xref: /freebsd/libexec/rtld-elf/rtld.c (revision 0d972b25f64dc1f52aff3fe09bc62cbaf332df83)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint32_t gnu_hash(const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
167 void _r_debug_postinit(struct link_map *) __noinline;
168 
169 int __sys_openat(int, const char *, int, ...);
170 
171 /*
172  * Data declarations.
173  */
174 static char *error_message;	/* Message for dlerror(), or NULL */
175 struct r_debug r_debug;		/* for GDB; */
176 static bool libmap_disable;	/* Disable libmap */
177 static bool ld_loadfltr;	/* Immediate filters processing */
178 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
179 static bool trust;		/* False for setuid and setgid programs */
180 static bool dangerous_ld_env;	/* True if environment variables have been
181 				   used to affect the libraries loaded */
182 static char *ld_bind_now;	/* Environment variable for immediate binding */
183 static char *ld_debug;		/* Environment variable for debugging */
184 static char *ld_library_path;	/* Environment variable for search path */
185 static char *ld_library_dirs;	/* Environment variable for library descriptors */
186 static char *ld_preload;	/* Environment variable for libraries to
187 				   load first */
188 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
189 static char *ld_tracing;	/* Called from ldd to print libs */
190 static char *ld_utrace;		/* Use utrace() to log events. */
191 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
192 static Obj_Entry **obj_tail;	/* Link field of last object in list */
193 static Obj_Entry *obj_main;	/* The main program shared object */
194 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
195 static unsigned int obj_count;	/* Number of objects in obj_list */
196 static unsigned int obj_loads;	/* Number of objects in obj_list */
197 
198 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
199   STAILQ_HEAD_INITIALIZER(list_global);
200 static Objlist list_main =	/* Objects loaded at program startup */
201   STAILQ_HEAD_INITIALIZER(list_main);
202 static Objlist list_fini =	/* Objects needing fini() calls */
203   STAILQ_HEAD_INITIALIZER(list_fini);
204 
205 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
206 
207 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
208 
209 extern Elf_Dyn _DYNAMIC;
210 #pragma weak _DYNAMIC
211 #ifndef RTLD_IS_DYNAMIC
212 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
213 #endif
214 
215 int npagesizes, osreldate;
216 size_t *pagesizes;
217 
218 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
219 
220 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
221 static int max_stack_flags;
222 
223 /*
224  * Global declarations normally provided by crt1.  The dynamic linker is
225  * not built with crt1, so we have to provide them ourselves.
226  */
227 char *__progname;
228 char **environ;
229 
230 /*
231  * Used to pass argc, argv to init functions.
232  */
233 int main_argc;
234 char **main_argv;
235 
236 /*
237  * Globals to control TLS allocation.
238  */
239 size_t tls_last_offset;		/* Static TLS offset of last module */
240 size_t tls_last_size;		/* Static TLS size of last module */
241 size_t tls_static_space;	/* Static TLS space allocated */
242 size_t tls_static_max_align;
243 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
244 int tls_max_index = 1;		/* Largest module index allocated */
245 
246 bool ld_library_path_rpath = false;
247 
248 /*
249  * Fill in a DoneList with an allocation large enough to hold all of
250  * the currently-loaded objects.  Keep this as a macro since it calls
251  * alloca and we want that to occur within the scope of the caller.
252  */
253 #define donelist_init(dlp)					\
254     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
255     assert((dlp)->objs != NULL),				\
256     (dlp)->num_alloc = obj_count,				\
257     (dlp)->num_used = 0)
258 
259 #define	UTRACE_DLOPEN_START		1
260 #define	UTRACE_DLOPEN_STOP		2
261 #define	UTRACE_DLCLOSE_START		3
262 #define	UTRACE_DLCLOSE_STOP		4
263 #define	UTRACE_LOAD_OBJECT		5
264 #define	UTRACE_UNLOAD_OBJECT		6
265 #define	UTRACE_ADD_RUNDEP		7
266 #define	UTRACE_PRELOAD_FINISHED		8
267 #define	UTRACE_INIT_CALL		9
268 #define	UTRACE_FINI_CALL		10
269 #define	UTRACE_DLSYM_START		11
270 #define	UTRACE_DLSYM_STOP		12
271 
272 struct utrace_rtld {
273 	char sig[4];			/* 'RTLD' */
274 	int event;
275 	void *handle;
276 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
277 	size_t mapsize;
278 	int refcnt;			/* Used for 'mode' */
279 	char name[MAXPATHLEN];
280 };
281 
282 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
283 	if (ld_utrace != NULL)					\
284 		ld_utrace_log(e, h, mb, ms, r, n);		\
285 } while (0)
286 
287 static void
288 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
289     int refcnt, const char *name)
290 {
291 	struct utrace_rtld ut;
292 
293 	ut.sig[0] = 'R';
294 	ut.sig[1] = 'T';
295 	ut.sig[2] = 'L';
296 	ut.sig[3] = 'D';
297 	ut.event = event;
298 	ut.handle = handle;
299 	ut.mapbase = mapbase;
300 	ut.mapsize = mapsize;
301 	ut.refcnt = refcnt;
302 	bzero(ut.name, sizeof(ut.name));
303 	if (name)
304 		strlcpy(ut.name, name, sizeof(ut.name));
305 	utrace(&ut, sizeof(ut));
306 }
307 
308 /*
309  * Main entry point for dynamic linking.  The first argument is the
310  * stack pointer.  The stack is expected to be laid out as described
311  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
312  * Specifically, the stack pointer points to a word containing
313  * ARGC.  Following that in the stack is a null-terminated sequence
314  * of pointers to argument strings.  Then comes a null-terminated
315  * sequence of pointers to environment strings.  Finally, there is a
316  * sequence of "auxiliary vector" entries.
317  *
318  * The second argument points to a place to store the dynamic linker's
319  * exit procedure pointer and the third to a place to store the main
320  * program's object.
321  *
322  * The return value is the main program's entry point.
323  */
324 func_ptr_type
325 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
326 {
327     Elf_Auxinfo *aux_info[AT_COUNT];
328     int i;
329     int argc;
330     char **argv;
331     char **env;
332     Elf_Auxinfo *aux;
333     Elf_Auxinfo *auxp;
334     const char *argv0;
335     Objlist_Entry *entry;
336     Obj_Entry *obj;
337     Obj_Entry **preload_tail;
338     Obj_Entry *last_interposer;
339     Objlist initlist;
340     RtldLockState lockstate;
341     char *library_path_rpath;
342     int mib[2];
343     size_t len;
344 
345     /*
346      * On entry, the dynamic linker itself has not been relocated yet.
347      * Be very careful not to reference any global data until after
348      * init_rtld has returned.  It is OK to reference file-scope statics
349      * and string constants, and to call static and global functions.
350      */
351 
352     /* Find the auxiliary vector on the stack. */
353     argc = *sp++;
354     argv = (char **) sp;
355     sp += argc + 1;	/* Skip over arguments and NULL terminator */
356     env = (char **) sp;
357     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
358 	;
359     aux = (Elf_Auxinfo *) sp;
360 
361     /* Digest the auxiliary vector. */
362     for (i = 0;  i < AT_COUNT;  i++)
363 	aux_info[i] = NULL;
364     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
365 	if (auxp->a_type < AT_COUNT)
366 	    aux_info[auxp->a_type] = auxp;
367     }
368 
369     /* Initialize and relocate ourselves. */
370     assert(aux_info[AT_BASE] != NULL);
371     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
372 
373     __progname = obj_rtld.path;
374     argv0 = argv[0] != NULL ? argv[0] : "(null)";
375     environ = env;
376     main_argc = argc;
377     main_argv = argv;
378 
379     if (aux_info[AT_CANARY] != NULL &&
380 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
381 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
382 	    if (i > sizeof(__stack_chk_guard))
383 		    i = sizeof(__stack_chk_guard);
384 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
385     } else {
386 	mib[0] = CTL_KERN;
387 	mib[1] = KERN_ARND;
388 
389 	len = sizeof(__stack_chk_guard);
390 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
391 	    len != sizeof(__stack_chk_guard)) {
392 		/* If sysctl was unsuccessful, use the "terminator canary". */
393 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
394 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
395 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
396 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
397 	}
398     }
399 
400     trust = !issetugid();
401 
402     ld_bind_now = getenv(LD_ "BIND_NOW");
403     /*
404      * If the process is tainted, then we un-set the dangerous environment
405      * variables.  The process will be marked as tainted until setuid(2)
406      * is called.  If any child process calls setuid(2) we do not want any
407      * future processes to honor the potentially un-safe variables.
408      */
409     if (!trust) {
410         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
411 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
412 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
413 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
414 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
415 		_rtld_error("environment corrupt; aborting");
416 		die();
417 	}
418     }
419     ld_debug = getenv(LD_ "DEBUG");
420     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
421     libmap_override = getenv(LD_ "LIBMAP");
422     ld_library_path = getenv(LD_ "LIBRARY_PATH");
423     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
424     ld_preload = getenv(LD_ "PRELOAD");
425     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
426     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
427     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
428     if (library_path_rpath != NULL) {
429 	    if (library_path_rpath[0] == 'y' ||
430 		library_path_rpath[0] == 'Y' ||
431 		library_path_rpath[0] == '1')
432 		    ld_library_path_rpath = true;
433 	    else
434 		    ld_library_path_rpath = false;
435     }
436     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
437 	(ld_library_path != NULL) || (ld_preload != NULL) ||
438 	(ld_elf_hints_path != NULL) || ld_loadfltr;
439     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
440     ld_utrace = getenv(LD_ "UTRACE");
441 
442     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
443 	ld_elf_hints_path = _PATH_ELF_HINTS;
444 
445     if (ld_debug != NULL && *ld_debug != '\0')
446 	debug = 1;
447     dbg("%s is initialized, base address = %p", __progname,
448 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
449     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
450     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
451 
452     dbg("initializing thread locks");
453     lockdflt_init();
454 
455     /*
456      * Load the main program, or process its program header if it is
457      * already loaded.
458      */
459     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
460 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
461 	dbg("loading main program");
462 	obj_main = map_object(fd, argv0, NULL);
463 	close(fd);
464 	if (obj_main == NULL)
465 	    die();
466 	max_stack_flags = obj->stack_flags;
467     } else {				/* Main program already loaded. */
468 	const Elf_Phdr *phdr;
469 	int phnum;
470 	caddr_t entry;
471 
472 	dbg("processing main program's program header");
473 	assert(aux_info[AT_PHDR] != NULL);
474 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
475 	assert(aux_info[AT_PHNUM] != NULL);
476 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
477 	assert(aux_info[AT_PHENT] != NULL);
478 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
479 	assert(aux_info[AT_ENTRY] != NULL);
480 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
481 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
482 	    die();
483     }
484 
485     if (aux_info[AT_EXECPATH] != 0) {
486 	    char *kexecpath;
487 	    char buf[MAXPATHLEN];
488 
489 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
490 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
491 	    if (kexecpath[0] == '/')
492 		    obj_main->path = kexecpath;
493 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
494 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
495 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
496 		    obj_main->path = xstrdup(argv0);
497 	    else
498 		    obj_main->path = xstrdup(buf);
499     } else {
500 	    dbg("No AT_EXECPATH");
501 	    obj_main->path = xstrdup(argv0);
502     }
503     dbg("obj_main path %s", obj_main->path);
504     obj_main->mainprog = true;
505 
506     if (aux_info[AT_STACKPROT] != NULL &&
507       aux_info[AT_STACKPROT]->a_un.a_val != 0)
508 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
509 
510 #ifndef COMPAT_32BIT
511     /*
512      * Get the actual dynamic linker pathname from the executable if
513      * possible.  (It should always be possible.)  That ensures that
514      * gdb will find the right dynamic linker even if a non-standard
515      * one is being used.
516      */
517     if (obj_main->interp != NULL &&
518       strcmp(obj_main->interp, obj_rtld.path) != 0) {
519 	free(obj_rtld.path);
520 	obj_rtld.path = xstrdup(obj_main->interp);
521         __progname = obj_rtld.path;
522     }
523 #endif
524 
525     digest_dynamic(obj_main, 0);
526     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
527 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
528 	obj_main->dynsymcount);
529 
530     linkmap_add(obj_main);
531     linkmap_add(&obj_rtld);
532 
533     /* Link the main program into the list of objects. */
534     *obj_tail = obj_main;
535     obj_tail = &obj_main->next;
536     obj_count++;
537     obj_loads++;
538 
539     /* Initialize a fake symbol for resolving undefined weak references. */
540     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
541     sym_zero.st_shndx = SHN_UNDEF;
542     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
543 
544     if (!libmap_disable)
545         libmap_disable = (bool)lm_init(libmap_override);
546 
547     dbg("loading LD_PRELOAD libraries");
548     if (load_preload_objects() == -1)
549 	die();
550     preload_tail = obj_tail;
551 
552     dbg("loading needed objects");
553     if (load_needed_objects(obj_main, 0) == -1)
554 	die();
555 
556     /* Make a list of all objects loaded at startup. */
557     last_interposer = obj_main;
558     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
559 	if (obj->z_interpose && obj != obj_main) {
560 	    objlist_put_after(&list_main, last_interposer, obj);
561 	    last_interposer = obj;
562 	} else {
563 	    objlist_push_tail(&list_main, obj);
564 	}
565     	obj->refcount++;
566     }
567 
568     dbg("checking for required versions");
569     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
570 	die();
571 
572     if (ld_tracing) {		/* We're done */
573 	trace_loaded_objects(obj_main);
574 	exit(0);
575     }
576 
577     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
578        dump_relocations(obj_main);
579        exit (0);
580     }
581 
582     /*
583      * Processing tls relocations requires having the tls offsets
584      * initialized.  Prepare offsets before starting initial
585      * relocation processing.
586      */
587     dbg("initializing initial thread local storage offsets");
588     STAILQ_FOREACH(entry, &list_main, link) {
589 	/*
590 	 * Allocate all the initial objects out of the static TLS
591 	 * block even if they didn't ask for it.
592 	 */
593 	allocate_tls_offset(entry->obj);
594     }
595 
596     if (relocate_objects(obj_main,
597       ld_bind_now != NULL && *ld_bind_now != '\0',
598       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
599 	die();
600 
601     dbg("doing copy relocations");
602     if (do_copy_relocations(obj_main) == -1)
603 	die();
604 
605     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
606        dump_relocations(obj_main);
607        exit (0);
608     }
609 
610     /*
611      * Setup TLS for main thread.  This must be done after the
612      * relocations are processed, since tls initialization section
613      * might be the subject for relocations.
614      */
615     dbg("initializing initial thread local storage");
616     allocate_initial_tls(obj_list);
617 
618     dbg("initializing key program variables");
619     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
620     set_program_var("environ", env);
621     set_program_var("__elf_aux_vector", aux);
622 
623     /* Make a list of init functions to call. */
624     objlist_init(&initlist);
625     initlist_add_objects(obj_list, preload_tail, &initlist);
626 
627     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
628 
629     map_stacks_exec(NULL);
630 
631     dbg("resolving ifuncs");
632     if (resolve_objects_ifunc(obj_main,
633       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
634       NULL) == -1)
635 	die();
636 
637     if (!obj_main->crt_no_init) {
638 	/*
639 	 * Make sure we don't call the main program's init and fini
640 	 * functions for binaries linked with old crt1 which calls
641 	 * _init itself.
642 	 */
643 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
644 	obj_main->preinit_array = obj_main->init_array =
645 	    obj_main->fini_array = (Elf_Addr)NULL;
646     }
647 
648     wlock_acquire(rtld_bind_lock, &lockstate);
649     if (obj_main->crt_no_init)
650 	preinit_main();
651     objlist_call_init(&initlist, &lockstate);
652     _r_debug_postinit(&obj_main->linkmap);
653     objlist_clear(&initlist);
654     dbg("loading filtees");
655     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
656 	if (ld_loadfltr || obj->z_loadfltr)
657 	    load_filtees(obj, 0, &lockstate);
658     }
659     lock_release(rtld_bind_lock, &lockstate);
660 
661     dbg("transferring control to program entry point = %p", obj_main->entry);
662 
663     /* Return the exit procedure and the program entry point. */
664     *exit_proc = rtld_exit;
665     *objp = obj_main;
666     return (func_ptr_type) obj_main->entry;
667 }
668 
669 void *
670 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
671 {
672 	void *ptr;
673 	Elf_Addr target;
674 
675 	ptr = (void *)make_function_pointer(def, obj);
676 	target = ((Elf_Addr (*)(void))ptr)();
677 	return ((void *)target);
678 }
679 
680 Elf_Addr
681 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
682 {
683     const Elf_Rel *rel;
684     const Elf_Sym *def;
685     const Obj_Entry *defobj;
686     Elf_Addr *where;
687     Elf_Addr target;
688     RtldLockState lockstate;
689 
690     rlock_acquire(rtld_bind_lock, &lockstate);
691     if (sigsetjmp(lockstate.env, 0) != 0)
692 	    lock_upgrade(rtld_bind_lock, &lockstate);
693     if (obj->pltrel)
694 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
695     else
696 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
697 
698     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
699     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
700 	&lockstate);
701     if (def == NULL)
702 	die();
703     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
704 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
705     else
706 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
707 
708     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
709       defobj->strtab + def->st_name, basename(obj->path),
710       (void *)target, basename(defobj->path));
711 
712     /*
713      * Write the new contents for the jmpslot. Note that depending on
714      * architecture, the value which we need to return back to the
715      * lazy binding trampoline may or may not be the target
716      * address. The value returned from reloc_jmpslot() is the value
717      * that the trampoline needs.
718      */
719     target = reloc_jmpslot(where, target, defobj, obj, rel);
720     lock_release(rtld_bind_lock, &lockstate);
721     return target;
722 }
723 
724 /*
725  * Error reporting function.  Use it like printf.  If formats the message
726  * into a buffer, and sets things up so that the next call to dlerror()
727  * will return the message.
728  */
729 void
730 _rtld_error(const char *fmt, ...)
731 {
732     static char buf[512];
733     va_list ap;
734 
735     va_start(ap, fmt);
736     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
737     error_message = buf;
738     va_end(ap);
739 }
740 
741 /*
742  * Return a dynamically-allocated copy of the current error message, if any.
