1 /* @(#)e_fmod.c 1.3 95/01/18 */ 2 /*- 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13 #include <sys/cdefs.h> 14 #include "math.h" 15 #include "math_private.h" 16 17 static const float Zero[] = {0.0, -0.0,}; 18 19 /* 20 * Return the IEEE remainder and set *quo to the last n bits of the 21 * quotient, rounded to the nearest integer. We choose n=31 because 22 * we wind up computing all the integer bits of the quotient anyway as 23 * a side-effect of computing the remainder by the shift and subtract 24 * method. In practice, this is far more bits than are needed to use 25 * remquo in reduction algorithms. 26 */ 27 float 28 remquof(float x, float y, int *quo) 29 { 30 int32_t n,hx,hy,hz,ix,iy,sx,i; 31 u_int32_t q,sxy; 32 33 GET_FLOAT_WORD(hx,x); 34 GET_FLOAT_WORD(hy,y); 35 sxy = (hx ^ hy) & 0x80000000; 36 sx = hx&0x80000000; /* sign of x */ 37 hx ^=sx; /* |x| */ 38 hy &= 0x7fffffff; /* |y| */ 39 40 /* purge off exception values */ 41 if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */ 42 return nan_mix_op(x, y, *)/nan_mix_op(x, y, *); 43 if(hx<hy) { 44 q = 0; 45 goto fixup; /* |x|<|y| return x or x-y */ 46 } else if(hx==hy) { 47 *quo = (sxy ? -1 : 1); 48 return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/ 49 } 50 51 /* determine ix = ilogb(x) */ 52 if(hx<0x00800000) { /* subnormal x */ 53 for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; 54 } else ix = (hx>>23)-127; 55 56 /* determine iy = ilogb(y) */ 57 if(hy<0x00800000) { /* subnormal y */ 58 for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1; 59 } else iy = (hy>>23)-127; 60 61 /* set up {hx,lx}, {hy,ly} and align y to x */ 62 if(ix >= -126) 63 hx = 0x00800000|(0x007fffff&hx); 64 else { /* subnormal x, shift x to normal */ 65 n = -126-ix; 66 hx <<= n; 67 } 68 if(iy >= -126) 69 hy = 0x00800000|(0x007fffff&hy); 70 else { /* subnormal y, shift y to normal */ 71 n = -126-iy; 72 hy <<= n; 73 } 74 75 /* fix point fmod */ 76 n = ix - iy; 77 q = 0; 78 while(n--) { 79 hz=hx-hy; 80 if(hz<0) hx = hx << 1; 81 else {hx = hz << 1; q++;} 82 q <<= 1; 83 } 84 hz=hx-hy; 85 if(hz>=0) {hx=hz;q++;} 86 87 /* convert back to floating value and restore the sign */ 88 if(hx==0) { /* return sign(x)*0 */ 89 q &= 0x7fffffff; 90 *quo = (sxy ? -q : q); 91 return Zero[(u_int32_t)sx>>31]; 92 } 93 while(hx<0x00800000) { /* normalize x */ 94 hx <<= 1; 95 iy -= 1; 96 } 97 if(iy>= -126) { /* normalize output */ 98 hx = ((hx-0x00800000)|((iy+127)<<23)); 99 } else { /* subnormal output */ 100 n = -126 - iy; 101 hx >>= n; 102 } 103 fixup: 104 SET_FLOAT_WORD(x,hx); 105 y = fabsf(y); 106 if (y < 0x1p-125f) { 107 if (x+x>y || (x+x==y && (q & 1))) { 108 q++; 109 x-=y; 110 } 111 } else if (x>0.5f*y || (x==0.5f*y && (q & 1))) { 112 q++; 113 x-=y; 114 } 115 GET_FLOAT_WORD(hx,x); 116 SET_FLOAT_WORD(x,hx^sx); 117 q &= 0x7fffffff; 118 *quo = (sxy ? -q : q); 119 return x; 120 } 121