xref: /freebsd/lib/msun/tests/cexp_test.c (revision 2e620256bd76c449c835c604e404483437743011)
1 /*-
2  * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Tests for corner cases in cexp*().
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 
34 #include <complex.h>
35 #include <fenv.h>
36 #include <float.h>
37 #include <math.h>
38 #include <stdio.h>
39 
40 #include "test-utils.h"
41 
42 #pragma STDC FENV_ACCESS	ON
43 #pragma	STDC CX_LIMITED_RANGE	OFF
44 
45 /*
46  * Test that a function returns the correct value and sets the
47  * exception flags correctly. The exceptmask specifies which
48  * exceptions we should check. We need to be lenient for several
49  * reasons, but mainly because on some architectures it's impossible
50  * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
51  * whether cexp() raises an invalid exception is unspecified.
52  *
53  * These are macros instead of functions so that assert provides more
54  * meaningful error messages.
55  *
56  * XXX The volatile here is to avoid gcc's bogus constant folding and work
57  *     around the lack of support for the FENV_ACCESS pragma.
58  */
59 #define	test_t(type, func, z, result, exceptmask, excepts, checksign)	\
60 do {									\
61 	volatile long double complex _d = z;				\
62 	volatile type complex _r = result;				\
63 	ATF_REQUIRE_EQ(0, feclearexcept(FE_ALL_EXCEPT));		\
64 	CHECK_CFPEQUAL_CS((func)(_d), (_r), (checksign));		\
65 	CHECK_FP_EXCEPTIONS_MSG(excepts, exceptmask, "for %s(%s)",	\
66 	    #func, #z);							\
67 } while (0)
68 
69 #define	test(func, z, result, exceptmask, excepts, checksign)		\
70 	test_t(double, func, z, result, exceptmask, excepts, checksign)
71 
72 #define	test_f(func, z, result, exceptmask, excepts, checksign)		\
73 	test_t(float, func, z, result, exceptmask, excepts, checksign)
74 
75 /* Test within a given tolerance. */
76 #define	test_tol(func, z, result, tol)	do {			\
77 	CHECK_CFPEQUAL_TOL((func)(z), (result), (tol),		\
78 	    FPE_ABS_ZERO | CS_BOTH);				\
79 } while (0)
80 
81 /* Test all the functions that compute cexp(x). */
82 #define	testall(x, result, exceptmask, excepts, checksign)	do {	\
83 	test(cexp, x, result, exceptmask, excepts, checksign);		\
84 	test_f(cexpf, x, result, exceptmask, excepts, checksign);	\
85 } while (0)
86 
87 /*
88  * Test all the functions that compute cexp(x), within a given tolerance.
89  * The tolerance is specified in ulps.
90  */
91 #define	testall_tol(x, result, tol)				do {	\
92 	test_tol(cexp, x, result, tol * DBL_ULP());			\
93 	test_tol(cexpf, x, result, tol * FLT_ULP());			\
94 } while (0)
95 
96 /* Various finite non-zero numbers to test. */
97 static const float finites[] =
98 { -42.0e20, -1.0, -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
99 
100 
101 /* Tests for 0 */
102 ATF_TC_WITHOUT_HEAD(zero);
103 ATF_TC_BODY(zero, tc)
104 {
105 
106 	/* cexp(0) = 1, no exceptions raised */
107 	testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
108 	testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
109 	testall(CMPLXL(0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
110 	testall(CMPLXL(-0.0, -0.0), CMPLXL(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
111 }
112 
113 /*
114  * Tests for NaN.  The signs of the results are indeterminate unless the
115  * imaginary part is 0.
