13a8617a8SJordan K. Hubbard /* @(#)s_log1p.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business. 73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 93a8617a8SJordan K. Hubbard * is preserved. 103a8617a8SJordan K. Hubbard * ==================================================== 113a8617a8SJordan K. Hubbard */ 123a8617a8SJordan K. Hubbard 130814af48SBruce Evans #include <sys/cdefs.h> 140814af48SBruce Evans __FBSDID("$FreeBSD$"); 153a8617a8SJordan K. Hubbard 163a8617a8SJordan K. Hubbard /* double log1p(double x) 173a8617a8SJordan K. Hubbard * 183a8617a8SJordan K. Hubbard * Method : 193a8617a8SJordan K. Hubbard * 1. Argument Reduction: find k and f such that 203a8617a8SJordan K. Hubbard * 1+x = 2^k * (1+f), 213a8617a8SJordan K. Hubbard * where sqrt(2)/2 < 1+f < sqrt(2) . 223a8617a8SJordan K. Hubbard * 233a8617a8SJordan K. Hubbard * Note. If k=0, then f=x is exact. However, if k!=0, then f 243a8617a8SJordan K. Hubbard * may not be representable exactly. In that case, a correction 253a8617a8SJordan K. Hubbard * term is need. Let u=1+x rounded. Let c = (1+x)-u, then 263a8617a8SJordan K. Hubbard * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), 273a8617a8SJordan K. Hubbard * and add back the correction term c/u. 283a8617a8SJordan K. Hubbard * (Note: when x > 2**53, one can simply return log(x)) 293a8617a8SJordan K. Hubbard * 303a8617a8SJordan K. Hubbard * 2. Approximation of log1p(f). 313a8617a8SJordan K. Hubbard * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 323a8617a8SJordan K. Hubbard * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 333a8617a8SJordan K. Hubbard * = 2s + s*R 343a8617a8SJordan K. Hubbard * We use a special Reme algorithm on [0,0.1716] to generate 353a8617a8SJordan K. Hubbard * a polynomial of degree 14 to approximate R The maximum error 363a8617a8SJordan K. Hubbard * of this polynomial approximation is bounded by 2**-58.45. In 373a8617a8SJordan K. Hubbard * other words, 383a8617a8SJordan K. Hubbard * 2 4 6 8 10 12 14 393a8617a8SJordan K. Hubbard * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s 403a8617a8SJordan K. Hubbard * (the values of Lp1 to Lp7 are listed in the program) 413a8617a8SJordan K. Hubbard * and 423a8617a8SJordan K. Hubbard * | 2 14 | -58.45 433a8617a8SJordan K. Hubbard * | Lp1*s +...+Lp7*s - R(z) | <= 2 443a8617a8SJordan K. Hubbard * | | 453a8617a8SJordan K. Hubbard * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 463a8617a8SJordan K. Hubbard * In order to guarantee error in log below 1ulp, we compute log 473a8617a8SJordan K. Hubbard * by 483a8617a8SJordan K. Hubbard * log1p(f) = f - (hfsq - s*(hfsq+R)). 493a8617a8SJordan K. Hubbard * 503a8617a8SJordan K. Hubbard * 3. Finally, log1p(x) = k*ln2 + log1p(f). 513a8617a8SJordan K. Hubbard * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 523a8617a8SJordan K. Hubbard * Here ln2 is split into two floating point number: 533a8617a8SJordan K. Hubbard * ln2_hi + ln2_lo, 543a8617a8SJordan K. Hubbard * where n*ln2_hi is always exact for |n| < 2000. 553a8617a8SJordan K. Hubbard * 563a8617a8SJordan K. Hubbard * Special cases: 573a8617a8SJordan K. Hubbard * log1p(x) is NaN with signal if x < -1 (including -INF) ; 583a8617a8SJordan K. Hubbard * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 593a8617a8SJordan K. Hubbard * log1p(NaN) is that NaN with no signal. 603a8617a8SJordan K. Hubbard * 613a8617a8SJordan K. Hubbard * Accuracy: 623a8617a8SJordan K. Hubbard * according to an error analysis, the error is always less than 633a8617a8SJordan K. Hubbard * 1 ulp (unit in the last place). 643a8617a8SJordan K. Hubbard * 653a8617a8SJordan K. Hubbard * Constants: 663a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following 673a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the 683a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough 693a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown. 703a8617a8SJordan K. Hubbard * 713a8617a8SJordan K. Hubbard * Note: Assuming log() return accurate answer, the following 723a8617a8SJordan K. Hubbard * algorithm can be used to compute log1p(x) to within a few ULP: 733a8617a8SJordan K. Hubbard * 743a8617a8SJordan K. Hubbard * u = 1+x; 753a8617a8SJordan K. Hubbard * if(u==1.0) return x ; else 763a8617a8SJordan K. Hubbard * return log(u)*(x/(u-1.0)); 773a8617a8SJordan K. Hubbard * 783a8617a8SJordan K. Hubbard * See HP-15C Advanced Functions Handbook, p.193. 