xref: /freebsd/libexec/rtld-elf/rtld.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static void *path_enumerate(const char *, path_enum_proc, void *);
123 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126     int flags, RtldLockState *lockstate);
127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128     RtldLockState *);
129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130     int flags, RtldLockState *lockstate);
131 static int rtld_dirname(const char *, char *);
132 static int rtld_dirname_abs(const char *, char *);
133 static void *rtld_dlopen(const char *name, int fd, int mode);
134 static void rtld_exit(void);
135 static char *search_library_path(const char *, const char *);
136 static const void **get_program_var_addr(const char *, RtldLockState *);
137 static void set_program_var(const char *, const void *);
138 static int symlook_default(SymLook *, const Obj_Entry *refobj);
139 static int symlook_global(SymLook *, DoneList *);
140 static void symlook_init_from_req(SymLook *, const SymLook *);
141 static int symlook_list(SymLook *, const Objlist *, DoneList *);
142 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
143 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
144 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
145 static void trace_loaded_objects(Obj_Entry *);
146 static void unlink_object(Obj_Entry *);
147 static void unload_object(Obj_Entry *);
148 static void unref_dag(Obj_Entry *);
149 static void ref_dag(Obj_Entry *);
150 static char *origin_subst_one(char *, const char *, const char *, bool);
151 static char *origin_subst(char *, const char *);
152 static void preinit_main(void);
153 static int  rtld_verify_versions(const Objlist *);
154 static int  rtld_verify_object_versions(Obj_Entry *);
155 static void object_add_name(Obj_Entry *, const char *);
156 static int  object_match_name(const Obj_Entry *, const char *);
157 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159     struct dl_phdr_info *phdr_info);
160 static uint32_t gnu_hash(const char *);
161 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162     const unsigned long);
163 
164 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
165 void _r_debug_postinit(struct link_map *) __noinline;
166 
167 /*
168  * Data declarations.
169  */
170 static char *error_message;	/* Message for dlerror(), or NULL */
171 struct r_debug r_debug;		/* for GDB; */
172 static bool libmap_disable;	/* Disable libmap */
173 static bool ld_loadfltr;	/* Immediate filters processing */
174 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
175 static bool trust;		/* False for setuid and setgid programs */
176 static bool dangerous_ld_env;	/* True if environment variables have been
177 				   used to affect the libraries loaded */
178 static char *ld_bind_now;	/* Environment variable for immediate binding */
179 static char *ld_debug;		/* Environment variable for debugging */
180 static char *ld_library_path;	/* Environment variable for search path */
181 static char *ld_preload;	/* Environment variable for libraries to
182 				   load first */
183 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
184 static char *ld_tracing;	/* Called from ldd to print libs */
185 static char *ld_utrace;		/* Use utrace() to log events. */
186 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
187 static Obj_Entry **obj_tail;	/* Link field of last object in list */
188 static Obj_Entry *obj_main;	/* The main program shared object */
189 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
190 static unsigned int obj_count;	/* Number of objects in obj_list */
191 static unsigned int obj_loads;	/* Number of objects in obj_list */
192 
193 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
194   STAILQ_HEAD_INITIALIZER(list_global);
195 static Objlist list_main =	/* Objects loaded at program startup */
196   STAILQ_HEAD_INITIALIZER(list_main);
197 static Objlist list_fini =	/* Objects needing fini() calls */
198   STAILQ_HEAD_INITIALIZER(list_fini);
199 
200 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
201 
202 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
203 
204 extern Elf_Dyn _DYNAMIC;
205 #pragma weak _DYNAMIC
206 #ifndef RTLD_IS_DYNAMIC
207 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
208 #endif
209 
210 int npagesizes, osreldate;
211 size_t *pagesizes;
212 
213 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
214 
215 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
216 static int max_stack_flags;
217 
218 /*
219  * Global declarations normally provided by crt1.  The dynamic linker is
220  * not built with crt1, so we have to provide them ourselves.
221  */
222 char *__progname;
223 char **environ;
224 
225 /*
226  * Used to pass argc, argv to init functions.
227  */
228 int main_argc;
229 char **main_argv;
230 
231 /*
232  * Globals to control TLS allocation.
233  */
234 size_t tls_last_offset;		/* Static TLS offset of last module */
235 size_t tls_last_size;		/* Static TLS size of last module */
236 size_t tls_static_space;	/* Static TLS space allocated */
237 size_t tls_static_max_align;
238 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
239 int tls_max_index = 1;		/* Largest module index allocated */
240 
241 bool ld_library_path_rpath = false;
242 
243 /*
244  * Fill in a DoneList with an allocation large enough to hold all of
245  * the currently-loaded objects.  Keep this as a macro since it calls
246  * alloca and we want that to occur within the scope of the caller.
247  */
248 #define donelist_init(dlp)					\
249     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
250     assert((dlp)->objs != NULL),				\
251     (dlp)->num_alloc = obj_count,				\
252     (dlp)->num_used = 0)
253 
254 #define	UTRACE_DLOPEN_START		1
255 #define	UTRACE_DLOPEN_STOP		2
256 #define	UTRACE_DLCLOSE_START		3
257 #define	UTRACE_DLCLOSE_STOP		4
258 #define	UTRACE_LOAD_OBJECT		5
259 #define	UTRACE_UNLOAD_OBJECT		6
260 #define	UTRACE_ADD_RUNDEP		7
261 #define	UTRACE_PRELOAD_FINISHED		8
262 #define	UTRACE_INIT_CALL		9
263 #define	UTRACE_FINI_CALL		10
264 
265 struct utrace_rtld {
266 	char sig[4];			/* 'RTLD' */
267 	int event;
268 	void *handle;
269 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
270 	size_t mapsize;
271 	int refcnt;			/* Used for 'mode' */
272 	char name[MAXPATHLEN];
273 };
274 
275 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
276 	if (ld_utrace != NULL)					\
277 		ld_utrace_log(e, h, mb, ms, r, n);		\
278 } while (0)
279 
280 static void
281 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
282     int refcnt, const char *name)
283 {
284 	struct utrace_rtld ut;
285 
286 	ut.sig[0] = 'R';
287 	ut.sig[1] = 'T';
288 	ut.sig[2] = 'L';
289 	ut.sig[3] = 'D';
290 	ut.event = event;
291 	ut.handle = handle;
292 	ut.mapbase = mapbase;
293 	ut.mapsize = mapsize;
294 	ut.refcnt = refcnt;
295 	bzero(ut.name, sizeof(ut.name));
296 	if (name)
297 		strlcpy(ut.name, name, sizeof(ut.name));
298 	utrace(&ut, sizeof(ut));
299 }
300 
301 /*
302  * Main entry point for dynamic linking.  The first argument is the
303  * stack pointer.  The stack is expected to be laid out as described
304  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
305  * Specifically, the stack pointer points to a word containing
306  * ARGC.  Following that in the stack is a null-terminated sequence
307  * of pointers to argument strings.  Then comes a null-terminated
308  * sequence of pointers to environment strings.  Finally, there is a
309  * sequence of "auxiliary vector" entries.
310  *
311  * The second argument points to a place to store the dynamic linker's
312  * exit procedure pointer and the third to a place to store the main
313  * program's object.
314  *
315  * The return value is the main program's entry point.
316  */
317 func_ptr_type
318 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
319 {
320     Elf_Auxinfo *aux_info[AT_COUNT];
321     int i;
322     int argc;
323     char **argv;
324     char **env;
325     Elf_Auxinfo *aux;
326     Elf_Auxinfo *auxp;
327     const char *argv0;
328     Objlist_Entry *entry;
329     Obj_Entry *obj;
330     Obj_Entry **preload_tail;
331     Obj_Entry *last_interposer;
332     Objlist initlist;
333     RtldLockState lockstate;
334     char *library_path_rpath;
335     int mib[2];
336     size_t len;
337 
338     /*
339      * On entry, the dynamic linker itself has not been relocated yet.
340      * Be very careful not to reference any global data until after
341      * init_rtld has returned.  It is OK to reference file-scope statics
342      * and string constants, and to call static and global functions.
343      */
344 
345     /* Find the auxiliary vector on the stack. */
346     argc = *sp++;
347     argv = (char **) sp;
348     sp += argc + 1;	/* Skip over arguments and NULL terminator */
349     env = (char **) sp;
350     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
351 	;
352     aux = (Elf_Auxinfo *) sp;
353 
354     /* Digest the auxiliary vector. */
355     for (i = 0;  i < AT_COUNT;  i++)
356 	aux_info[i] = NULL;
357     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
358 	if (auxp->a_type < AT_COUNT)
359 	    aux_info[auxp->a_type] = auxp;
360     }
361 
362     /* Initialize and relocate ourselves. */
363     assert(aux_info[AT_BASE] != NULL);
364     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
365 
366     __progname = obj_rtld.path;
367     argv0 = argv[0] != NULL ? argv[0] : "(null)";
368     environ = env;
369     main_argc = argc;
370     main_argv = argv;
371 
372     if (aux_info[AT_CANARY] != NULL &&
373 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
374 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
375 	    if (i > sizeof(__stack_chk_guard))
376 		    i = sizeof(__stack_chk_guard);
377 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
378     } else {
379 	mib[0] = CTL_KERN;
380 	mib[1] = KERN_ARND;
381 
382 	len = sizeof(__stack_chk_guard);
383 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
384 	    len != sizeof(__stack_chk_guard)) {
385 		/* If sysctl was unsuccessful, use the "terminator canary". */
386 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
387 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
388 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
389 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
390 	}
391     }
392 
393     trust = !issetugid();
394 
395     ld_bind_now = getenv(LD_ "BIND_NOW");
396     /*
397      * If the process is tainted, then we un-set the dangerous environment
398      * variables.  The process will be marked as tainted until setuid(2)
399      * is called.  If any child process calls setuid(2) we do not want any
400      * future processes to honor the potentially un-safe variables.
401      */
402     if (!trust) {
403         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
404 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
405 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
406 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
407 		_rtld_error("environment corrupt; aborting");
408 		die();
409 	}
410     }
411     ld_debug = getenv(LD_ "DEBUG");
412     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
413     libmap_override = getenv(LD_ "LIBMAP");
414     ld_library_path = getenv(LD_ "LIBRARY_PATH");
415     ld_preload = getenv(LD_ "PRELOAD");
416     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
417     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
418     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
419     if (library_path_rpath != NULL) {
420 	    if (library_path_rpath[0] == 'y' ||
421 		library_path_rpath[0] == 'Y' ||
422 		library_path_rpath[0] == '1')
423 		    ld_library_path_rpath = true;
424 	    else
425 		    ld_library_path_rpath = false;
426     }
427     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
428 	(ld_library_path != NULL) || (ld_preload != NULL) ||
429 	(ld_elf_hints_path != NULL) || ld_loadfltr;
430     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
431     ld_utrace = getenv(LD_ "UTRACE");
432 
433     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
434 	ld_elf_hints_path = _PATH_ELF_HINTS;
435 
436     if (ld_debug != NULL && *ld_debug != '\0')
437 	debug = 1;
438     dbg("%s is initialized, base address = %p", __progname,
439 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
440     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
441     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
442 
443     dbg("initializing thread locks");
444     lockdflt_init();
445 
446     /*
447      * Load the main program, or process its program header if it is
448      * already loaded.
449      */
450     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
451 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
452 	dbg("loading main program");
453 	obj_main = map_object(fd, argv0, NULL);
454 	close(fd);
455 	if (obj_main == NULL)
456 	    die();
457 	max_stack_flags = obj->stack_flags;
458     } else {				/* Main program already loaded. */
459 	const Elf_Phdr *phdr;
460 	int phnum;
461 	caddr_t entry;
462 
463 	dbg("processing main program's program header");
464 	assert(aux_info[AT_PHDR] != NULL);
465 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
466 	assert(aux_info[AT_PHNUM] != NULL);
467 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
468 	assert(aux_info[AT_PHENT] != NULL);
469 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
470 	assert(aux_info[AT_ENTRY] != NULL);
471 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
472 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
473 	    die();
474     }
475 
476     if (aux_info[AT_EXECPATH] != 0) {
477 	    char *kexecpath;
478 	    char buf[MAXPATHLEN];
479 
480 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
481 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
482 	    if (kexecpath[0] == '/')
483 		    obj_main->path = kexecpath;
484 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
485 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
486 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
487 		    obj_main->path = xstrdup(argv0);
488 	    else
489 		    obj_main->path = xstrdup(buf);
490     } else {
491 	    dbg("No AT_EXECPATH");
492 	    obj_main->path = xstrdup(argv0);
493     }
494     dbg("obj_main path %s", obj_main->path);
495     obj_main->mainprog = true;
496 
497     if (aux_info[AT_STACKPROT] != NULL &&
498       aux_info[AT_STACKPROT]->a_un.a_val != 0)
499 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
500 
501     /*
502      * Get the actual dynamic linker pathname from the executable if
503      * possible.  (It should always be possible.)  That ensures that
504      * gdb will find the right dynamic linker even if a non-standard
505      * one is being used.
506      */
507     if (obj_main->interp != NULL &&
508       strcmp(obj_main->interp, obj_rtld.path) != 0) {
509 	free(obj_rtld.path);
510 	obj_rtld.path = xstrdup(obj_main->interp);
511         __progname = obj_rtld.path;
512     }
513 
514     digest_dynamic(obj_main, 0);
515     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
516 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
517 	obj_main->dynsymcount);
518 
519     linkmap_add(obj_main);
520     linkmap_add(&obj_rtld);
521 
522     /* Link the main program into the list of objects. */
523     *obj_tail = obj_main;
524     obj_tail = &obj_main->next;
525     obj_count++;
526     obj_loads++;
527 
528     /* Initialize a fake symbol for resolving undefined weak references. */
529     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
530     sym_zero.st_shndx = SHN_UNDEF;
531     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
532 
533     if (!libmap_disable)
534         libmap_disable = (bool)lm_init(libmap_override);
535 
536     dbg("loading LD_PRELOAD libraries");
537     if (load_preload_objects() == -1)
538 	die();
539     preload_tail = obj_tail;
540 
541     dbg("loading needed objects");
542     if (load_needed_objects(obj_main, 0) == -1)
543 	die();
544 
545     /* Make a list of all objects loaded at startup. */
546     last_interposer = obj_main;
547     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
548 	if (obj->z_interpose && obj != obj_main) {
549 	    objlist_put_after(&list_main, last_interposer, obj);
550 	    last_interposer = obj;
551 	} else {
552 	    objlist_push_tail(&list_main, obj);
553 	}
554     	obj->refcount++;
555     }
556 
557     dbg("checking for required versions");
558     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
559 	die();
560 
561     if (ld_tracing) {		/* We're done */
562 	trace_loaded_objects(obj_main);
563 	exit(0);
564     }
565 
566     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
567        dump_relocations(obj_main);
568        exit (0);
569     }
570 
571     /*
572      * Processing tls relocations requires having the tls offsets
573      * initialized.  Prepare offsets before starting initial
574      * relocation processing.
575      */
576     dbg("initializing initial thread local storage offsets");
577     STAILQ_FOREACH(entry, &list_main, link) {
578 	/*
579 	 * Allocate all the initial objects out of the static TLS
580 	 * block even if they didn't ask for it.
581 	 */
582 	allocate_tls_offset(entry->obj);
583     }
584 
585     if (relocate_objects(obj_main,
586       ld_bind_now != NULL && *ld_bind_now != '\0',
587       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
588 	die();
589 
590     dbg("doing copy relocations");
591     if (do_copy_relocations(obj_main) == -1)
592 	die();
593 
594     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
595        dump_relocations(obj_main);
596        exit (0);
597     }
598 
599     /*
600      * Setup TLS for main thread.  This must be done after the
601      * relocations are processed, since tls initialization section
602      * might be the subject for relocations.
603      */
604     dbg("initializing initial thread local storage");
605     allocate_initial_tls(obj_list);
606 
607     dbg("initializing key program variables");
608     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
609     set_program_var("environ", env);
610     set_program_var("__elf_aux_vector", aux);
611 
612     /* Make a list of init functions to call. */
613     objlist_init(&initlist);
614     initlist_add_objects(obj_list, preload_tail, &initlist);
615 
616     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
617 
618     map_stacks_exec(NULL);
619 
620     dbg("resolving ifuncs");
621     if (resolve_objects_ifunc(obj_main,
622       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
623       NULL) == -1)
624 	die();
625 
626     if (!obj_main->crt_no_init) {
627 	/*
628 	 * Make sure we don't call the main program's init and fini
629 	 * functions for binaries linked with old crt1 which calls
630 	 * _init itself.
631 	 */
632 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
633 	obj_main->preinit_array = obj_main->init_array =
634 	    obj_main->fini_array = (Elf_Addr)NULL;
635     }
636 
637     wlock_acquire(rtld_bind_lock, &lockstate);
638     if (obj_main->crt_no_init)
639 	preinit_main();
640     objlist_call_init(&initlist, &lockstate);
641     _r_debug_postinit(&obj_main->linkmap);
642     objlist_clear(&initlist);
643     dbg("loading filtees");
644     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
645 	if (ld_loadfltr || obj->z_loadfltr)
646 	    load_filtees(obj, 0, &lockstate);
647     }
648     lock_release(rtld_bind_lock, &lockstate);
649 
650     dbg("transferring control to program entry point = %p", obj_main->entry);
651 
652     /* Return the exit procedure and the program entry point. */
653     *exit_proc = rtld_exit;
654     *objp = obj_main;
655     return (func_ptr_type) obj_main->entry;
656 }
657 
658 void *
659 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
660 {
661 	void *ptr;
662 	Elf_Addr target;
663 
664 	ptr = (void *)make_function_pointer(def, obj);
665 	target = ((Elf_Addr (*)(void))ptr)();
666 	return ((void *)target);
667 }
668 
669 Elf_Addr
670 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
671 {
672     const Elf_Rel *rel;
673     const Elf_Sym *def;
674     const Obj_Entry *defobj;
675     Elf_Addr *where;
676     Elf_Addr target;
677     RtldLockState lockstate;
678 
679     rlock_acquire(rtld_bind_lock, &lockstate);
680     if (sigsetjmp(lockstate.env, 0) != 0)
681 	    lock_upgrade(rtld_bind_lock, &lockstate);
682     if (obj->pltrel)
683 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
684     else
685 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
686 
687     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
688     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
689 	&lockstate);
690     if (def == NULL)
691 	die();
692     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
693 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
694     else
695 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
696 
697     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
698       defobj->strtab + def->st_name, basename(obj->path),
699       (void *)target, basename(defobj->path));
700 
701     /*
702      * Write the new contents for the jmpslot. Note that depending on
703      * architecture, the value which we need to return back to the
704      * lazy binding trampoline may or may not be the target
705      * address. The value returned from reloc_jmpslot() is the value
706      * that the trampoline needs.
