xref: /freebsd/lib/msun/tests/csqrt_test.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for csqrt{,f}()
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 
34 #include <complex.h>
35 #include <float.h>
36 #include <math.h>
37 #include <stdio.h>
38 
39 #include "test-utils.h"
40 
41 /*
42  * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
43  * The latter two convert to float or double, respectively, and test csqrtf()
44  * and csqrt() with the same arguments.
45  */
46 static long double complex (*t_csqrt)(long double complex);
47 
48 static long double complex
49 _csqrtf(long double complex d)
50 {
51 
52 	return (csqrtf((float complex)d));
53 }
54 
55 static long double complex
56 _csqrt(long double complex d)
57 {
58 
59 	return (csqrt((double complex)d));
60 }
61 
62 #pragma	STDC CX_LIMITED_RANGE	OFF
63 
64 /*
65  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
66  * Fail an assertion if they differ.
67  */
68 #define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
69 
70 /*
71  * Test csqrt for some finite arguments where the answer is exact.
72  * (We do not test if it produces correctly rounded answers when the
73  * result is inexact, nor do we check whether it throws spurious
74  * exceptions.)
75  */
76 static void
77 test_finite(void)
78 {
79 	static const double tests[] = {
80 	     /* csqrt(a + bI) = x + yI */
81 	     /* a	b	x	y */
82 		0,	8,	2,	2,
83 		0,	-8,	2,	-2,
84 		4,	0,	2,	0,
85 		-4,	0,	0,	2,
86 		3,	4,	2,	1,
87 		3,	-4,	2,	-1,
88 		-3,	4,	1,	2,
89 		-3,	-4,	1,	-2,
90 		5,	12,	3,	2,
91 		7,	24,	4,	3,
92 		9,	40,	5,	4,
93 		11,	60,	6,	5,
94 		13,	84,	7,	6,
95 		33,	56,	7,	4,
96 		39,	80,	8,	5,
97 		65,	72,	9,	4,
98 		987,	9916,	74,	67,
99 		5289,	6640,	83,	40,
100 		460766389075.0, 16762287900.0, 678910, 12345
101 	};
102 	/*
103 	 * We also test some multiples of the above arguments. This
104 	 * array defines which multiples we use. Note that these have
105 	 * to be small enough to not cause overflow for float precision
106 	 * with all of the constants in the above table.
107 	 */
108 	static const double mults[] = {
109 		1,
110 		2,
111 		3,
112 		13,
113 		16,
114 		0x1.p30,
115 		0x1.p-30,
116 	};
117 
118 	double a, b;
119 	double x, y;
120 	unsigned i, j;
121 
122 	for (i = 0; i < nitems(tests); i += 4) {
123 		for (j = 0; j < nitems(mults); j++) {
124 			a = tests[i] * mults[j] * mults[j];
125 			b = tests[i + 1] * mults[j] * mults[j];
126 			x = tests[i + 2] * mults[j];
127 			y = tests[i + 3] * mults[j];
128 			ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
129 		}
130 	}
131 
132 }
133 
134 /*
135  * Test the handling of +/- 0.
136  */
137 static void
138 test_zeros(void)
139 {
140 
141 	assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
142 	assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
143 	assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
144 	assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
145 }
146 
147 /*
148  * Test the handling of infinities when the other argument is not NaN.
149  */
150 static void
151 test_infinities(void)
152 {
153 	static const double vals[] = {
154 		0.0,
155 		-0.0,
156 		42.0,
157 		-42.0,
158 		INFINITY,
159 		-INFINITY,
160 	};
161 
162 	unsigned i;
163 
164 	for (i = 0; i < nitems(vals); i++) {
165 		if (isfinite(vals[i])) {
166 			assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
167 			    CMPLXL(0.0, copysignl(INFINITY, vals[i])));
168 			assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
169 			    CMPLXL(INFINITY, copysignl(0.0, vals[i])));
170 		}
171 		assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
172 		    CMPLXL(INFINITY, INFINITY));
173 		assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
174 		    CMPLXL(INFINITY, -INFINITY));
175 	}
176 }
177 
178 /*
179  * Test the handling of NaNs.
180  */
181 static void
182 test_nans(void)
183 {
184 
185 	ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
186 	ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
187 
188 	ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
189 	ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
190 
191 	assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
192 		     CMPLXL(INFINITY, INFINITY));
193 	assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
194 		     CMPLXL(INFINITY, -INFINITY));
195 
196 	assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
197 	assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
198 	assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
199 	assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
200 	assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
201 	assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
202 	assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
203 	assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
204 	assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
205 }
206 
207 /*
208  * Test whether csqrt(a + bi) works for inputs that are large enough to
209  * cause overflow in hypot(a, b) + a.  Each of the tests is scaled up to
210  * near MAX_EXP.