116  */
117 ATF_TC_WITHOUT_HEAD(nan);
118 ATF_TC_BODY(nan, tc)
119 {
120 	unsigned i;
121 
122 	/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
123 	/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
124 	for (i = 0; i < nitems(finites); i++) {
125 		testall(CMPLXL(finites[i], NAN), CMPLXL(NAN, NAN),
126 			ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
127 		if (finites[i] == 0.0)
128 			continue;
129 		/* XXX FE_INEXACT shouldn't be raised here */
130 		testall(CMPLXL(NAN, finites[i]), CMPLXL(NAN, NAN),
131 			ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
132 	}
133 
134 	/* cexp(NaN +- 0i) = NaN +- 0i */
135 	testall(CMPLXL(NAN, 0.0), CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
136 	testall(CMPLXL(NAN, -0.0), CMPLXL(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
137 
138 	/* cexp(inf + NaN i) = inf + nan i */
139 	testall(CMPLXL(INFINITY, NAN), CMPLXL(INFINITY, NAN),
140 		ALL_STD_EXCEPT, 0, 0);
141 	/* cexp(-inf + NaN i) = 0 */
142 	testall(CMPLXL(-INFINITY, NAN), CMPLXL(0.0, 0.0),
143 		ALL_STD_EXCEPT, 0, 0);
144 	/* cexp(NaN + NaN i) = NaN + NaN i */
145 	testall(CMPLXL(NAN, NAN), CMPLXL(NAN, NAN),
146 		ALL_STD_EXCEPT, 0, 0);
147 }
148 
149 ATF_TC_WITHOUT_HEAD(inf);
150 ATF_TC_BODY(inf, tc)
151 {
152 	unsigned i;
153 
154 	/* cexp(x + inf i) = NaN + NaNi and raises invalid */
155 	for (i = 0; i < nitems(finites); i++) {
156 		testall(CMPLXL(finites[i], INFINITY), CMPLXL(NAN, NAN),
157 			ALL_STD_EXCEPT, FE_INVALID, 1);
158 	}
159 	/* cexp(-inf + yi) = 0 * (cos(y) + sin(y)i) */
160 	/* XXX shouldn't raise an inexact exception */
161 	testall(CMPLXL(-INFINITY, M_PI_4), CMPLXL(0.0, 0.0),
162 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
163 	testall(CMPLXL(-INFINITY, 3 * M_PI_4), CMPLXL(-0.0, 0.0),
164 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
165 	testall(CMPLXL(-INFINITY, 5 * M_PI_4), CMPLXL(-0.0, -0.0),
166 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
167 	testall(CMPLXL(-INFINITY, 7 * M_PI_4), CMPLXL(0.0, -0.0),
168 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
169 	testall(CMPLXL(-INFINITY, 0.0), CMPLXL(0.0, 0.0),
170 		ALL_STD_EXCEPT, 0, 1);
171 	testall(CMPLXL(-INFINITY, -0.0), CMPLXL(0.0, -0.0),
172 		ALL_STD_EXCEPT, 0, 1);
173 	/* cexp(inf + yi) = inf * (cos(y) + sin(y)i) (except y=0) */
174 	/* XXX shouldn't raise an inexact exception */
175 	testall(CMPLXL(INFINITY, M_PI_4), CMPLXL(INFINITY, INFINITY),
176 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
177 	testall(CMPLXL(INFINITY, 3 * M_PI_4), CMPLXL(-INFINITY, INFINITY),
178 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
179 	testall(CMPLXL(INFINITY, 5 * M_PI_4), CMPLXL(-INFINITY, -INFINITY),
180 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
181 	testall(CMPLXL(INFINITY, 7 * M_PI_4), CMPLXL(INFINITY, -INFINITY),
182 		ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
183 	/* cexp(inf + 0i) = inf + 0i */
184 	testall(CMPLXL(INFINITY, 0.0), CMPLXL(INFINITY, 0.0),
185 		ALL_STD_EXCEPT, 0, 1);
186 	testall(CMPLXL(INFINITY, -0.0), CMPLXL(INFINITY, -0.0),
187 		ALL_STD_EXCEPT, 0, 1);
188 }
189 
190 ATF_TC_WITHOUT_HEAD(reals);
191 ATF_TC_BODY(reals, tc)
192 {
193 	unsigned i;
194 
195 	for (i = 0; i < nitems(finites); i++) {
196 		/* XXX could check exceptions more meticulously */
197 		test(cexp, CMPLXL(finites[i], 0.0),
198 		     CMPLXL(exp(finites[i]), 0.0),
199 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
200 		test(cexp, CMPLXL(finites[i], -0.0),
201 		     CMPLXL(exp(finites[i]), -0.0),
202 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
