xref: /freebsd/lib/msun/tests/csqrt_test.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for csqrt{,f}()
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 
36 #include <assert.h>
37 #include <complex.h>
38 #include <float.h>
39 #include <math.h>
40 #include <stdio.h>
41 
42 #include "test-utils.h"
43 
44 /*
45  * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
46  * The latter two convert to float or double, respectively, and test csqrtf()
47  * and csqrt() with the same arguments.
48  */
49 static long double complex (*t_csqrt)(long double complex);
50 
51 static long double complex
52 _csqrtf(long double complex d)
53 {
54 
55 	return (csqrtf((float complex)d));
56 }
57 
58 static long double complex
59 _csqrt(long double complex d)
60 {
61 
62 	return (csqrt((double complex)d));
63 }
64 
65 #pragma	STDC CX_LIMITED_RANGE	OFF
66 
67 /*
68  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
69  * Fail an assertion if they differ.
70  */
71 static void
72 assert_equal(long double complex d1, long double complex d2)
73 {
74 
75 	assert(cfpequal(d1, d2));
76 }
77 
78 /*
79  * Test csqrt for some finite arguments where the answer is exact.
80  * (We do not test if it produces correctly rounded answers when the
81  * result is inexact, nor do we check whether it throws spurious
82  * exceptions.)
83  */
84 static void
85 test_finite(void)
86 {
87 	static const double tests[] = {
88 	     /* csqrt(a + bI) = x + yI */
89 	     /* a	b	x	y */
90 		0,	8,	2,	2,
91 		0,	-8,	2,	-2,
92 		4,	0,	2,	0,
93 		-4,	0,	0,	2,
94 		3,	4,	2,	1,
95 		3,	-4,	2,	-1,
96 		-3,	4,	1,	2,
97 		-3,	-4,	1,	-2,
98 		5,	12,	3,	2,
99 		7,	24,	4,	3,
100 		9,	40,	5,	4,
101 		11,	60,	6,	5,
102 		13,	84,	7,	6,
103 		33,	56,	7,	4,
104 		39,	80,	8,	5,
105 		65,	72,	9,	4,
106 		987,	9916,	74,	67,
107 		5289,	6640,	83,	40,
108 		460766389075.0, 16762287900.0, 678910, 12345
109 	};
110 	/*
111 	 * We also test some multiples of the above arguments. This
112 	 * array defines which multiples we use. Note that these have
113 	 * to be small enough to not cause overflow for float precision
114 	 * with all of the constants in the above table.
115 	 */
116 	static const double mults[] = {
117 		1,
118 		2,
119 		3,
120 		13,
121 		16,
122 		0x1.p30,
123 		0x1.p-30,
124 	};
125 
126 	double a, b;
127 	double x, y;
128 	unsigned i, j;
129 
130 	for (i = 0; i < nitems(tests); i += 4) {
131 		for (j = 0; j < nitems(mults); j++) {
132 			a = tests[i] * mults[j] * mults[j];
133 			b = tests[i + 1] * mults[j] * mults[j];
134 			x = tests[i + 2] * mults[j];
135 			y = tests[i + 3] * mults[j];
136 			assert(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
137 		}
138 	}
139 
140 }
141 
142 /*
143  * Test the handling of +/- 0.
144  */
145 static void
146 test_zeros(void)
147 {
148 
149 	assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
150 	assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
151 	assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
152 	assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
153 }
154 
155 /*
156  * Test the handling of infinities when the other argument is not NaN.
157  */
158 static void
159 test_infinities(void)
160 {
161 	static const double vals[] = {
162 		0.0,
163 		-0.0,
164 		42.0,
165 		-42.0,
166 		INFINITY,
167 		-INFINITY,
168 	};
169 
170 	unsigned i;
171 
172 	for (i = 0; i < nitems(vals); i++) {
173 		if (isfinite(vals[i])) {
174 			assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
175 			    CMPLXL(0.0, copysignl(INFINITY, vals[i])));
176 			assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
177 			    CMPLXL(INFINITY, copysignl(0.0, vals[i])));
178 		}
179 		assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
180 		    CMPLXL(INFINITY, INFINITY));
181 		assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
182 		    CMPLXL(INFINITY, -INFINITY));
183 	}
184 }
185 
186 /*
187  * Test the handling of NaNs.
188  */
189 static void
190 test_nans(void)
191 {
192 
193 	assert(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
194 	assert(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
195 
196 	assert(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
197 	assert(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
198 
199 	assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
200 		     CMPLXL(INFINITY, INFINITY));
201 	assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
202 		     CMPLXL(INFINITY, -INFINITY));
203 
204 	assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
205 	assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
206 	assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
207 	assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
208 	assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
209 	assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
210 	assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
211 	assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
212 	assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
213 }
214 
215 /*
216  * Test whether csqrt(a + bi) works for inputs that are large enough to
217  * cause overflow in hypot(a, b) + a.  Each of the tests is scaled up to
218  * near MAX_EXP.
