1*dce5f3abSSteve Kargl /*- 2*dce5f3abSSteve Kargl * Copyright (c) 2017 Steven G. Kargl 3*dce5f3abSSteve Kargl * All rights reserved. 4*dce5f3abSSteve Kargl * 5*dce5f3abSSteve Kargl * Redistribution and use in source and binary forms, with or without 6*dce5f3abSSteve Kargl * modification, are permitted provided that the following conditions 7*dce5f3abSSteve Kargl * are met: 8*dce5f3abSSteve Kargl * 1. Redistributions of source code must retain the above copyright 9*dce5f3abSSteve Kargl * notice unmodified, this list of conditions, and the following 10*dce5f3abSSteve Kargl * disclaimer. 11*dce5f3abSSteve Kargl * 2. Redistributions in binary form must reproduce the above copyright 12*dce5f3abSSteve Kargl * notice, this list of conditions and the following disclaimer in the 13*dce5f3abSSteve Kargl * documentation and/or other materials provided with the distribution. 14*dce5f3abSSteve Kargl * 15*dce5f3abSSteve Kargl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16*dce5f3abSSteve Kargl * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17*dce5f3abSSteve Kargl * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18*dce5f3abSSteve Kargl * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19*dce5f3abSSteve Kargl * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20*dce5f3abSSteve Kargl * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21*dce5f3abSSteve Kargl * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22*dce5f3abSSteve Kargl * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23*dce5f3abSSteve Kargl * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24*dce5f3abSSteve Kargl * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25*dce5f3abSSteve Kargl */ 26*dce5f3abSSteve Kargl 27*dce5f3abSSteve Kargl /** 28*dce5f3abSSteve Kargl * tanpi(x) computes tan(pi*x) without multiplication by pi (almost). First, 29*dce5f3abSSteve Kargl * note that tanpi(-x) = -tanpi(x), so the algorithm considers only |x| and 30*dce5f3abSSteve Kargl * includes reflection symmetry by considering the sign of x on output. The 31*dce5f3abSSteve Kargl * method used depends on the magnitude of x. 32*dce5f3abSSteve Kargl * 33*dce5f3abSSteve Kargl * 1. For small |x|, tanpi(x) = pi * x where a sloppy threshold is used. The 34*dce5f3abSSteve Kargl * threshold is |x| < 0x1pN with N = -(P/2+M). P is the precision of the 35*dce5f3abSSteve Kargl * floating-point type and M = 2 to 4. To achieve high accuracy, pi is 36*dce5f3abSSteve Kargl * decomposed into high and low parts with the high part containing a 37*dce5f3abSSteve Kargl * number of trailing zero bits. x is also split into high and low parts. 38*dce5f3abSSteve Kargl * 39*dce5f3abSSteve Kargl * 2. For |x| < 1, argument reduction is not required and tanpi(x) is 40*dce5f3abSSteve Kargl * computed by a direct call to a kernel, which uses the kernel for 41*dce5f3abSSteve Kargl * tan(x). See below. 