xref: /freebsd/lib/msun/tests/invtrig_test.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*-
2  * Copyright (c) 2008 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for corner cases in the inverse trigonometric functions. Some
29  * accuracy tests are included as well, but these are very basic
30  * sanity checks, not intended to be comprehensive.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <assert.h>
37 #include <fenv.h>
38 #include <float.h>
39 #include <math.h>
40 #include <stdio.h>
41 
42 #include "test-utils.h"
43 
44 #pragma STDC FENV_ACCESS ON
45 
46 /*
47  * Test that a function returns the correct value and sets the
48  * exception flags correctly. A tolerance specifying the maximum
49  * relative error allowed may be specified. For the 'testall'
50  * functions, the tolerance is specified in ulps.
51  *
52  * These are macros instead of functions so that assert provides more
53  * meaningful error messages.
54  */
55 #define	test_tol(func, x, result, tol, excepts) do {			\
56 	volatile long double _in = (x), _out = (result);		\
57 	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
58 	assert(fpequal_tol(func(_in), _out, (tol), CS_BOTH));		\
59 	assert(((void)func, fetestexcept(ALL_STD_EXCEPT) == (excepts))); \
60 } while (0)
61 #define test(func, x, result, excepts)					\
62 	test_tol(func, (x), (result), 0, (excepts))
63 
64 #define	_testall_tol(prefix, x, result, tol, excepts) do {		\
65 	test_tol(prefix, (double)(x), (double)(result),			\
66 		 (tol) * ldexp(1.0, 1 - DBL_MANT_DIG), (excepts));	\
67 	test_tol(prefix##f, (float)(x), (float)(result),		\
68 		 (tol) * ldexpf(1.0, 1 - FLT_MANT_DIG), (excepts));	\
69 } while (0)
70 
71 #if LDBL_PREC == 53
72 #define	testall_tol	_testall_tol
73 #else
74 #define	testall_tol(prefix, x, result, tol, excepts) do {		\
75 	_testall_tol(prefix, x, result, tol, excepts);			\
76 	test_tol(prefix##l, (x), (result),				\
77 		 (tol) * ldexpl(1.0, 1 - LDBL_MANT_DIG), (excepts));	\
78 } while (0)
79 #endif
80 
81 #define testall(prefix, x, result, excepts)				\
82 	testall_tol(prefix, (x), (result), 0, (excepts))
83 
84 #define	test2_tol(func, y, x, result, tol, excepts) do {		\
85 	volatile long double _iny = (y), _inx = (x), _out = (result);	\
86 	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
87 	assert(fpequal_tol(func(_iny, _inx), _out, (tol), CS_BOTH));	\
88 	assert(((void)func, fetestexcept(ALL_STD_EXCEPT) == (excepts))); \
89 } while (0)
90 #define test2(func, y, x, result, excepts)				\
91 	test2_tol(func, (y), (x), (result), 0, (excepts))
92 
93 #define	_testall2_tol(prefix, y, x, result, tol, excepts) do {		\
94 	test2_tol(prefix, (double)(y), (double)(x), (double)(result),	\
95 		  (tol) * ldexp(1.0, 1 - DBL_MANT_DIG), (excepts));	\
96 	test2_tol(prefix##f, (float)(y), (float)(x), (float)(result),	\
97 		  (tol) * ldexpf(1.0, 1 - FLT_MANT_DIG), (excepts));	\
98 } while (0)
99 
100 #if LDBL_PREC == 53
101 #define	testall2_tol	_testall2_tol
102 #else
103 #define	testall2_tol(prefix, y, x, result, tol, excepts) do {		\
104 	_testall2_tol(prefix, y, x, result, tol, excepts);		\
105 	test2_tol(prefix##l, (y), (x), (result),			\
106 		  (tol) * ldexpl(1.0, 1 - LDBL_MANT_DIG), (excepts));	\
107 } while (0)
108 #endif
109 
110 #define testall2(prefix, y, x, result, excepts)				\
111 	testall2_tol(prefix, (y), (x), (result), 0, (excepts))
112 
113 long double
114 pi =   3.14159265358979323846264338327950280e+00L,
115 pio3 = 1.04719755119659774615421446109316766e+00L,
116 c3pi = 9.42477796076937971538793014983850839e+00L,
117 c5pi = 1.57079632679489661923132169163975140e+01L,
118 c7pi = 2.19911485751285526692385036829565196e+01L,
119 c5pio3 = 5.23598775598298873077107230546583851e+00L,
120 sqrt2m1 = 4.14213562373095048801688724209698081e-01L;
121 
122 
123 /*
124  * Test special case inputs in asin(), acos() and atan(): signed
125  * zeroes, infinities, and NaNs.
