13a8617a8SJordan K. Hubbard /* @(#)s_log1p.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business. 73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 93a8617a8SJordan K. Hubbard * is preserved. 103a8617a8SJordan K. Hubbard * ==================================================== 113a8617a8SJordan K. Hubbard */ 123a8617a8SJordan K. Hubbard 133a8617a8SJordan K. Hubbard #ifndef lint 147f3dea24SPeter Wemm static char rcsid[] = "$FreeBSD$"; 153a8617a8SJordan K. Hubbard #endif 163a8617a8SJordan K. Hubbard 173a8617a8SJordan K. Hubbard /* double log1p(double x) 183a8617a8SJordan K. Hubbard * 193a8617a8SJordan K. Hubbard * Method : 203a8617a8SJordan K. Hubbard * 1. Argument Reduction: find k and f such that 213a8617a8SJordan K. Hubbard * 1+x = 2^k * (1+f), 223a8617a8SJordan K. Hubbard * where sqrt(2)/2 < 1+f < sqrt(2) . 233a8617a8SJordan K. Hubbard * 243a8617a8SJordan K. Hubbard * Note. If k=0, then f=x is exact. However, if k!=0, then f 253a8617a8SJordan K. Hubbard * may not be representable exactly. In that case, a correction 263a8617a8SJordan K. Hubbard * term is need. Let u=1+x rounded. Let c = (1+x)-u, then 273a8617a8SJordan K. Hubbard * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), 283a8617a8SJordan K. Hubbard * and add back the correction term c/u. 293a8617a8SJordan K. Hubbard * (Note: when x > 2**53, one can simply return log(x)) 303a8617a8SJordan K. Hubbard * 313a8617a8SJordan K. Hubbard * 2. Approximation of log1p(f). 323a8617a8SJordan K. Hubbard * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 333a8617a8SJordan K. Hubbard * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 343a8617a8SJordan K. Hubbard * = 2s + s*R 353a8617a8SJordan K. Hubbard * We use a special Reme algorithm on [0,0.1716] to generate 363a8617a8SJordan K. Hubbard * a polynomial of degree 14 to approximate R The maximum error 373a8617a8SJordan K. Hubbard * of this polynomial approximation is bounded by 2**-58.45. In 383a8617a8SJordan K. Hubbard * other words, 393a8617a8SJordan K. Hubbard * 2 4 6 8 10 12 14 403a8617a8SJordan K. Hubbard * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s 413a8617a8SJordan K. Hubbard * (the values of Lp1 to Lp7 are listed in the program) 423a8617a8SJordan K. Hubbard * and 433a8617a8SJordan K. Hubbard * | 2 14 | -58.45 443a8617a8SJordan K. Hubbard * | Lp1*s +...+Lp7*s - R(z) | <= 2 453a8617a8SJordan K. Hubbard * | | 463a8617a8SJordan K. Hubbard * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 473a8617a8SJordan K. Hubbard * In order to guarantee error in log below 1ulp, we compute log 483a8617a8SJordan K. Hubbard * by 493a8617a8SJordan K. Hubbard * log1p(f) = f - (hfsq - s*(hfsq+R)). 503a8617a8SJordan K. Hubbard * 513a8617a8SJordan K. Hubbard * 3. Finally, log1p(x) = k*ln2 + log1p(f). 523a8617a8SJordan K. Hubbard * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 533a8617a8SJordan K. Hubbard * Here ln2 is split into two floating point number: 543a8617a8SJordan K. Hubbard * ln2_hi + ln2_lo, 553a8617a8SJordan K. Hubbard * where n*ln2_hi is always exact for |n| < 2000. 563a8617a8SJordan K. Hubbard * 573a8617a8SJordan K. Hubbard * Special cases: 583a8617a8SJordan K. Hubbard * log1p(x) is NaN with signal if x < -1 (including -INF) ; 593a8617a8SJordan K. Hubbard * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 603a8617a8SJordan K. Hubbard * log1p(NaN) is that NaN with no signal. 613a8617a8SJordan K. Hubbard * 623a8617a8SJordan K. Hubbard * Accuracy: 633a8617a8SJordan K. Hubbard * according to an error analysis, the error is always less than 643a8617a8SJordan K. Hubbard * 1 ulp (unit in the last place). 653a8617a8SJordan K. Hubbard * 663a8617a8SJordan K. Hubbard * Constants: 673a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following 683a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the 693a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough 703a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown. 713a8617a8SJordan K. Hubbard * 723a8617a8SJordan K. Hubbard * Note: Assuming log() return accurate answer, the following 733a8617a8SJordan K. Hubbard * algorithm can be used to compute log1p(x) to within a few ULP: 743a8617a8SJordan K. Hubbard * 753a8617a8SJordan K. Hubbard * u = 1+x; 763a8617a8SJordan K. Hubbard * if(u==1.0) return x ; else 773a8617a8SJordan K. Hubbard * return log(u)*(x/(u-1.0)); 783a8617a8SJordan K. Hubbard * 793a8617a8SJordan K. Hubbard * See HP-15C Advanced Functions Handbook, p.193. 