707      */
708     target = reloc_jmpslot(where, target, defobj, obj, rel);
709     lock_release(rtld_bind_lock, &lockstate);
710     return target;
711 }
712 
713 /*
714  * Error reporting function.  Use it like printf.  If formats the message
715  * into a buffer, and sets things up so that the next call to dlerror()
716  * will return the message.
717  */
718 void
719 _rtld_error(const char *fmt, ...)
720 {
721     static char buf[512];
722     va_list ap;
723 
724     va_start(ap, fmt);
725     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
726     error_message = buf;
727     va_end(ap);
728 }
729 
730 /*
731  * Return a dynamically-allocated copy of the current error message, if any.
732  */
733 static char *
734 errmsg_save(void)
735 {
736     return error_message == NULL ? NULL : xstrdup(error_message);
737 }
738 
739 /*
740  * Restore the current error message from a copy which was previously saved
741  * by errmsg_save().  The copy is freed.
742  */
743 static void
744 errmsg_restore(char *saved_msg)
745 {
746     if (saved_msg == NULL)
747 	error_message = NULL;
748     else {
749 	_rtld_error("%s", saved_msg);
750 	free(saved_msg);
751     }
752 }
753 
754 static const char *
755 basename(const char *name)
756 {
757     const char *p = strrchr(name, '/');
758     return p != NULL ? p + 1 : name;
759 }
760 
761 static struct utsname uts;
762 
763 static char *
764 origin_subst_one(char *real, const char *kw, const char *subst,
765     bool may_free)
766 {
767 	char *p, *p1, *res, *resp;
768 	int subst_len, kw_len, subst_count, old_len, new_len;
769 
770 	kw_len = strlen(kw);
771 
772 	/*
773 	 * First, count the number of the keyword occurences, to
774 	 * preallocate the final string.
775 	 */
776 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
777 		p1 = strstr(p, kw);
778 		if (p1 == NULL)
779 			break;
780 	}
781 
782 	/*
783 	 * If the keyword is not found, just return.
784 	 */
785 	if (subst_count == 0)
786 		return (may_free ? real : xstrdup(real));
787 
788 	/*
789 	 * There is indeed something to substitute.  Calculate the
790 	 * length of the resulting string, and allocate it.
791 	 */
792 	subst_len = strlen(subst);
793 	old_len = strlen(real);
794 	new_len = old_len + (subst_len - kw_len) * subst_count;
795 	res = xmalloc(new_len + 1);
796 
797 	/*
798 	 * Now, execute the substitution loop.
799 	 */
800 	for (p = real, resp = res, *resp = '\0';;) {
801 		p1 = strstr(p, kw);
802 		if (p1 != NULL) {
803 			/* Copy the prefix before keyword. */
804 			memcpy(resp, p, p1 - p);
805 			resp += p1 - p;
806 			/* Keyword replacement. */
807 			memcpy(resp, subst, subst_len);
808 			resp += subst_len;
809 			*resp = '\0';
810 			p = p1 + kw_len;
811 		} else
812 			break;
813 	}
814 
815 	/* Copy to the end of string and finish. */
816 	strcat(resp, p);
817 	if (may_free)
818 		free(real);
819 	return (res);
820 }
821 
822 static char *
823 origin_subst(char *real, const char *origin_path)
824 {
825 	char *res1, *res2, *res3, *res4;
826 
827 	if (uts.sysname[0] == '\0') {
828 		if (uname(&uts) != 0) {
829 			_rtld_error("utsname failed: %d", errno);
830 			return (NULL);
831 		}
832 	}
833 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
834 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
835 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
836 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
837 	return (res4);
838 }
839 
840 static void
841 die(void)
842 {
843     const char *msg = dlerror();
844 
845     if (msg == NULL)
846 	msg = "Fatal error";
847     rtld_fdputstr(STDERR_FILENO, msg);
848     rtld_fdputchar(STDERR_FILENO, '\n');
849     _exit(1);
850 }
851 
852 /*
853  * Process a shared object's DYNAMIC section, and save the important
854  * information in its Obj_Entry structure.
855  */
856 static void
857 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
858     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
859 {
860     const Elf_Dyn *dynp;
861     Needed_Entry **needed_tail = &obj->needed;
862     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
863     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
864     const Elf_Hashelt *hashtab;
865     const Elf32_Word *hashval;
866     Elf32_Word bkt, nmaskwords;
867     int bloom_size32;
868     bool nmw_power2;
869     int plttype = DT_REL;
870 
871     *dyn_rpath = NULL;
872     *dyn_soname = NULL;
873     *dyn_runpath = NULL;
874 
875     obj->bind_now = false;
876     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
877 	switch (dynp->d_tag) {
878 
879 	case DT_REL:
880 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
881 	    break;
882 
883 	case DT_RELSZ:
884 	    obj->relsize = dynp->d_un.d_val;
885 	    break;
886 
887 	case DT_RELENT:
888 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
889 	    break;
890 
891 	case DT_JMPREL:
892 	    obj->pltrel = (const Elf_Rel *)
893 	      (obj->relocbase + dynp->d_un.d_ptr);
894 	    break;
895 
896 	case DT_PLTRELSZ:
897 	    obj->pltrelsize = dynp->d_un.d_val;
898 	    break;
899 
900 	case DT_RELA:
901 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
902 	    break;
903 
904 	case DT_RELASZ:
905 	    obj->relasize = dynp->d_un.d_val;
906 	    break;
907 
908 	case DT_RELAENT:
909 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
910 	    break;
911 
912 	case DT_PLTREL:
913 	    plttype = dynp->d_un.d_val;
914 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
915 	    break;
916 
917 	case DT_SYMTAB:
918 	    obj->symtab = (const Elf_Sym *)
919 	      (obj->relocbase + dynp->d_un.d_ptr);
920 	    break;
921 
922 	case DT_SYMENT:
923 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
924 	    break;
925 
926 	case DT_STRTAB:
927 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
928 	    break;
929 
930 	case DT_STRSZ:
931 	    obj->strsize = dynp->d_un.d_val;
932 	    break;
933 
934 	case DT_VERNEED:
935 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
936 		dynp->d_un.d_val);
937 	    break;
938 
939 	case DT_VERNEEDNUM:
940 	    obj->verneednum = dynp->d_un.d_val;
941 	    break;
942 
943 	case DT_VERDEF:
944 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
945 		dynp->d_un.d_val);
946 	    break;
947 
948 	case DT_VERDEFNUM:
949 	    obj->verdefnum = dynp->d_un.d_val;
950 	    break;
951 
952 	case DT_VERSYM:
953 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
954 		dynp->d_un.d_val);
955 	    break;
956 
957 	case DT_HASH:
958 	    {
959 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
960 		    dynp->d_un.d_ptr);
961 		obj->nbuckets = hashtab[0];
962 		obj->nchains = hashtab[1];
963 		obj->buckets = hashtab + 2;
964 		obj->chains = obj->buckets + obj->nbuckets;
965 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
966 		  obj->buckets != NULL;
967 	    }
968 	    break;
969 
970 	case DT_GNU_HASH:
971 	    {
972 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
973 		    dynp->d_un.d_ptr);
974 		obj->nbuckets_gnu = hashtab[0];
975 		obj->symndx_gnu = hashtab[1];
976 		nmaskwords = hashtab[2];
977 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
978 		/* Number of bitmask words is required to be power of 2 */
979 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
980 		obj->maskwords_bm_gnu = nmaskwords - 1;
981 		obj->shift2_gnu = hashtab[3];
982 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
983 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
984 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
985 		  obj->symndx_gnu;
986 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
987 		  obj->buckets_gnu != NULL;
988 	    }
989 	    break;
990 
991 	case DT_NEEDED:
992 	    if (!obj->rtld) {
993 		Needed_Entry *nep = NEW(Needed_Entry);
994 		nep->name = dynp->d_un.d_val;
995 		nep->obj = NULL;
996 		nep->next = NULL;
997 
998 		*needed_tail = nep;
999 		needed_tail = &nep->next;
1000 	    }
1001 	    break;
1002 
1003 	case DT_FILTER:
1004 	    if (!obj->rtld) {
1005 		Needed_Entry *nep = NEW(Needed_Entry);
1006 		nep->name = dynp->d_un.d_val;
1007 		nep->obj = NULL;
1008 		nep->next = NULL;
1009 
1010 		*needed_filtees_tail = nep;
1011 		needed_filtees_tail = &nep->next;
1012 	    }
1013 	    break;
1014 
1015 	case DT_AUXILIARY:
1016 	    if (!obj->rtld) {
1017 		Needed_Entry *nep = NEW(Needed_Entry);
1018 		nep->name = dynp->d_un.d_val;
1019 		nep->obj = NULL;
1020 		nep->next = NULL;
1021 
1022 		*needed_aux_filtees_tail = nep;
1023 		needed_aux_filtees_tail = &nep->next;
1024 	    }
1025 	    break;
1026 
1027 	case DT_PLTGOT:
1028 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1029 	    break;
1030 
1031 	case DT_TEXTREL:
1032 	    obj->textrel = true;
1033 	    break;
1034 
1035 	case DT_SYMBOLIC:
1036 	    obj->symbolic = true;
1037 	    break;
1038 
1039 	case DT_RPATH:
1040 	    /*
1041 	     * We have to wait until later to process this, because we
1042 	     * might not have gotten the address of the string table yet.
1043 	     */
1044 	    *dyn_rpath = dynp;
1045 	    break;
1046 
1047 	case DT_SONAME:
1048 	    *dyn_soname = dynp;
1049 	    break;
1050 
1051 	case DT_RUNPATH:
1052 	    *dyn_runpath = dynp;
1053 	    break;
1054 
1055 	case DT_INIT:
1056 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1057 	    break;
1058 
1059 	case DT_PREINIT_ARRAY:
1060 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1061 	    break;
1062 
1063 	case DT_PREINIT_ARRAYSZ:
1064 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1065 	    break;
1066 
1067 	case DT_INIT_ARRAY:
1068 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1069 	    break;
1070 
1071 	case DT_INIT_ARRAYSZ:
1072 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1073 	    break;
1074 
1075 	case DT_FINI:
1076 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1077 	    break;
1078 
1079 	case DT_FINI_ARRAY:
1080 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1081 	    break;
1082 
1083 	case DT_FINI_ARRAYSZ:
1084 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1085 	    break;
1086 
1087 	/*
1088 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1089 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1090 	 */
1091 
1092 #ifndef __mips__
1093 	case DT_DEBUG:
1094 	    /* XXX - not implemented yet */
1095 	    if (!early)
1096 		dbg("Filling in DT_DEBUG entry");
1097 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1098 	    break;
1099 #endif
1100 
1101 	case DT_FLAGS:
1102 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1103 		    obj->z_origin = true;
1104 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1105 		    obj->symbolic = true;
1106 		if (dynp->d_un.d_val & DF_TEXTREL)
1107 		    obj->textrel = true;
1108 		if (dynp->d_un.d_val & DF_BIND_NOW)
1109 		    obj->bind_now = true;
1110 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1111 		    ;*/
1112 	    break;
1113 #ifdef __mips__
1114 	case DT_MIPS_LOCAL_GOTNO:
1115 		obj->local_gotno = dynp->d_un.d_val;
1116 	    break;
1117 
1118 	case DT_MIPS_SYMTABNO:
1119 		obj->symtabno = dynp->d_un.d_val;
1120 		break;
1121 
1122 	case DT_MIPS_GOTSYM:
1123 		obj->gotsym = dynp->d_un.d_val;
1124 		break;
1125 
1126 	case DT_MIPS_RLD_MAP:
1127 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1128 		break;
1129 #endif
1130 
1131 	case DT_FLAGS_1:
1132 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1133 		    obj->z_noopen = true;
1134 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1135 		    obj->z_origin = true;
1136 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1137 		    XXX ;*/
1138 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1139 		    obj->bind_now = true;
1140 		if (dynp->d_un.d_val & DF_1_NODELETE)
1141 		    obj->z_nodelete = true;
1142 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1143 		    obj->z_loadfltr = true;
1144 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1145 		    obj->z_interpose = true;
1146 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1147 		    obj->z_nodeflib = true;
1148 	    break;
1149 
1150 	default:
1151 	    if (!early) {
1152 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1153 		    (long)dynp->d_tag);
1154 	    }
1155 	    break;
1156 	}
1157     }
1158 
1159     obj->traced = false;
1160 
1161     if (plttype == DT_RELA) {
1162 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1163 	obj->pltrel = NULL;
1164 	obj->pltrelasize = obj->pltrelsize;
1165 	obj->pltrelsize = 0;
1166     }
1167 
1168     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1169     if (obj->valid_hash_sysv)
1170 	obj->dynsymcount = obj->nchains;
1171     else if (obj->valid_hash_gnu) {
1172 	obj->dynsymcount = 0;
1173 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1174 	    if (obj->buckets_gnu[bkt] == 0)
1175 		continue;
1176 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1177 	    do
1178 		obj->dynsymcount++;
1179 	    while ((*hashval++ & 1u) == 0);
1180 	}
1181 	obj->dynsymcount += obj->symndx_gnu;
1182     }
1183 }
1184 
1185 static void
1186 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1187     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1188 {
1189 
1190     if (obj->z_origin && obj->origin_path == NULL) {
1191 	obj->origin_path = xmalloc(PATH_MAX);
1192 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1193 	    die();
1194     }
1195 
1196     if (dyn_runpath != NULL) {
1197 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1198 	if (obj->z_origin)
1199 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1200     }
1201     else if (dyn_rpath != NULL) {
1202 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1203 	if (obj->z_origin)
1204 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1205     }
1206 
1207     if (dyn_soname != NULL)
1208 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1209 }
1210 
1211 static void
1212 digest_dynamic(Obj_Entry *obj, int early)
1213 {
1214 	const Elf_Dyn *dyn_rpath;
1215 	const Elf_Dyn *dyn_soname;
1216 	const Elf_Dyn *dyn_runpath;
1217 
1218 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1219 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1220 }
1221 
1222 /*
1223  * Process a shared object's program header.  This is used only for the
1224  * main program, when the kernel has already loaded the main program
1225  * into memory before calling the dynamic linker.  It creates and
1226  * returns an Obj_Entry structure.
1227  */
1228 static Obj_Entry *
1229 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1230 {
1231     Obj_Entry *obj;
1232     const Elf_Phdr *phlimit = phdr + phnum;
1233     const Elf_Phdr *ph;
1234     Elf_Addr note_start, note_end;
1235     int nsegs = 0;
1236 
1237     obj = obj_new();
1238     for (ph = phdr;  ph < phlimit;  ph++) {
1239 	if (ph->p_type != PT_PHDR)
1240 	    continue;
1241 
1242 	obj->phdr = phdr;
1243 	obj->phsize = ph->p_memsz;
1244 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1245 	break;
1246     }
1247 
1248     obj->stack_flags = PF_X | PF_R | PF_W;
1249 
1250     for (ph = phdr;  ph < phlimit;  ph++) {
1251 	switch (ph->p_type) {
1252 
1253 	case PT_INTERP:
1254 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1255 	    break;
1256 
1257 	case PT_LOAD:
1258 	    if (nsegs == 0) {	/* First load segment */
1259 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1260 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1261 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1262 		  obj->vaddrbase;
1263 	    } else {		/* Last load segment */
1264 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1265 		  obj->vaddrbase;
1266 	    }
1267 	    nsegs++;
1268 	    break;
1269 
1270 	case PT_DYNAMIC:
1271 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1272 	    break;
1273 
1274 	case PT_TLS:
1275 	    obj->tlsindex = 1;
1276 	    obj->tlssize = ph->p_memsz;
1277 	    obj->tlsalign = ph->p_align;
1278 	    obj->tlsinitsize = ph->p_filesz;
1279 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1280 	    break;
1281 
1282 	case PT_GNU_STACK:
1283 	    obj->stack_flags = ph->p_flags;
1284 	    break;
1285 
1286 	case PT_GNU_RELRO:
1287 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1288 	    obj->relro_size = round_page(ph->p_memsz);
1289 	    break;
1290 
1291 	case PT_NOTE:
1292 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1293 	    note_end = note_start + ph->p_filesz;
1294 	    digest_notes(obj, note_start, note_end);
1295 	    break;
1296 	}
1297     }
1298     if (nsegs < 1) {
1299 	_rtld_error("%s: too few PT_LOAD segments", path);
1300 	return NULL;
1301     }
1302 
1303     obj->entry = entry;
1304     return obj;
1305 }
1306 
1307 void
1308 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1309 {
1310 	const Elf_Note *note;
1311 	const char *note_name;
1312 	uintptr_t p;
1313 
1314 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1315 	    note = (const Elf_Note *)((const char *)(note + 1) +
1316 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1317 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1318 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1319 		    note->n_descsz != sizeof(int32_t))
1320 			continue;
1321 		if (note->n_type != ABI_NOTETYPE &&
1322 		    note->n_type != CRT_NOINIT_NOTETYPE)
1323 			continue;
1324 		note_name = (const char *)(note + 1);
1325 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1326 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1327 			continue;
1328 		switch (note->n_type) {
1329 		case ABI_NOTETYPE:
1330 			/* FreeBSD osrel note */
1331 			p = (uintptr_t)(note + 1);
1332 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1333 			obj->osrel = *(const int32_t *)(p);
1334 			dbg("note osrel %d", obj->osrel);
1335 			break;
1336 		case CRT_NOINIT_NOTETYPE:
1337 			/* FreeBSD 'crt does not call init' note */
1338 			obj->crt_no_init = true;
1339 			dbg("note crt_no_init");
1340 			break;
1341 		}
1342 	}
1343 }
1344 
1345 static Obj_Entry *
1346 dlcheck(void *handle)
1347 {
1348     Obj_Entry *obj;
1349 
1350     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1351 	if (obj == (Obj_Entry *) handle)
1352 	    break;
1353 
1354     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1355 	_rtld_error("Invalid shared object handle %p", handle);
1356 	return NULL;
1357     }
1358     return obj;
1359 }
1360 
1361 /*
1362  * If the given object is already in the donelist, return true.  Otherwise
1363  * add the object to the list and return false.