793a8617a8SJordan K. Hubbard */ 803a8617a8SJordan K. Hubbard 810814af48SBruce Evans #include <float.h> 820814af48SBruce Evans 833a8617a8SJordan K. Hubbard #include "math.h" 843a8617a8SJordan K. Hubbard #include "math_private.h" 853a8617a8SJordan K. Hubbard 863a8617a8SJordan K. Hubbard static const double 873a8617a8SJordan K. Hubbard ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 883a8617a8SJordan K. Hubbard ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 893a8617a8SJordan K. Hubbard two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 903a8617a8SJordan K. Hubbard Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 913a8617a8SJordan K. Hubbard Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 923a8617a8SJordan K. Hubbard Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 933a8617a8SJordan K. Hubbard Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 943a8617a8SJordan K. Hubbard Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 953a8617a8SJordan K. Hubbard Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 963a8617a8SJordan K. Hubbard Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 973a8617a8SJordan K. Hubbard 983a8617a8SJordan K. Hubbard static const double zero = 0.0; 993a8617a8SJordan K. Hubbard 10059b19ff1SAlfred Perlstein double 10159b19ff1SAlfred Perlstein log1p(double x) 1023a8617a8SJordan K. Hubbard { 1033a8617a8SJordan K. Hubbard double hfsq,f,c,s,z,R,u; 1043a8617a8SJordan K. Hubbard int32_t k,hx,hu,ax; 1053a8617a8SJordan K. Hubbard 1063a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 1073a8617a8SJordan K. Hubbard ax = hx&0x7fffffff; 1083a8617a8SJordan K. Hubbard 1093a8617a8SJordan K. Hubbard k = 1; 110d48ea975SBruce Evans if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ 1113a8617a8SJordan K. Hubbard if(ax>=0x3ff00000) { /* x <= -1.0 */ 1123a8617a8SJordan K. Hubbard if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ 1133a8617a8SJordan K. Hubbard else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ 1143a8617a8SJordan K. Hubbard } 1153a8617a8SJordan K. Hubbard if(ax<0x3e200000) { /* |x| < 2**-29 */ 1163a8617a8SJordan K. Hubbard if(two54+x>zero /* raise inexact */ 1173a8617a8SJordan K. Hubbard &&ax<0x3c900000) /* |x| < 2**-54 */ 1183a8617a8SJordan K. Hubbard return x; 1193a8617a8SJordan K. Hubbard else 1203a8617a8SJordan K. Hubbard return x - x*x*0.5; 1213a8617a8SJordan K. Hubbard } 122d48ea975SBruce Evans if(hx>0||hx<=((int32_t)0xbfd2bec4)) { 123d48ea975SBruce Evans k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ 1243a8617a8SJordan K. Hubbard } 1253a8617a8SJordan K. Hubbard if (hx >= 0x7ff00000) return x+x; 1263a8617a8SJordan K. Hubbard if(k!=0) { 1273a8617a8SJordan K. Hubbard if(hx<0x43400000) { 1280814af48SBruce Evans STRICT_ASSIGN(double,u,1.0+x); 1293a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u); 1303a8617a8SJordan K. Hubbard k = (hu>>20)-1023; 1313a8617a8SJordan K. Hubbard c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ 1323a8617a8SJordan K. Hubbard c /= u; 1333a8617a8SJordan K. Hubbard } else { 1343a8617a8SJordan K. Hubbard u = x; 1353a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u); 1363a8617a8SJordan K. Hubbard k = (hu>>20)-1023; 1373a8617a8SJordan K. Hubbard c = 0; 1383a8617a8SJordan K. Hubbard } 1393a8617a8SJordan K. Hubbard hu &= 0x000fffff; 140d48ea975SBruce Evans /* 141d48ea975SBruce Evans * The approximation to sqrt(2) used in thresholds is not 142d48ea975SBruce Evans * critical. However, the ones used above must give less 143d48ea975SBruce Evans * strict bounds than the one here so that the k==0 case is 144d48ea975SBruce Evans * never reached from here, since here we have committed to 145d48ea975SBruce Evans * using the correction term but don't use it if k==0. 146d48ea975SBruce Evans */ 147d48ea975SBruce Evans if(hu<0x6a09e) { /* u ~< sqrt(2) */ 1483a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */ 1493a8617a8SJordan K. Hubbard } else { 1503a8617a8SJordan K. Hubbard k += 1; 1513a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */ 1523a8617a8SJordan K. Hubbard hu = (0x00100000-hu)>>2; 1533a8617a8SJordan K. Hubbard } 1543a8617a8SJordan K. Hubbard f = u-1.0; 1553a8617a8SJordan K. Hubbard } 1563a8617a8SJordan K. Hubbard hfsq=0.5*f*f; 1573a8617a8SJordan K. Hubbard if(hu==0) { /* |f| < 2**-20 */ 158ee0730e6SDavid Schultz if(f==zero) { 159ee0730e6SDavid Schultz if(k==0) { 160ee0730e6SDavid Schultz return zero; 161ee0730e6SDavid Schultz } else { 162ee0730e6SDavid Schultz c += k*ln2_lo; 163ee0730e6SDavid Schultz return k*ln2_hi+c; 164ee0730e6SDavid Schultz } 165ee0730e6SDavid Schultz } 1663a8617a8SJordan K. Hubbard R = hfsq*(1.0-0.66666666666666666*f); 1673a8617a8SJordan K. Hubbard if(k==0) return f-R; else 1683a8617a8SJordan K. Hubbard return k*ln2_hi-((R-(k*ln2_lo+c))-f); 1693a8617a8SJordan K. Hubbard } 1703a8617a8SJordan K. Hubbard s = f/(2.0+f); 1713a8617a8SJordan K. Hubbard z = s*s; 1723a8617a8SJordan K. Hubbard R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); 1733a8617a8SJordan K. Hubbard if(k==0) return f-(hfsq-s*(hfsq+R)); else 1743a8617a8SJordan K. Hubbard return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); 1753a8617a8SJordan K. Hubbard } 176