > obj->vernum) {
3112 		    _rtld_error("%s: symbol %s references wrong version %d",
3113 			obj->path, obj->strtab + symnum, verndx);
3114 		    continue;
3115 		}
3116 		/*
3117 		 * If we are not called from dlsym (i.e. this is a normal
3118 		 * relocation from unversioned binary), accept the symbol
3119 		 * immediately if it happens to have first version after
3120 		 * this shared object became versioned. Otherwise, if
3121 		 * symbol is versioned and not hidden, remember it. If it
3122 		 * is the only symbol with this name exported by the
3123 		 * shared object, it will be returned as a match at the
3124 		 * end of the function. If symbol is global (verndx < 2)
3125 		 * accept it unconditionally.
3126 		 */
3127 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3128 		  verndx == VER_NDX_GIVEN) {
3129 		    req->sym_out = symp;
3130 		    req->defobj_out = obj;
3131 		    return (0);
3132 		}
3133 		else if (verndx >= VER_NDX_GIVEN) {
3134 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3135 			if (vsymp == NULL)
3136 			    vsymp = symp;
3137 			vcount ++;
3138 		    }
3139 		    continue;
3140 		}
3141 	    }
3142 	    req->sym_out = symp;
3143 	    req->defobj_out = obj;
3144 	    return (0);
3145 	} else {
3146 	    if (obj->versyms == NULL) {
3147 		if (object_match_name(obj, req->ventry->name)) {
3148 		    _rtld_error("%s: object %s should provide version %s for "
3149 			"symbol %s", obj_rtld.path, obj->path,
3150 			req->ventry->name, obj->strtab + symnum);
3151 		    continue;
3152 		}
3153 	    } else {
3154 		verndx = VER_NDX(obj->versyms[symnum]);
3155 		if (verndx > obj->vernum) {
3156 		    _rtld_error("%s: symbol %s references wrong version %d",
3157 			obj->path, obj->strtab + symnum, verndx);
3158 		    continue;
3159 		}
3160 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3161 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3162 		    /*
3163 		     * Version does not match. Look if this is a global symbol
3164 		     * and if it is not hidden. If global symbol (verndx < 2)
3165 		     * is available, use it. Do not return symbol if we are
3166 		     * called by dlvsym, because dlvsym looks for a specific
3167 		     * version and default one is not what dlvsym wants.
3168 		     */
3169 		    if ((req->flags & SYMLOOK_DLSYM) ||
3170 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3171 			(verndx >= VER_NDX_GIVEN))
3172 			continue;
3173 		}
3174 	    }
3175 	    req->sym_out = symp;
3176 	    req->defobj_out = obj;
3177 	    return (0);
3178 	}
3179     }
3180     if (vcount == 1) {
3181 	req->sym_out = vsymp;
3182 	req->defobj_out = obj;
3183 	return (0);
3184     }
3185     return (ESRCH);
3186 }
3187 
3188 static void
3189 trace_loaded_objects(Obj_Entry *obj)
3190 {
3191     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3192     int		c;
3193 
3194     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3195 	main_local = "";
3196 
3197     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3198 	fmt1 = "\t%o => %p (%x)\n";
3199 
3200     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3201 	fmt2 = "\t%o (%x)\n";
3202 
3203     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3204 
3205     for (; obj; obj = obj->next) {
3206 	Needed_Entry		*needed;
3207 	char			*name, *path;
3208 	bool			is_lib;
3209 
3210 	if (list_containers && obj->needed != NULL)
3211 	    rtld_printf("%s:\n", obj->path);
3212 	for (needed = obj->needed; needed; needed = needed->next) {
3213 	    if (needed->obj != NULL) {
3214 		if (needed->obj->traced && !list_containers)
3215 		    continue;
3216 		needed->obj->traced = true;
3217 		path = needed->obj->path;
3218 	    } else
3219 		path = "not found";
3220 
3221 	    name = (char *)obj->strtab + needed->name;
3222 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3223 
3224 	    fmt = is_lib ? fmt1 : fmt2;
3225 	    while ((c = *fmt++) != '\0') {
3226 		switch (c) {
3227 		default:
3228 		    rtld_putchar(c);
3229 		    continue;
3230 		case '\\':
3231 		    switch (c = *fmt) {
3232 		    case '\0':
3233 			continue;
3234 		    case 'n':
3235 			rtld_putchar('\n');
3236 			break;
3237 		    case 't':
3238 			rtld_putchar('\t');
3239 			break;
3240 		    }
3241 		    break;
3242 		case '%':
3243 		    switch (c = *fmt) {
3244 		    case '\0':
3245 			continue;
3246 		    case '%':
3247 		    default:
3248 			rtld_putchar(c);
3249 			break;
3250 		    case 'A':
3251 			rtld_putstr(main_local);
3252 			break;
3253 		    case 'a':
3254 			rtld_putstr(obj_main->path);
3255 			break;
3256 		    case 'o':
3257 			rtld_putstr(name);
3258 			break;
3259 #if 0
3260 		    case 'm':
3261 			rtld_printf("%d", sodp->sod_major);
3262 			break;
3263 		    case 'n':
3264 			rtld_printf("%d", sodp->sod_minor);
3265 			break;
3266 #endif
3267 		    case 'p':
3268 			rtld_putstr(path);
3269 			break;
3270 		    case 'x':
3271 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3272 			  0);
3273 			break;
3274 		    }
3275 		    break;
3276 		}
3277 		++fmt;
3278 	    }
3279 	}
3280     }
3281 }
3282 
3283 /*
3284  * Unload a dlopened object and its dependencies from memory and from
3285  * our data structures.  It is assumed that the DAG rooted in the
3286  * object has already been unreferenced, and that the object has a
3287  * reference count of 0.