1364  */
1365 static bool
1366 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1367 {
1368     unsigned int i;
1369 
1370     for (i = 0;  i < dlp->num_used;  i++)
1371 	if (dlp->objs[i] == obj)
1372 	    return true;
1373     /*
1374      * Our donelist allocation should always be sufficient.  But if
1375      * our threads locking isn't working properly, more shared objects
1376      * could have been loaded since we allocated the list.  That should
1377      * never happen, but we'll handle it properly just in case it does.
1378      */
1379     if (dlp->num_used < dlp->num_alloc)
1380 	dlp->objs[dlp->num_used++] = obj;
1381     return false;
1382 }
1383 
1384 /*
1385  * Hash function for symbol table lookup.  Don't even think about changing
1386  * this.  It is specified by the System V ABI.
1387  */
1388 unsigned long
1389 elf_hash(const char *name)
1390 {
1391     const unsigned char *p = (const unsigned char *) name;
1392     unsigned long h = 0;
1393     unsigned long g;
1394 
1395     while (*p != '\0') {
1396 	h = (h << 4) + *p++;
1397 	if ((g = h & 0xf0000000) != 0)
1398 	    h ^= g >> 24;
1399 	h &= ~g;
1400     }
1401     return h;
1402 }
1403 
1404 /*
1405  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1406  * unsigned in case it's implemented with a wider type.
1407  */
1408 static uint32_t
1409 gnu_hash(const char *s)
1410 {
1411 	uint32_t h;
1412 	unsigned char c;
1413 
1414 	h = 5381;
1415 	for (c = *s; c != '\0'; c = *++s)
1416 		h = h * 33 + c;
1417 	return (h & 0xffffffff);
1418 }
1419 
1420 /*
1421  * Find the library with the given name, and return its full pathname.
1422  * The returned string is dynamically allocated.  Generates an error
1423  * message and returns NULL if the library cannot be found.
1424  *
1425  * If the second argument is non-NULL, then it refers to an already-
1426  * loaded shared object, whose library search path will be searched.
1427  *
1428  * The search order is:
1429  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1430  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1431  *   LD_LIBRARY_PATH
1432  *   DT_RUNPATH in the referencing file
1433  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1434  *	 from list)
1435  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1436  *
1437  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1438  */
1439 static char *
1440 find_library(const char *xname, const Obj_Entry *refobj)
1441 {
1442     char *pathname;
1443     char *name;
1444     bool nodeflib, objgiven;
1445 
1446     objgiven = refobj != NULL;
1447     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1448 	if (xname[0] != '/' && !trust) {
1449 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1450 	      xname);
1451 	    return NULL;
1452 	}
1453 	if (objgiven && refobj->z_origin) {
1454 		return (origin_subst(__DECONST(char *, xname),
1455 		    refobj->origin_path));
1456 	} else {
1457 		return (xstrdup(xname));
1458 	}
1459     }
1460 
1461     if (libmap_disable || !objgiven ||
1462 	(name = lm_find(refobj->path, xname)) == NULL)
1463 	name = (char *)xname;
1464 
1465     dbg(" Searching for \"%s\"", name);
1466 
1467     /*
1468      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1469      * back to pre-conforming behaviour if user requested so with
1470      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1471      * nodeflib.
1472      */
1473     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1474 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1475 	  (refobj != NULL &&
1476 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1477           (pathname = search_library_path(name, gethints(false))) != NULL ||
1478 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1479 	    return (pathname);
1480     } else {
1481 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1482 	if ((objgiven &&
1483 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1484 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1485 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1486 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1487 	  (objgiven &&
1488 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1489 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1490 	  (objgiven && !nodeflib &&
1491 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1492 	    return (pathname);
1493     }
1494 
1495     if (objgiven && refobj->path != NULL) {
1496 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1497 	  name, basename(refobj->path));
1498     } else {
1499 	_rtld_error("Shared object \"%s\" not found", name);
1500     }
1501     return NULL;
1502 }
1503 
1504 /*
1505  * Given a symbol number in a referencing object, find the corresponding
1506  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1507  * no definition was found.  Returns a pointer to the Obj_Entry of the
1508  * defining object via the reference parameter DEFOBJ_OUT.
1509  */
1510 const Elf_Sym *
1511 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1512     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1513     RtldLockState *lockstate)
1514 {
1515     const Elf_Sym *ref;
1516     const Elf_Sym *def;
1517     const Obj_Entry *defobj;
1518     SymLook req;
1519     const char *name;
1520     int res;
1521 
1522     /*
1523      * If we have already found this symbol, get the information from
1524      * the cache.
1525      */
1526     if (symnum >= refobj->dynsymcount)
1527 	return NULL;	/* Bad object */
1528     if (cache != NULL && cache[symnum].sym != NULL) {
1529 	*defobj_out = cache[symnum].obj;
1530 	return cache[symnum].sym;
1531     }
1532 
1533     ref = refobj->symtab + symnum;
1534     name = refobj->strtab + ref->st_name;
1535     def = NULL;
1536     defobj = NULL;
1537 
1538     /*
1539      * We don't have to do a full scale lookup if the symbol is local.
1540      * We know it will bind to the instance in this load module; to
1541      * which we already have a pointer (ie ref). By not doing a lookup,
1542      * we not only improve performance, but it also avoids unresolvable
1543      * symbols when local symbols are not in the hash table. This has
1544      * been seen with the ia64 toolchain.
1545      */
1546     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1547 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1548 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1549 		symnum);
1550 	}
1551 	symlook_init(&req, name);
1552 	req.flags = flags;
1553 	req.ventry = fetch_ventry(refobj, symnum);
1554 	req.lockstate = lockstate;
1555 	res = symlook_default(&req, refobj);
1556 	if (res == 0) {
1557 	    def = req.sym_out;
1558 	    defobj = req.defobj_out;
1559 	}
1560     } else {
1561 	def = ref;
1562 	defobj = refobj;
1563     }
1564 
1565     /*
1566      * If we found no definition and the reference is weak, treat the
1567      * symbol as having the value zero.
1568      */
1569     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1570 	def = &sym_zero;
1571 	defobj = obj_main;
1572     }
1573 
1574     if (def != NULL) {
1575 	*defobj_out = defobj;
1576 	/* Record the information in the cache to avoid subsequent lookups. */
1577 	if (cache != NULL) {
1578 	    cache[symnum].sym = def;
1579 	    cache[symnum].obj = defobj;
1580 	}
1581     } else {
1582 	if (refobj != &obj_rtld)
1583 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1584     }
1585     return def;
1586 }
1587 
1588 /*
1589  * Return the search path from the ldconfig hints file, reading it if
1590  * necessary.  If nostdlib is true, then the default search paths are
1591  * not added to result.
1592  *
1593  * Returns NULL if there are problems with the hints file,
1594  * or if the search path there is empty.
1595  */
1596 static const char *
1597 gethints(bool nostdlib)
1598 {
1599 	static char *hints, *filtered_path;
1600 	struct elfhints_hdr hdr;
1601 	struct fill_search_info_args sargs, hargs;
1602 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1603 	struct dl_serpath *SLPpath, *hintpath;
1604 	char *p;
1605 	unsigned int SLPndx, hintndx, fndx, fcount;
1606 	int fd;
1607 	size_t flen;
1608 	bool skip;
1609 
1610 	/* First call, read the hints file */
1611 	if (hints == NULL) {
1612 		/* Keep from trying again in case the hints file is bad. */
1613 		hints = "";
1614 
1615 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1616 			return (NULL);
1617 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1618 		    hdr.magic != ELFHINTS_MAGIC ||
1619 		    hdr.version != 1) {
1620 			close(fd);
1621 			return (NULL);
1622 		}
1623 		p = xmalloc(hdr.dirlistlen + 1);
1624 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1625 		    read(fd, p, hdr.dirlistlen + 1) !=
1626 		    (ssize_t)hdr.dirlistlen + 1) {
1627 			free(p);
1628 			close(fd);
1629 			return (NULL);
1630 		}
1631 		hints = p;
1632 		close(fd);
1633 	}
1634 
1635 	/*
1636 	 * If caller agreed to receive list which includes the default
1637 	 * paths, we are done. Otherwise, if we still did not
1638 	 * calculated filtered result, do it now.
1639 	 */
1640 	if (!nostdlib)
1641 		return (hints[0] != '\0' ? hints : NULL);
1642 	if (filtered_path != NULL)
1643 		goto filt_ret;
1644 
1645 	/*
1646 	 * Obtain the list of all configured search paths, and the
1647 	 * list of the default paths.
1648 	 *
1649 	 * First estimate the size of the results.
1650 	 */
1651 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1652 	smeta.dls_cnt = 0;
1653 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1654 	hmeta.dls_cnt = 0;
1655 
1656 	sargs.request = RTLD_DI_SERINFOSIZE;
1657 	sargs.serinfo = &smeta;
1658 	hargs.request = RTLD_DI_SERINFOSIZE;
1659 	hargs.serinfo = &hmeta;
1660 
1661 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1662 	path_enumerate(p, fill_search_info, &hargs);
1663 
1664 	SLPinfo = xmalloc(smeta.dls_size);
1665 	hintinfo = xmalloc(hmeta.dls_size);
1666 
1667 	/*
1668 	 * Next fetch both sets of paths.
1669 	 */
1670 	sargs.request = RTLD_DI_SERINFO;
1671 	sargs.serinfo = SLPinfo;
1672 	sargs.serpath = &SLPinfo->dls_serpath[0];
1673 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1674 
1675 	hargs.request = RTLD_DI_SERINFO;
1676 	hargs.serinfo = hintinfo;
1677 	hargs.serpath = &hintinfo->dls_serpath[0];
1678 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1679 
1680 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1681 	path_enumerate(p, fill_search_info, &hargs);
1682 
1683 	/*
1684 	 * Now calculate the difference between two sets, by excluding
1685 	 * standard paths from the full set.
1686 	 */
1687 	fndx = 0;
1688 	fcount = 0;
1689 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1690 	hintpath = &hintinfo->dls_serpath[0];
1691 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1692 		skip = false;
1693 		SLPpath = &SLPinfo->dls_serpath[0];
1694 		/*
1695 		 * Check each standard path against current.
1696 		 */
1697 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1698 			/* matched, skip the path */
1699 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1700 				skip = true;
1701 				break;
1702 			}
1703 		}
1704 		if (skip)
1705 			continue;
1706 		/*
1707 		 * Not matched against any standard path, add the path
1708 		 * to result. Separate consequtive paths with ':'.
1709 		 */
1710 		if (fcount > 0) {
1711 			filtered_path[fndx] = ':';
1712 			fndx++;
1713 		}
1714 		fcount++;
1715 		flen = strlen(hintpath->dls_name);
1716 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1717 		fndx += flen;
1718 	}
1719 	filtered_path[fndx] = '\0';
1720 
1721 	free(SLPinfo);
1722 	free(hintinfo);
1723 
1724 filt_ret:
1725 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1726 }
1727 
1728 static void
1729 init_dag(Obj_Entry *root)
1730 {
1731     const Needed_Entry *needed;
1732     const Objlist_Entry *elm;
1733     DoneList donelist;
1734 
1735     if (root->dag_inited)
1736 	return;
1737     donelist_init(&donelist);
1738 
1739     /* Root object belongs to own DAG. */
1740     objlist_push_tail(&root->dldags, root);
1741     objlist_push_tail(&root->dagmembers, root);
1742     donelist_check(&donelist, root);
1743 
1744     /*
1745      * Add dependencies of root object to DAG in breadth order
1746      * by exploiting the fact that each new object get added
1747      * to the tail of the dagmembers list.
1748      */
1749     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1750 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1751 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1752 		continue;
1753 	    objlist_push_tail(&needed->obj->dldags, root);
1754 	    objlist_push_tail(&root->dagmembers, needed->obj);
1755 	}
1756     }
1757     root->dag_inited = true;
1758 }
1759 
1760 static void
1761 process_nodelete(Obj_Entry *root)
1762 {
1763 	const Objlist_Entry *elm;
1764 
1765 	/*
1766 	 * Walk over object DAG and process every dependent object that
1767 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1768 	 * which then should have its reference upped separately.
1769 	 */
1770 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1771 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1772 		    !elm->obj->ref_nodel) {
1773 			dbg("obj %s nodelete", elm->obj->path);
1774 			init_dag(elm->obj);
1775 			ref_dag(elm->obj);
1776 			elm->obj->ref_nodel = true;
1777 		}
1778 	}
1779 }
1780 /*
1781  * Initialize the dynamic linker.  The argument is the address at which
1782  * the dynamic linker has been mapped into memory.  The primary task of
1783  * this function is to relocate the dynamic linker.
1784  */
1785 static void
1786 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1787 {
1788     Obj_Entry objtmp;	/* Temporary rtld object */
1789     const Elf_Dyn *dyn_rpath;
1790     const Elf_Dyn *dyn_soname;
1791     const Elf_Dyn *dyn_runpath;
1792 
1793     /*
1794      * Conjure up an Obj_Entry structure for the dynamic linker.
1795      *
1796      * The "path" member can't be initialized yet because string constants
1797      * cannot yet be accessed. Below we will set it correctly.
1798      */
1799     memset(&objtmp, 0, sizeof(objtmp));
1800     objtmp.path = NULL;
1801     objtmp.rtld = true;
1802     objtmp.mapbase = mapbase;
1803 #ifdef PIC
1804     objtmp.relocbase = mapbase;
1805 #endif
1806     if (RTLD_IS_DYNAMIC()) {
1807 	objtmp.dynamic = rtld_dynamic(&objtmp);
1808 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1809 	assert(objtmp.needed == NULL);
1810 #if !defined(__mips__)
1811 	/* MIPS has a bogus DT_TEXTREL. */
1812 	assert(!objtmp.textrel);
1813 #endif
1814 
1815 	/*
1816 	 * Temporarily put the dynamic linker entry into the object list, so
1817 	 * that symbols can be found.
1818 	 */
1819 
1820 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1821     }
1822 
1823     /* Initialize the object list. */
1824     obj_tail = &obj_list;
1825 
1826     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1827     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1828 
1829     /* The page size is required by the dynamic memory allocator. */
1830     init_pagesizes(aux_info);
1831 
1832     if (aux_info[AT_OSRELDATE] != NULL)
1833 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1834 
1835     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1836 
1837     /* Replace the path with a dynamically allocated copy. */
1838     obj_rtld.path = xstrdup(PATH_RTLD);
1839 
1840     r_debug.r_brk = r_debug_state;
1841     r_debug.r_state = RT_CONSISTENT;
1842 }
1843 
1844 /*
1845  * Retrieve the array of supported page sizes.  The kernel provides the page
1846  * sizes in increasing order.
1847  */
1848 static void
1849 init_pagesizes(Elf_Auxinfo **aux_info)
1850 {
1851 	static size_t psa[MAXPAGESIZES];
1852 	int mib[2];
1853 	size_t len, size;
1854 
1855 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1856 	    NULL) {
1857 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1858 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1859 	} else {
1860 		len = 2;
1861 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1862 			size = sizeof(psa);
1863 		else {
1864 			/* As a fallback, retrieve the base page size. */
1865 			size = sizeof(psa[0]);
1866 			if (aux_info[AT_PAGESZ] != NULL) {
1867 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1868 				goto psa_filled;
1869 			} else {
1870 				mib[0] = CTL_HW;
1871 				mib[1] = HW_PAGESIZE;
1872 				len = 2;
1873 			}
1874 		}
1875 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1876 			_rtld_error("sysctl for hw.pagesize(s) failed");
1877 			die();
1878 		}
1879 psa_filled:
1880 		pagesizes = psa;
1881 	}
1882 	npagesizes = size / sizeof(pagesizes[0]);
1883 	/* Discard any invalid entries at the end of the array. */
1884 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1885 		npagesizes--;
1886 }
1887 
1888 /*
1889  * Add the init functions from a needed object list (and its recursive
1890  * needed objects) to "list".  This is not used directly; it is a helper
1891  * function for initlist_add_objects().  The write lock must be held
1892  * when this function is called.
1893  */
1894 static void
1895 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1896 {
1897     /* Recursively process the successor needed objects. */
1898     if (needed->next != NULL)
1899 	initlist_add_neededs(needed->next, list);
1900 
1901     /* Process the current needed object. */
1902     if (needed->obj != NULL)
1903 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1904 }
1905 
1906 /*
1907  * Scan all of the DAGs rooted in the range of objects from "obj" to
1908  * "tail" and add their init functions to "list".  This recurses over
1909  * the DAGs and ensure the proper init ordering such that each object's
1910  * needed libraries are initialized before the object itself.  At the
1911  * same time, this function adds the objects to the global finalization
1912  * list "list_fini" in the opposite order.  The write lock must be
1913  * held when this function is called.
