xref: /freebsd/lib/msun/src/s_fma.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <fenv.h>
30 #include <float.h>
31 #include <math.h>
32 
33 #include "math_private.h"
34 
35 #ifdef USE_BUILTIN_FMA
36 double
37 fma(double x, double y, double z)
38 {
39 	return (__builtin_fma(x, y, z));
40 }
41 #else
42 /*
43  * A struct dd represents a floating-point number with twice the precision
44  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
45  * bits of the result.
46  */
47 struct dd {
48 	double hi;
49 	double lo;
50 };
51 
52 /*
53  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
54  * that both a and b are finite, but make no assumptions about their relative
55  * magnitudes.
56  */
57 static inline struct dd
58 dd_add(double a, double b)
59 {
60 	struct dd ret;
61 	double s;
62 
63 	ret.hi = a + b;
64 	s = ret.hi - a;
65 	ret.lo = (a - (ret.hi - s)) + (b - s);
66 	return (ret);
67 }
68 
69 /*
70  * Compute a+b, with a small tweak:  The least significant bit of the
71  * result is adjusted into a sticky bit summarizing all the bits that
72  * were lost to rounding.  This adjustment negates the effects of double
73  * rounding when the result is added to another number with a higher
74  * exponent.  For an explanation of round and sticky bits, see any reference
75  * on FPU design, e.g.,
76  *
77  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
78  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
79  */
80 static inline double
81 add_adjusted(double a, double b)
82 {
83 	struct dd sum;
84 	uint64_t hibits, lobits;
85 
86 	sum = dd_add(a, b);
87 	if (sum.lo != 0) {
88 		EXTRACT_WORD64(hibits, sum.hi);
89 		if ((hibits & 1) == 0) {
90 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
91 			EXTRACT_WORD64(lobits, sum.lo);
92 			hibits += 1 - ((hibits ^ lobits) >> 62);
93 			INSERT_WORD64(sum.hi, hibits);
94 		}
95 	}
96 	return (sum.hi);
97 }
98 
99 /*
100  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
101  * that the result will be subnormal, and care is taken to ensure that
102  * double rounding does not occur.
103  */
104 static inline double
105 add_and_denormalize(double a, double b, int scale)
106 {
107 	struct dd sum;
108 	uint64_t hibits, lobits;
109 	int bits_lost;
110 
111 	sum = dd_add(a, b);
112 
113 	/*
114 	 * If we are losing at least two bits of accuracy to denormalization,
115 	 * then the first lost bit becomes a round bit, and we adjust the
116 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
117 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
118 	 * break any ties in the correct direction.
119 	 *
120 	 * If we are losing only one bit to denormalization, however, we must
121 	 * break the ties manually.
122 	 */
123 	if (sum.lo != 0) {
124 		EXTRACT_WORD64(hibits, sum.hi);
125 		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
126 		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
127 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
128 			EXTRACT_WORD64(lobits, sum.lo);
129 			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
130 			INSERT_WORD64(sum.hi, hibits);
131 		}
132 	}
133 	return (ldexp(sum.hi, scale));
134 }
135 
136 /*
137  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
138  * that both a and b are normalized, so no underflow or overflow will occur.
139  * The current rounding mode must be round-to-nearest.
140  */
141 static inline struct dd
142 dd_mul(double a, double b)
143 {
144 	static const double split = 0x1p27 + 1.0;
145 	struct dd ret;
146 	double ha, hb, la, lb, p, q;
147 
148 	p = a * split;
149 	ha = a - p;
150 	ha += p;
151 	la = a - ha;
152 
153 	p = b * split;
154 	hb = b - p;
155 	hb += p;
156 	lb = b - hb;
157 
158 	p = ha * hb;
159 	q = ha * lb + la * hb;
160 
161 	ret.hi = p + q;
162 	ret.lo = p - ret.hi + q + la * lb;
163 	return (ret);
164 }
165 
166 /*
167  * Fused multiply-add: Compute x * y + z with a single rounding error.
168  *
169  * We use scaling to avoid overflow/underflow, along with the
170  * canonical precision-doubling technique adapted from:
171  *
172  *	Dekker, T.  A Floating-Point Technique for Extending the
173  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
174  *
175  * This algorithm is sensitive to the rounding precision.  FPUs such
176  * as the i387 must be set in double-precision mode if variables are
177  * to be stored in FP registers in order to avoid incorrect results.