126  */
127 static void
128 test_special(void)
129 {
130 
131 	testall(asin, 0.0, 0.0, 0);
132 	testall(acos, 0.0, pi / 2, FE_INEXACT);
133 	testall(atan, 0.0, 0.0, 0);
134 	testall(asin, -0.0, -0.0, 0);
135 	testall(acos, -0.0, pi / 2, FE_INEXACT);
136 	testall(atan, -0.0, -0.0, 0);
137 
138 	testall(asin, INFINITY, NAN, FE_INVALID);
139 	testall(acos, INFINITY, NAN, FE_INVALID);
140 	testall(atan, INFINITY, pi / 2, FE_INEXACT);
141 	testall(asin, -INFINITY, NAN, FE_INVALID);
142 	testall(acos, -INFINITY, NAN, FE_INVALID);
143 	testall(atan, -INFINITY, -pi / 2, FE_INEXACT);
144 
145 	testall(asin, NAN, NAN, 0);
146 	testall(acos, NAN, NAN, 0);
147 	testall(atan, NAN, NAN, 0);
148 }
149 
150 /*
151  * Test special case inputs in atan2(), where the exact value of y/x is
152  * zero or non-finite.
153  */
154 static void
155 test_special_atan2(void)
156 {
157 	long double z;
158 	int e;
159 
160 	testall2(atan2, 0.0, -0.0, pi, FE_INEXACT);
161 	testall2(atan2, -0.0, -0.0, -pi, FE_INEXACT);
162 	testall2(atan2, 0.0, 0.0, 0.0, 0);
163 	testall2(atan2, -0.0, 0.0, -0.0, 0);
164 
165 	testall2(atan2, INFINITY, -INFINITY, c3pi / 4, FE_INEXACT);
166 	testall2(atan2, -INFINITY, -INFINITY, -c3pi / 4, FE_INEXACT);
167 	testall2(atan2, INFINITY, INFINITY, pi / 4, FE_INEXACT);
168 	testall2(atan2, -INFINITY, INFINITY, -pi / 4, FE_INEXACT);
169 
170 	/* Tests with one input in the range (0, Inf]. */
171 	z = 1.23456789L;
172 	for (e = FLT_MIN_EXP - FLT_MANT_DIG; e <= FLT_MAX_EXP; e++) {
173 		test2(atan2f, 0.0, ldexpf(z, e), 0.0, 0);
174 		test2(atan2f, -0.0, ldexpf(z, e), -0.0, 0);
175 		test2(atan2f, 0.0, ldexpf(-z, e), (float)pi, FE_INEXACT);
176 		test2(atan2f, -0.0, ldexpf(-z, e), (float)-pi, FE_INEXACT);
177 		test2(atan2f, ldexpf(z, e), 0.0, (float)pi / 2, FE_INEXACT);
178 		test2(atan2f, ldexpf(z, e), -0.0, (float)pi / 2, FE_INEXACT);
179 		test2(atan2f, ldexpf(-z, e), 0.0, (float)-pi / 2, FE_INEXACT);
180 		test2(atan2f, ldexpf(-z, e), -0.0, (float)-pi / 2, FE_INEXACT);
181 	}
182 	for (e = DBL_MIN_EXP - DBL_MANT_DIG; e <= DBL_MAX_EXP; e++) {
183 		test2(atan2, 0.0, ldexp(z, e), 0.0, 0);
184 		test2(atan2, -0.0, ldexp(z, e), -0.0, 0);
185 		test2(atan2, 0.0, ldexp(-z, e), (double)pi, FE_INEXACT);
186 		test2(atan2, -0.0, ldexp(-z, e), (double)-pi, FE_INEXACT);
187 		test2(atan2, ldexp(z, e), 0.0, (double)pi / 2, FE_INEXACT);
188 		test2(atan2, ldexp(z, e), -0.0, (double)pi / 2, FE_INEXACT);
189 		test2(atan2, ldexp(-z, e), 0.0, (double)-pi / 2, FE_INEXACT);
190 		test2(atan2, ldexp(-z, e), -0.0, (double)-pi / 2, FE_INEXACT);
