xref: /freebsd/lib/msun/src/s_fmal.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <fenv.h>
33 #include <float.h>
34 #include <math.h>
35 
36 #include "fpmath.h"
37 
38 /*
39  * A struct dd represents a floating-point number with twice the precision
40  * of a long double.  We maintain the invariant that "hi" stores the high-order
41  * bits of the result.
42  */
43 struct dd {
44 	long double hi;
45 	long double lo;
46 };
47 
48 /*
49  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
50  * that both a and b are finite, but make no assumptions about their relative
51  * magnitudes.
52  */
53 static inline struct dd
54 dd_add(long double a, long double b)
55 {
56 	struct dd ret;
57 	long double s;
58 
59 	ret.hi = a + b;
60 	s = ret.hi - a;
61 	ret.lo = (a - (ret.hi - s)) + (b - s);
62 	return (ret);
63 }
64 
65 /*
66  * Compute a+b, with a small tweak:  The least significant bit of the
67  * result is adjusted into a sticky bit summarizing all the bits that
68  * were lost to rounding.  This adjustment negates the effects of double
69  * rounding when the result is added to another number with a higher
70  * exponent.  For an explanation of round and sticky bits, see any reference
71  * on FPU design, e.g.,
72  *
73  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
74  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
75  */
76 static inline long double
77 add_adjusted(long double a, long double b)
78 {
79 	struct dd sum;
80 	union IEEEl2bits u;
81 
82 	sum = dd_add(a, b);
83 	if (sum.lo != 0) {
84 		u.e = sum.hi;
85 		if ((u.bits.manl & 1) == 0)
86 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
87 	}
88 	return (sum.hi);
89 }
90 
91 /*
92  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
93  * that the result will be subnormal, and care is taken to ensure that
94  * double rounding does not occur.
95  */
96 static inline long double
97 add_and_denormalize(long double a, long double b, int scale)
98 {
99 	struct dd sum;
100 	int bits_lost;
101 	union IEEEl2bits u;
102 
103 	sum = dd_add(a, b);
104 
105 	/*
106 	 * If we are losing at least two bits of accuracy to denormalization,
107 	 * then the first lost bit becomes a round bit, and we adjust the
108 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
109 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
110 	 * break any ties in the correct direction.
111 	 *
112 	 * If we are losing only one bit to denormalization, however, we must
113 	 * break the ties manually.
114 	 */
115 	if (sum.lo != 0) {
116 		u.e = sum.hi;
117 		bits_lost = -u.bits.exp - scale + 1;
118 		if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
119 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
120 	}
121 	return (ldexp(sum.hi, scale));
122 }
123 
124 /*
125  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
126  * that both a and b are normalized, so no underflow or overflow will occur.
127  * The current rounding mode must be round-to-nearest.
128  */
129 static inline struct dd
130 dd_mul(long double a, long double b)
131 {
132 #if LDBL_MANT_DIG == 64
133 	static const long double split = 0x1p32L + 1.0;
134 #elif LDBL_MANT_DIG == 113
135 	static const long double split = 0x1p57L + 1.0;
136 #endif
137 	struct dd ret;
138 	long double ha, hb, la, lb, p, q;
139 
140 	p = a * split;
141 	ha = a - p;
142 	ha += p;
143 	la = a - ha;
144 
145 	p = b * split;
146 	hb = b - p;
147 	hb += p;
148 	lb = b - hb;
149 
150 	p = ha * hb;
151 	q = ha * lb + la * hb;
152 
153 	ret.hi = p + q;
154 	ret.lo = p - ret.hi + q + la * lb;
155 	return (ret);
156 }
157 
158 /*
159  * Fused multiply-add: Compute x * y + z with a single rounding error.
160  *
161  * We use scaling to avoid overflow/underflow, along with the
162  * canonical precision-doubling technique adapted from:
163  *
164  *	Dekker, T.  A Floating-Point Technique for Extending the
165  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
166  */
167 long double
168 fmal(long double x, long double y, long double z)
169 {
170 	long double xs, ys, zs, adj;
171 	struct dd xy, r;
172 	int oround;
173 	int ex, ey, ez;
174 	int spread;
175 
176 	/*
177 	 * Handle special cases. The order of operations and the particular
178 	 * return values here are crucial in handling special cases involving
179 	 * infinities, NaNs, overflows, and signed zeroes correctly.
180 	 */
181 	if (x == 0.0 || y == 0.0)
182 		return (x * y + z);
183 	if (z == 0.0)
184 		return (x * y);
185 	if (!isfinite(x) || !isfinite(y))
186 		return (x * y + z);
187 	if (!isfinite(z))
188 		return (z);
189 
190 	xs = frexpl(x, &ex);
191 	ys = frexpl(y, &ey);
192 	zs = frexpl(z, &ez);
193 	oround = fegetround();
194 	spread = ex + ey - ez;
195 
196 	/*
197 	 * If x * y and z are many orders of magnitude apart, the scaling
198 	 * will overflow, so we handle these cases specially.  Rounding
199 	 * modes other than FE_TONEAREST are painful.
200 	 */
201 	if (spread < -LDBL_MANT_DIG) {
202 		feraiseexcept(FE_INEXACT);
203 		if (!isnormal(z))
204 			feraiseexcept(FE_UNDERFLOW);
205 		switch (oround) {
206 		case FE_TONEAREST:
207 			return (z);
208 		case FE_TOWARDZERO:
209 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
210 				return (z);
211 			else
212 				return (nextafterl(z, 0));
213 		case FE_DOWNWARD:
214 			if (x > 0.0 ^ y < 0.0)
215 				return (z);
216 			else
217 				return (nextafterl(z, -INFINITY));
218 		default:	/* FE_UPWARD */
219 			if (x > 0.0 ^ y < 0.0)
220 				return (nextafterl(z, INFINITY));
221 			else
222 				return (z);
223 		}
224 	}
225 	if (spread <= LDBL_MANT_DIG * 2)
226 		zs = ldexpl(zs, -spread);
227 	else
228 		zs = copysignl(LDBL_MIN, zs);
229 
230 	fesetround(FE_TONEAREST);
231 	/* work around clang bug 8100 */
232 	volatile long double vxs = xs;
233 
234 	/*
235 	 * Basic approach for round-to-nearest:
236 	 *
237 	 *     (xy.hi, xy.lo) = x * y		(exact)
238 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
239 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
240 	 *     result = r.hi + adj		(correctly rounded)
241 	 */
242 	xy = dd_mul(vxs, ys);
243 	r = dd_add(xy.hi, zs);
244 
245 	spread = ex + ey;
246 
247 	if (r.hi == 0.0) {
248 		/*
249 		 * When the addends cancel to 0, ensure that the result has
250 		 * the correct sign.
251 		 */
252 		fesetround(oround);
253 		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
254 		return (xy.hi + vzs + ldexpl(xy.lo, spread));
255 	}
256 
257 	if (oround != FE_TONEAREST) {
258 		/*
259 		 * There is no need to worry about double rounding in directed
260 		 * rounding modes.
261 		 */
262 		fesetround(oround);
263 		/* work around clang bug 8100 */
264 		volatile long double vrlo = r.lo;
265 		adj = vrlo + xy.lo;
266 		return (ldexpl(r.hi + adj, spread));
267 	}
268 
269 	adj = add_adjusted(r.lo, xy.lo);
270 	if (spread + ilogbl(r.hi) > -16383)
271 		return (ldexpl(r.hi + adj, spread));
272 	else
273 		return (add_and_denormalize(r.hi, adj, spread));
274 }
275