1 /*- 2 * Copyright (c) 2008 David Schultz <das@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Tests for corner cases in the inverse trigonometric functions. Some 29 * accuracy tests are included as well, but these are very basic 30 * sanity checks, not intended to be comprehensive. 31 */ 32 33 #include <sys/cdefs.h> 34 #include <fenv.h> 35 #include <float.h> 36 #include <math.h> 37 #include <stdio.h> 38 39 #include "test-utils.h" 40 41 #pragma STDC FENV_ACCESS ON 42 43 /* 44 * Test that a function returns the correct value and sets the 45 * exception flags correctly. A tolerance specifying the maximum 46 * relative error allowed may be specified. For the 'testall' 47 * functions, the tolerance is specified in ulps. 48 * 49 * These are macros instead of functions so that assert provides more 50 * meaningful error messages. 51 */ 52 #define test_tol(func, x, result, tol, excepts) do { \ 53 volatile long double _in = (x), _out = (result); \ 54 ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT)); \ 55 CHECK_FPEQUAL_TOL(func(_in), _out, (tol), CS_BOTH); \ 56 CHECK_FP_EXCEPTIONS_MSG(excepts, ALL_STD_EXCEPT, "for %s(%s)", \ 57 #func, #x); \ 58 } while (0) 59 #define test(func, x, result, excepts) \ 60 test_tol(func, (x), (result), 0, (excepts)) 61 62 #define _testall_tol(prefix, x, result, tol, excepts) do { \ 63 test_tol(prefix, (double)(x), (double)(result), \ 64 (tol) * ldexp(1.0, 1 - DBL_MANT_DIG), (excepts)); \ 65 test_tol(prefix##f, (float)(x), (float)(result), \ 66 (tol) * ldexpf(1.0, 1 - FLT_MANT_DIG), (excepts)); \ 67 } while (0) 68 69 #ifdef __i386__ 70 #define testall_tol _testall_tol 71 #else 72 #define testall_tol(prefix, x, result, tol, excepts) do { \ 73 _testall_tol(prefix, x, result, tol, excepts); \ 74 test_tol(prefix##l, (x), (result), \ 75 (tol) * ldexpl(1.0, 1 - LDBL_MANT_DIG), (excepts)); \ 76 } while (0) 77 #endif 78 79 #define testall(prefix, x, result, excepts) \ 80 testall_tol(prefix, (x), (result), 0, (excepts)) 81 82 #define test2_tol(func, y, x, result, tol, excepts) do { \ 83 volatile long double _iny = (y), _inx = (x), _out = (result); \ 84 ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT)); \ 85 CHECK_FPEQUAL_TOL(func(_iny, _inx), _out, (tol), CS_BOTH); \ 86 CHECK_FP_EXCEPTIONS_MSG(excepts, ALL_STD_EXCEPT, "for %s(%s)", \ 87 #func, #x); \ 88 } while (0) 89 #define test2(func, y, x, result, excepts) \ 90 test2_tol(func, (y), (x), (result), 0, (excepts)) 91 92 #define _testall2_tol(prefix, y, x, result, tol, excepts) do { \ 93 test2_tol(prefix, (double)(y), (double)(x), (double)(result), \ 94 (tol) * ldexp(1.0, 1 - DBL_MANT_DIG), (excepts)); \ 