13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
33a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard *
53a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard * is preserved.
93a8617a8SJordan K. Hubbard * ====================================================
103a8617a8SJordan K. Hubbard */
113a8617a8SJordan K. Hubbard
123a8617a8SJordan K. Hubbard /* double log1p(double x)
133a8617a8SJordan K. Hubbard *
143a8617a8SJordan K. Hubbard * Method :
153a8617a8SJordan K. Hubbard * 1. Argument Reduction: find k and f such that
163a8617a8SJordan K. Hubbard * 1+x = 2^k * (1+f),
173a8617a8SJordan K. Hubbard * where sqrt(2)/2 < 1+f < sqrt(2) .
183a8617a8SJordan K. Hubbard *
193a8617a8SJordan K. Hubbard * Note. If k=0, then f=x is exact. However, if k!=0, then f
203a8617a8SJordan K. Hubbard * may not be representable exactly. In that case, a correction
213a8617a8SJordan K. Hubbard * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
223a8617a8SJordan K. Hubbard * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
233a8617a8SJordan K. Hubbard * and add back the correction term c/u.
243a8617a8SJordan K. Hubbard * (Note: when x > 2**53, one can simply return log(x))
253a8617a8SJordan K. Hubbard *
263a8617a8SJordan K. Hubbard * 2. Approximation of log1p(f).
273a8617a8SJordan K. Hubbard * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
283a8617a8SJordan K. Hubbard * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
293a8617a8SJordan K. Hubbard * = 2s + s*R
303a8617a8SJordan K. Hubbard * We use a special Reme algorithm on [0,0.1716] to generate
313a8617a8SJordan K. Hubbard * a polynomial of degree 14 to approximate R The maximum error
323a8617a8SJordan K. Hubbard * of this polynomial approximation is bounded by 2**-58.45. In
333a8617a8SJordan K. Hubbard * other words,
343a8617a8SJordan K. Hubbard * 2 4 6 8 10 12 14
353a8617a8SJordan K. Hubbard * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
363a8617a8SJordan K. Hubbard * (the values of Lp1 to Lp7 are listed in the program)
373a8617a8SJordan K. Hubbard * and
383a8617a8SJordan K. Hubbard * | 2 14 | -58.45
393a8617a8SJordan K. Hubbard * | Lp1*s +...+Lp7*s - R(z) | <= 2
403a8617a8SJordan K. Hubbard * | |
413a8617a8SJordan K. Hubbard * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
423a8617a8SJordan K. Hubbard * In order to guarantee error in log below 1ulp, we compute log
433a8617a8SJordan K. Hubbard * by
443a8617a8SJordan K. Hubbard * log1p(f) = f - (hfsq - s*(hfsq+R)).
453a8617a8SJordan K. Hubbard *
463a8617a8SJordan K. Hubbard * 3. Finally, log1p(x) = k*ln2 + log1p(f).
473a8617a8SJordan K. Hubbard * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
483a8617a8SJordan K. Hubbard * Here ln2 is split into two floating point number:
493a8617a8SJordan K. Hubbard * ln2_hi + ln2_lo,
503a8617a8SJordan K. Hubbard * where n*ln2_hi is always exact for |n| < 2000.
513a8617a8SJordan K. Hubbard *
523a8617a8SJordan K. Hubbard * Special cases:
533a8617a8SJordan K. Hubbard * log1p(x) is NaN with signal if x < -1 (including -INF) ;
543a8617a8SJordan K. Hubbard * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
553a8617a8SJordan K. Hubbard * log1p(NaN) is that NaN with no signal.
563a8617a8SJordan K. Hubbard *
573a8617a8SJordan K. Hubbard * Accuracy:
583a8617a8SJordan K. Hubbard * according to an error analysis, the error is always less than
593a8617a8SJordan K. Hubbard * 1 ulp (unit in the last place).
603a8617a8SJordan K. Hubbard *
613a8617a8SJordan K. Hubbard * Constants:
623a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following
633a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the
643a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough
653a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown.
663a8617a8SJordan K. Hubbard *
673a8617a8SJordan K. Hubbard * Note: Assuming log() return accurate answer, the following
683a8617a8SJordan K. Hubbard * algorithm can be used to compute log1p(x) to within a few ULP:
693a8617a8SJordan K. Hubbard *
703a8617a8SJordan K. Hubbard * u = 1+x;
713a8617a8SJordan K. Hubbard * if(u==1.0) return x ; else
723a8617a8SJordan K. Hubbard * return log(u)*(x/(u-1.0));
733a8617a8SJordan K. Hubbard *
743a8617a8SJordan K. Hubbard * See HP-15C Advanced Functions Handbook, p.193.
