xref: /freebsd/lib/msun/src/s_log1p.c (revision 7dbbb6dde39391c17de03d7901dad76de99a14ff)
13a8617a8SJordan K. Hubbard /* @(#)s_log1p.c 5.1 93/09/24 */
23a8617a8SJordan K. Hubbard /*
33a8617a8SJordan K. Hubbard  * ====================================================
43a8617a8SJordan K. Hubbard  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
53a8617a8SJordan K. Hubbard  *
63a8617a8SJordan K. Hubbard  * Developed at SunPro, a Sun Microsystems, Inc. business.
73a8617a8SJordan K. Hubbard  * Permission to use, copy, modify, and distribute this
83a8617a8SJordan K. Hubbard  * software is freely granted, provided that this notice
93a8617a8SJordan K. Hubbard  * is preserved.
103a8617a8SJordan K. Hubbard  * ====================================================
113a8617a8SJordan K. Hubbard  */
123a8617a8SJordan K. Hubbard 
130814af48SBruce Evans #include <sys/cdefs.h>
140814af48SBruce Evans __FBSDID("$FreeBSD$");
153a8617a8SJordan K. Hubbard 
163a8617a8SJordan K. Hubbard /* double log1p(double x)
173a8617a8SJordan K. Hubbard  *
183a8617a8SJordan K. Hubbard  * Method :
193a8617a8SJordan K. Hubbard  *   1. Argument Reduction: find k and f such that
203a8617a8SJordan K. Hubbard  *			1+x = 2^k * (1+f),
213a8617a8SJordan K. Hubbard  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
223a8617a8SJordan K. Hubbard  *
233a8617a8SJordan K. Hubbard  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
243a8617a8SJordan K. Hubbard  *	may not be representable exactly. In that case, a correction
253a8617a8SJordan K. Hubbard  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
263a8617a8SJordan K. Hubbard  *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
273a8617a8SJordan K. Hubbard  *	and add back the correction term c/u.
283a8617a8SJordan K. Hubbard  *	(Note: when x > 2**53, one can simply return log(x))
293a8617a8SJordan K. Hubbard  *
303a8617a8SJordan K. Hubbard  *   2. Approximation of log1p(f).
313a8617a8SJordan K. Hubbard  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
323a8617a8SJordan K. Hubbard  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
333a8617a8SJordan K. Hubbard  *	     	 = 2s + s*R
343a8617a8SJordan K. Hubbard  *      We use a special Reme algorithm on [0,0.1716] to generate
353a8617a8SJordan K. Hubbard  * 	a polynomial of degree 14 to approximate R The maximum error
363a8617a8SJordan K. Hubbard  *	of this polynomial approximation is bounded by 2**-58.45. In
373a8617a8SJordan K. Hubbard  *	other words,
383a8617a8SJordan K. Hubbard  *		        2      4      6      8      10      12      14
393a8617a8SJordan K. Hubbard  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
403a8617a8SJordan K. Hubbard  *  	(the values of Lp1 to Lp7 are listed in the program)
413a8617a8SJordan K. Hubbard  *	and
423a8617a8SJordan K. Hubbard  *	    |      2          14          |     -58.45
433a8617a8SJordan K. Hubbard  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
443a8617a8SJordan K. Hubbard  *	    |                             |
453a8617a8SJordan K. Hubbard  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
463a8617a8SJordan K. Hubbard  *	In order to guarantee error in log below 1ulp, we compute log
473a8617a8SJordan K. Hubbard  *	by
483a8617a8SJordan K. Hubbard  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
493a8617a8SJordan K. Hubbard  *
503a8617a8SJordan K. Hubbard  *	3. Finally, log1p(x) = k*ln2 + log1p(f).
513a8617a8SJordan K. Hubbard  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
523a8617a8SJordan K. Hubbard  *	   Here ln2 is split into two floating point number:
533a8617a8SJordan K. Hubbard  *			ln2_hi + ln2_lo,
543a8617a8SJordan K. Hubbard  *	   where n*ln2_hi is always exact for |n| < 2000.