803a8617a8SJordan K. Hubbard */ 813a8617a8SJordan K. Hubbard 823a8617a8SJordan K. Hubbard #include "math.h" 833a8617a8SJordan K. Hubbard #include "math_private.h" 843a8617a8SJordan K. Hubbard 853a8617a8SJordan K. Hubbard static const double 863a8617a8SJordan K. Hubbard ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 873a8617a8SJordan K. Hubbard ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 883a8617a8SJordan K. Hubbard two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 893a8617a8SJordan K. Hubbard Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 903a8617a8SJordan K. Hubbard Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 913a8617a8SJordan K. Hubbard Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 923a8617a8SJordan K. Hubbard Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 933a8617a8SJordan K. Hubbard Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 943a8617a8SJordan K. Hubbard Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 953a8617a8SJordan K. Hubbard Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 963a8617a8SJordan K. Hubbard 973a8617a8SJordan K. Hubbard static const double zero = 0.0; 983a8617a8SJordan K. Hubbard 9959b19ff1SAlfred Perlstein double 10059b19ff1SAlfred Perlstein log1p(double x) 1013a8617a8SJordan K. Hubbard { 1023a8617a8SJordan K. Hubbard double hfsq,f,c,s,z,R,u; 1033a8617a8SJordan K. Hubbard int32_t k,hx,hu,ax; 1043a8617a8SJordan K. Hubbard 1053a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 1063a8617a8SJordan K. Hubbard ax = hx&0x7fffffff; 1073a8617a8SJordan K. Hubbard 1083a8617a8SJordan K. Hubbard k = 1; 109d48ea975SBruce Evans if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ 1103a8617a8SJordan K. Hubbard if(ax>=0x3ff00000) { /* x <= -1.0 */ 1113a8617a8SJordan K. Hubbard if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ 1123a8617a8SJordan K. Hubbard else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ 1133a8617a8SJordan K. Hubbard } 1143a8617a8SJordan K. Hubbard if(ax<0x3e200000) { /* |x| < 2**-29 */ 1153a8617a8SJordan K. Hubbard if(two54+x>zero /* raise inexact */ 1163a8617a8SJordan K. Hubbard &&ax<0x3c900000) /* |x| < 2**-54 */ 1173a8617a8SJordan K. Hubbard return x; 1183a8617a8SJordan K. Hubbard else 1193a8617a8SJordan K. Hubbard return x - x*x*0.5; 1203a8617a8SJordan K. Hubbard } 121d48ea975SBruce Evans if(hx>0||hx<=((int32_t)0xbfd2bec4)) { 122d48ea975SBruce Evans k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ 1233a8617a8SJordan K. Hubbard } 1243a8617a8SJordan K. Hubbard if (hx >= 0x7ff00000) return x+x; 1253a8617a8SJordan K. Hubbard if(k!=0) { 1263a8617a8SJordan K. Hubbard if(hx<0x43400000) { 1273a8617a8SJordan K. Hubbard u = 1.0+x; 1283a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u); 1293a8617a8SJordan K. Hubbard k = (hu>>20)-1023; 1303a8617a8SJordan K. Hubbard c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ 1313a8617a8SJordan K. Hubbard c /= u; 1323a8617a8SJordan K. Hubbard } else { 1333a8617a8SJordan K. Hubbard u = x; 1343a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u); 1353a8617a8SJordan K. Hubbard k = (hu>>20)-1023; 1363a8617a8SJordan K. Hubbard c = 0; 1373a8617a8SJordan K. Hubbard } 1383a8617a8SJordan K. Hubbard hu &= 0x000fffff; 139d48ea975SBruce Evans /* 140d48ea975SBruce Evans * The approximation to sqrt(2) used in thresholds is not 141d48ea975SBruce Evans * critical. However, the ones used above must give less 142d48ea975SBruce Evans * strict bounds than the one here so that the k==0 case is 143d48ea975SBruce Evans * never reached from here, since here we have committed to 144d48ea975SBruce Evans * using the correction term but don't use it if k==0. 145d48ea975SBruce Evans */ 146d48ea975SBruce Evans if(hu<0x6a09e) { /* u ~< sqrt(2) */ 1473a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */ 1483a8617a8SJordan K. Hubbard } else { 1493a8617a8SJordan K. Hubbard k += 1; 1503a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */ 1513a8617a8SJordan K. Hubbard hu = (0x00100000-hu)>>2; 1523a8617a8SJordan K. Hubbard } 1533a8617a8SJordan K. Hubbard f = u-1.0; 1543a8617a8SJordan K. Hubbard } 1553a8617a8SJordan K. Hubbard hfsq=0.5*f*f; 1563a8617a8SJordan K. Hubbard if(hu==0) { /* |f| < 2**-20 */ 1573a8617a8SJordan K. Hubbard if(f==zero) if(k==0) return zero; 1583a8617a8SJordan K. Hubbard else {c += k*ln2_lo; return k*ln2_hi+c;} 1593a8617a8SJordan K. Hubbard R = hfsq*(1.0-0.66666666666666666*f); 1603a8617a8SJordan K. Hubbard if(k==0) return f-R; else 1613a8617a8SJordan K. Hubbard return k*ln2_hi-((R-(k*ln2_lo+c))-f); 1623a8617a8SJordan K. Hubbard } 1633a8617a8SJordan K. Hubbard s = f/(2.0+f); 1643a8617a8SJordan K. Hubbard z = s*s; 1653a8617a8SJordan K. Hubbard R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); 1663a8617a8SJordan K. Hubbard if(k==0) return f-(hfsq-s*(hfsq+R)); else 1673a8617a8SJordan K. Hubbard return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); 1683a8617a8SJordan K. Hubbard } 169