xref: /freebsd/lib/msun/tests/csqrt_test.c (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 /*-
2  * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for csqrt{,f}()
29  */
30 
31 #include <sys/param.h>
32 
33 #include <complex.h>
34 #include <float.h>
35 #include <math.h>
36 #include <stdio.h>
37 
38 #include "test-utils.h"
39 
40 /*
41  * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
42  * The latter two convert to float or double, respectively, and test csqrtf()
43  * and csqrt() with the same arguments.
44  */
45 static long double complex (*t_csqrt)(long double complex);
46 
47 static long double complex
48 _csqrtf(long double complex d)
49 {
50 
51 	return (csqrtf((float complex)d));
52 }
53 
54 static long double complex
55 _csqrt(long double complex d)
56 {
57 
58 	return (csqrt((double complex)d));
59 }
60 
61 #pragma	STDC CX_LIMITED_RANGE	OFF
62 
63 /*
64  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
65  * Fail an assertion if they differ.
66  */
67 #define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
68 
69 /*
70  * Test csqrt for some finite arguments where the answer is exact.
71  * (We do not test if it produces correctly rounded answers when the
72  * result is inexact, nor do we check whether it throws spurious
73  * exceptions.)
74  */
75 static void
76 test_finite(void)
77 {
78 	static const double tests[] = {
79 	     /* csqrt(a + bI) = x + yI */
80 	     /* a	b	x	y */
81 		0,	8,	2,	2,
82 		0,	-8,	2,	-2,
83 		4,	0,	2,	0,
84 		-4,	0,	0,	2,
85 		3,	4,	2,	1,
86 		3,	-4,	2,	-1,
87 		-3,	4,	1,	2,
88 		-3,	-4,	1,	-2,
89 		5,	12,	3,	2,
90 		7,	24,	4,	3,
91 		9,	40,	5,	4,
92 		11,	60,	6,	5,
93 		13,	84,	7,	6,
94 		33,	56,	7,	4,
95 		39,	80,	8,	5,
96 		65,	72,	9,	4,
97 		987,	9916,	74,	67,
98 		5289,	6640,	83,	40,
99 		460766389075.0, 16762287900.0, 678910, 12345
100 	};
101 	/*
102 	 * We also test some multiples of the above arguments. This
103 	 * array defines which multiples we use. Note that these have
104 	 * to be small enough to not cause overflow for float precision
105 	 * with all of the constants in the above table.
106 	 */
107 	static const double mults[] = {
108 		1,
109 		2,
110 		3,
111 		13,
112 		16,
113 		0x1.p30,
114 		0x1.p-30,
115 	};
116 
117 	double a, b;
118 	double x, y;
119 	unsigned i, j;
120 
121 	for (i = 0; i < nitems(tests); i += 4) {
122 		for (j = 0; j < nitems(mults); j++) {
123 			a = tests[i] * mults[j] * mults[j];
124 			b = tests[i + 1] * mults[j] * mults[j];
125 			x = tests[i + 2] * mults[j];
126 			y = tests[i + 3] * mults[j];
127 			ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
128 		}
129 	}
130 
131 }
132 
133 /*
134  * Test the handling of +/- 0.
135  */
136 static void
137 test_zeros(void)
138 {
139 
140 	assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
141 	assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
142 	assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
143 	assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
144 }
145 
146 /*
147  * Test the handling of infinities when the other argument is not NaN.
148  */
149 static void
150 test_infinities(void)
151 {
152 	static const double vals[] = {
153 		0.0,
154 		-0.0,
155 		42.0,
156 		-42.0,
157 		INFINITY,
158 		-INFINITY,
159 	};
160 
161 	unsigned i;
162 
163 	for (i = 0; i < nitems(vals); i++) {
164 		if (isfinite(vals[i])) {
165 			assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
166 			    CMPLXL(0.0, copysignl(INFINITY, vals[i])));
167 			assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
168 			    CMPLXL(INFINITY, copysignl(0.0, vals[i])));
169 		}
170 		assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
171 		    CMPLXL(INFINITY, INFINITY));
172 		assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
173 		    CMPLXL(INFINITY, -INFINITY));
174 	}
175 }
176 
177 /*
178  * Test the handling of NaNs.
179  */
180 static void
181 test_nans(void)
182 {
183 
184 	ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
185 	ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
186 
187 	ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
188 	ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
189 
190 	assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
191 		     CMPLXL(INFINITY, INFINITY));
192 	assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
193 		     CMPLXL(INFINITY, -INFINITY));
194 
195 	assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
196 	assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
197 	assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
198 	assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
199 	assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
200 	assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
201 	assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
202 	assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
203 	assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
204 }
205 
206 /*
207  * Test whether csqrt(a + bi) works for inputs that are large enough to
208  * cause overflow in hypot(a, b) + a.  Each of the tests is scaled up to
209  * near MAX_EXP.
