1dce5f3abSSteve Kargl /*-
2*2d3b0a68SSteve Kargl * Copyright (c) 2017, 2023 Steven G. Kargl
3dce5f3abSSteve Kargl * All rights reserved.
4dce5f3abSSteve Kargl *
5dce5f3abSSteve Kargl * Redistribution and use in source and binary forms, with or without
6dce5f3abSSteve Kargl * modification, are permitted provided that the following conditions
7dce5f3abSSteve Kargl * are met:
8dce5f3abSSteve Kargl * 1. Redistributions of source code must retain the above copyright
9dce5f3abSSteve Kargl * notice unmodified, this list of conditions, and the following
10dce5f3abSSteve Kargl * disclaimer.
11dce5f3abSSteve Kargl * 2. Redistributions in binary form must reproduce the above copyright
12dce5f3abSSteve Kargl * notice, this list of conditions and the following disclaimer in the
13dce5f3abSSteve Kargl * documentation and/or other materials provided with the distribution.
14dce5f3abSSteve Kargl *
15dce5f3abSSteve Kargl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16dce5f3abSSteve Kargl * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17dce5f3abSSteve Kargl * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18dce5f3abSSteve Kargl * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19dce5f3abSSteve Kargl * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20dce5f3abSSteve Kargl * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21dce5f3abSSteve Kargl * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22dce5f3abSSteve Kargl * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23dce5f3abSSteve Kargl * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24dce5f3abSSteve Kargl * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25dce5f3abSSteve Kargl */
26dce5f3abSSteve Kargl
27dce5f3abSSteve Kargl /**
28dce5f3abSSteve Kargl * tanpi(x) computes tan(pi*x) without multiplication by pi (almost). First,
29dce5f3abSSteve Kargl * note that tanpi(-x) = -tanpi(x), so the algorithm considers only |x| and
30dce5f3abSSteve Kargl * includes reflection symmetry by considering the sign of x on output. The
31dce5f3abSSteve Kargl * method used depends on the magnitude of x.
32dce5f3abSSteve Kargl *
33dce5f3abSSteve Kargl * 1. For small |x|, tanpi(x) = pi * x where a sloppy threshold is used. The
34dce5f3abSSteve Kargl * threshold is |x| < 0x1pN with N = -(P/2+M). P is the precision of the
35dce5f3abSSteve Kargl * floating-point type and M = 2 to 4. To achieve high accuracy, pi is
36dce5f3abSSteve Kargl * decomposed into high and low parts with the high part containing a
37dce5f3abSSteve Kargl * number of trailing zero bits. x is also split into high and low parts.
38dce5f3abSSteve Kargl *
39dce5f3abSSteve Kargl * 2. For |x| < 1, argument reduction is not required and tanpi(x) is
40dce5f3abSSteve Kargl * computed by a direct call to a kernel, which uses the kernel for
41dce5f3abSSteve Kargl * tan(x). See below.
42dce5f3abSSteve Kargl *
43dce5f3abSSteve Kargl * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
44dce5f3abSSteve Kargl * |x| = j0 + r with j0 an integer and the remainder r satisfies
45dce5f3abSSteve Kargl * 0 <= r < 1. With the given domain, a simplified inline floor(x)
46dce5f3abSSteve Kargl * is used. Also, note the following identity
47dce5f3abSSteve Kargl *
48dce5f3abSSteve Kargl * tan(pi*j0) + tan(pi*r)
49dce5f3abSSteve Kargl * tanpi(x) = tan(pi*(j0+r)) = ---------------------------- = tanpi(r)
50dce5f3abSSteve Kargl * 1 - tan(pi*j0) * tan(pi*r)
51dce5f3abSSteve Kargl *
52dce5f3abSSteve Kargl * So, after argument reduction, the kernel is again invoked.
53dce5f3abSSteve Kargl *
54dce5f3abSSteve Kargl * 4. For |x| >= 0x1p(P-1), |x| is integral and tanpi(x) = copysign(0,x).
55dce5f3abSSteve Kargl *
56dce5f3abSSteve Kargl * 5. Special cases:
57dce5f3abSSteve Kargl *
58dce5f3abSSteve Kargl * tanpi(+-0) = +-0
59*2d3b0a68SSteve Kargl * tanpi(n) = +0 for positive even and negative odd integer n.