743  */
744 static char *
745 errmsg_save(void)
746 {
747     return error_message == NULL ? NULL : xstrdup(error_message);
748 }
749 
750 /*
751  * Restore the current error message from a copy which was previously saved
752  * by errmsg_save().  The copy is freed.
753  */
754 static void
755 errmsg_restore(char *saved_msg)
756 {
757     if (saved_msg == NULL)
758 	error_message = NULL;
759     else {
760 	_rtld_error("%s", saved_msg);
761 	free(saved_msg);
762     }
763 }
764 
765 static const char *
766 basename(const char *name)
767 {
768     const char *p = strrchr(name, '/');
769     return p != NULL ? p + 1 : name;
770 }
771 
772 static struct utsname uts;
773 
774 static char *
775 origin_subst_one(char *real, const char *kw, const char *subst,
776     bool may_free)
777 {
778 	char *p, *p1, *res, *resp;
779 	int subst_len, kw_len, subst_count, old_len, new_len;
780 
781 	kw_len = strlen(kw);
782 
783 	/*
784 	 * First, count the number of the keyword occurences, to
785 	 * preallocate the final string.
786 	 */
787 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
788 		p1 = strstr(p, kw);
789 		if (p1 == NULL)
790 			break;
791 	}
792 
793 	/*
794 	 * If the keyword is not found, just return.
795 	 */
796 	if (subst_count == 0)
797 		return (may_free ? real : xstrdup(real));
798 
799 	/*
800 	 * There is indeed something to substitute.  Calculate the
801 	 * length of the resulting string, and allocate it.
802 	 */
803 	subst_len = strlen(subst);
804 	old_len = strlen(real);
805 	new_len = old_len + (subst_len - kw_len) * subst_count;
806 	res = xmalloc(new_len + 1);
807 
808 	/*
809 	 * Now, execute the substitution loop.
810 	 */
811 	for (p = real, resp = res, *resp = '\0';;) {
812 		p1 = strstr(p, kw);
813 		if (p1 != NULL) {
814 			/* Copy the prefix before keyword. */
815 			memcpy(resp, p, p1 - p);
816 			resp += p1 - p;
817 			/* Keyword replacement. */
818 			memcpy(resp, subst, subst_len);
819 			resp += subst_len;
820 			*resp = '\0';
821 			p = p1 + kw_len;
822 		} else
823 			break;
824 	}
825 
826 	/* Copy to the end of string and finish. */
827 	strcat(resp, p);
828 	if (may_free)
829 		free(real);
830 	return (res);
831 }
832 
833 static char *
834 origin_subst(char *real, const char *origin_path)
835 {
836 	char *res1, *res2, *res3, *res4;
837 
838 	if (uts.sysname[0] == '\0') {
839 		if (uname(&uts) != 0) {
840 			_rtld_error("utsname failed: %d", errno);
841 			return (NULL);
842 		}
843 	}
844 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
845 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
846 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
847 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
848 	return (res4);
849 }
850 
851 static void
852 die(void)
853 {
854     const char *msg = dlerror();
855 
856     if (msg == NULL)
857 	msg = "Fatal error";
858     rtld_fdputstr(STDERR_FILENO, msg);
859     rtld_fdputchar(STDERR_FILENO, '\n');
860     _exit(1);
861 }
862 
863 /*
864  * Process a shared object's DYNAMIC section, and save the important
865  * information in its Obj_Entry structure.
866  */
867 static void
868 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
869     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
870 {
871     const Elf_Dyn *dynp;
872     Needed_Entry **needed_tail = &obj->needed;
873     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
874     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
875     const Elf_Hashelt *hashtab;
876     const Elf32_Word *hashval;
877     Elf32_Word bkt, nmaskwords;
878     int bloom_size32;
879     bool nmw_power2;
880     int plttype = DT_REL;
881 
882     *dyn_rpath = NULL;
883     *dyn_soname = NULL;
884     *dyn_runpath = NULL;
885 
886     obj->bind_now = false;
887     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
888 	switch (dynp->d_tag) {
889 
890 	case DT_REL:
891 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
892 	    break;
893 
894 	case DT_RELSZ:
895 	    obj->relsize = dynp->d_un.d_val;
896 	    break;
897 
898 	case DT_RELENT:
899 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
900 	    break;
901 
902 	case DT_JMPREL:
903 	    obj->pltrel = (const Elf_Rel *)
904 	      (obj->relocbase + dynp->d_un.d_ptr);
905 	    break;
906 
907 	case DT_PLTRELSZ:
908 	    obj->pltrelsize = dynp->d_un.d_val;
909 	    break;
910 
911 	case DT_RELA:
912 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
913 	    break;
914 
915 	case DT_RELASZ:
916 	    obj->relasize = dynp->d_un.d_val;
917 	    break;
918 
919 	case DT_RELAENT:
920 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
921 	    break;
922 
923 	case DT_PLTREL:
924 	    plttype = dynp->d_un.d_val;
925 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
926 	    break;
927 
928 	case DT_SYMTAB:
929 	    obj->symtab = (const Elf_Sym *)
930 	      (obj->relocbase + dynp->d_un.d_ptr);
931 	    break;
932 
933 	case DT_SYMENT:
934 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
935 	    break;
936 
937 	case DT_STRTAB:
938 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
939 	    break;
940 
941 	case DT_STRSZ:
942 	    obj->strsize = dynp->d_un.d_val;
943 	    break;
944 
945 	case DT_VERNEED:
946 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
947 		dynp->d_un.d_val);
948 	    break;
949 
950 	case DT_VERNEEDNUM:
951 	    obj->verneednum = dynp->d_un.d_val;
952 	    break;
953 
954 	case DT_VERDEF:
955 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
956 		dynp->d_un.d_val);
957 	    break;
958 
959 	case DT_VERDEFNUM:
960 	    obj->verdefnum = dynp->d_un.d_val;
961 	    break;
962 
963 	case DT_VERSYM:
964 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
965 		dynp->d_un.d_val);
966 	    break;
967 
968 	case DT_HASH:
969 	    {
970 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
971 		    dynp->d_un.d_ptr);
972 		obj->nbuckets = hashtab[0];
973 		obj->nchains = hashtab[1];
974 		obj->buckets = hashtab + 2;
975 		obj->chains = obj->buckets + obj->nbuckets;
976 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
977 		  obj->buckets != NULL;
978 	    }
979 	    break;
980 
981 	case DT_GNU_HASH:
982 	    {
983 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
984 		    dynp->d_un.d_ptr);
985 		obj->nbuckets_gnu = hashtab[0];
986 		obj->symndx_gnu = hashtab[1];
987 		nmaskwords = hashtab[2];
988 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
989 		/* Number of bitmask words is required to be power of 2 */
990 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
991 		obj->maskwords_bm_gnu = nmaskwords - 1;
992 		obj->shift2_gnu = hashtab[3];
993 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
994 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
995 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
996 		  obj->symndx_gnu;
997 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
998 		  obj->buckets_gnu != NULL;
999 	    }
1000 	    break;
1001 
1002 	case DT_NEEDED:
1003 	    if (!obj->rtld) {
1004 		Needed_Entry *nep = NEW(Needed_Entry);
1005 		nep->name = dynp->d_un.d_val;
1006 		nep->obj = NULL;
1007 		nep->next = NULL;
1008 
1009 		*needed_tail = nep;
1010 		needed_tail = &nep->next;
1011 	    }
1012 	    break;
1013 
1014 	case DT_FILTER:
1015 	    if (!obj->rtld) {
1016 		Needed_Entry *nep = NEW(Needed_Entry);
1017 		nep->name = dynp->d_un.d_val;
1018 		nep->obj = NULL;
1019 		nep->next = NULL;
1020 
1021 		*needed_filtees_tail = nep;
1022 		needed_filtees_tail = &nep->next;
1023 	    }
1024 	    break;
1025 
1026 	case DT_AUXILIARY:
1027 	    if (!obj->rtld) {
1028 		Needed_Entry *nep = NEW(Needed_Entry);
1029 		nep->name = dynp->d_un.d_val;
1030 		nep->obj = NULL;
1031 		nep->next = NULL;
1032 
1033 		*needed_aux_filtees_tail = nep;
1034 		needed_aux_filtees_tail = &nep->next;
1035 	    }
1036 	    break;
1037 
1038 	case DT_PLTGOT:
1039 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1040 	    break;
1041 
1042 	case DT_TEXTREL:
1043 	    obj->textrel = true;
1044 	    break;
1045 
1046 	case DT_SYMBOLIC:
1047 	    obj->symbolic = true;
1048 	    break;
1049 
1050 	case DT_RPATH:
1051 	    /*
1052 	     * We have to wait until later to process this, because we
1053 	     * might not have gotten the address of the string table yet.
1054 	     */
1055 	    *dyn_rpath = dynp;
1056 	    break;
1057 
1058 	case DT_SONAME:
1059 	    *dyn_soname = dynp;
1060 	    break;
1061 
1062 	case DT_RUNPATH:
1063 	    *dyn_runpath = dynp;
1064 	    break;
1065 
1066 	case DT_INIT:
1067 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_PREINIT_ARRAY:
1071 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1072 	    break;
1073 
1074 	case DT_PREINIT_ARRAYSZ:
1075 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1076 	    break;
1077 
1078 	case DT_INIT_ARRAY:
1079 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1080 	    break;
1081 
1082 	case DT_INIT_ARRAYSZ:
1083 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1084 	    break;
1085 
1086 	case DT_FINI:
1087 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1088 	    break;
1089 
1090 	case DT_FINI_ARRAY:
1091 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1092 	    break;
1093 
1094 	case DT_FINI_ARRAYSZ:
1095 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1096 	    break;
1097 
1098 	/*
1099 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1100 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1101 	 */
1102 
1103 #ifndef __mips__
1104 	case DT_DEBUG:
1105 	    /* XXX - not implemented yet */
1106 	    if (!early)
1107 		dbg("Filling in DT_DEBUG entry");
1108 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1109 	    break;
1110 #endif
1111 
1112 	case DT_FLAGS:
1113 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1114 		    obj->z_origin = true;
1115 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1116 		    obj->symbolic = true;
1117 		if (dynp->d_un.d_val & DF_TEXTREL)
1118 		    obj->textrel = true;
1119 		if (dynp->d_un.d_val & DF_BIND_NOW)
1120 		    obj->bind_now = true;
1121 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1122 		    ;*/
1123 	    break;
1124 #ifdef __mips__
1125 	case DT_MIPS_LOCAL_GOTNO:
1126 		obj->local_gotno = dynp->d_un.d_val;
1127 	    break;
1128 
1129 	case DT_MIPS_SYMTABNO:
1130 		obj->symtabno = dynp->d_un.d_val;
1131 		break;
1132 
1133 	case DT_MIPS_GOTSYM:
1134 		obj->gotsym = dynp->d_un.d_val;
1135 		break;
1136 
1137 	case DT_MIPS_RLD_MAP:
1138 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1139 		break;
1140 #endif
1141 
1142 	case DT_FLAGS_1:
1143 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1144 		    obj->z_noopen = true;
1145 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1146 		    obj->z_origin = true;
1147 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1148 		    XXX ;*/
1149 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1150 		    obj->bind_now = true;
1151 		if (dynp->d_un.d_val & DF_1_NODELETE)
1152 		    obj->z_nodelete = true;
1153 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1154 		    obj->z_loadfltr = true;
1155 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1156 		    obj->z_interpose = true;
1157 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1158 		    obj->z_nodeflib = true;
1159 	    break;
1160 
1161 	default:
1162 	    if (!early) {
1163 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1164 		    (long)dynp->d_tag);
1165 	    }
1166 	    break;
1167 	}
1168     }
1169 
1170     obj->traced = false;
1171 
1172     if (plttype == DT_RELA) {
1173 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1174 	obj->pltrel = NULL;
1175 	obj->pltrelasize = obj->pltrelsize;
1176 	obj->pltrelsize = 0;
1177     }
1178 
1179     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1180     if (obj->valid_hash_sysv)
1181 	obj->dynsymcount = obj->nchains;
1182     else if (obj->valid_hash_gnu) {
1183 	obj->dynsymcount = 0;
1184 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1185 	    if (obj->buckets_gnu[bkt] == 0)
1186 		continue;
1187 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1188 	    do
1189 		obj->dynsymcount++;
1190 	    while ((*hashval++ & 1u) == 0);
1191 	}
1192 	obj->dynsymcount += obj->symndx_gnu;
1193     }
1194 }
1195 
1196 static void
1197 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1198     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1199 {
1200 
1201     if (obj->z_origin && obj->origin_path == NULL) {
1202 	obj->origin_path = xmalloc(PATH_MAX);
1203 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1204 	    die();
1205     }
1206 
1207     if (dyn_runpath != NULL) {
1208 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1209 	if (obj->z_origin)
1210 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1211     }
1212     else if (dyn_rpath != NULL) {
1213 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1214 	if (obj->z_origin)
1215 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1216     }
1217 
1218     if (dyn_soname != NULL)
1219 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1220 }
1221 
1222 static void
1223 digest_dynamic(Obj_Entry *obj, int early)
1224 {
1225 	const Elf_Dyn *dyn_rpath;
1226 	const Elf_Dyn *dyn_soname;
1227 	const Elf_Dyn *dyn_runpath;
1228 
1229 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1230 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1231 }
1232 
1233 /*
1234  * Process a shared object's program header.  This is used only for the
1235  * main program, when the kernel has already loaded the main program
1236  * into memory before calling the dynamic linker.  It creates and
1237  * returns an Obj_Entry structure.
1238  */
1239 static Obj_Entry *
1240 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1241 {
1242     Obj_Entry *obj;
1243     const Elf_Phdr *phlimit = phdr + phnum;
1244     const Elf_Phdr *ph;
1245     Elf_Addr note_start, note_end;
1246     int nsegs = 0;
1247 
1248     obj = obj_new();
1249     for (ph = phdr;  ph < phlimit;  ph++) {
1250 	if (ph->p_type != PT_PHDR)
1251 	    continue;
1252 
1253 	obj->phdr = phdr;
1254 	obj->phsize = ph->p_memsz;
1255 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1256 	break;
1257     }
1258 
1259     obj->stack_flags = PF_X | PF_R | PF_W;
1260 
1261     for (ph = phdr;  ph < phlimit;  ph++) {
1262 	switch (ph->p_type) {
1263 
1264 	case PT_INTERP:
1265 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1266 	    break;
1267 
1268 	case PT_LOAD:
1269 	    if (nsegs == 0) {	/* First load segment */
1270 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1271 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1272 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1273 		  obj->vaddrbase;
1274 	    } else {		/* Last load segment */
1275 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1276 		  obj->vaddrbase;
1277 	    }
1278 	    nsegs++;
1279 	    break;
1280 
1281 	case PT_DYNAMIC:
1282 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1283 	    break;
1284 
1285 	case PT_TLS:
1286 	    obj->tlsindex = 1;
1287 	    obj->tlssize = ph->p_memsz;
1288 	    obj->tlsalign = ph->p_align;
1289 	    obj->tlsinitsize = ph->p_filesz;
1290 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1291 	    break;
1292 
1293 	case PT_GNU_STACK:
1294 	    obj->stack_flags = ph->p_flags;
1295 	    break;
1296 
1297 	case PT_GNU_RELRO:
1298 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1299 	    obj->relro_size = round_page(ph->p_memsz);
1300 	    break;
1301 
1302 	case PT_NOTE:
1303 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1304 	    note_end = note_start + ph->p_filesz;
1305 	    digest_notes(obj, note_start, note_end);
1306 	    break;
1307 	}
1308     }
1309     if (nsegs < 1) {
1310 	_rtld_error("%s: too few PT_LOAD segments", path);
1311 	return NULL;
1312     }
1313 
1314     obj->entry = entry;
1315     return obj;
1316 }
1317 
1318 void
1319 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1320 {
1321 	const Elf_Note *note;
1322 	const char *note_name;
1323 	uintptr_t p;
1324 
1325 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1326 	    note = (const Elf_Note *)((const char *)(note + 1) +
1327 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1328 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1329 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1330 		    note->n_descsz != sizeof(int32_t))
1331 			continue;
1332 		if (note->n_type != ABI_NOTETYPE &&
1333 		    note->n_type != CRT_NOINIT_NOTETYPE)
1334 			continue;
1335 		note_name = (const char *)(note + 1);
1336 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1337 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1338 			continue;
1339 		switch (note->n_type) {
1340 		case ABI_NOTETYPE:
1341 			/* FreeBSD osrel note */
1342 			p = (uintptr_t)(note + 1);
1343 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1344 			obj->osrel = *(const int32_t *)(p);
1345 			dbg("note osrel %d", obj->osrel);
1346 			break;
1347 		case CRT_NOINIT_NOTETYPE:
1348 			/* FreeBSD 'crt does not call init' note */
1349 			obj->crt_no_init = true;
1350 			dbg("note crt_no_init");
1351 			break;
1352 		}
1353 	}
1354 }
1355 
1356 static Obj_Entry *
1357 dlcheck(void *handle)
1358 {
1359     Obj_Entry *obj;
1360 
1361     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1362 	if (obj == (Obj_Entry *) handle)
1363 	    break;
1364 
1365     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1366 	_rtld_error("Invalid shared object handle %p", handle);
1367 	return NULL;
1368     }
1369     return obj;
1370 }
1371 
1372 /*
1373  * If the given object is already in the donelist, return true.  Otherwise
1374  * add the object to the list and return false.
1375  */
1376 static bool
1377 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1378 {
1379     unsigned int i;
1380 
1381     for (i = 0;  i < dlp->num_used;  i++)
1382 	if (dlp->objs[i] == obj)
1383 	    return true;
1384     /*
1385      * Our donelist allocation should always be sufficient.  But if
1386      * our threads locking isn't working properly, more shared objects
1387      * could have been loaded since we allocated the list.  That should
1388      * never happen, but we'll handle it properly just in case it does.