42*dce5f3abSSteve Kargl * 43*dce5f3abSSteve Kargl * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where 44*dce5f3abSSteve Kargl * |x| = j0 + r with j0 an integer and the remainder r satisfies 45*dce5f3abSSteve Kargl * 0 <= r < 1. With the given domain, a simplified inline floor(x) 46*dce5f3abSSteve Kargl * is used. Also, note the following identity 47*dce5f3abSSteve Kargl * 48*dce5f3abSSteve Kargl * tan(pi*j0) + tan(pi*r) 49*dce5f3abSSteve Kargl * tanpi(x) = tan(pi*(j0+r)) = ---------------------------- = tanpi(r) 50*dce5f3abSSteve Kargl * 1 - tan(pi*j0) * tan(pi*r) 51*dce5f3abSSteve Kargl * 52*dce5f3abSSteve Kargl * So, after argument reduction, the kernel is again invoked. 53*dce5f3abSSteve Kargl * 54*dce5f3abSSteve Kargl * 4. For |x| >= 0x1p(P-1), |x| is integral and tanpi(x) = copysign(0,x). 55*dce5f3abSSteve Kargl * 56*dce5f3abSSteve Kargl * 5. Special cases: 57*dce5f3abSSteve Kargl * 58*dce5f3abSSteve Kargl * tanpi(+-0) = +-0 59*dce5f3abSSteve Kargl * tanpi(+-n) = +-0, for positive integers n. 60*dce5f3abSSteve Kargl * tanpi(+-n+1/4) = +-1, for positive integers n. 61*dce5f3abSSteve Kargl * tanpi(+-n+1/2) = NaN, for positive integers n. 62*dce5f3abSSteve Kargl * tanpi(+-inf) = NaN. Raises the "invalid" floating-point exception. 63*dce5f3abSSteve Kargl * tanpi(nan) = NaN. Raises the "invalid" floating-point exception. 64*dce5f3abSSteve Kargl */ 65*dce5f3abSSteve Kargl 66*dce5f3abSSteve Kargl #include "math.h" 67*dce5f3abSSteve Kargl #include "math_private.h" 68*dce5f3abSSteve Kargl 69*dce5f3abSSteve Kargl static const double 70*dce5f3abSSteve Kargl pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */ 71*dce5f3abSSteve Kargl pi_lo = -2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */ 72*dce5f3abSSteve Kargl 73*dce5f3abSSteve Kargl /* 74*dce5f3abSSteve Kargl * The kernel for tanpi(x) multiplies x by an 80-bit approximation of 75*dce5f3abSSteve Kargl * pi, where the hi and lo parts are used with with kernel for tan(x). 76*dce5f3abSSteve Kargl */ 77*dce5f3abSSteve Kargl static inline double 78*dce5f3abSSteve Kargl __kernel_tanpi(double x) 79*dce5f3abSSteve Kargl { 80*dce5f3abSSteve Kargl double_t hi, lo, t; 81*dce5f3abSSteve Kargl 82*dce5f3abSSteve Kargl if (x < 0.25) { 83*dce5f3abSSteve Kargl hi = (float)x; 84*dce5f3abSSteve Kargl lo = x - hi; 85*dce5f3abSSteve Kargl lo = lo * (pi_lo + pi_hi) + hi * pi_lo; 86*dce5f3abSSteve Kargl hi *= pi_hi; 87*dce5f3abSSteve Kargl _2sumF(hi, lo); 88*dce5f3abSSteve Kargl t = __kernel_tan(hi, lo, 1); 89*dce5f3abSSteve Kargl } else if (x > 0.25) { 90*dce5f3abSSteve Kargl x = 0.5 - x; 91*dce5f3abSSteve Kargl hi = (float)x; 92*dce5f3abSSteve Kargl lo = x - hi; 93*dce5f3abSSteve Kargl lo = lo * (pi_lo + pi_hi) + hi * pi_lo; 94*dce5f3abSSteve Kargl hi *= pi_hi; 95*dce5f3abSSteve Kargl _2sumF(hi, lo); 96*dce5f3abSSteve Kargl t = - __kernel_tan(hi, lo, -1); 97*dce5f3abSSteve Kargl } else 98*dce5f3abSSteve Kargl t = 1; 99*dce5f3abSSteve Kargl 100*dce5f3abSSteve Kargl return (t); 101*dce5f3abSSteve Kargl } 102*dce5f3abSSteve Kargl 103*dce5f3abSSteve Kargl volatile static const double vzero = 0; 104*dce5f3abSSteve Kargl 105*dce5f3abSSteve Kargl double 106*dce5f3abSSteve Kargl tanpi(double x) 107*dce5f3abSSteve Kargl { 108*dce5f3abSSteve