60*2d3b0a68SSteve Kargl * tanpi(n) = -0 for positive odd and negative even integer n.
61dce5f3abSSteve Kargl * tanpi(+-n+1/4) = +-1, for positive integers n.
62*2d3b0a68SSteve Kargl * tanpi(n+1/2) = +inf and raises the FE_DIVBYZERO exception for
63*2d3b0a68SSteve Kargl * even integers n.
64*2d3b0a68SSteve Kargl * tanpi(n+1/2) = -inf and raises the FE_DIVBYZERO exception for
65*2d3b0a68SSteve Kargl * odd integers n.
66*2d3b0a68SSteve Kargl * tanpi(+-inf) = NaN and raises the FE_INVALID exception.
67*2d3b0a68SSteve Kargl * tanpi(nan) = NaN and raises the FE_INVALID exception.
68dce5f3abSSteve Kargl */
69dce5f3abSSteve Kargl
703bfc8376SSteve Kargl #include <float.h>
71dce5f3abSSteve Kargl #include "math.h"
72dce5f3abSSteve Kargl #include "math_private.h"
73dce5f3abSSteve Kargl
74dce5f3abSSteve Kargl static const double
75dce5f3abSSteve Kargl pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */
76dce5f3abSSteve Kargl pi_lo = -2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */
77dce5f3abSSteve Kargl
78dce5f3abSSteve Kargl /*
79dce5f3abSSteve Kargl * The kernel for tanpi(x) multiplies x by an 80-bit approximation of
80dce5f3abSSteve Kargl * pi, where the hi and lo parts are used with with kernel for tan(x).
81dce5f3abSSteve Kargl */
82dce5f3abSSteve Kargl static inline double
__kernel_tanpi(double x)83dce5f3abSSteve Kargl __kernel_tanpi(double x)
84dce5f3abSSteve Kargl {
85dce5f3abSSteve Kargl double_t hi, lo, t;
86dce5f3abSSteve Kargl
87dce5f3abSSteve Kargl if (x < 0.25) {
88dce5f3abSSteve Kargl hi = (float)x;
89dce5f3abSSteve Kargl lo = x - hi;
90dce5f3abSSteve Kargl lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
91dce5f3abSSteve Kargl hi *= pi_hi;
92dce5f3abSSteve Kargl _2sumF(hi, lo);
93dce5f3abSSteve Kargl t = __kernel_tan(hi, lo, 1);
94dce5f3abSSteve Kargl } else if (x > 0.25) {
95dce5f3abSSteve Kargl x = 0.5 - x;
96dce5f3abSSteve Kargl hi = (float)x;
97dce5f3abSSteve Kargl lo = x - hi;
98dce5f3abSSteve Kargl lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
99dce5f3abSSteve Kargl hi *= pi_hi;
100dce5f3abSSteve Kargl _2sumF(hi, lo);
101dce5f3abSSteve Kargl t = - __kernel_tan(hi, lo, -1);
102dce5f3abSSteve Kargl } else
103dce5f3abSSteve Kargl t = 1;
104dce5f3abSSteve Kargl
105dce5f3abSSteve Kargl return (t);
106dce5f3abSSteve Kargl }
107dce5f3abSSteve Kargl
108dce5f3abSSteve Kargl volatile static const double vzero = 0;
109dce5f3abSSteve Kargl
110dce5f3abSSteve Kargl double
tanpi(double x)111dce5f3abSSteve Kargl tanpi(double x)
112dce5f3abSSteve Kargl {
113*2d3b0a68SSteve Kargl double ax, hi, lo, odd, t;
114dce5f3abSSteve Kargl uint32_t hx, ix, j0, lx;
115dce5f3abSSteve Kargl
116dce5f3abSSteve Kargl EXTRACT_WORDS(hx, lx, x);
117dce5f3abSSteve Kargl ix = hx & 0x7fffffff;
118dce5f3abSSteve Kargl INSERT_WORDS(ax, ix, lx);
119dce5f3abSSteve Kargl
120dce5f3abSSteve Kargl if (ix < 0x3ff00000) { /* |x| < 1 */
121dce5f3abSSteve Kargl if (ix < 0x3fe00000) { /* |x| < 0.5 */
122dce5f3abSSteve Kargl if (ix < 0x3e200000) { /* |x| < 0x1p-29 */
123dce5f3abSSteve Kargl if (x == 0)
124dce5f3abSSteve Kargl return (x);
125dce5f3abSSteve Kargl /*
126dce5f3abSSteve Kargl * To avoid issues with subnormal values,
127dce5f3abSSteve Kargl * scale the computation and rescale on
128dce5f3abSSteve Kargl * return.