1389      */
1390     if (dlp->num_used < dlp->num_alloc)
1391 	dlp->objs[dlp->num_used++] = obj;
1392     return false;
1393 }
1394 
1395 /*
1396  * Hash function for symbol table lookup.  Don't even think about changing
1397  * this.  It is specified by the System V ABI.
1398  */
1399 unsigned long
1400 elf_hash(const char *name)
1401 {
1402     const unsigned char *p = (const unsigned char *) name;
1403     unsigned long h = 0;
1404     unsigned long g;
1405 
1406     while (*p != '\0') {
1407 	h = (h << 4) + *p++;
1408 	if ((g = h & 0xf0000000) != 0)
1409 	    h ^= g >> 24;
1410 	h &= ~g;
1411     }
1412     return h;
1413 }
1414 
1415 /*
1416  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1417  * unsigned in case it's implemented with a wider type.
1418  */
1419 static uint32_t
1420 gnu_hash(const char *s)
1421 {
1422 	uint32_t h;
1423 	unsigned char c;
1424 
1425 	h = 5381;
1426 	for (c = *s; c != '\0'; c = *++s)
1427 		h = h * 33 + c;
1428 	return (h & 0xffffffff);
1429 }
1430 
1431 
1432 /*
1433  * Find the library with the given name, and return its full pathname.
1434  * The returned string is dynamically allocated.  Generates an error
1435  * message and returns NULL if the library cannot be found.
1436  *
1437  * If the second argument is non-NULL, then it refers to an already-
1438  * loaded shared object, whose library search path will be searched.
1439  *
1440  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1441  * descriptor (which is close-on-exec) will be passed out via the third
1442  * argument.
1443  *
1444  * The search order is:
1445  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1446  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1447  *   LD_LIBRARY_PATH
1448  *   DT_RUNPATH in the referencing file
1449  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1450  *	 from list)
1451  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1452  *
1453  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1454  */
1455 static char *
1456 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1457 {
1458     char *pathname;
1459     char *name;
1460     bool nodeflib, objgiven;
1461 
1462     objgiven = refobj != NULL;
1463     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1464 	if (xname[0] != '/' && !trust) {
1465 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1466 	      xname);
1467 	    return NULL;
1468 	}
1469 	if (objgiven && refobj->z_origin) {
1470 		return (origin_subst(__DECONST(char *, xname),
1471 		    refobj->origin_path));
1472 	} else {
1473 		return (xstrdup(xname));
1474 	}
1475     }
1476 
1477     if (libmap_disable || !objgiven ||
1478 	(name = lm_find(refobj->path, xname)) == NULL)
1479 	name = (char *)xname;
1480 
1481     dbg(" Searching for \"%s\"", name);
1482 
1483     /*
1484      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1485      * back to pre-conforming behaviour if user requested so with
1486      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1487      * nodeflib.
1488      */
1489     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1490 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1491 	  (refobj != NULL &&
1492 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1493 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1494           (pathname = search_library_path(name, gethints(false))) != NULL ||
1495 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1496 	    return (pathname);
1497     } else {
1498 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1499 	if ((objgiven &&
1500 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1501 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1502 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1503 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1504 	  (objgiven &&
1505 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1506 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1507 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1508 	  (objgiven && !nodeflib &&
1509 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1510 	    return (pathname);
1511     }
1512 
1513     if (objgiven && refobj->path != NULL) {
1514 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1515 	  name, basename(refobj->path));
1516     } else {
1517 	_rtld_error("Shared object \"%s\" not found", name);
1518     }
1519     return NULL;
1520 }
1521 
1522 /*
1523  * Given a symbol number in a referencing object, find the corresponding
1524  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1525  * no definition was found.  Returns a pointer to the Obj_Entry of the
1526  * defining object via the reference parameter DEFOBJ_OUT.
1527  */
1528 const Elf_Sym *
1529 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1530     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1531     RtldLockState *lockstate)
1532 {
1533     const Elf_Sym *ref;
1534     const Elf_Sym *def;
1535     const Obj_Entry *defobj;
1536     SymLook req;
1537     const char *name;
1538     int res;
1539 
1540     /*
1541      * If we have already found this symbol, get the information from
1542      * the cache.
1543      */
1544     if (symnum >= refobj->dynsymcount)
1545 	return NULL;	/* Bad object */
1546     if (cache != NULL && cache[symnum].sym != NULL) {
1547 	*defobj_out = cache[symnum].obj;
1548 	return cache[symnum].sym;
1549     }
1550 
1551     ref = refobj->symtab + symnum;
1552     name = refobj->strtab + ref->st_name;
1553     def = NULL;
1554     defobj = NULL;
1555 
1556     /*
1557      * We don't have to do a full scale lookup if the symbol is local.
1558      * We know it will bind to the instance in this load module; to
1559      * which we already have a pointer (ie ref). By not doing a lookup,
1560      * we not only improve performance, but it also avoids unresolvable
1561      * symbols when local symbols are not in the hash table. This has
1562      * been seen with the ia64 toolchain.
1563      */
1564     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1565 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1566 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1567 		symnum);
1568 	}
1569 	symlook_init(&req, name);
1570 	req.flags = flags;
1571 	req.ventry = fetch_ventry(refobj, symnum);
1572 	req.lockstate = lockstate;
1573 	res = symlook_default(&req, refobj);
1574 	if (res == 0) {
1575 	    def = req.sym_out;
1576 	    defobj = req.defobj_out;
1577 	}
1578     } else {
1579 	def = ref;
1580 	defobj = refobj;
1581     }
1582 
1583     /*
1584      * If we found no definition and the reference is weak, treat the
1585      * symbol as having the value zero.
1586      */
1587     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1588 	def = &sym_zero;
1589 	defobj = obj_main;
1590     }
1591 
1592     if (def != NULL) {
1593 	*defobj_out = defobj;
1594 	/* Record the information in the cache to avoid subsequent lookups. */
1595 	if (cache != NULL) {
1596 	    cache[symnum].sym = def;
1597 	    cache[symnum].obj = defobj;
1598 	}
1599     } else {
1600 	if (refobj != &obj_rtld)
1601 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1602     }
1603     return def;
1604 }
1605 
1606 /*
1607  * Return the search path from the ldconfig hints file, reading it if
1608  * necessary.  If nostdlib is true, then the default search paths are
1609  * not added to result.
1610  *
1611  * Returns NULL if there are problems with the hints file,
1612  * or if the search path there is empty.
1613  */
1614 static const char *
1615 gethints(bool nostdlib)
1616 {
1617 	static char *hints, *filtered_path;
1618 	struct elfhints_hdr hdr;
1619 	struct fill_search_info_args sargs, hargs;
1620 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1621 	struct dl_serpath *SLPpath, *hintpath;
1622 	char *p;
1623 	unsigned int SLPndx, hintndx, fndx, fcount;
1624 	int fd;
1625 	size_t flen;
1626 	bool skip;
1627 
1628 	/* First call, read the hints file */
1629 	if (hints == NULL) {
1630 		/* Keep from trying again in case the hints file is bad. */
1631 		hints = "";
1632 
1633 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1634 			return (NULL);
1635 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1636 		    hdr.magic != ELFHINTS_MAGIC ||
1637 		    hdr.version != 1) {
1638 			close(fd);
1639 			return (NULL);
1640 		}
1641 		p = xmalloc(hdr.dirlistlen + 1);
1642 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1643 		    read(fd, p, hdr.dirlistlen + 1) !=
1644 		    (ssize_t)hdr.dirlistlen + 1) {
1645 			free(p);
1646 			close(fd);
1647 			return (NULL);
1648 		}
1649 		hints = p;
1650 		close(fd);
1651 	}
1652 
1653 	/*
1654 	 * If caller agreed to receive list which includes the default
1655 	 * paths, we are done. Otherwise, if we still did not
1656 	 * calculated filtered result, do it now.
1657 	 */
1658 	if (!nostdlib)
1659 		return (hints[0] != '\0' ? hints : NULL);
1660 	if (filtered_path != NULL)
1661 		goto filt_ret;
1662 
1663 	/*
1664 	 * Obtain the list of all configured search paths, and the
1665 	 * list of the default paths.
1666 	 *
1667 	 * First estimate the size of the results.
1668 	 */
1669 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1670 	smeta.dls_cnt = 0;
1671 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1672 	hmeta.dls_cnt = 0;
1673 
1674 	sargs.request = RTLD_DI_SERINFOSIZE;
1675 	sargs.serinfo = &smeta;
1676 	hargs.request = RTLD_DI_SERINFOSIZE;
1677 	hargs.serinfo = &hmeta;
1678 
1679 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1680 	path_enumerate(p, fill_search_info, &hargs);
1681 
1682 	SLPinfo = xmalloc(smeta.dls_size);
1683 	hintinfo = xmalloc(hmeta.dls_size);
1684 
1685 	/*
1686 	 * Next fetch both sets of paths.
1687 	 */
1688 	sargs.request = RTLD_DI_SERINFO;
1689 	sargs.serinfo = SLPinfo;
1690 	sargs.serpath = &SLPinfo->dls_serpath[0];
1691 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1692 
1693 	hargs.request = RTLD_DI_SERINFO;
1694 	hargs.serinfo = hintinfo;
1695 	hargs.serpath = &hintinfo->dls_serpath[0];
1696 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1697 
1698 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1699 	path_enumerate(p, fill_search_info, &hargs);
1700 
1701 	/*
1702 	 * Now calculate the difference between two sets, by excluding
1703 	 * standard paths from the full set.
1704 	 */
1705 	fndx = 0;
1706 	fcount = 0;
1707 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1708 	hintpath = &hintinfo->dls_serpath[0];
1709 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1710 		skip = false;
1711 		SLPpath = &SLPinfo->dls_serpath[0];
1712 		/*
1713 		 * Check each standard path against current.
1714 		 */
1715 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1716 			/* matched, skip the path */
1717 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1718 				skip = true;
1719 				break;
1720 			}
1721 		}
1722 		if (skip)
1723 			continue;
1724 		/*
1725 		 * Not matched against any standard path, add the path
1726 		 * to result. Separate consequtive paths with ':'.
1727 		 */
1728 		if (fcount > 0) {
1729 			filtered_path[fndx] = ':';
1730 			fndx++;
1731 		}
1732 		fcount++;
1733 		flen = strlen(hintpath->dls_name);
1734 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1735 		fndx += flen;
1736 	}
1737 	filtered_path[fndx] = '\0';
1738 
1739 	free(SLPinfo);
1740 	free(hintinfo);
1741 
1742 filt_ret:
1743 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1744 }
1745 
1746 static void
1747 init_dag(Obj_Entry *root)
1748 {
1749     const Needed_Entry *needed;
1750     const Objlist_Entry *elm;
1751     DoneList donelist;
1752 
1753     if (root->dag_inited)
1754 	return;
1755     donelist_init(&donelist);
1756 
1757     /* Root object belongs to own DAG. */
1758     objlist_push_tail(&root->dldags, root);
1759     objlist_push_tail(&root->dagmembers, root);
1760     donelist_check(&donelist, root);
1761 
1762     /*
1763      * Add dependencies of root object to DAG in breadth order
1764      * by exploiting the fact that each new object get added
1765      * to the tail of the dagmembers list.
1766      */
1767     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1768 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1769 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1770 		continue;
1771 	    objlist_push_tail(&needed->obj->dldags, root);
1772 	    objlist_push_tail(&root->dagmembers, needed->obj);
1773 	}
1774     }
1775     root->dag_inited = true;
1776 }
1777 
1778 static void
1779 process_nodelete(Obj_Entry *root)
1780 {
1781 	const Objlist_Entry *elm;
1782 
1783 	/*
1784 	 * Walk over object DAG and process every dependent object that
1785 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1786 	 * which then should have its reference upped separately.
1787 	 */
1788 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1789 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1790 		    !elm->obj->ref_nodel) {
1791 			dbg("obj %s nodelete", elm->obj->path);
1792 			init_dag(elm->obj);
1793 			ref_dag(elm->obj);
1794 			elm->obj->ref_nodel = true;
1795 		}
1796 	}
1797 }
1798 /*
1799  * Initialize the dynamic linker.  The argument is the address at which
1800  * the dynamic linker has been mapped into memory.  The primary task of
1801  * this function is to relocate the dynamic linker.
1802  */
1803 static void
1804 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1805 {
1806     Obj_Entry objtmp;	/* Temporary rtld object */
1807     const Elf_Dyn *dyn_rpath;
1808     const Elf_Dyn *dyn_soname;
1809     const Elf_Dyn *dyn_runpath;
1810 
1811 #ifdef RTLD_INIT_PAGESIZES_EARLY
1812     /* The page size is required by the dynamic memory allocator. */
1813     init_pagesizes(aux_info);
1814 #endif
1815 
1816     /*
1817      * Conjure up an Obj_Entry structure for the dynamic linker.
1818      *
1819      * The "path" member can't be initialized yet because string constants
1820      * cannot yet be accessed. Below we will set it correctly.
1821      */
1822     memset(&objtmp, 0, sizeof(objtmp));
1823     objtmp.path = NULL;
1824     objtmp.rtld = true;
1825     objtmp.mapbase = mapbase;
1826 #ifdef PIC
1827     objtmp.relocbase = mapbase;
1828 #endif
1829     if (RTLD_IS_DYNAMIC()) {
1830 	objtmp.dynamic = rtld_dynamic(&objtmp);
1831 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1832 	assert(objtmp.needed == NULL);
1833 #if !defined(__mips__)
1834 	/* MIPS has a bogus DT_TEXTREL. */
1835 	assert(!objtmp.textrel);
1836 #endif
1837 
1838 	/*
1839 	 * Temporarily put the dynamic linker entry into the object list, so
1840 	 * that symbols can be found.
1841 	 */
1842 
1843 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1844     }
1845 
1846     /* Initialize the object list. */
1847     obj_tail = &obj_list;
1848 
1849     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1850     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1851 
1852 #ifndef RTLD_INIT_PAGESIZES_EARLY
1853     /* The page size is required by the dynamic memory allocator. */
1854     init_pagesizes(aux_info);
1855 #endif
1856 
1857     if (aux_info[AT_OSRELDATE] != NULL)
1858 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1859 
1860     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1861 
1862     /* Replace the path with a dynamically allocated copy. */
1863     obj_rtld.path = xstrdup(PATH_RTLD);
1864 
1865     r_debug.r_brk = r_debug_state;
1866     r_debug.r_state = RT_CONSISTENT;
1867 }
1868 
1869 /*
1870  * Retrieve the array of supported page sizes.  The kernel provides the page
1871  * sizes in increasing order.
1872  */
1873 static void
1874 init_pagesizes(Elf_Auxinfo **aux_info)
1875 {
1876 	static size_t psa[MAXPAGESIZES];
1877 	int mib[2];
1878 	size_t len, size;
1879 
1880 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1881 	    NULL) {
1882 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1883 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1884 	} else {
1885 		len = 2;
1886 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1887 			size = sizeof(psa);
1888 		else {
1889 			/* As a fallback, retrieve the base page size. */
1890 			size = sizeof(psa[0]);
1891 			if (aux_info[AT_PAGESZ] != NULL) {
1892 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1893 				goto psa_filled;
1894 			} else {
1895 				mib[0] = CTL_HW;
1896 				mib[1] = HW_PAGESIZE;
1897 				len = 2;
1898 			}
1899 		}
1900 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1901 			_rtld_error("sysctl for hw.pagesize(s) failed");
1902 			die();
1903 		}
1904 psa_filled:
1905 		pagesizes = psa;
1906 	}
1907 	npagesizes = size / sizeof(pagesizes[0]);
1908 	/* Discard any invalid entries at the end of the array. */
1909 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1910 		npagesizes--;
1911 }
1912 
1913 /*
1914  * Add the init functions from a needed object list (and its recursive
1915  * needed objects) to "list".  This is not used directly; it is a helper
1916  * function for initlist_add_objects().  The write lock must be held
1917  * when this function is called.
1918  */
1919 static void
1920 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1921 {
1922     /* Recursively process the successor needed objects. */
1923     if (needed->next != NULL)
1924 	initlist_add_neededs(needed->next, list);
1925 
1926     /* Process the current needed object. */
1927     if (needed->obj != NULL)
1928 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1929 }
1930 
1931 /*
1932  * Scan all of the DAGs rooted in the range of objects from "obj" to
1933  * "tail" and add their init functions to "list".  This recurses over
1934  * the DAGs and ensure the proper init ordering such that each object's
1935  * needed libraries are initialized before the object itself.  At the
1936  * same time, this function adds the objects to the global finalization
1937  * list "list_fini" in the opposite order.  The write lock must be
1938  * held when this function is called.
1939  */
1940 static void
1941 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1942 {
1943 
1944     if (obj->init_scanned || obj->init_done)
1945 	return;
1946     obj->init_scanned = true;
1947 
1948     /* Recursively process the successor objects. */
1949     if (&obj->next != tail)
1950 	initlist_add_objects(obj->next, tail, list);
1951 
1952     /* Recursively process the needed objects. */
1953     if (obj->needed != NULL)
1954 	initlist_add_neededs(obj->needed, list);
1955     if (obj->needed_filtees != NULL)
1956 	initlist_add_neededs(obj->needed_filtees, list);
1957     if (obj->needed_aux_filtees != NULL)
1958 	initlist_add_neededs(obj->needed_aux_filtees, list);
1959 
1960     /* Add the object to the init list. */
1961     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1962       obj->init_array != (Elf_Addr)NULL)
1963 	objlist_push_tail(list, obj);
1964 
1965     /* Add the object to the global fini list in the reverse order. */
1966     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1967       && !obj->on_fini_list) {
1968 	objlist_push_head(&list_fini, obj);
1969 	obj->on_fini_list = true;
1970     }
1971 }
1972 
1973 #ifndef FPTR_TARGET
1974 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1975 #endif
1976 
1977 static void
1978 free_needed_filtees(Needed_Entry *n)
1979 {
1980     Needed_Entry *needed, *needed1;
1981 
1982     for (needed = n; needed != NULL; needed = needed->next) {
1983 	if (needed->obj != NULL) {
1984 	    dlclose(needed->obj);
1985 	    needed->obj = NULL;
1986 	}
1987     }
1988     for (needed = n; needed != NULL; needed = needed1) {
1989 	needed1 = needed->next;
1990 	free(needed);
1991     }
1992 }
1993 
1994 static void
1995 unload_filtees(Obj_Entry *obj)
1996 {
1997 
1998     free_needed_filtees(obj->needed_filtees);
1999     obj->needed_filtees = NULL;
2000     free_needed_filtees(obj->needed_aux_filtees);
2001     obj->needed_aux_filtees = NULL;
2002     obj->filtees_loaded = false;
2003 }
2004 
2005 static void
2006 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2007     RtldLockState *lockstate)
2008 {
2009 
2010     for (; needed != NULL; needed = needed->next) {
2011 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2012 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2013 	  RTLD_LOCAL, lockstate);
2014     }
2015 }
2016 
2017 static void
2018 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2019 {
2020 
2021     lock_restart_for_upgrade(lockstate);
2022     if (!obj->filtees_loaded) {
2023 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2024 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2025 	obj->filtees_loaded = true;
2026     }
2027 }
2028 
2029 static int
2030 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2031 {
2032     Obj_Entry *obj1;
2033 
2034     for (; needed != NULL; needed = needed->next) {
2035 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2036 	  flags & ~RTLD_LO_NOLOAD);
2037 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2038 	    return (-1);
2039     }
2040     return (0);
2041 }
2042 
2043 /*
2044  * Given a shared object, traverse its list of needed objects, and load
2045  * each of them.  Returns 0 on success.  Generates an error message and
2046  * returns -1 on failure.
