xref: /freebsd/lib/msun/tests/trig_test.c (revision c99b67a7947ea215f9c1d44ec022680e98920cd1)
1 /*-
2  * Copyright (c) 2008 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for corner cases in trigonometric functions. Some accuracy tests
29  * are included as well, but these are very basic sanity checks, not
30  * intended to be comprehensive.
31  *
32  * The program for generating representable numbers near multiples of pi is
33  * available at http://www.cs.berkeley.edu/~wkahan/testpi/ .
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include <sys/param.h>
40 
41 #include <assert.h>
42 #include <fenv.h>
43 #include <float.h>
44 #include <math.h>
45 #include <stdio.h>
46 
47 #include "test-utils.h"
48 
49 #pragma STDC FENV_ACCESS ON
50 
51 /*
52  * Test that a function returns the correct value and sets the
53  * exception flags correctly. The exceptmask specifies which
54  * exceptions we should check. We need to be lenient for several
55  * reasons, but mainly because on some architectures it's impossible
56  * to raise FE_OVERFLOW without raising FE_INEXACT.
57  *
58  * These are macros instead of functions so that assert provides more
59  * meaningful error messages.
60  *
61  * XXX The volatile here is to avoid gcc's bogus constant folding and work
62  *     around the lack of support for the FENV_ACCESS pragma.
63  */
64 #define	test(func, x, result, exceptmask, excepts)	do {		\
65 	volatile long double _d = x;					\
66 	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
67 	assert(fpequal((func)(_d), (result)));				\
68 	assert(((void)(func), fetestexcept(exceptmask) == (excepts)));	\
69 } while (0)
70 
71 #define	testall(prefix, x, result, exceptmask, excepts)	do {		\
72 	test(prefix, x, (double)result, exceptmask, excepts);		\
73 	test(prefix##f, x, (float)result, exceptmask, excepts);		\
74 	test(prefix##l, x, result, exceptmask, excepts);		\
75 } while (0)
76 
77 #define	testdf(prefix, x, result, exceptmask, excepts)	do {		\
78 	test(prefix, x, (double)result, exceptmask, excepts);		\
79 	test(prefix##f, x, (float)result, exceptmask, excepts);		\
80 } while (0)
81 
82 /*
83  * Test special cases in sin(), cos(), and tan().
84  */
85 static void
86 run_special_tests(void)
87 {
88 
89 	/* Values at 0 should be exact. */
90 	testall(tan, 0.0, 0.0, ALL_STD_EXCEPT, 0);
91 	testall(tan, -0.0, -0.0, ALL_STD_EXCEPT, 0);
92 	testall(cos, 0.0, 1.0, ALL_STD_EXCEPT, 0);
93 	testall(cos, -0.0, 1.0, ALL_STD_EXCEPT, 0);
94 	testall(sin, 0.0, 0.0, ALL_STD_EXCEPT, 0);
95 	testall(sin, -0.0, -0.0, ALL_STD_EXCEPT, 0);
96 
97 	/* func(+-Inf) == NaN */
98 	testall(tan, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
99 	testall(sin, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
100 	testall(cos, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
101 	testall(tan, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
102 	testall(sin, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
103 	testall(cos, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
104 
105 	/* func(NaN) == NaN */
106 	testall(tan, NAN, NAN, ALL_STD_EXCEPT, 0);
107 	testall(sin, NAN, NAN, ALL_STD_EXCEPT, 0);
108 	testall(cos, NAN, NAN, ALL_STD_EXCEPT, 0);
109 }
110 
111 /*
112  * Tests to ensure argument reduction for large arguments is accurate.
113  */
114 static void
115 run_reduction_tests(void)
116 {
117 	/* floats very close to odd multiples of pi */
118 	static const float f_pi_odd[] = {
119 		85563208.0f,
120 		43998769152.0f,
121 		9.2763667655669323e+25f,
122 		1.5458357838905804e+29f,
123 	};
124 	/* doubles very close to odd multiples of pi */
125 	static const double d_pi_odd[] = {
126 		3.1415926535897931,
127 		91.106186954104004,
128 		642615.9188844458,
129 		3397346.5699258847,
130 		6134899525417045.0,
131 		3.0213551960457761e+43,
132 		1.2646209897993783e+295,
133 		6.2083625380677099e+307,
134 	};
135 	/* long doubles very close to odd multiples of pi */
136 #if LDBL_MANT_DIG == 64
137 	static const long double ld_pi_odd[] = {
138 		1.1891886960373841596e+101L,
139 		1.07999475322710967206e+2087L,
140 		6.522151627890431836e+2147L,
141 		8.9368974898260328229e+2484L,
142 		9.2961044110572205863e+2555L,
143 		4.90208421886578286e+3189L,
144 		1.5275546401232615884e+3317L,
145 		1.7227465626338900093e+3565L,
146 		2.4160090594000745334e+3808L,
147 		9.8477555741888350649e+4314L,
148 		1.6061597222105160737e+4326L,