95 test2_tol(prefix##f, (float)(y), (float)(x), (float)(result), \ 96 (tol) * ldexpf(1.0, 1 - FLT_MANT_DIG), (excepts)); \ 97 } while (0) 98 99 #ifdef __i386__ 100 #define testall2_tol _testall2_tol 101 #else 102 #define testall2_tol(prefix, y, x, result, tol, excepts) do { \ 103 _testall2_tol(prefix, y, x, result, tol, excepts); \ 104 test2_tol(prefix##l, (y), (x), (result), \ 105 (tol) * ldexpl(1.0, 1 - LDBL_MANT_DIG), (excepts)); \ 106 } while (0) 107 #endif 108 109 #define testall2(prefix, y, x, result, excepts) \ 110 testall2_tol(prefix, (y), (x), (result), 0, (excepts)) 111 112 static long double 113 pi = 3.14159265358979323846264338327950280e+00L, 114 pio3 = 1.04719755119659774615421446109316766e+00L, 115 c3pi = 9.42477796076937971538793014983850839e+00L, 116 c7pi = 2.19911485751285526692385036829565196e+01L, 117 c5pio3 = 5.23598775598298873077107230546583851e+00L, 118 sqrt2m1 = 4.14213562373095048801688724209698081e-01L; 119 120 121 /* 122 * Test special case inputs in asin(), acos() and atan(): signed 123 * zeroes, infinities, and NaNs. 124 */ 125 ATF_TC_WITHOUT_HEAD(special); 126 ATF_TC_BODY(special, tc) 127 { 128 129 testall(asin, 0.0, 0.0, 0); 130 testall(acos, 0.0, pi / 2, FE_INEXACT); 131 testall(atan, 0.0, 0.0, 0); 132 testall(asin, -0.0, -0.0, 0); 133 testall(acos, -0.0, pi / 2, FE_INEXACT); 134 testall(atan, -0.0, -0.0, 0); 135 136 testall(asin, INFINITY, NAN, FE_INVALID); 137 testall(acos, INFINITY, NAN, FE_INVALID); 138 testall(atan, INFINITY, pi / 2, FE_INEXACT); 139 testall(asin, -INFINITY, NAN, FE_INVALID); 140 testall(acos, -INFINITY, NAN, FE_INVALID); 141 testall(atan, -INFINITY, -pi / 2, FE_INEXACT); 142 143 testall(asin, NAN, NAN, 0); 144 testall(acos, NAN, NAN, 0); 145 testall(atan, NAN, NAN, 0); 146 } 147 148 /* 149 * Test special case inputs in atan2(), where the exact value of y/x is 150 * zero or non-finite. 151 */ 152 ATF_TC_WITHOUT_HEAD(special_atan2); 153 ATF_TC_BODY(special_atan2, tc) 154 { 155 long double z; 156 int e; 157 158 testall2(atan2, 0.0, -0.0, pi, FE_INEXACT); 159 testall2(atan2, -0.0, -0.0, -pi, FE_INEXACT); 160 testall2(atan2, 0.0, 0.0, 0.0, 0); 161 testall2(atan2, -0.0, 0.0, -0.0, 0); 162 163 testall2(atan2, INFINITY, -INFINITY, c3pi / 4, FE_INEXACT); 164 testall2(atan2, -INFINITY, -INFINITY, -c3pi / 4, FE_INEXACT); 165 testall2(atan2, INFINITY, INFINITY, pi / 4, FE_INEXACT); 166 testall2(atan2, -INFINITY, INFINITY, -pi / 4, FE_INEXACT); 167 168 /* Tests with one input in the range (0, Inf]. */ 169 z = 1.23456789L; 170 for (e = FLT_MIN_EXP - FLT_MANT_DIG; e <= FLT_MAX_EXP; e++) { 171 test2(atan2f, 0.0, ldexpf(z, e), 