191 	}
192 	for (e = LDBL_MIN_EXP - LDBL_MANT_DIG; e <= LDBL_MAX_EXP; e++) {
193 		test2(atan2l, 0.0, ldexpl(z, e), 0.0, 0);
194 		test2(atan2l, -0.0, ldexpl(z, e), -0.0, 0);
195 		test2(atan2l, 0.0, ldexpl(-z, e), pi, FE_INEXACT);
196 		test2(atan2l, -0.0, ldexpl(-z, e), -pi, FE_INEXACT);
197 		test2(atan2l, ldexpl(z, e), 0.0, pi / 2, FE_INEXACT);
198 		test2(atan2l, ldexpl(z, e), -0.0, pi / 2, FE_INEXACT);
199 		test2(atan2l, ldexpl(-z, e), 0.0, -pi / 2, FE_INEXACT);
200 		test2(atan2l, ldexpl(-z, e), -0.0, -pi / 2, FE_INEXACT);
201 	}
202 
203 	/* Tests with one input in the range (0, Inf). */
204 	for (e = FLT_MIN_EXP - FLT_MANT_DIG; e <= FLT_MAX_EXP - 1; e++) {
205 		test2(atan2f, ldexpf(z, e), INFINITY, 0.0, 0);
206 		test2(atan2f, ldexpf(-z,e), INFINITY, -0.0, 0);
207 		test2(atan2f, ldexpf(z, e), -INFINITY, (float)pi, FE_INEXACT);
208 		test2(atan2f, ldexpf(-z,e), -INFINITY, (float)-pi, FE_INEXACT);
209 		test2(atan2f, INFINITY, ldexpf(z,e), (float)pi/2, FE_INEXACT);
210 		test2(atan2f, INFINITY, ldexpf(-z,e), (float)pi/2, FE_INEXACT);
211 		test2(atan2f, -INFINITY, ldexpf(z,e), (float)-pi/2,FE_INEXACT);
212 		test2(atan2f, -INFINITY, ldexpf(-z,e),(float)-pi/2,FE_INEXACT);
213 	}
214 	for (e = DBL_MIN_EXP - DBL_MANT_DIG; e <= DBL_MAX_EXP - 1; e++) {
215 		test2(atan2, ldexp(z, e), INFINITY, 0.0, 0);
216 		test2(atan2, ldexp(-z,e), INFINITY, -0.0, 0);
217 		test2(atan2, ldexp(z, e), -INFINITY, (double)pi, FE_INEXACT);
218 		test2(atan2, ldexp(-z,e), -INFINITY, (double)-pi, FE_INEXACT);
219 		test2(atan2, INFINITY, ldexp(z,e), (double)pi/2, FE_INEXACT);
220 		test2(atan2, INFINITY, ldexp(-z,e), (double)pi/2, FE_INEXACT);
221 		test2(atan2, -INFINITY, ldexp(z,e), (double)-pi/2,FE_INEXACT);
222 		test2(atan2, -INFINITY, ldexp(-z,e),(double)-pi/2,FE_INEXACT);
223 	}
224 	for (e = LDBL_MIN_EXP - LDBL_MANT_DIG; e <= LDBL_MAX_EXP - 1; e++) {
225 		test2(atan2l, ldexpl(z, e), INFINITY, 0.0, 0);
226 		test2(atan2l, ldexpl(-z,e), INFINITY, -0.0, 0);
227 		test2(atan2l, ldexpl(z, e), -INFINITY, pi, FE_INEXACT);
228 		test2(atan2l, ldexpl(-z,e), -INFINITY, -pi, FE_INEXACT);
229 		test2(atan2l, INFINITY, ldexpl(z, e), pi / 2, FE_INEXACT);
230 		test2(atan2l, INFINITY, ldexpl(-z, e), pi / 2, FE_INEXACT);
231 		test2(atan2l, -INFINITY, ldexpl(z, e), -pi / 2, FE_INEXACT);
232 		test2(atan2l, -INFINITY, ldexpl(-z, e), -pi / 2, FE_INEXACT);
233 	}
234 }
235 
236 /*
237  * Test various inputs to asin(), acos() and atan() and verify that the
238  * results are accurate to within 1 ulp.
