xref: /freebsd/lib/msun/src/s_tanpi.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * Copyright (c) 2017, 2023 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /**
28  * tanpi(x) computes tan(pi*x) without multiplication by pi (almost).  First,
29  * note that tanpi(-x) = -tanpi(x), so the algorithm considers only |x| and
30  * includes reflection symmetry by considering the sign of x on output.  The
31  * method used depends on the magnitude of x.
32  *
33  * 1. For small |x|, tanpi(x) = pi * x where a sloppy threshold is used.  The
34  *    threshold is |x| < 0x1pN with N = -(P/2+M).  P is the precision of the
35  *    floating-point type and M = 2 to 4.  To achieve high accuracy, pi is
36  *    decomposed into high and low parts with the high part containing a
37  *    number of trailing zero bits.  x is also split into high and low parts.
38  *
39  * 2. For |x| < 1, argument reduction is not required and tanpi(x) is
40  *    computed by a direct call to a kernel, which uses the kernel for
41  *    tan(x).  See below.
42  *
43  * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
44  *    |x| = j0 + r with j0 an integer and the remainder r satisfies
45  *    0 <= r < 1.  With the given domain, a simplified inline floor(x)
46  *    is used.  Also, note the following identity
47  *
48  *                                   tan(pi*j0) + tan(pi*r)
49  *    tanpi(x) = tan(pi*(j0+r)) = ---------------------------- = tanpi(r)
50  *                                 1 - tan(pi*j0) * tan(pi*r)
51  *
52  *    So, after argument reduction, the kernel is again invoked.
53  *
54  * 4. For |x| >= 0x1p(P-1), |x| is integral and tanpi(x) = copysign(0,x).
55  *
56  * 5. Special cases:
57  *
58  *    tanpi(+-0) = +-0
59  *    tanpi(n) = +0 for positive even and negative odd integer n.
60  *    tanpi(n) = -0 for positive odd and negative even integer n.
61  *    tanpi(+-n+1/4) = +-1, for positive integers n.
62  *    tanpi(n+1/2) = +inf and raises the FE_DIVBYZERO exception for
63  *    even integers n.
64  *    tanpi(n+1/2) = -inf and raises the FE_DIVBYZERO exception for
65  *    odd integers n.
66  *    tanpi(+-inf) = NaN and raises the FE_INVALID exception.
67  *    tanpi(nan) = NaN and raises the FE_INVALID exception.
68  */
69 
70 #include <float.h>
71 #include "math.h"
72 #include "math_private.h"
73 
74 static const double
75 pi_hi =  3.1415926814079285e+00,	/* 0x400921fb 0x58000000 */
76 pi_lo = -2.7818135228334233e-08;	/* 0xbe5dde97 0x3dcb3b3a */
77 
78 /*
79  * The kernel for tanpi(x) multiplies x by an 80-bit approximation of
80  * pi, where the hi and lo parts are used with with kernel for tan(x).
81  */
82 static inline double
83 __kernel_tanpi(double x)
84 {
85 	double_t hi, lo, t;
86 
87 	if (x < 0.25) {
88 		hi = (float)x;
89 		lo = x - hi;
90 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
91 		hi *= pi_hi;
92 		_2sumF(hi, lo);
93 		t = __kernel_tan(hi, lo, 1);
94 	} else if (x > 0.25) {
95 		x = 0.5 - x;
96 		hi = (float)x;
97 		lo = x - hi;
98 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
99 		hi *= pi_hi;
100 		_2sumF(hi, lo);
101 		t = - __kernel_tan(hi, lo, -1);
102 	} else
103 		t = 1;
104 
105 	return (t);
106 }
107 
108 volatile static const double vzero = 0;
109 
110 double
111 tanpi(double x)
112 {
113 	double ax, hi, lo, odd, t;
114 	uint32_t hx, ix, j0, lx;
115 
116 	EXTRACT_WORDS(hx, lx, x);
117 	ix = hx & 0x7fffffff;
118 	INSERT_WORDS(ax, ix, lx);
119 
120 	if (ix < 0x3ff00000) {			/* |x| < 1 */
121 		if (ix < 0x3fe00000) {		/* |x| < 0.5 */
122 			if (ix < 0x3e200000) {	/* |x| < 0x1p-29 */
123 				if (x == 0)
124 					return (x);
125 				/*
126 				 * To avoid issues with subnormal values,
127 				 * scale the computation and rescale on
128 				 * return.
129 				 */
130 				INSERT_WORDS(hi, hx, 0);
131 				hi *= 0x1p53;
132 				lo = x * 0x1p53 - hi;
133 				t = (pi_lo + pi_hi) * lo + pi_lo * hi +
134 				    pi_hi * hi;
135 				return (t * 0x1p-53);
136 			}
137 			t = __kernel_tanpi(ax);
138 		} else if (ax == 0.5)
139 			t = 1 / vzero;
140 		else
141 			t = - __kernel_tanpi(1 - ax);
142 		return ((hx & 0x80000000) ? -t : t);
143 	}
144 
145 	if (ix < 0x43300000) {		/* 1 <= |x| < 0x1p52 */
146 		FFLOOR(x, j0, ix, lx);	/* Integer part of ax. */
147 		odd = (uint64_t)x & 1 ? -1 : 1;
148 		ax -= x;
149 		EXTRACT_WORDS(ix, lx, ax);
150 
151 		if (ix < 0x3fe00000)		/* |x| < 0.5 */
152 			t = ix == 0 ? copysign(0, odd) : __kernel_tanpi(ax);
153 		else if (ax == 0.5)
154 			t = odd / vzero;
155 		else
156 			t = - __kernel_tanpi(1 - ax);
157 
158 		return ((hx & 0x80000000) ? -t : t);
159 	}
160 
161 	/* x = +-inf or nan. */
162 	if (ix >= 0x7ff00000)
163 		return (vzero / vzero);
164 
165 	/*
166 	 * For 0x1p52 <= |x| < 0x1p53 need to determine if x is an even
167 	 * or odd integer to set t = +0 or -0.
168 	 * For |x| >= 0x1p54, it is always an even integer, so t = 0.
169 	 */
170 	t = ix >= 0x43400000 ? 0 : (copysign(0, (lx & 1) ? -1 : 1));
171 	return ((hx & 0x80000000) ? -t : t);
172 }
173 
174 #if LDBL_MANT_DIG == 53
175 __weak_reference(tanpi, tanpil);
176 #endif
177