178  * This is the default on FreeBSD, but not on many other systems.
179  *
180  * Hardware instructions should be used on architectures that support it,
181  * since this implementation will likely be several times slower.
182  */
183 double
184 fma(double x, double y, double z)
185 {
186 	double xs, ys, zs, adj;
187 	struct dd xy, r;
188 	int oround;
189 	int ex, ey, ez;
190 	int spread;
191 
192 	/*
193 	 * Handle special cases. The order of operations and the particular
194 	 * return values here are crucial in handling special cases involving
195 	 * infinities, NaNs, overflows, and signed zeroes correctly.
196 	 */
197 	if (x == 0.0 || y == 0.0)
198 		return (x * y + z);
199 	if (z == 0.0)
200 		return (x * y);
201 	if (!isfinite(x) || !isfinite(y))
202 		return (x * y + z);
203 	if (!isfinite(z))
204 		return (z);
205 
206 	xs = frexp(x, &ex);
207 	ys = frexp(y, &ey);
208 	zs = frexp(z, &ez);
209 	oround = fegetround();
210 	spread = ex + ey - ez;
211 
212 	/*
213 	 * If x * y and z are many orders of magnitude apart, the scaling
214 	 * will overflow, so we handle these cases specially.  Rounding
215 	 * modes other than FE_TONEAREST are painful.
216 	 */
217 	if (spread < -DBL_MANT_DIG) {
218 		feraiseexcept(FE_INEXACT);
219 		if (!isnormal(z))
220 			feraiseexcept(FE_UNDERFLOW);
221 		switch (oround) {
222 		case FE_TONEAREST:
223 			return (z);
224 		case FE_TOWARDZERO:
225 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
226 				return (z);
227 			else
228 				return (nextafter(z, 0));
229 		case FE_DOWNWARD:
230 			if (x > 0.0 ^ y < 0.0)
231 				return (z);
232 			else
233 				return (nextafter(z, -INFINITY));
234 		default:	/* FE_UPWARD */
235 			if (x > 0.0 ^ y < 0.0)
236 				return (nextafter(z, INFINITY));
237 			else
238 				return (z);
239 		}
240 	}
241 	if (spread <= DBL_MANT_DIG * 2)
242 		zs = ldexp(zs, -spread);
243 	else
244 		zs = copysign(DBL_MIN, zs);
245 
246 	fesetround(FE_TONEAREST);
247 	/* work around clang bug 8100 */
248 	volatile double vxs = xs;
249 
250 	/*
251 	 * Basic approach for round-to-nearest:
252 	 *
253 	 *     (xy.hi, xy.lo) = x * y		(exact)
254 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
255 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
256 	 *     result = r.hi + adj		(correctly rounded)
257 	 */
258 	xy = dd_mul(vxs, ys);
259 	r = dd_add(xy.hi, zs);
260 
261 	spread = ex + ey;
262 
263 	if (r.hi == 0.0) {
264 		/*
265 		 * When the addends cancel to 0, ensure that the result has
266 		 * the correct sign.
267 		 */
268 		fesetround(oround);
269 		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
270 		return (xy.hi + vzs + ldexp(xy.lo, spread));
271 	}
272 
273 	if (oround != FE_TONEAREST) {
274 		/*
275 		 * There is no need to worry about double rounding in directed
276 		 * rounding modes.
277 		 */
278 		fesetround(oround);
279 		/* work around clang bug 8100 */
280 		volatile double vrlo = r.lo;
281 		adj = vrlo + xy.lo;
282 		return (ldexp(r.hi + adj, spread));
283 	}
284 
285 	adj = add_adjusted(r.lo, xy.lo);
286 	if (spread + ilogb(r.hi) > -1023)
287 		return (ldexp(r.hi + adj, spread));
288 	else
289 		return (add_and_denormalize(r.hi, adj, spread));
290 }
291 #endif /* !USE_BUILTIN_FMA */
292 
293 #if (LDBL_MANT_DIG == 53)
294 __weak_reference(fma, fmal);
295 #endif
296