2047  */
2048 static int
2049 load_needed_objects(Obj_Entry *first, int flags)
2050 {
2051     Obj_Entry *obj;
2052 
2053     for (obj = first;  obj != NULL;  obj = obj->next) {
2054 	if (process_needed(obj, obj->needed, flags) == -1)
2055 	    return (-1);
2056     }
2057     return (0);
2058 }
2059 
2060 static int
2061 load_preload_objects(void)
2062 {
2063     char *p = ld_preload;
2064     Obj_Entry *obj;
2065     static const char delim[] = " \t:;";
2066 
2067     if (p == NULL)
2068 	return 0;
2069 
2070     p += strspn(p, delim);
2071     while (*p != '\0') {
2072 	size_t len = strcspn(p, delim);
2073 	char savech;
2074 
2075 	savech = p[len];
2076 	p[len] = '\0';
2077 	obj = load_object(p, -1, NULL, 0);
2078 	if (obj == NULL)
2079 	    return -1;	/* XXX - cleanup */
2080 	obj->z_interpose = true;
2081 	p[len] = savech;
2082 	p += len;
2083 	p += strspn(p, delim);
2084     }
2085     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2086     return 0;
2087 }
2088 
2089 static const char *
2090 printable_path(const char *path)
2091 {
2092 
2093 	return (path == NULL ? "<unknown>" : path);
2094 }
2095 
2096 /*
2097  * Load a shared object into memory, if it is not already loaded.  The
2098  * object may be specified by name or by user-supplied file descriptor
2099  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2100  * duplicate is.
2101  *
2102  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2103  * on failure.
2104  */
2105 static Obj_Entry *
2106 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2107 {
2108     Obj_Entry *obj;
2109     int fd;
2110     struct stat sb;
2111     char *path;
2112 
2113     fd = -1;
2114     if (name != NULL) {
2115 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2116 	    if (object_match_name(obj, name))
2117 		return (obj);
2118 	}
2119 
2120 	path = find_library(name, refobj, &fd);
2121 	if (path == NULL)
2122 	    return (NULL);
2123     } else
2124 	path = NULL;
2125 
2126     if (fd >= 0) {
2127 	/*
2128 	 * search_library_pathfds() opens a fresh file descriptor for the
2129 	 * library, so there is no need to dup().
2130 	 */
2131     } else if (fd_u == -1) {
2132 	/*
2133 	 * If we didn't find a match by pathname, or the name is not
2134 	 * supplied, open the file and check again by device and inode.
2135 	 * This avoids false mismatches caused by multiple links or ".."
2136 	 * in pathnames.
2137 	 *
2138 	 * To avoid a race, we open the file and use fstat() rather than
2139 	 * using stat().
2140 	 */
2141 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2142 	    _rtld_error("Cannot open \"%s\"", path);
2143 	    free(path);
2144 	    return (NULL);
2145 	}
2146     } else {
2147 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2148 	if (fd == -1) {
2149 	    _rtld_error("Cannot dup fd");
2150 	    free(path);
2151 	    return (NULL);
2152 	}
2153     }
2154     if (fstat(fd, &sb) == -1) {
2155 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2156 	close(fd);
2157 	free(path);
2158 	return NULL;
2159     }
2160     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2161 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2162 	    break;
2163     if (obj != NULL && name != NULL) {
2164 	object_add_name(obj, name);
2165 	free(path);
2166 	close(fd);
2167 	return obj;
2168     }
2169     if (flags & RTLD_LO_NOLOAD) {
2170 	free(path);
2171 	close(fd);
2172 	return (NULL);
2173     }
2174 
2175     /* First use of this object, so we must map it in */
2176     obj = do_load_object(fd, name, path, &sb, flags);
2177     if (obj == NULL)
2178 	free(path);
2179     close(fd);
2180 
2181     return obj;
2182 }
2183 
2184 static Obj_Entry *
2185 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2186   int flags)
2187 {
2188     Obj_Entry *obj;
2189     struct statfs fs;
2190 
2191     /*
2192      * but first, make sure that environment variables haven't been
2193      * used to circumvent the noexec flag on a filesystem.
2194      */
2195     if (dangerous_ld_env) {
2196 	if (fstatfs(fd, &fs) != 0) {
2197 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2198 	    return NULL;
2199 	}
2200 	if (fs.f_flags & MNT_NOEXEC) {
2201 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2202 	    return NULL;
2203 	}
2204     }
2205     dbg("loading \"%s\"", printable_path(path));
2206     obj = map_object(fd, printable_path(path), sbp);
2207     if (obj == NULL)
2208         return NULL;
2209 
2210     /*
2211      * If DT_SONAME is present in the object, digest_dynamic2 already
2212      * added it to the object names.
2213      */
2214     if (name != NULL)
2215 	object_add_name(obj, name);
2216     obj->path = path;
2217     digest_dynamic(obj, 0);
2218     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2219 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2220     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2221       RTLD_LO_DLOPEN) {
2222 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2223 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2224 	munmap(obj->mapbase, obj->mapsize);
2225 	obj_free(obj);
2226 	return (NULL);
2227     }
2228 
2229     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2230     *obj_tail = obj;
2231     obj_tail = &obj->next;
2232     obj_count++;
2233     obj_loads++;
2234     linkmap_add(obj);	/* for GDB & dlinfo() */
2235     max_stack_flags |= obj->stack_flags;
2236 
2237     dbg("  %p .. %p: %s", obj->mapbase,
2238          obj->mapbase + obj->mapsize - 1, obj->path);
2239     if (obj->textrel)
2240 	dbg("  WARNING: %s has impure text", obj->path);
2241     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2242 	obj->path);
2243 
2244     return obj;
2245 }
2246 
2247 static Obj_Entry *
2248 obj_from_addr(const void *addr)
2249 {
2250     Obj_Entry *obj;
2251 
2252     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2253 	if (addr < (void *) obj->mapbase)
2254 	    continue;
2255 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2256 	    return obj;
2257     }
2258     return NULL;
2259 }
2260 
2261 static void
2262 preinit_main(void)
2263 {
2264     Elf_Addr *preinit_addr;
2265     int index;
2266 
2267     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2268     if (preinit_addr == NULL)
2269 	return;
2270 
2271     for (index = 0; index < obj_main->preinit_array_num; index++) {
2272 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2273 	    dbg("calling preinit function for %s at %p", obj_main->path,
2274 	      (void *)preinit_addr[index]);
2275 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2276 	      0, 0, obj_main->path);
2277 	    call_init_pointer(obj_main, preinit_addr[index]);
2278 	}
2279     }
2280 }
2281 
2282 /*
2283  * Call the finalization functions for each of the objects in "list"
2284  * belonging to the DAG of "root" and referenced once. If NULL "root"
2285  * is specified, every finalization function will be called regardless
2286  * of the reference count and the list elements won't be freed. All of
2287  * the objects are expected to have non-NULL fini functions.
2288  */
2289 static void
2290 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2291 {
2292     Objlist_Entry *elm;
2293     char *saved_msg;
2294     Elf_Addr *fini_addr;
2295     int index;
2296 
2297     assert(root == NULL || root->refcount == 1);
2298 
2299     /*
2300      * Preserve the current error message since a fini function might
2301      * call into the dynamic linker and overwrite it.
2302      */
2303     saved_msg = errmsg_save();
2304     do {
2305 	STAILQ_FOREACH(elm, list, link) {
2306 	    if (root != NULL && (elm->obj->refcount != 1 ||
2307 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2308 		continue;
2309 	    /* Remove object from fini list to prevent recursive invocation. */
2310 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2311 	    /*
2312 	     * XXX: If a dlopen() call references an object while the
2313 	     * fini function is in progress, we might end up trying to
2314 	     * unload the referenced object in dlclose() or the object
2315 	     * won't be unloaded although its fini function has been
2316 	     * called.
2317 	     */
2318 	    lock_release(rtld_bind_lock, lockstate);
2319 
2320 	    /*
2321 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2322 	     * When this happens, DT_FINI_ARRAY is processed first.
2323 	     */
2324 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2325 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2326 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2327 		  index--) {
2328 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2329 			dbg("calling fini function for %s at %p",
2330 			    elm->obj->path, (void *)fini_addr[index]);
2331 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2332 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2333 			call_initfini_pointer(elm->obj, fini_addr[index]);
2334 		    }
2335 		}
2336 	    }
2337 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2338 		dbg("calling fini function for %s at %p", elm->obj->path,
2339 		    (void *)elm->obj->fini);
2340 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2341 		    0, 0, elm->obj->path);
2342 		call_initfini_pointer(elm->obj, elm->obj->fini);
2343 	    }
2344 	    wlock_acquire(rtld_bind_lock, lockstate);
2345 	    /* No need to free anything if process is going down. */
2346 	    if (root != NULL)
2347 	    	free(elm);
2348 	    /*
2349 	     * We must restart the list traversal after every fini call
2350 	     * because a dlclose() call from the fini function or from
2351 	     * another thread might have modified the reference counts.
2352 	     */
2353 	    break;
2354 	}
2355     } while (elm != NULL);
2356     errmsg_restore(saved_msg);
2357 }
2358 
2359 /*
2360  * Call the initialization functions for each of the objects in
2361  * "list".  All of the objects are expected to have non-NULL init
2362  * functions.
2363  */
2364 static void
2365 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2366 {
2367     Objlist_Entry *elm;
2368     Obj_Entry *obj;
2369     char *saved_msg;
2370     Elf_Addr *init_addr;
2371     int index;
2372 
2373     /*
2374      * Clean init_scanned flag so that objects can be rechecked and
2375      * possibly initialized earlier if any of vectors called below
2376      * cause the change by using dlopen.
2377      */
2378     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2379 	obj->init_scanned = false;
2380 
2381     /*
2382      * Preserve the current error message since an init function might
2383      * call into the dynamic linker and overwrite it.
2384      */
2385     saved_msg = errmsg_save();
2386     STAILQ_FOREACH(elm, list, link) {
2387 	if (elm->obj->init_done) /* Initialized early. */
2388 	    continue;
2389 	/*
2390 	 * Race: other thread might try to use this object before current
2391 	 * one completes the initilization. Not much can be done here
2392 	 * without better locking.
2393 	 */
2394 	elm->obj->init_done = true;
2395 	lock_release(rtld_bind_lock, lockstate);
2396 
2397         /*
2398          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2399          * When this happens, DT_INIT is processed first.
2400          */
2401 	if (elm->obj->init != (Elf_Addr)NULL) {
2402 	    dbg("calling init function for %s at %p", elm->obj->path,
2403 	        (void *)elm->obj->init);
2404 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2405 	        0, 0, elm->obj->path);
2406 	    call_initfini_pointer(elm->obj, elm->obj->init);
2407 	}
2408 	init_addr = (Elf_Addr *)elm->obj->init_array;
2409 	if (init_addr != NULL) {
2410 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2411 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2412 		    dbg("calling init function for %s at %p", elm->obj->path,
2413 			(void *)init_addr[index]);
2414 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2415 			(void *)init_addr[index], 0, 0, elm->obj->path);
2416 		    call_init_pointer(elm->obj, init_addr[index]);
2417 		}
2418 	    }
2419 	}
2420 	wlock_acquire(rtld_bind_lock, lockstate);
2421     }
2422     errmsg_restore(saved_msg);
2423 }
2424 
2425 static void
2426 objlist_clear(Objlist *list)
2427 {
2428     Objlist_Entry *elm;
2429 
2430     while (!STAILQ_EMPTY(list)) {
2431 	elm = STAILQ_FIRST(list);
2432 	STAILQ_REMOVE_HEAD(list, link);
2433 	free(elm);
2434     }
2435 }
2436 
2437 static Objlist_Entry *
2438 objlist_find(Objlist *list, const Obj_Entry *obj)
2439 {
2440     Objlist_Entry *elm;
2441 
2442     STAILQ_FOREACH(elm, list, link)
2443 	if (elm->obj == obj)
2444 	    return elm;
2445     return NULL;
2446 }
2447 
2448 static void
2449 objlist_init(Objlist *list)
2450 {
2451     STAILQ_INIT(list);
2452 }
2453 
2454 static void
2455 objlist_push_head(Objlist *list, Obj_Entry *obj)
2456 {
2457     Objlist_Entry *elm;
2458 
2459     elm = NEW(Objlist_Entry);
2460     elm->obj = obj;
2461     STAILQ_INSERT_HEAD(list, elm, link);
2462 }
2463 
2464 static void
2465 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2466 {
2467     Objlist_Entry *elm;
2468 
2469     elm = NEW(Objlist_Entry);
2470     elm->obj = obj;
2471     STAILQ_INSERT_TAIL(list, elm, link);
2472 }
2473 
2474 static void
2475 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2476 {
2477 	Objlist_Entry *elm, *listelm;
2478 
2479 	STAILQ_FOREACH(listelm, list, link) {
2480 		if (listelm->obj == listobj)
2481 			break;
2482 	}
2483 	elm = NEW(Objlist_Entry);
2484 	elm->obj = obj;
2485 	if (listelm != NULL)
2486 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2487 	else
2488 		STAILQ_INSERT_TAIL(list, elm, link);
2489 }
2490 
2491 static void
2492 objlist_remove(Objlist *list, Obj_Entry *obj)
2493 {
2494     Objlist_Entry *elm;
2495 
2496     if ((elm = objlist_find(list, obj)) != NULL) {
2497 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2498 	free(elm);
2499     }
2500 }
2501 
2502 /*
2503  * Relocate dag rooted in the specified object.
2504  * Returns 0 on success, or -1 on failure.
2505  */
2506 
2507 static int
2508 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2509     int flags, RtldLockState *lockstate)
2510 {
2511 	Objlist_Entry *elm;
2512 	int error;
2513 
2514 	error = 0;
2515 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2516 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2517 		    lockstate);
2518 		if (error == -1)
2519 			break;
2520 	}
2521 	return (error);
2522 }
2523 
2524 /*
2525  * Relocate single object.
2526  * Returns 0 on success, or -1 on failure.
2527  */
2528 static int
2529 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2530     int flags, RtldLockState *lockstate)
2531 {
2532 
2533 	if (obj->relocated)
2534 		return (0);
2535 	obj->relocated = true;
2536 	if (obj != rtldobj)
2537 		dbg("relocating \"%s\"", obj->path);
2538 
2539 	if (obj->symtab == NULL || obj->strtab == NULL ||
2540 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2541 		_rtld_error("%s: Shared object has no run-time symbol table",
2542 			    obj->path);
2543 		return (-1);
2544 	}
2545 
2546 	if (obj->textrel) {
2547 		/* There are relocations to the write-protected text segment. */
2548 		if (mprotect(obj->mapbase, obj->textsize,
2549 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2550 			_rtld_error("%s: Cannot write-enable text segment: %s",
2551 			    obj->path, rtld_strerror(errno));
2552 			return (-1);
2553 		}
2554 	}
2555 
2556 	/* Process the non-PLT non-IFUNC relocations. */
2557 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2558 		return (-1);
2559 
2560 	if (obj->textrel) {	/* Re-protected the text segment. */
2561 		if (mprotect(obj->mapbase, obj->textsize,
2562 		    PROT_READ|PROT_EXEC) == -1) {
2563 			_rtld_error("%s: Cannot write-protect text segment: %s",
2564 			    obj->path, rtld_strerror(errno));
2565 			return (-1);
2566 		}
2567 	}
2568 
2569 	/* Set the special PLT or GOT entries. */
2570 	init_pltgot(obj);
2571 
2572 	/* Process the PLT relocations. */
2573 	if (reloc_plt(obj) == -1)
2574 		return (-1);
2575 	/* Relocate the jump slots if we are doing immediate binding. */
2576 	if (obj->bind_now || bind_now)
2577 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2578 			return (-1);
2579 
2580 	/*
2581 	 * Process the non-PLT IFUNC relocations.  The relocations are
2582 	 * processed in two phases, because IFUNC resolvers may
2583 	 * reference other symbols, which must be readily processed
2584 	 * before resolvers are called.
2585 	 */
2586 	if (obj->non_plt_gnu_ifunc &&
2587 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2588 		return (-1);
2589 
2590 	if (obj->relro_size > 0) {
2591 		if (mprotect(obj->relro_page, obj->relro_size,
2592 		    PROT_READ) == -1) {
2593 			_rtld_error("%s: Cannot enforce relro protection: %s",
2594 			    obj->path, rtld_strerror(errno));
2595 			return (-1);
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Set up the magic number and version in the Obj_Entry.  These
2601 	 * were checked in the crt1.o from the original ElfKit, so we
2602 	 * set them for backward compatibility.