3288  */
3289 static void
3290 unload_object(Obj_Entry *root)
3291 {
3292     Obj_Entry *obj;
3293     Obj_Entry **linkp;
3294 
3295     assert(root->refcount == 0);
3296 
3297     /*
3298      * Pass over the DAG removing unreferenced objects from
3299      * appropriate lists.
3300      */
3301     unlink_object(root);
3302 
3303     /* Unmap all objects that are no longer referenced. */
3304     linkp = &obj_list->next;
3305     while ((obj = *linkp) != NULL) {
3306 	if (obj->refcount == 0) {
3307 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3308 		obj->path);
3309 	    dbg("unloading \"%s\"", obj->path);
3310 	    unload_filtees(root);
3311 	    munmap(obj->mapbase, obj->mapsize);
3312 	    linkmap_delete(obj);
3313 	    *linkp = obj->next;
3314 	    obj_count--;
3315 	    obj_free(obj);
3316 	} else
3317 	    linkp = &obj->next;
3318     }
3319     obj_tail = linkp;
3320 }
3321 
3322 static void
3323 unlink_object(Obj_Entry *root)
3324 {
3325     Objlist_Entry *elm;
3326 
3327     if (root->refcount == 0) {
3328 	/* Remove the object from the RTLD_GLOBAL list. */
3329 	objlist_remove(&list_global, root);
3330 
3331     	/* Remove the object from all objects' DAG lists. */
3332     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3333 	    objlist_remove(&elm->obj->dldags, root);
3334 	    if (elm->obj != root)
3335 		unlink_object(elm->obj);
3336 	}
3337     }
3338 }
3339 
3340 static void
3341 ref_dag(Obj_Entry *root)
3342 {
3343     Objlist_Entry *elm;
3344 
3345     assert(root->dag_inited);
3346     STAILQ_FOREACH(elm, &root->dagmembers, link)
3347 	elm->obj->refcount++;
3348 }
3349 
3350 static void
3351 unref_dag(Obj_Entry *root)
3352 {
3353     Objlist_Entry *elm;
3354 
3355     assert(root->dag_inited);
3356     STAILQ_FOREACH(elm, &root->dagmembers, link)
3357 	elm->obj->refcount--;
3358 }
3359 
3360 /*
3361  * Common code for MD __tls_get_addr().
3362  */
3363 void *
3364 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3365 {
3366     Elf_Addr* dtv = *dtvp;
3367     RtldLockState lockstate;
3368 
3369     /* Check dtv generation in case new modules have arrived */
3370     if (dtv[0] != tls_dtv_generation) {
3371 	Elf_Addr* newdtv;
3372 	int to_copy;
3373 
3374 	wlock_acquire(rtld_bind_lock, &lockstate);
3375 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3376 	to_copy = dtv[1];
3377 	if (to_copy > tls_max_index)
3378 	    to_copy = tls_max_index;
3379 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3380 	newdtv[0] = tls_dtv_generation;
3381 	newdtv[1] = tls_max_index;
3382 	free(dtv);
3383 	lock_release(rtld_bind_lock, &lockstate);
3384 	dtv = *dtvp = newdtv;
3385     }
3386 
3387     /* Dynamically allocate module TLS if necessary */
3388     if (!dtv[index + 1]) {
3389 	/* Signal safe, wlock will block out signals. */
3390 	    wlock_acquire(rtld_bind_lock, &lockstate);
3391 	if (!dtv[index + 1])
3392 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3393 	lock_release(rtld_bind_lock, &lockstate);
3394     }
3395     return (void*) (dtv[index + 1] + offset);
3396 }
3397 
3398 /* XXX not sure what variants to use for arm. */
3399 
3400 #if defined(__ia64__) || defined(__powerpc__)
3401 
3402 /*
3403  * Allocate Static TLS using the Variant I method.