0.0, 0); 172 test2(atan2f, -0.0, ldexpf(z, e), -0.0, 0); 173 test2(atan2f, 0.0, ldexpf(-z, e), (float)pi, FE_INEXACT); 174 test2(atan2f, -0.0, ldexpf(-z, e), (float)-pi, FE_INEXACT); 175 test2(atan2f, ldexpf(z, e), 0.0, (float)pi / 2, FE_INEXACT); 176 test2(atan2f, ldexpf(z, e), -0.0, (float)pi / 2, FE_INEXACT); 177 test2(atan2f, ldexpf(-z, e), 0.0, (float)-pi / 2, FE_INEXACT); 178 test2(atan2f, ldexpf(-z, e), -0.0, (float)-pi / 2, FE_INEXACT); 179 } 180 for (e = DBL_MIN_EXP - DBL_MANT_DIG; e <= DBL_MAX_EXP; e++) { 181 test2(atan2, 0.0, ldexp(z, e), 0.0, 0); 182 test2(atan2, -0.0, ldexp(z, e), -0.0, 0); 183 test2(atan2, 0.0, ldexp(-z, e), (double)pi, FE_INEXACT); 184 test2(atan2, -0.0, ldexp(-z, e), (double)-pi, FE_INEXACT); 185 test2(atan2, ldexp(z, e), 0.0, (double)pi / 2, FE_INEXACT); 186 test2(atan2, ldexp(z, e), -0.0, (double)pi / 2, FE_INEXACT); 187 test2(atan2, ldexp(-z, e), 0.0, (double)-pi / 2, FE_INEXACT); 188 test2(atan2, ldexp(-z, e), -0.0, (double)-pi / 2, FE_INEXACT); 189 } 190 for (e = LDBL_MIN_EXP - LDBL_MANT_DIG; e <= LDBL_MAX_EXP; e++) { 191 test2(atan2l, 0.0, ldexpl(z, e), 0.0, 0); 192 test2(atan2l, -0.0, ldexpl(z, e), -0.0, 0); 193 test2(atan2l, 0.0, ldexpl(-z, e), pi, FE_INEXACT); 194 test2(atan2l, -0.0, ldexpl(-z, e), -pi, FE_INEXACT); 195 test2(atan2l, ldexpl(z, e), 0.0, pi / 2, FE_INEXACT); 196 test2(atan2l, ldexpl(z, e), -0.0, pi / 2, FE_INEXACT); 197 test2(atan2l, ldexpl(-z, e), 0.0, -pi / 2, FE_INEXACT); 198 test2(atan2l, ldexpl(-z, e), -0.0, -pi / 2, FE_INEXACT); 199 } 200 201 /* Tests with one input in the range (0, Inf). */ 202 for (e = FLT_MIN_EXP - FLT_MANT_DIG; e <= FLT_MAX_EXP - 1; e++) { 203 test2(atan2f, ldexpf(z, e), INFINITY, 0.0, 0); 204 test2(atan2f, ldexpf(-z,e), INFINITY, -0.0, 0); 205 test2(atan2f, ldexpf(z, e), -INFINITY, (float)pi, FE_INEXACT); 206 test2(atan2f, ldexpf(-z,e), -INFINITY, (float)-pi, FE_INEXACT); 207 test2(atan2f, INFINITY, ldexpf(z,e), (float)pi/2, FE_INEXACT); 208 test2(atan2f, INFINITY, ldexpf(-z,e), (float)pi/2, FE_INEXACT); 209 test2(atan2f, -INFINITY, ldexpf(z,e), (float)-pi/2,FE_INEXACT); 210 test2(atan2f, -INFINITY, ldexpf(-z,e),(float)-pi/2,FE_INEXACT); 211 } 212 for (e = DBL_MIN_EXP - DBL_MANT_DIG; e <= DBL_MAX_EXP - 1; e++) { 213 test2(atan2, ldexp(z, e), INFINITY, 0.0, 0); 214 test2(atan2, ldexp(-z,e), INFINITY, -0.0, 0); 215 test2(atan2, ldexp(z, e), -INFINITY, (double)pi, FE_INEXACT); 216 test2(atan2, ldexp(-z,e), -INFINITY, (double)-pi, FE_INEXACT); 217 test2(atan2, INFINITY, ldexp(z,e), (double)pi/2, FE_INEXACT); 218 test2(atan2, INFINITY, ldexp(-z,e), (double)pi/2, FE_INEXACT); 219 