1914  */
1915 static void
1916 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1917 {
1918 
1919     if (obj->init_scanned || obj->init_done)
1920 	return;
1921     obj->init_scanned = true;
1922 
1923     /* Recursively process the successor objects. */
1924     if (&obj->next != tail)
1925 	initlist_add_objects(obj->next, tail, list);
1926 
1927     /* Recursively process the needed objects. */
1928     if (obj->needed != NULL)
1929 	initlist_add_neededs(obj->needed, list);
1930     if (obj->needed_filtees != NULL)
1931 	initlist_add_neededs(obj->needed_filtees, list);
1932     if (obj->needed_aux_filtees != NULL)
1933 	initlist_add_neededs(obj->needed_aux_filtees, list);
1934 
1935     /* Add the object to the init list. */
1936     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1937       obj->init_array != (Elf_Addr)NULL)
1938 	objlist_push_tail(list, obj);
1939 
1940     /* Add the object to the global fini list in the reverse order. */
1941     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1942       && !obj->on_fini_list) {
1943 	objlist_push_head(&list_fini, obj);
1944 	obj->on_fini_list = true;
1945     }
1946 }
1947 
1948 #ifndef FPTR_TARGET
1949 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1950 #endif
1951 
1952 static void
1953 free_needed_filtees(Needed_Entry *n)
1954 {
1955     Needed_Entry *needed, *needed1;
1956 
1957     for (needed = n; needed != NULL; needed = needed->next) {
1958 	if (needed->obj != NULL) {
1959 	    dlclose(needed->obj);
1960 	    needed->obj = NULL;
1961 	}
1962     }
1963     for (needed = n; needed != NULL; needed = needed1) {
1964 	needed1 = needed->next;
1965 	free(needed);
1966     }
1967 }
1968 
1969 static void
1970 unload_filtees(Obj_Entry *obj)
1971 {
1972 
1973     free_needed_filtees(obj->needed_filtees);
1974     obj->needed_filtees = NULL;
1975     free_needed_filtees(obj->needed_aux_filtees);
1976     obj->needed_aux_filtees = NULL;
1977     obj->filtees_loaded = false;
1978 }
1979 
1980 static void
1981 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1982     RtldLockState *lockstate)
1983 {
1984 
1985     for (; needed != NULL; needed = needed->next) {
1986 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1987 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1988 	  RTLD_LOCAL, lockstate);
1989     }
1990 }
1991 
1992 static void
1993 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1994 {
1995 
1996     lock_restart_for_upgrade(lockstate);
1997     if (!obj->filtees_loaded) {
1998 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1999 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2000 	obj->filtees_loaded = true;
2001     }
2002 }
2003 
2004 static int
2005 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2006 {
2007     Obj_Entry *obj1;
2008 
2009     for (; needed != NULL; needed = needed->next) {
2010 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2011 	  flags & ~RTLD_LO_NOLOAD);
2012 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2013 	    return (-1);
2014     }
2015     return (0);
2016 }
2017 
2018 /*
2019  * Given a shared object, traverse its list of needed objects, and load
2020  * each of them.  Returns 0 on success.  Generates an error message and
2021  * returns -1 on failure.
2022  */
2023 static int
2024 load_needed_objects(Obj_Entry *first, int flags)
2025 {
2026     Obj_Entry *obj;
2027 
2028     for (obj = first;  obj != NULL;  obj = obj->next) {
2029 	if (process_needed(obj, obj->needed, flags) == -1)
2030 	    return (-1);
2031     }
2032     return (0);
2033 }
2034 
2035 static int
2036 load_preload_objects(void)
2037 {
2038     char *p = ld_preload;
2039     Obj_Entry *obj;
2040     static const char delim[] = " \t:;";
2041 
2042     if (p == NULL)
2043 	return 0;
2044 
2045     p += strspn(p, delim);
2046     while (*p != '\0') {
2047 	size_t len = strcspn(p, delim);
2048 	char savech;
2049 
2050 	savech = p[len];
2051 	p[len] = '\0';
2052 	obj = load_object(p, -1, NULL, 0);
2053 	if (obj == NULL)
2054 	    return -1;	/* XXX - cleanup */
2055 	obj->z_interpose = true;
2056 	p[len] = savech;
2057 	p += len;
2058 	p += strspn(p, delim);
2059     }
2060     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2061     return 0;
2062 }
2063 
2064 static const char *
2065 printable_path(const char *path)
2066 {
2067 
2068 	return (path == NULL ? "<unknown>" : path);
2069 }
2070 
2071 /*
2072  * Load a shared object into memory, if it is not already loaded.  The
2073  * object may be specified by name or by user-supplied file descriptor
2074  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2075  * duplicate is.
2076  *
2077  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2078  * on failure.
2079  */
2080 static Obj_Entry *
2081 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2082 {
2083     Obj_Entry *obj;
2084     int fd;
2085     struct stat sb;
2086     char *path;
2087 
2088     if (name != NULL) {
2089 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2090 	    if (object_match_name(obj, name))
2091 		return (obj);
2092 	}
2093 
2094 	path = find_library(name, refobj);
2095 	if (path == NULL)
2096 	    return (NULL);
2097     } else
2098 	path = NULL;
2099 
2100     /*
2101      * If we didn't find a match by pathname, or the name is not
2102      * supplied, open the file and check again by device and inode.
2103      * This avoids false mismatches caused by multiple links or ".."
2104      * in pathnames.
2105      *
2106      * To avoid a race, we open the file and use fstat() rather than
2107      * using stat().
2108      */
2109     fd = -1;
2110     if (fd_u == -1) {
2111 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2112 	    _rtld_error("Cannot open \"%s\"", path);
2113 	    free(path);
2114 	    return (NULL);
2115 	}
2116     } else {
2117 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2118 	if (fd == -1) {
2119 	    _rtld_error("Cannot dup fd");
2120 	    free(path);
2121 	    return (NULL);
2122 	}
2123     }
2124     if (fstat(fd, &sb) == -1) {
2125 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2126 	close(fd);
2127 	free(path);
2128 	return NULL;
2129     }
2130     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2131 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2132 	    break;
2133     if (obj != NULL && name != NULL) {
2134 	object_add_name(obj, name);
2135 	free(path);
2136 	close(fd);
2137 	return obj;
2138     }
2139     if (flags & RTLD_LO_NOLOAD) {
2140 	free(path);
2141 	close(fd);
2142 	return (NULL);
2143     }
2144 
2145     /* First use of this object, so we must map it in */
2146     obj = do_load_object(fd, name, path, &sb, flags);
2147     if (obj == NULL)
2148 	free(path);
2149     close(fd);
2150 
2151     return obj;
2152 }
2153 
2154 static Obj_Entry *
2155 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2156   int flags)
2157 {
2158     Obj_Entry *obj;
2159     struct statfs fs;
2160 
2161     /*
2162      * but first, make sure that environment variables haven't been
2163      * used to circumvent the noexec flag on a filesystem.
2164      */
2165     if (dangerous_ld_env) {
2166 	if (fstatfs(fd, &fs) != 0) {
2167 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2168 	    return NULL;
2169 	}
2170 	if (fs.f_flags & MNT_NOEXEC) {
2171 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2172 	    return NULL;
2173 	}
2174     }
2175     dbg("loading \"%s\"", printable_path(path));
2176     obj = map_object(fd, printable_path(path), sbp);
2177     if (obj == NULL)
2178         return NULL;
2179 
2180     /*
2181      * If DT_SONAME is present in the object, digest_dynamic2 already
2182      * added it to the object names.
2183      */
2184     if (name != NULL)
2185 	object_add_name(obj, name);
2186     obj->path = path;
2187     digest_dynamic(obj, 0);
2188     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2189 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2190     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2191       RTLD_LO_DLOPEN) {
2192 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2193 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2194 	munmap(obj->mapbase, obj->mapsize);
2195 	obj_free(obj);
2196 	return (NULL);
2197     }
2198 
2199     *obj_tail = obj;
2200     obj_tail = &obj->next;
2201     obj_count++;
2202     obj_loads++;
2203     linkmap_add(obj);	/* for GDB & dlinfo() */
2204     max_stack_flags |= obj->stack_flags;
2205 
2206     dbg("  %p .. %p: %s", obj->mapbase,
2207          obj->mapbase + obj->mapsize - 1, obj->path);
2208     if (obj->textrel)
2209 	dbg("  WARNING: %s has impure text", obj->path);
2210     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2211 	obj->path);
2212 
2213     return obj;
2214 }
2215 
2216 static Obj_Entry *
2217 obj_from_addr(const void *addr)
2218 {
2219     Obj_Entry *obj;
2220 
2221     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2222 	if (addr < (void *) obj->mapbase)
2223 	    continue;
2224 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2225 	    return obj;
2226     }
2227     return NULL;
2228 }
2229 
2230 static void
2231 preinit_main(void)
2232 {
2233     Elf_Addr *preinit_addr;
2234     int index;
2235 
2236     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2237     if (preinit_addr == NULL)
2238 	return;
2239 
2240     for (index = 0; index < obj_main->preinit_array_num; index++) {
2241 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2242 	    dbg("calling preinit function for %s at %p", obj_main->path,
2243 	      (void *)preinit_addr[index]);
2244 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2245 	      0, 0, obj_main->path);
2246 	    call_init_pointer(obj_main, preinit_addr[index]);
2247 	}
2248     }
2249 }
2250 
2251 /*
2252  * Call the finalization functions for each of the objects in "list"
2253  * belonging to the DAG of "root" and referenced once. If NULL "root"
2254  * is specified, every finalization function will be called regardless
2255  * of the reference count and the list elements won't be freed. All of
2256  * the objects are expected to have non-NULL fini functions.
2257  */
2258 static void
2259 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2260 {
2261     Objlist_Entry *elm;
2262     char *saved_msg;
2263     Elf_Addr *fini_addr;
2264     int index;
2265 
2266     assert(root == NULL || root->refcount == 1);
2267 
2268     /*
2269      * Preserve the current error message since a fini function might
2270      * call into the dynamic linker and overwrite it.
2271      */
2272     saved_msg = errmsg_save();
2273     do {
2274 	STAILQ_FOREACH(elm, list, link) {
2275 	    if (root != NULL && (elm->obj->refcount != 1 ||
2276 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2277 		continue;
2278 	    /* Remove object from fini list to prevent recursive invocation. */
2279 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2280 	    /*
2281 	     * XXX: If a dlopen() call references an object while the
2282 	     * fini function is in progress, we might end up trying to
2283 	     * unload the referenced object in dlclose() or the object
2284 	     * won't be unloaded although its fini function has been
2285 	     * called.
2286 	     */
2287 	    lock_release(rtld_bind_lock, lockstate);
2288 
2289 	    /*
2290 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2291 	     * When this happens, DT_FINI_ARRAY is processed first.
2292 	     */
2293 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2294 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2295 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2296 		  index--) {
2297 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2298 			dbg("calling fini function for %s at %p",
2299 			    elm->obj->path, (void *)fini_addr[index]);
2300 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2301 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2302 			call_initfini_pointer(elm->obj, fini_addr[index]);
2303 		    }
2304 		}
2305 	    }
2306 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2307 		dbg("calling fini function for %s at %p", elm->obj->path,
2308 		    (void *)elm->obj->fini);
2309 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2310 		    0, 0, elm->obj->path);
2311 		call_initfini_pointer(elm->obj, elm->obj->fini);
2312 	    }
2313 	    wlock_acquire(rtld_bind_lock, lockstate);
2314 	    /* No need to free anything if process is going down. */
2315 	    if (root != NULL)
2316 	    	free(elm);
2317 	    /*
2318 	     * We must restart the list traversal after every fini call
2319 	     * because a dlclose() call from the fini function or from
2320 	     * another thread might have modified the reference counts.
2321 	     */
2322 	    break;
2323 	}
2324     } while (elm != NULL);
2325     errmsg_restore(saved_msg);
2326 }
2327 
2328 /*
2329  * Call the initialization functions for each of the objects in
2330  * "list".  All of the objects are expected to have non-NULL init
2331  * functions.
2332  */
2333 static void
2334 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2335 {
2336     Objlist_Entry *elm;
2337     Obj_Entry *obj;
2338     char *saved_msg;
2339     Elf_Addr *init_addr;
2340     int index;
2341 
2342     /*
2343      * Clean init_scanned flag so that objects can be rechecked and
2344      * possibly initialized earlier if any of vectors called below
2345      * cause the change by using dlopen.
2346      */
2347     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2348 	obj->init_scanned = false;
2349 
2350     /*
2351      * Preserve the current error message since an init function might
2352      * call into the dynamic linker and overwrite it.
2353      */
2354     saved_msg = errmsg_save();
2355     STAILQ_FOREACH(elm, list, link) {
2356 	if (elm->obj->init_done) /* Initialized early. */
2357 	    continue;
2358 	/*
2359 	 * Race: other thread might try to use this object before current
2360 	 * one completes the initilization. Not much can be done here
2361 	 * without better locking.
2362 	 */
2363 	elm->obj->init_done = true;
2364 	lock_release(rtld_bind_lock, lockstate);
2365 
2366         /*
2367          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2368          * When this happens, DT_INIT is processed first.
2369          */
2370 	if (elm->obj->init != (Elf_Addr)NULL) {
2371 	    dbg("calling init function for %s at %p", elm->obj->path,
2372 	        (void *)elm->obj->init);
2373 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2374 	        0, 0, elm->obj->path);
2375 	    call_initfini_pointer(elm->obj, elm->obj->init);
2376 	}
2377 	init_addr = (Elf_Addr *)elm->obj->init_array;
2378 	if (init_addr != NULL) {
2379 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2380 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2381 		    dbg("calling init function for %s at %p", elm->obj->path,
2382 			(void *)init_addr[index]);
2383 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2384 			(void *)init_addr[index], 0, 0, elm->obj->path);
2385 		    call_init_pointer(elm->obj, init_addr[index]);
2386 		}
2387 	    }
2388 	}
2389 	wlock_acquire(rtld_bind_lock, lockstate);
2390     }
2391     errmsg_restore(saved_msg);
2392 }
2393 
2394 static void
2395 objlist_clear(Objlist *list)
2396 {
2397     Objlist_Entry *elm;
2398 
2399     while (!STAILQ_EMPTY(list)) {
2400 	elm = STAILQ_FIRST(list);
2401 	STAILQ_REMOVE_HEAD(list, link);
2402 	free(elm);
2403     }
2404 }
2405 
2406 static Objlist_Entry *
2407 objlist_find(Objlist *list, const Obj_Entry *obj)
2408 {
2409     Objlist_Entry *elm;
2410 
2411     STAILQ_FOREACH(elm, list, link)
2412 	if (elm->obj == obj)
2413 	    return elm;
2414     return NULL;
2415 }
2416 
2417 static void
2418 objlist_init(Objlist *list)
2419 {
2420     STAILQ_INIT(list);
2421 }
2422 
2423 static void
2424 objlist_push_head(Objlist *list, Obj_Entry *obj)
2425 {
2426     Objlist_Entry *elm;
2427 
2428     elm = NEW(Objlist_Entry);
2429     elm->obj = obj;
2430     STAILQ_INSERT_HEAD(list, elm, link);
2431 }
2432 
2433 static void
2434 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2435 {
2436     Objlist_Entry *elm;
2437 
2438     elm = NEW(Objlist_Entry);
2439     elm->obj = obj;
2440     STAILQ_INSERT_TAIL(list, elm, link);
2441 }
2442 
2443 static void
2444 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2445 {
2446 	Objlist_Entry *elm, *listelm;
2447 
2448 	STAILQ_FOREACH(listelm, list, link) {
2449 		if (listelm->obj == listobj)
2450 			break;
2451 	}
2452 	elm = NEW(Objlist_Entry);
2453 	elm->obj = obj;
2454 	if (listelm != NULL)
2455 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2456 	else
2457 		STAILQ_INSERT_TAIL(list, elm, link);
2458 }
2459 
2460 static void
2461 objlist_remove(Objlist *list, Obj_Entry *obj)
2462 {
2463     Objlist_Entry *elm;
2464 
2465     if ((elm = objlist_find(list, obj)) != NULL) {
2466 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2467 	free(elm);
2468     }
2469 }
2470 
2471 /*
2472  * Relocate dag rooted in the specified object.
2473  * Returns 0 on success, or -1 on failure.
2474  */
2475 
2476 static int
2477 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2478     int flags, RtldLockState *lockstate)
2479 {
2480 	Objlist_Entry *elm;
2481 	int error;
2482 
2483 	error = 0;
2484 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2485 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2486 		    lockstate);
2487 		if (error == -1)
2488 			break;
2489 	}
2490 	return (error);
2491 }
2492 
2493 /*
2494  * Relocate single object.
2495  * Returns 0 on success, or -1 on failure.
