xref: /freebsd/lib/msun/src/s_log1pf.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /* s_log1pf.c -- float version of s_log1p.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 #include <float.h>
18 
19 #include "math.h"
20 #include "math_private.h"
21 
22 static const float
23 ln2_hi =   6.9313812256e-01,	/* 0x3f317180 */
24 ln2_lo =   9.0580006145e-06,	/* 0x3717f7d1 */
25 two25 =    3.355443200e+07,	/* 0x4c000000 */
26 Lp1 = 6.6666668653e-01,	/* 3F2AAAAB */
27 Lp2 = 4.0000000596e-01,	/* 3ECCCCCD */
28 Lp3 = 2.8571429849e-01, /* 3E924925 */
29 Lp4 = 2.2222198546e-01, /* 3E638E29 */
30 Lp5 = 1.8183572590e-01, /* 3E3A3325 */
31 Lp6 = 1.5313838422e-01, /* 3E1CD04F */
32 Lp7 = 1.4798198640e-01; /* 3E178897 */
33 
34 static const float zero = 0.0;
35 static volatile float vzero = 0.0;
36 
37 float
38 log1pf(float x)
39 {
40 	float hfsq,f,c,s,z,R,u;
41 	int32_t k,hx,hu,ax;
42 
43 	GET_FLOAT_WORD(hx,x);
44 	ax = hx&0x7fffffff;
45 
46 	k = 1;
47 	if (hx < 0x3ed413d0) {			/* 1+x < sqrt(2)+  */
48 	    if(ax>=0x3f800000) {		/* x <= -1.0 */
49 		if(x==(float)-1.0) return -two25/vzero; /* log1p(-1)=+inf */
50 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
51 	    }
52 	    if(ax<0x38000000) {			/* |x| < 2**-15 */
53 		if(two25+x>zero			/* raise inexact */
54 	            &&ax<0x33800000) 		/* |x| < 2**-24 */
55 		    return x;
56 		else
57 		    return x - x*x*(float)0.5;
58 	    }
59 	    if(hx>0||hx<=((int32_t)0xbe95f619)) {
60 		k=0;f=x;hu=1;}		/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
61 	}
62 	if (hx >= 0x7f800000) return x+x;
63 	if(k!=0) {
64 	    if(hx<0x5a000000) {
65 		STRICT_ASSIGN(float,u,(float)1.0+x);
66 		GET_FLOAT_WORD(hu,u);
67 	        k  = (hu>>23)-127;
68 		/* correction term */
69 	        c  = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
70 		c /= u;
71 	    } else {
72 		u  = x;
73 		GET_FLOAT_WORD(hu,u);
74 	        k  = (hu>>23)-127;
75 		c  = 0;
76 	    }
77 	    hu &= 0x007fffff;
78 	    /*
79 	     * The approximation to sqrt(2) used in thresholds is not
80 	     * critical.  However, the ones used above must give less
81 	     * strict bounds than the one here so that the k==0 case is
82 	     * never reached from here, since here we have committed to
83 	     * using the correction term but don't use it if k==0.
84 	     */
85 	    if(hu<0x3504f4) {			/* u < sqrt(2) */
86 	        SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */
87 	    } else {
88 	        k += 1;
89 		SET_FLOAT_WORD(u,hu|0x3f000000);	/* normalize u/2 */
90 	        hu = (0x00800000-hu)>>2;
91 	    }
92 	    f = u-(float)1.0;
93 	}
94 	hfsq=(float)0.5*f*f;
95 	if(hu==0) {	/* |f| < 2**-20 */
96 	    if(f==zero) {
97 		if(k==0) {
98 		    return zero;
99 		} else {
100 		    c += k*ln2_lo;
101 		    return k*ln2_hi+c;
102 		}
103 	    }
104 	    R = hfsq*((float)1.0-(float)0.66666666666666666*f);
105 	    if(k==0) return f-R; else
106 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
107 	}
108  	s = f/((float)2.0+f);
109 	z = s*s;
110 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
111 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
112 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
113 }
114