xref: /freebsd/lib/msun/src/s_fmal.c (revision ae8d58814089308028046ac80aeeb9cbb784bd0a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <fenv.h>
30 #include <float.h>
31 #include <math.h>
32 
33 #include "fpmath.h"
34 
35 /*
36  * A struct dd represents a floating-point number with twice the precision
37  * of a long double.  We maintain the invariant that "hi" stores the high-order
38  * bits of the result.
39  */
40 struct dd {
41 	long double hi;
42 	long double lo;
43 };
44 
45 /*
46  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
47  * that both a and b are finite, but make no assumptions about their relative
48  * magnitudes.
49  */
50 static inline struct dd
51 dd_add(long double a, long double b)
52 {
53 	struct dd ret;
54 	long double s;
55 
56 	ret.hi = a + b;
57 	s = ret.hi - a;
58 	ret.lo = (a - (ret.hi - s)) + (b - s);
59 	return (ret);
60 }
61 
62 /*
63  * Compute a+b, with a small tweak:  The least significant bit of the
64  * result is adjusted into a sticky bit summarizing all the bits that
65  * were lost to rounding.  This adjustment negates the effects of double
66  * rounding when the result is added to another number with a higher
67  * exponent.  For an explanation of round and sticky bits, see any reference
68  * on FPU design, e.g.,
69  *
70  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
71  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
72  */
73 static inline long double
74 add_adjusted(long double a, long double b)
75 {
76 	struct dd sum;
77 	union IEEEl2bits u;
78 
79 	sum = dd_add(a, b);
80 	if (sum.lo != 0) {
81 		u.e = sum.hi;
82 		if ((u.bits.manl & 1) == 0)
83 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
84 	}
85 	return (sum.hi);
86 }
87 
88 /*
89  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
90  * that the result will be subnormal, and care is taken to ensure that
91  * double rounding does not occur.
92  */
93 static inline long double
94 add_and_denormalize(long double a, long double b, int scale)
95 {
96 	struct dd sum;
97 	int bits_lost;
98 	union IEEEl2bits u;
99 
100 	sum = dd_add(a, b);
101 
102 	/*
103 	 * If we are losing at least two bits of accuracy to denormalization,
104 	 * then the first lost bit becomes a round bit, and we adjust the
105 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
106 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
107 	 * break any ties in the correct direction.
108 	 *
109 	 * If we are losing only one bit to denormalization, however, we must
110 	 * break the ties manually.
111 	 */
112 	if (sum.lo != 0) {
113 		u.e = sum.hi;
114 		bits_lost = -u.bits.exp - scale + 1;
115 		if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
116 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
117 	}
118 	return (ldexp(sum.hi, scale));
119 }
120 
121 /*
122  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
123  * that both a and b are normalized, so no underflow or overflow will occur.
124  * The current rounding mode must be round-to-nearest.
125  */
126 static inline struct dd
127 dd_mul(long double a, long double b)
128 {
129 #if LDBL_MANT_DIG == 64
130 	static const long double split = 0x1p32L + 1.0;
131 #elif LDBL_MANT_DIG == 113
132 	static const long double split = 0x1p57L + 1.0;
133 #endif
134 	struct dd ret;
135 	long double ha, hb, la, lb, p, q;
136 
137 	p = a * split;
138 	ha = a - p;
139 	ha += p;
140 	la = a - ha;
141 
142 	p = b * split;
143 	hb = b - p;
144 	hb += p;
145 	lb = b - hb;
146 
147 	p = ha * hb;
148 	q = ha * lb + la * hb;
149 
150 	ret.hi = p + q;
151 	ret.lo = p - ret.hi + q + la * lb;
152 	return (ret);
153 }
154 
155 /*
156  * Fused multiply-add: Compute x * y + z with a single rounding error.
157  *
158  * We use scaling to avoid overflow/underflow, along with the
159  * canonical precision-doubling technique adapted from:
160  *
161  *	Dekker, T.  A Floating-Point Technique for Extending the
162  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
163  */
164 long double
165 fmal(long double x, long double y, long double z)
166 {
167 	long double xs, ys, zs, adj;
168 	struct dd xy, r;
169 	int oround;
170 	int ex, ey, ez;
171 	int spread;
172 
173 	/*
174 	 * Handle special cases. The order of operations and the particular
175 	 * return values here are crucial in handling special cases involving
176 	 * infinities, NaNs, overflows, and signed zeroes correctly.
177 	 */
178 	if (x == 0.0 || y == 0.0)
179 		return (x * y + z);
180 	if (z == 0.0)
181 		return (x * y);
182 	if (!isfinite(x) || !isfinite(y))
183 		return (x * y + z);
184 	if (!isfinite(z))
185 		return (z);
186 
187 	xs = frexpl(x, &ex);
188 	ys = frexpl(y, &ey);
189 	zs = frexpl(z, &ez);
190 	oround = fegetround();
191 	spread = ex + ey - ez;
192 
193 	/*
194 	 * If x * y and z are many orders of magnitude apart, the scaling
195 	 * will overflow, so we handle these cases specially.  Rounding
196 	 * modes other than FE_TONEAREST are painful.
197 	 */
198 	if (spread < -LDBL_MANT_DIG) {
199 		feraiseexcept(FE_INEXACT);
200 		if (!isnormal(z))
201 			feraiseexcept(FE_UNDERFLOW);
202 		switch (oround) {
203 		case FE_TONEAREST:
204 			return (z);
205 		case FE_TOWARDZERO:
206 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
207 				return (z);
208 			else
209 				return (nextafterl(z, 0));
210 		case FE_DOWNWARD:
211 			if ((x > 0.0) ^ (y < 0.0))
212 				return (z);
213 			else
214 				return (nextafterl(z, -INFINITY));
215 		default:	/* FE_UPWARD */
216 			if ((x > 0.0) ^ (y < 0.0))
217 				return (nextafterl(z, INFINITY));
218 			else
219 				return (z);
220 		}
221 	}
222 	if (spread <= LDBL_MANT_DIG * 2)
223 		zs = ldexpl(zs, -spread);
224 	else
225 		zs = copysignl(LDBL_MIN, zs);
226 
227 	fesetround(FE_TONEAREST);
228 	/* work around clang issue #8472 */
229 	volatile long double vxs = xs;
230 
231 	/*
232 	 * Basic approach for round-to-nearest:
233 	 *
234 	 *     (xy.hi, xy.lo) = x * y		(exact)
235 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
236 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
237 	 *     result = r.hi + adj		(correctly rounded)
238 	 */
239 	xy = dd_mul(vxs, ys);
240 	r = dd_add(xy.hi, zs);
241 
242 	spread = ex + ey;
243 
244 	if (r.hi == 0.0) {
245 		/*
246 		 * When the addends cancel to 0, ensure that the result has
247 		 * the correct sign.
248 		 */
249 		fesetround(oround);
250 		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
251 		return (xy.hi + vzs + ldexpl(xy.lo, spread));
252 	}
253 
254 	if (oround != FE_TONEAREST) {
255 		/*
256 		 * There is no need to worry about double rounding in directed
257 		 * rounding modes.
258 		 */
259 		fesetround(oround);
260 		/* work around clang issue #8472 */
261 		volatile long double vrlo = r.lo;
262 		adj = vrlo + xy.lo;
263 		return (ldexpl(r.hi + adj, spread));
264 	}
265 
266 	adj = add_adjusted(r.lo, xy.lo);
267 	if (spread + ilogbl(r.hi) > -16383)
268 		return (ldexpl(r.hi + adj, spread));
269 	else
270 		return (add_and_denormalize(r.hi, adj, spread));
271 }
272