test2(atan2, -INFINITY, ldexp(z,e), (double)-pi/2,FE_INEXACT); 220 test2(atan2, -INFINITY, ldexp(-z,e),(double)-pi/2,FE_INEXACT); 221 } 222 for (e = LDBL_MIN_EXP - LDBL_MANT_DIG; e <= LDBL_MAX_EXP - 1; e++) { 223 test2(atan2l, ldexpl(z, e), INFINITY, 0.0, 0); 224 test2(atan2l, ldexpl(-z,e), INFINITY, -0.0, 0); 225 test2(atan2l, ldexpl(z, e), -INFINITY, pi, FE_INEXACT); 226 test2(atan2l, ldexpl(-z,e), -INFINITY, -pi, FE_INEXACT); 227 test2(atan2l, INFINITY, ldexpl(z, e), pi / 2, FE_INEXACT); 228 test2(atan2l, INFINITY, ldexpl(-z, e), pi / 2, FE_INEXACT); 229 test2(atan2l, -INFINITY, ldexpl(z, e), -pi / 2, FE_INEXACT); 230 test2(atan2l, -INFINITY, ldexpl(-z, e), -pi / 2, FE_INEXACT); 231 } 232 } 233 234 /* 235 * Test various inputs to asin(), acos() and atan() and verify that the 236 * results are accurate to within 1 ulp. 237 */ 238 ATF_TC_WITHOUT_HEAD(accuracy); 239 ATF_TC_BODY(accuracy, tc) 240 { 241 242 /* We expect correctly rounded results for these basic cases. */ 243 testall(asin, 1.0, pi / 2, FE_INEXACT); 244 testall(acos, 1.0, 0, 0); 245 testall(atan, 1.0, pi / 4, FE_INEXACT); 246 testall(asin, -1.0, -pi / 2, FE_INEXACT); 247 testall(acos, -1.0, pi, FE_INEXACT); 248 testall(atan, -1.0, -pi / 4, FE_INEXACT); 249 250 /* 251 * Here we expect answers to be within 1 ulp, although inexactness 252 * in the input, combined with double rounding, could cause larger 253 * errors. 254 */ 255 256 testall_tol(asin, sqrtl(2) / 2, pi / 4, 1, FE_INEXACT); 257 testall_tol(acos, sqrtl(2) / 2, pi / 4, 1, FE_INEXACT); 258 testall_tol(asin, -sqrtl(2) / 2, -pi / 4, 1, FE_INEXACT); 259 testall_tol(acos, -sqrtl(2) / 2, c3pi / 4, 1, FE_INEXACT); 260 261 testall_tol(asin, sqrtl(3) / 2, pio3, 1, FE_INEXACT); 262 testall_tol(acos, sqrtl(3) / 2, pio3 / 2, 1, FE_INEXACT); 263 testall_tol(atan, sqrtl(3), pio3, 1, FE_INEXACT); 264 testall_tol(asin, -sqrtl(3) / 2, -pio3, 1, FE_INEXACT); 265 testall_tol(acos, -sqrtl(3) / 2, c5pio3 / 2, 1, FE_INEXACT); 266 testall_tol(atan, -sqrtl(3), -pio3, 1, FE_INEXACT); 267 268 testall_tol(atan, sqrt2m1, pi / 8, 1, FE_INEXACT); 269 testall_tol(atan, -sqrt2m1, -pi / 8, 1, FE_INEXACT); 270 } 271 272 /* 273 * Test inputs to atan2() where x is a power of 2. These are easy cases 274 * because y/x is exact. 