203 		test_f(cexpf, CMPLXL(finites[i], 0.0),
204 		     CMPLXL(expf(finites[i]), 0.0),
205 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
206 		test_f(cexpf, CMPLXL(finites[i], -0.0),
207 		     CMPLXL(expf(finites[i]), -0.0),
208 		     FE_INVALID | FE_DIVBYZERO, 0, 1);
209 	}
210 }
211 
212 ATF_TC_WITHOUT_HEAD(imaginaries);
213 ATF_TC_BODY(imaginaries, tc)
214 {
215 	unsigned i;
216 
217 	for (i = 0; i < nitems(finites); i++) {
218 		test(cexp, CMPLXL(0.0, finites[i]),
219 		     CMPLXL(cos(finites[i]), sin(finites[i])),
220 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
221 		test(cexp, CMPLXL(-0.0, finites[i]),
222 		     CMPLXL(cos(finites[i]), sin(finites[i])),
223 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
224 		test_f(cexpf, CMPLXL(0.0, finites[i]),
225 		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
226 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
227 		test_f(cexpf, CMPLXL(-0.0, finites[i]),
228 		     CMPLXL(cosf(finites[i]), sinf(finites[i])),
229 		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
230 	}
231 }
232 
233 ATF_TC_WITHOUT_HEAD(small);
234 ATF_TC_BODY(small, tc)
235 {
236 	static const double tests[] = {
237 	     /* csqrt(a + bI) = x + yI */
238 	     /* a	b	x			y */
239 		 1.0,	M_PI_4,	M_SQRT2 * 0.5 * M_E,	M_SQRT2 * 0.5 * M_E,
240 		-1.0,	M_PI_4,	M_SQRT2 * 0.5 / M_E,	M_SQRT2 * 0.5 / M_E,
241 		 2.0,	M_PI_2,	0.0,			M_E * M_E,
242 		 M_LN2,	M_PI,	-2.0,			0.0,
243 	};
244 	double a, b;
245 	double x, y;
246 	unsigned i;
247 
248 	for (i = 0; i < nitems(tests); i += 4) {
249 		a = tests[i];
250 		b = tests[i + 1];
251 		x = tests[i + 2];
252 		y = tests[i + 3];
253 		test_tol(cexp, CMPLXL(a, b), CMPLXL(x, y), 3 * DBL_ULP());
254 
255 		/* float doesn't have enough precision to pass these tests */
256 		if (x == 0 || y == 0)
257 			continue;
258 		test_tol(cexpf, CMPLXL(a, b), CMPLXL(x, y), 1 * FLT_ULP());
259         }
260 }
261 
262 /* Test inputs with a real part r that would overflow exp(r). */
263 ATF_TC_WITHOUT_HEAD(large);
264 ATF_TC_BODY(large, tc)
265 {
266 
267 	test_tol(cexp, CMPLXL(709.79, 0x1p-1074),
268 		 CMPLXL(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
269 	test_tol(cexp, CMPLXL(1000, 0x1p-1074),
270 		 CMPLXL(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
271 	test_tol(cexp, CMPLXL(1400, 0x1p-1074),
272 		 CMPLXL(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
273 	test_tol(cexp, CMPLXL(900, 0x1.23456789abcdep-1020),
274 		 CMPLXL(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
275 	test_tol(cexp, CMPLXL(1300, 0x1.23456789abcdep-1020),
276 		 CMPLXL(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
277 
278 	test_tol(cexpf, CMPLXL(88.73, 0x1p-149),
279 		 CMPLXL(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
280 	test_tol(cexpf, CMPLXL(90, 0x1p-149),
281 		 CMPLXL(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
282 	test_tol(cexpf, CMPLXL(192, 0x1p-149),
283 		 CMPLXL(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
284 	test_tol(cexpf, CMPLXL(120, 0x1.234568p-120),
285 		 CMPLXL(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
286 	test_tol(cexpf, CMPLXL(170, 0x1.234568p-120),
287 		 CMPLXL(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
288 }
289 
290 ATF_TP_ADD_TCS(tp)
291 {
292 	ATF_TP_ADD_TC(tp, zero);
293 	ATF_TP_ADD_TC(tp, nan);
294 	ATF_TP_ADD_TC(tp, inf);
295 	ATF_TP_ADD_TC(tp, reals);
296 	ATF_TP_ADD_TC(tp, imaginaries);
297 	ATF_TP_ADD_TC(tp, small);
298 	ATF_TP_ADD_TC(tp, large);
299 
300 	return (atf_no_error());
301 }
302