xref: /freebsd/lib/msun/src/s_tanpi.c (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 /*-
2  * Copyright (c) 2017 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /**
28  * tanpi(x) computes tan(pi*x) without multiplication by pi (almost).  First,
29  * note that tanpi(-x) = -tanpi(x), so the algorithm considers only |x| and
30  * includes reflection symmetry by considering the sign of x on output.  The
31  * method used depends on the magnitude of x.
32  *
33  * 1. For small |x|, tanpi(x) = pi * x where a sloppy threshold is used.  The
34  *    threshold is |x| < 0x1pN with N = -(P/2+M).  P is the precision of the
35  *    floating-point type and M = 2 to 4.  To achieve high accuracy, pi is
36  *    decomposed into high and low parts with the high part containing a
37  *    number of trailing zero bits.  x is also split into high and low parts.
38  *
39  * 2. For |x| < 1, argument reduction is not required and tanpi(x) is
40  *    computed by a direct call to a kernel, which uses the kernel for
41  *    tan(x).  See below.
42  *
43  * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
44  *    |x| = j0 + r with j0 an integer and the remainder r satisfies
45  *    0 <= r < 1.  With the given domain, a simplified inline floor(x)
46  *    is used.  Also, note the following identity
47  *
48  *                                   tan(pi*j0) + tan(pi*r)
49  *    tanpi(x) = tan(pi*(j0+r)) = ---------------------------- = tanpi(r)
50  *                                 1 - tan(pi*j0) * tan(pi*r)
51  *
52  *    So, after argument reduction, the kernel is again invoked.
53  *
54  * 4. For |x| >= 0x1p(P-1), |x| is integral and tanpi(x) = copysign(0,x).
55  *
56  * 5. Special cases:
57  *
58  *    tanpi(+-0) = +-0
59  *    tanpi(+-n) = +-0, for positive integers n.
60  *    tanpi(+-n+1/4) = +-1, for positive integers n.
61  *    tanpi(+-n+1/2) = NaN, for positive integers n.
62  *    tanpi(+-inf) = NaN.  Raises the "invalid" floating-point exception.
63  *    tanpi(nan) = NaN.  Raises the "invalid" floating-point exception.
64  */
65 
66 #include <float.h>
67 #include "math.h"
68 #include "math_private.h"
69 
70 static const double
71 pi_hi =  3.1415926814079285e+00,	/* 0x400921fb 0x58000000 */
72 pi_lo = -2.7818135228334233e-08;	/* 0xbe5dde97 0x3dcb3b3a */
73 
74 /*
75  * The kernel for tanpi(x) multiplies x by an 80-bit approximation of
76  * pi, where the hi and lo parts are used with with kernel for tan(x).
77  */
78 static inline double
79 __kernel_tanpi(double x)
80 {
81 	double_t hi, lo, t;
82 
83 	if (x < 0.25) {
84 		hi = (float)x;
85 		lo = x - hi;
86 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
87 		hi *= pi_hi;
88 		_2sumF(hi, lo);
89 		t = __kernel_tan(hi, lo, 1);
90 	} else if (x > 0.25) {
91 		x = 0.5 - x;
92 		hi = (float)x;
93 		lo = x - hi;
94 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
95 		hi *= pi_hi;
96 		_2sumF(hi, lo);
97 		t = - __kernel_tan(hi, lo, -1);
98 	} else
99 		t = 1;
100 
101 	return (t);
102 }
103 
104 volatile static const double vzero = 0;
105 
106 double
107 tanpi(double x)
108 {
109 	double ax, hi, lo, t;
110 	uint32_t hx, ix, j0, lx;
111 
112 	EXTRACT_WORDS(hx, lx, x);
113 	ix = hx & 0x7fffffff;
114 	INSERT_WORDS(ax, ix, lx);
115 
116 	if (ix < 0x3ff00000) {			/* |x| < 1 */
117 		if (ix < 0x3fe00000) {		/* |x| < 0.5 */
118 			if (ix < 0x3e200000) {	/* |x| < 0x1p-29 */
119 				if (x == 0)
120 					return (x);
121 				/*
122 				 * To avoid issues with subnormal values,
123 				 * scale the computation and rescale on
124 				 * return.
125 				 */
126 				INSERT_WORDS(hi, hx, 0);
127 				hi *= 0x1p53;
128 				lo = x * 0x1p53 - hi;
129 				t = (pi_lo + pi_hi) * lo + pi_lo * hi +
130 				    pi_hi * hi;
131 				return (t * 0x1p-53);
132 			}
133 			t = __kernel_tanpi(ax);
134 		} else if (ax == 0.5)
135 			return ((ax - ax) / (ax - ax));
136 		else
137 			t = - __kernel_tanpi(1 - ax);
138 		return ((hx & 0x80000000) ? -t : t);
139 	}
140 
141 	if (ix < 0x43300000) {		/* 1 <= |x| < 0x1p52 */
142 		/* Determine integer part of ax. */
143 		j0 = ((ix >> 20) & 0x7ff) - 0x3ff;
144 		if (j0 < 20) {
145 			ix &= ~(0x000fffff >> j0);
146 			lx = 0;
147 		} else {
148 			lx &= ~(((uint32_t)(0xffffffff)) >> (j0 - 20));
149 		}
150 		INSERT_WORDS(x,ix,lx);
151 
152 		ax -= x;
153 		EXTRACT_WORDS(ix, lx, ax);
154 
155 		if (ix < 0x3fe00000)		/* |x| < 0.5 */
156 			t = ax == 0 ? 0 : __kernel_tanpi(ax);
157 		else if (ax == 0.5)
158 			return ((ax - ax) / (ax - ax));
159 		else
160 			t = - __kernel_tanpi(1 - ax);
161 
162 		return ((hx & 0x80000000) ? -t : t);
163 	}
164 
165 	/* x = +-inf or nan. */
166 	if (ix >= 0x7ff00000)
167 		return (vzero / vzero);
168 
169 	/*
170 	 * |x| >= 0x1p52 is always an integer, so return +-0.
171 	 */
172 	return (copysign(0, x));
173 }
174 
175 #if LDBL_MANT_DIG == 53
176 __weak_reference(tanpi, tanpil);
177 #endif
178