275 */ 276 ATF_TC_WITHOUT_HEAD(p2x_atan2); 277 ATF_TC_BODY(p2x_atan2, tc) 278 { 279 280 testall2(atan2, 1.0, 1.0, pi / 4, FE_INEXACT); 281 testall2(atan2, 1.0, -1.0, c3pi / 4, FE_INEXACT); 282 testall2(atan2, -1.0, 1.0, -pi / 4, FE_INEXACT); 283 testall2(atan2, -1.0, -1.0, -c3pi / 4, FE_INEXACT); 284 285 testall2_tol(atan2, sqrt2m1 * 2, 2.0, pi / 8, 1, FE_INEXACT); 286 testall2_tol(atan2, sqrt2m1 * 2, -2.0, c7pi / 8, 1, FE_INEXACT); 287 testall2_tol(atan2, -sqrt2m1 * 2, 2.0, -pi / 8, 1, FE_INEXACT); 288 testall2_tol(atan2, -sqrt2m1 * 2, -2.0, -c7pi / 8, 1, FE_INEXACT); 289 290 testall2_tol(atan2, sqrtl(3) * 0.5, 0.5, pio3, 1, FE_INEXACT); 291 testall2_tol(atan2, sqrtl(3) * 0.5, -0.5, pio3 * 2, 1, FE_INEXACT); 292 testall2_tol(atan2, -sqrtl(3) * 0.5, 0.5, -pio3, 1, FE_INEXACT); 293 testall2_tol(atan2, -sqrtl(3) * 0.5, -0.5, -pio3 * 2, 1, FE_INEXACT); 294 } 295 296 /* 297 * Test inputs very close to 0. 298 */ 299 ATF_TC_WITHOUT_HEAD(tiny); 300 ATF_TC_BODY(tiny, tc) 301 { 302 float tiny = 0x1.23456p-120f; 303 304 testall(asin, tiny, tiny, FE_INEXACT); 305 testall(acos, tiny, pi / 2, FE_INEXACT); 306 testall(atan, tiny, tiny, FE_INEXACT); 307 308 testall(asin, -tiny, -tiny, FE_INEXACT); 309 testall(acos, -tiny, pi / 2, FE_INEXACT); 310 testall(atan, -tiny, -tiny, FE_INEXACT); 311 312 /* Test inputs to atan2() that would cause y/x to underflow. */ 313 test2(atan2f, 0x1.0p-100, 0x1.0p100, 0.0, FE_INEXACT | FE_UNDERFLOW); 314 test2(atan2, 0x1.0p-1000, 0x1.0p1000, 0.0, FE_INEXACT | FE_UNDERFLOW); 315 test2(atan2l, ldexpl(1.0, 100 - LDBL_MAX_EXP), 316 ldexpl(1.0, LDBL_MAX_EXP - 100), 0.0, FE_INEXACT | FE_UNDERFLOW); 317 test2(atan2f, -0x1.0p-100, 0x1.0p100, -0.0, FE_INEXACT | FE_UNDERFLOW); 318 test2(atan2, -0x1.0p-1000, 0x1.0p1000, -0.0, FE_INEXACT | FE_UNDERFLOW); 319 test2(atan2l, -ldexpl(1.0, 100 - LDBL_MAX_EXP), 320 ldexpl(1.0, LDBL_MAX_EXP - 100), -0.0, FE_INEXACT | FE_UNDERFLOW); 321 test2(atan2f, 0x1.0p-100, -0x1.0p100, (float)pi, FE_INEXACT); 322 test2(atan2, 0x1.0p-1000, -0x1.0p1000, (double)pi, FE_INEXACT); 323 test2(atan2l, ldexpl(1.0, 100 - LDBL_MAX_EXP), 324 -ldexpl(1.0, LDBL_MAX_EXP - 100), pi, FE_INEXACT); 325 test2(atan2f, -0x1.0p-100, -0x1.0p100, (float)-pi, FE_INEXACT); 326 test2(atan2, -0x1.0p-1000, -0x1.0p1000, (double)-pi, FE_INEXACT); 327 test2(atan2l, -ldexpl(1.0, 100 - LDBL_MAX_EXP), 328 -ldexpl(1.0, LDBL_MAX_EXP - 100), -pi, FE_INEXACT); 329 } 330 331 /* 332 * Test very large inputs to atan(). 333 */ 334 ATF_TC_WITHOUT_HEAD(atan_huge); 335 ATF_TC_BODY(atan_huge, tc) 336 { 337 float huge = 0x1.23456p120; 338 339 testall(atan, huge, pi / 2, FE_INEXACT); 340 testall(atan, -huge, -pi / 2, FE_INEXACT); 341 342 /* Test inputs to atan2() that would cause y/x to overflow. */ 343 test2(atan2f, 0x1.0p100, 0x1.0p-100, (float)pi / 2, FE_INEXACT); 344 test2(atan2, 0x1.0p1000, 0x1.0p-1000, (double)pi / 2, FE_INEXACT); 345 test2(atan2l, ldexpl(1.0, LDBL_MAX_EXP - 100), 346 ldexpl(1.0, 100 - LDBL_MAX_EXP), pi / 2, FE_INEXACT); 347 test2(atan2f, -0x1.0p100, 