129dce5f3abSSteve Kargl */
130dce5f3abSSteve Kargl INSERT_WORDS(hi, hx, 0);
131dce5f3abSSteve Kargl hi *= 0x1p53;
132dce5f3abSSteve Kargl lo = x * 0x1p53 - hi;
133dce5f3abSSteve Kargl t = (pi_lo + pi_hi) * lo + pi_lo * hi +
134dce5f3abSSteve Kargl pi_hi * hi;
135dce5f3abSSteve Kargl return (t * 0x1p-53);
136dce5f3abSSteve Kargl }
137dce5f3abSSteve Kargl t = __kernel_tanpi(ax);
138dce5f3abSSteve Kargl } else if (ax == 0.5)
139*2d3b0a68SSteve Kargl t = 1 / vzero;
140dce5f3abSSteve Kargl else
141dce5f3abSSteve Kargl t = - __kernel_tanpi(1 - ax);
142dce5f3abSSteve Kargl return ((hx & 0x80000000) ? -t : t);
143dce5f3abSSteve Kargl }
144dce5f3abSSteve Kargl
145dce5f3abSSteve Kargl if (ix < 0x43300000) { /* 1 <= |x| < 0x1p52 */
146*2d3b0a68SSteve Kargl FFLOOR(x, j0, ix, lx); /* Integer part of ax. */
147*2d3b0a68SSteve Kargl odd = (uint64_t)x & 1 ? -1 : 1;
148dce5f3abSSteve Kargl ax -= x;
149dce5f3abSSteve Kargl EXTRACT_WORDS(ix, lx, ax);
150dce5f3abSSteve Kargl
151dce5f3abSSteve Kargl if (ix < 0x3fe00000) /* |x| < 0.5 */
152*2d3b0a68SSteve Kargl t = ix == 0 ? copysign(0, odd) : __kernel_tanpi(ax);
153dce5f3abSSteve Kargl else if (ax == 0.5)
154*2d3b0a68SSteve Kargl t = odd / vzero;
155dce5f3abSSteve Kargl else
156dce5f3abSSteve Kargl t = - __kernel_tanpi(1 - ax);
157dce5f3abSSteve Kargl
158dce5f3abSSteve Kargl return ((hx & 0x80000000) ? -t : t);
159dce5f3abSSteve Kargl }
160dce5f3abSSteve Kargl
161dce5f3abSSteve Kargl /* x = +-inf or nan. */
162be4c7f27SSteve Kargl if (ix >= 0x7ff00000)
163dce5f3abSSteve Kargl return (vzero / vzero);
164dce5f3abSSteve Kargl
165dce5f3abSSteve Kargl /*
166*2d3b0a68SSteve Kargl * For 0x1p52 <= |x| < 0x1p53 need to determine if x is an even
167*2d3b0a68SSteve Kargl * or odd integer to set t = +0 or -0.
168*2d3b0a68SSteve Kargl * For |x| >= 0x1p54, it is always an even integer, so t = 0.
169dce5f3abSSteve Kargl */
170*2d3b0a68SSteve Kargl t = ix >= 0x43400000 ? 0 : (copysign(0, (lx & 1) ? -1 : 1));
171*2d3b0a68SSteve Kargl return ((hx & 0x80000000) ? -t : t);
172dce5f3abSSteve Kargl }
173dce5f3abSSteve Kargl
174dce5f3abSSteve Kargl #if LDBL_MANT_DIG == 53
175dce5f3abSSteve Kargl __weak_reference(tanpi, tanpil);
176dce5f3abSSteve Kargl #endif
177