210  */
211 static void
212 test_overflow(int maxexp)
213 {
214 	long double a, b;
215 	long double complex result;
216 	int exp, i;
217 
218 	ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
219 
220 	for (i = 0; i < 4; i++) {
221 		exp = maxexp - 2 * i;
222 
223 		/* csqrt(115 + 252*I) == 14 + 9*I */
224 		a = ldexpl(115 * 0x1p-8, exp);
225 		b = ldexpl(252 * 0x1p-8, exp);
226 		result = t_csqrt(CMPLXL(a, b));
227 		ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
228 		ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
229 
230 		/* csqrt(-11 + 60*I) = 5 + 6*I */
231 		a = ldexpl(-11 * 0x1p-6, exp);
232 		b = ldexpl(60 * 0x1p-6, exp);
233 		result = t_csqrt(CMPLXL(a, b));
234 		ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
235 		ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
236 
237 		/* csqrt(225 + 0*I) == 15 + 0*I */
238 		a = ldexpl(225 * 0x1p-8, exp);
239 		b = 0;
240 		result = t_csqrt(CMPLXL(a, b));
241 		ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
242 		ATF_CHECK_EQ(cimagl(result), 0);
243 	}
244 }
245 
246 /*
247  * Test that precision is maintained for some large squares.  Set all or
248  * some bits in the lower mantdig/2 bits, square the number, and try to
249  * recover the sqrt.  Note:
250  * 	(x + xI)**2 = 2xxI
251  */
252 static void
253 test_precision(int maxexp, int mantdig)
254 {
255 	long double b, x;
256 	long double complex result;
257 #if LDBL_MANT_DIG <= 64
258 	typedef uint64_t ldbl_mant_type;
259 #elif LDBL_MANT_DIG <= 128
260 	typedef __uint128_t ldbl_mant_type;
261 #else
262 #error "Unsupported long double format"
263 #endif
264 	ldbl_mant_type mantbits, sq_mantbits;
265 	int exp, i;
266 
267 	ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
268 	ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
269 	mantdig = rounddown(mantdig, 2);
270 
271 	for (exp = 0; exp <= maxexp; exp += 2) {
272 		mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
273 		for (i = 0; i < 100 &&
274 		     mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
275 		     i++, mantbits--) {
276 			sq_mantbits = mantbits * mantbits;
277 			/*
278 			 * sq_mantibts is a mantdig-bit number.  Divide by
279 			 * 2**mantdig to normalize it to [0.5, 1), where,
280 			 * note, the binary power will be -1.  Raise it by
281 			 * 2**exp for the test.  exp is even.  Lower it by
282 			 * one to reach a final binary power which is also
283 			 * even.  The result should be exactly
284 			 * representable, given that mantdig is less than or
285 			 * equal to the available precision.
286 			 */
287 			b = ldexpl((long double)sq_mantbits,
288 			    exp - 1 - mantdig);
289 			x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
290 			CHECK_FPEQUAL(b, x * x * 2);
291 			result = t_csqrt(CMPLXL(0, b));
292 			CHECK_FPEQUAL(x, creall(result));
293 			CHECK_FPEQUAL(x, cimagl(result));
294 		}
295 	}
296 }
297 
298 ATF_TC_WITHOUT_HEAD(csqrt);
299 ATF_TC_BODY(csqrt, tc)
300 {
301 	/* Test csqrt() */
302 	t_csqrt = _csqrt;
303 
304 	test_finite();
305 
306 	test_zeros();
307 
308 	test_infinities();
309 
310 	test_nans();
311 
312 	test_overflow(DBL_MAX_EXP);
313 
314 	test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
315 }
316 
317 ATF_TC_WITHOUT_HEAD(csqrtf);
318 ATF_TC_BODY(csqrtf, tc)
319 {
320 	/* Now test csqrtf() */
321 	t_csqrt = _csqrtf;
322 
323 	test_finite();
324 
325 	test_zeros();
326 
327 	test_infinities();
328 
329 	test_nans();
330 
331 	test_overflow(FLT_MAX_EXP);
332 
333 	test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
334 }
335 
336 ATF_TC_WITHOUT_HEAD(csqrtl);
337 ATF_TC_BODY(csqrtl, tc)
338 {
339 	/* Now test csqrtl() */
340 	t_csqrt = csqrtl;
341 
342 	test_finite();
343 
344 	test_zeros();
345 
346 	test_infinities();
347 
348 	test_nans();
349 
350 	test_overflow(LDBL_MAX_EXP);
351 
352 	/* i386 is configured to use 53-bit rounding precision for long double. */
353 	test_precision(LDBL_MAX_EXP,
354 #ifndef __i386__
355 	    LDBL_MANT_DIG
356 #else
357 	    DBL_MANT_DIG
358 #endif
359 	    );
360 }
361 
362 ATF_TP_ADD_TCS(tp)
363 {
364 	ATF_TP_ADD_TC(tp, csqrt);
365 	ATF_TP_ADD_TC(tp, csqrtf);
366 	ATF_TP_ADD_TC(tp, csqrtl);
367 
368 	return (atf_no_error());
369 }
370