2603 	 */
2604 	obj->magic = RTLD_MAGIC;
2605 	obj->version = RTLD_VERSION;
2606 
2607 	return (0);
2608 }
2609 
2610 /*
2611  * Relocate newly-loaded shared objects.  The argument is a pointer to
2612  * the Obj_Entry for the first such object.  All objects from the first
2613  * to the end of the list of objects are relocated.  Returns 0 on success,
2614  * or -1 on failure.
2615  */
2616 static int
2617 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2618     int flags, RtldLockState *lockstate)
2619 {
2620 	Obj_Entry *obj;
2621 	int error;
2622 
2623 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2624 		error = relocate_object(obj, bind_now, rtldobj, flags,
2625 		    lockstate);
2626 		if (error == -1)
2627 			break;
2628 	}
2629 	return (error);
2630 }
2631 
2632 /*
2633  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2634  * referencing STT_GNU_IFUNC symbols is postponed till the other
2635  * relocations are done.  The indirect functions specified as
2636  * ifunc are allowed to call other symbols, so we need to have
2637  * objects relocated before asking for resolution from indirects.
2638  *
2639  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2640  * instead of the usual lazy handling of PLT slots.  It is
2641  * consistent with how GNU does it.
2642  */
2643 static int
2644 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2645     RtldLockState *lockstate)
2646 {
2647 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2648 		return (-1);
2649 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2650 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2651 		return (-1);
2652 	return (0);
2653 }
2654 
2655 static int
2656 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2657     RtldLockState *lockstate)
2658 {
2659 	Obj_Entry *obj;
2660 
2661 	for (obj = first;  obj != NULL;  obj = obj->next) {
2662 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2663 			return (-1);
2664 	}
2665 	return (0);
2666 }
2667 
2668 static int
2669 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2670     RtldLockState *lockstate)
2671 {
2672 	Objlist_Entry *elm;
2673 
2674 	STAILQ_FOREACH(elm, list, link) {
2675 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2676 		    lockstate) == -1)
2677 			return (-1);
2678 	}
2679 	return (0);
2680 }
2681 
2682 /*
2683  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2684  * before the process exits.
2685  */
2686 static void
2687 rtld_exit(void)
2688 {
2689     RtldLockState lockstate;
2690 
2691     wlock_acquire(rtld_bind_lock, &lockstate);
2692     dbg("rtld_exit()");
2693     objlist_call_fini(&list_fini, NULL, &lockstate);
2694     /* No need to remove the items from the list, since we are exiting. */
2695     if (!libmap_disable)
2696         lm_fini();
2697     lock_release(rtld_bind_lock, &lockstate);
2698 }
2699 
2700 /*
2701  * Iterate over a search path, translate each element, and invoke the
2702  * callback on the result.
2703  */
2704 static void *
2705 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2706 {
2707     const char *trans;
2708     if (path == NULL)
2709 	return (NULL);
2710 
2711     path += strspn(path, ":;");
2712     while (*path != '\0') {
2713 	size_t len;
2714 	char  *res;
2715 
2716 	len = strcspn(path, ":;");
2717 	trans = lm_findn(NULL, path, len);
2718 	if (trans)
2719 	    res = callback(trans, strlen(trans), arg);
2720 	else
2721 	    res = callback(path, len, arg);
2722 
2723 	if (res != NULL)
2724 	    return (res);
2725 
2726 	path += len;
2727 	path += strspn(path, ":;");
2728     }
2729 
2730     return (NULL);
2731 }
2732 
2733 struct try_library_args {
2734     const char	*name;
2735     size_t	 namelen;
2736     char	*buffer;
2737     size_t	 buflen;
2738 };
2739 
2740 static void *
2741 try_library_path(const char *dir, size_t dirlen, void *param)
2742 {
2743     struct try_library_args *arg;
2744 
2745     arg = param;
2746     if (*dir == '/' || trust) {
2747 	char *pathname;
2748 
2749 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2750 		return (NULL);
2751 
2752 	pathname = arg->buffer;
2753 	strncpy(pathname, dir, dirlen);
2754 	pathname[dirlen] = '/';
2755 	strcpy(pathname + dirlen + 1, arg->name);
2756 
2757 	dbg("  Trying \"%s\"", pathname);
2758 	if (access(pathname, F_OK) == 0) {		/* We found it */
2759 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2760 	    strcpy(pathname, arg->buffer);
2761 	    return (pathname);
2762 	}
2763     }
2764     return (NULL);
2765 }
2766 
2767 static char *
2768 search_library_path(const char *name, const char *path)
2769 {
2770     char *p;
2771     struct try_library_args arg;
2772 
2773     if (path == NULL)
2774 	return NULL;
2775 
2776     arg.name = name;
2777     arg.namelen = strlen(name);
2778     arg.buffer = xmalloc(PATH_MAX);
2779     arg.buflen = PATH_MAX;
2780 
2781     p = path_enumerate(path, try_library_path, &arg);
2782 
2783     free(arg.buffer);
2784 
2785     return (p);
2786 }
2787 
2788 
2789 /*
2790  * Finds the library with the given name using the directory descriptors
2791  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2792  *
2793  * Returns a freshly-opened close-on-exec file descriptor for the library,
2794  * or -1 if the library cannot be found.
2795  */
2796 static char *
2797 search_library_pathfds(const char *name, const char *path, int *fdp)
2798 {
2799 	char *envcopy, *fdstr, *found, *last_token;
2800 	size_t len;
2801 	int dirfd, fd;
2802 
2803 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2804 
2805 	/* Don't load from user-specified libdirs into setuid binaries. */
2806 	if (!trust)
2807 		return (NULL);
2808 
2809 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2810 	if (path == NULL)
2811 		return (NULL);
2812 
2813 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2814 	if (name[0] == '/') {
2815 		dbg("Absolute path (%s) passed to %s", name, __func__);
2816 		return (NULL);
2817 	}
2818 
2819 	/*
2820 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2821 	 * copy of the path, as strtok_r rewrites separator tokens
2822 	 * with '\0'.
2823 	 */
2824 	found = NULL;
2825 	envcopy = xstrdup(path);
2826 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2827 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2828 		dirfd = parse_libdir(fdstr);
2829 		if (dirfd < 0)
2830 			break;
2831 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2832 		if (fd >= 0) {
2833 			*fdp = fd;
2834 			len = strlen(fdstr) + strlen(name) + 3;
2835 			found = xmalloc(len);
2836 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2837 				_rtld_error("error generating '%d/%s'",
2838 				    dirfd, name);
2839 				die();
2840 			}
2841 			dbg("open('%s') => %d", found, fd);
2842 			break;
2843 		}
2844 	}
2845 	free(envcopy);
2846 
2847 	return (found);
2848 }
2849 
2850 
2851 int
2852 dlclose(void *handle)
2853 {
2854     Obj_Entry *root;
2855     RtldLockState lockstate;
2856 
2857     wlock_acquire(rtld_bind_lock, &lockstate);
2858     root = dlcheck(handle);
2859     if (root == NULL) {
2860 	lock_release(rtld_bind_lock, &lockstate);
2861 	return -1;
2862     }
2863     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2864 	root->path);
2865 
2866     /* Unreference the object and its dependencies. */
2867     root->dl_refcount--;
2868 
2869     if (root->refcount == 1) {
2870 	/*
2871 	 * The object will be no longer referenced, so we must unload it.
2872 	 * First, call the fini functions.
2873 	 */
2874 	objlist_call_fini(&list_fini, root, &lockstate);
2875 
2876 	unref_dag(root);
2877 
2878 	/* Finish cleaning up the newly-unreferenced objects. */
2879 	GDB_STATE(RT_DELETE,&root->linkmap);
2880 	unload_object(root);
2881 	GDB_STATE(RT_CONSISTENT,NULL);
2882     } else
2883 	unref_dag(root);
2884 
2885     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2886     lock_release(rtld_bind_lock, &lockstate);
2887     return 0;
2888 }
2889 
2890 char *
2891 dlerror(void)
2892 {
2893     char *msg = error_message;
2894     error_message = NULL;
2895     return msg;
2896 }
2897 
2898 /*
2899  * This function is deprecated and has no effect.
2900  */
2901 void
2902 dllockinit(void *context,
2903 	   void *(*lock_create)(void *context),
2904            void (*rlock_acquire)(void *lock),
2905            void (*wlock_acquire)(void *lock),
2906            void (*lock_release)(void *lock),
2907            void (*lock_destroy)(void *lock),
2908 	   void (*context_destroy)(void *context))
2909 {
2910     static void *cur_context;
2911     static void (*cur_context_destroy)(void *);
2912 
2913     /* Just destroy the context from the previous call, if necessary. */
2914     if (cur_context_destroy != NULL)
2915 	cur_context_destroy(cur_context);
2916     cur_context = context;
2917     cur_context_destroy = context_destroy;
2918 }
2919 
2920 void *
2921 dlopen(const char *name, int mode)
2922 {
2923 
2924 	return (rtld_dlopen(name, -1, mode));
2925 }
2926 
2927 void *
2928 fdlopen(int fd, int mode)
2929 {
2930 
2931 	return (rtld_dlopen(NULL, fd, mode));
2932 }
2933 
2934 static void *
2935 rtld_dlopen(const char *name, int fd, int mode)
2936 {
2937     RtldLockState lockstate;
2938     int lo_flags;
2939 
2940     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2941     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2942     if (ld_tracing != NULL) {
2943 	rlock_acquire(rtld_bind_lock, &lockstate);
2944 	if (sigsetjmp(lockstate.env, 0) != 0)
2945 	    lock_upgrade(rtld_bind_lock, &lockstate);
2946 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2947 	lock_release(rtld_bind_lock, &lockstate);
2948     }
2949     lo_flags = RTLD_LO_DLOPEN;
2950     if (mode & RTLD_NODELETE)
2951 	    lo_flags |= RTLD_LO_NODELETE;
2952     if (mode & RTLD_NOLOAD)
2953 	    lo_flags |= RTLD_LO_NOLOAD;
2954     if (ld_tracing != NULL)
2955 	    lo_flags |= RTLD_LO_TRACE;
2956 
2957     return (dlopen_object(name, fd, obj_main, lo_flags,
2958       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2959 }
2960 
2961 static void
2962 dlopen_cleanup(Obj_Entry *obj)
2963 {
2964 
2965 	obj->dl_refcount--;
2966 	unref_dag(obj);
2967 	if (obj->refcount == 0)
2968 		unload_object(obj);
2969 }
2970 
2971 static Obj_Entry *
2972 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2973     int mode, RtldLockState *lockstate)
2974 {
2975     Obj_Entry **old_obj_tail;
2976     Obj_Entry *obj;
2977     Objlist initlist;
2978     RtldLockState mlockstate;
2979     int result;
2980 
2981     objlist_init(&initlist);
2982 
2983     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2984 	wlock_acquire(rtld_bind_lock, &mlockstate);
2985 	lockstate = &mlockstate;
2986     }
2987     GDB_STATE(RT_ADD,NULL);
2988 
2989     old_obj_tail = obj_tail;
2990     obj = NULL;
2991     if (name == NULL && fd == -1) {
2992 	obj = obj_main;
2993 	obj->refcount++;
2994     } else {
2995 	obj = load_object(name, fd, refobj, lo_flags);
2996     }
2997 
2998     if (obj) {
2999 	obj->dl_refcount++;
3000 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3001 	    objlist_push_tail(&list_global, obj);
3002 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3003 	    assert(*old_obj_tail == obj);
3004 	    result = load_needed_objects(obj,
3005 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3006 	    init_dag(obj);
3007 	    ref_dag(obj);
3008 	    if (result != -1)
3009 		result = rtld_verify_versions(&obj->dagmembers);
3010 	    if (result != -1 && ld_tracing)
3011 		goto trace;
3012 	    if (result == -1 || relocate_object_dag(obj,
3013 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3014 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3015 	      lockstate) == -1) {
3016 		dlopen_cleanup(obj);
3017 		obj = NULL;
3018 	    } else if (lo_flags & RTLD_LO_EARLY) {
3019 		/*
3020 		 * Do not call the init functions for early loaded
3021 		 * filtees.  The image is still not initialized enough
3022 		 * for them to work.
3023 		 *
3024 		 * Our object is found by the global object list and
3025 		 * will be ordered among all init calls done right
3026 		 * before transferring control to main.
3027 		 */
3028 	    } else {
3029 		/* Make list of init functions to call. */
3030 		initlist_add_objects(obj, &obj->next, &initlist);
3031 	    }
3032 	    /*
3033 	     * Process all no_delete objects here, given them own
3034 	     * DAGs to prevent their dependencies from being unloaded.
3035 	     * This has to be done after we have loaded all of the
3036 	     * dependencies, so that we do not miss any.
3037 	     */
3038 	    if (obj != NULL)
3039 		process_nodelete(obj);
3040 	} else {
3041 	    /*
3042 	     * Bump the reference counts for objects on this DAG.  If
3043 	     * this is the first dlopen() call for the object that was
3044 	     * already loaded as a dependency, initialize the dag
3045 	     * starting at it.
3046 	     */
3047 	    init_dag(obj);
3048 	    ref_dag(obj);
3049 
3050 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3051 		goto trace;
3052 	}
3053 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3054 	  obj->z_nodelete) && !obj->ref_nodel) {
3055 	    dbg("obj %s nodelete", obj->path);
3056 	    ref_dag(obj);
3057 	    obj->z_nodelete = obj->ref_nodel = true;
3058 	}
3059     }
3060 
3061     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3062 	name);
3063     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3064 
3065     if (!(lo_flags & RTLD_LO_EARLY)) {
3066 	map_stacks_exec(lockstate);
3067     }
3068 
3069     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3070       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3071       lockstate) == -1) {
3072 	objlist_clear(&initlist);
3073 	dlopen_cleanup(obj);
3074 	if (lockstate == &mlockstate)
3075 	    lock_release(rtld_bind_lock, lockstate);
3076 	return (NULL);
3077     }
3078 
3079     if (!(lo_flags & RTLD_LO_EARLY)) {
3080 	/* Call the init functions. */
3081 	objlist_call_init(&initlist, lockstate);
3082     }
3083     objlist_clear(&initlist);
3084     if (lockstate == &mlockstate)
3085 	lock_release(rtld_bind_lock, lockstate);
3086     return obj;
3087 trace:
3088     trace_loaded_objects(obj);
3089     if (lockstate == &mlockstate)
3090 	lock_release(rtld_bind_lock, lockstate);
3091     exit(0);
3092 }
3093 
3094 static void *
3095 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3096     int flags)
3097 {
3098     DoneList donelist;
3099     const Obj_Entry *obj, *defobj;
3100     const Elf_Sym *def;
3101     SymLook req;
3102     RtldLockState lockstate;
3103     tls_index ti;
3104     void *sym;
3105     int res;
3106 
3107     def = NULL;
3108     defobj = NULL;
3109     symlook_init(&req, name);
3110     req.ventry = ve;
3111     req.flags = flags | SYMLOOK_IN_PLT;
3112     req.lockstate = &lockstate;
3113 
3114     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3115     rlock_acquire(rtld_bind_lock, &lockstate);
3116     if (sigsetjmp(lockstate.env, 0) != 0)
3117 	    lock_upgrade(rtld_bind_lock, &lockstate);
3118     if (handle == NULL || handle == RTLD_NEXT ||
3119 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3120 
3121 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3122 	    _rtld_error("Cannot determine caller's shared object");
3123 	    lock_release(rtld_bind_lock, &lockstate);
3124 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3125 	    return NULL;
3126 	}
3127 	if (handle == NULL) {	/* Just the caller's shared object. */
3128 	    res = symlook_obj(&req, obj);
3129 	    if (res == 0) {
3130 		def = req.sym_out;
3131 		defobj = req.defobj_out;
3132 	    }
3133 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3134 		   handle == RTLD_SELF) { /* ... caller included */
3135 	    if (handle == RTLD_NEXT)
3136 		obj = obj->next;
3137 	    for (; obj != NULL; obj = obj->next) {
3138 		res = symlook_obj(&req, obj);
3139 		if (res == 0) {
3140 		    if (def == NULL ||
3141 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3142 			def = req.sym_out;
3143 			defobj = req.defobj_out;
3144 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3145 			    break;
3146 		    }
3147 		}
3148 	    }
3149 	    /*
3150 	     * Search the dynamic linker itself, and possibly resolve the
3151 	     * symbol from there.  This is how the application links to
3152 	     * dynamic linker services such as dlopen.
3153 	     */
3154 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3155 		res = symlook_obj(&req, &obj_rtld);
3156 		if (res == 0) {
3157 		    def = req.sym_out;
3158 		    defobj = req.defobj_out;
3159 		}
3160 	    }
3161 	} else {
3162 	    assert(handle == RTLD_DEFAULT);
3163 	    res = symlook_default(&req, obj);
3164 	    if (res == 0) {
3165 		defobj = req.defobj_out;
3166 		def = req.sym_out;
3167 	    }
3168 	}
3169     } else {
3170 	if ((obj = dlcheck(handle)) == NULL) {
3171 	    lock_release(rtld_bind_lock, &lockstate);
3172 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3173 	    return NULL;
3174 	}
3175 
3176 	donelist_init(&donelist);
3177 	if (obj->mainprog) {
3178             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3179 	    res = symlook_global(&req, &donelist);
3180 	    if (res == 0) {
3181 		def = req.sym_out;
3182 		defobj = req.defobj_out;
3183 	    }
3184 	    /*
3185 	     * Search the dynamic linker itself, and possibly resolve the
3186 	     * symbol from there.  This is how the application links to
3187 	     * dynamic linker services such as dlopen.
3188 	     */
3189 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3190 		res = symlook_obj(&req, &obj_rtld);
3191 		if (res == 0) {
3192 		    def = req.sym_out;
3193 		    defobj = req.defobj_out;
3194 		}
3195 	    }
3196 	}
3197 	else {
3198 	    /* Search the whole DAG rooted at the given object. */
3199 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3200 	    if (res == 0) {
3201 		def = req.sym_out;
3202 		defobj = req.defobj_out;
3203 	    }
3204 	}
3205     }
3206 
3207     if (def != NULL) {
3208 	lock_release(rtld_bind_lock, &lockstate);
3209 
3210 	/*
3211 	 * The value required by the caller is derived from the value
3212 	 * of the symbol. this is simply the relocated value of the
3213 	 * symbol.