239  */
240 static void
241 test_accuracy(void)
242 {
243 
244 	/* We expect correctly rounded results for these basic cases. */
245 	testall(asin, 1.0, pi / 2, FE_INEXACT);
246 	testall(acos, 1.0, 0, 0);
247 	testall(atan, 1.0, pi / 4, FE_INEXACT);
248 	testall(asin, -1.0, -pi / 2, FE_INEXACT);
249 	testall(acos, -1.0, pi, FE_INEXACT);
250 	testall(atan, -1.0, -pi / 4, FE_INEXACT);
251 
252 	/*
253 	 * Here we expect answers to be within 1 ulp, although inexactness
254 	 * in the input, combined with double rounding, could cause larger
255 	 * errors.
256 	 */
257 
258 	testall_tol(asin, sqrtl(2) / 2, pi / 4, 1, FE_INEXACT);
259 	testall_tol(acos, sqrtl(2) / 2, pi / 4, 1, FE_INEXACT);
260 	testall_tol(asin, -sqrtl(2) / 2, -pi / 4, 1, FE_INEXACT);
261 	testall_tol(acos, -sqrtl(2) / 2, c3pi / 4, 1, FE_INEXACT);
262 
263 	testall_tol(asin, sqrtl(3) / 2, pio3, 1, FE_INEXACT);
264 	testall_tol(acos, sqrtl(3) / 2, pio3 / 2, 1, FE_INEXACT);
265 	testall_tol(atan, sqrtl(3), pio3, 1, FE_INEXACT);
266 	testall_tol(asin, -sqrtl(3) / 2, -pio3, 1, FE_INEXACT);
267 	testall_tol(acos, -sqrtl(3) / 2, c5pio3 / 2, 1, FE_INEXACT);
268 	testall_tol(atan, -sqrtl(3), -pio3, 1, FE_INEXACT);
269 
270 	testall_tol(atan, sqrt2m1, pi / 8, 1, FE_INEXACT);
271 	testall_tol(atan, -sqrt2m1, -pi / 8, 1, FE_INEXACT);
272 }
273 
274 /*
275  * Test inputs to atan2() where x is a power of 2. These are easy cases
276  * because y/x is exact.
277  */
278 static void
279 test_p2x_atan2(void)
280 {
281 
282 	testall2(atan2, 1.0, 1.0, pi / 4, FE_INEXACT);
283 	testall2(atan2, 1.0, -1.0, c3pi / 4, FE_INEXACT);
284 	testall2(atan2, -1.0, 1.0, -pi / 4, FE_INEXACT);
285 	testall2(atan2, -1.0, -1.0, -c3pi / 4, FE_INEXACT);
286 
287 	testall2_tol(atan2, sqrt2m1 * 2, 2.0, pi / 8, 1, FE_INEXACT);
288 	testall2_tol(atan2, sqrt2m1 * 2, -2.0, c7pi / 8, 1, FE_INEXACT);
289 	testall2_tol(atan2, -sqrt2m1 * 2, 2.0, -pi / 8, 1, FE_INEXACT);
290 	testall2_tol(atan2, -sqrt2m1 * 2, -2.0, -c7pi / 8, 1, FE_INEXACT);
291 
292 	testall2_tol(atan2, sqrtl(3) * 0.5, 0.5, pio3, 1, FE_INEXACT);
293 	testall2_tol(atan2, sqrtl(3) * 0.5, -0.5, pio3 * 2, 1, FE_INEXACT);
294 	testall2_tol(atan2, -sqrtl(3) * 0.5, 0.5, -pio3, 1, FE_INEXACT);
295 	testall2_tol(atan2, -sqrtl(3) * 0.5, -0.5, -pio3 * 2, 1, FE_INEXACT);
296 }
297 
298 /*
299  * Test inputs very close to 0.