2496  */
2497 static int
2498 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2499     int flags, RtldLockState *lockstate)
2500 {
2501 
2502 	if (obj->relocated)
2503 		return (0);
2504 	obj->relocated = true;
2505 	if (obj != rtldobj)
2506 		dbg("relocating \"%s\"", obj->path);
2507 
2508 	if (obj->symtab == NULL || obj->strtab == NULL ||
2509 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2510 		_rtld_error("%s: Shared object has no run-time symbol table",
2511 			    obj->path);
2512 		return (-1);
2513 	}
2514 
2515 	if (obj->textrel) {
2516 		/* There are relocations to the write-protected text segment. */
2517 		if (mprotect(obj->mapbase, obj->textsize,
2518 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2519 			_rtld_error("%s: Cannot write-enable text segment: %s",
2520 			    obj->path, rtld_strerror(errno));
2521 			return (-1);
2522 		}
2523 	}
2524 
2525 	/* Process the non-PLT relocations. */
2526 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2527 		return (-1);
2528 
2529 	if (obj->textrel) {	/* Re-protected the text segment. */
2530 		if (mprotect(obj->mapbase, obj->textsize,
2531 		    PROT_READ|PROT_EXEC) == -1) {
2532 			_rtld_error("%s: Cannot write-protect text segment: %s",
2533 			    obj->path, rtld_strerror(errno));
2534 			return (-1);
2535 		}
2536 	}
2537 
2538 
2539 	/* Set the special PLT or GOT entries. */
2540 	init_pltgot(obj);
2541 
2542 	/* Process the PLT relocations. */
2543 	if (reloc_plt(obj) == -1)
2544 		return (-1);
2545 	/* Relocate the jump slots if we are doing immediate binding. */
2546 	if (obj->bind_now || bind_now)
2547 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2548 			return (-1);
2549 
2550 	if (obj->relro_size > 0) {
2551 		if (mprotect(obj->relro_page, obj->relro_size,
2552 		    PROT_READ) == -1) {
2553 			_rtld_error("%s: Cannot enforce relro protection: %s",
2554 			    obj->path, rtld_strerror(errno));
2555 			return (-1);
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * Set up the magic number and version in the Obj_Entry.  These
2561 	 * were checked in the crt1.o from the original ElfKit, so we
2562 	 * set them for backward compatibility.
2563 	 */
2564 	obj->magic = RTLD_MAGIC;
2565 	obj->version = RTLD_VERSION;
2566 
2567 	return (0);
2568 }
2569 
2570 /*
2571  * Relocate newly-loaded shared objects.  The argument is a pointer to
2572  * the Obj_Entry for the first such object.  All objects from the first
2573  * to the end of the list of objects are relocated.  Returns 0 on success,
2574  * or -1 on failure.
2575  */
2576 static int
2577 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2578     int flags, RtldLockState *lockstate)
2579 {
2580 	Obj_Entry *obj;
2581 	int error;
2582 
2583 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2584 		error = relocate_object(obj, bind_now, rtldobj, flags,
2585 		    lockstate);
2586 		if (error == -1)
2587 			break;
2588 	}
2589 	return (error);
2590 }
2591 
2592 /*
2593  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2594  * referencing STT_GNU_IFUNC symbols is postponed till the other
2595  * relocations are done.  The indirect functions specified as
2596  * ifunc are allowed to call other symbols, so we need to have
2597  * objects relocated before asking for resolution from indirects.
2598  *
2599  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2600  * instead of the usual lazy handling of PLT slots.  It is
2601  * consistent with how GNU does it.
2602  */
2603 static int
2604 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2605     RtldLockState *lockstate)
2606 {
2607 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2608 		return (-1);
2609 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2610 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2611 		return (-1);
2612 	return (0);
2613 }
2614 
2615 static int
2616 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2617     RtldLockState *lockstate)
2618 {
2619 	Obj_Entry *obj;
2620 
2621 	for (obj = first;  obj != NULL;  obj = obj->next) {
2622 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2623 			return (-1);
2624 	}
2625 	return (0);
2626 }
2627 
2628 static int
2629 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2630     RtldLockState *lockstate)
2631 {
2632 	Objlist_Entry *elm;
2633 
2634 	STAILQ_FOREACH(elm, list, link) {
2635 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2636 		    lockstate) == -1)
2637 			return (-1);
2638 	}
2639 	return (0);
2640 }
2641 
2642 /*
2643  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2644  * before the process exits.
2645  */
2646 static void
2647 rtld_exit(void)
2648 {
2649     RtldLockState lockstate;
2650 
2651     wlock_acquire(rtld_bind_lock, &lockstate);
2652     dbg("rtld_exit()");
2653     objlist_call_fini(&list_fini, NULL, &lockstate);
2654     /* No need to remove the items from the list, since we are exiting. */
2655     if (!libmap_disable)
2656         lm_fini();
2657     lock_release(rtld_bind_lock, &lockstate);
2658 }
2659 
2660 /*
2661  * Iterate over a search path, translate each element, and invoke the
2662  * callback on the result.
2663  */
2664 static void *
2665 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2666 {
2667     const char *trans;
2668     if (path == NULL)
2669 	return (NULL);
2670 
2671     path += strspn(path, ":;");
2672     while (*path != '\0') {
2673 	size_t len;
2674 	char  *res;
2675 
2676 	len = strcspn(path, ":;");
2677 	trans = lm_findn(NULL, path, len);
2678 	if (trans)
2679 	    res = callback(trans, strlen(trans), arg);
2680 	else
2681 	    res = callback(path, len, arg);
2682 
2683 	if (res != NULL)
2684 	    return (res);
2685 
2686 	path += len;
2687 	path += strspn(path, ":;");
2688     }
2689 
2690     return (NULL);
2691 }
2692 
2693 struct try_library_args {
2694     const char	*name;
2695     size_t	 namelen;
2696     char	*buffer;
2697     size_t	 buflen;
2698 };
2699 
2700 static void *
2701 try_library_path(const char *dir, size_t dirlen, void *param)
2702 {
2703     struct try_library_args *arg;
2704 
2705     arg = param;
2706     if (*dir == '/' || trust) {
2707 	char *pathname;
2708 
2709 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2710 		return (NULL);
2711 
2712 	pathname = arg->buffer;
2713 	strncpy(pathname, dir, dirlen);
2714 	pathname[dirlen] = '/';
2715 	strcpy(pathname + dirlen + 1, arg->name);
2716 
2717 	dbg("  Trying \"%s\"", pathname);
2718 	if (access(pathname, F_OK) == 0) {		/* We found it */
2719 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2720 	    strcpy(pathname, arg->buffer);
2721 	    return (pathname);
2722 	}
2723     }
2724     return (NULL);
2725 }
2726 
2727 static char *
2728 search_library_path(const char *name, const char *path)
2729 {
2730     char *p;
2731     struct try_library_args arg;
2732 
2733     if (path == NULL)
2734 	return NULL;
2735 
2736     arg.name = name;
2737     arg.namelen = strlen(name);
2738     arg.buffer = xmalloc(PATH_MAX);
2739     arg.buflen = PATH_MAX;
2740 
2741     p = path_enumerate(path, try_library_path, &arg);
2742 
2743     free(arg.buffer);
2744 
2745     return (p);
2746 }
2747 
2748 int
2749 dlclose(void *handle)
2750 {
2751     Obj_Entry *root;
2752     RtldLockState lockstate;
2753 
2754     wlock_acquire(rtld_bind_lock, &lockstate);
2755     root = dlcheck(handle);
2756     if (root == NULL) {
2757 	lock_release(rtld_bind_lock, &lockstate);
2758 	return -1;
2759     }
2760     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2761 	root->path);
2762 
2763     /* Unreference the object and its dependencies. */
2764     root->dl_refcount--;
2765 
2766     if (root->refcount == 1) {
2767 	/*
2768 	 * The object will be no longer referenced, so we must unload it.
2769 	 * First, call the fini functions.
2770 	 */
2771 	objlist_call_fini(&list_fini, root, &lockstate);
2772 
2773 	unref_dag(root);
2774 
2775 	/* Finish cleaning up the newly-unreferenced objects. */
2776 	GDB_STATE(RT_DELETE,&root->linkmap);
2777 	unload_object(root);
2778 	GDB_STATE(RT_CONSISTENT,NULL);
2779     } else
2780 	unref_dag(root);
2781 
2782     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2783     lock_release(rtld_bind_lock, &lockstate);
2784     return 0;
2785 }
2786 
2787 char *
2788 dlerror(void)
2789 {
2790     char *msg = error_message;
2791     error_message = NULL;
2792     return msg;
2793 }
2794 
2795 /*
2796  * This function is deprecated and has no effect.
2797  */
2798 void
2799 dllockinit(void *context,
2800 	   void *(*lock_create)(void *context),
2801            void (*rlock_acquire)(void *lock),
2802            void (*wlock_acquire)(void *lock),
2803            void (*lock_release)(void *lock),
2804            void (*lock_destroy)(void *lock),
2805 	   void (*context_destroy)(void *context))
2806 {
2807     static void *cur_context;
2808     static void (*cur_context_destroy)(void *);
2809 
2810     /* Just destroy the context from the previous call, if necessary. */
2811     if (cur_context_destroy != NULL)
2812 	cur_context_destroy(cur_context);
2813     cur_context = context;
2814     cur_context_destroy = context_destroy;
2815 }
2816 
2817 void *
2818 dlopen(const char *name, int mode)
2819 {
2820 
2821 	return (rtld_dlopen(name, -1, mode));
2822 }
2823 
2824 void *
2825 fdlopen(int fd, int mode)
2826 {
2827 
2828 	return (rtld_dlopen(NULL, fd, mode));
2829 }
2830 
2831 static void *
2832 rtld_dlopen(const char *name, int fd, int mode)
2833 {
2834     RtldLockState lockstate;
2835     int lo_flags;
2836 
2837     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2838     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2839     if (ld_tracing != NULL) {
2840 	rlock_acquire(rtld_bind_lock, &lockstate);
2841 	if (sigsetjmp(lockstate.env, 0) != 0)
2842 	    lock_upgrade(rtld_bind_lock, &lockstate);
2843 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2844 	lock_release(rtld_bind_lock, &lockstate);
2845     }
2846     lo_flags = RTLD_LO_DLOPEN;
2847     if (mode & RTLD_NODELETE)
2848 	    lo_flags |= RTLD_LO_NODELETE;
2849     if (mode & RTLD_NOLOAD)
2850 	    lo_flags |= RTLD_LO_NOLOAD;
2851     if (ld_tracing != NULL)
2852 	    lo_flags |= RTLD_LO_TRACE;
2853 
2854     return (dlopen_object(name, fd, obj_main, lo_flags,
2855       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2856 }
2857 
2858 static void
2859 dlopen_cleanup(Obj_Entry *obj)
2860 {
2861 
2862 	obj->dl_refcount--;
2863 	unref_dag(obj);
2864 	if (obj->refcount == 0)
2865 		unload_object(obj);
2866 }
2867 
2868 static Obj_Entry *
2869 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2870     int mode, RtldLockState *lockstate)
2871 {
2872     Obj_Entry **old_obj_tail;
2873     Obj_Entry *obj;
2874     Objlist initlist;
2875     RtldLockState mlockstate;
2876     int result;
2877 
2878     objlist_init(&initlist);
2879 
2880     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2881 	wlock_acquire(rtld_bind_lock, &mlockstate);
2882 	lockstate = &mlockstate;
2883     }
2884     GDB_STATE(RT_ADD,NULL);
2885 
2886     old_obj_tail = obj_tail;
2887     obj = NULL;
2888     if (name == NULL && fd == -1) {
2889 	obj = obj_main;
2890 	obj->refcount++;
2891     } else {
2892 	obj = load_object(name, fd, refobj, lo_flags);
2893     }
2894 
2895     if (obj) {
2896 	obj->dl_refcount++;
2897 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2898 	    objlist_push_tail(&list_global, obj);
2899 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2900 	    assert(*old_obj_tail == obj);
2901 	    result = load_needed_objects(obj,
2902 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2903 	    init_dag(obj);
2904 	    ref_dag(obj);
2905 	    if (result != -1)
2906 		result = rtld_verify_versions(&obj->dagmembers);
2907 	    if (result != -1 && ld_tracing)
2908 		goto trace;
2909 	    if (result == -1 || relocate_object_dag(obj,
2910 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2911 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2912 	      lockstate) == -1) {
2913 		dlopen_cleanup(obj);
2914 		obj = NULL;
2915 	    } else if (lo_flags & RTLD_LO_EARLY) {
2916 		/*
2917 		 * Do not call the init functions for early loaded
2918 		 * filtees.  The image is still not initialized enough
2919 		 * for them to work.
2920 		 *
2921 		 * Our object is found by the global object list and
2922 		 * will be ordered among all init calls done right
2923 		 * before transferring control to main.
2924 		 */
2925 	    } else {
2926 		/* Make list of init functions to call. */
2927 		initlist_add_objects(obj, &obj->next, &initlist);
2928 	    }
2929 	    /*
2930 	     * Process all no_delete objects here, given them own
2931 	     * DAGs to prevent their dependencies from being unloaded.
2932 	     * This has to be done after we have loaded all of the
2933 	     * dependencies, so that we do not miss any.
2934 	     */
2935 	    if (obj != NULL)
2936 		process_nodelete(obj);
2937 	} else {
2938 	    /*
2939 	     * Bump the reference counts for objects on this DAG.  If
2940 	     * this is the first dlopen() call for the object that was
2941 	     * already loaded as a dependency, initialize the dag
2942 	     * starting at it.
2943 	     */
2944 	    init_dag(obj);
2945 	    ref_dag(obj);
2946 
2947 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2948 		goto trace;
2949 	}
2950 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2951 	  obj->z_nodelete) && !obj->ref_nodel) {
2952 	    dbg("obj %s nodelete", obj->path);
2953 	    ref_dag(obj);
2954 	    obj->z_nodelete = obj->ref_nodel = true;
2955 	}
2956     }
2957 
2958     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2959 	name);
2960     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2961 
2962     if (!(lo_flags & RTLD_LO_EARLY)) {
2963 	map_stacks_exec(lockstate);
2964     }
2965 
2966     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2967       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2968       lockstate) == -1) {
2969 	objlist_clear(&initlist);
2970 	dlopen_cleanup(obj);
2971 	if (lockstate == &mlockstate)
2972 	    lock_release(rtld_bind_lock, lockstate);
2973 	return (NULL);
2974     }
2975 
2976     if (!(lo_flags & RTLD_LO_EARLY)) {
2977 	/* Call the init functions. */
2978 	objlist_call_init(&initlist, lockstate);
2979     }
2980     objlist_clear(&initlist);
2981     if (lockstate == &mlockstate)
2982 	lock_release(rtld_bind_lock, lockstate);
2983     return obj;
2984 trace:
2985     trace_loaded_objects(obj);
2986     if (lockstate == &mlockstate)
2987 	lock_release(rtld_bind_lock, lockstate);
2988     exit(0);
2989 }
2990 
2991 static void *
2992 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2993     int flags)
2994 {
2995     DoneList donelist;
2996     const Obj_Entry *obj, *defobj;
2997     const Elf_Sym *def;
2998     SymLook req;
2999     RtldLockState lockstate;
3000 #ifndef __ia64__
3001     tls_index ti;
3002 #endif
3003     int res;
3004 
3005     def = NULL;
3006     defobj = NULL;
3007     symlook_init(&req, name);
3008     req.ventry = ve;
3009     req.flags = flags | SYMLOOK_IN_PLT;
3010     req.lockstate = &lockstate;
3011 
3012     rlock_acquire(rtld_bind_lock, &lockstate);
3013     if (sigsetjmp(lockstate.env, 0) != 0)
3014 	    lock_upgrade(rtld_bind_lock, &lockstate);
3015     if (handle == NULL || handle == RTLD_NEXT ||
3016 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3017 
3018 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3019 	    _rtld_error("Cannot determine caller's shared object");
3020 	    lock_release(rtld_bind_lock, &lockstate);
3021 	    return NULL;
3022 	}
3023 	if (handle == NULL) {	/* Just the caller's shared object. */
3024 	    res = symlook_obj(&req, obj);
3025 	    if (res == 0) {
3026 		def = req.sym_out;
3027 		defobj = req.defobj_out;
3028 	    }
3029 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3030 		   handle == RTLD_SELF) { /* ... caller included */
3031 	    if (handle == RTLD_NEXT)
3032 		obj = obj->next;
3033 	    for (; obj != NULL; obj = obj->next) {
3034 		res = symlook_obj(&req, obj);
3035 		if (res == 0) {
3036 		    if (def == NULL ||
3037 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3038 			def = req.sym_out;
3039 			defobj = req.defobj_out;
3040 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3041 			    break;
3042 		    }
3043 		}
3044 	    }
3045 	    /*
3046 	     * Search the dynamic linker itself, and possibly resolve the
3047 	     * symbol from there.  This is how the application links to
3048 	     * dynamic linker services such as dlopen.
3049 	     */
3050 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3051 		res = symlook_obj(&req, &obj_rtld);
3052 		if (res == 0) {
3053 		    def = req.sym_out;
3054 		    defobj = req.defobj_out;
3055 		}
3056 	    }
3057 	} else {
3058 	    assert(handle == RTLD_DEFAULT);
3059 	    res = symlook_default(&req, obj);
3060 	    if (res == 0) {
3061 		defobj = req.defobj_out;
3062 		def = req.sym_out;
3063 	    }
3064 	}
3065     } else {
3066 	if ((obj = dlcheck(handle)) == NULL) {
3067 	    lock_release(rtld_bind_lock, &lockstate);
3068 	    return NULL;
3069 	}
3070 
3071 	donelist_init(&donelist);
3072 	if (obj->mainprog) {
3073             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3074 	    res = symlook_global(&req, &donelist);
3075 	    if (res == 0) {
3076 		def = req.sym_out;
3077 		defobj = req.defobj_out;
3078 	    }
3079 	    /*
3080 	     * Search the dynamic linker itself, and possibly resolve the
3081 	     * symbol from there.  This is how the application links to
3082 	     * dynamic linker services such as dlopen.