553a8617a8SJordan K. Hubbard  *
563a8617a8SJordan K. Hubbard  * Special cases:
573a8617a8SJordan K. Hubbard  *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
583a8617a8SJordan K. Hubbard  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
593a8617a8SJordan K. Hubbard  *	log1p(NaN) is that NaN with no signal.
603a8617a8SJordan K. Hubbard  *
613a8617a8SJordan K. Hubbard  * Accuracy:
623a8617a8SJordan K. Hubbard  *	according to an error analysis, the error is always less than
633a8617a8SJordan K. Hubbard  *	1 ulp (unit in the last place).
643a8617a8SJordan K. Hubbard  *
653a8617a8SJordan K. Hubbard  * Constants:
663a8617a8SJordan K. Hubbard  * The hexadecimal values are the intended ones for the following
673a8617a8SJordan K. Hubbard  * constants. The decimal values may be used, provided that the
683a8617a8SJordan K. Hubbard  * compiler will convert from decimal to binary accurately enough
693a8617a8SJordan K. Hubbard  * to produce the hexadecimal values shown.
703a8617a8SJordan K. Hubbard  *
713a8617a8SJordan K. Hubbard  * Note: Assuming log() return accurate answer, the following
723a8617a8SJordan K. Hubbard  * 	 algorithm can be used to compute log1p(x) to within a few ULP:
733a8617a8SJordan K. Hubbard  *
743a8617a8SJordan K. Hubbard  *		u = 1+x;
753a8617a8SJordan K. Hubbard  *		if(u==1.0) return x ; else
763a8617a8SJordan K. Hubbard  *			   return log(u)*(x/(u-1.0));
773a8617a8SJordan K. Hubbard  *
783a8617a8SJordan K. Hubbard  *	 See HP-15C Advanced Functions Handbook, p.193.
793a8617a8SJordan K. Hubbard  */
803a8617a8SJordan K. Hubbard 
810814af48SBruce Evans #include <float.h>
820814af48SBruce Evans 
833a8617a8SJordan K. Hubbard #include "math.h"
843a8617a8SJordan K. Hubbard #include "math_private.h"
853a8617a8SJordan K. Hubbard 
863a8617a8SJordan K. Hubbard static const double
873a8617a8SJordan K. Hubbard ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
883a8617a8SJordan K. Hubbard ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
893a8617a8SJordan K. Hubbard two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
903a8617a8SJordan K. Hubbard Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
913a8617a8SJordan K. Hubbard Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
923a8617a8SJordan K. Hubbard Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
933a8617a8SJordan K. Hubbard Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
943a8617a8SJordan K. Hubbard Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
953a8617a8SJordan K. Hubbard Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
963a8617a8SJordan K. Hubbard Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
973a8617a8SJordan K. Hubbard 
983a8617a8SJordan K. Hubbard static const double zero = 0.0;
99*7dbbb6ddSDavid Schultz static volatile double vzero = 0.0;
1003a8617a8SJordan K. Hubbard 
10159b19ff1SAlfred Perlstein double
10259b19ff1SAlfred Perlstein log1p(double x)
1033a8617a8SJordan K. Hubbard {
1043a8617a8SJordan K. Hubbard 	double hfsq,f,c,s,z,R,u;
1053a8617a8SJordan K. Hubbard 	int32_t k,hx,hu,ax;
1063a8617a8SJordan K. Hubbard 
1073a8617a8SJordan K. Hubbard 	GET_HIGH_WORD(hx,x);
1083a8617a8SJordan K. Hubbard 	ax = hx&0x7fffffff;
1093a8617a8SJordan K. Hubbard 
1103a8617a8SJordan K. Hubbard 	k = 1;
111d48ea975SBruce Evans 	if (hx < 0x3FDA827A) {			/* 1+x < sqrt(2)+ */
1123a8617a8SJordan K. Hubbard 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
113*7dbbb6ddSDavid Schultz 		if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
1143a8617a8SJordan K. Hubbard 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