300  */
301 static void
302 test_tiny(void)
303 {
304 	float tiny = 0x1.23456p-120f;
305 
306 	testall(asin, tiny, tiny, FE_INEXACT);
307 	testall(acos, tiny, pi / 2, FE_INEXACT);
308 	testall(atan, tiny, tiny, FE_INEXACT);
309 
310 	testall(asin, -tiny, -tiny, FE_INEXACT);
311 	testall(acos, -tiny, pi / 2, FE_INEXACT);
312 	testall(atan, -tiny, -tiny, FE_INEXACT);
313 
314 	/* Test inputs to atan2() that would cause y/x to underflow. */
315 	test2(atan2f, 0x1.0p-100, 0x1.0p100, 0.0, FE_INEXACT | FE_UNDERFLOW);
316 	test2(atan2, 0x1.0p-1000, 0x1.0p1000, 0.0, FE_INEXACT | FE_UNDERFLOW);
317 	test2(atan2l, ldexpl(1.0, 100 - LDBL_MAX_EXP),
318 	      ldexpl(1.0, LDBL_MAX_EXP - 100), 0.0, FE_INEXACT | FE_UNDERFLOW);
319 	test2(atan2f, -0x1.0p-100, 0x1.0p100, -0.0, FE_INEXACT | FE_UNDERFLOW);
320 	test2(atan2, -0x1.0p-1000, 0x1.0p1000, -0.0, FE_INEXACT | FE_UNDERFLOW);
321 	test2(atan2l, -ldexpl(1.0, 100 - LDBL_MAX_EXP),
322 	      ldexpl(1.0, LDBL_MAX_EXP - 100), -0.0, FE_INEXACT | FE_UNDERFLOW);
323 	test2(atan2f, 0x1.0p-100, -0x1.0p100, (float)pi, FE_INEXACT);
324 	test2(atan2, 0x1.0p-1000, -0x1.0p1000, (double)pi, FE_INEXACT);
325 	test2(atan2l, ldexpl(1.0, 100 - LDBL_MAX_EXP),
326 	      -ldexpl(1.0, LDBL_MAX_EXP - 100), pi, FE_INEXACT);
327 	test2(atan2f, -0x1.0p-100, -0x1.0p100, (float)-pi, FE_INEXACT);
328 	test2(atan2, -0x1.0p-1000, -0x1.0p1000, (double)-pi, FE_INEXACT);
329 	test2(atan2l, -ldexpl(1.0, 100 - LDBL_MAX_EXP),
330 	      -ldexpl(1.0, LDBL_MAX_EXP - 100), -pi, FE_INEXACT);
331 }
332 
333 /*
334  * Test very large inputs to atan().