3083 	     */
3084 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3085 		res = symlook_obj(&req, &obj_rtld);
3086 		if (res == 0) {
3087 		    def = req.sym_out;
3088 		    defobj = req.defobj_out;
3089 		}
3090 	    }
3091 	}
3092 	else {
3093 	    /* Search the whole DAG rooted at the given object. */
3094 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3095 	    if (res == 0) {
3096 		def = req.sym_out;
3097 		defobj = req.defobj_out;
3098 	    }
3099 	}
3100     }
3101 
3102     if (def != NULL) {
3103 	lock_release(rtld_bind_lock, &lockstate);
3104 
3105 	/*
3106 	 * The value required by the caller is derived from the value
3107 	 * of the symbol. For the ia64 architecture, we need to
3108 	 * construct a function descriptor which the caller can use to
3109 	 * call the function with the right 'gp' value. For other
3110 	 * architectures and for non-functions, the value is simply
3111 	 * the relocated value of the symbol.
3112 	 */
3113 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3114 	    return (make_function_pointer(def, defobj));
3115 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3116 	    return (rtld_resolve_ifunc(defobj, def));
3117 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3118 #ifdef __ia64__
3119 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3120 #else
3121 	    ti.ti_module = defobj->tlsindex;
3122 	    ti.ti_offset = def->st_value;
3123 	    return (__tls_get_addr(&ti));
3124 #endif
3125 	} else
3126 	    return (defobj->relocbase + def->st_value);
3127     }
3128 
3129     _rtld_error("Undefined symbol \"%s\"", name);
3130     lock_release(rtld_bind_lock, &lockstate);
3131     return NULL;
3132 }
3133 
3134 void *
3135 dlsym(void *handle, const char *name)
3136 {
3137 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3138 	    SYMLOOK_DLSYM);
3139 }
3140 
3141 dlfunc_t
3142 dlfunc(void *handle, const char *name)
3143 {
3144 	union {
3145 		void *d;
3146 		dlfunc_t f;
3147 	} rv;
3148 
3149 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3150 	    SYMLOOK_DLSYM);
3151 	return (rv.f);
3152 }
3153 
3154 void *
3155 dlvsym(void *handle, const char *name, const char *version)
3156 {
3157 	Ver_Entry ventry;
3158 
3159 	ventry.name = version;
3160 	ventry.file = NULL;
3161 	ventry.hash = elf_hash(version);
3162 	ventry.flags= 0;
3163 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3164 	    SYMLOOK_DLSYM);
3165 }
3166 
3167 int
3168 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3169 {
3170     const Obj_Entry *obj;
3171     RtldLockState lockstate;
3172 
3173     rlock_acquire(rtld_bind_lock, &lockstate);
3174     obj = obj_from_addr(addr);
3175     if (obj == NULL) {
3176         _rtld_error("No shared object contains address");
3177 	lock_release(rtld_bind_lock, &lockstate);
3178         return (0);
3179     }
3180     rtld_fill_dl_phdr_info(obj, phdr_info);
3181     lock_release(rtld_bind_lock, &lockstate);
3182     return (1);
3183 }
3184 
3185 int
3186 dladdr(const void *addr, Dl_info *info)
3187 {
3188     const Obj_Entry *obj;
3189     const Elf_Sym *def;
3190     void *symbol_addr;
3191     unsigned long symoffset;
3192     RtldLockState lockstate;
3193 
3194     rlock_acquire(rtld_bind_lock, &lockstate);
3195     obj = obj_from_addr(addr);
3196     if (obj == NULL) {
3197         _rtld_error("No shared object contains address");
3198 	lock_release(rtld_bind_lock, &lockstate);
3199         return 0;
3200     }
3201     info->dli_fname = obj->path;
3202     info->dli_fbase = obj->mapbase;
3203     info->dli_saddr = (void *)0;
3204     info->dli_sname = NULL;
3205 
3206     /*
3207      * Walk the symbol list looking for the symbol whose address is
3208      * closest to the address sent in.
3209      */
3210     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3211         def = obj->symtab + symoffset;
3212 
3213         /*
3214          * For skip the symbol if st_shndx is either SHN_UNDEF or
3215          * SHN_COMMON.
3216          */
3217         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3218             continue;
3219 
3220         /*
3221          * If the symbol is greater than the specified address, or if it
3222          * is further away from addr than the current nearest symbol,
3223          * then reject it.
3224          */
3225         symbol_addr = obj->relocbase + def->st_value;
3226         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3227             continue;
3228 
3229         /* Update our idea of the nearest symbol. */
3230         info->dli_sname = obj->strtab + def->st_name;
3231         info->dli_saddr = symbol_addr;
3232 
3233         /* Exact match? */
3234         if (info->dli_saddr == addr)
3235             break;
3236     }
3237     lock_release(rtld_bind_lock, &lockstate);
3238     return 1;
3239 }
3240 
3241 int
3242 dlinfo(void *handle, int request, void *p)
3243 {
3244     const Obj_Entry *obj;
3245     RtldLockState lockstate;
3246     int error;
3247 
3248     rlock_acquire(rtld_bind_lock, &lockstate);
3249 
3250     if (handle == NULL || handle == RTLD_SELF) {
3251 	void *retaddr;
3252 
3253 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3254 	if ((obj = obj_from_addr(retaddr)) == NULL)
3255 	    _rtld_error("Cannot determine caller's shared object");
3256     } else
3257 	obj = dlcheck(handle);
3258 
3259     if (obj == NULL) {
3260 	lock_release(rtld_bind_lock, &lockstate);
3261 	return (-1);
3262     }
3263 
3264     error = 0;
3265     switch (request) {
3266     case RTLD_DI_LINKMAP:
3267 	*((struct link_map const **)p) = &obj->linkmap;
3268 	break;
3269     case RTLD_DI_ORIGIN:
3270 	error = rtld_dirname(obj->path, p);
3271 	break;
3272 
3273     case RTLD_DI_SERINFOSIZE:
3274     case RTLD_DI_SERINFO:
3275 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3276 	break;
3277 
3278     default:
3279 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3280 	error = -1;
3281     }
3282 
3283     lock_release(rtld_bind_lock, &lockstate);
3284 
3285     return (error);
3286 }
3287 
3288 static void
3289 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3290 {
3291 
3292 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3293 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3294 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3295 	phdr_info->dlpi_phdr = obj->phdr;
3296 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3297 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3298 	phdr_info->dlpi_tls_data = obj->tlsinit;
3299 	phdr_info->dlpi_adds = obj_loads;
3300 	phdr_info->dlpi_subs = obj_loads - obj_count;
3301 }
3302 
3303 int
3304 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3305 {
3306     struct dl_phdr_info phdr_info;
3307     const Obj_Entry *obj;
3308     RtldLockState bind_lockstate, phdr_lockstate;
3309     int error;
3310 
3311     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3312     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3313 
3314     error = 0;
3315 
3316     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3317 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3318 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3319 		break;
3320 
3321     }
3322     if (error == 0) {
3323 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3324 	error = callback(&phdr_info, sizeof(phdr_info), param);
3325     }
3326 
3327     lock_release(rtld_bind_lock, &bind_lockstate);
3328     lock_release(rtld_phdr_lock, &phdr_lockstate);
3329 
3330     return (error);
3331 }
3332 
3333 static void *
3334 fill_search_info(const char *dir, size_t dirlen, void *param)
3335 {
3336     struct fill_search_info_args *arg;
3337 
3338     arg = param;
3339 
3340     if (arg->request == RTLD_DI_SERINFOSIZE) {
3341 	arg->serinfo->dls_cnt ++;
3342 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3343     } else {
3344 	struct dl_serpath *s_entry;
3345 
3346 	s_entry = arg->serpath;
3347 	s_entry->dls_name  = arg->strspace;
3348 	s_entry->dls_flags = arg->flags;
3349 
3350 	strncpy(arg->strspace, dir, dirlen);
3351 	arg->strspace[dirlen] = '\0';
3352 
3353 	arg->strspace += dirlen + 1;
3354 	arg->serpath++;
3355     }
3356 
3357     return (NULL);
3358 }
3359 
3360 static int
3361 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3362 {
3363     struct dl_serinfo _info;
3364     struct fill_search_info_args args;
3365 
3366     args.request = RTLD_DI_SERINFOSIZE;
3367     args.serinfo = &_info;
3368 
3369     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3370     _info.dls_cnt  = 0;
3371 
3372     path_enumerate(obj->rpath, fill_search_info, &args);
3373     path_enumerate(ld_library_path, fill_search_info, &args);
3374     path_enumerate(obj->runpath, fill_search_info, &args);
3375     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3376     if (!obj->z_nodeflib)
3377       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3378 
3379 
3380     if (request == RTLD_DI_SERINFOSIZE) {
3381 	info->dls_size = _info.dls_size;
3382 	info->dls_cnt = _info.dls_cnt;
3383 	return (0);
3384     }
3385 
3386     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3387 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3388 	return (-1);
3389     }
3390 
3391     args.request  = RTLD_DI_SERINFO;
3392     args.serinfo  = info;
3393     args.serpath  = &info->dls_serpath[0];
3394     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3395 
3396     args.flags = LA_SER_RUNPATH;
3397     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3398 	return (-1);
3399 
3400     args.flags = LA_SER_LIBPATH;
3401     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3402 	return (-1);
3403 
3404     args.flags = LA_SER_RUNPATH;
3405     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3406 	return (-1);
3407 
3408     args.flags = LA_SER_CONFIG;
3409     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3410       != NULL)
3411 	return (-1);
3412 
3413     args.flags = LA_SER_DEFAULT;
3414     if (!obj->z_nodeflib &&
3415       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3416 	return (-1);
3417     return (0);
3418 }
3419 
3420 static int
3421 rtld_dirname(const char *path, char *bname)
3422 {
3423     const char *endp;
3424 
3425     /* Empty or NULL string gets treated as "." */
3426     if (path == NULL || *path == '\0') {
3427 	bname[0] = '.';
3428 	bname[1] = '\0';
3429 	return (0);
3430     }
3431 
3432     /* Strip trailing slashes */
3433     endp = path + strlen(path) - 1;
3434     while (endp > path && *endp == '/')
3435 	endp--;
3436 
3437     /* Find the start of the dir */
3438     while (endp > path && *endp != '/')
3439 	endp--;
3440 
3441     /* Either the dir is "/" or there are no slashes */
3442     if (endp == path) {
3443 	bname[0] = *endp == '/' ? '/' : '.';
3444 	bname[1] = '\0';
3445 	return (0);
3446     } else {
3447 	do {
3448 	    endp--;
3449 	} while (endp > path && *endp == '/');
3450     }
3451 
3452     if (endp - path + 2 > PATH_MAX)
3453     {
3454 	_rtld_error("Filename is too long: %s", path);
3455 	return(-1);
3456     }
3457 
3458     strncpy(bname, path, endp - path + 1);
3459     bname[endp - path + 1] = '\0';
3460     return (0);
3461 }
3462 
3463 static int
3464 rtld_dirname_abs(const char *path, char *base)
3465 {
3466 	char base_rel[PATH_MAX];
3467 
3468 	if (rtld_dirname(path, base) == -1)
3469 		return (-1);
3470 	if (base[0] == '/')
3471 		return (0);
3472 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3473 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3474 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3475 		return (-1);
3476 	strcpy(base, base_rel);
3477 	return (0);
3478 }
3479 
3480 static void
3481 linkmap_add(Obj_Entry *obj)
3482 {
3483     struct link_map *l = &obj->linkmap;
3484     struct link_map *prev;
3485 
3486     obj->linkmap.l_name = obj->path;
3487     obj->linkmap.l_addr = obj->mapbase;
3488     obj->linkmap.l_ld = obj->dynamic;
3489 #ifdef __mips__
3490     /* GDB needs load offset on MIPS to use the symbols */
3491     obj->linkmap.l_offs = obj->relocbase;
3492 #endif
3493 
3494     if (r_debug.r_map == NULL) {
3495 	r_debug.r_map = l;
3496 	return;
3497     }
3498 
3499     /*
3500      * Scan to the end of the list, but not past the entry for the
3501      * dynamic linker, which we want to keep at the very end.
3502      */
3503     for (prev = r_debug.r_map;
3504       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3505       prev = prev->l_next)
3506 	;
3507 
3508     /* Link in the new entry. */
3509     l->l_prev = prev;
3510     l->l_next = prev->l_next;
3511     if (l->l_next != NULL)
3512 	l->l_next->l_prev = l;
3513     prev->l_next = l;
3514 }
3515 
3516 static void
3517 linkmap_delete(Obj_Entry *obj)
3518 {
3519     struct link_map *l = &obj->linkmap;
3520 
3521     if (l->l_prev == NULL) {
3522 	if ((r_debug.r_map = l->l_next) != NULL)
3523 	    l->l_next->l_prev = NULL;
3524 	return;
3525     }
3526 
3527     if ((l->l_prev->l_next = l->l_next) != NULL)
3528 	l->l_next->l_prev = l->l_prev;
3529 }
3530 
3531 /*
3532  * Function for the debugger to set a breakpoint on to gain control.
3533  *
3534  * The two parameters allow the debugger to easily find and determine
3535  * what the runtime loader is doing and to whom it is doing it.
3536  *
3537  * When the loadhook trap is hit (r_debug_state, set at program
3538  * initialization), the arguments can be found on the stack:
3539  *
3540  *  +8   struct link_map *m
3541  *  +4   struct r_debug  *rd
3542  *  +0   RetAddr
3543  */
3544 void
3545 r_debug_state(struct r_debug* rd, struct link_map *m)
3546 {
3547     /*
3548      * The following is a hack to force the compiler to emit calls to
3549      * this function, even when optimizing.  If the function is empty,
3550      * the compiler is not obliged to emit any code for calls to it,
3551      * even when marked __noinline.  However, gdb depends on those
3552      * calls being made.
3553      */
3554     __compiler_membar();
3555 }
3556 
3557 /*
3558  * A function called after init routines have completed. This can be used to
3559  * break before a program's entry routine is called, and can be used when
3560  * main is not available in the symbol table.
3561  */
3562 void
3563 _r_debug_postinit(struct link_map *m)
3564 {
3565 
3566 	/* See r_debug_state(). */
3567 	__compiler_membar();
3568 }
3569 
3570 /*
3571  * Get address of the pointer variable in the main program.
3572  * Prefer non-weak symbol over the weak one.
3573  */
3574 static const void **
3575 get_program_var_addr(const char *name, RtldLockState *lockstate)
3576 {
3577     SymLook req;
3578     DoneList donelist;
3579 
3580     symlook_init(&req, name);
3581     req.lockstate = lockstate;
3582     donelist_init(&donelist);
3583     if (symlook_global(&req, &donelist) != 0)
3584 	return (NULL);
3585     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3586 	return ((const void **)make_function_pointer(req.sym_out,
3587 	  req.defobj_out));
3588     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3589 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3590     else
3591 	return ((const void **)(req.defobj_out->relocbase +
3592 	  req.sym_out->st_value));
3593 }
3594 
3595 /*
3596  * Set a pointer variable in the main program to the given value.  This
3597  * is used to set key variables such as "environ" before any of the
3598  * init functions are called.
3599  */
3600 static void
3601 set_program_var(const char *name, const void *value)
3602 {
3603     const void **addr;
3604 
3605     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3606 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3607 	*addr = value;
3608     }
3609 }
3610 
3611 /*
3612  * Search the global objects, including dependencies and main object,
3613  * for the given symbol.
3614  */
3615 static int
3616 symlook_global(SymLook *req, DoneList *donelist)
3617 {
3618     SymLook req1;
3619     const Objlist_Entry *elm;
3620     int res;
3621 
3622     symlook_init_from_req(&req1, req);
3623 
3624     /* Search all objects loaded at program start up. */
3625     if (req->defobj_out == NULL ||
3626       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3627 	res = symlook_list(&req1, &list_main, donelist);
3628 	if (res == 0 && (req->defobj_out == NULL ||
3629 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3630 	    req->sym_out = req1.sym_out;
3631 	    req->defobj_out = req1.defobj_out;
3632 	    assert(req->defobj_out != NULL);
3633 	}
3634     }
3635 
3636     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3637     STAILQ_FOREACH(elm, &list_global, link) {
3638 	if (req->defobj_out != NULL &&
3639 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3640 	    break;
3641 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3642 	if (res == 0 && (req->defobj_out == NULL ||
3643 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3644 	    req->sym_out = req1.sym_out;
3645 	    req->defobj_out = req1.defobj_out;
3646 	    assert(req->defobj_out != NULL);
3647 	}
3648     }
3649 
3650     return (req->sym_out != NULL ? 0 : ESRCH);
3651 }
3652 
3653 /*
3654  * Given a symbol name in a referencing object, find the corresponding
3655  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3656  * no definition was found.  Returns a pointer to the Obj_Entry of the
3657  * defining object via the reference parameter DEFOBJ_OUT.
3658  */
3659 static int
3660 symlook_default(SymLook *req, const Obj_Entry *refobj)
3661 {
3662     DoneList donelist;
3663     const Objlist_Entry *elm;
3664     SymLook req1;
3665     int res;
3666 
3667     donelist_init(&donelist);
3668     symlook_init_from_req(&req1, req);
3669 
3670     /* Look first in the referencing object if linked symbolically. */
3671     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3672 	res = symlook_obj(&req1, refobj);
3673 	if (res == 0) {
3674 	    req->sym_out = req1.sym_out;
3675 	    req->defobj_out = req1.defobj_out;
3676 	    assert(req->defobj_out != NULL);
3677 	}
3678     }
3679 
3680     symlook_global(req, &donelist);
3681 
3682     /* Search all dlopened DAGs containing the referencing object. */
3683     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3684 	if (req->sym_out != NULL &&
3685 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3686 	    break;
3687 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3688 	if (res == 0 && (req->sym_out == NULL ||
3689 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3690 	    req->sym_out = req1.sym_out;
3691 	    req->defobj_out = req1.defobj_out;
3692 	    assert(req->defobj_out != NULL);
3693 	}
3694     }
3695 
3696     /*
3697      * Search the dynamic linker itself, and possibly resolve the
3698      * symbol from there.  This is how the application links to
3699      * dynamic linker services such as dlopen.