219  */
220 static void
221 test_overflow(int maxexp)
222 {
223 	long double a, b;
224 	long double complex result;
225 	int exp, i;
226 
227 	assert(maxexp > 0 && maxexp % 2 == 0);
228 
229 	for (i = 0; i < 4; i++) {
230 		exp = maxexp - 2 * i;
231 
232 		/* csqrt(115 + 252*I) == 14 + 9*I */
233 		a = ldexpl(115 * 0x1p-8, exp);
234 		b = ldexpl(252 * 0x1p-8, exp);
235 		result = t_csqrt(CMPLXL(a, b));
236 		assert(creall(result) == ldexpl(14 * 0x1p-4, exp / 2));
237 		assert(cimagl(result) == ldexpl(9 * 0x1p-4, exp / 2));
238 
239 		/* csqrt(-11 + 60*I) = 5 + 6*I */
240 		a = ldexpl(-11 * 0x1p-6, exp);
241 		b = ldexpl(60 * 0x1p-6, exp);
242 		result = t_csqrt(CMPLXL(a, b));
243 		assert(creall(result) == ldexpl(5 * 0x1p-3, exp / 2));
244 		assert(cimagl(result) == ldexpl(6 * 0x1p-3, exp / 2));
245 
246 		/* csqrt(225 + 0*I) == 15 + 0*I */
247 		a = ldexpl(225 * 0x1p-8, exp);
248 		b = 0;
249 		result = t_csqrt(CMPLXL(a, b));
250 		assert(creall(result) == ldexpl(15 * 0x1p-4, exp / 2));
251 		assert(cimagl(result) == 0);
252 	}
253 }
254 
255 /*
256  * Test that precision is maintained for some large squares.  Set all or
257  * some bits in the lower mantdig/2 bits, square the number, and try to
258  * recover the sqrt.  Note:
259  * 	(x + xI)**2 = 2xxI
260  */
261 static void
262 test_precision(int maxexp, int mantdig)
263 {
264 	long double b, x;
265 	long double complex result;
266 	uint64_t mantbits, sq_mantbits;
267 	int exp, i;
268 
269 	assert(maxexp > 0 && maxexp % 2 == 0);
270 	assert(mantdig <= 64);
271 	mantdig = rounddown(mantdig, 2);
272 
273 	for (exp = 0; exp <= maxexp; exp += 2) {
274 		mantbits = ((uint64_t)1 << (mantdig / 2 )) - 1;
275 		for (i = 0;
276 		     i < 100 && mantbits > ((uint64_t)1 << (mantdig / 2 - 1));
277 		     i++, mantbits--) {
278 			sq_mantbits = mantbits * mantbits;
279 			/*
280 			 * sq_mantibts is a mantdig-bit number.  Divide by
281 			 * 2**mantdig to normalize it to [0.5, 1), where,
282 			 * note, the binary power will be -1.  Raise it by
283 			 * 2**exp for the test.  exp is even.  Lower it by
284 			 * one to reach a final binary power which is also
285 			 * even.  The result should be exactly
286 			 * representable, given that mantdig is less than or
287 			 * equal to the available precision.
288 			 */
289 			b = ldexpl((long double)sq_mantbits,
290 			    exp - 1 - mantdig);
291 			x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
292 			assert(b == x * x * 2);
293 			result = t_csqrt(CMPLXL(0, b));
294 			assert(creall(result) == x);
295 			assert(cimagl(result) == x);
296 		}
297 	}
298 }
299 
300 int
301 main(void)
302 {
303 
304 	printf("1..18\n");
305 
306 	/* Test csqrt() */
307 	t_csqrt = _csqrt;
308 
309 	test_finite();
310 	printf("ok 1 - csqrt\n");
311 
312 	test_zeros();
313 	printf("ok 2 - csqrt\n");
314 
315 	test_infinities();
316 	printf("ok 3 - csqrt\n");
317 
318 	test_nans();
319 	printf("ok 4 - csqrt\n");
320 
321 	test_overflow(DBL_MAX_EXP);
322 	printf("ok 5 - csqrt\n");
323 
324 	test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
325 	printf("ok 6 - csqrt\n");
326 
327 	/* Now test csqrtf() */
328 	t_csqrt = _csqrtf;
329 
330 	test_finite();
331 	printf("ok 7 - csqrt\n");
332 
333 	test_zeros();
334 	printf("ok 8 - csqrt\n");
335 
336 	test_infinities();
337 	printf("ok 9 - csqrt\n");
338 
339 	test_nans();
340 	printf("ok 10 - csqrt\n");
341 
342 	test_overflow(FLT_MAX_EXP);
343 	printf("ok 11 - csqrt\n");
344 
345 	test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
346 	printf("ok 12 - csqrt\n");
347 
348 	/* Now test csqrtl() */
349 	t_csqrt = csqrtl;
350 
351 	test_finite();
352 	printf("ok 13 - csqrt\n");
353 
354 	test_zeros();
355 	printf("ok 14 - csqrt\n");
356 
357 	test_infinities();
358 	printf("ok 15 - csqrt\n");
359 
360 	test_nans();
361 	printf("ok 16 - csqrt\n");
362 
363 	test_overflow(LDBL_MAX_EXP);
364 	printf("ok 17 - csqrt\n");
365 
366 	test_precision(LDBL_MAX_EXP,
367 #ifndef __i386__
368 	    LDBL_MANT_DIG
369 #else
370 	    DBL_MANT_DIG
371 #endif
372 	    );
373 	printf("ok 18 - csqrt\n");
374 
375 	return (0);
376 }
377