3214 	 */
3215 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3216 	    sym = make_function_pointer(def, defobj);
3217 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3218 	    sym = rtld_resolve_ifunc(defobj, def);
3219 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3220 	    ti.ti_module = defobj->tlsindex;
3221 	    ti.ti_offset = def->st_value;
3222 	    sym = __tls_get_addr(&ti);
3223 	} else
3224 	    sym = defobj->relocbase + def->st_value;
3225 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3226 	return (sym);
3227     }
3228 
3229     _rtld_error("Undefined symbol \"%s\"", name);
3230     lock_release(rtld_bind_lock, &lockstate);
3231     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3232     return NULL;
3233 }
3234 
3235 void *
3236 dlsym(void *handle, const char *name)
3237 {
3238 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3239 	    SYMLOOK_DLSYM);
3240 }
3241 
3242 dlfunc_t
3243 dlfunc(void *handle, const char *name)
3244 {
3245 	union {
3246 		void *d;
3247 		dlfunc_t f;
3248 	} rv;
3249 
3250 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3251 	    SYMLOOK_DLSYM);
3252 	return (rv.f);
3253 }
3254 
3255 void *
3256 dlvsym(void *handle, const char *name, const char *version)
3257 {
3258 	Ver_Entry ventry;
3259 
3260 	ventry.name = version;
3261 	ventry.file = NULL;
3262 	ventry.hash = elf_hash(version);
3263 	ventry.flags= 0;
3264 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3265 	    SYMLOOK_DLSYM);
3266 }
3267 
3268 int
3269 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3270 {
3271     const Obj_Entry *obj;
3272     RtldLockState lockstate;
3273 
3274     rlock_acquire(rtld_bind_lock, &lockstate);
3275     obj = obj_from_addr(addr);
3276     if (obj == NULL) {
3277         _rtld_error("No shared object contains address");
3278 	lock_release(rtld_bind_lock, &lockstate);
3279         return (0);
3280     }
3281     rtld_fill_dl_phdr_info(obj, phdr_info);
3282     lock_release(rtld_bind_lock, &lockstate);
3283     return (1);
3284 }
3285 
3286 int
3287 dladdr(const void *addr, Dl_info *info)
3288 {
3289     const Obj_Entry *obj;
3290     const Elf_Sym *def;
3291     void *symbol_addr;
3292     unsigned long symoffset;
3293     RtldLockState lockstate;
3294 
3295     rlock_acquire(rtld_bind_lock, &lockstate);
3296     obj = obj_from_addr(addr);
3297     if (obj == NULL) {
3298         _rtld_error("No shared object contains address");
3299 	lock_release(rtld_bind_lock, &lockstate);
3300         return 0;
3301     }
3302     info->dli_fname = obj->path;
3303     info->dli_fbase = obj->mapbase;
3304     info->dli_saddr = (void *)0;
3305     info->dli_sname = NULL;
3306 
3307     /*
3308      * Walk the symbol list looking for the symbol whose address is
3309      * closest to the address sent in.
3310      */
3311     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3312         def = obj->symtab + symoffset;
3313 
3314         /*
3315          * For skip the symbol if st_shndx is either SHN_UNDEF or
3316          * SHN_COMMON.
3317          */
3318         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3319             continue;
3320 
3321         /*
3322          * If the symbol is greater than the specified address, or if it
3323          * is further away from addr than the current nearest symbol,
3324          * then reject it.
3325          */
3326         symbol_addr = obj->relocbase + def->st_value;
3327         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3328             continue;
3329 
3330         /* Update our idea of the nearest symbol. */
3331         info->dli_sname = obj->strtab + def->st_name;
3332         info->dli_saddr = symbol_addr;
3333 
3334         /* Exact match? */
3335         if (info->dli_saddr == addr)
3336             break;
3337     }
3338     lock_release(rtld_bind_lock, &lockstate);
3339     return 1;
3340 }
3341 
3342 int
3343 dlinfo(void *handle, int request, void *p)
3344 {
3345     const Obj_Entry *obj;
3346     RtldLockState lockstate;
3347     int error;
3348 
3349     rlock_acquire(rtld_bind_lock, &lockstate);
3350 
3351     if (handle == NULL || handle == RTLD_SELF) {
3352 	void *retaddr;
3353 
3354 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3355 	if ((obj = obj_from_addr(retaddr)) == NULL)
3356 	    _rtld_error("Cannot determine caller's shared object");
3357     } else
3358 	obj = dlcheck(handle);
3359 
3360     if (obj == NULL) {
3361 	lock_release(rtld_bind_lock, &lockstate);
3362 	return (-1);
3363     }
3364 
3365     error = 0;
3366     switch (request) {
3367     case RTLD_DI_LINKMAP:
3368 	*((struct link_map const **)p) = &obj->linkmap;
3369 	break;
3370     case RTLD_DI_ORIGIN:
3371 	error = rtld_dirname(obj->path, p);
3372 	break;
3373 
3374     case RTLD_DI_SERINFOSIZE:
3375     case RTLD_DI_SERINFO:
3376 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3377 	break;
3378 
3379     default:
3380 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3381 	error = -1;
3382     }
3383 
3384     lock_release(rtld_bind_lock, &lockstate);
3385 
3386     return (error);
3387 }
3388 
3389 static void
3390 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3391 {
3392 
3393 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3394 	phdr_info->dlpi_name = obj->path;
3395 	phdr_info->dlpi_phdr = obj->phdr;
3396 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3397 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3398 	phdr_info->dlpi_tls_data = obj->tlsinit;
3399 	phdr_info->dlpi_adds = obj_loads;
3400 	phdr_info->dlpi_subs = obj_loads - obj_count;
3401 }
3402 
3403 int
3404 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3405 {
3406     struct dl_phdr_info phdr_info;
3407     const Obj_Entry *obj;
3408     RtldLockState bind_lockstate, phdr_lockstate;
3409     int error;
3410 
3411     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3412     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3413 
3414     error = 0;
3415 
3416     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3417 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3418 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3419 		break;
3420 
3421     }
3422     if (error == 0) {
3423 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3424 	error = callback(&phdr_info, sizeof(phdr_info), param);
3425     }
3426 
3427     lock_release(rtld_bind_lock, &bind_lockstate);
3428     lock_release(rtld_phdr_lock, &phdr_lockstate);
3429 
3430     return (error);
3431 }
3432 
3433 static void *
3434 fill_search_info(const char *dir, size_t dirlen, void *param)
3435 {
3436     struct fill_search_info_args *arg;
3437 
3438     arg = param;
3439 
3440     if (arg->request == RTLD_DI_SERINFOSIZE) {
3441 	arg->serinfo->dls_cnt ++;
3442 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3443     } else {
3444 	struct dl_serpath *s_entry;
3445 
3446 	s_entry = arg->serpath;
3447 	s_entry->dls_name  = arg->strspace;
3448 	s_entry->dls_flags = arg->flags;
3449 
3450 	strncpy(arg->strspace, dir, dirlen);
3451 	arg->strspace[dirlen] = '\0';
3452 
3453 	arg->strspace += dirlen + 1;
3454 	arg->serpath++;
3455     }
3456 
3457     return (NULL);
3458 }
3459 
3460 static int
3461 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3462 {
3463     struct dl_serinfo _info;
3464     struct fill_search_info_args args;
3465 
3466     args.request = RTLD_DI_SERINFOSIZE;
3467     args.serinfo = &_info;
3468 
3469     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3470     _info.dls_cnt  = 0;
3471 
3472     path_enumerate(obj->rpath, fill_search_info, &args);
3473     path_enumerate(ld_library_path, fill_search_info, &args);
3474     path_enumerate(obj->runpath, fill_search_info, &args);
3475     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3476     if (!obj->z_nodeflib)
3477       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3478 
3479 
3480     if (request == RTLD_DI_SERINFOSIZE) {
3481 	info->dls_size = _info.dls_size;
3482 	info->dls_cnt = _info.dls_cnt;
3483 	return (0);
3484     }
3485 
3486     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3487 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3488 	return (-1);
3489     }
3490 
3491     args.request  = RTLD_DI_SERINFO;
3492     args.serinfo  = info;
3493     args.serpath  = &info->dls_serpath[0];
3494     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3495 
3496     args.flags = LA_SER_RUNPATH;
3497     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3498 	return (-1);
3499 
3500     args.flags = LA_SER_LIBPATH;
3501     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3502 	return (-1);
3503 
3504     args.flags = LA_SER_RUNPATH;
3505     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3506 	return (-1);
3507 
3508     args.flags = LA_SER_CONFIG;
3509     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3510       != NULL)
3511 	return (-1);
3512 
3513     args.flags = LA_SER_DEFAULT;
3514     if (!obj->z_nodeflib &&
3515       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3516 	return (-1);
3517     return (0);
3518 }
3519 
3520 static int
3521 rtld_dirname(const char *path, char *bname)
3522 {
3523     const char *endp;
3524 
3525     /* Empty or NULL string gets treated as "." */
3526     if (path == NULL || *path == '\0') {
3527 	bname[0] = '.';
3528 	bname[1] = '\0';
3529 	return (0);
3530     }
3531 
3532     /* Strip trailing slashes */
3533     endp = path + strlen(path) - 1;
3534     while (endp > path && *endp == '/')
3535 	endp--;
3536 
3537     /* Find the start of the dir */
3538     while (endp > path && *endp != '/')
3539 	endp--;
3540 
3541     /* Either the dir is "/" or there are no slashes */
3542     if (endp == path) {
3543 	bname[0] = *endp == '/' ? '/' : '.';
3544 	bname[1] = '\0';
3545 	return (0);
3546     } else {
3547 	do {
3548 	    endp--;
3549 	} while (endp > path && *endp == '/');
3550     }
3551 
3552     if (endp - path + 2 > PATH_MAX)
3553     {
3554 	_rtld_error("Filename is too long: %s", path);
3555 	return(-1);
3556     }
3557 
3558     strncpy(bname, path, endp - path + 1);
3559     bname[endp - path + 1] = '\0';
3560     return (0);
3561 }
3562 
3563 static int
3564 rtld_dirname_abs(const char *path, char *base)
3565 {
3566 	char base_rel[PATH_MAX];
3567 
3568 	if (rtld_dirname(path, base) == -1)
3569 		return (-1);
3570 	if (base[0] == '/')
3571 		return (0);
3572 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3573 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3574 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3575 		return (-1);
3576 	strcpy(base, base_rel);
3577 	return (0);
3578 }
3579 
3580 static void
3581 linkmap_add(Obj_Entry *obj)
3582 {
3583     struct link_map *l = &obj->linkmap;
3584     struct link_map *prev;
3585 
3586     obj->linkmap.l_name = obj->path;
3587     obj->linkmap.l_addr = obj->mapbase;
3588     obj->linkmap.l_ld = obj->dynamic;
3589 #ifdef __mips__
3590     /* GDB needs load offset on MIPS to use the symbols */
3591     obj->linkmap.l_offs = obj->relocbase;
3592 #endif
3593 
3594     if (r_debug.r_map == NULL) {
3595 	r_debug.r_map = l;
3596 	return;
3597     }
3598 
3599     /*
3600      * Scan to the end of the list, but not past the entry for the
3601      * dynamic linker, which we want to keep at the very end.
3602      */
3603     for (prev = r_debug.r_map;
3604       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3605       prev = prev->l_next)
3606 	;
3607 
3608     /* Link in the new entry. */
3609     l->l_prev = prev;
3610     l->l_next = prev->l_next;
3611     if (l->l_next != NULL)
3612 	l->l_next->l_prev = l;
3613     prev->l_next = l;
3614 }
3615 
3616 static void
3617 linkmap_delete(Obj_Entry *obj)
3618 {
3619     struct link_map *l = &obj->linkmap;
3620 
3621     if (l->l_prev == NULL) {
3622 	if ((r_debug.r_map = l->l_next) != NULL)
3623 	    l->l_next->l_prev = NULL;
3624 	return;
3625     }
3626 
3627     if ((l->l_prev->l_next = l->l_next) != NULL)
3628 	l->l_next->l_prev = l->l_prev;
3629 }
3630 
3631 /*
3632  * Function for the debugger to set a breakpoint on to gain control.
3633  *
3634  * The two parameters allow the debugger to easily find and determine
3635  * what the runtime loader is doing and to whom it is doing it.
3636  *
3637  * When the loadhook trap is hit (r_debug_state, set at program
3638  * initialization), the arguments can be found on the stack:
3639  *
3640  *  +8   struct link_map *m
3641  *  +4   struct r_debug  *rd
3642  *  +0   RetAddr
3643  */
3644 void
3645 r_debug_state(struct r_debug* rd, struct link_map *m)
3646 {
3647     /*
3648      * The following is a hack to force the compiler to emit calls to
3649      * this function, even when optimizing.  If the function is empty,
3650      * the compiler is not obliged to emit any code for calls to it,
3651      * even when marked __noinline.  However, gdb depends on those
3652      * calls being made.
3653      */
3654     __compiler_membar();
3655 }
3656 
3657 /*
3658  * A function called after init routines have completed. This can be used to
3659  * break before a program's entry routine is called, and can be used when
3660  * main is not available in the symbol table.
3661  */
3662 void
3663 _r_debug_postinit(struct link_map *m)
3664 {
3665 
3666 	/* See r_debug_state(). */
3667 	__compiler_membar();
3668 }
3669 
3670 /*
3671  * Get address of the pointer variable in the main program.
3672  * Prefer non-weak symbol over the weak one.
3673  */
3674 static const void **
3675 get_program_var_addr(const char *name, RtldLockState *lockstate)
3676 {
3677     SymLook req;
3678     DoneList donelist;
3679 
3680     symlook_init(&req, name);
3681     req.lockstate = lockstate;
3682     donelist_init(&donelist);
3683     if (symlook_global(&req, &donelist) != 0)
3684 	return (NULL);
3685     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3686 	return ((const void **)make_function_pointer(req.sym_out,
3687 	  req.defobj_out));
3688     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3689 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3690     else
3691 	return ((const void **)(req.defobj_out->relocbase +
3692 	  req.sym_out->st_value));
3693 }
3694 
3695 /*
3696  * Set a pointer variable in the main program to the given value.  This
3697  * is used to set key variables such as "environ" before any of the
3698  * init functions are called.
3699  */
3700 static void
3701 set_program_var(const char *name, const void *value)
3702 {
3703     const void **addr;
3704 
3705     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3706 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3707 	*addr = value;
3708     }
3709 }
3710 
3711 /*
3712  * Search the global objects, including dependencies and main object,
3713  * for the given symbol.
3714  */
3715 static int
3716 symlook_global(SymLook *req, DoneList *donelist)
3717 {
3718     SymLook req1;
3719     const Objlist_Entry *elm;
3720     int res;
3721 
3722     symlook_init_from_req(&req1, req);
3723 
3724     /* Search all objects loaded at program start up. */
3725     if (req->defobj_out == NULL ||
3726       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3727 	res = symlook_list(&req1, &list_main, donelist);
3728 	if (res == 0 && (req->defobj_out == NULL ||
3729 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3730 	    req->sym_out = req1.sym_out;
3731 	    req->defobj_out = req1.defobj_out;
3732 	    assert(req->defobj_out != NULL);
3733 	}
3734     }
3735 
3736     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3737     STAILQ_FOREACH(elm, &list_global, link) {
3738 	if (req->defobj_out != NULL &&
3739 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3740 	    break;
3741 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3742 	if (res == 0 && (req->defobj_out == NULL ||
3743 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3744 	    req->sym_out = req1.sym_out;
3745 	    req->defobj_out = req1.defobj_out;
3746 	    assert(req->defobj_out != NULL);
3747 	}
3748     }
3749 
3750     return (req->sym_out != NULL ? 0 : ESRCH);
3751 }
3752 
3753 /*
3754  * Given a symbol name in a referencing object, find the corresponding
3755  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3756  * no definition was found.  Returns a pointer to the Obj_Entry of the
3757  * defining object via the reference parameter DEFOBJ_OUT.
3758  */
3759 static int
3760 symlook_default(SymLook *req, const Obj_Entry *refobj)
3761 {
3762     DoneList donelist;
3763     const Objlist_Entry *elm;
3764     SymLook req1;
3765     int res;
3766 
3767     donelist_init(&donelist);
3768     symlook_init_from_req(&req1, req);
3769 
3770     /* Look first in the referencing object if linked symbolically. */
3771     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3772 	res = symlook_obj(&req1, refobj);
3773 	if (res == 0) {
3774 	    req->sym_out = req1.sym_out;
3775 	    req->defobj_out = req1.defobj_out;
3776 	    assert(req->defobj_out != NULL);
3777 	}
3778     }
3779 
3780     symlook_global(req, &donelist);
3781 
3782     /* Search all dlopened DAGs containing the referencing object. */
3783     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3784 	if (req->sym_out != NULL &&
3785 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3786 	    break;
3787 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3788 	if (res == 0 && (req->sym_out == NULL ||
3789 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3790 	    req->sym_out = req1.sym_out;
3791 	    req->defobj_out = req1.defobj_out;
3792 	    assert(req->defobj_out != NULL);
3793 	}
3794     }
3795 
3796     /*
3797      * Search the dynamic linker itself, and possibly resolve the
3798      * symbol from there.  This is how the application links to
3799      * dynamic linker services such as dlopen.