3700      */
3701     if (req->sym_out == NULL ||
3702       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3703 	res = symlook_obj(&req1, &obj_rtld);
3704 	if (res == 0) {
3705 	    req->sym_out = req1.sym_out;
3706 	    req->defobj_out = req1.defobj_out;
3707 	    assert(req->defobj_out != NULL);
3708 	}
3709     }
3710 
3711     return (req->sym_out != NULL ? 0 : ESRCH);
3712 }
3713 
3714 static int
3715 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3716 {
3717     const Elf_Sym *def;
3718     const Obj_Entry *defobj;
3719     const Objlist_Entry *elm;
3720     SymLook req1;
3721     int res;
3722 
3723     def = NULL;
3724     defobj = NULL;
3725     STAILQ_FOREACH(elm, objlist, link) {
3726 	if (donelist_check(dlp, elm->obj))
3727 	    continue;
3728 	symlook_init_from_req(&req1, req);
3729 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3730 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3731 		def = req1.sym_out;
3732 		defobj = req1.defobj_out;
3733 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3734 		    break;
3735 	    }
3736 	}
3737     }
3738     if (def != NULL) {
3739 	req->sym_out = def;
3740 	req->defobj_out = defobj;
3741 	return (0);
3742     }
3743     return (ESRCH);
3744 }
3745 
3746 /*
3747  * Search the chain of DAGS cointed to by the given Needed_Entry
3748  * for a symbol of the given name.  Each DAG is scanned completely
3749  * before advancing to the next one.  Returns a pointer to the symbol,
3750  * or NULL if no definition was found.
3751  */
3752 static int
3753 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3754 {
3755     const Elf_Sym *def;
3756     const Needed_Entry *n;
3757     const Obj_Entry *defobj;
3758     SymLook req1;
3759     int res;
3760 
3761     def = NULL;
3762     defobj = NULL;
3763     symlook_init_from_req(&req1, req);
3764     for (n = needed; n != NULL; n = n->next) {
3765 	if (n->obj == NULL ||
3766 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3767 	    continue;
3768 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3769 	    def = req1.sym_out;
3770 	    defobj = req1.defobj_out;
3771 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3772 		break;
3773 	}
3774     }
3775     if (def != NULL) {
3776 	req->sym_out = def;
3777 	req->defobj_out = defobj;
3778 	return (0);
3779     }
3780     return (ESRCH);
3781 }
3782 
3783 /*
3784  * Search the symbol table of a single shared object for a symbol of
3785  * the given name and version, if requested.  Returns a pointer to the
3786  * symbol, or NULL if no definition was found.  If the object is
3787  * filter, return filtered symbol from filtee.
3788  *
3789  * The symbol's hash value is passed in for efficiency reasons; that
3790  * eliminates many recomputations of the hash value.
3791  */
3792 int
3793 symlook_obj(SymLook *req, const Obj_Entry *obj)
3794 {
3795     DoneList donelist;
3796     SymLook req1;
3797     int flags, res, mres;
3798 
3799     /*
3800      * If there is at least one valid hash at this point, we prefer to
3801      * use the faster GNU version if available.
3802      */
3803     if (obj->valid_hash_gnu)
3804 	mres = symlook_obj1_gnu(req, obj);
3805     else if (obj->valid_hash_sysv)
3806 	mres = symlook_obj1_sysv(req, obj);
3807     else
3808 	return (EINVAL);
3809 
3810     if (mres == 0) {
3811 	if (obj->needed_filtees != NULL) {
3812 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3813 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3814 	    donelist_init(&donelist);
3815 	    symlook_init_from_req(&req1, req);
3816 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3817 	    if (res == 0) {
3818 		req->sym_out = req1.sym_out;
3819 		req->defobj_out = req1.defobj_out;
3820 	    }
3821 	    return (res);
3822 	}
3823 	if (obj->needed_aux_filtees != NULL) {
3824 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3825 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3826 	    donelist_init(&donelist);
3827 	    symlook_init_from_req(&req1, req);
3828 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3829 	    if (res == 0) {
3830 		req->sym_out = req1.sym_out;
3831 		req->defobj_out = req1.defobj_out;
3832 		return (res);
3833 	    }
3834 	}
3835     }
3836     return (mres);
3837 }
3838 
3839 /* Symbol match routine common to both hash functions */
3840 static bool
3841 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3842     const unsigned long symnum)
3843 {
3844 	Elf_Versym verndx;
3845 	const Elf_Sym *symp;
3846 	const char *strp;
3847 
3848 	symp = obj->symtab + symnum;
3849 	strp = obj->strtab + symp->st_name;
3850 
3851 	switch (ELF_ST_TYPE(symp->st_info)) {
3852 	case STT_FUNC:
3853 	case STT_NOTYPE:
3854 	case STT_OBJECT:
3855 	case STT_COMMON:
3856 	case STT_GNU_IFUNC:
3857 		if (symp->st_value == 0)
3858 			return (false);
3859 		/* fallthrough */
3860 	case STT_TLS:
3861 		if (symp->st_shndx != SHN_UNDEF)
3862 			break;
3863 #ifndef __mips__
3864 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3865 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3866 			break;
3867 		/* fallthrough */
3868 #endif
3869 	default:
3870 		return (false);
3871 	}
3872 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3873 		return (false);
3874 
3875 	if (req->ventry == NULL) {
3876 		if (obj->versyms != NULL) {
3877 			verndx = VER_NDX(obj->versyms[symnum]);
3878 			if (verndx > obj->vernum) {
3879 				_rtld_error(
3880 				    "%s: symbol %s references wrong version %d",
3881 				    obj->path, obj->strtab + symnum, verndx);
3882 				return (false);
3883 			}
3884 			/*
3885 			 * If we are not called from dlsym (i.e. this
3886 			 * is a normal relocation from unversioned
3887 			 * binary), accept the symbol immediately if
3888 			 * it happens to have first version after this
3889 			 * shared object became versioned.  Otherwise,
3890 			 * if symbol is versioned and not hidden,
3891 			 * remember it. If it is the only symbol with
3892 			 * this name exported by the shared object, it
3893 			 * will be returned as a match by the calling
3894 			 * function. If symbol is global (verndx < 2)
3895 			 * accept it unconditionally.
3896 			 */
3897 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3898 			    verndx == VER_NDX_GIVEN) {
3899 				result->sym_out = symp;
3900 				return (true);
3901 			}
3902 			else if (verndx >= VER_NDX_GIVEN) {
3903 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3904 				    == 0) {
3905 					if (result->vsymp == NULL)
3906 						result->vsymp = symp;
3907 					result->vcount++;
3908 				}
3909 				return (false);
3910 			}
3911 		}
3912 		result->sym_out = symp;
3913 		return (true);
3914 	}
3915 	if (obj->versyms == NULL) {
3916 		if (object_match_name(obj, req->ventry->name)) {
3917 			_rtld_error("%s: object %s should provide version %s "
3918 			    "for symbol %s", obj_rtld.path, obj->path,
3919 			    req->ventry->name, obj->strtab + symnum);
3920 			return (false);
3921 		}
3922 	} else {
3923 		verndx = VER_NDX(obj->versyms[symnum]);
3924 		if (verndx > obj->vernum) {
3925 			_rtld_error("%s: symbol %s references wrong version %d",
3926 			    obj->path, obj->strtab + symnum, verndx);
3927 			return (false);
3928 		}
3929 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3930 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3931 			/*
3932 			 * Version does not match. Look if this is a
3933 			 * global symbol and if it is not hidden. If
3934 			 * global symbol (verndx < 2) is available,
3935 			 * use it. Do not return symbol if we are
3936 			 * called by dlvsym, because dlvsym looks for
3937 			 * a specific version and default one is not
3938 			 * what dlvsym wants.
3939 			 */
3940 			if ((req->flags & SYMLOOK_DLSYM) ||
3941 			    (verndx >= VER_NDX_GIVEN) ||
3942 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3943 				return (false);
3944 		}
3945 	}
3946 	result->sym_out = symp;
3947 	return (true);
3948 }
3949 
3950 /*
3951  * Search for symbol using SysV hash function.
3952  * obj->buckets is known not to be NULL at this point; the test for this was
3953  * performed with the obj->valid_hash_sysv assignment.
3954  */
3955 static int
3956 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3957 {
3958 	unsigned long symnum;
3959 	Sym_Match_Result matchres;
3960 
3961 	matchres.sym_out = NULL;
3962 	matchres.vsymp = NULL;
3963 	matchres.vcount = 0;
3964 
3965 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3966 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3967 		if (symnum >= obj->nchains)
3968 			return (ESRCH);	/* Bad object */
3969 
3970 		if (matched_symbol(req, obj, &matchres, symnum)) {
3971 			req->sym_out = matchres.sym_out;
3972 			req->defobj_out = obj;
3973 			return (0);
3974 		}
3975 	}
3976 	if (matchres.vcount == 1) {
3977 		req->sym_out = matchres.vsymp;
3978 		req->defobj_out = obj;
3979 		return (0);
3980 	}
3981 	return (ESRCH);
3982 }
3983 
3984 /* Search for symbol using GNU hash function */
3985 static int
3986 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3987 {
3988 	Elf_Addr bloom_word;
3989 	const Elf32_Word *hashval;
3990 	Elf32_Word bucket;
3991 	Sym_Match_Result matchres;
3992 	unsigned int h1, h2;
3993 	unsigned long symnum;
3994 
3995 	matchres.sym_out = NULL;
3996 	matchres.vsymp = NULL;
3997 	matchres.vcount = 0;
3998 
3999 	/* Pick right bitmask word from Bloom filter array */
4000 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4001 	    obj->maskwords_bm_gnu];
4002 
4003 	/* Calculate modulus word size of gnu hash and its derivative */
4004 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4005 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4006 
4007 	/* Filter out the "definitely not in set" queries */
4008 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4009 		return (ESRCH);
4010 
4011 	/* Locate hash chain and corresponding value element*/
4012 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4013 	if (bucket == 0)
4014 		return (ESRCH);
4015 	hashval = &obj->chain_zero_gnu[bucket];
4016 	do {
4017 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4018 			symnum = hashval - obj->chain_zero_gnu;
4019 			if (matched_symbol(req, obj, &matchres, symnum)) {
4020 				req->sym_out = matchres.sym_out;
4021 				req->defobj_out = obj;
4022 				return (0);
4023 			}
4024 		}
4025 	} while ((*hashval++ & 1) == 0);
4026 	if (matchres.vcount == 1) {
4027 		req->sym_out = matchres.vsymp;
4028 		req->defobj_out = obj;
4029 		return (0);
4030 	}
4031 	return (ESRCH);
4032 }
4033 
4034 static void
4035 trace_loaded_objects(Obj_Entry *obj)
4036 {
4037     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4038     int		c;
4039 
4040     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4041 	main_local = "";
4042 
4043     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4044 	fmt1 = "\t%o => %p (%x)\n";
4045 
4046     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4047 	fmt2 = "\t%o (%x)\n";
4048 
4049     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4050 
4051     for (; obj; obj = obj->next) {
4052 	Needed_Entry		*needed;
4053 	char			*name, *path;
4054 	bool			is_lib;
4055 
4056 	if (list_containers && obj->needed != NULL)
4057 	    rtld_printf("%s:\n", obj->path);
4058 	for (needed = obj->needed; needed; needed = needed->next) {
4059 	    if (needed->obj != NULL) {
4060 		if (needed->obj->traced && !list_containers)
4061 		    continue;
4062 		needed->obj->traced = true;
4063 		path = needed->obj->path;
4064 	    } else
4065 		path = "not found";
4066 
4067 	    name = (char *)obj->strtab + needed->name;
4068 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4069 
4070 	    fmt = is_lib ? fmt1 : fmt2;
4071 	    while ((c = *fmt++) != '\0') {
4072 		switch (c) {
4073 		default:
4074 		    rtld_putchar(c);
4075 		    continue;
4076 		case '\\':
4077 		    switch (c = *fmt) {
4078 		    case '\0':
4079 			continue;
4080 		    case 'n':
4081 			rtld_putchar('\n');
4082 			break;
4083 		    case 't':
4084 			rtld_putchar('\t');
4085 			break;
4086 		    }
4087 		    break;
4088 		case '%':
4089 		    switch (c = *fmt) {
4090 		    case '\0':
4091 			continue;
4092 		    case '%':
4093 		    default:
4094 			rtld_putchar(c);
4095 			break;
4096 		    case 'A':
4097 			rtld_putstr(main_local);
4098 			break;
4099 		    case 'a':
4100 			rtld_putstr(obj_main->path);
4101 			break;
4102 		    case 'o':
4103 			rtld_putstr(name);
4104 			break;
4105 #if 0
4106 		    case 'm':
4107 			rtld_printf("%d", sodp->sod_major);
4108 			break;
4109 		    case 'n':
4110 			rtld_printf("%d", sodp->sod_minor);
4111 			break;
4112 #endif
4113 		    case 'p':
4114 			rtld_putstr(path);
4115 			break;
4116 		    case 'x':
4117 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4118 			  0);
4119 			break;
4120 		    }
4121 		    break;
4122 		}
4123 		++fmt;
4124 	    }
4125 	}
4126     }
4127 }
4128 
4129 /*
4130  * Unload a dlopened object and its dependencies from memory and from
4131  * our data structures.  It is assumed that the DAG rooted in the
4132  * object has already been unreferenced, and that the object has a
4133  * reference count of 0.
4134  */
4135 static void
4136 unload_object(Obj_Entry *root)
4137 {
4138     Obj_Entry *obj;
4139     Obj_Entry **linkp;
4140 
4141     assert(root->refcount == 0);
4142 
4143     /*
4144      * Pass over the DAG removing unreferenced objects from
4145      * appropriate lists.
4146      */
4147     unlink_object(root);
4148 
4149     /* Unmap all objects that are no longer referenced. */
4150     linkp = &obj_list->next;
4151     while ((obj = *linkp) != NULL) {
4152 	if (obj->refcount == 0) {
4153 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4154 		obj->path);
4155 	    dbg("unloading \"%s\"", obj->path);
4156 	    unload_filtees(root);
4157 	    munmap(obj->mapbase, obj->mapsize);
4158 	    linkmap_delete(obj);
4159 	    *linkp = obj->next;
4160 	    obj_count--;
4161 	    obj_free(obj);
4162 	} else
4163 	    linkp = &obj->next;
4164     }
4165     obj_tail = linkp;
4166 }
4167 
4168 static void
4169 unlink_object(Obj_Entry *root)
4170 {
4171     Objlist_Entry *elm;
4172 
4173     if (root->refcount == 0) {
4174 	/* Remove the object from the RTLD_GLOBAL list. */
4175 	objlist_remove(&list_global, root);
4176 
4177     	/* Remove the object from all objects' DAG lists. */
4178     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4179 	    objlist_remove(&elm->obj->dldags, root);
4180 	    if (elm->obj != root)
4181 		unlink_object(elm->obj);
4182 	}
4183     }
4184 }
4185 
4186 static void
4187 ref_dag(Obj_Entry *root)
4188 {
4189     Objlist_Entry *elm;
4190 
4191     assert(root->dag_inited);
4192     STAILQ_FOREACH(elm, &root->dagmembers, link)
4193 	elm->obj->refcount++;
4194 }
4195 
4196 static void
4197 unref_dag(Obj_Entry *root)
4198 {
4199     Objlist_Entry *elm;
4200 
4201     assert(root->dag_inited);
4202     STAILQ_FOREACH(elm, &root->dagmembers, link)
4203 	elm->obj->refcount--;
4204 }
4205 
4206 /*
4207  * Common code for MD __tls_get_addr().
4208  */
4209 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4210 static void *
4211 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4212 {
4213     Elf_Addr *newdtv, *dtv;
4214     RtldLockState lockstate;
4215     int to_copy;
4216 
4217     dtv = *dtvp;
4218     /* Check dtv generation in case new modules have arrived */
4219     if (dtv[0] != tls_dtv_generation) {
4220 	wlock_acquire(rtld_bind_lock, &lockstate);
4221 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4222 	to_copy = dtv[1];
4223 	if (to_copy > tls_max_index)
4224 	    to_copy = tls_max_index;
4225 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4226 	newdtv[0] = tls_dtv_generation;
4227 	newdtv[1] = tls_max_index;
4228 	free(dtv);
4229 	lock_release(rtld_bind_lock, &lockstate);
4230 	dtv = *dtvp = newdtv;
4231     }
4232 
4233     /* Dynamically allocate module TLS if necessary */
4234     if (dtv[index + 1] == 0) {
4235 	/* Signal safe, wlock will block out signals. */
4236 	wlock_acquire(rtld_bind_lock, &lockstate);
4237 	if (!dtv[index + 1])
4238 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4239 	lock_release(rtld_bind_lock, &lockstate);
4240     }
4241     return ((void *)(dtv[index + 1] + offset));
4242 }
4243 
4244 void *
4245 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4246 {
4247 	Elf_Addr *dtv;
4248 
4249 	dtv = *dtvp;
4250 	/* Check dtv generation in case new modules have arrived */
4251 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4252 	    dtv[index + 1] != 0))
4253 		return ((void *)(dtv[index + 1] + offset));
4254 	return (tls_get_addr_slow(dtvp, index, offset));
4255 }
4256 
4257 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4258 
4259 /*
4260  * Allocate Static TLS using the Variant I method.