3404  */
3405 void *
3406 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3407 {
3408     Obj_Entry *obj;
3409     char *tcb;
3410     Elf_Addr **tls;
3411     Elf_Addr *dtv;
3412     Elf_Addr addr;
3413     int i;
3414 
3415     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3416 	return (oldtcb);
3417 
3418     assert(tcbsize >= TLS_TCB_SIZE);
3419     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3420     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3421 
3422     if (oldtcb != NULL) {
3423 	memcpy(tls, oldtcb, tls_static_space);
3424 	free(oldtcb);
3425 
3426 	/* Adjust the DTV. */
3427 	dtv = tls[0];
3428 	for (i = 0; i < dtv[1]; i++) {
3429 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3430 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3431 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3432 	    }
3433 	}
3434     } else {
3435 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3436 	tls[0] = dtv;
3437 	dtv[0] = tls_dtv_generation;
3438 	dtv[1] = tls_max_index;
3439 
3440 	for (obj = objs; obj; obj = obj->next) {
3441 	    if (obj->tlsoffset > 0) {
3442 		addr = (Elf_Addr)tls + obj->tlsoffset;
3443 		if (obj->tlsinitsize > 0)
3444 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3445 		if (obj->tlssize > obj->tlsinitsize)
3446 		    memset((void*) (addr + obj->tlsinitsize), 0,
3447 			   obj->tlssize - obj->tlsinitsize);
3448 		dtv[obj->tlsindex + 1] = addr;
3449 	    }
3450 	}
3451     }
3452 
3453     return (tcb);
3454 }
3455 
3456 void
3457 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3458 {
3459     Elf_Addr *dtv;
3460     Elf_Addr tlsstart, tlsend;
3461     int dtvsize, i;
3462 
3463     assert(tcbsize >= TLS_TCB_SIZE);
3464 
3465     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3466     tlsend = tlsstart + tls_static_space;
3467 
3468     dtv = *(Elf_Addr **)tlsstart;
3469     dtvsize = dtv[1];
3470     for (i = 0; i < dtvsize; i++) {
3471 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3472 	    free((void*)dtv[i+2]);
3473 	}
3474     }
3475     free(dtv);
3476     free(tcb);
3477 }
3478 
3479 #endif
3480 
3481 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3482     defined(__arm__) || defined(__mips__)
3483 
3484 /*
3485  * Allocate Static TLS using the Variant II method.
3486  */
3487 void *
3488 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3489 {
3490     Obj_Entry *obj;
3491     size_t size;
3492     char *tls;
3493     Elf_Addr *dtv, *olddtv;
3494     Elf_Addr segbase, oldsegbase, addr;
3495     int i;
3496 
3497     size = round(tls_static_space, tcbalign);
3498 
3499     assert(tcbsize >= 2*sizeof(Elf_Addr));
3500     tls = calloc(1, size + tcbsize);
3501     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3502 
3503     segbase = (Elf_Addr)(tls + size);
3504     ((Elf_Addr*)segbase)[0] = segbase;
3505     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3506 
3507     dtv[0] = tls_dtv_generation;
3508     dtv[1] = tls_max_index;
3509 
3510     if (oldtls) {
3511 	/*
3512 	 * Copy the static TLS block over whole.
3513 	 */
3514 	oldsegbase = (Elf_Addr) oldtls;
3515 	memcpy((void *)(segbase - tls_static_space),
3516 	       (const void *)(oldsegbase - tls_static_space),
3517 	       tls_static_space);
3518 
3519 	/*
3520 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3521 	 * move them over.
3522 	 */
3523 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3524 	for (i = 0; i < olddtv[1]; i++) {
3525 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3526 		dtv[i+2] = olddtv[i+2];
3527 		olddtv[i+2] = 0;
3528 	    }
3529 	}
3530 
3531 	/*
3532 	 * We assume that this block was the one we created with
3533 	 * allocate_initial_tls().