Kargl double ax, hi, lo, t; 109*dce5f3abSSteve Kargl uint32_t hx, ix, j0, lx; 110*dce5f3abSSteve Kargl 111*dce5f3abSSteve Kargl EXTRACT_WORDS(hx, lx, x); 112*dce5f3abSSteve Kargl ix = hx & 0x7fffffff; 113*dce5f3abSSteve Kargl INSERT_WORDS(ax, ix, lx); 114*dce5f3abSSteve Kargl 115*dce5f3abSSteve Kargl if (ix < 0x3ff00000) { /* |x| < 1 */ 116*dce5f3abSSteve Kargl if (ix < 0x3fe00000) { /* |x| < 0.5 */ 117*dce5f3abSSteve Kargl if (ix < 0x3e200000) { /* |x| < 0x1p-29 */ 118*dce5f3abSSteve Kargl if (x == 0) 119*dce5f3abSSteve Kargl return (x); 120*dce5f3abSSteve Kargl /* 121*dce5f3abSSteve Kargl * To avoid issues with subnormal values, 122*dce5f3abSSteve Kargl * scale the computation and rescale on 123*dce5f3abSSteve Kargl * return. 124*dce5f3abSSteve Kargl */ 125*dce5f3abSSteve Kargl INSERT_WORDS(hi, hx, 0); 126*dce5f3abSSteve Kargl hi *= 0x1p53; 127*dce5f3abSSteve Kargl lo = x * 0x1p53 - hi; 128*dce5f3abSSteve Kargl t = (pi_lo + pi_hi) * lo + pi_lo * hi + 129*dce5f3abSSteve Kargl pi_hi * hi; 130*dce5f3abSSteve Kargl return (t * 0x1p-53); 131*dce5f3abSSteve Kargl } 132*dce5f3abSSteve Kargl t = __kernel_tanpi(ax); 133*dce5f3abSSteve Kargl } else if (ax == 0.5) 134*dce5f3abSSteve Kargl return ((ax - ax) / (ax - ax)); 135*dce5f3abSSteve Kargl else 136*dce5f3abSSteve Kargl t = - __kernel_tanpi(1 - ax); 137*dce5f3abSSteve Kargl return ((hx & 0x80000000) ? -t : t); 138*dce5f3abSSteve Kargl } 139*dce5f3abSSteve Kargl 140*dce5f3abSSteve Kargl if (ix < 0x43300000) { /* 1 <= |x| < 0x1p52 */ 141*dce5f3abSSteve Kargl /* Determine integer part of ax. */ 142*dce5f3abSSteve Kargl j0 = ((ix >> 20) & 0x7ff) - 0x3ff; 143*dce5f3abSSteve Kargl if (j0 < 20) { 144*dce5f3abSSteve Kargl ix &= ~(0x000fffff >> j0); 145*dce5f3abSSteve Kargl lx = 0; 146*dce5f3abSSteve Kargl } else { 147*dce5f3abSSteve Kargl lx &= ~(((uint32_t)(0xffffffff)) >> (j0 - 20)); 148*dce5f3abSSteve Kargl } 149*dce5f3abSSteve Kargl INSERT_WORDS(x,ix,lx); 150*dce5f3abSSteve Kargl 151*dce5f3abSSteve Kargl ax -= x; 152*dce5f3abSSteve Kargl EXTRACT_WORDS(ix, lx, ax); 153*dce5f3abSSteve Kargl 154*dce5f3abSSteve Kargl if (ix < 0x3fe00000) /* |x| < 0.5 */ 155*dce5f3abSSteve Kargl t = ax == 0 ? 0 : __kernel_tanpi(ax); 156*dce5f3abSSteve Kargl else if (ax == 0.5) 157*dce5f3abSSteve Kargl return ((ax - ax) / (ax - ax)); 158*dce5f3abSSteve Kargl else 159*dce5f3abSSteve Kargl t = - __kernel_tanpi(1 - ax); 160*dce5f3abSSteve Kargl 161*dce5f3abSSteve Kargl return ((hx & 0x80000000) ? -t : t); 162*dce5f3abSSteve Kargl } 163*dce5f3abSSteve Kargl 164*dce5f3abSSteve Kargl /* x = +-inf or nan. */ 165*dce5f3abSSteve Kargl if (ix >= 0x7f800000) 166*dce5f3abSSteve Kargl return (vzero / vzero); 167*dce5f3abSSteve Kargl 168*dce5f3abSSteve Kargl /* 169*dce5f3abSSteve Kargl * |x| >= 0x1p52 is always an integer, so return +-0. 170*dce5f3abSSteve Kargl */ 171*dce5f3abSSteve Kargl return (copysign(0, x)); 172*dce5f3abSSteve Kargl } 173*dce5f3abSSteve Kargl 174*dce5f3abSSteve Kargl #if LDBL_MANT_DIG == 53 175*dce5f3abSSteve Kargl __weak_reference(tanpi, tanpil); 176*dce5f3abSSteve Kargl #endif 177