xref: /freebsd/lib/msun/src/s_fmal.c (revision 9ccc37e32070303fb293a2a1697ffa71eeb49b25)
1 /*-
2  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 #include "fpmath.h"
35 
36 /*
37  * A struct dd represents a floating-point number with twice the precision
38  * of a long double.  We maintain the invariant that "hi" stores the high-order
39  * bits of the result.
40  */
41 struct dd {
42 	long double hi;
43 	long double lo;
44 };
45 
46 /*
47  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
48  * that both a and b are finite, but make no assumptions about their relative
49  * magnitudes.
50  */
51 static inline struct dd
52 dd_add(long double a, long double b)
53 {
54 	struct dd ret;
55 	long double s;
56 
57 	ret.hi = a + b;
58 	s = ret.hi - a;
59 	ret.lo = (a - (ret.hi - s)) + (b - s);
60 	return (ret);
61 }
62 
63 /*
64  * Compute a+b, with a small tweak:  The least significant bit of the
65  * result is adjusted into a sticky bit summarizing all the bits that
66  * were lost to rounding.  This adjustment negates the effects of double
67  * rounding when the result is added to another number with a higher
68  * exponent.  For an explanation of round and sticky bits, see any reference
69  * on FPU design, e.g.,
70  *
71  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
72  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
73  */
74 static inline long double
75 add_adjusted(long double a, long double b)
76 {
77 	struct dd sum;
78 	union IEEEl2bits u;
79 
80 	sum = dd_add(a, b);
81 	if (sum.lo != 0) {
82 		u.e = sum.hi;
83 		if ((u.bits.manl & 1) == 0)
84 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
85 	}
86 	return (sum.hi);
87 }
88 
89 /*
90  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
91  * that the result will be subnormal, and care is taken to ensure that
92  * double rounding does not occur.
93  */
94 static inline long double
95 add_and_denormalize(long double a, long double b, int scale)
96 {
97 	struct dd sum;
98 	int bits_lost;
99 	union IEEEl2bits u;
100 
101 	sum = dd_add(a, b);
102 
103 	/*
104 	 * If we are losing at least two bits of accuracy to denormalization,
105 	 * then the first lost bit becomes a round bit, and we adjust the
106 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
107 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
108 	 * break any ties in the correct direction.
109 	 *
110 	 * If we are losing only one bit to denormalization, however, we must
111 	 * break the ties manually.
112 	 */
113 	if (sum.lo != 0) {
114 		u.e = sum.hi;
115 		bits_lost = -u.bits.exp - scale + 1;
116 		if (bits_lost != 1 ^ (int)(u.bits.manl & 1))
117 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
118 	}
119 	return (ldexp(sum.hi, scale));
120 }
121 
122 /*
123  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
124  * that both a and b are normalized, so no underflow or overflow will occur.
125  * The current rounding mode must be round-to-nearest.
126  */
127 static inline struct dd
128 dd_mul(long double a, long double b)
129 {
130 #if LDBL_MANT_DIG == 64
131 	static const long double split = 0x1p32L + 1.0;
132 #elif LDBL_MANT_DIG == 113
133 	static const long double split = 0x1p57L + 1.0;
134 #endif
135 	struct dd ret;
136 	long double ha, hb, la, lb, p, q;
137 
138 	p = a * split;
139 	ha = a - p;
140 	ha += p;
141 	la = a - ha;
142 
143 	p = b * split;
144 	hb = b - p;
145 	hb += p;
146 	lb = b - hb;
147 
148 	p = ha * hb;
149 	q = ha * lb + la * hb;
150 
151 	ret.hi = p + q;
152 	ret.lo = p - ret.hi + q + la * lb;
153 	return (ret);
154 }
155 
156 /*
157  * Fused multiply-add: Compute x * y + z with a single rounding error.
158  *
159  * We use scaling to avoid overflow/underflow, along with the
160  * canonical precision-doubling technique adapted from:
161  *
162  *	Dekker, T.  A Floating-Point Technique for Extending the
163  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
164  */
165 long double
166 fmal(long double x, long double y, long double z)
167 {
168 	long double xs, ys, zs, adj;
169 	struct dd xy, r;
170 	int oround;
171 	int ex, ey, ez;
172 	int spread;
173 
174 	/*
175 	 * Handle special cases. The order of operations and the particular
176 	 * return values here are crucial in handling special cases involving
177 	 * infinities, NaNs, overflows, and signed zeroes correctly.
178 	 */
179 	if (x == 0.0 || y == 0.0)
180 		return (x * y + z);
181 	if (z == 0.0)
182 		return (x * y);
183 	if (!isfinite(x) || !isfinite(y))
184 		return (x * y + z);
185 	if (!isfinite(z))
186 		return (z);
187 
188 	xs = frexpl(x, &ex);
189 	ys = frexpl(y, &ey);
190 	zs = frexpl(z, &ez);
191 	oround = fegetround();
192 	spread = ex + ey - ez;
193 
194 	/*
195 	 * If x * y and z are many orders of magnitude apart, the scaling
196 	 * will overflow, so we handle these cases specially.  Rounding
197 	 * modes other than FE_TONEAREST are painful.
198 	 */
199 	if (spread < -LDBL_MANT_DIG) {
200 		feraiseexcept(FE_INEXACT);
201 		if (!isnormal(z))
202 			feraiseexcept(FE_UNDERFLOW);
203 		switch (oround) {
204 		case FE_TONEAREST:
205 			return (z);
206 		case FE_TOWARDZERO:
207 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
208 				return (z);
209 			else
210 				return (nextafterl(z, 0));
211 		case FE_DOWNWARD:
212 			if (x > 0.0 ^ y < 0.0)
213 				return (z);
214 			else
215 				return (nextafterl(z, -INFINITY));
216 		default:	/* FE_UPWARD */
217 			if (x > 0.0 ^ y < 0.0)
218 				return (nextafterl(z, INFINITY));
219 			else
220 				return (z);
221 		}
222 	}
223 	if (spread <= LDBL_MANT_DIG * 2)
224 		zs = ldexpl(zs, -spread);
225 	else
226 		zs = copysignl(LDBL_MIN, zs);
227 
228 	fesetround(FE_TONEAREST);
229 
230 	/*
231 	 * Basic approach for round-to-nearest:
232 	 *
233 	 *     (xy.hi, xy.lo) = x * y		(exact)
234 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
235 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
236 	 *     result = r.hi + adj		(correctly rounded)
237 	 */
238 	xy = dd_mul(xs, ys);
239 	r = dd_add(xy.hi, zs);
240 
241 	spread = ex + ey;
242 
243 	if (r.hi == 0.0) {
244 		/*
245 		 * When the addends cancel to 0, ensure that the result has
246 		 * the correct sign.
247 		 */
248 		fesetround(oround);
249 		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
250 		return (xy.hi + vzs + ldexpl(xy.lo, spread));
251 	}
252 
253 	if (oround != FE_TONEAREST) {
254 		/*
255 		 * There is no need to worry about double rounding in directed
256 		 * rounding modes.
257 		 */
258 		fesetround(oround);
259 		adj = r.lo + xy.lo;
260 		return (ldexpl(r.hi + adj, spread));
261 	}
262 
263 	adj = add_adjusted(r.lo, xy.lo);
264 	if (spread + ilogbl(r.hi) > -16383)
265 		return (ldexpl(r.hi + adj, spread));
266 	else
267 		return (add_and_denormalize(r.hi, adj, spread));
268 }
269