3800      */
3801     if (req->sym_out == NULL ||
3802       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3803 	res = symlook_obj(&req1, &obj_rtld);
3804 	if (res == 0) {
3805 	    req->sym_out = req1.sym_out;
3806 	    req->defobj_out = req1.defobj_out;
3807 	    assert(req->defobj_out != NULL);
3808 	}
3809     }
3810 
3811     return (req->sym_out != NULL ? 0 : ESRCH);
3812 }
3813 
3814 static int
3815 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3816 {
3817     const Elf_Sym *def;
3818     const Obj_Entry *defobj;
3819     const Objlist_Entry *elm;
3820     SymLook req1;
3821     int res;
3822 
3823     def = NULL;
3824     defobj = NULL;
3825     STAILQ_FOREACH(elm, objlist, link) {
3826 	if (donelist_check(dlp, elm->obj))
3827 	    continue;
3828 	symlook_init_from_req(&req1, req);
3829 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3830 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3831 		def = req1.sym_out;
3832 		defobj = req1.defobj_out;
3833 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3834 		    break;
3835 	    }
3836 	}
3837     }
3838     if (def != NULL) {
3839 	req->sym_out = def;
3840 	req->defobj_out = defobj;
3841 	return (0);
3842     }
3843     return (ESRCH);
3844 }
3845 
3846 /*
3847  * Search the chain of DAGS cointed to by the given Needed_Entry
3848  * for a symbol of the given name.  Each DAG is scanned completely
3849  * before advancing to the next one.  Returns a pointer to the symbol,
3850  * or NULL if no definition was found.
3851  */
3852 static int
3853 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3854 {
3855     const Elf_Sym *def;
3856     const Needed_Entry *n;
3857     const Obj_Entry *defobj;
3858     SymLook req1;
3859     int res;
3860 
3861     def = NULL;
3862     defobj = NULL;
3863     symlook_init_from_req(&req1, req);
3864     for (n = needed; n != NULL; n = n->next) {
3865 	if (n->obj == NULL ||
3866 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3867 	    continue;
3868 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3869 	    def = req1.sym_out;
3870 	    defobj = req1.defobj_out;
3871 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3872 		break;
3873 	}
3874     }
3875     if (def != NULL) {
3876 	req->sym_out = def;
3877 	req->defobj_out = defobj;
3878 	return (0);
3879     }
3880     return (ESRCH);
3881 }
3882 
3883 /*
3884  * Search the symbol table of a single shared object for a symbol of
3885  * the given name and version, if requested.  Returns a pointer to the
3886  * symbol, or NULL if no definition was found.  If the object is
3887  * filter, return filtered symbol from filtee.
3888  *
3889  * The symbol's hash value is passed in for efficiency reasons; that
3890  * eliminates many recomputations of the hash value.
3891  */
3892 int
3893 symlook_obj(SymLook *req, const Obj_Entry *obj)
3894 {
3895     DoneList donelist;
3896     SymLook req1;
3897     int flags, res, mres;
3898 
3899     /*
3900      * If there is at least one valid hash at this point, we prefer to
3901      * use the faster GNU version if available.
3902      */
3903     if (obj->valid_hash_gnu)
3904 	mres = symlook_obj1_gnu(req, obj);
3905     else if (obj->valid_hash_sysv)
3906 	mres = symlook_obj1_sysv(req, obj);
3907     else
3908 	return (EINVAL);
3909 
3910     if (mres == 0) {
3911 	if (obj->needed_filtees != NULL) {
3912 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3913 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3914 	    donelist_init(&donelist);
3915 	    symlook_init_from_req(&req1, req);
3916 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3917 	    if (res == 0) {
3918 		req->sym_out = req1.sym_out;
3919 		req->defobj_out = req1.defobj_out;
3920 	    }
3921 	    return (res);
3922 	}
3923 	if (obj->needed_aux_filtees != NULL) {
3924 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3925 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3926 	    donelist_init(&donelist);
3927 	    symlook_init_from_req(&req1, req);
3928 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3929 	    if (res == 0) {
3930 		req->sym_out = req1.sym_out;
3931 		req->defobj_out = req1.defobj_out;
3932 		return (res);
3933 	    }
3934 	}
3935     }
3936     return (mres);
3937 }
3938 
3939 /* Symbol match routine common to both hash functions */
3940 static bool
3941 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3942     const unsigned long symnum)
3943 {
3944 	Elf_Versym verndx;
3945 	const Elf_Sym *symp;
3946 	const char *strp;
3947 
3948 	symp = obj->symtab + symnum;
3949 	strp = obj->strtab + symp->st_name;
3950 
3951 	switch (ELF_ST_TYPE(symp->st_info)) {
3952 	case STT_FUNC:
3953 	case STT_NOTYPE:
3954 	case STT_OBJECT:
3955 	case STT_COMMON:
3956 	case STT_GNU_IFUNC:
3957 		if (symp->st_value == 0)
3958 			return (false);
3959 		/* fallthrough */
3960 	case STT_TLS:
3961 		if (symp->st_shndx != SHN_UNDEF)
3962 			break;
3963 #ifndef __mips__
3964 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3965 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3966 			break;
3967 		/* fallthrough */
3968 #endif
3969 	default:
3970 		return (false);
3971 	}
3972 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3973 		return (false);
3974 
3975 	if (req->ventry == NULL) {
3976 		if (obj->versyms != NULL) {
3977 			verndx = VER_NDX(obj->versyms[symnum]);
3978 			if (verndx > obj->vernum) {
3979 				_rtld_error(
3980 				    "%s: symbol %s references wrong version %d",
3981 				    obj->path, obj->strtab + symnum, verndx);
3982 				return (false);
3983 			}
3984 			/*
3985 			 * If we are not called from dlsym (i.e. this
3986 			 * is a normal relocation from unversioned
3987 			 * binary), accept the symbol immediately if
3988 			 * it happens to have first version after this
3989 			 * shared object became versioned.  Otherwise,
3990 			 * if symbol is versioned and not hidden,
3991 			 * remember it. If it is the only symbol with
3992 			 * this name exported by the shared object, it
3993 			 * will be returned as a match by the calling
3994 			 * function. If symbol is global (verndx < 2)
3995 			 * accept it unconditionally.
3996 			 */
3997 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3998 			    verndx == VER_NDX_GIVEN) {
3999 				result->sym_out = symp;
4000 				return (true);
4001 			}
4002 			else if (verndx >= VER_NDX_GIVEN) {
4003 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4004 				    == 0) {
4005 					if (result->vsymp == NULL)
4006 						result->vsymp = symp;
4007 					result->vcount++;
4008 				}
4009 				return (false);
4010 			}
4011 		}
4012 		result->sym_out = symp;
4013 		return (true);
4014 	}
4015 	if (obj->versyms == NULL) {
4016 		if (object_match_name(obj, req->ventry->name)) {
4017 			_rtld_error("%s: object %s should provide version %s "
4018 			    "for symbol %s", obj_rtld.path, obj->path,
4019 			    req->ventry->name, obj->strtab + symnum);
4020 			return (false);
4021 		}
4022 	} else {
4023 		verndx = VER_NDX(obj->versyms[symnum]);
4024 		if (verndx > obj->vernum) {
4025 			_rtld_error("%s: symbol %s references wrong version %d",
4026 			    obj->path, obj->strtab + symnum, verndx);
4027 			return (false);
4028 		}
4029 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4030 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4031 			/*
4032 			 * Version does not match. Look if this is a
4033 			 * global symbol and if it is not hidden. If
4034 			 * global symbol (verndx < 2) is available,
4035 			 * use it. Do not return symbol if we are
4036 			 * called by dlvsym, because dlvsym looks for
4037 			 * a specific version and default one is not
4038 			 * what dlvsym wants.
4039 			 */
4040 			if ((req->flags & SYMLOOK_DLSYM) ||
4041 			    (verndx >= VER_NDX_GIVEN) ||
4042 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4043 				return (false);
4044 		}
4045 	}
4046 	result->sym_out = symp;
4047 	return (true);
4048 }
4049 
4050 /*
4051  * Search for symbol using SysV hash function.
4052  * obj->buckets is known not to be NULL at this point; the test for this was
4053  * performed with the obj->valid_hash_sysv assignment.
4054  */
4055 static int
4056 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4057 {
4058 	unsigned long symnum;
4059 	Sym_Match_Result matchres;
4060 
4061 	matchres.sym_out = NULL;
4062 	matchres.vsymp = NULL;
4063 	matchres.vcount = 0;
4064 
4065 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4066 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4067 		if (symnum >= obj->nchains)
4068 			return (ESRCH);	/* Bad object */
4069 
4070 		if (matched_symbol(req, obj, &matchres, symnum)) {
4071 			req->sym_out = matchres.sym_out;
4072 			req->defobj_out = obj;
4073 			return (0);
4074 		}
4075 	}
4076 	if (matchres.vcount == 1) {
4077 		req->sym_out = matchres.vsymp;
4078 		req->defobj_out = obj;
4079 		return (0);
4080 	}
4081 	return (ESRCH);
4082 }
4083 
4084 /* Search for symbol using GNU hash function */
4085 static int
4086 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4087 {
4088 	Elf_Addr bloom_word;
4089 	const Elf32_Word *hashval;
4090 	Elf32_Word bucket;
4091 	Sym_Match_Result matchres;
4092 	unsigned int h1, h2;
4093 	unsigned long symnum;
4094 
4095 	matchres.sym_out = NULL;
4096 	matchres.vsymp = NULL;
4097 	matchres.vcount = 0;
4098 
4099 	/* Pick right bitmask word from Bloom filter array */
4100 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4101 	    obj->maskwords_bm_gnu];
4102 
4103 	/* Calculate modulus word size of gnu hash and its derivative */
4104 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4105 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4106 
4107 	/* Filter out the "definitely not in set" queries */
4108 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4109 		return (ESRCH);
4110 
4111 	/* Locate hash chain and corresponding value element*/
4112 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4113 	if (bucket == 0)
4114 		return (ESRCH);
4115 	hashval = &obj->chain_zero_gnu[bucket];
4116 	do {
4117 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4118 			symnum = hashval - obj->chain_zero_gnu;
4119 			if (matched_symbol(req, obj, &matchres, symnum)) {
4120 				req->sym_out = matchres.sym_out;
4121 				req->defobj_out = obj;
4122 				return (0);
4123 			}
4124 		}
4125 	} while ((*hashval++ & 1) == 0);
4126 	if (matchres.vcount == 1) {
4127 		req->sym_out = matchres.vsymp;
4128 		req->defobj_out = obj;
4129 		return (0);
4130 	}
4131 	return (ESRCH);
4132 }
4133 
4134 static void
4135 trace_loaded_objects(Obj_Entry *obj)
4136 {
4137     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4138     int		c;
4139 
4140     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4141 	main_local = "";
4142 
4143     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4144 	fmt1 = "\t%o => %p (%x)\n";
4145 
4146     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4147 	fmt2 = "\t%o (%x)\n";
4148 
4149     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4150 
4151     for (; obj; obj = obj->next) {
4152 	Needed_Entry		*needed;
4153 	char			*name, *path;
4154 	bool			is_lib;
4155 
4156 	if (list_containers && obj->needed != NULL)
4157 	    rtld_printf("%s:\n", obj->path);
4158 	for (needed = obj->needed; needed; needed = needed->next) {
4159 	    if (needed->obj != NULL) {
4160 		if (needed->obj->traced && !list_containers)
4161 		    continue;
4162 		needed->obj->traced = true;
4163 		path = needed->obj->path;
4164 	    } else
4165 		path = "not found";
4166 
4167 	    name = (char *)obj->strtab + needed->name;
4168 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4169 
4170 	    fmt = is_lib ? fmt1 : fmt2;
4171 	    while ((c = *fmt++) != '\0') {
4172 		switch (c) {
4173 		default:
4174 		    rtld_putchar(c);
4175 		    continue;
4176 		case '\\':
4177 		    switch (c = *fmt) {
4178 		    case '\0':
4179 			continue;
4180 		    case 'n':
4181 			rtld_putchar('\n');
4182 			break;
4183 		    case 't':
4184 			rtld_putchar('\t');
4185 			break;
4186 		    }
4187 		    break;
4188 		case '%':
4189 		    switch (c = *fmt) {
4190 		    case '\0':
4191 			continue;
4192 		    case '%':
4193 		    default:
4194 			rtld_putchar(c);
4195 			break;
4196 		    case 'A':
4197 			rtld_putstr(main_local);
4198 			break;
4199 		    case 'a':
4200 			rtld_putstr(obj_main->path);
4201 			break;
4202 		    case 'o':
4203 			rtld_putstr(name);
4204 			break;
4205 #if 0
4206 		    case 'm':
4207 			rtld_printf("%d", sodp->sod_major);
4208 			break;
4209 		    case 'n':
4210 			rtld_printf("%d", sodp->sod_minor);
4211 			break;
4212 #endif
4213 		    case 'p':
4214 			rtld_putstr(path);
4215 			break;
4216 		    case 'x':
4217 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4218 			  0);
4219 			break;
4220 		    }
4221 		    break;
4222 		}
4223 		++fmt;
4224 	    }
4225 	}
4226     }
4227 }
4228 
4229 /*
4230  * Unload a dlopened object and its dependencies from memory and from
4231  * our data structures.  It is assumed that the DAG rooted in the
4232  * object has already been unreferenced, and that the object has a
4233  * reference count of 0.
4234  */
4235 static void
4236 unload_object(Obj_Entry *root)
4237 {
4238     Obj_Entry *obj;
4239     Obj_Entry **linkp;
4240 
4241     assert(root->refcount == 0);
4242 
4243     /*
4244      * Pass over the DAG removing unreferenced objects from
4245      * appropriate lists.
4246      */
4247     unlink_object(root);
4248 
4249     /* Unmap all objects that are no longer referenced. */
4250     linkp = &obj_list->next;
4251     while ((obj = *linkp) != NULL) {
4252 	if (obj->refcount == 0) {
4253 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4254 		obj->path);
4255 	    dbg("unloading \"%s\"", obj->path);
4256 	    unload_filtees(root);
4257 	    munmap(obj->mapbase, obj->mapsize);
4258 	    linkmap_delete(obj);
4259 	    *linkp = obj->next;
4260 	    obj_count--;
4261 	    obj_free(obj);
4262 	} else
4263 	    linkp = &obj->next;
4264     }
4265     obj_tail = linkp;
4266 }
4267 
4268 static void
4269 unlink_object(Obj_Entry *root)
4270 {
4271     Objlist_Entry *elm;
4272 
4273     if (root->refcount == 0) {
4274 	/* Remove the object from the RTLD_GLOBAL list. */
4275 	objlist_remove(&list_global, root);
4276 
4277     	/* Remove the object from all objects' DAG lists. */
4278     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4279 	    objlist_remove(&elm->obj->dldags, root);
4280 	    if (elm->obj != root)
4281 		unlink_object(elm->obj);
4282 	}
4283     }
4284 }
4285 
4286 static void
4287 ref_dag(Obj_Entry *root)
4288 {
4289     Objlist_Entry *elm;
4290 
4291     assert(root->dag_inited);
4292     STAILQ_FOREACH(elm, &root->dagmembers, link)
4293 	elm->obj->refcount++;
4294 }
4295 
4296 static void
4297 unref_dag(Obj_Entry *root)
4298 {
4299     Objlist_Entry *elm;
4300 
4301     assert(root->dag_inited);
4302     STAILQ_FOREACH(elm, &root->dagmembers, link)
4303 	elm->obj->refcount--;
4304 }
4305 
4306 /*
4307  * Common code for MD __tls_get_addr().
4308  */
4309 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4310 static void *
4311 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4312 {
4313     Elf_Addr *newdtv, *dtv;
4314     RtldLockState lockstate;
4315     int to_copy;
4316 
4317     dtv = *dtvp;
4318     /* Check dtv generation in case new modules have arrived */
4319     if (dtv[0] != tls_dtv_generation) {
4320 	wlock_acquire(rtld_bind_lock, &lockstate);
4321 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4322 	to_copy = dtv[1];
4323 	if (to_copy > tls_max_index)
4324 	    to_copy = tls_max_index;
4325 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4326 	newdtv[0] = tls_dtv_generation;
4327 	newdtv[1] = tls_max_index;
4328 	free(dtv);
4329 	lock_release(rtld_bind_lock, &lockstate);
4330 	dtv = *dtvp = newdtv;
4331     }
4332 
4333     /* Dynamically allocate module TLS if necessary */
4334     if (dtv[index + 1] == 0) {
4335 	/* Signal safe, wlock will block out signals. */
4336 	wlock_acquire(rtld_bind_lock, &lockstate);
4337 	if (!dtv[index + 1])
4338 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4339 	lock_release(rtld_bind_lock, &lockstate);
4340     }
4341     return ((void *)(dtv[index + 1] + offset));
4342 }
4343 
4344 void *
4345 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4346 {
4347 	Elf_Addr *dtv;
4348 
4349 	dtv = *dtvp;
4350 	/* Check dtv generation in case new modules have arrived */
4351 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4352 	    dtv[index + 1] != 0))
4353 		return ((void *)(dtv[index + 1] + offset));
4354 	return (tls_get_addr_slow(dtvp, index, offset));
4355 }
4356 
4357 #if defined(__arm__) || defined(__mips__) || defined(__powerpc__)
4358 
4359 /*
4360  * Allocate Static TLS using the Variant I method.
4361  */
4362 void *
4363 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4364 {
4365     Obj_Entry *obj;
4366     char *tcb;
4367     Elf_Addr **tls;
4368     Elf_Addr *dtv;
4369     Elf_Addr addr;
4370     int i;
4371 
4372     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4373 	return (oldtcb);
4374 
4375     assert(tcbsize >= TLS_TCB_SIZE);
4376     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4377     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4378 
4379     if (oldtcb != NULL) {
4380 	memcpy(tls, oldtcb, tls_static_space);
4381 	free(oldtcb);
4382 
4383 	/* Adjust the DTV. */
4384 	dtv = tls[0];
4385 	for (i = 0; i < dtv[1]; i++) {
4386 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4387 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4388 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4389 	    }
4390 	}
4391     } else {
4392 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4393 	tls[0] = dtv;
4394 	dtv[0] = tls_dtv_generation;
4395 	dtv[1] = tls_max_index;
4396 
4397 	for (obj = objs; obj; obj = obj->next) {
4398 	    if (obj->tlsoffset > 0) {
4399 		addr = (Elf_Addr)tls + obj->tlsoffset;
4400 		if (obj->tlsinitsize > 0)
4401 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4402 		if (obj->tlssize > obj->tlsinitsize)
4403 		    memset((void*) (addr + obj->tlsinitsize), 0,
4404 			   obj->tlssize - obj->tlsinitsize);
4405 		dtv[obj->tlsindex + 1] = addr;
4406 	    }
4407 	}
4408     }
4409 
4410     return (tcb);
4411 }
4412 
4413 void
4414 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4415 {
4416     Elf_Addr *dtv;
4417     Elf_Addr tlsstart, tlsend;
4418     int dtvsize, i;
4419 
4420     assert(tcbsize >= TLS_TCB_SIZE);
4421 
4422     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4423     tlsend = tlsstart + tls_static_space;
4424 
4425     dtv = *(Elf_Addr **)tlsstart;
4426     dtvsize = dtv[1];
4427     for (i = 0; i < dtvsize; i++) {
4428 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4429 	    free((void*)dtv[i+2]);
4430 	}
4431     }
4432     free(dtv);
4433     free(tcb);
4434 }
4435 
4436 #endif
4437 
4438 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4439 
4440 /*
4441  * Allocate Static TLS using the Variant II method.