4261  */
4262 void *
4263 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4264 {
4265     Obj_Entry *obj;
4266     char *tcb;
4267     Elf_Addr **tls;
4268     Elf_Addr *dtv;
4269     Elf_Addr addr;
4270     int i;
4271 
4272     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4273 	return (oldtcb);
4274 
4275     assert(tcbsize >= TLS_TCB_SIZE);
4276     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4277     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4278 
4279     if (oldtcb != NULL) {
4280 	memcpy(tls, oldtcb, tls_static_space);
4281 	free(oldtcb);
4282 
4283 	/* Adjust the DTV. */
4284 	dtv = tls[0];
4285 	for (i = 0; i < dtv[1]; i++) {
4286 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4287 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4288 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4289 	    }
4290 	}
4291     } else {
4292 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4293 	tls[0] = dtv;
4294 	dtv[0] = tls_dtv_generation;
4295 	dtv[1] = tls_max_index;
4296 
4297 	for (obj = objs; obj; obj = obj->next) {
4298 	    if (obj->tlsoffset > 0) {
4299 		addr = (Elf_Addr)tls + obj->tlsoffset;
4300 		if (obj->tlsinitsize > 0)
4301 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4302 		if (obj->tlssize > obj->tlsinitsize)
4303 		    memset((void*) (addr + obj->tlsinitsize), 0,
4304 			   obj->tlssize - obj->tlsinitsize);
4305 		dtv[obj->tlsindex + 1] = addr;
4306 	    }
4307 	}
4308     }
4309 
4310     return (tcb);
4311 }
4312 
4313 void
4314 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4315 {
4316     Elf_Addr *dtv;
4317     Elf_Addr tlsstart, tlsend;
4318     int dtvsize, i;
4319 
4320     assert(tcbsize >= TLS_TCB_SIZE);
4321 
4322     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4323     tlsend = tlsstart + tls_static_space;
4324 
4325     dtv = *(Elf_Addr **)tlsstart;
4326     dtvsize = dtv[1];
4327     for (i = 0; i < dtvsize; i++) {
4328 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4329 	    free((void*)dtv[i+2]);
4330 	}
4331     }
4332     free(dtv);
4333     free(tcb);
4334 }
4335 
4336 #endif
4337 
4338 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4339 
4340 /*
4341  * Allocate Static TLS using the Variant II method.
4342  */
4343 void *
4344 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4345 {
4346     Obj_Entry *obj;
4347     size_t size, ralign;
4348     char *tls;
4349     Elf_Addr *dtv, *olddtv;
4350     Elf_Addr segbase, oldsegbase, addr;
4351     int i;
4352 
4353     ralign = tcbalign;
4354     if (tls_static_max_align > ralign)
4355 	    ralign = tls_static_max_align;
4356     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4357 
4358     assert(tcbsize >= 2*sizeof(Elf_Addr));
4359     tls = malloc_aligned(size, ralign);
4360     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4361 
4362     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4363     ((Elf_Addr*)segbase)[0] = segbase;
4364     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4365 
4366     dtv[0] = tls_dtv_generation;
4367     dtv[1] = tls_max_index;
4368 
4369     if (oldtls) {
4370 	/*
4371 	 * Copy the static TLS block over whole.
4372 	 */
4373 	oldsegbase = (Elf_Addr) oldtls;
4374 	memcpy((void *)(segbase - tls_static_space),
4375 	       (const void *)(oldsegbase - tls_static_space),
4376 	       tls_static_space);
4377 
4378 	/*
4379 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4380 	 * move them over.
4381 	 */
4382 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4383 	for (i = 0; i < olddtv[1]; i++) {
4384 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4385 		dtv[i+2] = olddtv[i+2];
4386 		olddtv[i+2] = 0;
4387 	    }
4388 	}
4389 
4390 	/*
4391 	 * We assume that this block was the one we created with
4392 	 * allocate_initial_tls().
4393 	 */
4394 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4395     } else {
4396 	for (obj = objs; obj; obj = obj->next) {
4397 	    if (obj->tlsoffset) {
4398 		addr = segbase - obj->tlsoffset;
4399 		memset((void*) (addr + obj->tlsinitsize),
4400 		       0, obj->tlssize - obj->tlsinitsize);
4401 		if (obj->tlsinit)
4402 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4403 		dtv[obj->tlsindex + 1] = addr;
4404 	    }
4405 	}
4406     }
4407 
4408     return (void*) segbase;
4409 }
4410 
4411 void
4412 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4413 {
4414     Elf_Addr* dtv;
4415     size_t size, ralign;
4416     int dtvsize, i;
4417     Elf_Addr tlsstart, tlsend;
4418 
4419     /*
4420      * Figure out the size of the initial TLS block so that we can
4421      * find stuff which ___tls_get_addr() allocated dynamically.
4422      */
4423     ralign = tcbalign;
4424     if (tls_static_max_align > ralign)
4425 	    ralign = tls_static_max_align;
4426     size = round(tls_static_space, ralign);
4427 
4428     dtv = ((Elf_Addr**)tls)[1];
4429     dtvsize = dtv[1];
4430     tlsend = (Elf_Addr) tls;
4431     tlsstart = tlsend - size;
4432     for (i = 0; i < dtvsize; i++) {
4433 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4434 		free_aligned((void *)dtv[i + 2]);
4435 	}
4436     }
4437 
4438     free_aligned((void *)tlsstart);
4439     free((void*) dtv);
4440 }
4441 
4442 #endif
4443 
4444 /*
4445  * Allocate TLS block for module with given index.
4446  */
4447 void *
4448 allocate_module_tls(int index)
4449 {
4450     Obj_Entry* obj;
4451     char* p;
4452 
4453     for (obj = obj_list; obj; obj = obj->next) {
4454 	if (obj->tlsindex == index)
4455 	    break;
4456     }
4457     if (!obj) {
4458 	_rtld_error("Can't find module with TLS index %d", index);
4459 	die();
4460     }
4461 
4462     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4463     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4464     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4465 
4466     return p;
4467 }
4468 
4469 bool
4470 allocate_tls_offset(Obj_Entry *obj)
4471 {
4472     size_t off;
4473 
4474     if (obj->tls_done)
4475 	return true;
4476 
4477     if (obj->tlssize == 0) {
4478 	obj->tls_done = true;
4479 	return true;
4480     }
4481 
4482     if (obj->tlsindex == 1)
4483 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4484     else
4485 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4486 				   obj->tlssize, obj->tlsalign);
4487 
4488     /*
4489      * If we have already fixed the size of the static TLS block, we
4490      * must stay within that size. When allocating the static TLS, we
4491      * leave a small amount of space spare to be used for dynamically
4492      * loading modules which use static TLS.
4493      */
4494     if (tls_static_space != 0) {
4495 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4496 	    return false;
4497     } else if (obj->tlsalign > tls_static_max_align) {
4498 	    tls_static_max_align = obj->tlsalign;
4499     }
4500 
4501     tls_last_offset = obj->tlsoffset = off;
4502     tls_last_size = obj->tlssize;
4503     obj->tls_done = true;
4504 
4505     return true;
4506 }
4507 
4508 void
4509 free_tls_offset(Obj_Entry *obj)
4510 {
4511 
4512     /*
4513      * If we were the last thing to allocate out of the static TLS
4514      * block, we give our space back to the 'allocator'. This is a
4515      * simplistic workaround to allow libGL.so.1 to be loaded and
4516      * unloaded multiple times.
4517      */
4518     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4519 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4520 	tls_last_offset -= obj->tlssize;
4521 	tls_last_size = 0;
4522     }
4523 }
4524 
4525 void *
4526 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4527 {
4528     void *ret;
4529     RtldLockState lockstate;
4530 
4531     wlock_acquire(rtld_bind_lock, &lockstate);
4532     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4533     lock_release(rtld_bind_lock, &lockstate);
4534     return (ret);
4535 }
4536 
4537 void
4538 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4539 {
4540     RtldLockState lockstate;
4541 
4542     wlock_acquire(rtld_bind_lock, &lockstate);
4543     free_tls(tcb, tcbsize, tcbalign);
4544     lock_release(rtld_bind_lock, &lockstate);
4545 }
4546 
4547 static void
4548 object_add_name(Obj_Entry *obj, const char *name)
4549 {
4550     Name_Entry *entry;
4551     size_t len;
4552 
4553     len = strlen(name);
4554     entry = malloc(sizeof(Name_Entry) + len);
4555 
4556     if (entry != NULL) {
4557 	strcpy(entry->name, name);
4558 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4559     }
4560 }
4561 
4562 static int
4563 object_match_name(const Obj_Entry *obj, const char *name)
4564 {
4565     Name_Entry *entry;
4566 
4567     STAILQ_FOREACH(entry, &obj->names, link) {
4568 	if (strcmp(name, entry->name) == 0)
4569 	    return (1);
4570     }
4571     return (0);
4572 }
4573 
4574 static Obj_Entry *
4575 locate_dependency(const Obj_Entry *obj, const char *name)
4576 {
4577     const Objlist_Entry *entry;
4578     const Needed_Entry *needed;
4579 
4580     STAILQ_FOREACH(entry, &list_main, link) {
4581 	if (object_match_name(entry->obj, name))
4582 	    return entry->obj;
4583     }
4584 
4585     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4586 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4587 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4588 	    /*
4589 	     * If there is DT_NEEDED for the name we are looking for,
4590 	     * we are all set.  Note that object might not be found if
4591 	     * dependency was not loaded yet, so the function can
4592 	     * return NULL here.  This is expected and handled
4593 	     * properly by the caller.
4594 	     */
4595 	    return (needed->obj);
4596 	}
4597     }
4598     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4599 	obj->path, name);
4600     die();
4601 }
4602 
4603 static int
4604 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4605     const Elf_Vernaux *vna)
4606 {
4607     const Elf_Verdef *vd;
4608     const char *vername;
4609 
4610     vername = refobj->strtab + vna->vna_name;
4611     vd = depobj->verdef;
4612     if (vd == NULL) {
4613 	_rtld_error("%s: version %s required by %s not defined",
4614 	    depobj->path, vername, refobj->path);
4615 	return (-1);
4616     }
4617     for (;;) {
4618 	if (vd->vd_version != VER_DEF_CURRENT) {
4619 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4620 		depobj->path, vd->vd_version);
4621 	    return (-1);
4622 	}
4623 	if (vna->vna_hash == vd->vd_hash) {
4624 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4625 		((char *)vd + vd->vd_aux);
4626 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4627 		return (0);
4628 	}
4629 	if (vd->vd_next == 0)
4630 	    break;
4631 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4632     }
4633     if (vna->vna_flags & VER_FLG_WEAK)
4634 	return (0);
4635     _rtld_error("%s: version %s required by %s not found",
4636 	depobj->path, vername, refobj->path);
4637     return (-1);
4638 }
4639 
4640 static int
4641 rtld_verify_object_versions(Obj_Entry *obj)
4642 {
4643     const Elf_Verneed *vn;
4644     const Elf_Verdef  *vd;
4645     const Elf_Verdaux *vda;
4646     const Elf_Vernaux *vna;
4647     const Obj_Entry *depobj;
4648     int maxvernum, vernum;
4649 
4650     if (obj->ver_checked)
4651 	return (0);
4652     obj->ver_checked = true;
4653 
4654     maxvernum = 0;
4655     /*
4656      * Walk over defined and required version records and figure out
4657      * max index used by any of them. Do very basic sanity checking
4658      * while there.
4659      */
4660     vn = obj->verneed;
4661     while (vn != NULL) {
4662 	if (vn->vn_version != VER_NEED_CURRENT) {
4663 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4664 		obj->path, vn->vn_version);
4665 	    return (-1);
4666 	}
4667 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4668 	for (;;) {
4669 	    vernum = VER_NEED_IDX(vna->vna_other);
4670 	    if (vernum > maxvernum)
4671 		maxvernum = vernum;
4672 	    if (vna->vna_next == 0)
4673 		 break;
4674 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4675 	}
4676 	if (vn->vn_next == 0)
4677 	    break;
4678 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4679     }
4680 
4681     vd = obj->verdef;
4682     while (vd != NULL) {
4683 	if (vd->vd_version != VER_DEF_CURRENT) {
4684 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4685 		obj->path, vd->vd_version);
4686 	    return (-1);
4687 	}
4688 	vernum = VER_DEF_IDX(vd->vd_ndx);
4689 	if (vernum > maxvernum)
4690 		maxvernum = vernum;
4691 	if (vd->vd_next == 0)
4692 	    break;
4693 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4694     }
4695 
4696     if (maxvernum == 0)
4697 	return (0);
4698 
4699     /*
4700      * Store version information in array indexable by version index.
4701      * Verify that object version requirements are satisfied along the
4702      * way.
4703      */
4704     obj->vernum = maxvernum + 1;
4705     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4706 
4707     vd = obj->verdef;
4708     while (vd != NULL) {
4709 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4710 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4711 	    assert(vernum <= maxvernum);
4712 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4713 	    obj->vertab[vernum].hash = vd->vd_hash;
4714 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4715 	    obj->vertab[vernum].file = NULL;
4716 	    obj->vertab[vernum].flags = 0;
4717 	}
4718 	if (vd->vd_next == 0)
4719 	    break;
4720 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4721     }
4722 
4723     vn = obj->verneed;
4724     while (vn != NULL) {
4725 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4726 	if (depobj == NULL)
4727 	    return (-1);
4728 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4729 	for (;;) {
4730 	    if (check_object_provided_version(obj, depobj, vna))
4731 		return (-1);
4732 	    vernum = VER_NEED_IDX(vna->vna_other);
4733 	    assert(vernum <= maxvernum);
4734 	    obj->vertab[vernum].hash = vna->vna_hash;
4735 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4736 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4737 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4738 		VER_INFO_HIDDEN : 0;
4739 	    if (vna->vna_next == 0)
4740 		 break;
4741 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4742 	}
4743 	if (vn->vn_next == 0)
4744 	    break;
4745 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4746     }
4747     return 0;
4748 }
4749 
4750 static int
4751 rtld_verify_versions(const Objlist *objlist)
4752 {
4753     Objlist_Entry *entry;
4754     int rc;
4755 
4756     rc = 0;
4757     STAILQ_FOREACH(entry, objlist, link) {
4758 	/*
4759 	 * Skip dummy objects or objects that have their version requirements
4760 	 * already checked.
4761 	 */
4762 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4763 	    continue;
4764 	if (rtld_verify_object_versions(entry->obj) == -1) {
4765 	    rc = -1;
4766 	    if (ld_tracing == NULL)
4767 		break;
4768 	}
4769     }
4770     if (rc == 0 || ld_tracing != NULL)
4771     	rc = rtld_verify_object_versions(&obj_rtld);
4772     return rc;
4773 }
4774 
4775 const Ver_Entry *
4776 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4777 {
4778     Elf_Versym vernum;
4779 
4780     if (obj->vertab) {
4781 	vernum = VER_NDX(obj->versyms[symnum]);
4782 	if (vernum >= obj->vernum) {
4783 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4784 		obj->path, obj->strtab + symnum, vernum);
4785 	} else if (obj->vertab[vernum].hash != 0) {
4786 	    return &obj->vertab[vernum];
4787 	}
4788     }
4789     return NULL;
4790 }
4791 
4792 int
4793 _rtld_get_stack_prot(void)
4794 {
4795 
4796 	return (stack_prot);
4797 }
4798 
4799 static void
4800 map_stacks_exec(RtldLockState *lockstate)
4801 {
4802 	void (*thr_map_stacks_exec)(void);
4803 
4804 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4805 		return;
4806 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4807 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4808 	if (thr_map_stacks_exec != NULL) {
4809 		stack_prot |= PROT_EXEC;
4810 		thr_map_stacks_exec();
4811 	}
4812 }
4813 
4814 void
4815 symlook_init(SymLook *dst, const char *name)
4816 {
4817 
4818 	bzero(dst, sizeof(*dst));
4819 	dst->name = name;
4820 	dst->hash = elf_hash(name);
4821 	dst->hash_gnu = gnu_hash(name);
4822 }
4823 
4824 static void
4825 symlook_init_from_req(SymLook *dst, const SymLook *src)
4826 {
4827 
4828 	dst->name = src->name;
4829 	dst->hash = src->hash;
4830 	dst->hash_gnu = src->hash_gnu;
4831 	dst->ventry = src->ventry;
4832 	dst->flags = src->flags;
4833 	dst->defobj_out = NULL;
4834 	dst->sym_out = NULL;
4835 	dst->lockstate = src->lockstate;
4836 }
4837 
4838 /*
4839  * Overrides for libc_pic-provided functions.
4840  */
4841 
4842 int
4843 __getosreldate(void)
4844 {
4845 	size_t len;
4846 	int oid[2];
4847 	int error, osrel;
4848 
4849 	if (osreldate != 0)
4850 		return (osreldate);
4851 
4852 	oid[0] = CTL_KERN;
4853 	oid[1] = KERN_OSRELDATE;
4854 	osrel = 0;
4855 	len = sizeof(osrel);
4856 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4857 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4858 		osreldate = osrel;
4859 	return (osreldate);
4860 }
4861 
4862 void
4863 exit(int status)
4864 {
4865 
4866 	_exit(status);
4867 }
4868 
4869 void (*__cleanup)(void);
4870 int __isthreaded = 0;
4871 int _thread_autoinit_dummy_decl = 1;
4872 
4873 /*
4874  * No unresolved symbols for rtld.
4875  */
4876 void
4877 __pthread_cxa_finalize(struct dl_phdr_info *a)
4878 {
4879 }
4880 
4881 void
4882 __stack_chk_fail(void)
4883 {
4884 
4885 	_rtld_error("stack overflow detected; terminated");
4886 	die();
4887 }
4888 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4889 
4890 void
4891 __chk_fail(void)
4892 {
4893 
4894 	_rtld_error("buffer overflow detected; terminated");
4895 	die();
4896 }
4897 
4898 const char *
4899 rtld_strerror(int errnum)
4900 {
4901 
4902 	if (errnum < 0 || errnum >= sys_nerr)
4903 		return ("Unknown error");
4904 	return (sys_errlist[errnum]);
4905 }
4906