149 	};
150 #elif LDBL_MANT_DIG == 113
151 	static const long double ld_pi_odd[] = {
152 		/* XXX */
153 	};
154 #endif
155 
156 	unsigned i;
157 
158 	for (i = 0; i < nitems(f_pi_odd); i++) {
159 		assert(fabs(sinf(f_pi_odd[i])) < FLT_EPSILON);
160 		assert(cosf(f_pi_odd[i]) == -1.0);
161 		assert(fabs(tan(f_pi_odd[i])) < FLT_EPSILON);
162 
163 		assert(fabs(sinf(-f_pi_odd[i])) < FLT_EPSILON);
164 		assert(cosf(-f_pi_odd[i]) == -1.0);
165 		assert(fabs(tanf(-f_pi_odd[i])) < FLT_EPSILON);
166 
167 		assert(fabs(sinf(f_pi_odd[i] * 2)) < FLT_EPSILON);
168 		assert(cosf(f_pi_odd[i] * 2) == 1.0);
169 		assert(fabs(tanf(f_pi_odd[i] * 2)) < FLT_EPSILON);
170 
171 		assert(fabs(sinf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
172 		assert(cosf(-f_pi_odd[i] * 2) == 1.0);
173 		assert(fabs(tanf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
174 	}
175 
176 	for (i = 0; i < nitems(d_pi_odd); i++) {
177 		assert(fabs(sin(d_pi_odd[i])) < 2 * DBL_EPSILON);
178 		assert(cos(d_pi_odd[i]) == -1.0);
179 		assert(fabs(tan(d_pi_odd[i])) < 2 * DBL_EPSILON);
180 
181 		assert(fabs(sin(-d_pi_odd[i])) < 2 * DBL_EPSILON);
182 		assert(cos(-d_pi_odd[i]) == -1.0);
183 		assert(fabs(tan(-d_pi_odd[i])) < 2 * DBL_EPSILON);
184 
185 		assert(fabs(sin(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
186 		assert(cos(d_pi_odd[i] * 2) == 1.0);
187 		assert(fabs(tan(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
188 
189 		assert(fabs(sin(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
190 		assert(cos(-d_pi_odd[i] * 2) == 1.0);
191 		assert(fabs(tan(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
192 	}
193 
194 #if LDBL_MANT_DIG > 53
195 	for (i = 0; i < nitems(ld_pi_odd); i++) {
196 		assert(fabsl(sinl(ld_pi_odd[i])) < LDBL_EPSILON);
197 		assert(cosl(ld_pi_odd[i]) == -1.0);
198 		assert(fabsl(tanl(ld_pi_odd[i])) < LDBL_EPSILON);
199 
200 		assert(fabsl(sinl(-ld_pi_odd[i])) < LDBL_EPSILON);
201 		assert(cosl(-ld_pi_odd[i]) == -1.0);
202 		assert(fabsl(tanl(-ld_pi_odd[i])) < LDBL_EPSILON);
203 
204 		assert(fabsl(sinl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
205 		assert(cosl(ld_pi_odd[i] * 2) == 1.0);
206 		assert(fabsl(tanl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
207 
208 		assert(fabsl(sinl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
209 		assert(cosl(-ld_pi_odd[i] * 2) == 1.0);
210 		assert(fabsl(tanl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
211 	}
212 #endif
213 }
214 
215 /*
216  * Tests the accuracy of these functions over the primary range.
217  */
218 static void
219 run_accuracy_tests(void)
220 {
221 
222 	/* For small args, sin(x) = tan(x) = x, and cos(x) = 1. */
223 	testall(sin, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
224 	     ALL_STD_EXCEPT, FE_INEXACT);
225 	testall(tan, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
226 	     ALL_STD_EXCEPT, FE_INEXACT);
227 	testall(cos, 0xd.50ee515fe4aea16p-114L, 1.0,
228 		ALL_STD_EXCEPT, FE_INEXACT);
229 
230 	/*
231 	 * These tests should pass for f32, d64, and ld80 as long as
232 	 * the error is <= 0.75 ulp (round to nearest)
233 	 */
234 #if LDBL_MANT_DIG <= 64
235 #define	testacc	testall
236 #else
237 #define	testacc	testdf
238 #endif
239 	testacc(sin, 0.17255452780841205174L, 0.17169949801444412683L,
240 		ALL_STD_EXCEPT, FE_INEXACT);
241 	testacc(sin, -0.75431944555904520893L, -0.68479288156557286353L,
242 		ALL_STD_EXCEPT, FE_INEXACT);
243 	testacc(cos, 0.70556358769838947292L, 0.76124620693117771850L,
244 		ALL_STD_EXCEPT, FE_INEXACT);
245 	testacc(cos, -0.34061437849088045332L, 0.94254960031831729956L,
246 		ALL_STD_EXCEPT, FE_INEXACT);
247 	testacc(tan, -0.15862817413325692897L, -0.15997221861309522115L,
248 		ALL_STD_EXCEPT, FE_INEXACT);
249 	testacc(tan, 0.38374784931303813530L, 0.40376500259976759951L,
250 		ALL_STD_EXCEPT, FE_INEXACT);
251 
252 	/*
253 	 * XXX missing:
254 	 * - tests for ld128
255 	 * - tests for other rounding modes (probably won't pass for now)
256 	 * - tests for large numbers that get reduced to hi+lo with lo!=0
257 	 */
258 }
259 
260 int
261 main(void)
262 {
263 
264 	printf("1..3\n");
265 
266 	run_special_tests();
267 	printf("ok 1 - trig\n");
268 
269 #ifndef __i386__
270 	run_reduction_tests();
271 #endif
272 	printf("ok 2 - trig\n");
273 
274 #ifndef __i386__
275 	run_accuracy_tests();
276 #endif
277 	printf("ok 3 - trig\n");
278 
279 	return (0);
280 }
281