3534 	 */
3535 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3536     } else {
3537 	for (obj = objs; obj; obj = obj->next) {
3538 	    if (obj->tlsoffset) {
3539 		addr = segbase - obj->tlsoffset;
3540 		memset((void*) (addr + obj->tlsinitsize),
3541 		       0, obj->tlssize - obj->tlsinitsize);
3542 		if (obj->tlsinit)
3543 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3544 		dtv[obj->tlsindex + 1] = addr;
3545 	    }
3546 	}
3547     }
3548 
3549     return (void*) segbase;
3550 }
3551 
3552 void
3553 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3554 {
3555     size_t size;
3556     Elf_Addr* dtv;
3557     int dtvsize, i;
3558     Elf_Addr tlsstart, tlsend;
3559 
3560     /*
3561      * Figure out the size of the initial TLS block so that we can
3562      * find stuff which ___tls_get_addr() allocated dynamically.
3563      */
3564     size = round(tls_static_space, tcbalign);
3565 
3566     dtv = ((Elf_Addr**)tls)[1];
3567     dtvsize = dtv[1];
3568     tlsend = (Elf_Addr) tls;
3569     tlsstart = tlsend - size;
3570     for (i = 0; i < dtvsize; i++) {
3571 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3572 	    free((void*) dtv[i+2]);
3573 	}
3574     }
3575 
3576     free((void*) tlsstart);
3577     free((void*) dtv);
3578 }
3579 
3580 #endif
3581 
3582 /*
3583  * Allocate TLS block for module with given index.
3584  */
3585 void *
3586 allocate_module_tls(int index)
3587 {
3588     Obj_Entry* obj;
3589     char* p;
3590 
3591     for (obj = obj_list; obj; obj = obj->next) {
3592 	if (obj->tlsindex == index)
3593 	    break;
3594     }
3595     if (!obj) {
3596 	_rtld_error("Can't find module with TLS index %d", index);
3597 	die();
3598     }
3599 
3600     p = malloc(obj->tlssize);
3601     if (p == NULL) {
3602 	_rtld_error("Cannot allocate TLS block for index %d", index);
3603 	die();
3604     }
3605     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3606     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3607 
3608     return p;
3609 }
3610 
3611 bool
3612 allocate_tls_offset(Obj_Entry *obj)
3613 {
3614     size_t off;
3615 
3616     if (obj->tls_done)
3617 	return true;
3618 
3619     if (obj->tlssize == 0) {
3620 	obj->tls_done = true;
3621 	return true;
3622     }
3623 
3624     if (obj->tlsindex == 1)
3625 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3626     else
3627 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3628 				   obj->tlssize, obj->tlsalign);
3629 
3630     /*
3631      * If we have already fixed the size of the static TLS block, we
3632      * must stay within that size. When allocating the static TLS, we
3633      * leave a small amount of space spare to be used for dynamically
3634      * loading modules which use static TLS.
3635      */
3636     if (tls_static_space) {
3637 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3638 	    return false;
3639     }
3640 
3641     tls_last_offset = obj->tlsoffset = off;
3642     tls_last_size = obj->tlssize;
3643     obj->tls_done = true;
3644 
3645     return true;
3646 }
3647 
3648 void
3649 free_tls_offset(Obj_Entry *obj)
3650 {
3651 
3652     /*
3653      * If we were the last thing to allocate out of the static TLS
3654      * block, we give our space back to the 'allocator'. This is a
3655      * simplistic workaround to allow libGL.so.1 to be loaded and
3656      * unloaded multiple times.