0x1.0p-100, (float)-pi / 2, FE_INEXACT); 348 test2(atan2, -0x1.0p1000, 0x1.0p-1000, (double)-pi / 2, FE_INEXACT); 349 test2(atan2l, -ldexpl(1.0, LDBL_MAX_EXP - 100), 350 ldexpl(1.0, 100 - LDBL_MAX_EXP), -pi / 2, FE_INEXACT); 351 352 test2(atan2f, 0x1.0p100, -0x1.0p-100, (float)pi / 2, FE_INEXACT); 353 test2(atan2, 0x1.0p1000, -0x1.0p-1000, (double)pi / 2, FE_INEXACT); 354 test2(atan2l, ldexpl(1.0, LDBL_MAX_EXP - 100), 355 -ldexpl(1.0, 100 - LDBL_MAX_EXP), pi / 2, FE_INEXACT); 356 test2(atan2f, -0x1.0p100, -0x1.0p-100, (float)-pi / 2, FE_INEXACT); 357 test2(atan2, -0x1.0p1000, -0x1.0p-1000, (double)-pi / 2, FE_INEXACT); 358 test2(atan2l, -ldexpl(1.0, LDBL_MAX_EXP - 100), 359 -ldexpl(1.0, 100 - LDBL_MAX_EXP), -pi / 2, FE_INEXACT); 360 } 361 362 /* 363 * Test that sin(asin(x)) == x, and similarly for acos() and atan(). 364 * You need to have a working sinl(), cosl(), and tanl() for these 365 * tests to pass. 366 */ 367 static long double 368 sinasinf(float x) 369 { 370 371 return (sinl(asinf(x))); 372 } 373 374 static long double 375 sinasin(double x) 376 { 377 378 return (sinl(asin(x))); 379 } 380 381 #ifndef __i386__ 382 static long double 383 sinasinl(long double x) 384 { 385 386 return (sinl(asinl(x))); 387 } 388 #endif 389 390 static long double 391 cosacosf(float x) 392 { 393 394 return (cosl(acosf(x))); 395 } 396 397 static long double 398 cosacos(double x) 399 { 400 401 return (cosl(acos(x))); 402 } 403 404 #ifndef __i386__ 405 static long double 406 cosacosl(long double x) 407 { 408 409 return (cosl(acosl(x))); 410 } 411 #endif 412 413 static long double 414 tanatanf(float x) 415 { 416 417 return (tanl(atanf(x))); 418 } 419 420 static long double 421 tanatan(double x) 422 { 423 424 return (tanl(atan(x))); 425 } 426 427 #ifndef __i386__ 428 static long double 429 tanatanl(long double x) 430 { 431 432 return (tanl(atanl(x))); 433 } 434 #endif 435 436 ATF_TC_WITHOUT_HEAD(inverse); 437 ATF_TC_BODY(inverse, tc) 438 { 439 float i; 440 441 for (i = -1; i <= 1; i += 0x1.0p-12f) { 442 testall_tol(sinasin, i, i, 2, i == 0 ? 0 : FE_INEXACT); 443 /* The relative error for cosacos is very large near x=0. */ 444 if (fabsf(i) > 0x1.0p-4f) 445 testall_tol(cosacos, i, i, 16, i == 1 ? 0 : FE_INEXACT); 446 testall_tol(tanatan, i, i, 2, i == 0 ? 0 : FE_INEXACT); 447 } 448 } 449 450 ATF_TP_ADD_TCS(tp) 451 { 452 ATF_TP_ADD_TC(tp, special); 453 ATF_TP_ADD_TC(tp, special_atan2); 454 ATF_TP_ADD_TC(tp, accuracy); 455 ATF_TP_ADD_TC(tp, p2x_atan2); 456 ATF_TP_ADD_TC(tp, tiny); 457 ATF_TP_ADD_TC(tp, atan_huge); 458 ATF_TP_ADD_TC(tp, inverse); 459 460 return (atf_no_error()); 461 } 462