335  */
336 static void
337 test_atan_huge(void)
338 {
339 	float huge = 0x1.23456p120;
340 
341 	testall(atan, huge, pi / 2, FE_INEXACT);
342 	testall(atan, -huge, -pi / 2, FE_INEXACT);
343 
344 	/* Test inputs to atan2() that would cause y/x to overflow. */
345 	test2(atan2f, 0x1.0p100, 0x1.0p-100, (float)pi / 2, FE_INEXACT);
346 	test2(atan2, 0x1.0p1000, 0x1.0p-1000, (double)pi / 2, FE_INEXACT);
347 	test2(atan2l, ldexpl(1.0, LDBL_MAX_EXP - 100),
348 	      ldexpl(1.0, 100 - LDBL_MAX_EXP), pi / 2, FE_INEXACT);
349 	test2(atan2f, -0x1.0p100, 0x1.0p-100, (float)-pi / 2, FE_INEXACT);
350 	test2(atan2, -0x1.0p1000, 0x1.0p-1000, (double)-pi / 2, FE_INEXACT);
351 	test2(atan2l, -ldexpl(1.0, LDBL_MAX_EXP - 100),
352 	      ldexpl(1.0, 100 - LDBL_MAX_EXP), -pi / 2, FE_INEXACT);
353 
354 	test2(atan2f, 0x1.0p100, -0x1.0p-100, (float)pi / 2, FE_INEXACT);
355 	test2(atan2, 0x1.0p1000, -0x1.0p-1000, (double)pi / 2, FE_INEXACT);
356 	test2(atan2l, ldexpl(1.0, LDBL_MAX_EXP - 100),
357 	      -ldexpl(1.0, 100 - LDBL_MAX_EXP), pi / 2, FE_INEXACT);
358 	test2(atan2f, -0x1.0p100, -0x1.0p-100, (float)-pi / 2, FE_INEXACT);
359 	test2(atan2, -0x1.0p1000, -0x1.0p-1000, (double)-pi / 2, FE_INEXACT);
360 	test2(atan2l, -ldexpl(1.0, LDBL_MAX_EXP - 100),
361 	      -ldexpl(1.0, 100 - LDBL_MAX_EXP), -pi / 2, FE_INEXACT);
362 }
363 
364 /*
365  * Test that sin(asin(x)) == x, and similarly for acos() and atan().
366  * You need to have a working sinl(), cosl(), and tanl() for these
367  * tests to pass.
368  */
369 static long double
370 sinasinf(float x)
371 {
372 
373 	return (sinl(asinf(x)));
374 }
375 
376 static long double
377 sinasin(double x)
378 {
379 
380 	return (sinl(asin(x)));
381 }
382 
383 static long double
384 sinasinl(long double x)
385 {
386 
387 	return (sinl(asinl(x)));
388 }
389 
390 static long double
391 cosacosf(float x)
392 {
393 
394 	return (cosl(acosf(x)));
395 }
396 
397 static long double
398 cosacos(double x)
399 {
400 
401 	return (cosl(acos(x)));
402 }
403 
404 static long double
405 cosacosl(long double x)
406 {
407 
408 	return (cosl(acosl(x)));
409 }
410 
411 static long double
412 tanatanf(float x)
413 {
414 
415 	return (tanl(atanf(x)));
416 }
417 
418 static long double
419 tanatan(double x)
420 {
421 
422 	return (tanl(atan(x)));
423 }
424 
425 static long double
426 tanatanl(long double x)
427 {
428 
429 	return (tanl(atanl(x)));
430 }
431 
432 static void
433 test_inverse(void)
434 {
435 	float i;
436 
437 	for (i = -1; i <= 1; i += 0x1.0p-12f) {
438 		testall_tol(sinasin, i, i, 2, i == 0 ? 0 : FE_INEXACT);
439 		/* The relative error for cosacos is very large near x=0. */
440 		if (fabsf(i) > 0x1.0p-4f)
441 			testall_tol(cosacos, i, i, 16, i == 1 ? 0 : FE_INEXACT);
442 		testall_tol(tanatan, i, i, 2, i == 0 ? 0 : FE_INEXACT);
443 	}
444 }
445 
446 int
447 main(int argc, char *argv[])
448 {
449 
450 #if defined(__i386__)
451 	printf("1..0 # SKIP fails all assertions on i386\n");
452 	return (0);
453 #endif
454 
455 	printf("1..7\n");
456 
457 	test_special();
458 	printf("ok 1 - special\n");
459 
460 	test_special_atan2();
461 	printf("ok 2 - atan2 special\n");
462 
463 	test_accuracy();
464 	printf("ok 3 - accuracy\n");
465 
466 	test_p2x_atan2();
467 	printf("ok 4 - atan2 p2x\n");
468 
469 	test_tiny();
470 	printf("ok 5 - tiny inputs\n");
471 
472 	test_atan_huge();
473 	printf("ok 6 - atan huge inputs\n");
474 
475 	test_inverse();
476 	printf("ok 7 - inverse\n");
477 
478 	return (0);
479 }
480