3657      */
3658     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3659 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3660 	tls_last_offset -= obj->tlssize;
3661 	tls_last_size = 0;
3662     }
3663 }
3664 
3665 void *
3666 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3667 {
3668     void *ret;
3669     RtldLockState lockstate;
3670 
3671     wlock_acquire(rtld_bind_lock, &lockstate);
3672     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3673     lock_release(rtld_bind_lock, &lockstate);
3674     return (ret);
3675 }
3676 
3677 void
3678 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3679 {
3680     RtldLockState lockstate;
3681 
3682     wlock_acquire(rtld_bind_lock, &lockstate);
3683     free_tls(tcb, tcbsize, tcbalign);
3684     lock_release(rtld_bind_lock, &lockstate);
3685 }
3686 
3687 static void
3688 object_add_name(Obj_Entry *obj, const char *name)
3689 {
3690     Name_Entry *entry;
3691     size_t len;
3692 
3693     len = strlen(name);
3694     entry = malloc(sizeof(Name_Entry) + len);
3695 
3696     if (entry != NULL) {
3697 	strcpy(entry->name, name);
3698 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3699     }
3700 }
3701 
3702 static int
3703 object_match_name(const Obj_Entry *obj, const char *name)
3704 {
3705     Name_Entry *entry;
3706 
3707     STAILQ_FOREACH(entry, &obj->names, link) {
3708 	if (strcmp(name, entry->name) == 0)
3709 	    return (1);
3710     }
3711     return (0);
3712 }
3713 
3714 static Obj_Entry *
3715 locate_dependency(const Obj_Entry *obj, const char *name)
3716 {
3717     const Objlist_Entry *entry;
3718     const Needed_Entry *needed;
3719 
3720     STAILQ_FOREACH(entry, &list_main, link) {
3721 	if (object_match_name(entry->obj, name))
3722 	    return entry->obj;
3723     }
3724 
3725     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3726 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3727 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3728 	    /*
3729 	     * If there is DT_NEEDED for the name we are looking for,
3730 	     * we are all set.  Note that object might not be found if
3731 	     * dependency was not loaded yet, so the function can
3732 	     * return NULL here.  This is expected and handled
3733 	     * properly by the caller.
3734 	     */
3735 	    return (needed->obj);
3736 	}
3737     }
3738     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3739 	obj->path, name);
3740     die();
3741 }
3742 
3743 static int
3744 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3745     const Elf_Vernaux *vna)
3746 {
3747     const Elf_Verdef *vd;
3748     const char *vername;
3749 
3750     vername = refobj->strtab + vna->vna_name;
3751     vd = depobj->verdef;
3752     if (vd == NULL) {
3753 	_rtld_error("%s: version %s required by %s not defined",
3754 	    depobj->path, vername, refobj->path);
3755 	return (-1);
3756     }
3757     for (;;) {
3758 	if (vd->vd_version != VER_DEF_CURRENT) {
3759 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3760 		depobj->path, vd->vd_version);
3761 	    return (-1);
3762 	}
3763 	if (vna->vna_hash == vd->vd_hash) {
3764 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3765 		((char *)vd + vd->vd_aux);
3766 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3767 		return (0);
3768 	}
3769 	if (vd->vd_next == 0)
3770 	    break;
3771 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3772     }
3773     if (vna->vna_flags & VER_FLG_WEAK)
3774 	return (0);
3775     _rtld_error("%s: version %s required by %s not found",
3776 	depobj->path, vername, refobj->path);
3777     return (-1);
3778 }
3779 
3780 static int
3781 rtld_verify_object_versions(Obj_Entry *obj)
3782 {
3783     const Elf_Verneed *vn;
3784     const Elf_Verdef  *vd;
3785     const Elf_Verdaux *vda;
3786     const Elf_Vernaux *vna;
3787     const Obj_Entry *depobj;
3788     int maxvernum, vernum;
3789 
3790     maxvernum = 0;
3791     /*
3792      * Walk over defined and required version records and figure out
3793      * max index used by any of them. Do very basic sanity checking
3794      * while there.
3795      */
3796     vn = obj->verneed;
3797     while (vn != NULL) {
3798 	if (vn->vn_version != VER_NEED_CURRENT) {
3799 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3800 		obj->path, vn->vn_version);
3801 	    return (-1);
3802 	}
3803 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3804 	for (;;) {
3805 	    vernum = VER_NEED_IDX(vna->vna_other);
3806 	    if (vernum > maxvernum)
3807 		maxvernum = vernum;
3808 	    if (vna->vna_next == 0)
3809 		 break;
3810 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3811 	}
3812 	if (vn->vn_next == 0)
3813 	    break;
3814 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3815     }
3816 
3817     vd = obj->verdef;
3818     while (vd != NULL) {
3819 	if (vd->vd_version != VER_DEF_CURRENT) {
3820 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3821 		obj->path, vd->vd_version);
3822 	    return (-1);
3823 	}
3824 	vernum = VER_DEF_IDX(vd->vd_ndx);
3825 	if (vernum > maxvernum)
3826 		maxvernum = vernum;
3827 	if (vd->vd_next == 0)
3828 	    break;
3829 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3830     }
3831 
3832     if (maxvernum == 0)
3833 	return (0);
3834 
3835     /*
3836      * Store version information in array indexable by version index.
3837      * Verify that object version requirements are satisfied along the
3838      * way.