753a8617a8SJordan K. Hubbard */
763a8617a8SJordan K. Hubbard
770814af48SBruce Evans #include <float.h>
780814af48SBruce Evans
793a8617a8SJordan K. Hubbard #include "math.h"
803a8617a8SJordan K. Hubbard #include "math_private.h"
813a8617a8SJordan K. Hubbard
823a8617a8SJordan K. Hubbard static const double
833a8617a8SJordan K. Hubbard ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
843a8617a8SJordan K. Hubbard ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
853a8617a8SJordan K. Hubbard two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
863a8617a8SJordan K. Hubbard Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
873a8617a8SJordan K. Hubbard Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
883a8617a8SJordan K. Hubbard Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
893a8617a8SJordan K. Hubbard Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
903a8617a8SJordan K. Hubbard Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
913a8617a8SJordan K. Hubbard Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
923a8617a8SJordan K. Hubbard Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
933a8617a8SJordan K. Hubbard
943a8617a8SJordan K. Hubbard static const double zero = 0.0;
957dbbb6ddSDavid Schultz static volatile double vzero = 0.0;
963a8617a8SJordan K. Hubbard
9759b19ff1SAlfred Perlstein double
log1p(double x)9859b19ff1SAlfred Perlstein log1p(double x)
993a8617a8SJordan K. Hubbard {
1003a8617a8SJordan K. Hubbard double hfsq,f,c,s,z,R,u;
1013a8617a8SJordan K. Hubbard int32_t k,hx,hu,ax;
1023a8617a8SJordan K. Hubbard
1033a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x);
1043a8617a8SJordan K. Hubbard ax = hx&0x7fffffff;
1053a8617a8SJordan K. Hubbard
1063a8617a8SJordan K. Hubbard k = 1;
107d48ea975SBruce Evans if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
1083a8617a8SJordan K. Hubbard if(ax>=0x3ff00000) { /* x <= -1.0 */
1097dbbb6ddSDavid Schultz if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
1103a8617a8SJordan K. Hubbard else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
1113a8617a8SJordan K. Hubbard }
1123a8617a8SJordan K. Hubbard if(ax<0x3e200000) { /* |x| < 2**-29 */
1133a8617a8SJordan K. Hubbard if(two54+x>zero /* raise inexact */
1143a8617a8SJordan K. Hubbard &&ax<0x3c900000) /* |x| < 2**-54 */
1153a8617a8SJordan K. Hubbard return x;
1163a8617a8SJordan K. Hubbard else
1173a8617a8SJordan K. Hubbard return x - x*x*0.5;
1183a8617a8SJordan K. Hubbard }
119d48ea975SBruce Evans if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
120d48ea975SBruce Evans k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
1213a8617a8SJordan K. Hubbard }
1223a8617a8SJordan K. Hubbard if (hx >= 0x7ff00000) return x+x;
1233a8617a8SJordan K. Hubbard if(k!=0) {
1243a8617a8SJordan K. Hubbard if(hx<0x43400000) {
1250814af48SBruce Evans STRICT_ASSIGN(double,u,1.0+x);
1263a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u);
1273a8617a8SJordan K. Hubbard k = (hu>>20)-1023;
1283a8617a8SJordan K. Hubbard c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
1293a8617a8SJordan K. Hubbard c /= u;
1303a8617a8SJordan K. Hubbard } else {
1313a8617a8SJordan K. Hubbard u = x;
1323a8617a8SJordan K. Hubbard GET_HIGH_WORD(hu,u);
1333a8617a8SJordan K. Hubbard k = (hu>>20)-1023;
1343a8617a8SJordan K. Hubbard c = 0;
1353a8617a8SJordan K. Hubbard }
1363a8617a8SJordan K. Hubbard hu &= 0x000fffff;
137d48ea975SBruce Evans /*
138d48ea975SBruce Evans * The approximation to sqrt(2) used in thresholds is not
139d48ea975SBruce Evans * critical. However, the ones used above must give less
140d48ea975SBruce Evans * strict bounds than the one here so that the k==0 case is
141d48ea975SBruce Evans * never reached from here, since here we have committed to
142d48ea975SBruce Evans * using the correction term but don't use it if k==0.
143d48ea975SBruce Evans */
144d48ea975SBruce Evans if(hu<0x6a09e) { /* u ~< sqrt(2) */
1453a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
1463a8617a8SJordan K. Hubbard } else {
1473a8617a8SJordan K. Hubbard k += 1;
1483a8617a8SJordan K. Hubbard SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
1493a8617a8SJordan K. Hubbard hu = (0x00100000-hu)>>2;
1503a8617a8SJordan K. Hubbard }
1513a8617a8SJordan K. Hubbard f = u-1.0;
1523a8617a8SJordan K. Hubbard }
1533a8617a8SJordan K. Hubbard hfsq=0.5*f*f;
1543a8617a8SJordan K. Hubbard if(hu==0) { /* |f| < 2**-20 */
155ee0730e6SDavid Schultz if(f==zero) {
156ee0730e6SDavid Schultz if(k==0) {
157ee0730e6SDavid Schultz return zero;
158ee0730e6SDavid Schultz } else {
159ee0730e6SDavid Schultz c += k*ln2_lo;
160ee0730e6SDavid Schultz return k*ln2_hi+c;
161ee0730e6SDavid Schultz }
162ee0730e6SDavid Schultz }
1633a8617a8SJordan K. Hubbard R = hfsq*(1.0-0.66666666666666666*f);
1643a8617a8SJordan K. Hubbard if(k==0) return f-R; else
1653a8617a8SJordan K. Hubbard return k*ln2_hi-((R-(k*ln2_lo+c))-f);
1663a8617a8SJordan K. Hubbard }
1673a8617a8SJordan K. Hubbard s = f/(2.0+f);
1683a8617a8SJordan K. Hubbard z = s*s;
1693a8617a8SJordan K. Hubbard R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
1703a8617a8SJordan K. Hubbard if(k==0) return f-(hfsq-s*(hfsq+R)); else
1713a8617a8SJordan K. Hubbard return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
1723a8617a8SJordan K. Hubbard }
173*25a4d6bfSDavid Schultz
174*25a4d6bfSDavid Schultz #if (LDBL_MANT_DIG == 53)
175*25a4d6bfSDavid Schultz __weak_reference(log1p, log1pl);
176*25a4d6bfSDavid Schultz #endif
177