xref: /freebsd/lib/msun/src/s_fmal.c (revision 63d45d7da0eac8efdeb765ac5caddfc2c5ca021e)
1 /*-
2  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 /*
35  * Fused multiply-add: Compute x * y + z with a single rounding error.
36  *
37  * We use scaling to avoid overflow/underflow, along with the
38  * canonical precision-doubling technique adapted from:
39  *
40  *	Dekker, T.  A Floating-Point Technique for Extending the
41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
42  *
43  * XXX May incur a small error for subnormal results due to double
44  *     rounding induced by the final scaling operation.
45  */
46 long double
47 fmal(long double x, long double y, long double z)
48 {
49 #if LDBL_MANT_DIG == 64
50 	static const long double split = 0x1p32L + 1.0;
51 #elif LDBL_MANT_DIG == 113
52 	static const long double split = 0x1p57L + 1.0;
53 #endif
54 	long double xs, ys, zs;
55 	long double c, cc, hx, hy, p, q, tx, ty;
56 	long double r, rr, s;
57 	int oround;
58 	int ex, ey, ez;
59 	int spread;
60 
61 	if (z == 0.0)
62 		return (x * y);
63 	if (x == 0.0 || y == 0.0)
64 		return (x * y + z);
65 
66 	/* Results of frexp() are undefined for these cases. */
67 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
68 		return (x * y + z);
69 
70 	xs = frexpl(x, &ex);
71 	ys = frexpl(y, &ey);
72 	zs = frexpl(z, &ez);
73 	oround = fegetround();
74 	spread = ex + ey - ez;
75 
76 	/*
77 	 * If x * y and z are many orders of magnitude apart, the scaling
78 	 * will overflow, so we handle these cases specially.  Rounding
79 	 * modes other than FE_TONEAREST are painful.
80 	 */
81 	if (spread > LDBL_MANT_DIG * 2) {
82 		fenv_t env;
83 		feraiseexcept(FE_INEXACT);
84 		switch(oround) {
85 		case FE_TONEAREST:
86 			return (x * y);
87 		case FE_TOWARDZERO:
88 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
89 				return (x * y);
90 			feholdexcept(&env);
91 			r = x * y;
92 			if (!fetestexcept(FE_INEXACT))
93 				r = nextafterl(r, 0);
94 			feupdateenv(&env);
95 			return (r);
96 		case FE_DOWNWARD:
97 			if (z > 0.0)
98 				return (x * y);
99 			feholdexcept(&env);
100 			r = x * y;
101 			if (!fetestexcept(FE_INEXACT))
102 				r = nextafterl(r, -INFINITY);
103 			feupdateenv(&env);
104 			return (r);
105 		default:	/* FE_UPWARD */
106 			if (z < 0.0)
107 				return (x * y);
108 			feholdexcept(&env);
109 			r = x * y;
110 			if (!fetestexcept(FE_INEXACT))
111 				r = nextafterl(r, INFINITY);
112 			feupdateenv(&env);
113 			return (r);
114 		}
115 	}
116 	if (spread < -LDBL_MANT_DIG) {
117 		feraiseexcept(FE_INEXACT);
118 		if (!isnormal(z))
119 			feraiseexcept(FE_UNDERFLOW);
120 		switch (oround) {
121 		case FE_TONEAREST:
122 			return (z);
123 		case FE_TOWARDZERO:
124 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
125 				return (z);
126 			else
127 				return (nextafterl(z, 0));
128 		case FE_DOWNWARD:
129 			if (x > 0.0 ^ y < 0.0)
130 				return (z);
131 			else
132 				return (nextafterl(z, -INFINITY));
133 		default:	/* FE_UPWARD */
134 			if (x > 0.0 ^ y < 0.0)
135 				return (nextafterl(z, INFINITY));
136 			else
137 				return (z);
138 		}
139 	}
140 
141 	/*
142 	 * Use Dekker's algorithm to perform the multiplication and
143 	 * subsequent addition in twice the machine precision.
144 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
145 	 */
146 	fesetround(FE_TONEAREST);
147 
148 	p = xs * split;
149 	hx = xs - p;
150 	hx += p;
151 	tx = xs - hx;
152 
153 	p = ys * split;
154 	hy = ys - p;
155 	hy += p;
156 	ty = ys - hy;
157 
158 	p = hx * hy;
159 	q = hx * ty + tx * hy;
160 	c = p + q;
161 	cc = p - c + q + tx * ty;
162 
163 	zs = ldexpl(zs, -spread);
164 	r = c + zs;
165 	s = r - c;
166 	rr = (c - (r - s)) + (zs - s) + cc;
167 
168 	fesetround(oround);
169 	return (ldexpl(r + rr, ex + ey));
170 }
171