1153a8617a8SJordan K. Hubbard 	    }
1163a8617a8SJordan K. Hubbard 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
1173a8617a8SJordan K. Hubbard 		if(two54+x>zero			/* raise inexact */
1183a8617a8SJordan K. Hubbard 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
1193a8617a8SJordan K. Hubbard 		    return x;
1203a8617a8SJordan K. Hubbard 		else
1213a8617a8SJordan K. Hubbard 		    return x - x*x*0.5;
1223a8617a8SJordan K. Hubbard 	    }
123d48ea975SBruce Evans 	    if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
124d48ea975SBruce Evans 		k=0;f=x;hu=1;}		/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
1253a8617a8SJordan K. Hubbard 	}
1263a8617a8SJordan K. Hubbard 	if (hx >= 0x7ff00000) return x+x;
1273a8617a8SJordan K. Hubbard 	if(k!=0) {
1283a8617a8SJordan K. Hubbard 	    if(hx<0x43400000) {
1290814af48SBruce Evans 		STRICT_ASSIGN(double,u,1.0+x);
1303a8617a8SJordan K. Hubbard 		GET_HIGH_WORD(hu,u);
1313a8617a8SJordan K. Hubbard 	        k  = (hu>>20)-1023;
1323a8617a8SJordan K. Hubbard 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
1333a8617a8SJordan K. Hubbard 		c /= u;
1343a8617a8SJordan K. Hubbard 	    } else {
1353a8617a8SJordan K. Hubbard 		u  = x;
1363a8617a8SJordan K. Hubbard 		GET_HIGH_WORD(hu,u);
1373a8617a8SJordan K. Hubbard 	        k  = (hu>>20)-1023;
1383a8617a8SJordan K. Hubbard 		c  = 0;
1393a8617a8SJordan K. Hubbard 	    }
1403a8617a8SJordan K. Hubbard 	    hu &= 0x000fffff;
141d48ea975SBruce Evans 	    /*
142d48ea975SBruce Evans 	     * The approximation to sqrt(2) used in thresholds is not
143d48ea975SBruce Evans 	     * critical.  However, the ones used above must give less
144d48ea975SBruce Evans 	     * strict bounds than the one here so that the k==0 case is
145d48ea975SBruce Evans 	     * never reached from here, since here we have committed to
146d48ea975SBruce Evans 	     * using the correction term but don't use it if k==0.
147d48ea975SBruce Evans 	     */
148d48ea975SBruce Evans 	    if(hu<0x6a09e) {			/* u ~< sqrt(2) */
1493a8617a8SJordan K. Hubbard 	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
1503a8617a8SJordan K. Hubbard 	    } else {
1513a8617a8SJordan K. Hubbard 	        k += 1;
1523a8617a8SJordan K. Hubbard 		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
1533a8617a8SJordan K. Hubbard 	        hu = (0x00100000-hu)>>2;
1543a8617a8SJordan K. Hubbard 	    }
1553a8617a8SJordan K. Hubbard 	    f = u-1.0;
1563a8617a8SJordan K. Hubbard 	}
1573a8617a8SJordan K. Hubbard 	hfsq=0.5*f*f;
1583a8617a8SJordan K. Hubbard 	if(hu==0) {	/* |f| < 2**-20 */
159ee0730e6SDavid Schultz 	    if(f==zero) {
160ee0730e6SDavid Schultz 		if(k==0) {
161ee0730e6SDavid Schultz 		    return zero;
162ee0730e6SDavid Schultz 		} else {
163ee0730e6SDavid Schultz 		    c += k*ln2_lo;
164ee0730e6SDavid Schultz 		    return k*ln2_hi+c;
165ee0730e6SDavid Schultz 		}
166ee0730e6SDavid Schultz 	    }
1673a8617a8SJordan K. Hubbard 	    R = hfsq*(1.0-0.66666666666666666*f);
1683a8617a8SJordan K. Hubbard 	    if(k==0) return f-R; else
1693a8617a8SJordan K. Hubbard 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
1703a8617a8SJordan K. Hubbard 	}
1713a8617a8SJordan K. Hubbard  	s = f/(2.0+f);
1723a8617a8SJordan K. Hubbard 	z = s*s;
1733a8617a8SJordan K. Hubbard 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
1743a8617a8SJordan K. Hubbard 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
1753a8617a8SJordan K. Hubbard 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
1763a8617a8SJordan K. Hubbard }
177