4442  */
4443 void *
4444 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4445 {
4446     Obj_Entry *obj;
4447     size_t size, ralign;
4448     char *tls;
4449     Elf_Addr *dtv, *olddtv;
4450     Elf_Addr segbase, oldsegbase, addr;
4451     int i;
4452 
4453     ralign = tcbalign;
4454     if (tls_static_max_align > ralign)
4455 	    ralign = tls_static_max_align;
4456     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4457 
4458     assert(tcbsize >= 2*sizeof(Elf_Addr));
4459     tls = malloc_aligned(size, ralign);
4460     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4461 
4462     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4463     ((Elf_Addr*)segbase)[0] = segbase;
4464     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4465 
4466     dtv[0] = tls_dtv_generation;
4467     dtv[1] = tls_max_index;
4468 
4469     if (oldtls) {
4470 	/*
4471 	 * Copy the static TLS block over whole.
4472 	 */
4473 	oldsegbase = (Elf_Addr) oldtls;
4474 	memcpy((void *)(segbase - tls_static_space),
4475 	       (const void *)(oldsegbase - tls_static_space),
4476 	       tls_static_space);
4477 
4478 	/*
4479 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4480 	 * move them over.
4481 	 */
4482 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4483 	for (i = 0; i < olddtv[1]; i++) {
4484 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4485 		dtv[i+2] = olddtv[i+2];
4486 		olddtv[i+2] = 0;
4487 	    }
4488 	}
4489 
4490 	/*
4491 	 * We assume that this block was the one we created with
4492 	 * allocate_initial_tls().
4493 	 */
4494 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4495     } else {
4496 	for (obj = objs; obj; obj = obj->next) {
4497 	    if (obj->tlsoffset) {
4498 		addr = segbase - obj->tlsoffset;
4499 		memset((void*) (addr + obj->tlsinitsize),
4500 		       0, obj->tlssize - obj->tlsinitsize);
4501 		if (obj->tlsinit)
4502 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4503 		dtv[obj->tlsindex + 1] = addr;
4504 	    }
4505 	}
4506     }
4507 
4508     return (void*) segbase;
4509 }
4510 
4511 void
4512 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4513 {
4514     Elf_Addr* dtv;
4515     size_t size, ralign;
4516     int dtvsize, i;
4517     Elf_Addr tlsstart, tlsend;
4518 
4519     /*
4520      * Figure out the size of the initial TLS block so that we can
4521      * find stuff which ___tls_get_addr() allocated dynamically.
4522      */
4523     ralign = tcbalign;
4524     if (tls_static_max_align > ralign)
4525 	    ralign = tls_static_max_align;
4526     size = round(tls_static_space, ralign);
4527 
4528     dtv = ((Elf_Addr**)tls)[1];
4529     dtvsize = dtv[1];
4530     tlsend = (Elf_Addr) tls;
4531     tlsstart = tlsend - size;
4532     for (i = 0; i < dtvsize; i++) {
4533 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4534 		free_aligned((void *)dtv[i + 2]);
4535 	}
4536     }
4537 
4538     free_aligned((void *)tlsstart);
4539     free((void*) dtv);
4540 }
4541 
4542 #endif
4543 
4544 /*
4545  * Allocate TLS block for module with given index.
4546  */
4547 void *
4548 allocate_module_tls(int index)
4549 {
4550     Obj_Entry* obj;
4551     char* p;
4552 
4553     for (obj = obj_list; obj; obj = obj->next) {
4554 	if (obj->tlsindex == index)
4555 	    break;
4556     }
4557     if (!obj) {
4558 	_rtld_error("Can't find module with TLS index %d", index);
4559 	die();
4560     }
4561 
4562     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4563     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4564     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4565 
4566     return p;
4567 }
4568 
4569 bool
4570 allocate_tls_offset(Obj_Entry *obj)
4571 {
4572     size_t off;
4573 
4574     if (obj->tls_done)
4575 	return true;
4576 
4577     if (obj->tlssize == 0) {
4578 	obj->tls_done = true;
4579 	return true;
4580     }
4581 
4582     if (obj->tlsindex == 1)
4583 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4584     else
4585 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4586 				   obj->tlssize, obj->tlsalign);
4587 
4588     /*
4589      * If we have already fixed the size of the static TLS block, we
4590      * must stay within that size. When allocating the static TLS, we
4591      * leave a small amount of space spare to be used for dynamically
4592      * loading modules which use static TLS.
4593      */
4594     if (tls_static_space != 0) {
4595 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4596 	    return false;
4597     } else if (obj->tlsalign > tls_static_max_align) {
4598 	    tls_static_max_align = obj->tlsalign;
4599     }
4600 
4601     tls_last_offset = obj->tlsoffset = off;
4602     tls_last_size = obj->tlssize;
4603     obj->tls_done = true;
4604 
4605     return true;
4606 }
4607 
4608 void
4609 free_tls_offset(Obj_Entry *obj)
4610 {
4611 
4612     /*
4613      * If we were the last thing to allocate out of the static TLS
4614      * block, we give our space back to the 'allocator'. This is a
4615      * simplistic workaround to allow libGL.so.1 to be loaded and
4616      * unloaded multiple times.
4617      */
4618     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4619 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4620 	tls_last_offset -= obj->tlssize;
4621 	tls_last_size = 0;
4622     }
4623 }
4624 
4625 void *
4626 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4627 {
4628     void *ret;
4629     RtldLockState lockstate;
4630 
4631     wlock_acquire(rtld_bind_lock, &lockstate);
4632     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4633     lock_release(rtld_bind_lock, &lockstate);
4634     return (ret);
4635 }
4636 
4637 void
4638 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4639 {
4640     RtldLockState lockstate;
4641 
4642     wlock_acquire(rtld_bind_lock, &lockstate);
4643     free_tls(tcb, tcbsize, tcbalign);
4644     lock_release(rtld_bind_lock, &lockstate);
4645 }
4646 
4647 static void
4648 object_add_name(Obj_Entry *obj, const char *name)
4649 {
4650     Name_Entry *entry;
4651     size_t len;
4652 
4653     len = strlen(name);
4654     entry = malloc(sizeof(Name_Entry) + len);
4655 
4656     if (entry != NULL) {
4657 	strcpy(entry->name, name);
4658 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4659     }
4660 }
4661 
4662 static int
4663 object_match_name(const Obj_Entry *obj, const char *name)
4664 {
4665     Name_Entry *entry;
4666 
4667     STAILQ_FOREACH(entry, &obj->names, link) {
4668 	if (strcmp(name, entry->name) == 0)
4669 	    return (1);
4670     }
4671     return (0);
4672 }
4673 
4674 static Obj_Entry *
4675 locate_dependency(const Obj_Entry *obj, const char *name)
4676 {
4677     const Objlist_Entry *entry;
4678     const Needed_Entry *needed;
4679 
4680     STAILQ_FOREACH(entry, &list_main, link) {
4681 	if (object_match_name(entry->obj, name))
4682 	    return entry->obj;
4683     }
4684 
4685     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4686 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4687 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4688 	    /*
4689 	     * If there is DT_NEEDED for the name we are looking for,
4690 	     * we are all set.  Note that object might not be found if
4691 	     * dependency was not loaded yet, so the function can
4692 	     * return NULL here.  This is expected and handled
4693 	     * properly by the caller.
4694 	     */
4695 	    return (needed->obj);
4696 	}
4697     }
4698     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4699 	obj->path, name);
4700     die();
4701 }
4702 
4703 static int
4704 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4705     const Elf_Vernaux *vna)
4706 {
4707     const Elf_Verdef *vd;
4708     const char *vername;
4709 
4710     vername = refobj->strtab + vna->vna_name;
4711     vd = depobj->verdef;
4712     if (vd == NULL) {
4713 	_rtld_error("%s: version %s required by %s not defined",
4714 	    depobj->path, vername, refobj->path);
4715 	return (-1);
4716     }
4717     for (;;) {
4718 	if (vd->vd_version != VER_DEF_CURRENT) {
4719 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4720 		depobj->path, vd->vd_version);
4721 	    return (-1);
4722 	}
4723 	if (vna->vna_hash == vd->vd_hash) {
4724 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4725 		((char *)vd + vd->vd_aux);
4726 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4727 		return (0);
4728 	}
4729 	if (vd->vd_next == 0)
4730 	    break;
4731 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4732     }
4733     if (vna->vna_flags & VER_FLG_WEAK)
4734 	return (0);
4735     _rtld_error("%s: version %s required by %s not found",
4736 	depobj->path, vername, refobj->path);
4737     return (-1);
4738 }
4739 
4740 static int
4741 rtld_verify_object_versions(Obj_Entry *obj)
4742 {
4743     const Elf_Verneed *vn;
4744     const Elf_Verdef  *vd;
4745     const Elf_Verdaux *vda;
4746     const Elf_Vernaux *vna;
4747     const Obj_Entry *depobj;
4748     int maxvernum, vernum;
4749 
4750     if (obj->ver_checked)
4751 	return (0);
4752     obj->ver_checked = true;
4753 
4754     maxvernum = 0;
4755     /*
4756      * Walk over defined and required version records and figure out
4757      * max index used by any of them. Do very basic sanity checking
4758      * while there.
4759      */
4760     vn = obj->verneed;
4761     while (vn != NULL) {
4762 	if (vn->vn_version != VER_NEED_CURRENT) {
4763 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4764 		obj->path, vn->vn_version);
4765 	    return (-1);
4766 	}
4767 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4768 	for (;;) {
4769 	    vernum = VER_NEED_IDX(vna->vna_other);
4770 	    if (vernum > maxvernum)
4771 		maxvernum = vernum;
4772 	    if (vna->vna_next == 0)
4773 		 break;
4774 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4775 	}
4776 	if (vn->vn_next == 0)
4777 	    break;
4778 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4779     }
4780 
4781     vd = obj->verdef;
4782     while (vd != NULL) {
4783 	if (vd->vd_version != VER_DEF_CURRENT) {
4784 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4785 		obj->path, vd->vd_version);
4786 	    return (-1);
4787 	}
4788 	vernum = VER_DEF_IDX(vd->vd_ndx);
4789 	if (vernum > maxvernum)
4790 		maxvernum = vernum;
4791 	if (vd->vd_next == 0)
4792 	    break;
4793 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4794     }
4795 
4796     if (maxvernum == 0)
4797 	return (0);
4798 
4799     /*
4800      * Store version information in array indexable by version index.
4801      * Verify that object version requirements are satisfied along the
4802      * way.
4803      */
4804     obj->vernum = maxvernum + 1;
4805     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4806 
4807     vd = obj->verdef;
4808     while (vd != NULL) {
4809 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4810 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4811 	    assert(vernum <= maxvernum);
4812 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4813 	    obj->vertab[vernum].hash = vd->vd_hash;
4814 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4815 	    obj->vertab[vernum].file = NULL;
4816 	    obj->vertab[vernum].flags = 0;
4817 	}
4818 	if (vd->vd_next == 0)
4819 	    break;
4820 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4821     }
4822 
4823     vn = obj->verneed;
4824     while (vn != NULL) {
4825 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4826 	if (depobj == NULL)
4827 	    return (-1);
4828 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4829 	for (;;) {
4830 	    if (check_object_provided_version(obj, depobj, vna))
4831 		return (-1);
4832 	    vernum = VER_NEED_IDX(vna->vna_other);
4833 	    assert(vernum <= maxvernum);
4834 	    obj->vertab[vernum].hash = vna->vna_hash;
4835 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4836 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4837 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4838 		VER_INFO_HIDDEN : 0;
4839 	    if (vna->vna_next == 0)
4840 		 break;
4841 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4842 	}
4843 	if (vn->vn_next == 0)
4844 	    break;
4845 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4846     }
4847     return 0;
4848 }
4849 
4850 static int
4851 rtld_verify_versions(const Objlist *objlist)
4852 {
4853     Objlist_Entry *entry;
4854     int rc;
4855 
4856     rc = 0;
4857     STAILQ_FOREACH(entry, objlist, link) {
4858 	/*
4859 	 * Skip dummy objects or objects that have their version requirements
4860 	 * already checked.
4861 	 */
4862 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4863 	    continue;
4864 	if (rtld_verify_object_versions(entry->obj) == -1) {
4865 	    rc = -1;
4866 	    if (ld_tracing == NULL)
4867 		break;
4868 	}
4869     }
4870     if (rc == 0 || ld_tracing != NULL)
4871     	rc = rtld_verify_object_versions(&obj_rtld);
4872     return rc;
4873 }
4874 
4875 const Ver_Entry *
4876 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4877 {
4878     Elf_Versym vernum;
4879 
4880     if (obj->vertab) {
4881 	vernum = VER_NDX(obj->versyms[symnum]);
4882 	if (vernum >= obj->vernum) {
4883 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4884 		obj->path, obj->strtab + symnum, vernum);
4885 	} else if (obj->vertab[vernum].hash != 0) {
4886 	    return &obj->vertab[vernum];
4887 	}
4888     }
4889     return NULL;
4890 }
4891 
4892 int
4893 _rtld_get_stack_prot(void)
4894 {
4895 
4896 	return (stack_prot);
4897 }
4898 
4899 int
4900 _rtld_is_dlopened(void *arg)
4901 {
4902 	Obj_Entry *obj;
4903 	RtldLockState lockstate;
4904 	int res;
4905 
4906 	rlock_acquire(rtld_bind_lock, &lockstate);
4907 	obj = dlcheck(arg);
4908 	if (obj == NULL)
4909 		obj = obj_from_addr(arg);
4910 	if (obj == NULL) {
4911 		_rtld_error("No shared object contains address");
4912 		lock_release(rtld_bind_lock, &lockstate);
4913 		return (-1);
4914 	}
4915 	res = obj->dlopened ? 1 : 0;
4916 	lock_release(rtld_bind_lock, &lockstate);
4917 	return (res);
4918 }
4919 
4920 static void
4921 map_stacks_exec(RtldLockState *lockstate)
4922 {
4923 	void (*thr_map_stacks_exec)(void);
4924 
4925 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4926 		return;
4927 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4928 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4929 	if (thr_map_stacks_exec != NULL) {
4930 		stack_prot |= PROT_EXEC;
4931 		thr_map_stacks_exec();
4932 	}
4933 }
4934 
4935 void
4936 symlook_init(SymLook *dst, const char *name)
4937 {
4938 
4939 	bzero(dst, sizeof(*dst));
4940 	dst->name = name;
4941 	dst->hash = elf_hash(name);
4942 	dst->hash_gnu = gnu_hash(name);
4943 }
4944 
4945 static void
4946 symlook_init_from_req(SymLook *dst, const SymLook *src)
4947 {
4948 
4949 	dst->name = src->name;
4950 	dst->hash = src->hash;
4951 	dst->hash_gnu = src->hash_gnu;
4952 	dst->ventry = src->ventry;
4953 	dst->flags = src->flags;
4954 	dst->defobj_out = NULL;
4955 	dst->sym_out = NULL;
4956 	dst->lockstate = src->lockstate;
4957 }
4958 
4959 
4960 /*
4961  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4962  */
4963 static int
4964 parse_libdir(const char *str)
4965 {
4966 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4967 	const char *orig;
4968 	int fd;
4969 	char c;
4970 
4971 	orig = str;
4972 	fd = 0;
4973 	for (c = *str; c != '\0'; c = *++str) {
4974 		if (c < '0' || c > '9')
4975 			return (-1);
4976 
4977 		fd *= RADIX;
4978 		fd += c - '0';
4979 	}
4980 
4981 	/* Make sure we actually parsed something. */
4982 	if (str == orig) {
4983 		_rtld_error("failed to parse directory FD from '%s'", str);
4984 		return (-1);
4985 	}
4986 	return (fd);
4987 }
4988 
4989 /*
4990  * Overrides for libc_pic-provided functions.
4991  */
4992 
4993 int
4994 __getosreldate(void)
4995 {
4996 	size_t len;
4997 	int oid[2];
4998 	int error, osrel;
4999 
5000 	if (osreldate != 0)
5001 		return (osreldate);
5002 
5003 	oid[0] = CTL_KERN;
5004 	oid[1] = KERN_OSRELDATE;
5005 	osrel = 0;
5006 	len = sizeof(osrel);
5007 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5008 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5009 		osreldate = osrel;
5010 	return (osreldate);
5011 }
5012 
5013 void
5014 exit(int status)
5015 {
5016 
5017 	_exit(status);
5018 }
5019 
5020 void (*__cleanup)(void);
5021 int __isthreaded = 0;
5022 int _thread_autoinit_dummy_decl = 1;
5023 
5024 /*
5025  * No unresolved symbols for rtld.
5026  */
5027 void
5028 __pthread_cxa_finalize(struct dl_phdr_info *a)
5029 {
5030 }
5031 
5032 void
5033 __stack_chk_fail(void)
5034 {
5035 
5036 	_rtld_error("stack overflow detected; terminated");
5037 	die();
5038 }
5039 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5040 
5041 void
5042 __chk_fail(void)
5043 {
5044 
5045 	_rtld_error("buffer overflow detected; terminated");
5046 	die();
5047 }
5048 
5049 const char *
5050 rtld_strerror(int errnum)
5051 {
5052 
5053 	if (errnum < 0 || errnum >= sys_nerr)
5054 		return ("Unknown error");
5055 	return (sys_errlist[errnum]);
5056 }
5057