211  */
212 static void
213 test_overflow(int maxexp)
214 {
215 	long double a, b;
216 	long double complex result;
217 	int exp, i;
218 
219 	ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
220 
221 	for (i = 0; i < 4; i++) {
222 		exp = maxexp - 2 * i;
223 
224 		/* csqrt(115 + 252*I) == 14 + 9*I */
225 		a = ldexpl(115 * 0x1p-8, exp);
226 		b = ldexpl(252 * 0x1p-8, exp);
227 		result = t_csqrt(CMPLXL(a, b));
228 		ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
229 		ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
230 
231 		/* csqrt(-11 + 60*I) = 5 + 6*I */
232 		a = ldexpl(-11 * 0x1p-6, exp);
233 		b = ldexpl(60 * 0x1p-6, exp);
234 		result = t_csqrt(CMPLXL(a, b));
235 		ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
236 		ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
237 
238 		/* csqrt(225 + 0*I) == 15 + 0*I */
239 		a = ldexpl(225 * 0x1p-8, exp);
240 		b = 0;
241 		result = t_csqrt(CMPLXL(a, b));
242 		ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
243 		ATF_CHECK_EQ(cimagl(result), 0);
244 	}
245 }
246 
247 /*
248  * Test that precision is maintained for some large squares.  Set all or
249  * some bits in the lower mantdig/2 bits, square the number, and try to
250  * recover the sqrt.  Note:
251  * 	(x + xI)**2 = 2xxI
252  */
253 static void
254 test_precision(int maxexp, int mantdig)
255 {
256 	long double b, x;
257 	long double complex result;
258 #if LDBL_MANT_DIG <= 64
259 	typedef uint64_t ldbl_mant_type;
260 #elif LDBL_MANT_DIG <= 128
261 	typedef __uint128_t ldbl_mant_type;
262 #else
263 #error "Unsupported long double format"
264 #endif
265 	ldbl_mant_type mantbits, sq_mantbits;
266 	int exp, i;
267 
268 	ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
269 	ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
270 	mantdig = rounddown(mantdig, 2);
271 
272 	for (exp = 0; exp <= maxexp; exp += 2) {
273 		mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
274 		for (i = 0; i < 100 &&
275 		     mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
276 		     i++, mantbits--) {
277 			sq_mantbits = mantbits * mantbits;
278 			/*
279 			 * sq_mantibts is a mantdig-bit number.  Divide by
280 			 * 2**mantdig to normalize it to [0.5, 1), where,
281 			 * note, the binary power will be -1.  Raise it by
282 			 * 2**exp for the test.  exp is even.  Lower it by
283 			 * one to reach a final binary power which is also
284 			 * even.  The result should be exactly
285 			 * representable, given that mantdig is less than or
286 			 * equal to the available precision.
287 			 */
288 			b = ldexpl((long double)sq_mantbits,
289 			    exp - 1 - mantdig);
290 			x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
291 			CHECK_FPEQUAL(b, x * x * 2);
292 			result = t_csqrt(CMPLXL(0, b));
293 			CHECK_FPEQUAL(x, creall(result));
294 			CHECK_FPEQUAL(x, cimagl(result));
295 		}
296 	}
297 }
298 
299 ATF_TC_WITHOUT_HEAD(csqrt);
300 ATF_TC_BODY(csqrt, tc)
301 {
302 	/* Test csqrt() */
303 	t_csqrt = _csqrt;
304 
305 	test_finite();
306 
307 	test_zeros();
308 
309 	test_infinities();
310 
311 	test_nans();
312 
313 	test_overflow(DBL_MAX_EXP);
314 
315 	test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
316 }
317 
318 ATF_TC_WITHOUT_HEAD(csqrtf);
319 ATF_TC_BODY(csqrtf, tc)
320 {
321 	/* Now test csqrtf() */
322 	t_csqrt = _csqrtf;
323 
324 	test_finite();
325 
326 	test_zeros();
327 
328 	test_infinities();
329 
330 	test_nans();
331 
332 	test_overflow(FLT_MAX_EXP);
333 
334 	test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
335 }
336 
337 ATF_TC_WITHOUT_HEAD(csqrtl);
338 ATF_TC_BODY(csqrtl, tc)
339 {
340 	/* Now test csqrtl() */
341 	t_csqrt = csqrtl;
342 
343 	test_finite();
344 
345 	test_zeros();
346 
347 	test_infinities();
348 
349 	test_nans();
350 
351 	test_overflow(LDBL_MAX_EXP);
352 
353 	/* i386 is configured to use 53-bit rounding precision for long double. */
354 	test_precision(LDBL_MAX_EXP,
355 #ifndef __i386__
356 	    LDBL_MANT_DIG
357 #else
358 	    DBL_MANT_DIG
359 #endif
360 	    );
361 }
362 
363 ATF_TP_ADD_TCS(tp)
364 {
365 	ATF_TP_ADD_TC(tp, csqrt);
366 	ATF_TP_ADD_TC(tp, csqrtf);
367 	ATF_TP_ADD_TC(tp, csqrtl);
368 
369 	return (atf_no_error());
370 }
371