3839      */
3840     obj->vernum = maxvernum + 1;
3841     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3842 
3843     vd = obj->verdef;
3844     while (vd != NULL) {
3845 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3846 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3847 	    assert(vernum <= maxvernum);
3848 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3849 	    obj->vertab[vernum].hash = vd->vd_hash;
3850 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3851 	    obj->vertab[vernum].file = NULL;
3852 	    obj->vertab[vernum].flags = 0;
3853 	}
3854 	if (vd->vd_next == 0)
3855 	    break;
3856 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3857     }
3858 
3859     vn = obj->verneed;
3860     while (vn != NULL) {
3861 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3862 	if (depobj == NULL)
3863 	    return (-1);
3864 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3865 	for (;;) {
3866 	    if (check_object_provided_version(obj, depobj, vna))
3867 		return (-1);
3868 	    vernum = VER_NEED_IDX(vna->vna_other);
3869 	    assert(vernum <= maxvernum);
3870 	    obj->vertab[vernum].hash = vna->vna_hash;
3871 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3872 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3873 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3874 		VER_INFO_HIDDEN : 0;
3875 	    if (vna->vna_next == 0)
3876 		 break;
3877 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3878 	}
3879 	if (vn->vn_next == 0)
3880 	    break;
3881 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3882     }
3883     return 0;
3884 }
3885 
3886 static int
3887 rtld_verify_versions(const Objlist *objlist)
3888 {
3889     Objlist_Entry *entry;
3890     int rc;
3891 
3892     rc = 0;
3893     STAILQ_FOREACH(entry, objlist, link) {
3894 	/*
3895 	 * Skip dummy objects or objects that have their version requirements
3896 	 * already checked.
3897 	 */
3898 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3899 	    continue;
3900 	if (rtld_verify_object_versions(entry->obj) == -1) {
3901 	    rc = -1;
3902 	    if (ld_tracing == NULL)
3903 		break;
3904 	}
3905     }
3906     if (rc == 0 || ld_tracing != NULL)
3907     	rc = rtld_verify_object_versions(&obj_rtld);
3908     return rc;
3909 }
3910 
3911 const Ver_Entry *
3912 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3913 {
3914     Elf_Versym vernum;
3915 
3916     if (obj->vertab) {
3917 	vernum = VER_NDX(obj->versyms[symnum]);
3918 	if (vernum >= obj->vernum) {
3919 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3920 		obj->path, obj->strtab + symnum, vernum);
3921 	} else if (obj->vertab[vernum].hash != 0) {
3922 	    return &obj->vertab[vernum];
3923 	}
3924     }
3925     return NULL;
3926 }
3927 
3928 int
3929 _rtld_get_stack_prot(void)
3930 {
3931 
3932 	return (stack_prot);
3933 }
3934 
3935 static void
3936 map_stacks_exec(RtldLockState *lockstate)
3937 {
3938 	void (*thr_map_stacks_exec)(void);
3939 
3940 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
3941 		return;
3942 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
3943 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
3944 	if (thr_map_stacks_exec != NULL) {
3945 		stack_prot |= PROT_EXEC;
3946 		thr_map_stacks_exec();
3947 	}
3948 }
3949 
3950 void
3951 symlook_init(SymLook *dst, const char *name)
3952 {
3953 
3954 	bzero(dst, sizeof(*dst));
3955 	dst->name = name;
3956 	dst->hash = elf_hash(name);
3957 }
3958 
3959 static void
3960 symlook_init_from_req(SymLook *dst, const SymLook *src)
3961 {
3962 
3963 	dst->name = src->name;
3964 	dst->hash = src->hash;
3965 	dst->ventry = src->ventry;
3966 	dst->flags = src->flags;
3967 	dst->defobj_out = NULL;
3968 	dst->sym_out = NULL;
3969 	dst->lockstate = src->lockstate;
3970 }
3971 
3972 /*
3973  * Overrides for libc_pic-provided functions.
3974  */
3975 
3976 int
3977 __getosreldate(void)
3978 {
3979 	size_t len;
3980 	int oid[2];
3981 	int error, osrel;
3982 
3983 	if (osreldate != 0)
3984 		return (osreldate);
3985 
3986 	oid[0] = CTL_KERN;
3987 	oid[1] = KERN_OSRELDATE;
3988 	osrel = 0;
3989 	len = sizeof(osrel);
3990 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
3991 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
3992 		osreldate = osrel;
3993 	return (osreldate);
3994 }
3995 
3996 /*
3997  * No unresolved symbols for rtld.
3998  */
3999 void
4000 __pthread_cxa_finalize(struct dl_phdr_info *a)
4001 {
4002 }
4003